Sample records for material structural integrity

  1. Materials and structures technology insertion into spacecraft systems: Successes and challenges

    NASA Astrophysics Data System (ADS)

    Rawal, Suraj

    2018-05-01

    Over the last 30 years, significant advancements have led to the use of multifunctional materials and structures technologies in spacecraft systems. This includes the integration of adaptive structures, advanced composites, nanotechnology, and additive manufacturing technologies. Development of multifunctional structures has been directly influenced by the implementation of processes and tools for adaptive structures pioneered by Prof. Paolo Santini. Multifunctional materials and structures incorporating non-structural engineering functions such as thermal, electrical, radiation shielding, power, and sensors have been investigated. The result has been an integrated structure that offers reduced mass, packaging volume, and ease of integration for spacecraft systems. Current technology development efforts are being conducted to develop innovative multifunctional materials and structures designs incorporating advanced composites, nanotechnology, and additive manufacturing. However, these efforts offer significant challenges in the qualification and acceptance into spacecraft systems. This paper presents a brief overview of the technology development and successful insertion of advanced material technologies into spacecraft structures. Finally, opportunities and challenges to develop and mature next generation advanced materials and structures are presented.

  2. Structural materials and components

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Lee, Raymond (Inventor)

    1982-01-01

    High density structural (blocking) materials composed of a polyimide filled with glass microballoons and methods for making such materials. Structural components such as panels which have integral edgings and/or other parts made of the high density materials.

  3. Method for producing a hybridization of detector array and integrated circuit for readout

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Grunthaner, Frank J. (Inventor)

    1993-01-01

    A process is explained for fabricating a detector array in a layer of semiconductor material on one substrate and an integrated readout circuit in a layer of semiconductor material on a separate substrate in order to select semiconductor material for optimum performance of each structure, such as GaAs for the detector array and Si for the integrated readout circuit. The detector array layer is lifted off its substrate, laminated on the metallized surface on the integrated surface, etched with reticulating channels to the surface of the integrated circuit, and provided with interconnections between the detector array pixels and the integrated readout circuit through the channels. The adhesive material for the lamination is selected to be chemically stable to provide electrical and thermal insulation and to provide stress release between the two structures fabricated in semiconductor materials that may have different coefficients of thermal expansion.

  4. Materials, Structures and Manufacturing: An Integrated Approach to Develop Expandable Structures

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Zander, Martin E.; Sleight, Daid W.; Connell, John; Holloway, Nancy; Palmieri, Frank

    2012-01-01

    Membrane dominated space structures are lightweight and package efficiently for launch; however, they must be expanded (deployed) in-orbit to achieve the desired geometry. These expandable structural systems include solar sails, solar power arrays, antennas, and numerous other large aperture devices that are used to collect, reflect and/or transmit electromagnetic radiation. In this work, an integrated approach to development of thin-film damage tolerant membranes is explored using advanced manufacturing. Bio-inspired hierarchical structures were printed on films using additive manufacturing to achieve improved tear resistance and to facilitate membrane deployment. High precision, robust expandable structures can be realized using materials that are both space durable and processable using additive manufacturing. Test results show this initial work produced higher tear resistance than neat film of equivalent mass. Future research and development opportunities for expandable structural systems designed using an integrated approach to structural design, manufacturing, and materials selection are discussed.

  5. Are X-rays the key to integrated computational materials engineering?

    DOE PAGES

    Ice, Gene E.

    2015-11-01

    The ultimate dream of materials science is to predict materials behavior from composition and processing history. Owing to the growing power of computers, this long-time dream has recently found expression through worldwide excitement in a number of computation-based thrusts: integrated computational materials engineering, materials by design, computational materials design, three-dimensional materials physics and mesoscale physics. However, real materials have important crystallographic structures at multiple length scales, which evolve during processing and in service. Moreover, real materials properties can depend on the extreme tails in their structural and chemical distributions. This makes it critical to map structural distributions with sufficient resolutionmore » to resolve small structures and with sufficient statistics to capture the tails of distributions. For two-dimensional materials, there are high-resolution nondestructive probes of surface and near-surface structures with atomic or near-atomic resolution that can provide detailed structural, chemical and functional distributions over important length scales. Furthermore, there are no nondestructive three-dimensional probes with atomic resolution over the multiple length scales needed to understand most materials.« less

  6. Structural integrity of engineering composite materials: a cracking good yarn.

    PubMed

    Beaumont, Peter W R; Soutis, Costas

    2016-07-13

    Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large-scale engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a 'fracture safe design' is immense. Fitness considerations for long-life implementation of large composite structures include understanding phenomena such as impact, fatigue, creep and stress corrosion cracking that affect reliability, life expectancy and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined, and takes service duty into account. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).

  7. Understanding the effect of an in situ generated and integrated spinel phase on a layered Li-rich cathode material using a non-stoichiometric strategy.

    PubMed

    Zhang, Jicheng; Gao, Rui; Sun, Limei; Li, Zhengyao; Zhang, Heng; Hu, Zhongbo; Liu, Xiangfeng

    2016-09-14

    Recently, spinel-layered integrated Li-rich cathode materials have attracted great interest due to the large enhancement of their electrochemical performances. However, the modification mechanism and the effect of the integrated spinel phase on Li-rich layered cathode materials are still not very clear. Herein, we have successfully synthesized the spinel-layered integrated Li-rich cathode material using a facile non-stoichiometric strategy (NS-LNCMO). The rate capability (84 mA h g -1 vs. 28 mA h g -1 , 10 C), cycling stability (92.4% vs. 80.5%, 0.2 C), low temperature electrochemical capability (96.5 mA h g -1 vs. 59 mA h g -1 , -20 °C), initial coulomb efficiency (92% vs. 79%) and voltage fading (2.77 V vs. 3.02 V, 200 cycles@1 C) of spinel-layered integrated Li-rich cathode materials have been significantly improved compared with a pure Li-rich phase cathode. Some new insights into the effect of the integrated spinel phase on a layered Li-rich cathode have been proposed through a comparison of the structure evolution of the integrated and Li-rich only materials before and after cycling. The Li-ion diffusion coefficient of NS-LNCMO has been enlarged by about 3 times and almost does not change even after 100 cycles indicating an enhanced structure stability. The integration of the spinel phase not only enhances the structure stability of the layered Li-rich phase during charging-discharging but also expands the interslab spacing of the Li-ion diffusion layer, and elongates TM-O covalent bond lengths, which lowers the activation barrier of Li + -transportation, and alleviates the structure strain during the cycling procedure.

  8. Structural integrity of materials in nuclear service: a bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heddleson, F.A.

    This report contains 679 abstracts from the Nuclear Safety Information Center (NSIC) computer file dated 1973 through 1976 covering material properties with respect to structural integrity. All materials important to the nuclear industry (except concrete) are covered for mechanical properties, chemical properties, corrosion, fracture or failure, radiation damage, creep, cracking, and swelling. Keyword, author, and permuted-title indexes are included for the convenience of the user.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Hongyi; Li, Yang; Zeng, Danielle

    Process integration and optimization is the key enabler of the Integrated Computational Materials Engineering (ICME) of carbon fiber composites. In this paper, automated workflows are developed for two types of composites: Sheet Molding Compounds (SMC) short fiber composites, and multi-layer unidirectional (UD) composites. For SMC, the proposed workflow integrates material processing simulation, microstructure representation volume element (RVE) models, material property prediction and structure preformation simulation to enable multiscale, multidisciplinary analysis and design. Processing parameters, microstructure parameters and vehicle subframe geometry parameters are defined as the design variables; the stiffness and weight of the structure are defined as the responses. Formore » multi-layer UD structure, this work focuses on the discussion of different design representation methods and their impacts on the optimization performance. Challenges in ICME process integration and optimization are also summarized and highlighted. Two case studies are conducted to demonstrate the integrated process and its application in optimization.« less

  10. Integrated aerodynamic-structural design of a forward-swept transport wing

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Grossman, Bernard; Kao, Pi-Jen; Polen, David M.; Sobieszczanski-Sobieski, Jaroslaw

    1989-01-01

    The introduction of composite materials is having a profound effect on aircraft design. Since these materials permit the designer to tailor material properties to improve structural, aerodynamic and acoustic performance, they require an integrated multidisciplinary design process. Futhermore, because of the complexity of the design process, numerical optimization methods are required. The utilization of integrated multidisciplinary design procedures for improving aircraft design is not currently feasible because of software coordination problems and the enormous computational burden. Even with the expected rapid growth of supercomputers and parallel architectures, these tasks will not be practical without the development of efficient methods for cross-disciplinary sensitivities and efficient optimization procedures. The present research is part of an on-going effort which is focused on the processes of simultaneous aerodynamic and structural wing design as a prototype for design integration. A sequence of integrated wing design procedures has been developed in order to investigate various aspects of the design process.

  11. Integrated design of structures, controls, and materials

    NASA Technical Reports Server (NTRS)

    Blankenship, G. L.

    1994-01-01

    In this talk we shall discuss algorithms and CAD tools for the design and analysis of structures for high performance applications using advanced composite materials. An extensive mathematical theory for optimal structural (e.g., shape) design was developed over the past thirty years. Aspects of this theory have been used in the design of components for hypersonic vehicles and thermal diffusion systems based on homogeneous materials. Enhancement of the design methods to include optimization of the microstructure of the component is a significant innovation which can lead to major enhancements in component performance. Our work is focused on the adaptation of existing theories of optimal structural design (e.g., optimal shape design) to treat the design of structures using advanced composite materials (e.g., fiber reinforced, resin matrix materials). In this talk we shall discuss models and algorithms for the design of simple structures from composite materials, focussing on a problem in thermal management. We shall also discuss methods for the integration of active structural controls into the design process.

  12. Process Integration and Optimization of ICME Carbon Fiber Composites for Vehicle Lightweighting: A Preliminary Development

    DOE PAGES

    Xu, Hongyi; Li, Yang; Zeng, Danielle

    2017-01-02

    Process integration and optimization is the key enabler of the Integrated Computational Materials Engineering (ICME) of carbon fiber composites. In this paper, automated workflows are developed for two types of composites: Sheet Molding Compounds (SMC) short fiber composites, and multi-layer unidirectional (UD) composites. For SMC, the proposed workflow integrates material processing simulation, microstructure representation volume element (RVE) models, material property prediction and structure preformation simulation to enable multiscale, multidisciplinary analysis and design. Processing parameters, microstructure parameters and vehicle subframe geometry parameters are defined as the design variables; the stiffness and weight of the structure are defined as the responses. Formore » multi-layer UD structure, this work focuses on the discussion of different design representation methods and their impacts on the optimization performance. Challenges in ICME process integration and optimization are also summarized and highlighted. Two case studies are conducted to demonstrate the integrated process and its application in optimization.« less

  13. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science.

    PubMed

    Guerette, Paul A; Hoon, Shawn; Seow, Yiqi; Raida, Manfred; Masic, Admir; Wong, Fong T; Ho, Vincent H B; Kong, Kiat Whye; Demirel, Melik C; Pena-Francesch, Abdon; Amini, Shahrouz; Tay, Gavin Z; Ding, Dawei; Miserez, Ali

    2013-10-01

    Efforts to engineer new materials inspired by biological structures are hampered by the lack of genomic data from many model organisms studied in biomimetic research. Here we show that biomimetic engineering can be accelerated by integrating high-throughput RNA-seq with proteomics and advanced materials characterization. This approach can be applied to a broad range of systems, as we illustrate by investigating diverse high-performance biological materials involved in embryo protection, adhesion and predation. In one example, we rapidly engineer recombinant squid sucker ring teeth proteins into a range of structural and functional materials, including nanopatterned surfaces and photo-cross-linked films that exceed the mechanical properties of most natural and synthetic polymers. Integrating RNA-seq with proteomics and materials science facilitates the molecular characterization of natural materials and the effective translation of their molecular designs into a wide range of bio-inspired materials.

  14. Active Control Technology at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Antcliff, Richard R.; McGowan, Anna-Marie R.

    2000-01-01

    NASA Langley has a long history of attacking important technical opportunities from a broad base of supporting disciplines. The research and development at Langley in this subject area range from the test tube to the test flight. The information covered here will range from the development of innovative new materials, sensors and actuators, to the incorporation of smart sensors and actuators in practical devices, to the optimization of the location of these devices, to, finally, a wide variety of applications of these devices utilizing Langley's facilities and expertise. Advanced materials are being developed for sensors and actuators, as well as polymers for integrating smart devices into composite structures. Contributions reside in three key areas: computational materials; advanced piezoelectric materials; and integrated composite structures. The computational materials effort is focused on developing predictive tools for the efficient design of new materials with the appropriate combination of properties for next generation smart airframe systems. Research in the area of advanced piezoelectrics includes optimizing the efficiency, force output, use temperature, and energy transfer between the structure and device for both ceramic and polymeric materials. For structural health monitoring, advanced non-destructive techniques including fiber optics are being developed for detection of delaminations, cracks and environmental deterioration in aircraft structures. The computational materials effort is focused on developing predictive tools for the efficient design of new materials with the appropriate combination of properties for next generation smart airframe system. Innovative fabrication techniques processing structural composites with sensor and actuator integration are being developed.

  15. Cybermaterials: materials by design and accelerated insertion of materials

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Olson, Gregory B.

    2016-02-01

    Cybermaterials innovation entails an integration of Materials by Design and accelerated insertion of materials (AIM), which transfers studio ideation into industrial manufacturing. By assembling a hierarchical architecture of integrated computational materials design (ICMD) based on materials genomic fundamental databases, the ICMD mechanistic design models accelerate innovation. We here review progress in the development of linkage models of the process-structure-property-performance paradigm, as well as related design accelerating tools. Extending the materials development capability based on phase-level structural control requires more fundamental investment at the level of the Materials Genome, with focus on improving applicable parametric design models and constructing high-quality databases. Future opportunities in materials genomic research serving both Materials by Design and AIM are addressed.

  16. Material characterization of active fiber composites for integral twist-actuated rotor blade application

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Viresh K.; Hagood, Nesbitt W.

    2004-10-01

    The primary objective of this work was to perform material characterization of the active fiber composite (AFC) actuator system for the Boeing active material rotor (AMR) blade application. The purpose of the AMR was to demonstrate active vibration control in helicopters through integral twist-actuation of the blade. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to enhance actuation performance. These conformable actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural control. Therefore, extensive electromechanical material characterization was required to evaluate AFCs both as actuators and as structural components of the blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included nominal actuation tests, stress-strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing procedure developed to evaluate the relevant properties of the AFCs for structural application. The material characterization tests provided an invaluable insight into the behavior of the AFCs under various electromechanical conditions. The results from this comprehensive material characterization of the AFC actuator system supported the design and operation of the AMR blades scheduled for wind tunnel tests.

  17. Structurally Integrated Versus Structurally Segregated Memory Representations: Implications for the Design of Instructional Materials.

    ERIC Educational Resources Information Center

    Hayes-Roth, Barbara

    Two kinds of memory organization are distinguished: segregrated versus integrated. In segregated memory organizations, related learned propositions have separate memory representations. In integrated memory organizations, memory representations of related propositions share common subrepresentations. Segregated memory organizations facilitate…

  18. Wire-bonder-assisted integration of non-bondable SMA wires into MEMS substrates

    NASA Astrophysics Data System (ADS)

    Fischer, A. C.; Gradin, H.; Schröder, S.; Braun, S.; Stemme, G.; van der Wijngaart, W.; Niklaus, F.

    2012-05-01

    This paper reports on a novel technique for the integration of NiTi shape memory alloy wires and other non-bondable wire materials into silicon-based microelectromechanical system structures using a standard wire-bonding tool. The efficient placement and alignment functions of the wire-bonding tool are used to mechanically attach the wire to deep-etched silicon anchoring and clamping structures. This approach enables a reliable and accurate integration of wire materials that cannot be wire bonded by traditional means.

  19. Supersonic Cruise Research 1979, part 2. [airframe structures and materials, systems integration, economic analysis

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Advances in airframe structure and materials technology for supersonic cruise aircraft are reported with emphasis on titanium and composite structures. The operation of the Concorde is examined as a baseline for projections into the future. A market survey of U.S. passenger attitudes and preferences, the impact of advanced air transport technology and the integration of systems for the advanced SST and for a smaller research/business jet vehicle are also discussed.

  20. Directed assembly of bio-inspired hierarchical materials with controlled nanofibrillar architectures

    NASA Astrophysics Data System (ADS)

    Tseng, Peter; Napier, Bradley; Zhao, Siwei; Mitropoulos, Alexander N.; Applegate, Matthew B.; Marelli, Benedetto; Kaplan, David L.; Omenetto, Fiorenzo G.

    2017-05-01

    In natural systems, directed self-assembly of structural proteins produces complex, hierarchical materials that exhibit a unique combination of mechanical, chemical and transport properties. This controlled process covers dimensions ranging from the nano- to the macroscale. Such materials are desirable to synthesize integrated and adaptive materials and systems. We describe a bio-inspired process to generate hierarchically defined structures with multiscale morphology by using regenerated silk fibroin. The combination of protein self-assembly and microscale mechanical constraints is used to form oriented, porous nanofibrillar networks within predesigned macroscopic structures. This approach allows us to predefine the mechanical and physical properties of these materials, achieved by the definition of gradients in nano- to macroscale order. We fabricate centimetre-scale material geometries including anchors, cables, lattices and webs, as well as functional materials with structure-dependent strength and anisotropic thermal transport. Finally, multiple three-dimensional geometries and doped nanofibrillar constructs are presented to illustrate the facile integration of synthetic and natural additives to form functional, interactive, hierarchical networks.

  1. Nanoscale integration is the next frontier for nanotechnology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picraux, Samuel T

    2009-01-01

    Nanoscale integration of materials and structures is the next critical step to exploit the promise of nanomaterials. Many novel and fascinating properties have been revealed for nanostructured materials. But if nanotechnology is to live up to its promise we must incorporate these nanoscale building blocks into functional systems that connect to the micro- and macroscale world. To do this we will inevitably need to understand and exploit the resulting combined unique properties of these integrated nanosystems. Much science waits to be discovered in the process. Nanoscale integration extends from the synthesis and fabrication of individual nanoscale building blocks, to themore » assembly of these building blocks into composite structures, and finally to the formation of complex functional systems. As illustrated in Figure 1, the building blocks may be homogeneous or heterogeneous, the composite materials may be nanocomposite or patterned structures, and the functional systems will involve additional combinations of materials. Nanoscale integration involves assembling diverse nanoscale materials across length scales to design and achieve new properties and functionality. At each stage size-dependent properties, the influence of surfaces in close proximity, and a multitude of interfaces all come into play. Whether the final system involves coherent electrons in a quantum computing approach, the combined flow of phonons and electrons for a high efficiency thermoelectric micro-generator, or a molecular recognition structure for bio-sensing, the combined effects of size, surface, and interface will be critical. In essence, one wants to combine the novel functions available through nanoscale science to achieve unique multi-functionalities not available in bulk materials. Perhaps the best-known example of integration is that of combining electronic components together into very large scale integrated circuits (VLSI). The integrated circuit has revolutionized electronics in many ways, from exploiting field-effect transistor devices and low power complementary logic to enable the electronic watch and hand calculator in the 1970's, to today's microprocessors and memories with billions of devices and a computational power not imagined a few decades ago. The manipulation of charges on a chip, the new concepts in combining devices for logic functions, and the new approaches to computation, information processing, and imaging have all emerged from Kilby and Noyce's simple concept of integrating devices on a single chip. Moving from hard to soft materials, a second more recent example of integration is the DNA microarray. These microarrays, with up to millions of elements in a planar array that can be optically read out, can simultaneously measure the expression of 10's of thousands of genes to study the effects of disease and treatment, or screen for single nucleotide polymorphisms for uses ranging from forensics to predisposition to disease. While still at an early stage, microarrays have revolutionized biosciences by providing the means to interrogate the complex genetic control of biological functions. Just as integrated circuits and microarrays have led to completely new functionalities and performance, the integration of nanoscale materials and structures is anticipated to lead to new performance and enable the design of new functionalities not previously envisioned. The fundamental questions underlying integration go beyond just complex fabrication or the engineering of known solutions; they lead to new discoveries and new science. The scientific challenges around nanoscale integration necessitate the development of new knowledge that is central to the advance of nanotechnology. To move forward one must address key science questions that arise in nanoscience integration and go beyond a single system or materials area. New science and discoveries especially await around three questions. How does one: (1) Control energy transfer and other interactions across interfaces and over mUltiple length scales? (2) Understand and control the interactions between nanoscale building blocks to assemble specific integrated structures? (3) Design and exploit interactions within assembled structures to achieve new properties and specific functionalities? These high level questions can serve to drive research, and to advance understanding of the complex phenomena and multifunctionality that may emerge from integration. For example, in photonics there is considerable effort to understand and control the response of nanoscale conducting structures on dielectrics, to allow one to localize, manipulate, and control electromagnetic energy in integrated systems such as in the field known as metamaterials. Essential to this area is a fundamental understanding of energy transfer across multiple length scales (question 1 above).« less

  2. Composite membrane with integral rim

    DOEpatents

    Routkevitch, Dmitri; Polyakov, Oleg G

    2015-01-27

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  3. Guidelines for development of structural integrity programs for DOE high-level waste storage tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandyopadhyay, K.; Bush, S.; Kassir, M.

    Guidelines are provided for developing programs to promote the structural integrity of high-level waste storage tanks and transfer lines at the facilities of the Department of Energy. Elements of the program plan include a leak-detection system, definition of appropriate loads, collection of data for possible material and geometric changes, assessment of the tank structure, and non-destructive examination. Possible aging degradation mechanisms are explored for both steel and concrete components of the tanks, and evaluated to screen out nonsignificant aging mechanisms and to indicate methods of controlling the significant aging mechanisms. Specific guidelines for assessing structural adequacy will be provided inmore » companion documents. Site-specific structural integrity programs can be developed drawing on the relevant portions of the material in this document.« less

  4. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    NASA Technical Reports Server (NTRS)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  5. Distributed multifunctional sensor network for composite structural state sensing

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Wang, Yishou; Gao, Limin; Kumar, Amrita

    2012-04-01

    Advanced fiber reinforced composite materials are becoming the main structural materials of next generation of aircraft because of their high strength and stiffness to weight ratios, and strong designability. In order to take full advantages of composite materials, there is a need to develop an embeddable multifunctional sensing system to allow a structure to "feel" and "think" its structural state. In this paper, the concept of multifunctional sensor network integrated with a structure, similar to the human nervous system, has been developed. Different types of network sensors are permanently integrated within a composite structure to sense structural strain, temperature, moisture, aerodynamic pressure; monitor external impact on the structure; and detect structural damages. Utilizing this revolutionary concept, future composite structures can be designed and manufactured to provide multiple modes of information, so that the structures have the capabilities for intelligent sensing, environmental adaptation and multi-functionality. The challenges for building such a structural state sensing system and some solutions to address the challenges are also discussed in the paper.

  6. On the Problems of Cracking and the Question of Structural Integrity of Engineering Composite Materials

    NASA Astrophysics Data System (ADS)

    Beaumont, Peter W. R.

    2014-02-01

    Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a "fracture safe design" is immense. For example, when human life depends upon structural integrity as an essential design requirement, it takes ten thousand material test coupons per composite laminate configuration to evaluate an airframe plus loading to ultimate failure tails, wing boxes, and fuselages to achieve a commercial aircraft airworthiness certification. Fitness considerations for long-life implementation of aerospace composites include understanding phenomena such as impact, fatigue, creep, and stress corrosion cracking that affect reliability, life expectancy, and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined. Furthermore, SI takes into account service duty. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk.

  7. Novel Processes for Modular Integration of Silicon-Germanium MEMS with CMOS Electronics

    DTIC Science & Technology

    2007-02-28

    process limits the compatibility with further lithography steps. Using silicon as the MEMS structural material, most of the integration processes...structures are defined by lithography and deep reactive ion etching. A layer of gasket oxide is deposited as the sacrificial material between the...When the Bragg condition for constructive interference is obtained, a diffraction peak is produced and the relative peak height is proportional to

  8. A Review on Passive and Integrated Near-Field Microwave Biosensors

    PubMed Central

    Guha, Subhajit; Jamal, Farabi Ibne

    2017-01-01

    In this paper we review the advancement of passive and integrated microwave biosensors. The interaction of microwave with biological material is discussed in this paper. Passive microwave biosensors are microwave structures, which are fabricated on a substrate and are used for sensing biological materials. On the other hand, integrated biosensors are microwave structures fabricated in standard semiconductor technology platform (CMOS or BiCMOS). The CMOS or BiCMOS sensor technology offers a more compact sensing approach which has the potential in the future for point of care testing systems. Various applications of the passive and the integrated sensors have been discussed in this review paper. PMID:28946617

  9. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, R.; Wiberley, S. E.

    1986-01-01

    Overall emphasis is on basic long-term research in the following categories: constituent materials, composite materials, generic structural elements, processing science technology; and maintaining long-term structural integrity. Research in basic composition, characteristics, and processing science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to present and future problems. Detailed descriptions of the progress achieved in the various component parts of this comprehensive program are presented.

  10. An Integrated, Layered-Spinel Composite Cathode for Energy Storage Applications

    NASA Technical Reports Server (NTRS)

    Hagh, Nader; Skandan, Ganesh

    2012-01-01

    At low operating temperatures, commercially available electrode materials for lithium-ion batteries do not fully meet the energy and power requirements for NASA fs exploration activities. The composite cathode under development is projected to provide the required energy and power densities at low temperatures and its usage will considerably reduce the overall volume and weight of the battery pack. The newly developed composite electrode material can provide superior electrochemical performance relative to a commercially available lithium cobalt system. One advantage of using a composite cathode is its higher energy density, which can lead to smaller and lighter battery packs. In the current program, different series of layered-spinel composite materials with at least two different systems in an integrated structure were synthesized, and the volumetric and gravimetric energy densities were evaluated. In an integrated network of a composite electrode, the effect of the combined structures is to enhance the capacity and power capabilities of the material to levels greater than what is possible in current state-of-the-art cathode systems. The main objective of the current program is to implement a novel cathode material that meets NASA fs low temperature energy density requirements. An important feature of the composite cathode is that it has at least two components (e.g., layered and spinel) that are structurally integrated. The layered material by itself is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated, thereby delivering a large amount of energy with stable cycling. A key aspect of the innovation has been the development of a scalable process to produce submicronand micron-scale particles of these composite materials. An additional advantage of using such a composite electrode material is its low irreversible loss (.5%), which is primarily due to the unique activation of the composite. High columbic efficiency (greater than 99%) upon cycling may indicate the formation of a stable SEI (solid-electrolyte interface) layer, which can contribute to long cycle life. The innovation in the current program, when further developed, will enable the system to maintain high energy and power densities at low temperatures, improve efficiency, and further stabilize and enhance the safety of the cell.

  11. Development of Teaching Material Oxidation-Reduction Reactions through Four Steps Teaching Material Development (4S TMD)

    NASA Astrophysics Data System (ADS)

    Syamsuri, B. S.; Anwar, S.; Sumarna, O.

    2017-09-01

    This research aims to develop oxidation-reduction reactions (redox) teaching material used the Four Steps Teaching Material Development (4S TMD) method consists of four steps: selection, structuring, characterization and didactical reduction. This paper is the first part of the development of teaching material that includes selection and structuring steps. At the selection step, the development of teaching material begins with the development concept of redox based on curriculum demands, then the development of fundamental concepts sourced from the international textbook, and last is the development of values or skills can be integrated with redox concepts. The results of this selection step are the subject matter of the redox concept and values can be integrated with it. In the structuring step was developed concept map that provide on the relationship between redox concepts; Macro structure that guide systematic on the writing of teaching material; And multiple representations which are the development of teaching material that connection between macroscopic, submicroscopic, and symbolic level representations. The result of the two steps in this first part of the study produced a draft of teaching material. Evaluation of the draft of teaching material is done by an expert lecturer in the field of chemical education to assess the feasibility of teaching material.

  12. Fabrication, polarization, and characterization of PVDF matrix composites for integrated structural load sensing

    NASA Astrophysics Data System (ADS)

    Haghiashtiani, Ghazaleh; Greminger, Michael A.

    2015-04-01

    The focus of this work is to evaluate a new carbon fiber reinforced composite structure with integrated sensing capabilities. In this composite structure, the typical matrix material used for carbon fiber reinforced composites is replaced with the thermoplastic polyvinylidene difluoride (PVDF). Since PVDF has piezoelectric properties, it enables the structure to be used for integrated load sensing. In addition, the electrical conductivity property of the carbon fabric is harnessed to form the electrodes of the integrated sensor. In order to prevent the carbon fiber electrodes from shorting to each other, a thin Kevlar fabric layer is placed between the two carbon fiber electrode layers as a dielectric. The optimal polarization parameters were determined using a design of experiments approach. Once polarized, the samples were then used in compression and tensile tests to determine the effective d33 and d31 piezoelectric coefficients. The degree of polarization of the PVDF material was determined by relating the effective d33 coefficient of the composite to the achieved d33 of the PVDF component of the composite using a closed form expression. Using this approach, it was shown that optimal polarization of the composite material results in a PVDF component d33 of 3.2 pC N-1. Moreover, the Young’s modulus of the composite structure has been characterized.

  13. Low Density Materials

    DTIC Science & Technology

    2012-03-09

    materials structures across scales for design of engineered systems ODISSEI: Origami Design for Integration of Self-assembling Systems for...AGENCIES Origami Engineering US-India Tunable Materials Forum US-AFRICA Initiative Reliance 21 Board Materials and Processing COI 29 DISTRIBUTION A

  14. Integrated material state awareness system with self-learning symbiotic diagnostic algorithms and models

    NASA Astrophysics Data System (ADS)

    Banerjee, Sourav; Liu, Lie; Liu, S. T.; Yuan, Fuh-Gwo; Beard, Shawn

    2011-04-01

    Materials State Awareness (MSA) goes beyond traditional NDE and SHM in its challenge to characterize the current state of material damage before the onset of macro-damage such as cracks. A highly reliable, minimally invasive system for MSA of Aerospace Structures, Naval structures as well as next generation space systems is critically needed. Development of such a system will require a reliable SHM system that can detect the onset of damage well before the flaw grows to a critical size. Therefore, it is important to develop an integrated SHM system that not only detects macroscale damages in the structures but also provides an early indication of flaw precursors and microdamages. The early warning for flaw precursors and their evolution provided by an SHM system can then be used to define remedial strategies before the structural damage leads to failure, and significantly improve the safety and reliability of the structures. Thus, in this article a preliminary concept of developing the Hybrid Distributed Sensor Network Integrated with Self-learning Symbiotic Diagnostic Algorithms and Models to accurately and reliably detect the precursors to damages that occur to the structure are discussed. Experiments conducted in a laboratory environment shows potential of the proposed technique.

  15. Adhesive bonded structural repair. I - Materials and processes, damage assessment and repair

    NASA Astrophysics Data System (ADS)

    Wegman, Raymond F.; Tullos, Thomas R.

    1993-08-01

    A standard method for the repair of adhesive bonded and composite laminate structures is introduced. Suitable materials and equipment for making satisfactory repairs are identified. Methods by which structures may be inspected, both before and after repair, are discussed. The objective in selecting the methods and materials is to restore the structure to its original integrity, i.e., to make a permanent repair. The use of these methods is recommended to promote standardized repair procedures.

  16. LTA structures and materials technology

    NASA Technical Reports Server (NTRS)

    Mayer, N. J.

    1975-01-01

    The state-of-the-art concerning structures and materials technology is reviewed. It is shown that many present materials developments resulting from balloon and aircraft research programs can be applied to new concepts in LTA vehicles. Both buoyant and semi-buoyant vehicles utilize similar approaches to solving structural problems and could involve pressurized non-rigid and unpressurized rigid structures. System designs common to both and vital to structural integrity include much of the past technology as well. Further research is needed in determination of structural loads, especially in future design concepts.

  17. Integration of fluidic jet actuators in composite structures

    NASA Astrophysics Data System (ADS)

    Schueller, Martin; Lipowski, Mathias; Schirmer, Eckart; Walther, Marco; Otto, Thomas; Geßner, Thomas; Kroll, Lothar

    2015-04-01

    Fluidic Actuated Flow Control (FAFC) has been introduced as a technology that influences the boundary layer by actively blowing air through slots or holes in the aircraft skin or wind turbine rotor blade. Modern wing structures are or will be manufactured using composite materials. In these state of the art systems, AFC actuators are integrated in a hybrid approach. The new idea is to directly integrate the active fluidic elements (such as SJAs and PJAs) and their components in the structure of the airfoil. Consequently, the integration of such fluidic devices must fit the manufacturing process and the material properties of the composite structure. The challenge is to integrate temperature-sensitive active elements and to realize fluidic cavities at the same time. The transducer elements will be provided for the manufacturing steps using roll-to-roll processes. The fluidic parts of the actuators will be manufactured using the MuCell® process that provides on the one hand the defined reproduction of the fluidic structures and, on the other hand, a high light weight index. Based on the first design concept, a demonstrator was developed in order to proof the design approach. The output velocity on the exit was measured using a hot-wire anemometer.

  18. SemMat: Federated Semantic Services Platform for Open materials Science and Engineering

    DTIC Science & Technology

    2017-01-01

    identified the following two important tasks to remedy the data heterogeneity challenge to promote data integration: (1) creating the semantic...sourced from the structural and bio -materials domains. For structural materials data, we reviewed and used MIL-HDBK-5J [11] and MIL-HDBK-17. Furthermore...documents about composite materials provided by our domain expert. Based on the suggestions given by domain experts in bio -materials, the following

  19. Fracture Testing of Integral Stiffened Structure

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Smith, Stephen W.; Piascik, Robert S.; Dawicke, David S.; Johnston, William M.; Willard, Scott A.

    2008-01-01

    Laboratory testing was conducted to evaluate safety concerns for integrally-stiffened tanks that were found to have developed cracks during pressurization testing. Cracks occurred at fastener holes where additional stiffeners were attached to the integrally-stiffened tank structure. Tests were conducted to obtain material properties and to reproduce the crack morphologies that were observed in service to help determine if the tanks are safe for operation. Reproducing the cracking modes observed during pressurization testing required a complex loading state involving both a tensile load in the integrally-stiffened structure and a pin-load at a fastener hole.

  20. Combinatorial materials synthesis and high-throughput screening: an integrated materials chip approach to mapping phase diagrams and discovery and optimization of functional materials.

    PubMed

    Xiang, X D

    Combinatorial materials synthesis methods and high-throughput evaluation techniques have been developed to accelerate the process of materials discovery and optimization and phase-diagram mapping. Analogous to integrated circuit chips, integrated materials chips containing thousands of discrete different compositions or continuous phase diagrams, often in the form of high-quality epitaxial thin films, can be fabricated and screened for interesting properties. Microspot x-ray method, various optical measurement techniques, and a novel evanescent microwave microscope have been used to characterize the structural, optical, magnetic, and electrical properties of samples on the materials chips. These techniques are routinely used to discover/optimize and map phase diagrams of ferroelectric, dielectric, optical, magnetic, and superconducting materials.

  1. Multi-disciplinary coupling effects for integrated design of propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions which govern the accurate response of propulsion systems. Results are presented for propulsion system responses including multi-disciplinary coupling effects using coupled multi-discipline thermal, structural, and acoustic tailoring; an integrated system of multi-disciplinary simulators; coupled material behavior/fabrication process tailoring; sensitivities using a probabilistic simulator; and coupled materials, structures, fracture, and probabilistic behavior simulator. The results demonstrate that superior designs can be achieved if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated coupled multi-discipline numerical propulsion system simulator.

  2. Evaluation of polymer based third order nonlinear integrated optics devices

    NASA Astrophysics Data System (ADS)

    Driessen, A.; Hoekstra, H. J. W. M.; Blom, F. C.; Horst, F.; Krijnen, G. J. M.; van Schoot, J. B. P.; Lambeck, P. V.; Popma, Th. J. A.; Diemeer, M. B.

    1998-01-01

    Nonlinear polymers are promising materials for high speed active integrated optics devices. In this paper we evaluate the perspectives polymer based nonlinear optical devices can offer. Special attention is directed to the materials aspects. In our experimental work we applied mainly Akzo Nobel DANS side-chain polymer that exhibits large second and third order coefficients. This material has been characterized by third harmonic generation, z-scan and pump-probe measurements. In addition, various waveguiding structures have been used to measure the nonlinear absorption (two photon absorption) on a ps time-scale. Finally an integrated optics Mach Zehnder interferometer has been realized and evaluated. It is shown that the DANS side-chain polymer has many of the desired properties: the material is easily processable in high-quality optical waveguiding structures, has low linear absorption and its nonlinearity has a pure electronic origin. More materials research has to be done to arrive at materials with higher nonlinear coefficients to allow switching at moderate light intensity ( < 1 W peak power) and also with lower nonlinear absorption coefficients.

  3. Marine Structural Steel Toughness Data Bank. Volume 2

    DTIC Science & Technology

    1991-01-01

    Administration Mr. Alexander Malakhoff Mr. Thom~as W. Alton Director, Structural Integrity Engineering Officer (N7) Subgroup (SEA 55NIMltryS)it omn...computerized data bank available to a wide range of engineers and material scientists. Included were raw data from material suppliers and data from papers and...well-documented numeric data for the full range of materials and types of data of interest. The Ship Structures Committee and the U.S. Coast Guard

  4. Materials Challenges in Space Exploration

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.

    2005-01-01

    United States civil space program administered by National Aeronautics and Space Administration has a new strategic direction to explore the solar system. This new 'vision for space exploration' encompasses a broad range of human and robotic missions, including the Moon. Mars and destinations beyond. These missions require advanced systems and capabilities that will accelerate the development of many critical technologies, including advanced materials and structural concepts. Specifically, it is planned to develop high-performance materials for vehicle structures, propulsion systems, and space suits; structural concepts for modular assembly for space infrastructure: lightweight deployable and inflatable structures for large space systems and crew habitats; and highly integrated structural systems and advanced thermal management systems for reducing launch mass and volume. This paper will present several materials challenges in advanced space systems-high performance structural and thermal materials, space durable materials, radiation protection materials, and nano-structural materials. Finally, the paper will take a look at the possibility of utilizing materials in situ, i.e., processing materials on the surface of the Moon and Mars.

  5. TRANSTRAIN: A program to compute strain transformations in composite materials

    NASA Technical Reports Server (NTRS)

    Ahmed, Rafiq

    1990-01-01

    Over the years, the solid rocket motor community has made increasing use of composite materials for thermal and structural applications. This is particularly true of solid rocket nozzles, which have used carbon phenolic and, increasingly, carbon-carbon materials to provide structural integrity and thermal protection at the high temperatures encountered during motor burn. To evaluate the degree of structural performance of nozzles and their materials and to verify analysis models, many subscale and full-scale tests are run. These provide engineers with valuable data needed to optimize design and to analyze nozzle hardware. Included among these data are strains, pressures, thrust, temperatures, and displacements. Recent nozzle test hardware has made increasing use of strain gauges embedded in the carbon composite material to measure internal strains. In order to evaluate strength, these data must be transformed into strains along the fiber directions. The fiber-direction stresses can then be calculated. A computer program written to help engineers correctly manipulate the strain data into a form that can be used to evaluate structural integrity of the nozzle is examined.

  6. Probabilistic sizing of laminates with uncertainties

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Liaw, D. G.; Chamis, C. C.

    1993-01-01

    A reliability based design methodology for laminate sizing and configuration for a special case of composite structures is described. The methodology combines probabilistic composite mechanics with probabilistic structural analysis. The uncertainties of constituent materials (fiber and matrix) to predict macroscopic behavior are simulated using probabilistic theory. Uncertainties in the degradation of composite material properties are included in this design methodology. A multi-factor interaction equation is used to evaluate load and environment dependent degradation of the composite material properties at the micromechanics level. The methodology is integrated into a computer code IPACS (Integrated Probabilistic Assessment of Composite Structures). Versatility of this design approach is demonstrated by performing a multi-level probabilistic analysis to size the laminates for design structural reliability of random type structures. The results show that laminate configurations can be selected to improve the structural reliability from three failures in 1000, to no failures in one million. Results also show that the laminates with the highest reliability are the least sensitive to the loading conditions.

  7. Assessment of Material Solutions of Multi-level Garage Structure Within Integrated Life Cycle Design Process

    NASA Astrophysics Data System (ADS)

    Wałach, Daniel; Sagan, Joanna; Gicala, Magdalena

    2017-10-01

    The paper presents an environmental and economic analysis of the material solutions of multi-level garage. The construction project approach considered reinforced concrete structure under conditions of use of ordinary concrete and high-performance concrete (HPC). Using of HPC allowed to significant reduction of reinforcement steel, mainly in compression elements (columns) in the construction of the object. The analysis includes elements of the methodology of integrated lice cycle design (ILCD). By making multi-criteria analysis based on established weight of the economic and environmental parameters, three solutions have been evaluated and compared within phase of material production (information modules A1-A3).

  8. Damage Detection and Self-Repair in Inflatable/Deployable Structures

    NASA Technical Reports Server (NTRS)

    Brandon, Erik; Studor, George; Banks, DAvid; Curry, Mark; Broccato, Robert; Jackson, Tom; Champaigne, Kevin; Sottos, Nancy

    2009-01-01

    Inflatable/deployable structures are under consideration for applications as varied as expansion modules for the International Space Station to destinations for space tourism to habitats for the lunar surface. Monitoring and maintaining the integrity of the physical structure is critical, particularly since these structures rely on non-traditional engineering materials such as fabrics, foams, and elastomeric polymers to provide the primary protection for the human crew. The closely related prior concept of monitoring structural integrity by use of built-in or permanently attached sensors has been applied to structures made of such standard engineering materials as metals, alloys, and rigid composites. To effect monitoring of flexible structures comprised mainly of soft goods, however, it will be necessary to solve a different set of problems - especially those of integrating power and data-transfer cabling that can withstand, and not unduly interfere with, stowage and subsequent deployment of the structures. By incorporating capabilities for self-repair along with capabilities for structural health monitoring, successful implementation of these technologies would be a significant step toward semi-autonomous structures, which need little human intervention to maintain. This would not only increase the safety of these structures, but also reduce the inspection and maintenance costs associated with more conventional structures.

  9. Low work function materials for microminiature energy conversion and recovery applications

    DOEpatents

    Zavadil, Kevin R.; Ruffner, Judith A.; King, Donald B.

    2003-05-13

    Low work function materials are disclosed together with methods for their manufacture and integration with electrodes used in thermionic conversion applications (specifically microminiature thermionic conversion applications). The materials include a mixed oxide system and metal in a compositionally modulated structure comprised of localized discontinuous structures of material that are deposited using techniques suited to IC manufacture, such as rf sputtering or CVD. The structures, which can include layers are then heated to coalescence yielding a thin film that is both durable and capable of electron emission under thermionic conversion conditions used for microminiature thermionic converters. Using the principles of the invention, thin film electrodes (emitters and collectors) required for microconverter technology are manufactured using a single process deposition so as to allow for full fabrication integration consistent with batch processing, and tailoring of emission/collection properties. In the preferred embodiment, the individual layers include mixed BaSrCaO, scandium oxide and tungsten.

  10. Active Control Technology at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Antcliff, Richard R.; McGowan, Anna-Marie R.

    2000-01-01

    NASA Langley has a long history of attacking important technical Opportunities from a broad base of supporting disciplines. The research and development at Langley in this subject area range from the test tube to the test flight, The information covered here will range from the development of innovative new materials, sensors and actuators, to the incorporation of smart sensors and actuators in practical devices, to the optimization of the location of these devices, to, finally, a wide variety of applications of these devices utilizing Langley's facilities and expertise. Advanced materials are being developed for sensors and actuators, as well as polymers for integrating smart devices into composite structures. Contributions reside in three key areas: computational materials; advanced piezoelectric materials; and integrated composite structures.

  11. Buried anti resonant reflecting optical waveguide based on porous silicon material for an integrated Mach Zehnder structure

    NASA Astrophysics Data System (ADS)

    Hiraoui, M.; Guendouz, M.; Lorrain, N.; Haji, L.; Oueslati, M.

    2012-11-01

    A buried anti resonant reflecting optical waveguide for an integrated Mach Zehnder structure based on porous silicon material is achieved using a classical photolithography process. Three distinct porous silicon layers are then elaborated in a single step, by varying the porosity (thus the refractive index) and the thickness while respecting the anti-resonance conditions. Simulations and experimental results clearly show the antiresonant character of the buried waveguides. Significant variation of the reflectance and light propagation with different behavior depending on the polarization and the Mach Zehnder dimensions is obtained. Finally, we confirm the feasibility of this structure for sensing applications.

  12. Integrally rigidized acoustic interior spacecraft panel

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A sandwich panel concept is described which utilizes a monolithic I-beam design as the core. The core and skins are integrally bonded with thermosetting resin into a homogeneous structure. In addition to possessing a high strength to weight ratio, the panel resists combustion, delamination, aging due to fatigue, localized stresses, and exhibits good acoustic properties. Since the panel concept has definite potential as a high flame retardant and low smoke emission panel with excellent structural integrity, aerospace materials were used to optimize the construction for highly demanding space shuttle applications. The specific materials of construction were chosen for low flammability and off-gassing properties as well as for strength, light weight, and sound dampening.

  13. EDITORIAL: Adaptive and active materials: Selected papers from the ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS 10) (Philadelphia, PA, USA, 28 September-1 October 2010) Adaptive and active materials: Selected papers from the ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS 10) (Philadelphia, PA, USA, 28 September-1 October 2010)

    NASA Astrophysics Data System (ADS)

    Brei, Diann

    2011-09-01

    The third annual meeting of the AMSE/AIAA Smart Materials, Adaptive Structures and Intelligent Systems Conference (SMASIS) took place in the heart of historic Philadelphia's cultural district, and included a pioneer banquet in the National Constitutional Center. The applications emphasis of the 2010 conference was reflected in keynote talks by Dr Alan Taub, vice president of General Motors global research and development, 'Smart materials in the automotive industry'; Dr Charles R Farrar, engineering institute leader at Los Alamos National Laboratory, 'Future directions for structural health monitoring of civil engineering infrastructure'; and Professor Christopher S Lynch of the University of California Los Angeles, 'Ferroelectric materials and their applications'. The SMASIS conference was divided into six technical symposia each of which included basic research, applied technological design and development, and industrial and governmental integrated system and application demonstrations. The six symposia were: SYMP 1 Multifunctional Materials; SYMP 2 Active Materials, Mechanics and Behavior; SYMP 3 Modeling, Simulation and Control; SYMP 4 Enabling Technologies and Integrated System Design; SYMP 5 Structural Health Monitoring/NDE; and SYMP 6 Bio-inspired Smart Materials and Structures. In addition, the conference introduced a new student and young professional development symposium. Authors of papers in the materials areas (symposia 1, 2 and 6) were invited to write a full journal article on their presentation topic for publication in this special issue of Smart Materials and Structures. This set of papers demonstrates the exceptional quality and originality of the conference presentations. We are appreciative of their efforts in producing this collection of highly relevant articles on smart materials.

  14. Spatio-structural granularity of biological material entities

    PubMed Central

    2010-01-01

    Background With the continuously increasing demands on knowledge- and data-management that databases have to meet, ontologies and the theories of granularity they use become more and more important. Unfortunately, currently used theories and schemes of granularity unnecessarily limit the performance of ontologies due to two shortcomings: (i) they do not allow the integration of multiple granularity perspectives into one granularity framework; (ii) they are not applicable to cumulative-constitutively organized material entities, which cover most of the biomedical material entities. Results The above mentioned shortcomings are responsible for the major inconsistencies in currently used spatio-structural granularity schemes. By using the Basic Formal Ontology (BFO) as a top-level ontology and Keet's general theory of granularity, a granularity framework is presented that is applicable to cumulative-constitutively organized material entities. It provides a scheme for granulating complex material entities into their constitutive and regional parts by integrating various compositional and spatial granularity perspectives. Within a scale dependent resolution perspective, it even allows distinguishing different types of representations of the same material entity. Within other scale dependent perspectives, which are based on specific types of measurements (e.g. weight, volume, etc.), the possibility of organizing instances of material entities independent of their parthood relations and only according to increasing measures is provided as well. All granularity perspectives are connected to one another through overcrossing granularity levels, together forming an integrated whole that uses the compositional object perspective as an integrating backbone. This granularity framework allows to consistently assign structural granularity values to all different types of material entities. Conclusions The here presented framework provides a spatio-structural granularity framework for all domain reference ontologies that model cumulative-constitutively organized material entities. With its multi-perspectives approach it allows querying an ontology stored in a database at one's own desired different levels of detail: The contents of a database can be organized according to diverse granularity perspectives, which in their turn provide different views on its content (i.e. data, knowledge), each organized into different levels of detail. PMID:20509878

  15. Integrated analysis of engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1981-01-01

    The need for light, durable, fuel efficient, cost effective aircraft requires the development of engine structures which are flexible, made from advaced materials (including composites), resist higher temperatures, maintain tighter clearances and have lower maintenance costs. The formal quantification of any or several of these requires integrated computer programs (multilevel and/or interdisciplinary analysis programs interconnected) for engine structural analysis/design. Several integrated analysis computer prorams are under development at Lewis Reseach Center. These programs include: (1) COBSTRAN-Composite Blade Structural Analysis, (2) CODSTRAN-Composite Durability Structural Analysis, (3) CISTRAN-Composite Impact Structural Analysis, (4) STAEBL-StruTailoring of Engine Blades, and (5) ESMOSS-Engine Structures Modeling Software System. Three other related programs, developed under Lewis sponsorship, are described.

  16. Deterministic Integration of Biological and Soft Materials onto 3D Microscale Cellular Frameworks

    PubMed Central

    McCracken, Joselle M.; Xu, Sheng; Badea, Adina; Jang, Kyung-In; Yan, Zheng; Wetzel, David J.; Nan, Kewang; Lin, Qing; Han, Mengdi; Anderson, Mikayla A.; Lee, Jung Woo; Wei, Zijun; Pharr, Matt; Wang, Renhan; Su, Jessica; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2018-01-01

    Complex 3D organizations of materials represent ubiquitous structural motifs found in the most sophisticated forms of matter, the most notable of which are in life-sustaining hierarchical structures found in biology, but where simpler examples also exist as dense multilayered constructs in high-performance electronics. Each class of system evinces specific enabling forms of assembly to establish their functional organization at length scales not dissimilar to tissue-level constructs. This study describes materials and means of assembly that extend and join these disparate systems—schemes for the functional integration of soft and biological materials with synthetic 3D microscale, open frameworks that can leverage the most advanced forms of multilayer electronic technologies, including device-grade semiconductors such as monocrystalline silicon. Cellular migration behaviors, temporal dependencies of their growth, and contact guidance cues provided by the nonplanarity of these frameworks illustrate design criteria useful for their functional integration with living matter (e.g., NIH 3T3 fibroblast and primary rat dorsal root ganglion cell cultures). PMID:29552634

  17. SSME lifetime prediction and verification, integrating environments, structures, materials: The challenge

    NASA Technical Reports Server (NTRS)

    Ryan, R. S.; Salter, L. D.; Young, G. M., III; Munafo, P. M.

    1985-01-01

    The planned missions for the space shuttle dictated a unique and technology-extending rocket engine. The high specific impulse requirements in conjunction with a 55-mission lifetime, plus volume and weight constraints, produced unique structural design, manufacturing, and verification requirements. Operations from Earth to orbit produce severe dynamic environments, which couple with the extreme pressure and thermal environments associated with the high performance, creating large low cycle loads and high alternating stresses above endurance limit which result in high sensitivity to alternating stresses. Combining all of these effects resulted in the requirements for exotic materials, which are more susceptible to manufacturing problems, and the use of an all-welded structure. The challenge of integrating environments, dynamics, structures, and materials into a verified SSME structure is discussed. The verification program and developmental flight results are included. The first six shuttle flights had engine performance as predicted with no failures. The engine system has met the basic design challenges.

  18. Indigenous lunar construction materials

    NASA Technical Reports Server (NTRS)

    Rogers, Wayne; Sture, Stein

    1991-01-01

    The objectives are the following: to investigate the feasibility of the use of local lunar resources for construction of a lunar base structure; to develop a material processing method and integrate the method with design and construction of a pressurized habitation structure; to estimate specifications of the support equipment necessary for material processing and construction; and to provide parameters for systems models of lunar base constructions, supply, and operations. The topics are presented in viewgraph form and include the following: comparison of various lunar structures; guidelines for material processing methods; cast lunar regolith; examples of cast basalt components; cast regolith process; processing equipment; mechanical properties of cast basalt; material properties and structural design; and future work.

  19. Integrating Algorithm Visualization Video into a First-Year Algorithm and Data Structure Course

    ERIC Educational Resources Information Center

    Crescenzi, Pilu; Malizia, Alessio; Verri, M. Cecilia; Diaz, Paloma; Aedo, Ignacio

    2012-01-01

    In this paper we describe the results that we have obtained while integrating algorithm visualization (AV) movies (strongly tightened with the other teaching material), within a first-year undergraduate course on algorithms and data structures. Our experimental results seem to support the hypothesis that making these movies available significantly…

  20. The prospect of modern thermomechanics in structural integrity calculations of large-scale pressure vessels

    NASA Astrophysics Data System (ADS)

    Fekete, Tamás

    2018-05-01

    Structural integrity calculations play a crucial role in designing large-scale pressure vessels. Used in the electric power generation industry, these kinds of vessels undergo extensive safety analyses and certification procedures before deemed feasible for future long-term operation. The calculations are nowadays directed and supported by international standards and guides based on state-of-the-art results of applied research and technical development. However, their ability to predict a vessel's behavior under accidental circumstances after long-term operation is largely limited by the strong dependence of the analysis methodology on empirical models that are correlated to the behavior of structural materials and their changes during material aging. Recently a new scientific engineering paradigm, structural integrity has been developing that is essentially a synergistic collaboration between a number of scientific and engineering disciplines, modeling, experiments and numerics. Although the application of the structural integrity paradigm highly contributed to improving the accuracy of safety evaluations of large-scale pressure vessels, the predictive power of the analysis methodology has not yet improved significantly. This is due to the fact that already existing structural integrity calculation methodologies are based on the widespread and commonly accepted 'traditional' engineering thermal stress approach, which is essentially based on the weakly coupled model of thermomechanics and fracture mechanics. Recently, a research has been initiated in MTA EK with the aim to review and evaluate current methodologies and models applied in structural integrity calculations, including their scope of validity. The research intends to come to a better understanding of the physical problems that are inherently present in the pool of structural integrity problems of reactor pressure vessels, and to ultimately find a theoretical framework that could serve as a well-grounded theoretical foundation for a new modeling framework of structural integrity. This paper presents the first findings of the research project.

  1. Military engine computational structures technology

    NASA Technical Reports Server (NTRS)

    Thomson, Daniel E.

    1992-01-01

    Integrated High Performance Turbine Engine Technology Initiative (IHPTET) goals require a strong analytical base. Effective analysis of composite materials is critical to life analysis and structural optimization. Accurate life prediction for all material systems is critical. User friendly systems are also desirable. Post processing of results is very important. The IHPTET goal is to double turbine engine propulsion capability by the year 2003. Fifty percent of the goal will come from advanced materials and structures, the other 50 percent will come from increasing performance. Computer programs are listed.

  2. Test Structures For Bumpy Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Sayah, Hoshyar R.

    1989-01-01

    Cross-bridge resistors added to comb and serpentine patterns. Improved combination of test structures built into integrated circuit used to evaluate design rules, fabrication processes, and quality of interconnections. Consist of meshing serpentines and combs, and cross bridge. Structures used to make electrical measurements revealing defects in design or fabrication. Combination of test structures includes three comb arrays, two serpentine arrays, and cross bridge. Made of aluminum or polycrystalline silicon, depending on material in integrated-circuit layers evaluated. Aluminum combs and serpentine arrays deposited over steps made by polycrystalline silicon and diffusion layers, while polycrystalline silicon versions of these structures used to cross over steps made by thick oxide layer.

  3. Electrostatic adhesion for added functionality of composite structures

    NASA Astrophysics Data System (ADS)

    Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.

    2016-02-01

    Electrostatic adhesion can be used as a means of reversible attachment. The incorporation of electrostatic adhesion into fibre reinforced polymer (FRP) composite structures could provide significant value added functionality. Imparting large potential differences (˜2 kV) across electrodes generates an attractive force, thus providing a means of attachment. This could be used as a reversible latching mechanism or as a means of controllable internal connectivity. Varying the connectivity for discrete elements of a substructure of a given design allows for control of internal load paths and moment of area of the cross section. This could facilitate variable stiffness (both in bending and torsion). Using a combination of existing fabrication techniques, functional electrodes have been integrated within a FRP. Copper polyimide thin film laminate material has been both co-cured with carbon fibre reinforced epoxy and bonded to PVC closed cell foam core material to provide a range of structural configurations with integrated electrodes. The ability of such integrated devices to confer variations in global bending stiffness of basic beam structures is investigated. Through the application of 4 kV across integrated electrostatic adhesive devices, a 112% increase in flexural stiffness has been demonstrated for a composite sandwich structure.

  4. Composite transport wing technology development: Design development tests and advanced structural concepts

    NASA Technical Reports Server (NTRS)

    Griffin, Charles F.; Harvill, William E.

    1988-01-01

    Numerous design concepts, materials, and manufacturing methods were investigated for the covers and spars of a transport box wing. Cover panels and spar segments were fabricated and tested to verify the structural integrity of design concepts and fabrication techniques. Compression tests on stiffened panels demonstrated the ability of graphite/epoxy wing upper cover designs to achieve a 35 percent weight savings compared to the aluminum baseline. The impact damage tolerance of the designs and materials used for these panels limits the allowable compression strain and therefore the maximum achievable weight savings. Bending and shear tests on various spar designs verified an average weight savings of 37 percent compared to the aluminum baseline. Impact damage to spar webs did not significantly degrade structural performance. Predictions of spar web shear instability correlated well with measured performance. The structural integrity of spars manufactured by filament winding equalled or exceeded those fabricated by hand lay-up. The information obtained will be applied to the design, fabrication, and test of a full-scale section of a wing box. When completed, the tests on the technology integration box beam will demonstrate the structural integrity of an advanced composite wing design which is 25 percent lighter than the metal baseline.

  5. Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures

    NASA Technical Reports Server (NTRS)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-01-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry

  6. Structural health monitoring and impact detection for primary aircraft structures

    NASA Astrophysics Data System (ADS)

    Kosters, Eric; van Els, Thomas J.

    2010-04-01

    The increasing use of thermoplastic carbon fiber-reinforced plastic (CFRP) materials in the aerospace industry for primary aircraft structures, such as wing leading-edge surfaces and fuselage sections, has led to rapid growth in the field of structural health monitoring (SHM). Impact, vibration, and load can all cause failure, such as delamination and matrix cracking, in composite materials. Moreover, the internal material damage can occur without being visible to the human eye, making inspection of and clear insight into structural integrity difficult using currently available evaluation methods. Here, we describe the detection of impact and its localization in materials and structures by high-speed interrogation of multiple-fiber Bragg grating (FBG) sensors mounted on a composite aircraft component.

  7. Processing soft materials for integrated photonic and macroelectronic components and devices

    NASA Astrophysics Data System (ADS)

    Tsay, Candice Ruth

    Incorporating soft materials into micro-fabrication processes opens up new functionalities for fabricated devices, but requires unique processing routes. This thesis presents our development of integrated photonic and macroelectronic structures through processing innovations that unite disparate inorganic/organic, and soft/rigid materials systems. For the integrated photonic system, we focus our efforts on chalcogenide glasses, dielectric materials that exhibit a variety of optical properties that make them desirable for near- and mid-infrared communications and sensing applications. However, processing limitations for these relatively fragile materials have made the direct integration of waveguides with sources or detectors challenging. Here we demonstrate the viability of several additive methods for patterning chalcogenide glass waveguides from solution. In particular, we focus on two complementary soft lithography methods. The first, micro-molding in capillaries (MIMIC), is shown to fabricate multi-mode As2S 3 waveguides which are directly integrated with quantum cascade lasers (QCLs). In a second method, we demonstrate the ability of micro-transfer molding (muTM), to produce arrays of single mode rib waveguides over large areas while maintaining low surface and edge roughness. These methods form a suite of processes that can be applied to chalcogenide solutions to create a diverse array of mid-IR photonic structures ranging from less than 5 to 10's of mum in cross-sectional dimension. Optical characterization, including measurement of waveguide loss by cut-back, is carried out in the mid-IR using QCLs. In addition, materials characterization of the chalcogenide glass structures is carried out to determine loss mechanisms and optimize processing. While we use soft polymeric materials as molds to pattern chalcogenide glasses, we also employ them as substrate material for stretchable electronic systems, which comprise a new class of flexible macroelectronics. These devices must undergo elastic deformation to large strain (>10%), for applications in which electronics are conformally shaped around surfaces of arbitrary shape, like many biological surfaces. We develop strategies for processing stretchable metallic electrodes and study the mechanism of their stretchability via careful observation of thin film micro-structures. Our macroelectronic work culminates in fabrication of stretchable microelectrode arrays that interface with brain tissue, laying the groundwork for future development of advanced bio-electronic interfaces.

  8. Three-Dimensional Hetero-Integration of Faceted GaN on Si Pillars for Efficient Light Energy Conversion Devices.

    PubMed

    Kim, Dong Rip; Lee, Chi Hwan; Cho, In Sun; Jang, Hanmin; Jeon, Min Soo; Zheng, Xiaolin

    2017-07-25

    An important pathway for cost-effective light energy conversion devices, such as solar cells and light emitting diodes, is to integrate III-V (e.g., GaN) materials on Si substrates. Such integration first necessitates growth of high crystalline III-V materials on Si, which has been the focus of many studies. However, the integration also requires that the final III-V/Si structure has a high light energy conversion efficiency. To accomplish these twin goals, we use single-crystalline microsized Si pillars as a seed layer to first grow faceted Si structures, which are then used for the heteroepitaxial growth of faceted GaN films. These faceted GaN films on Si have high crystallinity, and their threading dislocation density is similar to that of GaN grown on sapphire. In addition, the final faceted GaN/Si structure has great light absorption and extraction characteristics, leading to improved performance for GaN-on-Si light energy conversion devices.

  9. Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs: Cost Assessment of Manufacturing/Design Concepts

    NASA Technical Reports Server (NTRS)

    Metschan, S.

    2000-01-01

    The objective of the Integral Airframe Structures (IAS) program was to demonstrate, for an integrally stiffened structural concept, performance and weight equal to "built-up" structure with lower manufacturing cost. This report presents results of the cost assessment for several design configuration/manufacturing method combinations. The attributes of various cost analysis models were evaluated and COSTRAN selected for this study. A process/design cost evaluation matrix was developed based on material, forming, machining, and assembly of structural sub-elements and assembled structure. A hybrid design, made from high-speed machined extruded frames that are mechanically fastened to high-speed machined plate skin/stringer panels, was identified as the most cost-effective manufacturing solution. Recurring labor and material costs of the hybrid design are up to 61 percent less than the current built-up technology baseline. This would correspond to a total cost reduction of $1.7 million per ship set for a 777-sized airplane. However, there are important outstanding issues with regard to the cost of capacity of high technology machinery, and the ability to cost-effectively provide surface finish acceptable to the commercial aircraft industry. The projected high raw material cost of large extrusions also played an important role in the trade-off between plate and extruded concepts.

  10. Air Vehicle Integration and Technology Research (AVIATR). Delivery Order 0003: Condition-Based Maintenance Plus Structural Integrity (CBM+SI) Demonstration

    DTIC Science & Technology

    2009-08-01

    K/sigma vs a file Selected design load and material Full scale test results IAT Actual Fracture toughness distribution Selected material...update data from 5.3.4 a vs T file Selected design load and material Full scale test results IAT Actual Max stress Gumbel Dist. (loads exceedance... altitude ; Mach number; control surface positions; selected strain measurements; ground loads; aerodynamic excitations; etc. Data shall also be

  11. Structural integrity--Searching the key factor to suppress the voltage fade of Li-rich layered cathode materials through 3D X-ray imaging and spectroscopy techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yahong; Hu, Enyuan; Yang, Feifei

    Li-rich layered materials are important cathode compounds used in commercial lithium ion batteries, which, however, suffers from some drawbacks including the so-called voltage fade upon electrochemical cycling. Here, our study employs novel transmission X-ray microscopy to investigate the electrochemical reaction induced morphological and chemical changes in the Li-rich Li 2Ru 0.5Mn 0.5O 3 cathode particles at the meso to nano scale. We performed combined X-ray spectroscopy, diffraction and microscopy experiments to systematically study this cathode material's evolution upon cycling as well as to establish a comprehensive understanding of the structural origin of capacity fade through 2D and 3D fine lengthmore » scale morphology and heterogeneity change of this material. This work suggests that atomic manipulation (e.g. doping, substitution etc.) or nano engineering (e.g. nano-sizing, heterogeneous structure) are important strategies to mitigate the internal strain and defects induced by extensive lithium insertion/extraction. It also shows that maintaining the structural integrity is the key in designing and synthesizing lithium-rich layered materials with better cycle stability.« less

  12. Low-dielectric constant insulators for future integrated circuits and packages.

    PubMed

    Kohl, Paul A

    2011-01-01

    Future integrated circuits and packages will require extraordinary dielectric materials for interconnects to allow transistor advances to be translated into system-level advances. Exceedingly low-permittivity and low-loss materials are required at every level of the electronic system, from chip-level insulators to packages and printed wiring boards. In this review, the requirements and goals for future insulators are discussed followed by a summary of current state-of-the-art materials and technical approaches. Much work needs to be done for insulating materials and structures to meet future needs.

  13. Multifunctional Material Systems for Reconfigurable Antennas in Superconfigurable Structures

    DTIC Science & Technology

    2016-01-05

    reconFig.d states of the antenna. A polarization-reconfigurable substrate-integrated waveguide ( SIW ) cavity-resonator slot antenna has also been...the automation and control. Fig. 36 Polarization-reconfigurable substrate-integrated waveguide ( SIW ) cavity-resonator slot antenna with a...22, 3833–3839, 2012. [3] Analysis of a Variable SIW Resonator Enabled by Dielectric Material Perturbations and Applications, Barrera, J.D. ; Huff

  14. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1984-01-01

    Progress is reported in studies of constituent materials composite materials, generic structural elements, processing science technology, and maintaining long-term structural integrity. Topics discussed include: mechanical properties of high performance carbon fibers; fatigue in composite materials; experimental and theoretical studies of moisture and temperature effects on the mechanical properties of graphite-epoxy laminates and neat resins; numerical investigations of the micromechanics of composite fracture; delamination failures of composite laminates; effect of notch size on composite laminates; improved beam theory for anisotropic materials; variation of resin properties through the thickness of cured samples; numerical analysis composite processing; heat treatment of metal matrix composites, and the RP-1 and RP2 gliders of the sailplane project.

  15. Merging Geometric Documentation with Materials Characterization and Analysis of the History of the Holy Aedicule in the Church of the Holy Sepulchre in Jerusalem

    NASA Astrophysics Data System (ADS)

    Georgopoulos, A.; Lambrou, E.; Pantazis, G.; Agrafiotis, P.; Papadaki, A.; Kotoula, L.; Lampropoulos, K.; Delegou, E.; Apostolopoulou, M.; Alexakis, M.; Moropoulou, A.

    2017-05-01

    The National Technical University of Athens undertook the compilation of an "Integrated Diagnostic Research Project and Strategic Planning for Materials, Interventions Conservation and Rehabilitation of the Holy Aedicule of the Church of the Holy Sepulchre in Jerusalem". This paper focuses on the work merging the geometric documentation with the characterization of materials, the identification of building phases and the diagnosis of decay and pathology through the use of analytical and non-destructive techniques. Through this integrated approach, i.e. through the documentation and characterization of the building materials, through the diagnosis of decay and pathology, through the accurate geometric documentation of the building and through the non-destructive prospection of its internal structure, it was feasible to identify the construction phases of the Holy Aedicule, identifying the remnants of the preserved earlier constructions and the original monolithic Tomb. This work, thus, demonstrates that the adoption of an interdisciplinary approach for integrated documentation is a powerful tool for a better understanding of monuments, both in terms of its structural integrity, as well as in terms of its state of preservation, both prerequisites for effective rehabilitation.

  16. An Integrated Theory for Predicting the Hydrothermomechanical Response of Advanced Composite Structural Components

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sinclair, J. H.

    1977-01-01

    An integrated theory is developed for predicting the hydrothermomechanical (HDTM) response of fiber composite components. The integrated theory is based on a combined theoretical and experimental investigation. In addition to predicting the HDTM response of components, the theory is structured to assess the combined hydrothermal effects on the mechanical properties of unidirectional composites loaded along the material axis and off-axis, and those of angleplied laminates. The theory developed predicts values which are in good agreement with measured data at the micromechanics, macromechanics, laminate analysis and structural analysis levels.

  17. Nanomechanical strength mechanisms of hierarchical biological materials and tissues.

    PubMed

    Buehler, Markus J; Ackbarow, Theodor

    2008-12-01

    Biological protein materials (BPMs), intriguing hierarchical structures formed by assembly of chemical building blocks, are crucial for critical functions of life. The structural details of BPMs are fascinating: They represent a combination of universally found motifs such as alpha-helices or beta-sheets with highly adapted protein structures such as cytoskeletal networks or spider silk nanocomposites. BPMs combine properties like strength and robustness, self-healing ability, adaptability, changeability, evolvability and others into multi-functional materials at a level unmatched in synthetic materials. The ability to achieve these properties depends critically on the particular traits of these materials, first and foremost their hierarchical architecture and seamless integration of material and structure, from nano to macro. Here, we provide a brief review of this field and outline new research directions, along with a review of recent research results in the development of structure-property relationships of biological protein materials exemplified in a study of vimentin intermediate filaments.

  18. Structural reliability methods: Code development status

    NASA Astrophysics Data System (ADS)

    Millwater, Harry R.; Thacker, Ben H.; Wu, Y.-T.; Cruse, T. A.

    1991-05-01

    The Probabilistic Structures Analysis Method (PSAM) program integrates state of the art probabilistic algorithms with structural analysis methods in order to quantify the behavior of Space Shuttle Main Engine structures subject to uncertain loadings, boundary conditions, material parameters, and geometric conditions. An advanced, efficient probabilistic structural analysis software program, NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) was developed as a deliverable. NESSUS contains a number of integrated software components to perform probabilistic analysis of complex structures. A nonlinear finite element module NESSUS/FEM is used to model the structure and obtain structural sensitivities. Some of the capabilities of NESSUS/FEM are shown. A Fast Probability Integration module NESSUS/FPI estimates the probability given the structural sensitivities. A driver module, PFEM, couples the FEM and FPI. NESSUS, version 5.0, addresses component reliability, resistance, and risk.

  19. Structural reliability methods: Code development status

    NASA Technical Reports Server (NTRS)

    Millwater, Harry R.; Thacker, Ben H.; Wu, Y.-T.; Cruse, T. A.

    1991-01-01

    The Probabilistic Structures Analysis Method (PSAM) program integrates state of the art probabilistic algorithms with structural analysis methods in order to quantify the behavior of Space Shuttle Main Engine structures subject to uncertain loadings, boundary conditions, material parameters, and geometric conditions. An advanced, efficient probabilistic structural analysis software program, NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) was developed as a deliverable. NESSUS contains a number of integrated software components to perform probabilistic analysis of complex structures. A nonlinear finite element module NESSUS/FEM is used to model the structure and obtain structural sensitivities. Some of the capabilities of NESSUS/FEM are shown. A Fast Probability Integration module NESSUS/FPI estimates the probability given the structural sensitivities. A driver module, PFEM, couples the FEM and FPI. NESSUS, version 5.0, addresses component reliability, resistance, and risk.

  20. Method and apparatus for determining material structural integrity

    DOEpatents

    Pechersky, M.J.

    1994-01-01

    Disclosed are a nondestructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis to determine the damping loss factor. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity vs time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method: if an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the coil current. If a reciprocating transducer is used, the vibrational force is determined by a force gauge in the transducer. Using vibrational analysis, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity data. Damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.

  1. Performance of Integrated Fiber Optic, Piezoelectric, and Shape Memory Alloy Actuators/Sensors in Thermoset Composites

    NASA Technical Reports Server (NTRS)

    Trottier, C. Michael

    1996-01-01

    Recently, scientists and engineers have investigated the advantages of smart materials and structures by including actuators in material systems for controlling and altering the response of structural environments. Applications of these materials systems include vibration suppression/isolation, precision positioning, damage detection and tunable devices. Some of the embedded materials being investigated for accomplishing these tasks include piezoelectric ceramics, shape memory alloys, and fiber optics. These materials have some benefits and some shortcomings; each is being studied for use in active material design in the SPICES (Synthesis and Processing of Intelligent Cost Effective Structures) Consortium. The focus of this paper concerns the manufacturing aspects of smart structures by incorporating piezoelectric ceramics, shape memory alloys and fiber optics in a reinforced thermoset matrix via resin transfer molding (RTM).

  2. Structural Health Monitoring of Composite Wound Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Grant, Joseph; Kaul, Raj; Taylor, Scott; Jackson, Kurt; Myers, George; Sharma, A.

    2002-01-01

    The increasing use of advanced composite materials in the wide range of applications including Space Structures is a great impetus to the development of smart materials. Incorporating these FBG sensors for monitoring the integrity of structures during their life cycle will provide valuable information about viability of the usage of such material. The use of these sensors by surface bonding or embedding in this composite will measure internal strain and temperature, and hence the integrity of the assembled engineering structures. This paper focuses on such a structure, called a composite wound pressure vessel. This vessel was fabricated from the composite material: TRH50 (a Mitsubishi carbon fiber with a 710-ksi tensile strength and a 37 Msi modulus) impregnated with an epoxy resin from NEWPORT composites (WDE-3D-1). This epoxy resin in water dispersed system without any solvents and it cures in the 240-310 degrees F range. This is a toughened resin system specifically designed for pressure applications. These materials are a natural fit for fiber sensors since the polyimide outer buffer coating of fiber can be integrated into the polymer matrix of the composite material with negligible residual stress. The tank was wound with two helical patterns and 4 hoop wraps. The order of winding is: two hoops, two helical and two hoops. The wall thickness of the composite should be about 80 mil or less. The tank should burst near 3,000 psi or less. We can measure the actual wall thickness by ultrasonic or we can burst the tank and measure the pieces. Figure 1 shows a cylinder fabricated out of carbon-epoxy composite material. The strain in different directions is measured with a surface bonded fiber Bragg gratings and with embedded fiber Bragg gratings as the cylinder is pressurized to burst pressures. Figure 2 shows the strain as a function of pressure of carbon-epoxy cylinder as it is pressurized with water. Strain is measured in different directions by multiple gratings oriented in both axial and hoops directions.

  3. Structural materials for NASP

    NASA Astrophysics Data System (ADS)

    Ronald, Terence M. F.

    1991-12-01

    Structural materials for the NASP X-30 experimental vehicle are briefly reviewed including titanium alloys, titanium-based metal-matrix composites, carbon-carbon composites, ceramic-matrix composites, and copper-matrix composites. Areas of application of these materials include the airframe where these materials would be used as lightweight skin panels for honeycomb-core, truss-core, or integrally stiffened thin sheet configuration; and the engine, where they would be used in the hot gas path of the ramjet/scramjet, and in the inlet and nozzle areas.

  4. NASA Subsonic Rotary Wing Project - Structures and Materials Discipline

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Johnson, Susan M.

    2008-01-01

    The Structures & Materials Discipline within the NASA Subsonic Rotary Wing Project is focused on developing rotorcraft technologies. The technologies being developed are within the task areas of: 5.1.1 Life Prediction Methods for Engine Structures & Components 5.1.2 Erosion Resistant Coatings for Improved Turbine Blade Life 5.2.1 Crashworthiness 5.2.2 Methods for Prediction of Fatigue Damage & Self Healing 5.3.1 Propulsion High Temperature Materials 5.3.2 Lightweight Structures and Noise Integration The presentation will discuss rotorcraft specific technical challenges and needs as well as details of the work being conducted in the six task areas.

  5. Next Generation Car — Example of Function Integration at the Light Urban Vehicle (LUV) Vehicle Concept

    NASA Astrophysics Data System (ADS)

    Kopp, G.; Brückmann, S.; Kriescher, M.; Friedrich, H. E.

    In times of climate change vehicle emissions have to be reduced clearly. One possibility is to reduce the mass of the body in white using lightweight sandwich structures. The department `Lightweight and Hybrid Design Methods' of the Institute of Vehicle Concepts develops a vehicle body structure by using sandwiches with aluminum top layers and polyurethane foam as core material. For that the foam and the sandwiches were investigated under different load cases, e.g. pressure loading and in-plane tests. In tests with components the high potential of the sandwich materials were shown. On the dynamic component test facility of the institute, vehicle front structures were tested successfully. The results of all investigations regarding sandwich materials, integration of functions (e.g. crash, thermal) in vehicle structures and the concept LUV are developed under the research program of Next Generation Car of the DLR. We will show the development and results of the LUV.

  6. Multi-field coupled sensing network for health monitoring of composite bolted joint

    NASA Astrophysics Data System (ADS)

    Wang, Yishou; Qing, Xinlin; Dong, Liang; Banerjee, Sourav

    2016-04-01

    Advanced fiber reinforced composite materials are becoming the main structural materials of next generation of aircraft because of their high strength and stiffness to weight ratios, and excellent designability. As key components of large composite structures, joints play important roles to ensure the integrity of the composite structures. However, it is very difficult to analyze the strength and failure modes of composite joints due to their complex nonlinear coupling factors. Therefore, there is a need to monitor, diagnose, evaluate and predict the structure state of composite joints. This paper proposes a multi-field coupled sensing network for health monitoring of composite bolted joints. Major work of this paper includes: 1) The concept of multifunctional sensor layer integrated with eddy current sensors, Rogowski coil and arrayed piezoelectric sensors; 2) Development of the process for integrating the eddy current sensor foil, Rogowski coil and piezoelectric sensor array in multifunctional sensor layer; 3) A new concept of smart composite joint with multifunctional sensing capability. The challenges for building such a structural state sensing system and some solutions to address the challenges are also discussed in the study.

  7. Method and apparatus for determining material structural integrity

    DOEpatents

    Pechersky, Martin

    1996-01-01

    A non-destructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis techniques to determine the damping loss factor of a material. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity as a function of time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method. If an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the amount of coil current used in vibrating the magnet. If a reciprocating transducer is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by a force gauge in the reciprocating transducer. Using known vibrational analysis methods, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity measurements. The damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.

  8. Optimization of sensor introduction into laminated composite materials

    NASA Astrophysics Data System (ADS)

    Schaaf, Kristin; Nemat-Nasser, Sia

    2008-03-01

    This work seeks to extend the functionality of the composite material beyond that of simply load-bearing and to enable in situ sensing, without compromising the structural integrity of the host composite material. Essential to the application of smart composites is the issue of the mechanical coupling of the sensor to the host material. Here we present various methods of embedding sensors within the host composite material. In this study, quasi-static three-point bending (short beam) and fatigue three-point bending (short beam) tests are conducted in order to characterize the effects of introducing the sensors into the host composite material. The sensors that are examined include three types of polyvinylidene fluoride (PVDF) thin film sensors: silver ink with a protective coating of urethane, silver ink without a protective coating, and nickel-copper alloy without a protective coating. The methods of sensor integration include placement at the midplane between the layers of prepreg material as well as a sandwich configuration in which a PVDF thin film sensor is placed between the first and second and nineteenth and twentieth layers of prepreg. Each PVDF sensor is continuous and occupies the entire layer, lying in the plane normal to the thickness direction in laminated composites. The work described here is part of an ongoing effort to understand the structural effects of integrating microsensor networks into a host composite material.

  9. A novel barium strontium titanate/nickel/titanium nitride/silicon structure for gigabit-scale DRAM capacitors

    NASA Astrophysics Data System (ADS)

    Ritums, Dwight Lenards

    A materials system has been developed for advanced oxide high permittivity capacitors for use in Dynamic Random Access Memory (DRAM) applications. A capacitor test structure has been fabricated, demonstrating the integration of this materials system onto Si. It is a 3-D stacked electrode structure which uses the high-K dielectric material Ba1- xSrxTiO 3 (BST) and a novel Ni/TiN bottom electrode system. The structure was grown using pulsed laser deposition (PLD), photo-assisted metal-organic chemical vapor deposition (PhA-MOCVD), and electron beam deposition, and resulted in thin film capacitors with dielectric constants over 500. Other advanced oxides, principally SrVO3, were also investigated for use as electrode materials. The fabricated test structure is 3 μgm wide and 1 μm thick. RIE was used to generate the 3-D structure, and an etch gas recipe was developed to pattern the 3-D electrode structure onto the TiN. The Ni was deposited by electron beam deposition, and the BST was grown by PLD and PhA-MOCVD. Conformal coating of the electrode by the BST was achieved. The film structure was analyzed with XRD, SEM, EDS, XPS, AES, and AFM, and the electronic properties of the devices were characterized. Permittivites of up to 500 were seen in the PLD-grown films, and values up to 700 were seen in the MOCVD- deposited films. The proof of concept of a high permittivity material directly integrated onto Si has been demonstrated for this capacitor materials system. With further lithographic developments, this system can be applied toward gigabit device fabrication.

  10. Hughes Associates Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Brad

    2013-05-22

    This report focuses on the more limiting gasket material (neoprene and viton). The use of polymer based gasketing material has led the DOE to question whether the ducts will be able to maintain structural integrity during a fire.

  11. Fiber optics in composite materials: materials with nerves of glass

    NASA Astrophysics Data System (ADS)

    Measures, Raymond M.

    1990-08-01

    A Fiber Optic BasedSmart Structure wiipossess a structurally integrated optical microsensor system for determining its state. This built-in sensor system should, in real-time, be able to: evaluate the strain or deformation of a structure, monitor if its vibrating or subject to excessive loads, check its temperature and warn of the appearance of any hot spots. In addition a Smart Structure should maintain a vigilant survelliance over its structural integrity. The successful development of Smart StructureTechnolgy could lead to: aircraft that are safer, lighter, more efficient, easier to maintain and to service; pipelines, pressure vessels and storage tanks that constantly monitor their structuralintegrity and immediately issue an alert ifany problem is detected; space platforms that check forpressure leaks, unwanted vibration, excess thermal buildup, and deviation from some preassigned shape.This technology is particularly appropriate for composite materials where internal damage generated by: impacts, manufacturing flaws, excessive loading or fatigue could be detected and assessed. In service monitoring of structural loads, especially in regions like wing roots of aircraft, could be ofconsiderable benefit in helping to avoid structural overdesign and reduce weight. Structurally imbedded optical fibers sensors might also serve to monitor the cure state of composite thermosets during their fabrication and thereby contribute to improved quality control of these products.

  12. Carbon nanotube-based structural health monitoring for fiber reinforced composite materials

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Liu, Kan; Mardirossian, Aris; Heider, Dirk; Thostenson, Erik

    2017-04-01

    In fiber reinforced composite materials, the modes of damage accumulation, ranging from microlevel to macro-level (matrix cracks development, fiber breakage, fiber-matrix de-bonding, delamination, etc.), are complex and hard to be detected through conventional non-destructive evaluation methods. Therefore, in order to assure the outstanding structural performance and high durability of the composites, there has been an urgent need for the design and fabrication smart composites with self-damage sensing capabilities. In recent years, the macroscopic forms of carbon nanotube materials have been maturely investigated, which provides the opportunity for structural health monitoring based on the carbon nanotubes that are integrated in the inter-laminar areas of advanced fiber composites. Here in this research, advanced fiber composites embedded with laminated carbon nanotube layers are manufactured for damage detection due to the relevant spatial electrical property changes once damage occurs. The mechanical-electrical coupling response is recorded and analyzed during impact test. The design and manufacturing of integrating the carbon nanotubes intensely affect the detecting sensitivity and repeatability of the integrated multifunctional sensors. The ultimate goal of the reported work is to develop a novel structural health monitoring method with the capability of reporting information on the damage state in a real-time way.

  13. Nonlinear analysis for high-temperature multilayered fiber composite structures. M.S. Thesis; [turbine blades

    NASA Technical Reports Server (NTRS)

    Hopkins, D. A.

    1984-01-01

    A unique upward-integrated top-down-structured approach is presented for nonlinear analysis of high-temperature multilayered fiber composite structures. Based on this approach, a special purpose computer code was developed (nonlinear COBSTRAN) which is specifically tailored for the nonlinear analysis of tungsten-fiber-reinforced superalloy (TFRS) composite turbine blade/vane components of gas turbine engines. Special features of this computational capability include accounting of; micro- and macro-heterogeneity, nonlinear (stess-temperature-time dependent) and anisotropic material behavior, and fiber degradation. A demonstration problem is presented to mainfest the utility of the upward-integrated top-down-structured approach, in general, and to illustrate the present capability represented by the nonlinear COBSTRAN code. Preliminary results indicate that nonlinear COBSTRAN provides the means for relating the local nonlinear and anisotropic material behavior of the composite constituents to the global response of the turbine blade/vane structure.

  14. Antenna analysis using properties of metamaterials

    NASA Astrophysics Data System (ADS)

    Mitra, Atindra K.; Hu, Colin; Maxwell, Kasandra

    2010-04-01

    As part of the Student Internship Programs at Wright-Patterson Air Force Base, including the AFRL Wright Scholar Program for High School Students and the AFRL STEP Program, sample results from preliminary investigation and analysis of integrated antenna structures are reported. Investigation of these novel integrated antenna geometries can be interpreted as a continuation of systems analysis under the general topic area of potential integrated apertures for future software radar/radio solutions [1] [2]. Specifically, the categories of novel integrated aperture geometries investigated in this paper include slotted-fractal structures on microstrip rectangular patch antenna models in tandem with the analysis of exotic substrate materials comprised of a type of synthesized electromagnetic structure known as metamaterials [8] - [10].

  15. Total systems design analysis of high performance structures

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1993-01-01

    Designer-control parameters were identified at interdiscipline interfaces to optimize structural systems performance and downstream development and operations with reliability and least life-cycle cost. Interface tasks and iterations are tracked through a matrix of performance disciplines integration versus manufacturing, verification, and operations interactions for a total system design analysis. Performance integration tasks include shapes, sizes, environments, and materials. Integrity integrating tasks are reliability and recurring structural costs. Significant interface designer control parameters were noted as shapes, dimensions, probability range factors, and cost. Structural failure concept is presented, and first-order reliability and deterministic methods, benefits, and limitations are discussed. A deterministic reliability technique combining benefits of both is proposed for static structures which is also timely and economically verifiable. Though launch vehicle environments were primarily considered, the system design process is applicable to any surface system using its own unique filed environments.

  16. Energy Based Topology Optimization of Morphing Wings a Multidisciplinary Global/Local Design Approach

    DTIC Science & Technology

    2006-12-01

    subsystem that drives the active materials to achieve the desired shape changes. As opposed to fixed wing structures in which the aerodynamic and...structures and aerodynamics occur in conjunction with the active material and electronic subsystem interactions that involve transfer of energy from a source...which the aerodynamic and structure integration for the entire wing is the most important interaction mechanism, in the case of a morphing wing

  17. Manufacturing of Smart Structures Using Fiber Placement Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Thomas, Matthew M.; Glowasky, Robert A.; McIlroy, Bruce E.; Story, Todd A.

    1996-01-01

    Smart structures research and development, with the ultimate aim of rapid commercial and military production of these structures, are at the forefront of the Synthesis and Processing of Intelligent Cost-Effective Structures (SPICES) program. As part of this ARPA-sponsored program, MDA-E is using fiber placement processes to manufacture integrated smart structure systems. These systems comprise advanced composite structures with embedded fiber optic sensors, shape memory alloys, piezoelectric actuators, and miniature accelerometers. Cost-effective approaches and solutions to smart material synthesis in the fiber-placement process, based upon integrated product development, are discussed herein.

  18. In(1-x)Ga(x)N@ZnO: a rationally designed and quantum dot integrated material for water splitting and solar harvesting applications.

    PubMed

    Rajaambal, Sivaraman; Mapa, Maitri; Gopinath, Chinnakonda S

    2014-09-07

    The highly desirable combination of the visible light absorption properties of In1-xGaxN Quantum dots (QD) along with the multifunctionality of ZnO into a single integrated material was prepared for solar harvesting. This is the first report on InGaN QD integrated with ZnO (InGaN@ZnO), synthesized by a highly reproducible, simple combustion method in 15 min. Structural, microstructural and electronic integration of the nitride and oxide components of InGaN@ZnO was demonstrated by appropriate characterization methods. Self-assembly of InGaN QD is induced in growing nascent zinc oxo nanoclusters taking advantage of the common wurtzite structure and nitrogen incorporation at the expense of oxygen vacancies. Direct integration brings about a single phase structure exhibiting extensive visible light absorption and high photostability. InGaN@ZnO suggests synergistic operation of light harvesting and charge conducting components for solar H2 generation without using any co-catalyst or sacrificial agent, and a promising photocurrent generation at 0 V under visible light illumination. The present study suggests a direct integration of QD with the host matrix and is a potential method to realize the advantages of QDs.

  19. Multidisciplinary tailoring of hot composite structures

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Chamis, Christos C.

    1993-01-01

    A computational simulation procedure is described for multidisciplinary analysis and tailoring of layered multi-material hot composite engine structural components subjected to simultaneous multiple discipline-specific thermal, structural, vibration, and acoustic loads. The effect of aggressive environments is also simulated. The simulation is based on a three-dimensional finite element analysis technique in conjunction with structural mechanics codes, thermal/acoustic analysis methods, and tailoring procedures. The integrated multidisciplinary simulation procedure is general-purpose including the coupled effects of nonlinearities in structure geometry, material, loading, and environmental complexities. The composite material behavior is assessed at all composite scales, i.e., laminate/ply/constituents (fiber/matrix), via a nonlinear material characterization hygro-thermo-mechanical model. Sample tailoring cases exhibiting nonlinear material/loading/environmental behavior of aircraft engine fan blades, are presented. The various multidisciplinary loads lead to different tailored designs, even those competing with each other, as in the case of minimum material cost versus minimum structure weight and in the case of minimum vibration frequency versus minimum acoustic noise.

  20. Aeronautics Technology Possibilities for 2000: Report of a Workshop

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Topics discussed include: Aerodynamics; Propulsion; Structural Analysis and Design Technology; Materials for Structural Members, Propulsion Systems, and Subsystems; Guidance, Navigation, and Control; Computer and Information Technology; Human Factors Engineering; Systems Integration.

  1. Fully integrated carbon nanotube composite thin film strain sensors on flexible substrates for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Burton, A. R.; Lynch, J. P.; Kurata, M.; Law, K. H.

    2017-09-01

    Multifunctional thin film materials have opened many opportunities for novel sensing strategies for structural health monitoring. While past work has established methods of optimizing multifunctional materials to exhibit sensing properties, comparatively less work has focused on their integration into fully functional sensing systems capable of being deployed in the field. This study focuses on the advancement of a scalable fabrication process for the integration of multifunctional thin films into a fully integrated sensing system. This is achieved through the development of an optimized fabrication process that can create a broad range of sensing systems using multifunctional materials. A layer-by-layer deposited multifunctional composite consisting of single walled carbon nanotubes (SWNT) in a polyvinyl alcohol and polysodium-4-styrene sulfonate matrix are incorporated with a lithography process to produce a fully integrated sensing system deposited on a flexible substrate. To illustrate the process, a strain sensing platform consisting of a patterned SWNT-composite thin film as a strain-sensitive element within an amplified Wheatstone bridge sensing circuit is presented. Strain sensing is selected because it presents many of the design and processing challenges that are core to patterning multifunctional thin film materials into sensing systems. Strain sensors fabricated on a flexible polyimide substrate are experimentally tested under cyclic loading using standard four-point bending coupons and a partial-scale steel frame assembly under lateral loading. The study reveals the material process is highly repeatable to produce fully integrated strain sensors with linearity and sensitivity exceeding 0.99 and 5 {{V}}/{ε }, respectively. The thin film strain sensors are robust and are capable of high strain measurements beyond 3000 μ {ε }.

  2. Design and Optimization of Composite Automotive Hatchback Using Integrated Material-Structure-Process-Performance Method

    NASA Astrophysics Data System (ADS)

    Yang, Xudong; Sun, Lingyu; Zhang, Cheng; Li, Lijun; Dai, Zongmiao; Xiong, Zhenkai

    2018-03-01

    The application of polymer composites as a substitution of metal is an effective approach to reduce vehicle weight. However, the final performance of composite structures is determined not only by the material types, structural designs and manufacturing process, but also by their mutual restrict. Hence, an integrated "material-structure-process-performance" method is proposed for the conceptual and detail design of composite components. The material selection is based on the principle of composite mechanics such as rule of mixture for laminate. The design of component geometry, dimension and stacking sequence is determined by parametric modeling and size optimization. The selection of process parameters are based on multi-physical field simulation. The stiffness and modal constraint conditions were obtained from the numerical analysis of metal benchmark under typical load conditions. The optimal design was found by multi-discipline optimization. Finally, the proposed method was validated by an application case of automotive hatchback using carbon fiber reinforced polymer. Compared with the metal benchmark, the weight of composite one reduces 38.8%, simultaneously, its torsion and bending stiffness increases 3.75% and 33.23%, respectively, and the first frequency also increases 44.78%.

  3. Military aircraft and missile technology at the Langley Research Center: A selected bibliography

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1980-01-01

    A compilation of reference material is presented on the Langley Research Center's efforts in developing advanced military aircraft and missile technology over the past twenty years. Reference material includes research made in aerodynamics, performance, stability, control, stall-spin, propulsion integration, flutter, materials, and structures.

  4. Biological materials: a materials science approach.

    PubMed

    Meyers, Marc A; Chen, Po-Yu; Lopez, Maria I; Seki, Yasuaki; Lin, Albert Y M

    2011-07-01

    The approach used by Materials Science and Engineering is revealing new aspects in the structure and properties of biological materials. The integration of advanced characterization, mechanical testing, and modeling methods can rationalize heretofore unexplained aspects of these structures. As an illustration of the power of this methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3-PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Composite structural materials. [fiber reinforced composites for aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1981-01-01

    Physical properties of fiber reinforced composites; structural concepts and analysis; manufacturing; reliability; and life prediction are subjects of research conducted to determine the long term integrity of composite aircraft structures under conditions pertinent to service use. Progress is reported in (1) characterizing homogeneity in composite materials; (2) developing methods for analyzing composite materials; (3) studying fatigue in composite materials; (4) determining the temperature and moisture effects on the mechanical properties of laminates; (5) numerically analyzing moisture effects; (6) numerically analyzing the micromechanics of composite fracture; (7) constructing the 727 elevator attachment rib; (8) developing the L-1011 engine drag strut (CAPCOMP 2 program); (9) analyzing mechanical joints in composites; (10) developing computer software; and (11) processing science and technology, with emphasis on the sailplane project.

  6. Fracture control procedures for aircraft structural integrity

    NASA Technical Reports Server (NTRS)

    Wood, H. A.

    1972-01-01

    The application of applied fracture mechanics in the design, analysis, and qualification of aircraft structural systems are reviewed. Recent service experiences are cited. Current trends in high-strength materials application are reviewed with particular emphasis on the manner in which fracture toughness and structural efficiency may affect the material selection process. General fracture control procedures are reviewed in depth with specific reference to the impact of inspectability, structural arrangement, and material on proposed analysis requirements for safe crack growth. The relative impact on allowable design stress is indicated by example. Design criteria, material, and analysis requirements for implementation of fracture control procedures are reviewed together with limitations in current available data techniques. A summary of items which require further study and attention is presented.

  7. Advances in Hot-Structure Development

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin; Glass, David E.

    2006-01-01

    The National Aeronautics and Space Administration has actively participated in the development of hot structures technology for application to hypersonic flight systems. Hot structures have been developed for vehicles including the X-43A, X-37, and the Space Shuttle. These trans-atmospheric and atmospheric entry flight systems that incorporate hot-structures technology are lighter weight and require less maintenance than those that incorporate parasitic, thermal-protection materials that attach to warm or cool substructure. The development of hot structures requires a thorough understanding of material performance in an extreme environment, boundary conditions and load interactions, structural joint performance, and thermal and mechanical performance of integrated structural systems that operate at temperatures ranging from 1500 C to 3000 C, depending on the application. This paper will present recent advances in the development of hot structures, including development of environmentally durable, high temperature leading edges and control surfaces, integrated thermal protection systems, and repair technologies. The X-43A Mach-10 vehicle utilized carbon/carbon (C/C) leading edges on the nose, horizontal control surface, and vertical tail. The nose and vertical and horizontal tail leading edges were fabricated out of a 3:1 biased, high thermal conductivity C/C. The leading edges were coated with a three-layer coating comprised of a SiC conversion of the C/C, followed by a CVD layer of SiC, followed by a thin CVD layer of HfC. Work has also been performed on the development of an integrated structure and was focused on both hot and warm (insulated) structures and integrated fuselage/tank/TPS systems. The objective was to develop integrated multifunctional airframe structures that eliminate fragile external thermal-protection systems and incorporate the insulating function within the structure. The approach taken to achieve this goal was to develop candidate hypersonic airframe concepts, including structural arrangement, load paths, thermal-structural wall design, thermal accommodation features, and integration of major components, optimize thermalstructural configurations, and validate concepts through a building block test program and generate data to improve and validate analytical and design tools.

  8. The Post-Dam System. Volume 5. Harvard Project Manager (HPM).

    DTIC Science & Technology

    1992-10-01

    cQllected and analyzed to determine structural integrity and usability. From this analysis, a repair schedule is developed. This is currently a time...information on mission-critical facility damage is collected and analyzed to determine structural integrity and usability. From this analysis, a repair...to determine repair strategies with an expert system, keep track of materials and equipment with a relational database management system, and

  9. Silicon Integrated Optics: Fabrication and Characterization

    NASA Astrophysics Data System (ADS)

    Shearn, Michael Joseph, II

    For decades, the microelectronics industry has sought integration and miniaturization as canonized in Moore's Law, and has continued doubling transistor density about every two years. However, further miniaturization of circuit elements is creating a bandwidth problem as chip interconnect wires shrink as well. A potential solution is the creation of an on-chip optical network with low delays that would be impossible to achieve using metal buses. However, this technology requires integrating optics with silicon microelectronics. The lack of efficient silicon optical sources has stymied efforts of an all-Si optical platform. Instead, the integration of efficient emitter materials, such as III-V semiconductors, with Si photonic structures is a low-cost, CMOS-compatible alternative platform. This thesis focuses on making and measuring on-chip photonic structures suitable for on-chip optical networking. The first part of the thesis assesses processing techniques of silicon and other semiconductor materials. Plasmas for etching and surface modification are described and used to make bonded, hybrid Si/III-V structures. Additionally, a novel masking method using gallium implantation into silicon for pattern definition is characterized. The second part of the thesis focuses on demonstrations of fabricated optical structures. A dense array of silicon devices is measured, consisting of fully-etched grating couplers, low-loss waveguides and ring resonators. Finally, recent progress in the Si/III-V hybrid system is discussed. Supermode control of devices is described, which uses changing Si waveguide width to control modal overlap with the gain material. Hybrid Si/III-V, Fabry-Perot evanescent lasers are demonstrated, utilizing a CMOS-compatible process suitable for integration on in electronics platforms. Future prospects and ultimate limits of Si devices and the hybrid Si/III-V system are also considered.

  10. Materials and structures for stretchable energy storage and conversion devices.

    PubMed

    Xie, Keyu; Wei, Bingqing

    2014-06-11

    Stretchable energy storage and conversion devices (ESCDs) are attracting intensive attention due to their promising and potential applications in realistic consumer products, ranging from portable electronics, bio-integrated devices, space satellites, and electric vehicles to buildings with arbitrarily shaped surfaces. Material synthesis and structural design are core in the development of highly stretchable supercapacitors, batteries, and solar cells for practical applications. This review provides a brief summary of research development on the stretchable ESCDs in the past decade, from structural design strategies to novel materials synthesis. The focuses are on the fundamental insights of mechanical characteristics of materials and structures on the performance of the stretchable ESCDs, as well as challenges for their practical applications. Finally, some of the important directions in the areas of material synthesis and structural design facing the stretchable ESCDs are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. DEVELOPMENT AND APPLICATION OF MATERIALS PROPERTIES FOR FLAW STABILITY ANALYSIS IN EXTREME ENVIRONMENT SERVICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sindelar, R; Ps Lam, P; Andrew Duncan, A

    Discovery of aging phenomena in the materials of a structure may arise after its design and construction that impact its structural integrity. This condition can be addressed through a demonstration of integrity with the material-specific degraded conditions. Two case studies of development of fracture and crack growth property data, and their application in development of in-service inspection programs for nuclear structures in the defense complex are presented. The first case study covers the development of fracture toughness properties in the form of J-R curves for rolled plate Type 304 stainless steel with Type 308 stainless steel filler in the applicationmore » to demonstrate the integrity of the reactor tanks of the heavy water production reactors at the Savannah River Site. The fracture properties for the base, weld, and heat-affected zone of the weldments irradiated at low temperatures (110-150 C) up to 6.4 dpa{sub NRT} and 275 appm helium were developed. An expert group provided consensus for application of the irradiated properties for material input to acceptance criteria for ultrasonic examination of the reactor tanks. Dr. Spencer H. Bush played a lead advisory role in this work. The second case study covers the development of fracture toughness for A285 carbon steel in high level radioactive waste tanks. The approach in this case study incorporated a statistical experimental design for material testing to address metallurgical factors important to fracture toughness. Tolerance intervals were constructed to identify the lower bound fracture toughness for material input to flaw disposition through acceptance by analysis.« less

  12. Predicting Structural Behavior of Filament Wound Composite Pressure Vessel Using Three Dimensional Shell Analysis

    NASA Astrophysics Data System (ADS)

    Madhavi, M.; Venkat, R.

    2014-01-01

    Fiber reinforced polymer composite materials with their higher specific strength, moduli and tailorability characteristics will result in reduction of weight of the structure. The composite pressure vessels with integrated end domes develop hoop stresses that are twice longitudinal stresses and when isotropic materials like metals are used for development of the hardware and the material is not fully utilized in the longitudinal/meridional direction resulting in over weight components. The determination of a proper winding angles and thickness is very important to decrease manufacturing difficulties and to increase structural efficiency. In the present study a methodology is developed to understand structural characteristics of filament wound pressure vessels with integrated end domes. Progressive ply wise failure analysis of composite pressure vessel with geodesic end domes is carried out to determine matrix crack failure, burst pressure values at various positions of the shell. A three dimensional finite element analysis is computed to predict the deformations and stresses in the composite pressure vessel. The proposed method could save the time to design filament wound structures, to check whether the ply design is safe for the given input conditions and also can be adapted to non-geodesic structures. The results can be utilized to understand structural characteristics of filament wound pressure vessels with integrated end domes. This approach can be adopted for various applications like solid rocket motor casings, automobile fuel storage tanks and chemical storage tanks. Based on the predictions a composite pressure vessel is designed and developed. Hydraulic test is performed on the composite pressure vessel till the burst pressure.

  13. Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors.

    PubMed

    Jie, Wenjing; Hao, Jianhua

    2014-06-21

    Fundamental studies and applications of 2-dimensional (2D) graphene may be deepened and broadened via combining graphene sheets with various functional materials, which have been extended from the traditional insulator of SiO2 to a versatile range of dielectrics, semiconductors and metals, as well as organic compounds. Among them, ferroelectric materials have received much attention due to their unique ferroelectric polarization. As a result, many attractive characteristics can be shown in graphene/ferroelectric hybrid systems. On the other hand, graphene can be integrated with conventional semiconductors and some newly-discovered 2D layered materials to form distinct Schottky junctions, yielding fascinating behaviours and exhibiting the potential for various applications in future functional devices. This review article is an attempt to illustrate the most recent progress in the fabrication, operation principle, characterization, and promising applications of graphene-based hybrid structures combined with various functional materials, ranging from ferroelectrics to semiconductors. We focus on mechanically exfoliated and chemical-vapor-deposited graphene sheets integrated in numerous advanced devices. Some typical hybrid structures have been highlighted, aiming at potential applications in non-volatile memories, transparent flexible electrodes, solar cells, photodetectors, and so on.

  14. Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors

    NASA Astrophysics Data System (ADS)

    Jie, Wenjing; Hao, Jianhua

    2014-05-01

    Fundamental studies and applications of 2-dimensional (2D) graphene may be deepened and broadened via combining graphene sheets with various functional materials, which have been extended from the traditional insulator of SiO2 to a versatile range of dielectrics, semiconductors and metals, as well as organic compounds. Among them, ferroelectric materials have received much attention due to their unique ferroelectric polarization. As a result, many attractive characteristics can be shown in graphene/ferroelectric hybrid systems. On the other hand, graphene can be integrated with conventional semiconductors and some newly-discovered 2D layered materials to form distinct Schottky junctions, yielding fascinating behaviours and exhibiting the potential for various applications in future functional devices. This review article is an attempt to illustrate the most recent progress in the fabrication, operation principle, characterization, and promising applications of graphene-based hybrid structures combined with various functional materials, ranging from ferroelectrics to semiconductors. We focus on mechanically exfoliated and chemical-vapor-deposited graphene sheets integrated in numerous advanced devices. Some typical hybrid structures have been highlighted, aiming at potential applications in non-volatile memories, transparent flexible electrodes, solar cells, photodetectors, and so on.

  15. Light weight, high-speed, and self-powered wireless fiber optic sensor (WiFOS) structural health monitor system for avionics and aerospace environments

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Kempen, Cornelia; Sun, Sunjian; Esterkin, Yan

    2014-09-01

    This paper describes recent progress towards the development of an innovative light weight, high-speed, and selfpowered wireless fiber optic sensor (WiFOS™) structural health monitor system suitable for the onboard and in-flight unattended detection, localization, and classification of load, fatigue, and structural damage in advanced composite materials commonly used in avionics and aerospace systems. The WiFOS™ system is based on ROI's advancements on monolithic photonic integrated circuit microchip technology, integrated with smart power management, on-board data processing, wireless data transmission optoelectronics, and self-power using energy harvesting tools such as solar, vibration, thermoelectric, and magneto-electric. The self-powered, wireless WiFOS™ system offers a versatile and powerful SHM tool to enhance the reliability and safety of avionics platforms, jet fighters, helicopters, commercial aircraft that use lightweight composite material structures, by providing comprehensive information about the structural integrity of the structure from a large number of locations. Immediate SHM applications are found in rotorcraft and aircraft, ships, submarines, and in next generation weapon systems, and in commercial oil and petrochemical, aerospace industries, civil structures, power utilities, portable medical devices, and biotechnology, homeland security and a wide spectrum of other applications.

  16. High-Performance One-Body Core/Shell Nanowire Supercapacitor Enabled by Conformal Growth of Capacitive 2D WS2 Layers.

    PubMed

    Choudhary, Nitin; Li, Chao; Chung, Hee-Suk; Moore, Julian; Thomas, Jayan; Jung, Yeonwoong

    2016-12-27

    Two-dimensional (2D) transition-metal dichalcogenides (TMDs) have emerged as promising capacitive materials for supercapacitor devices owing to their intrinsically layered structure and large surface areas. Hierarchically integrating 2D TMDs with other functional nanomaterials has recently been pursued to improve electrochemical performances; however, it often suffers from limited cyclic stabilities and capacitance losses due to the poor structural integrity at the interfaces of randomly assembled materials. Here, we report high-performance core/shell nanowire supercapacitors based on an array of one-dimensional (1D) nanowires seamlessly integrated with conformal 2D TMD layers. The 1D and 2D supercapacitor components possess "one-body" geometry with atomically sharp and structurally robust core/shell interfaces, as they were spontaneously converted from identical metal current collectors via sequential oxidation/sulfurization. These hybrid supercapacitors outperform previously developed any stand-alone 2D TMD-based supercapacitors; particularly, exhibiting an exceptional charge-discharge retention over 30,000 cycles owing to their structural robustness, suggesting great potential for unconventional energy storage technologies.

  17. Materials-by-design: computation, synthesis, and characterization from atoms to structures

    NASA Astrophysics Data System (ADS)

    Yeo, Jingjie; Jung, Gang Seob; Martín-Martínez, Francisco J.; Ling, Shengjie; Gu, Grace X.; Qin, Zhao; Buehler, Markus J.

    2018-05-01

    In the 50 years that succeeded Richard Feynman’s exposition of the idea that there is ‘plenty of room at the bottom’ for manipulating individual atoms for the synthesis and manufacturing processing of materials, the materials-by-design paradigm is being developed gradually through synergistic integration of experimental material synthesis and characterization with predictive computational modeling and optimization. This paper reviews how this paradigm creates the possibility to develop materials according to specific, rational designs from the molecular to the macroscopic scale. We discuss promising techniques in experimental small-scale material synthesis and large-scale fabrication methods to manipulate atomistic or macroscale structures, which can be designed by computational modeling. These include recombinant protein technology to produce peptides and proteins with tailored sequences encoded by recombinant DNA, self-assembly processes induced by conformational transition of proteins, additive manufacturing for designing complex structures, and qualitative and quantitative characterization of materials at different length scales. We describe important material characterization techniques using numerous methods of spectroscopy and microscopy. We detail numerous multi-scale computational modeling techniques that complements these experimental techniques: DFT at the atomistic scale; fully atomistic and coarse-grain molecular dynamics at the molecular to mesoscale; continuum modeling at the macroscale. Additionally, we present case studies that utilize experimental and computational approaches in an integrated manner to broaden our understanding of the properties of two-dimensional materials and materials based on silk and silk-elastin-like proteins.

  18. Micro-opto-mechanical devices and systems using epitaxial lift off

    NASA Technical Reports Server (NTRS)

    Camperi-Ginestet, C.; Kim, Young W.; Wilkinson, S.; Allen, M.; Jokerst, N. M.

    1993-01-01

    The integration of high quality, single crystal thin film gallium arsenide (GaAs) and indium phosphide (InP) based photonic and electronic materials and devices with host microstructures fabricated from materials such as silicon (Si), glass, and polymers will enable the fabrication of the next generation of micro-opto-mechanical systems (MOMS) and optoelectronic integrated circuits. Thin film semiconductor devices deposited onto arbitrary host substrates and structures create hybrid (more than one material) near-monolithic integrated systems which can be interconnected electrically using standard inexpensive microfabrication techniques such as vacuum metallization and photolithography. These integrated systems take advantage of the optical and electronic properties of compound semiconductor devices while still using host substrate materials such as silicon, polysilicon, glass and polymers in the microstructures. This type of materials optimization for specific tasks creates higher performance systems than those systems which must use trade-offs in device performance to integrate all of the function in a single material system. The low weight of these thin film devices also makes them attractive for integration with micromechanical devices which may have difficulty supporting and translating the full weight of a standard device. These thin film devices and integrated systems will be attractive for applications, however, only when the development of low cost, high yield fabrication and integration techniques makes their use economically feasible. In this paper, we discuss methods for alignment, selective deposition, and interconnection of thin film epitaxial GaAs and InP based devices onto host substrates and host microstructures.

  19. Self-assembly micro optical filter

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Optical communication and sensor industry face critical challenges in manufacturing for system integration. Due to the assembly complexity and integration platform variety, micro optical components require costly alignment and assembly procedures, in which many required manual efforts. Consequently, self-assembly device architectures have become a great interest and could provide major advantages over the conventional optical devices. In this paper, we discussed a self-assembly integration platform for micro optical components. To demonstrate the adaptability and flexibility of the proposed optical device architectures, we chose a commercially available MEMS fabrication foundry service - MUMPs (Multi-User MEMS Process). In this work, polysilicon layers of MUMPS are used as the 3-D structural material for construction of micro component framework and actuators. However, because the polysilicon has high absorption in the visible and near infrared wavelength ranges, it is not suitable for optical interaction. To demonstrate the required optical performance, hybrid integration of materials was proposed and implemented. Organic compound materials were applied on the silicon-based framework to form the required optical interfaces. Organic compounds provide good optical transparency, flexibility to form filters or lens and inexpensive manufacturing procedures. In this paper, we have demonstrated a micro optical filter integrated with self-assembly structures. We will discuss the self-assembly mechanism, optical filter designs, fabrication issues and results.

  20. Poling of PVDF matrix composites for integrated structural load sensing

    NASA Astrophysics Data System (ADS)

    Haghiashtiani, Ghazaleh; Greminger, Michael A.; Zhao, Ping

    2014-03-01

    The purpose of this study is to create and evaluate a smart composite structure that can be used for integrated load sensing and structural health monitoring. In this structure, PVDF films are used as the matrix material instead of epoxy resin or other thermoplastics. The reinforcements are two layers of carbon fiber with one layer of Kevlar separating them. Due to the electrical conductivity properties of carbon fiber and the dielectric effect of Kevlar, the structure acts as a capacitor. Furthermore, the piezoelectric properties of the PVDF matrix can be used to monitor the response of the structure under applied loads. In order to exploit the piezoelectric properties of PVDF, the PVDF material must be polarized to align the dipole moments of its crystalline structure. The optimal condition for poling the structure was found by performing a 23 factorial design of experiment (DoE). The factors that were studied in DoE were temperature, voltage, and duration of poling. Finally, the response of the poled structure was monitored by exposing the samples to an applied load.

  1. Preliminary Structural Sizing and Alternative Material Trade Study of CEV Crew Module

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steve M.; Collier, Craig S.; Yarrington, Phillip W.

    2007-01-01

    This paper presents the results of a preliminary structural sizing and alternate material trade study for NASA s Crew Exploration Vehicle (CEV) Crew Module (CM). This critical CEV component will house the astronauts during ascent, docking with the International Space Station, reentry, and landing. The alternate material design study considers three materials beyond the standard metallic (aluminum alloy) design that resulted from an earlier NASA Smart Buyer Team analysis. These materials are graphite/epoxy composite laminates, discontinuously reinforced SiC/Al (DRA) composites, and a novel integrated panel material/concept known as WebCore. Using the HyperSizer (Collier Research and Development Corporation) structural sizing software and NASTRAN finite element analysis code, a comparison is made among these materials for the three composite CM concepts considered by the 2006 NASA Engineering and Safety Center Composite Crew Module project.

  2. Structurally Integrated Antenna Concepts for HALE UAVs

    NASA Technical Reports Server (NTRS)

    Cravey, Robin L.; Vedeler, Erik; Goins, Larry; Young, W. Robert; Lawrence, Roland W.

    2006-01-01

    This technical memorandum describes work done in support of the Multifunctional Structures and Materials Team under the Vehicle Systems Program's ITAS (Integrated Tailored Aero Structures) Project during FY 2005. The Electromagnetics and Sensors Branch (ESB) developed three ultra lightweight antenna concepts compatible with HALE UAVs (High Altitude Long Endurance Unmanned Aerial Vehicles). ESB also developed antenna elements that minimize the interaction between elements and the vehicle to minimize the impact of wing flexure on the EM (electromagnetic) performance of the integrated array. In addition, computer models were developed to perform phase correction for antenna arrays whose elements are moving relative to each other due to wing deformations expected in HALE vehicle concepts. Development of lightweight, conformal or structurally integrated antenna elements and compensating for the impact of a lightweight, flexible structure on a large antenna array are important steps in the realization of HALE UAVs for microwave applications such as passive remote sensing and communications.

  3. Morphing Continuum Theory: A First Order Approximation to the Balance Laws

    NASA Astrophysics Data System (ADS)

    Wonnell, Louis; Cheikh, Mohamad Ibrahim; Chen, James

    2017-11-01

    Morphing Continuum Theory is constructed under the framework of Rational Continuum Mechanics (RCM) for fluid flows with inner structure. This multiscale theory has been successfully emplyed to model turbulent flows. The framework of RCM ensures the mathematical rigor of MCT, but contains new material constants related to the inner structure. The physical meanings of these material constants have yet to be determined. Here, a linear deviation from the zeroth-order Boltzmann-Curtiss distribution function is derived. When applied to the Boltzmann-Curtiss equation, a first-order approximation of the MCT governing equations is obtained. The integral equations are then related to the appropriate material constants found in the heat flux, Cauchy stress, and moment stress terms in the governing equations. These new material properties associated with the inner structure of the fluid are compared with the corresponding integrals, and a clearer physical interpretation of these coefficients emerges. The physical meanings of these material properties is determined by analyzing previous results obtained from numerical simulations of MCT for compressible and incompressible flows. The implications for the physics underlying the MCT governing equations will also be discussed. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17-1-0154.

  4. Development and implementation of an automatic integration system for fibre optic sensors in the braiding process with the objective of online-monitoring of composite structures

    NASA Astrophysics Data System (ADS)

    Hufenbach, W.; Gude, M.; Czulak, A.; Kretschmann, Martin

    2014-04-01

    Increasing economic, political and ecological pressure leads to steadily rising percentage of modern processing and manufacturing processes for fibre reinforced polymers in industrial batch production. Component weights beneath a level achievable by classic construction materials, which lead to a reduced energy and cost balance during product lifetime, justify the higher fabrication costs. However, complex quality control and failure prediction slow down the substitution by composite materials. High-resolution fibre-optic sensors (FOS), due their low diameter, high measuring point density and simple handling, show a high applicability potential for an automated sensor-integration in manufacturing processes, and therefore the online monitoring of composite products manufactured in industrial scale. Integrated sensors can be used to monitor manufacturing processes, part tests as well as the component structure during product life cycle, which simplifies allows quality control during production and the optimization of single manufacturing processes.[1;2] Furthermore, detailed failure analyses lead to a enhanced understanding of failure processes appearing in composite materials. This leads to a lower wastrel number and products of a higher value and longer product life cycle, whereby costs, material and energy are saved. This work shows an automation approach for FOS-integration in the braiding process. For that purpose a braiding wheel has been supplemented with an appliance for automatic sensor application, which has been used to manufacture preforms of high-pressure composite vessels with FOS-networks integrated between the fibre layers. All following manufacturing processes (vacuum infiltration, curing) and component tests (quasi-static pressure test, programmed delamination) were monitored with the help of the integrated sensor networks. Keywords: SHM, high-pressure composite vessel, braiding, automated sensor integration, pressure test, quality control, optic-fibre sensors, Rayleigh, Luna Technologies

  5. Design of a Nanoscale, CMOS-Integrable, Thermal-Guiding Structure for Boolean-Logic and Neuromorphic Computation.

    PubMed

    Loke, Desmond; Skelton, Jonathan M; Chong, Tow-Chong; Elliott, Stephen R

    2016-12-21

    One of the requirements for achieving faster CMOS electronics is to mitigate the unacceptably large chip areas required to steer heat away from or, more recently, toward the critical nodes of state-of-the-art devices. Thermal-guiding (TG) structures can efficiently direct heat by "meta-materials" engineering; however, some key aspects of the behavior of these systems are not fully understood. Here, we demonstrate control of the thermal-diffusion properties of TG structures by using nanometer-scale, CMOS-integrable, graphene-on-silica stacked materials through finite-element-methods simulations. It has been shown that it is possible to implement novel, controllable, thermally based Boolean-logic and spike-timing-dependent plasticity operations for advanced (neuromorphic) computing applications using such thermal-guide architectures.

  6. Material Characterization for Composite Materials in Load Bearing Wave Guides

    DTIC Science & Technology

    2012-03-01

    ISIS Integrated Sensor Is Structure MUSTRAP Multifunctional Structural Aperture MWCNT Multi-walled Carbon Nanotube SWCNT Single-walled Carbon...CNTs go through a specific process to coat them with nickel. The process includes conditioning the CNTs in different solutions and adding...a single-walled carbon nanotube (SWCNT), a multi-walled carbon nanotube ( MWCNT ), or a graphene nanoribbon (GNR). A SWCNT is a hollow cylindrical

  7. Models, Databases, and Simulation Tools Needed for the Realization of Integrated Computational Materials Engineering. Proceedings of the Symposium Held at Materials Science and Technology 2010

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M. (Editor); Wong, Terry T. (Editor)

    2011-01-01

    Topics covered include: An Annotative Review of Multiscale Modeling and its Application to Scales Inherent in the Field of ICME; and A Multiscale, Nonlinear, Modeling Framework Enabling the Design and Analysis of Composite Materials and Structures.

  8. Overview of demonstrator program of Japanese Smart Materials and Structure System project

    NASA Astrophysics Data System (ADS)

    Tajima, Naoyuki; Sakurai, Tateo; Sasajima, Mikio; Takeda, Nobuo; Kishi, Teruo

    2003-08-01

    The Japanese Smart Material and Structure System Project started in 1998 as five years' program that funded by METI (Ministry of Economy, Trade and Industry) and supported by NEDO (New Energy and Industrial Technology Development Organization). Total budget of five years was finally about 3.8 billion Japanese yen. This project has been conducted as the Academic Institutions Centered Program, namely, one of collaborated research and development among seven universities (include one foreign university), seventeen Industries (include two foreign companies), and three national laboratories. At first, this project consisted of four research groups that were structural health monitoring, smart manufacturing, active/adaptive structures, and actuator material/devices. Two years later, we decided that two demonstrator programs should be added in order to integrate the developed sensor and actuator element into the smart structure system and verify the research and development results of above four research groups. The application target of these demonstrators was focused to the airplane, and two demonstrators that these shapes simulate to the fuselage of small commercial airplane (for example, Boeing B737) had been established. Both demonstrators are cylindrical structures with 1.5 m in diameter and 3 m in length that the first demonstrator has CFRP skin-stringer and the second one has CFRP skin. The first demonstrator integrates the following six innovative techniques: (1) impact monitoring using embedded small diameter optical fiber sensors newly developed in this program, (2) impact monitoring using the integrated acoustic emission (AE) systems, (3) whole-field strain mapping using the BOTDR/FBG integrated system, (4) damage suppression using embedded shape memory alloy (SMA) films, (5) maximum and cyclic strain sensing using smart composite patches, and (6) smart manufacturing using the integrated sensing system. The second one is for demonstrating the suppression of vibration and acoustic noise generated in the composite cylindrical structure. In this program, High-performance PZT actuators/sensors developed in this program are also installed. The whole tests and evaluations have now been finished. This paper presents the outline of demonstrator programs, followed by six presentations that show the detail verification results of industrial demonstration themes.

  9. Photovoltaic structures having a light scattering interface layer and methods of making the same

    DOEpatents

    Liu, Xiangxin; Compaan, Alvin D.; Paudel, Naba Raj

    2015-10-13

    Photovoltaic (PV) cell structures having an integral light scattering interface layer configured to diffuse or scatter light prior to entering a semiconductor material and methods of making the same are described.

  10. Development of ultralight, super-elastic, hierarchical metallic meta-structures with i3DP technology

    NASA Astrophysics Data System (ADS)

    Zhang, Dongxing; Xiao, Junfeng; Moorlag, Carolyn; Guo, Qiuquan; Yang, Jun

    2017-11-01

    Lightweight and mechanically robust materials show promising applications in thermal insulation, energy absorption, and battery catalyst supports. This study demonstrates an effective method for creation of ultralight metallic structures based on initiator-integrated 3D printing technology (i3DP), which provides a possible platform to design the materials with the best geometric parameters and desired mechanical performance. In this study, ultralight Ni foams with 3D interconnected hollow tubes were fabricated, consisting of hierarchical features spanning three scale orders ranging from submicron to centimeter. The resultant materials can achieve an ultralight density of as low as 5.1 mg cm-3 and nearly recover after significant compression up to 50%. Due to a high compression ratio, the hierarchical structure exhibits superior properties in terms of energy absorption and mechanical efficiency. The relationship of structural parameters and mechanical response was established. The ability of achieving ultralight density <10 mg cm-3 and the stable \\bar{E}˜ {\\bar{ρ }}2 scaling through all range of relative density, indicates an advantage over the previous stochastic metal foams. Overall, this initiator-integrated 3D printing approach provides metallic structures with substantial benefits from the hierarchical design and fabrication flexibility to ultralight applications.

  11. Plate and butt-weld stresses beyond elastic limit, material and structural modeling

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1991-01-01

    Ultimate safety factors of high performance structures depend on stress behavior beyond the elastic limit, a region not too well understood. An analytical modeling approach was developed to gain fundamental insights into inelastic responses of simple structural elements. Nonlinear material properties were expressed in engineering stresses and strains variables and combined with strength of material stress and strain equations similar to numerical piece-wise linear method. Integrations are continuous which allows for more detailed solutions. Included with interesting results are the classical combined axial tension and bending load model and the strain gauge conversion to stress beyond the elastic limit. Material discontinuity stress factors in butt-welds were derived. This is a working-type document with analytical methods and results applicable to all industries of high reliability structures.

  12. OVERVIEW OF HANFORD SINGLE SHELL TANK (SST) STRUCTURAL INTEGRITY - 12123

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAST RS; RINKER MW; WASHENFELDER DJ

    2012-01-25

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanfordmore » Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS{reg_sign} The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and other surface conditions that may indicate signs of structural distress. The condition of the concrete and rebar of the Hanford SSTs is currently being tested and planned for additional activities in the near future. Concrete and rebar removed from the dome of a 65-year-old tank is being tested for mechanics properties and condition. Results indicated stronger than designed concrete with additional Petrographic examination and rebar testing ongoing. Material properties determined from previous efforts combined with current testing and construction document review will help to generate a database that will provide continuing indication of Hanford SST structural integrity.« less

  13. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for themore » Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tanks, looking for cracks and other surface conditions that may indicate signs of structural distress. The condition of the concrete and rebar of the Hanford Single-Shell Tanks is currently being tested and planned for additional activities in the near future. Concrete and rebar removed from the dome of a 65 year old tank was tested for mechanics properties and condition. Results indicated stronger than designed concrete with additional Petrographic examination and rebar completed. Material properties determined from previous efforts combined with current testing and construction document review will help to generate a database that will provide indication of Hanford Single-Shell Tank structural integrity.« less

  14. Basic materials and structures aspects for hypersonic transport vehicles (HTV)

    NASA Astrophysics Data System (ADS)

    Steinheil, E.; Uhse, W.

    A Mach 5 transport design is used to illustrate structural concepts and criteria for materials selections and also key technologies that must be followed in the areas of computational methods, materials and construction methods. Aside from the primary criteria of low weight, low costs, and conceivable risks, a number of additional requirements must be met, including stiffness and strength, corrosion resistance, durability, and a construction adequate for inspection, maintenance and repair. Current aircraft construction requirements are significantly extended for hypersonic vehicles. Additional consideration is given to long-duration temperature resistance of the airframe structure, the integration of large-volume cryogenic fuel tanks, computational tools, structural design, polymer matrix composites, and advanced manufacturing technologies.

  15. Flame-Resistant Composite Materials For Structural Members

    NASA Technical Reports Server (NTRS)

    Spears, Richard K.

    1995-01-01

    Matrix-fiber composite materials developed for structural members occasionally exposed to hot, corrosive gases. Integral ceramic fabric surface layer essential for resistance to flames and chemicals. Endures high temperature, impedes flame from penetrating to interior, inhibits diffusion of oxygen to interior where it degrades matrix resin, resists attack by chemicals, helps resist erosion, and provides additional strength. In original intended application, composite members replace steel structural members of rocket-launching structures that deteriorate under combined influences of atmosphere, spilled propellants, and rocket exhaust. Composites also attractive for other applications in which corrosion- and fire-resistant structural members needed.

  16. Development of Lightweight CubeSat with Multi-Functional Structural Battery Systems

    NASA Technical Reports Server (NTRS)

    Karkkainen, Ryan L.; Hunter, Roger C.; Baker, Christopher

    2017-01-01

    This collaborative multi-disciplinary effort aims to develop a lightweight, 1-unit (1U) CubeSat (10x10x10 cm) which utilizes improved and fully integrated structural battery materials for mission life extension, larger payload capability, and significantly reduced mass.The electrolytic carbon fiber material serves the multifunctional capacitive energy system as both a lightweight, load bearing structure and an electrochemical battery system. This implementation will improve traditional multifunctional energy storage concepts with a highly effective energy storage capability.

  17. Physical basis of destruction of concrete and other building materials

    NASA Astrophysics Data System (ADS)

    Suleymanova, L. A.; Pogorelova, I. A.; Kirilenko, S. V.; Suleymanov, K. A.

    2018-03-01

    In the article the scientifically-grounded views of authors on the physical essence of destruction process of concrete and other materials are stated; it is shown that the mechanism of destruction of materials is similar in its essence during the mechanical, thermal, physical-chemical and combined influences, and that in its basis Newton's third law lays. In all cases destruction consists in decompaction of structures, loosening of the internal bonds in materials, in the further integrity damage and their division into separate loosely-bound (full destruction) and unbound with each other (incomplete destruction) elements, which depends on the kind of external influence and perfection of materials structure.

  18. Materiomics: biological protein materials, from nano to macro.

    PubMed

    Cranford, Steven; Buehler, Markus J

    2010-11-12

    Materiomics is an emerging field of science that provides a basis for multiscale material system characterization, inspired in part by natural, for example, protein-based materials. Here we outline the scope and explain the motivation of the field of materiomics, as well as demonstrate the benefits of a materiomic approach in the understanding of biological and natural materials as well as in the design of de novo materials. We discuss recent studies that exemplify the impact of materiomics - discovering Nature's complexity through a materials science approach that merges concepts of material and structure throughout all scales and incorporates feedback loops that facilitate sensing and resulting structural changes at multiple scales. The development and application of materiomics is illustrated for the specific case of protein-based materials, which constitute the building blocks of a variety of biological systems such as tendon, bone, skin, spider silk, cells, and tissue, as well as natural composite material systems (a combination of protein-based and inorganic constituents) such as nacre and mollusk shells, and other natural multiscale systems such as cellulose-based plant and wood materials. An important trait of these materials is that they display distinctive hierarchical structures across multiple scales, where molecular details are exhibited in macroscale mechanical responses. Protein materials are intriguing examples of materials that balance multiple tasks, representing some of the most sustainable material solutions that integrate structure and function despite severe limitations in the quality and quantity of material building blocks. However, up until now, our attempts to analyze and replicate Nature's materials have been hindered by our lack of fundamental understanding of these materials' intricate hierarchical structures, scale-bridging mechanisms, and complex material components that bestow protein-based materials their unique properties. Recent advances in analytical tools and experimental methods allow a holistic view of such a hierarchical biological material system. The integration of these approaches and amalgamation of material properties at all scale levels to develop a complete description of a material system falls within the emerging field of materiomics. Materiomics is the result of the convergence of engineering and materials science with experimental and computational biology in the context of natural and synthetic materials. Through materiomics, fundamental advances in our understanding of structure-property-process relations of biological systems contribute to the mechanistic understanding of certain diseases and facilitate the development of novel biological, biologically inspired, and completely synthetic materials for applications in medicine (biomaterials), nanotechnology, and engineering.

  19. Impact and vibration detection in composite materials by using intermodal interference in multimode optical fibers

    NASA Astrophysics Data System (ADS)

    Malki, Abdelrafik; Gafsi, Rachid; Michel, Laurent; Labarrère, Michel; Lecoy, Pierre

    1996-09-01

    An optical fiber sensor based on the intermodal interference principle is integrated in a composite material to detect impacts and vibrations. Six fibers are integrated at the top of a carbon/epoxy composite panel so as to form a grid into the structure. Spectral and temporal responses to impacts and acoustic vibrations of the sensor are compared with a piezoelectric accelerometer. The tests proved the facility of integration and the high sensitivity of the device. The location of impacts is performed with this arrangement by measuring the arrival times of the front waves to the fibers.

  20. Space Structure Development

    NASA Technical Reports Server (NTRS)

    Smith, Thomas

    2015-01-01

    The duration of my Summer 2015 Internship Tour at NASA's Johnson Space Center was spent working in the Structural Engineering Division's Structures Branch. One of the two main roles of the Structures Branch, ES2, is to ensure the structural integrity of spacecraft vehicles and the structural subsystems needed to support those vehicles. The other main objective of this branch is to develop the lightweight structures that are necessary to take humans beyond Low-Earth Orbit. Within ES2, my four projects involved inflatable space structure air bladder material testing; thermal and impact material testing for spacecraft windows; structural analysis on a joint used in the Boeing CST-100 airbag system; and an additive manufacturing design project.

  1. Nano-array integrated monolithic devices: toward rational materials design and multi-functional performance by scalable nanostructures assembly

    DOE PAGES

    Wang, Sibo; Ren, Zheng; Guo, Yanbing; ...

    2016-03-21

    We report the scalable three-dimensional (3-D) integration of functional nanostructures into applicable platforms represents a promising technology to meet the ever-increasing demands of fabricating high performance devices featuring cost-effectiveness, structural sophistication and multi-functional enabling. Such an integration process generally involves a diverse array of nanostructural entities (nano-entities) consisting of dissimilar nanoscale building blocks such as nanoparticles, nanowires, and nanofilms made of metals, ceramics, or polymers. Various synthetic strategies and integration methods have enabled the successful assembly of both structurally and functionally tailored nano-arrays into a unique class of monolithic devices. The performance of nano-array based monolithic devices is dictated bymore » a few important factors such as materials substrate selection, nanostructure composition and nano-architecture geometry. Therefore, the rational material selection and nano-entity manipulation during the nano-array integration process, aiming to exploit the advantageous characteristics of nanostructures and their ensembles, are critical steps towards bridging the design of nanostructure integrated monolithic devices with various practical applications. In this article, we highlight the latest research progress of the two-dimensional (2-D) and 3-D metal and metal oxide based nanostructural integrations into prototype devices applicable with ultrahigh efficiency, good robustness and improved functionality. Lastly, selective examples of nano-array integration, scalable nanomanufacturing and representative monolithic devices such as catalytic converters, sensors and batteries will be utilized as the connecting dots to display a roadmap from hierarchical nanostructural assembly to practical nanotechnology implications ranging from energy, environmental, to chemical and biotechnology areas.« less

  2. Nano-array integrated monolithic devices: toward rational materials design and multi-functional performance by scalable nanostructures assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Sibo; Ren, Zheng; Guo, Yanbing

    We report the scalable three-dimensional (3-D) integration of functional nanostructures into applicable platforms represents a promising technology to meet the ever-increasing demands of fabricating high performance devices featuring cost-effectiveness, structural sophistication and multi-functional enabling. Such an integration process generally involves a diverse array of nanostructural entities (nano-entities) consisting of dissimilar nanoscale building blocks such as nanoparticles, nanowires, and nanofilms made of metals, ceramics, or polymers. Various synthetic strategies and integration methods have enabled the successful assembly of both structurally and functionally tailored nano-arrays into a unique class of monolithic devices. The performance of nano-array based monolithic devices is dictated bymore » a few important factors such as materials substrate selection, nanostructure composition and nano-architecture geometry. Therefore, the rational material selection and nano-entity manipulation during the nano-array integration process, aiming to exploit the advantageous characteristics of nanostructures and their ensembles, are critical steps towards bridging the design of nanostructure integrated monolithic devices with various practical applications. In this article, we highlight the latest research progress of the two-dimensional (2-D) and 3-D metal and metal oxide based nanostructural integrations into prototype devices applicable with ultrahigh efficiency, good robustness and improved functionality. Lastly, selective examples of nano-array integration, scalable nanomanufacturing and representative monolithic devices such as catalytic converters, sensors and batteries will be utilized as the connecting dots to display a roadmap from hierarchical nanostructural assembly to practical nanotechnology implications ranging from energy, environmental, to chemical and biotechnology areas.« less

  3. An Integrated Computational Materials Engineering Method for Woven Carbon Fiber Composites Preforming Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Weizhao; Ren, Huaqing; Wang, Zequn

    2016-10-19

    An integrated computational materials engineering method is proposed in this paper for analyzing the design and preforming process of woven carbon fiber composites. The goal is to reduce the cost and time needed for the mass production of structural composites. It integrates the simulation methods from the micro-scale to the macro-scale to capture the behavior of the composite material in the preforming process. In this way, the time consuming and high cost physical experiments and prototypes in the development of the manufacturing process can be circumvented. This method contains three parts: the micro-scale representative volume element (RVE) simulation to characterizemore » the material; the metamodeling algorithm to generate the constitutive equations; and the macro-scale preforming simulation to predict the behavior of the composite material during forming. The results show the potential of this approach as a guidance to the design of composite materials and its manufacturing process.« less

  4. Electromagnetic pulsed thermography for natural cracks inspection

    NASA Astrophysics Data System (ADS)

    Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing

    2017-02-01

    Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF).

  5. Damage free integration of ultralow-k dielectrics by template replacement approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L.; De Gendt, S.; Department of Chemistry, Katholieke Universiteit Leuven, 3000 Leuven

    2015-08-31

    Cu/low-k integration by conventional damascene approach is becoming increasingly difficult as critical dimensions scale down. An alternative integration scheme is studied based on the replacement of a sacrificial template by ultralow-k dielectric. A metal structure is first formed by patterning a template material. After template removal, a k = 2.31 spin-on type of porous low-k dielectric is deposited onto the patterned metal lines. The chemical and electrical properties of spin-on dielectrics are studied on blanket wafers, indicating that during hard bake, most porogen is removed within few minutes, but 120 min are required to achieve the lowest k-value. The effective dielectric constantmore » of the gap-fill low-k is investigated on a 45 nm ½ pitch Meander-Fork structure, leading to k{sub eff} below 2.4. The proposed approach solves the two major challenges in conventional Cu/low-k damascene integration approach: low-k plasma damage and metal penetration during barrier deposition on porous materials.« less

  6. Vertical and lateral heterogeneous integration

    NASA Astrophysics Data System (ADS)

    Geske, Jon; Okuno, Yae L.; Bowers, John E.; Jayaraman, Vijay

    2001-09-01

    A technique for achieving large-scale monolithic integration of lattice-mismatched materials in the vertical direction and the lateral integration of dissimilar lattice-matched structures has been developed. The technique uses a single nonplanar direct-wafer-bond step to transform vertically integrated epitaxial structures into lateral epitaxial variation across the surface of a wafer. Nonplanar wafer bonding is demonstrated by integrating four different unstrained multi-quantum-well active regions lattice matched to InP on a GaAs wafer surface. Microscopy is used to verify the quality of the bonded interface, and photoluminescence is used to verify that the bonding process does not degrade the optical quality of the laterally integrated wells. The authors propose this technique as a means to achieve greater levels of wafer-scale integration in optical, electrical, and micromechanical devices.

  7. Evaluation of Prototype Head Shield for Hazardous Material Tank Car

    DOT National Transportation Integrated Search

    1976-12-01

    The structural integrity of a prototype tank car head shield for hazardous material railroad tank cars was evaluated under conditions of freight car coupling at moderate to high speeds. This is one of the most severe environments encountered in norma...

  8. Society for the advancement of material and process engineering. 41st International SAMPE symposium and exhibition, Volume 41, Books 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document contains reports which were presented at the 41st International Society For The Advancement of Material and Process Engineering Symposium and Exhibition. Topics include: structural integrity of aging aircraft; composite materials development; affordable composites and processes; corrosion characterization of aging aircraft; adhesive advances; composite design; dual use materials and processing; repair of aircraft structures; adhesive inspection; materials systems for infrastructure; fire safety; composite impact/energy absorption; advanced materials for space; seismic retrofit; high temperature resins; preform technology; thermoplastics; alternative energy and transportation; manufacturing; and durability. Individual reports have been processed separately for the United States Department of Energy databases.

  9. Review of current status of smart structures and integrated systems

    NASA Astrophysics Data System (ADS)

    Chopra, Inderjit

    1996-05-01

    A smart structure involves distributed actuators and sensors, and one or more microprocessors that analyze the responses from the sensors and use distributed-parameter control theory to command the actuators to apply localized strains to minimize system response. A smart structure has the capability to respond to a changing external environment (such as loads or shape change) as well as to a changing internal environment (such as damage or failure). It incorporates smart actuators that allow the alteration of system characteristics (such as stiffness or damping) as well as of system response (such as strain or shape) in a controlled manner. Many types of actuators and sensors are being considered, such as piezoelectric materials, shape memory alloys, electrostrictive materials, magnetostrictive materials, electro- rheological fluids and fiber optics. These can be integrated with main load-carrying structures by surface bonding or embedding without causing any significant changes in the mass or structural stiffness of the system. Numerous applications of smart structures technology to various physical systems are evolving to actively control vibration, noise, aeroelastic stability, damping, shape and stress distribution. Applications range from space systems, fixed-wing and rotary-wing aircraft, automotive, civil structures and machine tools. Much of the early development of smart structures methodology was driven by space applications such as vibration and shape control of large flexible space structures, but now wider applications are envisaged for aeronautical and other systems. Embedded or surface-bonded smart actuators on an airplane wing or helicopter blade will induce alteration of twist/camber of airfoil (shape change), that in turn will cause variation of lift distribution and may help to control static and dynamic aeroelastic problems. Applications of smart structures technology to aerospace and other systems are expanding rapidly. Major barriers are: actuator stroke, reliable data base of smart material characteristics, non-availability of robust distributed parameter control strategies, and non-existent mathematical modeling of smart systems. The objective of this paper is to review the state-of-the-art of smart actuators and sensors and integrated systems and point out the needs for future research.

  10. Improved tank car design development : ongoing studies on sandwich structures

    DOT National Transportation Integrated Search

    2009-03-02

    The Government and industry have a common interest in : improving the safety performance of railroad tank cars carrying : hazardous materials. Research is ongoing to develop strategies : to maintain the structural integrity of railroad tank cars carr...

  11. Multilevel integration of patternable low-κ material into advanced Cu BEOL

    NASA Astrophysics Data System (ADS)

    Lin, Qinghuang; Chen, S. T.; Nelson, A.; Brock, P.; Cohen, S.; Davis, B.; Fuller, N.; Kaplan, R.; Kwong, R.; Liniger, E.; Neumayer, D.; Patel, J.; Shobha, H.; Sooriyakumaran, R.; Purushothaman, S.; Spooner, T.; Miller, R.; Allen, R.; Wisnieff, R.

    2010-04-01

    In this paper, we wish to report, for the first time, on a simple, low-cost, novel way to form dual-damascene copper (Cu) on-chip interconnect or Back-End-Of-the-Line (BEOL) structures using a patternable low dielectric constant (low-κ) dielectric material concept. A patternable low-κ dielectric material combines the functions of a traditional resist and a dielectric material into one single material. It acts as a traditional resist during patterning and is subsequently converted to a low-κ dielectric material during a post-patterning curing process. No sacrificial materials (separate resists or hardmasks) and their related deposition, pattern transfer (etch) and removal (strip) are required to form dual-damascene BEOL patterns. We have successfully demonstrated multi-level dual-damascene integration of a novel patternable low-κ dielectric material into advanced Cu BEOL. This κ=2.7 patternable low-κ material is based on the industry standard SiCOH-based (silsesquioxane polymer) material platform and is compatible with 248 nm optical lithography. Multilevel integration of this patternable low-κ material at 45 nm node Cu BEOL fatwire levels has been demonstrated with very high electrical yields using the current manufacturing infrastructure.

  12. Adaptive and active materials: selected papers from the ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS 13) (Snowbird, UT, USA, 16-18 September 2013)

    NASA Astrophysics Data System (ADS)

    Johnson, Nancy; Naguib, Hani; Turner, Travis; Anderson, Iain; Bassiri-Gharb, Nazanin; Daqaq, Mohammed; Baba Sundaresan, Vishnu; Sarles, Andy

    2014-10-01

    The sixth annual meeting of the ASME Smart Materials, Adaptive Structures and Intelligent Systems Conference (SMASIS) was held in the beautiful mountain encircled Snowbird Resort and Conference Center in Little Cottonwood Canyon near Salt Lake City, Utah. It is the conference's objective to provide an up-to-date overview of research trends in the entire field of smart materials systems in a friendly casual forum conducive to the exchange of ideas and latest results. As each year we strive to grow and offer new experiences, this year we included special focused topic tracks on nanoscale multiferroic materials and origami engineering. The cross-disciplinary emphasis was reflected in keynote speeches by Professor Kaushik Bhattacharya (California Institute of Technology) on 'Cyclic Deformation and the Interplay between Phase Transformation and Plasticity in Shape Memory Alloys', by Professor Alison Flatau (University of Maryland at College Park) on 'Structural Magnetostrictive Alloys: The Other Smart Material', and by Dr Leslie Momoda (Director of the Sensors and Materials Laboratories, HRL Laboratories, LLC, Malibu, CA) on 'Architecturing New Functional Materials: An Industrial Perspective'. SMASIS 2013 was divided into seven symposia which span basic research, applied technological design and development, and industrial and governmental integrated system and application demonstrations. SYMP 1. Development and Characterization of Multifunctional Materials. SYMP 2. Mechanics and Behavior of Active Materials. SYMP 3. Modeling, Simulation and Control of Adaptive Systems. SYMP 4. Integrated System Design and Implementation. SYMP 5. Structural Health Monitoring. SYMP 6. Bioinspired Smart Materials and Systems. SYMP 7. Energy Harvesting. Authors of selected papers in the materials areas (symposia 1, 2, and 6) as well as energy harvesting (symposium 7) were invited to write a full journal article on their presentation topic for publication in this special issue of Smart Materials and Structures. This collection of papers demonstrates the exceptional quality and originality of the conference presentations. We are very appreciative of their efforts to produce this collection of highly relevant articles on smart materials.

  13. Evaluation of Materials and Concepts for Aircraft Fire Protection

    NASA Technical Reports Server (NTRS)

    Anderson, R. A.; Price, J. O.; Mcclure, A. H.; Tustin, E. A.

    1976-01-01

    Woven fiberglass fluted-core simulated aircraft interior panels were flame tested and structurally evaluated against the Boeing 747 present baseline interior panels. The NASA-defined panels, though inferior on a strength-to-weight basis, showed better structural integrity after flame testing, due to the woven fiberglass structure.

  14. Study of metallic structural design concepts for an arrow wing supersonic cruise configuration

    NASA Technical Reports Server (NTRS)

    Turner, M. J.; Grande, D. L.

    1977-01-01

    A structural design study was made, to assess the relative merits of various metallic structural concepts and materials for an advanced supersonic aircraft cruising at Mach 2.7. Preliminary studies were made to ensure compliance of the configuration with general design criteria, integrate the propulsion system with the airframe, select structural concepts and materials, and define an efficient structural arrangement. An advanced computerized structural design system was used, in conjunction with a relatively large, complex finite element model, for detailed analysis and sizing of structural members to satisfy strength and flutter criteria. A baseline aircraft design was developed for assessment of current technology. Criteria, analysis methods, and results are presented. The effect on design methods of using the computerized structural design system was appraised, and recommendations are presented concerning further development of design tools, development of materials and structural concepts, and research on basic technology.

  15. Self-similar and fractal design for stretchable electronics

    DOEpatents

    Rogers, John A.; Fan, Jonathan; Yeo, Woon-Hong; Su, Yewang; Huang, Yonggang; Zhang, Yihui

    2017-04-04

    The present invention provides electronic circuits, devices and device components including one or more stretchable components, such as stretchable electrical interconnects, electrodes and/or semiconductor components. Stretchability of some of the present systems is achieved via a materials level integration of stretchable metallic or semiconducting structures with soft, elastomeric materials in a configuration allowing for elastic deformations to occur in a repeatable and well-defined way. The stretchable device geometries and hard-soft materials integration approaches of the invention provide a combination of advance electronic function and compliant mechanics supporting a broad range of device applications including sensing, actuation, power storage and communications.

  16. On the influence of pseudoelastic material behaviour in planar shape-memory tubular continuum structures

    NASA Astrophysics Data System (ADS)

    Greiner-Petter, Christoph; Sattel, Thomas

    2017-12-01

    For planar tubular continuum structures based on precurved shape memory alloy tubes a beam model with respect to the pseudoelastic material behaviour of NiTi is derived. Thereunto a constitutive material law respecting tension-compression asymmetry as well as hysteresis is used. The beam model is then employed to calculate equilibrium curvatures of concentric tube assemblies without clearance between the tubes. In a second step, the influence of clearance is approximated to account for non-concentric tube assemblies. These elastokinematic results are integrated into a purely kinematic model to describe the cannula path under the presence of material hysteresis and clearance. Finally a photogrammetric measurement system is used to track the path of an exemplary two-tube continuum structure to examine the accuracy of the proposed model. It is shown that material hysteresis leads to a hysteresis phenomena in the path of the tubular continuum structure.

  17. Analysis of elastically tailored viscoelastic damping member

    NASA Technical Reports Server (NTRS)

    Chen, G.-S.; Dolgin, B. P.

    1990-01-01

    For more than two decades, viscoelastic materials have been commonly used as a passive damping source in a variety of structures because of their high material loss factors. In most of the applications, viscoelastic materials are used either in series with or parallel to the structural load path. The latter is also known as the constrained-layer damping treatment. The advantage of the constrained-layer damping treatment is that it can be incorporated without loss in structural integrity, namely, stiffness and strength. However, the disadvantages are that: (1) it is not the most effective use of the viscoelastic material when compared with the series-type application, and (2) weight penalty from the stiff constraining layer requirement can be excessive. To overcome the disadvantages of the constrained-layer damping treatment, a new approach for using viscoelastic material in axial-type structural components, e.g., truss members, was studied in this investigation.

  18. Material orientation design of planar structures with prescribed anisotropy classes. Study of rhombic systems

    NASA Astrophysics Data System (ADS)

    Czubacki, Radosław

    2018-01-01

    The paper deals with the minimum compliance problem of 2D structures made of a non-homogeneous elastic material. In the first part of the paper a comparison between solutions of Free Material Design (FMD), Cubic Material Design (CMD) and Isotropic Material Design (IMD) is shown for a simply supported plate in a shape of a deep beam, subjected to a concentrated in-plane force at its upper face. The isoperimetric condition fixes the value of the cost of the design expressed as the integral of the trace of the Hooke tensor. In the second part of the paper the material design approaches are extended to rhombic system in 2D. For the rhombic system the material properties of the structures are set, the design variables being the trajectories of anisotropy directions which in 2D are described by one parameter. In the Orthotropic Orientation Design (OOD) no isoperimetric condition is used.

  19. Method and apparatus for forming ceramic oxide superconductors with ordered structure

    DOEpatents

    Nellis, W.J.; Maple, M.B.

    1987-12-23

    Disclosed are products and processes for making improved magnetic and superconducting articles from anisotropic starting materials by initially reducing the starting materials into a powdered form composed of particles of uniform directional crystal structures, forming a directionally uniform aggregate of particles by exposing the aggregate to a magnetic field of desired magnitude and direction, and then compacting the aggregate into an integral solid body. 2 Figs.

  20. Rotation of hard particles in a soft matrix

    NASA Astrophysics Data System (ADS)

    Yang, Weizhu; Liu, Qingchang; Yue, Zhufeng; Li, Xiaodong; Xu, Baoxing

    Soft-hard materials integration is ubiquitous in biological materials and structures in nature and has also attracted growing attention in the bio-inspired design of advanced functional materials, structures and devices. Due to the distinct difference in their mechanical properties, the rotation of hard phases in soft matrixes upon deformation has been acknowledged, yet is lack of theory in mechanics. In this work, we propose a theoretical mechanics framework that can describe the rotation of hard particles in a soft matrix. The rotation of multiple arbitrarily shaped, located and oriented particles with perfectly bonded interfaces in an elastic soft matrix subjected to a far-field tensile loading is established and analytical solutions are derived by using complex potentials and conformal mapping methods. Strong couplings and competitions of the rotation of hard particles among each other are discussed by investigating numbers, relative locations and orientations of particles in the matrix at different loading directions. Extensive finite element analyses are performed to validate theoretical solutions and good agreement of both rotation and stress field between them are achieved. Possible extensions of the present theory to non-rigid particles, viscoelastic matrix and imperfect bonding are also discussed. Finally, by taking advantage of the rotation of hard particles, we exemplify an application in a conceptual design of soft-hard material integrated phononic crystal and demonstrate that phononic band gaps can be successfully tuned with a high accuracy through the mechanical tension-induced rotation of hard particles. The present theory established herein is expected to be of immediate interests to the design of soft-hard materials integration based functional materials, structures and devices with tunable performance via mechanical rotation of hard phases.

  1. Fiber-optic sensor applications in civil and geotechnical engineering

    NASA Astrophysics Data System (ADS)

    Habel, Wolfgang R.; Krebber, Katerina

    2011-09-01

    Different types of fiber-optic sensors based on glass or polymeric fibers are used to evaluate material behavior or to monitor the integrity and long-term stability of load-bearing structure components. Fiber-optic sensors have been established as a new and innovative measurement technology in very different fields, such as material science, civil engineering, light-weight structures, geotechnical areas as well as chemical and high-voltage substations. Very often, mechanical quantities such as deformation, strain or vibration are requested. However, measurement of chemical quantities in materials and structure components, such as pH value in steel reinforced concrete members also provides information about the integrity of concrete structures. A special fiber-optic chemical sensor for monitoring the alkaline state (pH value) of the cementitious matrix in steel-reinforced concrete structures with the purpose of early detection of corrosion-initiating factors is described. The paper presents the use of several fiber-optic sensor technologies in engineering. One example concerns the use of highly resolving concrete-embeddable fiber Fabry-Perot acoustic emission (AE) sensors for the assessment of the bearing behaviour of large concrete piles in existing foundations or during and after its installation. Another example concerns fiber Bragg grating (FBG) sensors attached to anchor steels (micro piles) to measure the strain distribution in loaded soil anchors. Polymer optical fibers (POF) can be — because of their high elasticity and high ultimate strain — well integrated into textiles to monitor their deformation behaviour. Such "intelligent" textiles are capable of monitoring displacement of soil or slopes, critical mechanical deformation in geotechnical structures (dikes, dams, and embankments) as well as in masonry structures during and after earthquakes.

  2. Low-Cost Composite Materials and Structures for Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Deo, Ravi B.; Starnes, James H., Jr.; Holzwarth, Richard C.

    2003-01-01

    A survey of current applications of composite materials and structures in military, transport and General Aviation aircraft is presented to assess the maturity of composites technology, and the payoffs realized. The results of the survey show that performance requirements and the potential to reduce life cycle costs for military aircraft and direct operating costs for transport aircraft are the main reasons for the selection of composite materials for current aircraft applications. Initial acquisition costs of composite airframe components are affected by high material costs and complex certification tests which appear to discourage the widespread use of composite materials for aircraft applications. Material suppliers have performed very well to date in developing resin matrix and fiber systems for improved mechanical, durability and damage tolerance performance. The next challenge for material suppliers is to reduce material costs and to develop materials that are suitable for simplified and inexpensive manufacturing processes. The focus of airframe manufacturers should be on the development of structural designs that reduce assembly costs by the use of large-scale integration of airframe components with unitized structures and manufacturing processes that minimize excessive manual labor.

  3. UMAT Implementation of Coupled, Multilevel, Structural Deformation and Damage Analysis of General Hereditary Materials

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Saleeb, A. F.; Wilt, T. E.; Trowbridge, D.

    2000-01-01

    Extensive research efforts have been made over the years on the phenomenological representations of constitutive material behavior in the inelastic analysis and life assessment of structures composed of advanced monolithic and composite (CMC, MMC, and PMC) materials. Recently, emphasis has been placed on concurrently addressing three important and related areas of constitutive and degradation modeling; i.e. (i) mathematical formulation, (ii) algorithmic developments for the updating (integrating) of external (e.g. stress) and internal state variable, as well as (iii) parameter estimation for the characterization of the specific model. This concurrent perspective has resulted in; i) the formulation of a fully-associative viscoelastoplastic model (GVIPS), (ii) development of an efficient implicit integration and it's associative, symmetric, consistent tangent stiffness matrix algorithm for integration of the underlying rate flow/evolutionary equations, and iii) a robust, stand-alone, Constitutive Material Parameter Estimator (COMPARE) for automatically characterizing the various time-dependent, nonlinear, material models. Furthermore, to provide a robust multi-scale framework for the deformation and life analysis of structures composed of composite materials, NASA Glenn has aggressively pursued the development of a sufficiently general, accurate, and efficient micromechanics approach known as the generalized method of cells (GMC). This work has resulted in the development of MAC/GMC, a stand-alone micromechanics analysis tool that can easily and accurately design/analyze multiphase (composite) materials subjected to complex histories. MAC/GMC admits generalized, physically based, deformation and damage models for each constituent and provides "closed-form" expressions for the macroscopic composite response in terms of the properties, size, shape, distribution, and response of the individual constituents or phases that comprise the material. Consequently, MAC/GMC can be incorporated directly into a structural finite element code like ABAQUS for cost-effective, micromechanics based, large-scale component design and analysis. Our primary objective here is to report on these recent works conducted over the past decade, in the context of their incorporation into ABAQUS through the various user subroutines. Representative results will be shown to demonstrate the features of the developed schemes.

  4. A Strategy for Integrating a Large Finite Element Model: X-33 Lessons Learned

    NASA Technical Reports Server (NTRS)

    McGhee, David S.

    2000-01-01

    The X-33 vehicle is an advanced technology demonstrator sponsored by NASA. For the past three years the Structural Dynamics & Loads Group of NASA's Marshall Space Flight Center has had the task of integrating the X-33 vehicle structural finite element model. In that time, five versions of the integrated vehicle model have been produced and a strategy has evolved that would benefit anyone given the task of integrating structural finite element models that have been generated by various modelers and companies. The strategy that has been presented here consists of six decisions that need to be made. These six decisions are: purpose of model, units, common material list, model numbering, interface control, and archive format. This strategy has been proved and expanded from experience on the X-33 vehicle.

  5. Magnesium Front End Research and Development: A Canada-China-USA Collaboration

    NASA Astrophysics Data System (ADS)

    Luo, Alan A.; Nyberg, Eric A.; Sadayappan, Kumar; Shi, Wenfang

    The Magnesium Front End Research & Development (MFERD) project is an effort jointly sponsored by the United States Department of Energy, the United States Automotive Materials Partnership (USAMP), the Chinese Ministry of Science and Technology and Natural Resources Canada (NRCan) to demonstrate the technical and economic feasibility of a magnesium-intensive automotive front end body structure which offers improved fuel economy and performance benefits in a multi-material automotive structure. The project examines novel magnesium automotive body applications and processes, beyond conventional die castings, including wrought components (sheet or extrusions) and high-integrity body castings. This paper outlines the scope of work and organization for the collaborative (tri-country) task teams. The project has the goals of developing key enabling technologies and knowledge base for increased magnesium automotive body applications. The MFERD project began in early 2007 by initiating R&D in the following areas: crashworthiness, NVH, fatigue and durability, corrosion and surface finishing, extrusion and forming, sheet and forming, high-integrity body casting, as well as joining and assembly. Additionally, the MFERD project is also linked to the Integrated Computational Materials Engineering (ICME) project that will investigate the processing/structure/properties relations for various magnesium alloys and manufacturing processes utilizing advanced computer-aided engineering and modeling tools.

  6. COMPATIBILITY OF NAPLS AND OTHER ORGANIC COMPOUNDS WITH MATERIALS UED IN WELL CONSTRUCTION, SAMPLING, AND REMEDIATION

    EPA Science Inventory

    Structural integrity of well construction, sampling, and remediation materials may be compromised at many hazardous sites by nonaqueous phase liquids (NAPLs) and their dissolved constituents. A literature review of compatibility theory and qualitative field experiences are provid...

  7. Haptic identification of objects and their depictions.

    PubMed

    Klatzky, R L; Loomis, J M; Lederman, S J; Wake, H; Fujita, N

    1993-08-01

    Haptic identification of real objects is superior to that of raised two-dimensional (2-D) depictions. Three explanations of real-object superiority were investigated: contribution of material information, contribution of 3-D shape and size, and greater potential for integration across the fingers. In Experiment 1, subjects, while wearing gloves that gently attenuated material information, haptically identified real objects that provided reduced cues to compliance, mass, and part motion. The gloves permitted exploration with free hand movement, a single outstretched finger, or five outstretched fingers. Performance decreased over these three conditions but was superior to identification of pictures of the same objects in all cases, indicating the contribution of 3-D structure and integration across the fingers. Picture performance was also better with five fingers than with one. In Experiment 2, the subjects wore open-fingered gloves, which provided them with material information. Consequently, the effect of type of exploration was substantially reduced but not eliminated. Material compensates somewhat for limited access to object structure but is not the primary basis for haptic object identification.

  8. Biological materials by design.

    PubMed

    Qin, Zhao; Dimas, Leon; Adler, David; Bratzel, Graham; Buehler, Markus J

    2014-02-19

    In this topical review we discuss recent advances in the use of physical insight into the way biological materials function, to design novel engineered materials 'from scratch', or from the level of fundamental building blocks upwards and by using computational multiscale methods that link chemistry to material function. We present studies that connect advances in multiscale hierarchical material structuring with material synthesis and testing, review case studies of wood and other biological materials, and illustrate how engineered fiber composites and bulk materials are designed, modeled, and then synthesized and tested experimentally. The integration of experiment and simulation in multiscale design opens new avenues to explore the physics of materials from a fundamental perspective, and using complementary strengths from models and empirical techniques. Recent developments in this field illustrate a new paradigm by which complex material functionality is achieved through hierarchical structuring in spite of simple material constituents.

  9. Flight service evaluation of an advanced composite empennage component on commercial transport aircraft. Phase 1: Engineering development

    NASA Technical Reports Server (NTRS)

    Ary, A.; Axtell, C.; Fogg, L.; Jackson, A.; James, A. M.; Mosesian, B.; Vanderwier, J.; Vanhamersveld, J.

    1976-01-01

    The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes the front and rear spars. Various design options were evaluated to arrive at a configuration which would offer the highest potential for satisfying program objectives. The preferred configuration selected consists of a hat-stiffened cover with molded integrally stiffened spars, aluminum trussed composite ribs, and composite miniwich web ribs with integrally molded caps. Material screening tests were performed to select an advanced composite material system for the Advanced Composite Vertical Fin (ACFV) that would meet the program requirements from the standpoint of quality, reproducibility, and cost. Preliminary weight and cost analysis were made, targets established, and tracking plans developed. These include FAA certification, ancillary test program, quality control, and structural integrity control plans.

  10. The Boeing 747 fatigue integrity program

    NASA Technical Reports Server (NTRS)

    Spencer, M. M.

    1972-01-01

    The fatigue integrity program which was established to insure economic operations and to provide foundation data for inspection and maintenance is discussed. Significant features of the 747 fatigue integrity program are: (1) fatigue analyses which are continually updated to reflect design changes, fatigue test results, and static and flight load survey measurements; (2) material selection and detail design by using initial fatigue analyses, service experience, and testing; and (3) fatigue testing to check detail design quality and to verify the analyses, culminated by the test of a structurally complete airframe. Fatigue stress analyses were performed with the aid of experimental as well as analytical procedures. Extensive application was made of the stress severity factor, developed at Boeing, for evaluating peak stresses in complex joints. A frame of reference was established by families of structural fatigue performance curves (S-N curves) encompassing the range of materials and fatigue qualities anticipated for the 747 airplane design.

  11. Structural integrity of power generating speed bumps made of concrete foam composite

    NASA Astrophysics Data System (ADS)

    Syam, B.; Muttaqin, M.; Hastrino, D.; Sebayang, A.; Basuki, W. S.; Sabri, M.; Abda, S.

    2018-02-01

    In this paper concrete foam composite speed bumps were designed to generate electrical power by utilizing the movements of commuting vehicles on highways, streets, parking gates, and drive-thru station of fast food restaurants. The speed bumps were subjected to loadings generated by vehicles pass over the power generating mechanical system. In this paper, we mainly focus our discussion on the structural integrity of the speed bumps and discuss the electrical power generating speed bumps in another paper. One aspect of structural integrity is its ability to support designed loads without breaking and includes the study of past structural failures in order to prevent failures in future designs. The concrete foam composites were used for the speed bumps; the reinforcement materials are selected from empty fruit bunch of oil palm. In this study, the speed bump materials and structure were subjected to various tests to obtain its physical and mechanical properties. To analyze the structure stability of the speed bumps some models were produced and tested in our speed bump test station. We also conduct a FEM-based computer simulation to analyze stress responses of the speed bump structures. It was found that speed bump type 1 significantly reduced the radial voltage. In addition, the speed bump is equipped with a steel casing is also suitable for use as a component component in generating electrical energy.

  12. Multiscale Inorganic Hierarchically Materials: Towards an Improved Orthopaedic Regenerative Medicine.

    PubMed

    Ruso, Juan M; Sartuqui, Javier; Messina, Paula V

    2015-01-01

    Bone is a biologically and structurally sophisticated multifunctional tissue. It dynamically responds to biochemical, mechanical and electrical clues by remodelling itself and accordingly the maximum strength and toughness are along the lines of the greatest applied stress. The challenge is to develop an orthopaedic biomaterial that imitates the micro- and nano-structural elements and compositions of bone to locally match the properties of the host tissue resulting in a biologically fixed implant. Looking for the ideal implant, the convergence of life and materials sciences occurs. Researchers in many different fields apply their expertise to improve implantable devices and regenerative medicine. Materials of all kinds, but especially hierarchical nano-materials, are being exploited. The application of nano-materials with hierarchical design to calcified tissue reconstructive medicine involve intricate systems including scaffolds with multifaceted shapes that provides temporary mechanical function; materials with nano-topography modifications that guarantee their integration to tissues and that possesses functionalized surfaces to transport biologic factors to stimulate tissue growth in a controlled, safe, and rapid manner. Furthermore materials that should degrade on a timeline coordinated to the time that takes the tissues regrow, are prepared. These implantable devices are multifunctional and for its construction they involve the use of precise strategically techniques together with specific material manufacturing processes that can be integrated to achieve in the design, the required multifunctionality. For such reasons, even though the idea of displacement from synthetic implants and tissue grafts to regenerative-medicine-based tissue reconstruction has been guaranteed for well over a decade, the reality has yet to emerge. In this paper, we examine the recent approaches to create enhanced bioactive materials. Their design and manufacturing procedures as well as the experiments to integrate them into engineer hierarchical inorganic materials for their practical application in calcified tissue reparation are evaluated.

  13. Colloidal PbS nanocrystals integrated to Si-based photonics for applications at telecom wavelengths

    NASA Astrophysics Data System (ADS)

    Humer, M.; Guider, R.; Jantsch, W.; Fromherz, T.

    2013-05-01

    In the last decade, Si based photonics has made major advances in terms of design, fabrication, and device implementation. But due to Silicon's indirect bandgap, it still remains a challenge to create efficient Si-based light emitting devices. In order to overcome this problem, an approach is to develop hybrid systems integrating light-emitting materials into Si. A promising class of materials for this purpose is the class of semiconducting nanocrystal quantum dots (NCs) that are synthesized by colloidal chemistry. As their absorption and emission wavelength depends on the dot size, which can easily be controlled during synthesis, they are extremely attractive as building blocks for nanophotonic applications. For applications in telecom wavelength, Lead chalcogenide colloidal NCs are optimum materials due to their unique optical, electronic and nonlinear properties. In this work, we experimentally demonstrate the integration of PbS nanocrystals into Si-based photonic structures like slot waveguides and ring resonators as optically pumped emitters for room temperature applications. In order to create such hybrid structures, the NCs were dissolved into polymer resists and drop cast on top of the device. Upon optical pumping, intense photoluminescence emission from the resonating modes is recorded at the output of the waveguide with transmission quality factors up to 14000. The polymer host material was investigated with respect to its ability to stabilize the NC's photoluminescence emission against degradation under ambient conditions. The waveguide-ring coupling efficiency was also investigated as function of the NCs concentrations blended into the polymer matrix. The integration of colloidal quantum dots into Silicon photonic structures as demonstrated in this work is a very versatile technique and thus opens a large range of applications utilizing the linear and nonlinear optical properties of PbS NCs at telecom wavelengths.

  14. Synthesis of aircraft structures using integrated design and analysis methods

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; Goetz, R. C.

    1978-01-01

    A systematic research is reported to develop and validate methods for structural sizing of an airframe designed with the use of composite materials and active controls. This research program includes procedures for computing aeroelastic loads, static and dynamic aeroelasticity, analysis and synthesis of active controls, and optimization techniques. Development of the methods is concerned with the most effective ways of integrating and sequencing the procedures in order to generate structural sizing and the associated active control system, which is optimal with respect to a given merit function constrained by strength and aeroelasticity requirements.

  15. Design of integrated laser initiator

    NASA Astrophysics Data System (ADS)

    Cao, Chunqiang; He, Aifeng; Jing, Bo; Ma, Yue

    2018-03-01

    This paper analyzes the design principle of integrated laser detonator, introduces the design method of integrated laser Detonators. Based on the integrated laser detonator, structure, laser energy -exchange device, circuit design and the energetic material properties and the charge parameters, developed a high level of integration Antistatic ability Small size of the integrated laser prototype Detonator. The laser detonator prototype antistatic ability of 25 kV. The research of this paper can solve the key design of laser detonator miniaturization and integration of weapons and equipment, satisfy the electromagnetic safety and micro weapons development of explosive demand.

  16. Structural integrity of additive materials: Microstructure, fatigue behavior, and surface processing

    NASA Astrophysics Data System (ADS)

    Book, Todd A.

    Although Additive Manufacturing (AM) offers numerous performance advantages over existing methods, AM structures are not being utilized for critical aerospace and mechanical applications due to uncertainties in their structural integrity as a result of the microstructural variations and defects arising from the AM process itself. Two of these uncertainties are the observed scatter in tensile strength and fatigue lives of direct metal laser sintering (DMLS) parts. With strain localization a precursor for material failure, this research seeks to explore the impact of microstructural variations in DMLS produced materials on strain localization. The first part of this research explores the role of the microstructure in strain localization of DMLS produced IN718 and Ti6Al4V specimens (as-built and post-processed) through the characterization of the linkage between microstructural variations, and the accumulation of plastic strain during monotonic and low cycle fatigue loading. The second part of this research explores the feasibility for the application of select surface processing techniques in-situ during the DMLS build process to alter the microstructure in AlSi10Mg to reduce strain localization and improve material cohesion. This study is based on utilizing experimental observations through the employment of advanced material characterization techniques such as digital image correlation to illustrate the impacts of DMLS microstructural variation.

  17. Additive Construction with Mobile Emplacement (ACME) / Automated Construction of Expeditionary Structures (ACES) Materials Delivery System (MDS)

    NASA Technical Reports Server (NTRS)

    Mueller, R. P.; Townsend, I. I.; Tamasy, G. J.; Evers, C. J.; Sibille, L. J.; Edmunson, J. E.; Fiske, M. R.; Fikes, J. C.; Case, M.

    2018-01-01

    The purpose of the Automated Construction of Expeditionary Structures, Phase 3 (ACES 3) project is to incorporate the Liquid Goods Delivery System (LGDS) into the Dry Goods Delivery System (DGDS) structure to create an integrated and automated Materials Delivery System (MDS) for 3D printing structures with ordinary Portland cement (OPC) concrete. ACES 3 is a prototype for 3-D printing barracks for soldiers in forward bases, here on Earth. The LGDS supports ACES 3 by storing liquid materials, mixing recipe batches of liquid materials, and working with the Dry Goods Feed System (DGFS) previously developed for ACES 2, combining the materials that are eventually extruded out of the print nozzle. Automated Construction of Expeditionary Structures, Phase 3 (ACES 3) is a project led by the US Army Corps of Engineers (USACE) and supported by NASA. The equivalent 3D printing system for construction in space is designated Additive Construction with Mobile Emplacement (ACME) by NASA.

  18. Monitoring of Structural Integrity of Composite Structures by Embedded Optical Fiber Sensors

    NASA Technical Reports Server (NTRS)

    Osei, Albert J.

    2002-01-01

    Real time monitoring of the mechanical integrity and stresses on key aerospace composite structures like aircraft wings, walls of pressure vessels and fuel tanks or any other structurally extended components and panels as in space telescopes is very important to NASA. Future military and commercial aircraft as well as NASA space systems such as Space Based Radar and International Space Station will incorporate a monitoring system to sense any degradation to the structure. In the extreme flight conditions of an aerospace vehicle it might be desirable to measure the strain every ten centimeters and thus fully map out the strain field of a composite component. A series of missions and vehicle health management requirements call for these measurements. At the moment thousands of people support a few vehicle launches per year. This number can be significantly reduced by implementing intelligent vehicles with integral nervous systems (smart structures). This would require maintenance to be performed only as needed. Military and commercial aircrafts have an equally compelling case. Maintenance yearly costs are currently reaching astronomical heights. Monitoring techniques are therefore required that allow for maintenance to be performed only when needed. This would allow improved safety by insuring that necessary tasks are performed while reducing costs by eliminating procedures that are costly and not needed. The advantages fiber optical sensors have over conventional electro-mechanical systems like strain gauges have been widely extolled in the research literature. These advantages include their small size, low weight, immunity to electrical resistance, corrosion resistance, compatibility with composite materials and process conditions, and multiplexing capabilities. One fiber optic device which is suitable for distributed sensing is the fiber Bragg grating (FBG). Researchers at NASA MSFC are currently developing techniques for using FBGs for monitoring the integrity of advanced structural materials expected to become the mainstay of the current and future generation space structures. Since carbon-epoxy composites are the materials of choice for the current space structures, the initial study is concentrated on this type of composite. The goals of this activity are to use embedded FBG sensors for measuring strain and temperature of composite structures, and to investigate the effects of various parameters such as composite fiber orientation with respect to the optical sensor, unidirectional fiber composite, fabrication process etc., on the optical performance of the sensor. This paper describes an experiment to demonstrate the use of an embedded FBG for measuring strain in a composite material. The performance of the fiber optic sensor is determined by direct comparison with results from more conventional instrumentation.

  19. III-nitride integration on ferroelectric materials of lithium niobate by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Namkoong, Gon; Lee, Kyoung-Keun; Madison, Shannon M.; Henderson, Walter; Ralph, Stephen E.; Doolittle, W. Alan

    2005-10-01

    Integration of III-nitride electrical devices on the ferroelectric material lithium niobate (LiNbO3) has been demonstrated. As a ferroelectric material, lithium niobate has a polarization which may provide excellent control of the polarity of III-nitrides. However, while high temperature, 1000°C, thermal treatments produce atomically smooth surfaces, improving adhesion of GaN epitaxial layers on lithium niobate, repolarization of the substrate in local domains occurs. These effects result in multi domains of mixed polarization in LiNbO3, producing inversion domains in subsequent GaN epilayers. However, it is found that AlN buffer layers suppress inversion domains of III-nitrides. Therefore, two-dimensional electron gases in AlGaN /GaN heterojunction structures are obtained. Herein, the demonstration of the monolithic integration of high power devices with ferroelectric materials presents possibilities to control LiNbO3 modulators on compact optoelectronic/electronic chips.

  20. Composite membranes and methods for making same

    DOEpatents

    Routkevitch, Dmitri; Polyakov, Oleg G

    2012-07-03

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  1. Design for cyclic loading endurance of composites

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Murthy, Pappu L. N.; Chamis, Christos C.; Liaw, Leslie D. G.

    1993-01-01

    The application of the computer code IPACS (Integrated Probabilistic Assessment of Composite Structures) to aircraft wing type structures is described. The code performs a complete probabilistic analysis for composites taking into account the uncertainties in geometry, boundary conditions, material properties, laminate lay-ups, and loads. Results of the analysis are presented in terms of cumulative distribution functions (CDF) and probability density function (PDF) of the fatigue life of a wing type composite structure under different hygrothermal environments subjected to the random pressure. The sensitivity of the fatigue life to a number of critical structural/material variables is also computed from the analysis.

  2. Development of biodegradable foamlike materials based on casein and sodium montmorillonite clay

    USDA-ARS?s Scientific Manuscript database

    Biodegradable foamlike materials based on a naturally occurring polymer (casein protein) and sodium montmorillonite clay (Na+-MMT) were produced through a simple freeze-drying process. By utilizing DL-glyceraldehyde (GC) as a chemical cross-linking agent, the structural integrity of these new aeroge...

  3. The Continued Development of the Structural Approach.

    ERIC Educational Resources Information Center

    Sweet, Waldo E.

    1967-01-01

    A brief discussion of traditional Latin textbooks is followed by a survey of the first attempts at new materials (emphasizing integration of audiovisual aids and texts) at the William Penn Charter School and at the University of Michigan. The body of the article considers the structural approach, using "Latin: A Structural Approach"…

  4. Towards intelligent microstructural design of Nanocomposite Materials. Lightweight, high strength structural/armor materials for service in extreme environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mara, Nathan Allan; Bronkhorst, Curt Allan; Beyerlein, Irene Jane

    2015-12-21

    The intent of this research effort is to prove the hypothesis that: Through the employment of controlled processing parameters which are based upon integrated advanced material characterization and multi-physics material modeling, bulk nanolayered composites can be designed to contain high densities of preferred interfaces that can serve as supersinks for the defects responsible for premature damage and failure.

  5. Information Management Workflow and Tools Enabling Multiscale Modeling Within ICME Paradigm

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Bednarcyk, Brett A.; Austin, Nic; Terentjev, Igor; Cebon, Dave; Marsden, Will

    2016-01-01

    With the increased emphasis on reducing the cost and time to market of new materials, the need for analytical tools that enable the virtual design and optimization of materials throughout their processing - internal structure - property - performance envelope, along with the capturing and storing of the associated material and model information across its lifecycle, has become critical. This need is also fueled by the demands for higher efficiency in material testing; consistency, quality and traceability of data; product design; engineering analysis; as well as control of access to proprietary or sensitive information. Fortunately, material information management systems and physics-based multiscale modeling methods have kept pace with the growing user demands. Herein, recent efforts to establish workflow for and demonstrate a unique set of web application tools for linking NASA GRC's Integrated Computational Materials Engineering (ICME) Granta MI database schema and NASA GRC's Integrated multiscale Micromechanics Analysis Code (ImMAC) software toolset are presented. The goal is to enable seamless coupling between both test data and simulation data, which is captured and tracked automatically within Granta MI®, with full model pedigree information. These tools, and this type of linkage, are foundational to realizing the full potential of ICME, in which materials processing, microstructure, properties, and performance are coupled to enable application-driven design and optimization of materials and structures.

  6. Reducing Vehicle Weight and Improving U.S. Energy Efficiency Using Integrated Computational Materials Engineering

    NASA Astrophysics Data System (ADS)

    Joost, William J.

    2012-09-01

    Transportation accounts for approximately 28% of U.S. energy consumption with the majority of transportation energy derived from petroleum sources. Many technologies such as vehicle electrification, advanced combustion, and advanced fuels can reduce transportation energy consumption by improving the efficiency of cars and trucks. Lightweight materials are another important technology that can improve passenger vehicle fuel efficiency by 6-8% for each 10% reduction in weight while also making electric and alternative vehicles more competitive. Despite the opportunities for improved efficiency, widespread deployment of lightweight materials for automotive structures is hampered by technology gaps most often associated with performance, manufacturability, and cost. In this report, the impact of reduced vehicle weight on energy efficiency is discussed with a particular emphasis on quantitative relationships determined by several researchers. The most promising lightweight materials systems are described along with a brief review of the most significant technical barriers to their implementation. For each material system, the development of accurate material models is critical to support simulation-intensive processing and structural design for vehicles; improved models also contribute to an integrated computational materials engineering (ICME) approach for addressing technical barriers and accelerating deployment. The value of computational techniques is described by considering recent ICME and computational materials science success stories with an emphasis on applying problem-specific methods.

  7. Apparatus and Method for Packaging and Integrating Microphotonic Devices

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung (Inventor)

    2008-01-01

    An apparatus is disclosed that includes a carrier structure and an optical coupling arrangement. The carrier structure is made of a silicon material and allows for the packaging and integrating of microphotonic devices onto a single chip. The optical coupling mechanism enables laser light to be coupled into and out of a microphotonic resonant disk integrated on the carrier. The carrier provides first, second and third cavities that are dimensioned so as to accommodate the insertion and snug fitting of the microphotonic resonant disk and first and second prisms that are implemented by the optical coupling arrangement to accommodate the laser coupling.

  8. Freeze-Casting of Porous Biomaterials: Structure, Properties and Opportunities

    PubMed Central

    Deville, Sylvain

    2010-01-01

    The freeze-casting of porous materials has received a great deal of attention during the past few years. This simple process, where a material suspension is simply frozen and then sublimated, provides materials with unique porous architectures, where the porosity is almost a direct replica of the frozen solvent crystals. This review focuses on the recent results on the process and the derived porous structures with regards to the biomaterials applications. Of particular interest is the architecture of the materials and the versatility of the process, which can be readily controlled and applied to biomaterials applications. A careful control of the starting formulation and processing conditions is required to control the integrity of the structure and resulting properties. Further in vitro and in vivo investigations are required to validate the potential of this new class of porous materials.

  9. Multi-disciplinary coupling for integrated design of propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions for determining the true response of propulsion systems. Results are presented for propulsion system responses including multi-discipline coupling effects via (1) coupled multi-discipline tailoring, (2) an integrated system of multidisciplinary simulators, (3) coupled material-behavior/fabrication-process tailoring, (4) sensitivities using a probabilistic simulator, and (5) coupled materials/structures/fracture/probabilistic behavior simulator. The results show that the best designs can be determined if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated interactive multi-discipline numerical propulsion system simulator.

  10. 2D materials integrated in Si3N4 photonics platform

    NASA Astrophysics Data System (ADS)

    Faneca, Joaquin; Hogan, Benjamin T.; Torres Alonso, E.; Craciun, Monica; Baldycheva, Anna

    2018-02-01

    In this paper, we discuss a back-end CMOS fabrication process for the large-scale integration of 2D materials on SOI (siliconon-insulator) platform and present a complete theoretical study of the change in the effective refractive index of 2D materialsenabled silicon nitride waveguide structures. The chemical vapour deposition (CVD) and liquid exfoliation fabrication methods are described for the fabrication of graphene, WS2 and MoS2 thin films. Finite-difference frequency-domain (FDFD) approach and the Transfer Matrix Method were used in order to mathematically describe these structures. The introduction of thin films of 2D material onto Si3N4 waveguide structures allows manipulation of the optical characteristics to a high degree of precision by varying the Fermi-level through the engineering of the number of atomically thin layers or by electrical tuning, for example. Based on the proposed tuning approach, designs of graphene, WS2 and MoS2 enabled Si3N4 micro-ring structures are presented for the visible and NIR range, which demonstrate versatility and desirable properties for a wide range of applications, such as bio-chemical sensing and optical communications.

  11. Characterizing the Conductivity and Enhancing the Piezoresistivity of Carbon Nanotube-Polymeric Thin Films

    PubMed Central

    Zhao, Yingjun; Schagerl, Martin; Viechtbauer, Christoph

    2017-01-01

    The concept of lightweight design is widely employed for designing and constructing aerospace structures that can sustain extreme loads while also being fuel-efficient. Popular lightweight materials such as aluminum alloy and fiber-reinforced polymers (FRPs) possess outstanding mechanical properties, but their structural integrity requires constant assessment to ensure structural safety. Next-generation structural health monitoring systems for aerospace structures should be lightweight and integrated with the structure itself. In this study, a multi-walled carbon nanotube (MWCNT)-based polymer paint was developed to detect distributed damage in lightweight structures. The thin film’s electromechanical properties were characterized via cyclic loading tests. Moreover, the thin film’s bulk conductivity was characterized by finite element modeling. PMID:28773084

  12. Artificial Muscle (AM) Cilia Array for Underwater Systems

    DTIC Science & Technology

    2016-12-15

    structures, including cilia-like structures. Specifically, a custom 3D printer was created that utilizes custom-made Nafion filament for 30 printing of custom... printing ) of IPMC material to create custom-shaped AM structures, including cilia-like structures. Various custom-shaped AM structures were fabricated via...integrating square cross-section IPMC actuators with a printed circuit board power delivery system. IV. Concise Accomplishments Performance

  13. Supersonic Cruise Research 1979, part 1

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Aerodynamics, stability and control, propulsion, and environmental factors of the supersonic cruise aircraft are discussed. Other topics include airframe structures and materials, systems integration, and economics.

  14. Elastomeric binders for electrodes. [in secondary lithium cells

    NASA Technical Reports Server (NTRS)

    Yen, S. P. S.; Shen, D. H.; Somoano, R. B.

    1983-01-01

    The poor mechanical integrity of the cathode represents an important problem which affects the performance of ambient temperature secondary lithium cells. Repeated charge of a TiS2 cathode may give rise to stresses which disturb the electrode structure and can contribute to capacity loss. An investigation indicates that the use of an inelastic binder material, such as Teflon, aggravates the problem, and can lead to electrode disruption and poor TiS2 particle-particle contact. The feasibility of a use of elastomers as TiS2 binder materials has, therefore, been explored. It was found that elastomeric binders provide an effective approach for simplifying rechargeable cathode fabrication. A pronounced improvement in the mechanical integrity of the cathode structure contributes to a prolonged cycle life.

  15. Fusion of nacre, mussel, and lotus leaf: bio-inspired graphene composite paper with multifunctional integration

    NASA Astrophysics Data System (ADS)

    Zhong, Da; Yang, Qinglin; Guo, Lin; Dou, Shixue; Liu, Kesong; Jiang, Lei

    2013-06-01

    Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self-cleaning, anti-corrosion, and remarkable mechanical properties underwater.Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self-cleaning, anti-corrosion, and remarkable mechanical properties underwater. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr33632h

  16. Cell-based composite materials with programmed structures and functions

    DOEpatents

    None

    2016-03-01

    The present invention is directed to the use of silicic acid to transform biological materials, including cellular architecture into inorganic materials to provide biocomposites (nanomaterials) with stabilized structure and function. In the present invention, there has been discovered a means to stabilize the structure and function of biological materials, including cells, biomolecules, peptides, proteins (especially including enzymes), lipids, lipid vesicles, polysaccharides, cytoskeletal filaments, tissue and organs with silicic acid such that these materials may be used as biocomposites. In many instances, these materials retain their original biological activity and may be used in harsh conditions which would otherwise destroy the integrity of the biological material. In certain instances, these biomaterials may be storage stable for long periods of time and reconstituted after storage to return the biological material back to its original form. In addition, by exposing an entire cell to form CSCs, the CSCs may function to provide a unique system to study enzymes or a cascade of enzymes which are otherwise unavailable.

  17. Cell-based composite materials with programmed structures and functions

    DOEpatents

    Kaehr, Bryan J.; Brinker, C. Jeffrey; Townson, Jason L.

    2018-05-15

    The present invention is directed to the use of silicic acid to transform biological materials, including cellular architecture into inorganic materials to provide biocomposites (nanomaterials) with stabilized structure and function. In the present invention, there has been discovered a means to stabilize the structure and function of biological materials, including cells, biomolecules, peptides, proteins (especially including enzymes), lipids, lipid vesicles, polysaccharides, cytoskeletal filaments, tissue and organs with silicic acid such that these materials may be used as biocomposites. In many instances, these materials retain their original biological activity and may be used in harsh conditions which would otherwise destroy the integrity of the biological material. In certain instances, these biomaterials may be storage stable for long periods of time and reconstituted after storage to return the biological material back to its original form. In addition, by exposing an entire cell to form CSCs, the CSCs may function to provide a unique system to study enzymes or a cascade of enzymes which are otherwise unavailable.

  18. Materials science. Materials that couple sensing, actuation, computation, and communication.

    PubMed

    McEvoy, M A; Correll, N

    2015-03-20

    Tightly integrating sensing, actuation, and computation into composites could enable a new generation of truly smart material systems that can change their appearance and shape autonomously. Applications for such materials include airfoils that change their aerodynamic profile, vehicles with camouflage abilities, bridges that detect and repair damage, or robotic skins and prosthetics with a realistic sense of touch. Although integrating sensors and actuators into composites is becoming increasingly common, the opportunities afforded by embedded computation have only been marginally explored. Here, the key challenge is the gap between the continuous physics of materials and the discrete mathematics of computation. Bridging this gap requires a fundamental understanding of the constituents of such robotic materials and the distributed algorithms and controls that make these structures smart. Copyright © 2015, American Association for the Advancement of Science.

  19. MBE HgCdTe for HDVIP Devices: Horizontal Integration in the US HgCdTe FPA Industry

    NASA Astrophysics Data System (ADS)

    Aqariden, F.; Elsworth, J.; Zhao, J.; Grein, C. H.; Sivananthan, S.

    2012-10-01

    Molecular beam epitaxy (MBE) growth of HgCdTe offers the possibility of fabricating multilayer device structures with an almost unlimited choice of infrared sensor designs for focal-plane array (FPA) fabrication. HgCdTe offers two major advantages that explain its dominance in the infrared photon detector marketplace. The thermal generation rate per unit volume of the material is lower and the quantum efficiency for photon absorption in the infrared is higher in HgCdTe than in any competing material—it yields devices with quantum efficiencies as high as 0.99. Recently, EPIR Technologies and DRS Infrared Technologies agreed to collaborate and examine: (i) the feasibility of employing MBE HgCdTe in the fabrication of high-density vertically interconnected photodiodes (HDVIPs), which are usually fabricated with liquid-phase epitaxy material, and (ii) the potential benefits of horizontal integration, with EPIR supplying the MBE materials to DRS for device and array fabrication. The team designed and developed passivation-absorber-passivation structures that are heavily used by DRS. This paper provides an overview of the characteristics of HDVIP devices and arrays fabricated from MBE HgCdTe and the anticipated advantages of horizontal integration in the industry. Material growth, device fabrication, and test results are presented.

  20. Novel Wireless-Communicating Textiles Made from Multi-Material and Minimally-Invasive Fibers

    PubMed Central

    Gorgutsa, Stepan; Bélanger-Garnier, Victor; Ung, Bora; Viens, Jeff; Gosselin, Benoit; LaRochelle, Sophie; Messaddeq, Younes

    2014-01-01

    The ability to integrate multiple materials into miniaturized fiber structures enables the realization of novel biomedical textile devices with higher-level functionalities and minimally-invasive attributes. In this work, we present novel textile fabrics integrating unobtrusive multi-material fibers that communicate through 2.4 GHz wireless networks with excellent signal quality. The conductor elements of the textiles are embedded within the fibers themselves, providing electrical and chemical shielding against the environment, while preserving the mechanical and cosmetic properties of the garments. These multi-material fibers combine insulating and conducting materials into a well-defined geometry, and represent a cost-effective and minimally-invasive approach to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications. PMID:25325335

  1. Novel wireless-communicating textiles made from multi-material and minimally-invasive fibers.

    PubMed

    Bélanger-Garnier, Victor; Gorgutsa, Stephan; Ung, Bora; Viens, Jeff; Gosselin, Benoit; LaRochelle, Sophie; Messaddeq, Younes

    2014-01-01

    The ability to integrate multiple materials into miniaturized fiber structures enables the realization of novel biomedical textile devices with higher-level functionalities and minimally-invasive attributes. In this work, we present novel textile fabrics integrating unobtrusive multi-material fibers that communicate through 2.4 GHz wireless networks with excellent signal quality. The conductor elements of the textiles are embedded within the fibers themselves, providing electrical and chemical shielding against the environment, while preserving the mechanical and cosmetic properties of the garments. These multi-material fibers combine insulating and conducting materials into a well-defined geometry, and represent a cost-effective and minimally-invasive approach to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications.

  2. Novel wireless-communicating textiles made from multi-material and minimally-invasive fibers.

    PubMed

    Gorgutsa, Stepan; Bélanger-Garnier, Victor; Ung, Bora; Viens, Jeff; Gosselin, Benoit; LaRochelle, Sophie; Messaddeq, Younes

    2014-10-16

    The ability to integrate multiple materials into miniaturized fiber structures enables the realization of novel biomedical textile devices with higher-level functionalities and minimally-invasive attributes. In this work, we present novel textile fabrics integrating unobtrusive multi-material fibers that communicate through 2.4 GHz wireless networks with excellent signal quality. The conductor elements of the textiles are embedded within the fibers themselves, providing electrical and chemical shielding against the environment, while preserving the mechanical and cosmetic properties of the garments. These multi-material fibers combine insulating and conducting materials into a well-defined geometry, and represent a cost-effective and minimally-invasive approach to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications.

  3. Materiomics: biological protein materials, from nano to macro

    PubMed Central

    Cranford, Steven; Buehler, Markus J

    2010-01-01

    Materiomics is an emerging field of science that provides a basis for multiscale material system characterization, inspired in part by natural, for example, protein-based materials. Here we outline the scope and explain the motivation of the field of materiomics, as well as demonstrate the benefits of a materiomic approach in the understanding of biological and natural materials as well as in the design of de novo materials. We discuss recent studies that exemplify the impact of materiomics – discovering Nature’s complexity through a materials science approach that merges concepts of material and structure throughout all scales and incorporates feedback loops that facilitate sensing and resulting structural changes at multiple scales. The development and application of materiomics is illustrated for the specific case of protein-based materials, which constitute the building blocks of a variety of biological systems such as tendon, bone, skin, spider silk, cells, and tissue, as well as natural composite material systems (a combination of protein-based and inorganic constituents) such as nacre and mollusk shells, and other natural multiscale systems such as cellulose-based plant and wood materials. An important trait of these materials is that they display distinctive hierarchical structures across multiple scales, where molecular details are exhibited in macroscale mechanical responses. Protein materials are intriguing examples of materials that balance multiple tasks, representing some of the most sustainable material solutions that integrate structure and function despite severe limitations in the quality and quantity of material building blocks. However, up until now, our attempts to analyze and replicate Nature’s materials have been hindered by our lack of fundamental understanding of these materials’ intricate hierarchical structures, scale-bridging mechanisms, and complex material components that bestow protein-based materials their unique properties. Recent advances in analytical tools and experimental methods allow a holistic view of such a hierarchical biological material system. The integration of these approaches and amalgamation of material properties at all scale levels to develop a complete description of a material system falls within the emerging field of materiomics. Materiomics is the result of the convergence of engineering and materials science with experimental and computational biology in the context of natural and synthetic materials. Through materiomics, fundamental advances in our understanding of structure–property–process relations of biological systems contribute to the mechanistic understanding of certain diseases and facilitate the development of novel biological, biologically inspired, and completely synthetic materials for applications in medicine (biomaterials), nanotechnology, and engineering. PMID:24198478

  4. Content Management Middleware for the Support of Distributed Teaching

    ERIC Educational Resources Information Center

    Tsalapatas, Hariklia; Stav, John B.; Kalantzis, Christos

    2004-01-01

    eCMS is a web-based federated content management system for the support of distributed teaching based on an open, distributed middleware architecture for the publication, discovery, retrieval, and integration of educational material. The infrastructure supports the management of both standalone material and structured courses, as well as the…

  5. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... following probability: (1) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component, 99 percent... elements would result in applied loads being safely distributed to other load carrying members, 90 percent...

  6. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... following probability: (1) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component, 99 percent... elements would result in applied loads being safely distributed to other load carrying members, 90 percent...

  7. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... following probability: (1) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component, 99 percent... elements would result in applied loads being safely distributed to other load carrying members, 90 percent...

  8. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... following probability: (1) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component, 99 percent... elements would result in applied loads being safely distributed to other load carrying members, 90 percent...

  9. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... following probability: (1) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component, 99 percent... elements would result in applied loads being safely distributed to other load carrying members, 90 percent...

  10. A Strategy for Integrating a Large Finite Element Model Using MSC NASTRAN/PATRAN: X-33 Lessons Learned

    NASA Technical Reports Server (NTRS)

    McGhee, D. S.

    1999-01-01

    The X-33 vehicle is an advanced technology demonstrator sponsored by NASA. For the past 3 years the Structural Dynamics and Loads Branch of NASA's Marshall Space Flight Center has had the task of integrating the X-33 vehicle structural finite element model. In that time, five versions of the integrated vehicle model have been produced and a strategy has evolved that would benefit anyone given the task of integrating structural finite element models that have been generated by various modelers and companies. The strategy that has been presented here consists of six decisions that need to be made: purpose of models, units, common materials list, model numbering, interface control, and archive format. This strategy has been proven and expanded from experience on the X-33 vehicle.

  11. A Complex Shaped Reinforced Thermoplastic Composite Part Made of Commingled Yarns With Integrated Sensor

    NASA Astrophysics Data System (ADS)

    Risicato, Jean-Vincent; Kelly, Fern; Soulat, Damien; Legrand, Xavier; Trümper, Wolfgang; Cochrane, Cedric; Koncar, Vladan

    2015-02-01

    This paper focuses on the design and one shot manufacturing process of complex shaped composite parts based on the overbraiding of commingled yarns. The commingled yarns contain thermoplastic fibres used as the matrix and glass fibres as the reinforcement material. This technology reduces the flow path length for the melted thermoplastic and aims to improve the impregnation of materials with high viscosity. The tensile strength behaviour of the material was firstly investigated in order to evaluate the influence of the manufacturing parameters on flat structured braids that have been consolidated on a heating press. A good compatibility between the required geometry and the braiding process was observed. Additionally, piezo-resistive sensor yarns, based on glass yarns coated with PEDOT: PSS, have been successfully integrated within the composite structure. The sensor yarns have been inserted into the braided fabric, before consolidation. The inserted sensors provide the ability to monitor the structural health of the composite part in a real time. The design and manufacture of the complete complex shaped part has then been successfully achieved.

  12. Hybrid materials for optics and photonics.

    PubMed

    Lebeau, Benedicte; Innocenzi, Plinio

    2011-02-01

    The interest in organic-inorganic hybrids as materials for optics and photonics started more than 25 years ago and since then has known a continuous and strong growth. The high versatility of sol-gel processing offers a wide range of possibilities to design tailor-made materials in terms of structure, texture, functionality, properties and shape modelling. From the first hybrid material with optical functional properties that has been obtained by incorporation of an organic dye in a silica matrix, the research in the field has quickly evolved towards more sophisticated systems, such as multifunctional and/or multicomponent materials, nanoscale and self-assembled hybrids and devices for integrated optics. In the present critical review, we have focused our attention on three main research areas: passive and active optical hybrid sol-gel materials, and integrated optics. This is far from exhaustive but enough to give an overview of the huge potential of these materials in photonics and optics (254 references).

  13. Finite element analysis and optimization of composite structures

    NASA Technical Reports Server (NTRS)

    Thomsen, Jan

    1990-01-01

    Linearly elastic fiber reinforced composite discs and laminates in plane stress with variable local orientation and concentration of one or two fiber fields embedded in the matrix material, are considered. The thicknesses and the domain of the discs or laminates are assumed to be given, together with prescribed boundary conditions and in-plane loading along the edge. The problem under study consists in determining throughout the structural domain the optimum orientations and concentrations of the fiber fields in such a way as to maximize the integral stiffness of the composite disc or laminate under the seven loading. Minimization of the integral stiffness can also be performed. The optimization is performed subject to a prescribed bound on the total cost or weight of the composite that for given unit cost factors or specific weights determines the amounts of fiber and matrix materials in the structure. Examples are presented.

  14. Development of new smart materials and spinning systems inspired by natural silks and their applications

    NASA Astrophysics Data System (ADS)

    Cheng, Jie; Lee, Sang-Hoon

    2015-12-01

    Silks produced by spiders and silkworms are charming natural biological materials with highly optimized hierarchical structures and outstanding physicomechanical properties. The superior performance of silks relies on the integration of a unique protein sequence, a distinctive spinning process, and complex hierarchical structures. Silks have been prepared to form a variety of morphologies and are widely used in diverse applications, for example, in the textile industry, as drug delivery vehicles, and as tissue engineering scaffolds. This review presents an overview of the organization of natural silks, in which chemical and physical functions are optimized, as well as a range of new materials inspired by the desire to mimic natural silk structure and synthesis.

  15. Applied Integrated Design in Composite UAV Development

    NASA Astrophysics Data System (ADS)

    Vasić, Zoran; Maksimović, Stevan; Georgijević, Dragutin

    2018-04-01

    This paper presents a modern approach to integrated development of Unmanned Aerial Vehicle made of laminated composite materials from conceptual design, through detail design, strength and stiffness analyses, definition and management of design and production data, detailed tests results and other activities related to development of laminated composite structures with main of its particularities in comparison to metal structures. Special attention in this work is focused to management processes of product data during life cycle of an UAV and experimental tests of its composite wing. Experience shows that the automation management processes of product data during life cycle, as well as processes of manufacturing, are inevitable if a company wants to get cheaper and quality composite aircraft structures. One of the most effective ways of successful management of product data today is Product Life cycle Management (PLM). In terms of the PLM, a spectrum of special measures and provisions has to be implemented when defining fiber-reinforced composite material structures in comparison to designing with metals which is elaborated in the paper.

  16. Development of GENOA Progressive Failure Parallel Processing Software Systems

    NASA Technical Reports Server (NTRS)

    Abdi, Frank; Minnetyan, Levon

    1999-01-01

    A capability consisting of software development and experimental techniques has been developed and is described. The capability is integrated into GENOA-PFA to model polymer matrix composite (PMC) structures. The capability considers the physics and mechanics of composite materials and structure by integration of a hierarchical multilevel macro-scale (lamina, laminate, and structure) and micro scale (fiber, matrix, and interface) simulation analyses. The modeling involves (1) ply layering methodology utilizing FEM elements with through-the-thickness representation, (2) simulation of effects of material defects and conditions (e.g., voids, fiber waviness, and residual stress) on global static and cyclic fatigue strengths, (3) including material nonlinearities (by updating properties periodically) and geometrical nonlinearities (by Lagrangian updating), (4) simulating crack initiation. and growth to failure under static, cyclic, creep, and impact loads. (5) progressive fracture analysis to determine durability and damage tolerance. (6) identifying the percent contribution of various possible composite failure modes involved in critical damage events. and (7) determining sensitivities of failure modes to design parameters (e.g., fiber volume fraction, ply thickness, fiber orientation. and adhesive-bond thickness). GENOA-PFA progressive failure analysis is now ready for use to investigate the effects on structural responses to PMC material degradation from damage induced by static, cyclic (fatigue). creep, and impact loading in 2D/3D PMC structures subjected to hygrothermal environments. Its use will significantly facilitate targeting design parameter changes that will be most effective in reducing the probability of a given failure mode occurring.

  17. Mathematical Methods of System Analysis in Construction Materials

    NASA Astrophysics Data System (ADS)

    Garkina, Irina; Danilov, Alexander

    2017-10-01

    System attributes of construction materials are defined: complexity of an object, integrity of set of elements, existence of essential, stable relations between elements defining integrative properties of system, existence of structure, etc. On the basis of cognitive modelling (intensive and extensive properties; the operating parameters) materials (as difficult systems) and creation of the cognitive map the hierarchical modular structure of criteria of quality is under construction. It actually is a basis for preparation of the specification on development of material (the required organization and properties). Proceeding from a modern paradigm (model of statement of problems and their decisions) of development of materials, levels and modules are specified in structure of material. It when using the principles of the system analysis allows to considered technological process as the difficult system consisting of elements of the distinguished specification level: from atomic before separate process. Each element of system depending on an effective objective is considered as separate system with more detailed levels of decomposition. Among them, semantic and qualitative analyses of an object (are considered a research objective, decomposition levels, separate elements and communications between them come to light). Further formalization of the available knowledge in the form of mathematical models (structural identification) is carried out; communications between input and output parameters (parametrical identification) are defined. Hierarchical structures of criteria of quality are under construction for each allocated level. On her the relevant hierarchical structures of system (material) are under construction. Regularities of structurization and formation of properties, generally are considered at the levels from micro to a macrostructure. The mathematical model of material is represented as set of the models corresponding to private criteria by which separate modules and their levels (the mathematical description, a decision algorithm) are defined. Adequacy is established (compliance of results of modelling to experimental data; is defined by the level of knowledge of process and validity of the accepted assumptions). The global criterion of quality of material is considered as a set of private criteria (properties). Synthesis of material is carried out on the basis of one-criteria optimization on each of the chosen private criteria. Results of one-criteria optimization are used at multicriteria optimization. The methods of developing materials as single-purpose, multi-purpose, including contradictory, systems are indicated. The scheme of synthesis of composite materials as difficult systems is developed. The specified system approach effectively was used in case of synthesis of composite materials with special properties.

  18. Probabilistic structural analysis methods and applications

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Wu, Y.-T.; Dias, B.; Rajagopal, K. R.

    1988-01-01

    An advanced algorithm for simulating the probabilistic distribution of structural responses due to statistical uncertainties in loads, geometry, material properties, and boundary conditions is reported. The method effectively combines an advanced algorithm for calculating probability levels for multivariate problems (fast probability integration) together with a general-purpose finite-element code for stress, vibration, and buckling analysis. Application is made to a space propulsion system turbine blade for which the geometry and material properties are treated as random variables.

  19. Experimental and Computational Investigation of Structural Integrity of Dissimilar Metal Weld Between Ferritic and Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Santosh, R.; Das, G.; Kumar, S.; Singh, P. K.; Ghosh, M.

    2018-03-01

    The structural integrity of dissimilar metal welded (DMW) joint consisting of low-alloy steel and 304LN austenitic stainless steel was examined by evaluating mechanical properties and metallurgical characteristics. INCONEL 82 and 182 were used as buttering and filler materials, respectively. Experimental findings were substantiated through thermomechanical simulation of the weld. During simulation, the effect of thermal state and stress distribution was pondered based on the real-time nuclear power plant environment. The simulation results were co-related with mechanical and microstructural characteristics. Material properties were varied significantly at different fusion boundaries across the weld line and associated with complex microstructure. During in-situ deformation testing in a scanning electron microscope, failure occurred through the buttering material. This indicated that microstructure and material properties synergistically contributed to altering the strength of DMW joints. Simulation results also depicted that the stress was maximum within the buttering material and made its weakest zone across the welded joint during service exposure. Various factors for the failure of dissimilar metal weld were analyzed. It was found that the use of IN 82 alloy as the buttering material provided a significant improvement in the joint strength and became a promising material for the fabrication of DMW joint.

  20. Experimental and Computational Investigation of Structural Integrity of Dissimilar Metal Weld Between Ferritic and Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Santosh, R.; Das, G.; Kumar, S.; Singh, P. K.; Ghosh, M.

    2018-06-01

    The structural integrity of dissimilar metal welded (DMW) joint consisting of low-alloy steel and 304LN austenitic stainless steel was examined by evaluating mechanical properties and metallurgical characteristics. INCONEL 82 and 182 were used as buttering and filler materials, respectively. Experimental findings were substantiated through thermomechanical simulation of the weld. During simulation, the effect of thermal state and stress distribution was pondered based on the real-time nuclear power plant environment. The simulation results were co-related with mechanical and microstructural characteristics. Material properties were varied significantly at different fusion boundaries across the weld line and associated with complex microstructure. During in-situ deformation testing in a scanning electron microscope, failure occurred through the buttering material. This indicated that microstructure and material properties synergistically contributed to altering the strength of DMW joints. Simulation results also depicted that the stress was maximum within the buttering material and made its weakest zone across the welded joint during service exposure. Various factors for the failure of dissimilar metal weld were analyzed. It was found that the use of IN 82 alloy as the buttering material provided a significant improvement in the joint strength and became a promising material for the fabrication of DMW joint.

  1. Electromagnetic pulsed thermography for natural cracks inspection

    PubMed Central

    Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing

    2017-01-01

    Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF). PMID:28169361

  2. Structural Integrity and Durability of Reusable Space Propulsion Systems

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A two-day conference on the structural integrity and durability of reusable space propulsion systems was held on 14 to 15 May 1991 at the NASA Lewis Research Center. Presentations were made by industry, university, and government researchers organized into four sessions: (1) aerothermodynamic loads; (2) instrumentation; (3) fatigue, fracture, and constitutive modeling; and (4) structural dynamics. The principle objectives were to disseminate research results and future plans in each of four areas. This publication contains extended abstracts and the visual material presented during the conference. Particular emphasis is placed on the Space Shuttle Main Engine (SSME) and the SSME turbopump.

  3. Materials Integration and Doping of Carbon Nanotube-based Logic Circuits

    NASA Astrophysics Data System (ADS)

    Geier, Michael

    Over the last 20 years, extensive research into the structure and properties of single- walled carbon nanotube (SWCNT) has elucidated many of the exceptional qualities possessed by SWCNTs, including record-setting tensile strength, excellent chemical stability, distinctive optoelectronic features, and outstanding electronic transport characteristics. In order to exploit these remarkable qualities, many application-specific hurdles must be overcome before the material can be implemented in commercial products. For electronic applications, recent advances in sorting SWCNTs by electronic type have enabled significant progress towards SWCNT-based integrated circuits. Despite these advances, demonstrations of SWCNT-based devices with suitable characteristics for large-scale integrated circuits have been limited. The processing methodologies, materials integration, and mechanistic understanding of electronic properties developed in this dissertation have enabled unprecedented scales of SWCNT-based transistor fabrication and integrated circuit demonstrations. Innovative materials selection and processing methods are at the core of this work and these advances have led to transistors with the necessary transport properties required for modern circuit integration. First, extensive collaborations with other research groups allowed for the exploration of SWCNT thin-film transistors (TFTs) using a wide variety of materials and processing methods such as new dielectric materials, hybrid semiconductor materials systems, and solution-based printing of SWCNT TFTs. These materials were integrated into circuit demonstrations such as NOR and NAND logic gates, voltage-controlled ring oscillators, and D-flip-flops using both rigid and flexible substrates. This dissertation explores strategies for implementing complementary SWCNT-based circuits, which were developed by using local metal gate structures that achieve enhancement-mode p-type and n-type SWCNT TFTs with widely separated and symmetric threshold voltages. Additionally, a novel n-type doping procedure for SWCNT TFTs was also developed utilizing a solution-processed organometallic small molecule to demonstrate the first network top-gated n-type SWCNT TFTs. Lastly, new doping and encapsulation layers were incorporated to stabilize both p-type and n-type SWCNT TFT electronic properties, which enabled the fabrication of large-scale memory circuits. Employing these materials and processing advances has addressed many application specific barriers to commercialization. For instance, the first thin-film SWCNT complementary metal-oxide-semi-conductor (CMOS) logic devices are demonstrated with sub-nanowatt static power consumption and full rail-to-rail voltage transfer characteristics. With the introduction of a new n-type Rh-based molecular dopant, the first SWCNT TFTs are fabricated in top-gate geometries over large areas with high yield. Then by utilizing robust encapsulation methods, stable and uniform electronic performance of both p-type and n-type SWCNT TFTs has been achieved. Based on these complementary SWCNT TFTs, it is possible to simulate, design, and fabricate arrays of low-power static random access memory (SRAM) circuits, achieving large-scale integration for the first time based on solution-processed semiconductors. Together, this work provides a direct pathway for solution processable, large scale, power-efficient advanced integrated logic circuits and systems.

  4. Fiber-Embedded Metallic Materials: From Sensing towards Nervous Behavior

    PubMed Central

    Saheb, Nouari; Mekid, Samir

    2015-01-01

    Embedding of fibers in materials has attracted serious attention from researchers and has become a new research trend. Such material structures are usually termed “smart” or more recently “nervous”. Materials can have the capability of sensing and responding to the surrounding environmental stimulus, in the former, and the capability of feeling multiple structural and external stimuli, while feeding information back to a controller for appropriate real-time action, in the latter. In this paper, embeddable fibers, embedding processes, and behavior of fiber-embedded metallic materials are reviewed. Particular emphasis has been given to embedding fiber Bragg grating (FBG) array sensors and piezo wires, because of their high potential to be used in nervous materials for structural health monitoring. Ultrasonic consolidation and laser-based layered manufacturing processes are discussed in detail because of their high potential to integrate fibers without disruption. In addition, current challenges associated with embedding fibers in metallic materials are highlighted and recommendations for future research work are set. PMID:28793689

  5. Mathematical model of the heat transfer process taking into account the consequences of nonlocality in structurally sensitive materials

    NASA Astrophysics Data System (ADS)

    Kuvyrkin, G. N.; Savelyeva, I. Y.; Kuvshynnikova, D. A.

    2018-04-01

    Creation of new materials based on nanotechnology is an important direction of modern materials science development. Materials obtained using nanotechnology can possess unique physical-mechanical and thermophysical properties, allowing their effective use in structures exposed to high-intensity thermomechanical effects. An important step in creation and use of new materials is the construction of mathematical models to describe the behavior of these materials in a wide range of changes under external effects. The model of heat conduction of structural-sensitive materials is considered with regard to the medium nonlocality effects. The relations of the mathematical model include an integral term describing the spatial nonlocality of the medium. A difference scheme, which makes it possible to obtain a numerical solution of the problem of nonstationary heat conduction with regard to the influence of the medium nonlocality on space, has been developed. The influence of the model parameters on the temperature distributions is analyzed.

  6. Monolithic Gyroidal Mesoporous Mixed Titanium–Niobium Nitrides

    PubMed Central

    2015-01-01

    Mesoporous transition metal nitrides are interesting materials for energy conversion and storage applications due to their conductivity and durability. We present ordered mixed titanium–niobium (8:2, 1:1) nitrides with gyroidal network structures synthesized from triblock terpolymer structure-directed mixed oxides. The materials retain both macroscopic integrity and mesoscale ordering despite heat treatment up to 600 °C, without a rigid carbon framework as a support. Furthermore, the gyroidal lattice parameters were varied by changing polymer molar mass. This synthesis strategy may prove useful in generating a variety of monolithic ordered mesoporous mixed oxides and nitrides for electrode and catalyst materials. PMID:25122534

  7. Open Circuit Resonant Sensors for Composite Damage Detection and Diagnosis

    NASA Technical Reports Server (NTRS)

    Mielnik, John J., Jr.

    2011-01-01

    Under the Integrated Vehicle Health Management (IVHM) program work was begun to investigate the feasibility of sensor systems for detecting and diagnosing damage to aircraft composite structures and materials. Specific interest for this study was in damage initiated by environmental storm hazards and the direct effect of lightning strikes on the material structures of a composite aircraft in flight. A series of open circuit resonant sensors was designed, fabricated, characterized, and determined to be a potentially viable means for damage detection and diagnosis of composite materials. The results of this research and development effort are documented in this report.

  8. Adaptive Origami for Efficiently Folded Structures

    DTIC Science & Technology

    2016-02-01

    design optimization to find optimal origami patterns for in-plane compression. 3. Self-folding and programmable material systems were developed for...2014, 1st place in the Midwest and 2nd place in the National 2014 SAMPE student research symposium). • Design of self-folding and programmable ... material systems: Nafion SMP Programming: To integrate active materials into origami, mechanical analysis and optimization tools where applied to the

  9. Method of Fabricating Double Sided Si(Ge)/Sapphire/III-Nitride Hybrid Structure

    NASA Technical Reports Server (NTRS)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)

    2017-01-01

    One aspect of the present invention is a double sided hybrid crystal structure including a trigonal Sapphire wafer containing a (0001) C-plane and having front and rear sides. The Sapphire wafer is substantially transparent to light in the visible and infrared spectra, and also provides insulation with respect to electromagnetic radio frequency noise. A layer of crystalline Si material having a cubic diamond structure aligned with the cubic <111> direction on the (0001) C-plane and strained as rhombohedron to thereby enable continuous integration of a selected (SiGe) device onto the rear side of the Sapphire wafer. The double sided hybrid crystal structure further includes an integrated III-Nitride crystalline layer on the front side of the Sapphire wafer that enables continuous integration of a selected III-Nitride device on the front side of the Sapphire wafer.

  10. Double Sided Si(Ge)/Sapphire/III-Nitride Hybrid Structure

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)

    2016-01-01

    One aspect of the present invention is a double sided hybrid crystal structure including a trigonal Sapphire wafer containing a (0001) C-plane and having front and rear sides. The Sapphire wafer is substantially transparent to light in the visible and infrared spectra, and also provides insulation with respect to electromagnetic radio frequency noise. A layer of crystalline Si material having a cubic diamond structure aligned with the cubic <111> direction on the (0001) C-plane and strained as rhombohedron to thereby enable continuous integration of a selected (SiGe) device onto the rear side of the Sapphire wafer. The double sided hybrid crystal structure further includes an integrated III-Nitride crystalline layer on the front side of the Sapphire wafer that enables continuous integration of a selected III-Nitride device on the front side of the Sapphire wafer.

  11. Effects of service condition on rolling contact fatigue failure mechanism and lifetime of thermal spray coatings—A review

    NASA Astrophysics Data System (ADS)

    Cui, Huawei; Cui, Xiufang; Wang, Haidou; Xing, Zhiguo; Jin, Guo

    2015-01-01

    The service condition determines the Rolling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF testing of thermal spray coatings under various condition services is considerable; it is generally difficult to synthesize all of the result to obtain a comprehensive understanding of the parameters which has a great effect on a thermal spray coating's resistance of RCF. The effects of service conditions(lubrication states, contact stresses, revolve speed, and slip ratio) on the changing of thermal spray coatings' contact fatigue lifetime is introduced systematically. The effects of different service condition on RCF failure mechanism of thermal spray coating from the change of material structure integrity are also summarized. Moreover, In order to enhance the RCF performance, the parameter optimal design formula of service condition and material structure integrity is proposed based on the effect of service condition on thermal spray coatings' contact fatigue lifetime and RCF failure mechanism. The shortage of available literature and the forecast focus in future researches are discussed based on available research. The explicit result of RCF lifetime law and parameter optimal design formula in term of lubrication states, contact stresses, revolve speed, and slip ratio, is significant to improve the RCF performance on the engineering application.

  12. Efficient production by laser materials processing integrated into metal cutting machines

    NASA Astrophysics Data System (ADS)

    Wiedmaier, M.; Meiners, E.; Dausinger, Friedrich; Huegel, Helmut

    1994-09-01

    Beam guidance of high power YAG-laser (cw, pulsed, Q-switched) with average powers up to 2000 W by flexible glass fibers facilitates the integration of the laser beam as an additional tool into metal cutting machines. Hence, technologies like laser cutting, joining, hardening, caving, structuring of surfaces and laser-marking can be applied directly inside machining centers in one setting, thereby reducing the flow of workpieces resulting in a lowering of costs and production time. Furthermore, materials with restricted machinability--especially hard materials like ceramics, hard metals or sintered alloys--can be shaped by laser-caving or laser assisted machining. Altogether, the flexibility of laser integrated machining centers is substantially increased or the efficiency of a production line is raised by time-savings or extended feasibilities with techniques like hardening, welding or caving.

  13. Present limits and improvements of structural materials for fusion reactors - a review

    NASA Astrophysics Data System (ADS)

    Tavassoli, A.-A. F.

    2002-04-01

    Since the transition from ITER or DEMO to a commercial power reactor would involve a significant change in system and materials options, a parallel R&D path has been put in place in Europe to address these issues. This paper assesses the structural materials part of this program along with the latest R&D results from the main programs. It is shown that stainless steels and ferritic/martensitic steels, retained for ITER and DEMO, will also remain the principal contenders for the future FPR, despite uncertainties over irradiation induced embrittlement at low temperatures and consequences of high He/dpa ratio. Neither one of the present advanced high temperature materials has to this date the structural integrity reliability needed for application in critical components. This situation is unlikely to change with the materials R&D alone and has to be mitigated in close collaboration with blanket system design.

  14. NASA-UVA Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr.

    1997-01-01

    This is the final report of the study "Aluminum-Based Materials for High Speed Aircraft" which had the objectives (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials and (2) to assess the materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT. The research team consisted of ALCOA, Allied-Signal, Boeing, McDonnell Douglas, Reynolds Metals and the University of Virginia. Four classes of aluminum alloys were investigated: (1) I/M 2XXX containing Li and I/M 2XXX without Li, (2) I/M 6XXX, (3) two P/M 2XXX alloys, and (4) two different aluminum-based metal matrix composites (MMC). The I/M alloys were targeted for a Mach 2.0 aircraft and the P/M and MMC alloys were targeted for a Mach 2.4 aircraft. Design studies were conducted using several different concepts including skin/stiffener (baseline), honeycomb sandwich, integrally stiffened and hybrid adaptations (conventionally stiffened thin-sandwich skins). Alloy development included fundamental studies of coarsening behavior, the effect of stress on nucleation and growth of precipitates, and fracture toughness as a function of temperature were an integral part of this program. The details of all phases of the research are described in this final report.

  15. Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal.

    PubMed

    Liu, Yupeng; Liu, Yang; Li, Haiyan; Jiang, Di; Cao, Weiping; Chen, Hui; Xia, Lei; Xu, Ruimin

    2016-07-01

    A novel, compact microwave tunable bandpass filter integrated power divider, based on the high anisotropy electro-optic nematic liquid crystal, is proposed in this letter. Liquid crystal, as the electro-optic material, is placed between top inverted microstrip line and the metal plate. The proposed structure can realize continuous tunable bandpass response and miniaturization. The proposed design concept is validated by the good performance of simulation results and experimental results. The electro-optic material has shown great potential for microwave application.

  16. NMR crystallography of zeolites: How far can we go without diffraction data?

    PubMed

    Brouwer, Darren H; Van Huizen, Jared

    2018-05-10

    Nuclear magnetic resonance (NMR) crystallography-an approach to structure determination that seeks to integrate solid-state NMR spectroscopy, diffraction, and computation methods-has emerged as an effective strategy to determine structures of difficult-to-characterize materials, including zeolites and related network materials. This paper explores how far it is possible to go in determining the structure of a zeolite framework from a minimal amount of input information derived only from solid-state NMR spectroscopy. It is shown that the framework structure of the fluoride-containing and tetramethylammonium-templated octadecasil clathrasil material can be solved from the 1D 29 Si NMR spectrum and a single 2D 29 Si NMR correlation spectrum alone, without the space group and unit cell parameters normally obtained from diffraction data. The resulting NMR-solved structure is in excellent agreement with the structures determined previously by diffraction methods. It is anticipated that NMR crystallography strategies like this will be useful for structure determination of other materials, which cannot be solved from diffraction methods alone. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Neural network approach for characterizing structural transformations by X-ray absorption fine structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timoshenko, Janis; Frenkel, Anatoly I.; Cintins, Arturs

    The knowledge of coordination environment around various atomic species in many functional materials provides a key for explaining their properties and working mechanisms. Many structural motifs and their transformations are difficult to detect and quantify in the process of work (operando conditions), due to their local nature, small changes, low dimensionality of the material, and/or extreme conditions. Here we use artificial neural network approach to extract the information on the local structure and its in-situ changes directly from the X-ray absorption fine structure spectra. We illustrate this capability by extracting the radial distribution function (RDF) of atoms in ferritic andmore » austenitic phases of bulk iron across the temperature-induced transition. Integration of RDFs allows us to quantify the changes in the iron coordination and material density, and to observe the transition from body-centered to face-centered cubic arrangement of iron atoms. Furthermore, this method is attractive for a broad range of materials and experimental conditions« less

  18. Neural network approach for characterizing structural transformations by X-ray absorption fine structure

    DOE PAGES

    Timoshenko, Janis; Frenkel, Anatoly I.; Cintins, Arturs; ...

    2018-05-25

    The knowledge of coordination environment around various atomic species in many functional materials provides a key for explaining their properties and working mechanisms. Many structural motifs and their transformations are difficult to detect and quantify in the process of work (operando conditions), due to their local nature, small changes, low dimensionality of the material, and/or extreme conditions. Here we use artificial neural network approach to extract the information on the local structure and its in-situ changes directly from the X-ray absorption fine structure spectra. We illustrate this capability by extracting the radial distribution function (RDF) of atoms in ferritic andmore » austenitic phases of bulk iron across the temperature-induced transition. Integration of RDFs allows us to quantify the changes in the iron coordination and material density, and to observe the transition from body-centered to face-centered cubic arrangement of iron atoms. Furthermore, this method is attractive for a broad range of materials and experimental conditions« less

  19. Neural Network Approach for Characterizing Structural Transformations by X-Ray Absorption Fine Structure Spectroscopy

    NASA Astrophysics Data System (ADS)

    Timoshenko, Janis; Anspoks, Andris; Cintins, Arturs; Kuzmin, Alexei; Purans, Juris; Frenkel, Anatoly I.

    2018-06-01

    The knowledge of the coordination environment around various atomic species in many functional materials provides a key for explaining their properties and working mechanisms. Many structural motifs and their transformations are difficult to detect and quantify in the process of work (operando conditions), due to their local nature, small changes, low dimensionality of the material, and/or extreme conditions. Here we use an artificial neural network approach to extract the information on the local structure and its in situ changes directly from the x-ray absorption fine structure spectra. We illustrate this capability by extracting the radial distribution function (RDF) of atoms in ferritic and austenitic phases of bulk iron across the temperature-induced transition. Integration of RDFs allows us to quantify the changes in the iron coordination and material density, and to observe the transition from a body-centered to a face-centered cubic arrangement of iron atoms. This method is attractive for a broad range of materials and experimental conditions.

  20. Post-impact behavior of composite solid rocket motor cases

    NASA Technical Reports Server (NTRS)

    Highsmith, Alton L.

    1992-01-01

    In recent years, composite materials have seen increasing use in advanced structural applications because of the significant weight savings they offer when compared to more traditional engineering materials. The higher cost of composites must be offset by the increased performance that results from reduced structural weight if these new materials are to be used effectively. At present, there is considerable interest in fabricating solid rocket motor cases out of composite materials, and capitalizing on the reduced structural weight to increase rocket performance. However, one of the difficulties that arises when composite materials are used is that composites can develop significant amounts of internal damage during low velocity impacts. Such low velocity impacts may be encountered in routine handling of a structural component like a rocket motor case. The ability to assess the reduction in structural integrity of composite motor cases that experience accidental impacts is essential if composite rocket motor cases are to be certified for manned flight. The study described herein was an initial investigation of damage development and reduction of tensile strength in an idealized composite subjected to low velocity impacts.

  1. Compressive failure modes and parameter optimization of the trabecular structure of biomimetic fully integrated honeycomb plates.

    PubMed

    Chen, Jinxiang; Tuo, Wanyong; Zhang, Xiaoming; He, Chenglin; Xie, Juan; Liu, Chang

    2016-12-01

    To develop lightweight biomimetic composite structures, the compressive failure and mechanical properties of fully integrated honeycomb plates were investigated experimentally and through the finite element method. The results indicated that: fracturing of the fully integrated honeycomb plates primarily occurred in the core layer, including the sealing edge structure. The morphological failures can be classified into two types, namely dislocations and compactions, and were caused primarily by the stress concentrations at the interfaces between the core layer and the upper and lower laminations and secondarily by the disordered short-fiber distribution in the material; although the fully integrated honeycomb plates manufactured in this experiment were imperfect, their mass-specific compressive strength was superior to that of similar biomimetic samples. Therefore, the proposed bio-inspired structure possesses good overall mechanical properties, and a range of parameters, such as the diameter of the transition arc, was defined for enhancing the design of fully integrated honeycomb plates and improving their compressive mechanical properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Computer design of porous active materials at different dimensional scales

    NASA Astrophysics Data System (ADS)

    Nasedkin, Andrey

    2017-12-01

    The paper presents a mathematical and computer modeling of effective properties of porous piezoelectric materials of three types: with ordinary porosity, with metallized pore surfaces, and with nanoscale porosity structure. The described integrated approach includes the effective moduli method of composite mechanics, simulation of representative volumes, and finite element method.

  3. Quiet Clean Short-Haul Experimental Engine (QCSEE) Under-The-Wing (UTW) graphite/PMR cowl development

    NASA Technical Reports Server (NTRS)

    Ruggles, C. L.

    1978-01-01

    The PMR process development, tooling concepts, testing conducted to generate materials properties data, and the fabrication of a subscale model of the inner cowl are presented. It was concluded that the materials, processes, and tooling concepts were satisfactory for making an inner cowl with adequate structural integrity.

  4. Light weight polymer matrix composite material

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J. (Inventor); Lowell, Carl E. (Inventor)

    1991-01-01

    A graphite fiber reinforced polymer matrix is layed up, cured, and thermally aged at about 750.degree. F. in the presence of an inert gas. The heat treatment improves the structural integrity and alters the electrical conductivity of the materials. In the preferred embodiment PMR-15 polyimides and Celion-6000 graphite fibers are used.

  5. Proceedings of USAF Structural Integrity Program (ASIP, ENSIP) conference Held in Sacramento, California on 2-4 December 1986

    DTIC Science & Technology

    1986-12-01

    Reliability Studies ............................................................ 295 NDI for Corrosion .................................................... (Not...available at time of printing) Plastic Bead Blast Materials Characterization Study ................................................ 313 In-Service... Studies Ward Rummel, Martin-Marietta Aerospace AGENDA (Continued) 2. NOI for Corrosion Jeff Rowe, Lockheed-Georgia 3. Plastic Bead Blast Materials R. D

  6. Fatigue behavior and life prediction of a SiC/Ti-24Al-11Nb composite under isothermal conditions. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.

    1991-01-01

    Metal Matrix Composites (MMC) and Intermetallic Matrix Composites (IMC) were identified as potential material candidates for advanced aerospace applications. They are especially attractive for high temperature applications which require a low density material that maintains its structural integrity at elevated temperatures. High temperature fatigue resistance plays an important role in determining the structural integrity of the material. This study attempts to examine the relevance of test techniques, failure criterion, and life prediction as they pertain to an IMC material, specifically, unidirectional SiC fiber reinforced titanium aluminide. A series of strain and load controlled fatigue tests were conducted on unidirectional SiC/Ti-24Al-11Nb composite at 425 and 815 C. Several damage mechanism regimes were identified by using a strain-based representation of the data, Talreja's fatigue life diagram concept. Results of these tests were then used to address issues of test control modes, definition of failure, and testing techniques. Finally, a strain-based life prediction method was proposed for an IMC under tensile cyclic loadings at elevated temperatures.

  7. Progress and Opportunities in Soft Photonics and Biologically Inspired Optics.

    PubMed

    Kolle, Mathias; Lee, Seungwoo

    2018-01-01

    Optical components made fully or partially from reconfigurable, stimuli-responsive, soft solids or fluids-collectively referred to as soft photonics-are poised to form the platform for tunable optical devices with unprecedented functionality and performance characteristics. Currently, however, soft solid and fluid material systems still represent an underutilized class of materials in the optical engineers' toolbox. This is in part due to challenges in fabrication, integration, and structural control on the nano- and microscale associated with the application of soft components in optics. These challenges might be addressed with the help of a resourceful ally: nature. Organisms from many different phyla have evolved an impressive arsenal of light manipulation strategies that rely on the ability to generate and dynamically reconfigure hierarchically structured, complex optical material designs, often involving soft or fluid components. A comprehensive understanding of design concepts, structure formation principles, material integration, and control mechanisms employed in biological photonic systems will allow this study to challenge current paradigms in optical technology. This review provides an overview of recent developments in the fields of soft photonics and biologically inspired optics, emphasizes the ties between the two fields, and outlines future opportunities that result from advancements in soft and bioinspired photonics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Orbiter thermal protection system

    NASA Technical Reports Server (NTRS)

    Dotts, R. L.; Curry, D. M.; Tillian, D. J.

    1985-01-01

    The major material and design challenges associated with the orbiter thermal protection system (TPS), the various TPS materials that are used, the different design approaches associated with each of the materials, and the performance during the flight test program are described. The first five flights of the Orbiter Columbia and the initial flight of the Orbiter Challenger provided the data necessary to verify the TPS thermal performance, structural integrity, and reusability. The flight performance characteristics of each TPS material are discussed, based on postflight inspections and postflight interpretation of the flight instrumentation data. Flights to date indicate that the thermal and structural design requirements for the orbiter TPS are met and that the overall performance is outstanding.

  9. Effects of thermal cycling on composite materials for space structures

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.

    1989-01-01

    The effects of thermal cycling on the thermal and mechanical properties of composite materials that are candidates for space structures are briefly described. The results from a thermal analysis of the orbiting Space Station Freedom is used to define a typical thermal environment and the parameters that cause changes in the thermal history. The interactions of this environment with composite materials are shown and described. The effects of this interaction on the integrity as well as the properties of GR/thermoset, Gr/thermoplastic, Gr/metal and Gr/glass composite materials are discussed. Emphasis is placed on the effects of the interaction that are critical to precision spacecraft. Finally, ground test methodology are briefly discussed.

  10. Multi-Functional Sandwich Composites for Spacecraft Applications: An Initial Assessment

    NASA Technical Reports Server (NTRS)

    Adams, Daniel O.; Webb, Nicholas Jason; Yarger, Cody B.; Hunter, Abigail; Oborn, Kelli D.

    2007-01-01

    Current spacecraft implement relatively uncoupled material and structural systems to address a variety of design requirements, including structural integrity, damage tolerance, radiation protection, debris shielding and thermal insulation. This investigation provided an initial assessment of multi-functional sandwich composites to integrate these diverse requirements. The need for radiation shielding was addressed through the selection of polymeric constituents with high hydrogen content. To provide increased damage tolerance and debris shielding, manufacturing techniques were developed to incorporate transverse stitching reinforcement, internal layers, and a self-healing ionomer membrane. To assess the effects of a space environment, thermal expansion behavior of the candidate foam materials was investigated under a vacuum and increasing temperature. Finally, a thermal expansion model was developed for foam under vacuum conditions and its predictive capability assessed.

  11. Impact of Materials Defects on Engine Structures Integrity (L’Impact des Defauts des Materiaux sur l’Integrite des Structures des Moteurs)

    DTIC Science & Technology

    1993-04-01

    years have been a continuous inspiration to me. AGARD-R-769, NATO-AGARD, 1988. I thank them for allowing me to assist them in their learning endeavors...ceramics. These ceramic filters have been very effective in improving VIM ingot quality in r.cnt years. Eddy Current Might be applicable to deep ...appropriately defined material behavior. In general. all these sample can become prohibitively large. elements: fractography of failed test pieces

  12. Microstructured Optical Fiber Sensors Embedded in a Laminate Composite for Smart Material Applications

    PubMed Central

    Sonnenfeld, Camille; Sulejmani, Sanne; Geernaert, Thomas; Eve, Sophie; Lammens, Nicolas; Luyckx, Geert; Voet, Eli; Degrieck, Joris; Urbanczyk, Waclaw; Mergo, Pawel; Becker, Martin; Bartelt, Hartmut; Berghmans, Francis; Thienpont, Hugo

    2011-01-01

    Fiber Bragg gratings written in highly birefringent microstructured optical fiber with a dedicated design are embedded in a composite fiber-reinforced polymer. The Bragg peak wavelength shifts are measured under controlled axial and transversal strain and during thermal cycling of the composite sample. We obtain a sensitivity to transversal strain that exceeds values reported earlier in literature by one order of magnitude. Our results evidence the relevance of using microstructured optical fibers for structural integrity monitoring of composite material structures. PMID:22163755

  13. Structural Barriers and Organizational Mechanisms for Training and Deploying ICT Champions in a School

    ERIC Educational Resources Information Center

    Woo, David James

    2016-01-01

    The misalignment or contradiction between material and abstract resources within a school are structural barriers to systemic pedagogic innovation and effective teacher professional development. This article contributes a case study to the success stories of information and communication technology (ICT) integration in schools through alternative…

  14. Lightweight solar concentrator structures, phase 2

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Kaplan, Richard B.

    1993-01-01

    This report summarizes the results of the program conducted by Ultramet under SBIR Phase 2 Contract NAS3-25418. The objective of this program was to develop lightweight materials and processes for advanced high accuracy Space Solar Concentrators using rigidized foam for the substrate structure with an integral optical surface.

  15. Adaptive and active materials: selected papers from the ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS 12) (Stone Mountain, GA, USA, 19-21 September 2012)

    NASA Astrophysics Data System (ADS)

    Seelecke, Stefan; Erturk, Alper; Ounaies, Zoubeida; Naguib, Hani; Huber, John; Turner, Travis; Anderson, Iain; Philen, Michael; Baba Sundaresan, Vishnu

    2013-09-01

    The fifth annual meeting of the ASME/AIAA Smart Materials, Adaptive Structures and Intelligent Systems Conference (SMASIS) was held in beautiful Stone Mountain near Atlanta, GA. It is the conference's objective to provide an up-to-date overview of research trends in the entire field of smart materials systems. This was reflected in keynote speeches by Professor Eduard Arzt (Institute of New Materials and Saarland University, Saarbrücken, Germany) on 'Micro-patterned artificial 'Gecko' surfaces: a path to switchable adhesive function', by Professor Ray H Baughman (The Alan G MacDiarmid NanoTech Institute, University of Texas at Dallas) on 'The diverse and growing family of carbon nanotube and related artificial muscles', and by Professor Richard James (University of Minnesota) on 'The direct conversion of heat to electricity using multiferroic materials with phase transformations'. SMASIS 2012 was divided into eight symposia which span basic research, applied technological design and development, and industrial and governmental integrated system and application demonstrations. • SYMP 1. Development and characterization of multifunctional materials. • SYMP 2. Mechanics and behavior of active materials. • SYMP 3. Modeling, simulation and control of adaptive systems. • SYMP 4. Integrated system design and implementation. • SYMP 5. Structural health monitoring/NDE. • SYMP 6. Bio-inspired materials and systems. • SYMP 7. Energy harvesting. • SYMP 8. Structural and materials logic. This year we were particularly excited to introduce a new symposium on energy harvesting, which has quickly matured from a special track in previous years to an independent symposium for the first time. The subject cuts across fields by studying different materials, ranging from piezoelectrics to electroactive polymers, as well as by emphasizing different energy sources from wind to waves and ambient vibrations. Modeling, experimental studies, and technology applications all belong to the symposium topics. In addition, the conference also featured a special symposium dedicated to DARPA's structural and materials/logic program. The program seeks to enable structural systems to adapt to varying loads and simultaneously exhibit both high stiffness and high damping. Authors of selected papers in the materials areas (symposia 1, 2, and 6) as well as energy harvesting (symposium 7) were invited to write a full journal article on their presentation topic for publication in this special issue of Smart Materials and Structures . This collection of papers demonstrates the exceptional quality and originality of the conference presentations. We are very appreciative of their efforts to produce this collection of highly relevant articles on smart materials.

  16. Biotemplated Morpho Butterfly Wings for Tunable Structurally Colored Photocatalysts.

    PubMed

    Rodríguez, Robin E; Agarwal, Sneha P; An, Shun; Kazyak, Eric; Das, Debashree; Shang, Wen; Skye, Rachael; Deng, Tao; Dasgupta, Neil P

    2018-02-07

    Morpho sulkowskyi butterfly wings contain naturally occurring hierarchical nanostructures that produce structural coloration. The high aspect ratio and surface area of these wings make them attractive nanostructured templates for applications in solar energy and photocatalysis. However, biomimetic approaches to replicate their complex structural features and integrate functional materials into their three-dimensional framework are highly limited in precision and scalability. Herein, a biotemplating approach is presented that precisely replicates Morpho nanostructures by depositing nanocrystalline ZnO coatings onto wings via low-temperature atomic layer deposition (ALD). This study demonstrates the ability to precisely tune the natural structural coloration while also integrating multifunctionality by imparting photocatalytic activity onto fully intact Morpho wings. Optical spectroscopy and finite-difference time-domain numerical modeling demonstrate that ALD ZnO coatings can rationally tune the structural coloration across the visible spectrum. These structurally colored photocatalysts exhibit an optimal coating thickness to maximize photocatalytic activity, which is attributed to trade-offs between light absorption and catalytic quantum yield with increasing coating thickness. These multifunctional photocatalysts present a new approach to integrating solar energy harvesting into visually attractive surfaces that can be integrated into building facades or other macroscopic structures to impart aesthetic appeal.

  17. The transition of ground-based space environmental effects testing to the space environment

    NASA Technical Reports Server (NTRS)

    Zaat, Stephen V.; Schaefer, Glen A.; Wallace, John F.

    1991-01-01

    The goal of the space flight program at the Center for Commercial Development of Space (CCDS)--Materials for Space Structures is to provide environmentally stable structural materials to support the continued humanization and commercialization of the space frontier. Information on environmental stability will be obtained through space exposure, evaluation, documentation, and subsequent return to the supplier of the candidate material for internal investigation. This program provides engineering and scientific service to space systems development firms and also exposes CCDS development candidate materials to space environments representative of in-flight conditions. The maintenance of a technological edge in space for NASA suggests the immediate search for space materials that maintain their structural integrity and remain environmentally stable. The materials being considered for long-lived space structures are complex, high strength/weight ratio composites. In order for these new candidate materials to qualify for use in space structures, they must undergo strenuous testing to determine their reliability and stability when subjected to the space environment. Ultraviolet radiation, atomic oxygen, debris/micrometeoroids, charged particles radiation, and thermal fatigue all influence the design of space structural materials. The investigation of these environmental interactions is the key purpose of this center. Some of the topics discussed with respect to the above information include: the Space Transportation System, mission planning, spaceborne experiments, and space flight payloads.

  18. Multifunctional smart composites with integrated carbon nanotube yarn and sheet

    NASA Astrophysics Data System (ADS)

    Chauhan, Devika; Hou, Guangfeng; Ng, Vianessa; Chaudhary, Sumeet; Paine, Michael; Moinuddin, Khwaja; Rabiee, Massoud; Cahay, Marc; Lalley, Nicholas; Shanov, Vesselin; Mast, David; Liu, Yijun; Yin, Zhangzhang; Song, Yi; Schulz, Mark

    2017-04-01

    Multifunctional smart composites (MSCs) are materials that combine the good electrical and thermal conductivity, high tensile and shear strength, good impact toughness, and high stiffness properties of metals; the light weight and corrosion resistance properties of composites; and the sensing or actuation properties of smart materials. The basic concept for MSCs was first conceived by Daniel Inman and others about 25 years ago. Current laminated carbon and glass fiber polymeric composite materials have high tensile strength and are light in weight, but they still lack good electrical and thermal conductivity, and they are sensitive to delamination. Carbon nanotube yarn and sheets are lightweight, electrically and thermally conductive materials that can be integrated into laminated composite materials to form MSCs. This paper describes the manufacturing of high quality carbon nanotube yarn and sheet used to form MSCs, and integrating the nanotube yarn and sheet into composites at low volume fractions. Various up and coming technical applications of MSCs are discussed including composite toughening for impact and delamination resistance; structural health monitoring; and structural power conduction. The global carbon nanotube overall market size is estimated to grow from 2 Billion in 2015 to 5 Billion by 2020 at a CAGR of 20%. Nanotube yarn and sheet products are predicted to be used in aircraft, wind machines, automobiles, electric machines, textiles, acoustic attenuators, light absorption, electrical wire, sporting equipment, tires, athletic apparel, thermoelectric devices, biomedical devices, lightweight transformers, and electromagnets. In the future, due to the high maximum current density of nanotube conductors, nanotube electromagnetic devices may also become competitive with traditional smart materials in terms of power density.

  19. Polymer based resonant waveguide grating photonic filter with on-chip thermal tuning

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Ritesh Ray; Enemuo, Amarachukwu N.; Song, Youngsik; Seo, Sang-Woo

    2018-07-01

    In this paper, we present the development of a multilayer polymer resonant waveguide grating (RWG)-based optical filter with an integrated microheater for on-chip thermal spectral tuning. RWG optical filter is fabricated using polymer-based materials. Therefore, its integration can be applied to different material platforms. Typical RWG structure is sensitive to back optical reflection from the structures below. To reduce the effect of back reflection from the metal heater and improve the quality of the integrated RWG filter output, an intermediate absorption layer was implemented utilizing an epoxy based carbon coating. This approach effectively suppresses the background noise in the RWG characteristics. The central wavelength of the reported filter was designed around 1550 nm. Experimentally, wavelength tuning of 21.96 nm was achieved for operating temperature range of 81 °C with approximately 150mW power consumption. Based on the layer-by-layer fabrication approach, the presented thermally tunable RWG filter on a chip has potential for use in low cost hybrid communication systems and spectral sensing applications.

  20. Nano-composite magnetic material embedded on TiO2 pillars to realize magneto-optical resonant guided mode gratings

    NASA Astrophysics Data System (ADS)

    Varghese, B.; Gamet, E.; Jamon, D.; Neveu, S.; Berthod, L.; Shavdina, O.; Reynaud, S.; Verrier, I.; Veillas, C.; Royer, F.

    2016-02-01

    Periodic structuration of magnetic material is a way to enhance the magneto-optical behavior of optical devices like isolators. It is useful to reduce the footprint of such integrated devices or to improve their features. However, the structuration and/or integration of efficient magnetic materials on photonic platforms is still a difficult problem, because classical magneto-optical materials require an annealing temperature as high as 700°C. A novel wafer-scale approach is to incorporate that material into an already structured template through a single step deposition at low temperature. Using the dip-coating method, a magneto-optical thin film (~300nm) of CoFe2O4 nanoparticles in silica matrix prepared by sol-gel technique was coated on a 1D and 2D TiO2 subwavelength gratings. Such gratings were realized by the patterning of TiO2 films obtained by a sol-gel process. It was confirmed by Scanning Electron Microscope images that the magneto-optical composite completely occupies the voids of the 2D structuration showing a good compatibility between both materials. This composite shows a specific Faraday rotation of about 200°cm-1 at 1,5μm for 1% of volume fraction of nanoparticles. Spectral studies of the transmission and the reflection of a 1D TiO2 grating filled with the MO composite have evidenced the presence of a guided-mode optical resonance at 1,55μm. The position of this resonance was confirmed by numerical simulations, as well as its quite low efficiency. Based on simulations results, one can conclude that an increase of the grating depth is required to improve the efficiency of the resonance.

  1. Titanium and advanced composite structures for a supersonic cruise arrow wing configuration

    NASA Technical Reports Server (NTRS)

    Turner, M. J.; Hoy, J. M.

    1976-01-01

    Structural design studies were made, based on current technology and on an estimate of technology to be available in the mid 1980's, to assess the relative merits of structural concepts and materials for an advanced arrow wing configuration cruising at Mach 2.7. Preliminary studies were made to insure compliance of the configuration with general design criteria, integrate the propulsion system with the airframe, and define an efficient structural arrangement. Material and concept selection, detailed structural analysis, structural design and airplane mass analysis were completed based on current technology. Based on estimated future technology, structural sizing for strength and a preliminary assessment of the flutter of a strength designed composite structure were completed. An advanced computerized structural design system was used, in conjunction with a relatively complex finite element model, for detailed analysis and sizing of structural members.

  2. Structural and Morphological Investigation for Water-Processed Graphene Oxide/Single-Walled Carbon Nanotubes Hybrids

    NASA Astrophysics Data System (ADS)

    Muda, M. R.; Ramli, M. M.; Mat Isa, S. S.; Halin, D. S. C.; Talip, L. F. A.; Mazelan, N. S.; Anhar, N. A. M.; Danial, N. A.

    2017-06-01

    New group of materials derived from hybridization of single walled carbon nanotubes (SWCNTs) and graphene oxide (GO) which resulting novel three dimensional (3D) materials generates an outstanding properties compared to corresponding SWCNTs and GO/Graphene. In this paper, we describe a simple approach using water processing method to develop integrated rGO/GO-SWCNT hybrids with different hybrid ratios. The hybrid ratios were varied into three divided ratio and the results were compared between pristine SWCNTs and GO in order to investigate the structural density and morphology of these carbonaceous materials. With an optimized ratio of rGO/GO-SWCNT, the hybrid shows a well-organized hybrid film structures with less defects density sites. The optimized mixture ratio emphasized the important of both rGO and SWCNTs in the hybrid structures. Morphological structural and defects density degrees were examined by Field Emission Scanning Electron Microscopy (FESEM) and Raman spectroscopy.

  3. Opto-electronic oscillator: moving toward solutions based on polymer materials

    NASA Astrophysics Data System (ADS)

    Nguyên, Lâm Duy; Journet, Bernard; Zyss, Joseph

    2008-02-01

    Optoelectronic oscillators have been studied since many years now, their high spectral purity being one of their most interesting quality for photonics signal processing, communication or radio over fiber systems. One part of the structure is a long fiber optic feedback loop acting as a delay line. Different techniques have been introduced such as multiple loops in order to get very narrow spectral lines and large mode spacing. One of the problems due to long fiber loops is the size and the requirement of temperature control. In order to go toward integrated solutions it is also possible to introduce optical resonators instead of a delay line structure (as for classical electronic oscillators). But such resonators should present very high quality factor. In this paper we demonstrate solutions using resonators based on polymer materials such as PMMA-DCM. Structures such as micro-rings, micro-disks or stadium-shaped resonator have been realized at the laboratory. Quality factor of 6000 have already been achieved leading to an equivalent fiber loop of 19 m for an oscillator at 10 GHz. But it has been already theoretically proved that quality factor greater than one thousand hundred could be obtained. These resonators can be directly implemented with Mach-Zehnder optical modulators based on electro-optic polymer such as PMMA-DR1 leading to integrated solutions. And in the future it should be also possible to add a laser made with polymer material, with a structure as stadium-shape polymer micro-laser. The fully integrated photonic chip is not so far. The last important function to be implemented is the tuning of the oscillation frequency.

  4. Integral Ring Carbon-Carbon Piston

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor)

    1999-01-01

    An improved structure for a reciprocating internal combustion engine or compressor piston fabricate from carbon-carbon composite materials is disclosed. An integral ring carbon-carbon composite piston, disclosed herein, reduces the need for piston rings and for small clearances by providing a small flexible, integral component around the piston that allows for variation in clearance due to manufacturing tolerances, distortion due to pressure and thermal loads, and variations in thermal expansion differences between the piston and cylinder liner.

  5. EDITORIAL: Adaptive and Active Materials: Selected Papers from the ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS 08) (Maryland, USA, 28-30 October 2008) Adaptive and Active Materials: Selected Papers from the ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS 08) (Maryland, USA, 28-30 October 2008)

    NASA Astrophysics Data System (ADS)

    Lynch, Christopher

    2009-10-01

    The rapid development of the field of Smart Materials, Adaptive Structures, and Materials Systems led the Aerospace Division ASMS TC to launch the new annual SMASIS conference in 2008. The conference focuses on the multi-disciplinary challenges of developing new multifunctional materials and implementing them in advanced systems. The research spans length scales from nano-structured materials to civil, air, and space structures. The first conference consisted of six symposia, each focusing on a different research area. This special issue of Smart Materials and Structures summarizes some of the top research presented at the 2008 SMASIS conference in the materials-focused symposia. These symposia focused on the behavior and mechanics of active materials, on multifunctional materials, and on bio-inspired materials. The behavior and mechanics of active materials is an approach that combines observed material behavior with mechanism-based models that not only give insight into the observed behavior, but guide the development of new materials. This approach has been applied to shape memory metals and polymers, ferroelectrics, ferromagnetics, and recently to multiferroic materials, and has led to considerable improvements in our understanding of multi-field phenomena. Multifunctional materials are the next generation of active materials. These materials include structural, sensing, and actuation components integrated into a material system. A natural extension of multifunctional materials is a new class of bio-inspired materials. Bio-inspired materials range from detailed bio-mimicry of sensing and self healing materials to nano and microstructures that take advantage of features observed in biological systems. The Editors would like to express their sincere thanks to all of the authors for their contributions to this special issue on 'Adaptive and Active Materials' for Smart Materials and Structures. We convey our gratitude to all of the reviewers for their time and dedication. We thank IOP Publishing for their support and encouragement of this special issue and the staff for their special attention and timely response.

  6. A review of combined experimental and computational procedures for assessing biopolymer structure-process-property relationships.

    PubMed

    Gronau, Greta; Krishnaji, Sreevidhya T; Kinahan, Michelle E; Giesa, Tristan; Wong, Joyce Y; Kaplan, David L; Buehler, Markus J

    2012-11-01

    Tailored biomaterials with tunable functional properties are desirable for many applications ranging from drug delivery to regenerative medicine. To improve the predictability of biopolymer materials functionality, multiple design parameters need to be considered, along with appropriate models. In this article we review the state of the art of synthesis and processing related to the design of biopolymers, with an emphasis on the integration of bottom-up computational modeling in the design process. We consider three prominent examples of well-studied biopolymer materials - elastin, silk, and collagen - and assess their hierarchical structure, intriguing functional properties and categorize existing approaches to study these materials. We find that an integrated design approach in which both experiments and computational modeling are used has rarely been applied for these materials due to difficulties in relating insights gained on different length- and time-scales. In this context, multiscale engineering offers a powerful means to accelerate the biomaterials design process for the development of tailored materials that suit the needs posed by the various applications. The combined use of experimental and computational tools has a very broad applicability not only in the field of biopolymers, but can be exploited to tailor the properties of other polymers and composite materials in general. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Identifying Structure-Property Relationships Through DREAM.3D Representative Volume Elements and DAMASK Crystal Plasticity Simulations: An Integrated Computational Materials Engineering Approach

    NASA Astrophysics Data System (ADS)

    Diehl, Martin; Groeber, Michael; Haase, Christian; Molodov, Dmitri A.; Roters, Franz; Raabe, Dierk

    2017-05-01

    Predicting, understanding, and controlling the mechanical behavior is the most important task when designing structural materials. Modern alloy systems—in which multiple deformation mechanisms, phases, and defects are introduced to overcome the inverse strength-ductility relationship—give raise to multiple possibilities for modifying the deformation behavior, rendering traditional, exclusively experimentally-based alloy development workflows inappropriate. For fast and efficient alloy design, it is therefore desirable to predict the mechanical performance of candidate alloys by simulation studies to replace time- and resource-consuming mechanical tests. Simulation tools suitable for this task need to correctly predict the mechanical behavior in dependence of alloy composition, microstructure, texture, phase fractions, and processing history. Here, an integrated computational materials engineering approach based on the open source software packages DREAM.3D and DAMASK (Düsseldorf Advanced Materials Simulation Kit) that enables such virtual material development is presented. More specific, our approach consists of the following three steps: (1) acquire statistical quantities that describe a microstructure, (2) build a representative volume element based on these quantities employing DREAM.3D, and (3) evaluate the representative volume using a predictive crystal plasticity material model provided by DAMASK. Exemplarily, these steps are here conducted for a high-manganese steel.

  8. Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure

    NASA Astrophysics Data System (ADS)

    Gao, Huai-Ling; Zhu, Yin-Bo; Mao, Li-Bo; Wang, Feng-Chao; Luo, Xi-Sheng; Liu, Yang-Yi; Lu, Yang; Pan, Zhao; Ge, Jin; Shen, Wei; Zheng, Ya-Rong; Xu, Liang; Wang, Lin-Jun; Xu, Wei-Hong; Wu, Heng-An; Yu, Shu-Hong

    2016-09-01

    Low-density compressible materials enable various applications but are often hindered by structure-derived fatigue failure, weak elasticity with slow recovery speed and large energy dissipation. Here we demonstrate a carbon material with microstructure-derived super-elasticity and high fatigue resistance achieved by designing a hierarchical lamellar architecture composed of thousands of microscale arches that serve as elastic units. The obtained monolithic carbon material can rebound a steel ball in spring-like fashion with fast recovery speed (~580 mm s-1), and demonstrates complete recovery and small energy dissipation (~0.2) in each compress-release cycle, even under 90% strain. Particularly, the material can maintain structural integrity after more than 106 cycles at 20% strain and 2.5 × 105 cycles at 50% strain. This structural material, although constructed using an intrinsically brittle carbon constituent, is simultaneously super-elastic, highly compressible and fatigue resistant to a degree even greater than that of previously reported compressible foams mainly made from more robust constituents.

  9. EFFECTS OF TEMPERATURE AND ENVIRONMENT ON MECHANICAL PROPERTIES OF TWO CHOPPED-FIBER AUTOMOTIVE STRUCTURAL COMPOSITES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggles-Wrenn, M.B.

    2003-10-06

    The Durability of Lightweight Composite Structures Project was established at Oak Ridge National Laboratory (ORNL) by the U.S. Department of Energy to provide the experimentally-based, durability-driven design guidelines necessary to assure long-term structural integrity of automotive composite components. The initial focus of the ORNL Durability Project was on composite materials consisting of polyurethane reinforced with E-glass. Current focus of the project is on composite materials reinforced with carbon fibers. The primary purpose of this report is to provide the individual specimen test date. Basic mechanical property testing and results for two chopped-fiber composite materials, one reinforced with glass- and themore » other with carbon fiber are provided. Both materials use the same polyurethane matrix. Preforms for both materials were produced using the P4 process. Behavioral trends, effects of temperature and environment, and corresponding design knockdown factors are established for both materials. Effects of prior short-time loads and of prior thermal cycling are discussed.« less

  10. Effect of the structure and mechanical properties of the near-surface layer of lithium niobate single crystals on the manufacture of integrated optic circuits

    NASA Astrophysics Data System (ADS)

    Sosunov, A. V.; Ponomarev, R. S.; Yur'ev, V. A.; Volyntsev, A. B.

    2017-01-01

    This paper shows that the near-surface layer of a lithium niobate single layer 15 μm in depth is essentially different from the rest of the volume of the material from the standpoint of composition, structure, and mechanical properties. The pointed out differences are due to the effect of cutting, polishing, and smoothing of the lithium niobate plates, which increase the density of point defects and dislocations. The increasing density of the structural defects leads to uncontrollable changes in the conditions of the formations of waveguides and the drifting of characteristics of integrated optical circuits. The results obtained are very important for the manufacture of lithium niobate based integrated optical circuits.

  11. Development of Multifunctional Radiation Shielding Materials for Long Duration Human Exploration Beyond the Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Sen, S.; Bhattacharya, M.; Schofield, E.; Carranza, S.; O'Dell, S.

    2007-01-01

    One of the major challenges for long duration human exploration beyond the low Earth orbit and sustained human presence on planetary surfaces would be development of materials that would help minimize the radiation exposure to crew and equipment from the interplanetary radiation environment, This radiation environment consists primarily of a continuous flux of galactic cosmic rays (GCR) and transient but intense fluxes of solar energetic particles (SEP). The potential for biological damage by the relatively low percentage of high-energy heavy-ions in the GCR spectrum far outweigh that due to lighter particles because of their ionizing-power and the quality of the resulting biological damage. Although the SEP spectrum does not contain heavy ions and their energy range is much lower than that for GCRs, they however pose serious risks to astronaut health particularly in the event of a bad solar storm The primary purpose of this paper is to discuss our recent efforts in development and evaluation of materials for minimizing the hazards from the interplanetary radiation environment. Traditionally, addition of shielding materials to spacecrafts has invariably resulted in paying a penalty in terms of additional weight. It would therefore be of great benefit if materials could be developed not only with superior shielding effectiveness but also sufficient structural integrity. Such a multifunctional material could then be considered as an integral part of spacecraft structures. Any proposed radiation shielding material for use in outer space should be composed of nuclei that maximize the likelihood of projectile fragmentation while producing the minimum number of target fragments. A modeling based approach will be presented to show that composite materials using hydrogen-rich epoxy matrices reinforced with polyethylene fibers and/or fabrics could effectively meet this requirement. This paper will discuss the fabrication of such a material for a crewed vehicle. Ln addition, the capability of synthesizing radiation shielding materials for habitat structures primarily from Lunar or Martian in-situ resources will also be presented. Such an approach would significantly _reduce the cost associated with transportation of such materials and structures from earth. Results from radiation exposure measurements will be presented demonstrating the shielding effectiveness of the developed materials. Mechanical testing data will be discussed to illustrate that the specific mechanical properties of the developed composites are comparable to structural aluminum based alloys currently used for the space shuttle and space station.

  12. Concurrent Probabilistic Simulation of High Temperature Composite Structural Response

    NASA Technical Reports Server (NTRS)

    Abdi, Frank

    1996-01-01

    A computational structural/material analysis and design tool which would meet industry's future demand for expedience and reduced cost is presented. This unique software 'GENOA' is dedicated to parallel and high speed analysis to perform probabilistic evaluation of high temperature composite response of aerospace systems. The development is based on detailed integration and modification of diverse fields of specialized analysis techniques and mathematical models to combine their latest innovative capabilities into a commercially viable software package. The technique is specifically designed to exploit the availability of processors to perform computationally intense probabilistic analysis assessing uncertainties in structural reliability analysis and composite micromechanics. The primary objectives which were achieved in performing the development were: (1) Utilization of the power of parallel processing and static/dynamic load balancing optimization to make the complex simulation of structure, material and processing of high temperature composite affordable; (2) Computational integration and synchronization of probabilistic mathematics, structural/material mechanics and parallel computing; (3) Implementation of an innovative multi-level domain decomposition technique to identify the inherent parallelism, and increasing convergence rates through high- and low-level processor assignment; (4) Creating the framework for Portable Paralleled architecture for the machine independent Multi Instruction Multi Data, (MIMD), Single Instruction Multi Data (SIMD), hybrid and distributed workstation type of computers; and (5) Market evaluation. The results of Phase-2 effort provides a good basis for continuation and warrants Phase-3 government, and industry partnership.

  13. Integration of magnetic bearings in the design of advanced gas turbine engines

    NASA Technical Reports Server (NTRS)

    Storace, Albert F.; Sood, Devendra K.; Lyons, James P.; Preston, Mark A.

    1994-01-01

    Active magnetic bearings provide revolutionary advantages for gas turbine engine rotor support. These advantages include tremendously improved vibration and stability characteristics, reduced power loss, improved reliability, fault-tolerance, and greatly extended bearing service life. The marriage of these advantages with innovative structural network design and advanced materials utilization will permit major increases in thrust to weight performance and structural efficiency for future gas turbine engines. However, obtaining the maximum payoff requires two key ingredients. The first key ingredient is the use of modern magnetic bearing technologies such as innovative digital control techniques, high-density power electronics, high-density magnetic actuators, fault-tolerant system architecture, and electronic (sensorless) position estimation. This paper describes these technologies. The second key ingredient is to go beyond the simple replacement of rolling element bearings with magnetic bearings by incorporating magnetic bearings as an integral part of the overall engine design. This is analogous to the proper approach to designing with composites, whereby the designer tailors the geometry and load carrying function of the structural system or component for the composite instead of simply substituting composites in a design originally intended for metal material. This paper describes methodologies for the design integration of magnetic bearings in gas turbine engines.

  14. Interdisciplinary optimum design. [of aerospace structures

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1986-01-01

    Problems related to interdisciplinary interactions in the design of a complex engineering systems are examined with reference to aerospace applications. The interdisciplinary optimization problems examined include those dealing with controls and structures, materials and structures, control and stability, structure and aerodynamics, and structure and thermodynamics. The discussion is illustrated by the following specific applications: integrated aerodynamic/structural optimization of glider wing; optimization of an antenna parabolic dish structure for minimum weight and prescribed emitted signal gain; and a multilevel optimization study of a transport aircraft.

  15. Proceedings of the SCAR Conference, Part 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Supersonic Cruise Aircraft Research (SCAR) team analyzed six major topics: (1) aerodynamics, (2) stability and control, (3) propulsion, (4) environmental factor, (5) airframe structures and materials, and (6) design integration.

  16. Novel Composites for Wing and Fuselage Applications. Task 1; Novel Wing Design Concepts

    NASA Technical Reports Server (NTRS)

    Suarez, J. A.; Buttitta, C.; Flanagan, G.; DeSilva, T.; Egensteiner, W.; Bruno, J.; Mahon, J.; Rutkowski, C.; Collins, R.; Fidnarick, R.; hide

    1996-01-01

    Design trade studies were conducted to arrive at advanced wing designs that integrated new material forms with innovative structural concepts and cost-effective fabrication methods. A representative spar was selected for design, fabrication, and test to validate the predicted performance. Textile processes, such as knitting, weaving and stitching, were used to produce fiber preforms that were later fabricated into composite span through epoxy Resin Transfer Molding (RTM), Resin Film Infusion (RFI), and consolidation of commingled thermoplastic and graphite tows. The target design ultimate strain level for these innovative structural design concepts was 6000 mu in. per in. The spars were subjected to four-point beam bending to validate their structural performance. The various material form /processing combination Y-spars were rated for their structural efficiency and acquisition cost. The acquisition cost elements were material, tooling, and labor.

  17. A multi-structural and multi-functional integrated fog collection system in cactus.

    PubMed

    Ju, Jie; Bai, Hao; Zheng, Yongmei; Zhao, Tianyi; Fang, Ruochen; Jiang, Lei

    2012-01-01

    Multiple biological structures have demonstrated fog collection abilities, such as beetle backs with bumps and spider silks with periodic spindle-knots and joints. Many Cactaceae species live in arid environments and are extremely drought-tolerant. Here we report that one of the survival systems of the cactus Opuntia microdasys lies in its efficient fog collection system. This unique system is composed of well-distributed clusters of conical spines and trichomes on the cactus stem; each spine contains three integrated parts that have different roles in the fog collection process according to their surface structural features. The gradient of the Laplace pressure, the gradient of the surface-free energy and multi-function integration endow the cactus with an efficient fog collection system. Investigations of the structure-function relationship in this system may help us to design novel materials and devices to collect water from fog with high efficiencies.

  18. Elasticity Solution of an Adhesively Bonded Cover Plate of Various Geometries

    NASA Technical Reports Server (NTRS)

    Aksel, G. N.; Erdogan, F.

    1985-01-01

    The plane strain of adhesively bonded structures consisting of two different isotropic adherends is considered. By expressing the x-y components of the displacements in terms of Fourier integrals and using the corresponding boundary and continuity conditions, the integral equations for the general problem are obtained and solved numerically by applying Gauss-Chebyshev integration scheme. The shear and the normal stresses in the adhesive are calculated for various geometries and material properties for a stiffened plate under uniaxial tension. Numerical results involving the stress intensity factors and the strain energy release rate are presented. The closed-form expressions for the Fredholm kernels are provided to obtain the solution for an arbitrary geometry and material properties. For the general geometry, the contribution of the normal stress is quite significant, while for symmetric geometries, the shear stress is dominant, the normal stress vanishes if the adherends are of the same material and the same thickness.

  19. Innovative Materials for Aircraft Morphing

    NASA Technical Reports Server (NTRS)

    Simpson, J. O.; Wise, S. A.; Bryant, R. G.; Cano, R. J.; Gates, T. S.; Hinkley, J. A.; Rogowski, R. S.; Whitley, K. S.

    1997-01-01

    Reported herein is an overview of the research being conducted within the Materials Division at NASA Langley Research Center on the development of smart material technologies for advanced airframe systems. The research is a part of the Aircraft Morphing Program which is a new six-year research program to develop smart components for self-adaptive airframe systems. The fundamental areas of materials research within the program are computational materials; advanced piezoelectric materials; advanced fiber optic sensing techniques; and fabrication of integrated composite structures. This paper presents a portion of the ongoing research in each of these areas of materials research.

  20. Electrochemical cell with powdered electrically insulative material as a separator

    DOEpatents

    Mathers, James P.; Olszanski, Theodore W.; Boquist, Carl W.

    1978-01-01

    A secondary electrochemical cell includes electrodes separated by a layer of electrically insulative powder. The powder includes refractory materials selected from the oxides and nitrides of metals and metaloids. The powdered refractory material, blended with electrolyte particles, can be compacted in layers with electrode materials to form an integral electrode structure or separately assembled into the cell. The assembled cell is heated to operating temperature leaving porous layers of electrically insulative, refractory particles, containing molten electrolyte between the electrodes.

  1. A Low Temperature Co-fired Ceramics Manufactured Power Inductor Based on A Ternary Hybrid Material System

    NASA Astrophysics Data System (ADS)

    Xie, Yunsong; Chen, Ru

    Low temperature co-fired ceramics (LTCC) is one of the most important techniques to produce circuits with high working frequency, multi-functionality and high integration. We have developed a methodology to enable a ternary hybrid material system being implemented into the LTCC manufacturing process. The co-firing sintering process can be divided into a densification and cooling process. In this method, a successful ternary hybrid material densification process is achieved by tuning the sintering profile of each material to match each other. The system integrity is maintained in the cooling process is obtained by develop a strong bonding at the interfaces of each materials. As a demonstration, we have construct a power inductor device made of the ternary material system including Ag, NiCuZn ferrite and non-magnetic ceramic. The power inductors well maintains its physical integrity after sintering. The microscopic images show no obvious sign of cracks or structural deformation. More importantly, despite the bonding between the ferrite and ceramic is enhanced by non-magnetic element diffusion, the undesired magnetic elements diffusion is effectively suppressed. The electric performance shows that the power handling capability is comparable to the current state of art device.

  2. Material Development Based on Digital Storytelling Activities and Assessment of Students' Views

    ERIC Educational Resources Information Center

    Tunç, Özlem Ayvaz

    2017-01-01

    In education system, as well as creating innovative classroom environments, it is necessary to choose effective teaching models and to structure and integrate these to the education program. Within this framework, the purpose of this study is to present students? views on developing materials based on digital narration for the teaching process in…

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornreich, Drew E; Vaidya, Rajendra U; Ammerman, Curtt N

    Integrated Computational Materials Engineering (ICME) is a novel overarching approach to bridge length and time scales in computational materials science and engineering. This approach integrates all elements of multi-scale modeling (including various empirical and science-based models) with materials informatics to provide users the opportunity to tailor material selections based on stringent application needs. Typically, materials engineering has focused on structural requirements (stress, strain, modulus, fracture toughness etc.) while multi-scale modeling has been science focused (mechanical threshold strength model, grain-size models, solid-solution strengthening models etc.). Materials informatics (mechanical property inventories) on the other hand, is extensively data focused. All of thesemore » elements are combined within the framework of ICME to create architecture for the development, selection and design new composite materials for challenging environments. We propose development of the foundations for applying ICME to composite materials development for nuclear and high-radiation environments (including nuclear-fusion energy reactors, nuclear-fission reactors, and accelerators). We expect to combine all elements of current material models (including thermo-mechanical and finite-element models) into the ICME framework. This will be accomplished through the use of a various mathematical modeling constructs. These constructs will allow the integration of constituent models, which in tum would allow us to use the adaptive strengths of using a combinatorial scheme (fabrication and computational) for creating new composite materials. A sample problem where these concepts are used is provided in this summary.« less

  4. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications

    PubMed Central

    Di Sante, Raffaella

    2015-01-01

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques. PMID:26263987

  5. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications.

    PubMed

    Di Sante, Raffaella

    2015-07-30

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

  6. A Multiscale, Nonlinear, Modeling Framework Enabling the Design and Analysis of Composite Materials and Structures

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2012-01-01

    A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.

  7. A Multiscale, Nonlinear, Modeling Framework Enabling the Design and Analysis of Composite Materials and Structures

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2011-01-01

    A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.

  8. Integrated seal for high-temperature electrochemical device

    DOEpatents

    Tucker, Michael C; Jacobson, Craig P

    2013-07-16

    The present invention provides electrochemical device structures having integrated seals, and methods of fabricating them. According to various embodiments the structures include a thin, supported electrolyte film with the electrolyte sealed to the support. The perimeter of the support is self-sealed during fabrication. The perimeter can then be independently sealed to a manifold or other device, e.g., via an external seal. According to various embodiments, the external seal does not contact the electrolyte, thereby eliminating the restrictions on the sealing method and materials imposed by sealing against the electrolyte.

  9. An Investigation of Porous Structure of TiNi-Based SHS-Materials Produced at Different Initial Synthesis Temperatures

    NASA Astrophysics Data System (ADS)

    Khodorenko, V. N.; Anikeev, S. G.; Kokorev, O. V.; Yasenchuk, Yu. F.; Gunther, V. É.

    2018-02-01

    An investigation of structural characteristics and behavior of TiNi-based pore-permeable materials manufactured by the methods of selfpropagating high-temperature synthesis (SHS) at the initial synthesis temperatures T = 400 and 600°C is performed. It is shown that depending on the temperature regime, the resulting structure and properties of the material can differ. It is found out that the SHS-material produced at the initial synthesis temperature T = 400°C possesses the largest number of micropores in the pore wall surface structure due to a high phase inhomogeneity of the alloy. The regime of structure optimization of the resulting materials is described and the main stages of formation of the pore wall microporous surfaces are revealed. It is demonstrated that after optimization of the surface structure of a TiNi-based fine-pore alloy by its chemical etching, the fraction of micropores measuring in size less than 50 nm increased from 59 to 68%, while the number of pores larger than 1 μm increased twofold from 11 to 22%. In addition, peculiar features of interaction between certain cell cultures with the surface of the SHS-material manufactured at different initial synthesis temperatures are revealed. It is found out that the dynamics of the cell material integration depends on the pore wall surface morphology and dimensions of macropores.

  10. An Integrated Tool for System Analysis of Sample Return Vehicles

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.; Maddock, Robert W.; Winski, Richard G.

    2012-01-01

    The next important step in space exploration is the return of sample materials from extraterrestrial locations to Earth for analysis. Most mission concepts that return sample material to Earth share one common element: an Earth entry vehicle. The analysis and design of entry vehicles is multidisciplinary in nature, requiring the application of mass sizing, flight mechanics, aerodynamics, aerothermodynamics, thermal analysis, structural analysis, and impact analysis tools. Integration of a multidisciplinary problem is a challenging task; the execution process and data transfer among disciplines should be automated and consistent. This paper describes an integrated analysis tool for the design and sizing of an Earth entry vehicle. The current tool includes the following disciplines: mass sizing, flight mechanics, aerodynamics, aerothermodynamics, and impact analysis tools. Python and Java languages are used for integration. Results are presented and compared with the results from previous studies.

  11. Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment

    DOE PAGES

    Yan, Qimin; Yu, Jie; Suram, Santosh K.; ...

    2017-03-06

    The limited number of known low-band-gap photoelectrocatalytic materials poses a significant challenge for the generation of chemical fuels from sunlight. Here, using high-throughput ab initio theory with experiments in an integrated workflow, we find eight ternary vanadate oxide photoanodes in the target band-gap range (1.2-2.8 eV). Detailed analysis of these vanadate compounds reveals the key role of VO 4 structural motifs and electronic band-edge character in efficient photoanodes, initiating a genome for such materials and paving the way for a broadly applicable high-throughput-discovery and materials-by-design feedback loop. Considerably expanding the number of known photoelectrocatalysts for water oxidation, our study establishesmore » ternary metal vanadates as a prolific class of photoanodematerials for generation of chemical fuels from sunlight and demonstrates our high-throughput theory-experiment pipeline as a prolific approach to materials discovery.« less

  12. Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Qimin; Yu, Jie; Suram, Santosh K.

    The limited number of known low-band-gap photoelectrocatalytic materials poses a significant challenge for the generation of chemical fuels from sunlight. Here, using high-throughput ab initio theory with experiments in an integrated workflow, we find eight ternary vanadate oxide photoanodes in the target band-gap range (1.2-2.8 eV). Detailed analysis of these vanadate compounds reveals the key role of VO 4 structural motifs and electronic band-edge character in efficient photoanodes, initiating a genome for such materials and paving the way for a broadly applicable high-throughput-discovery and materials-by-design feedback loop. Considerably expanding the number of known photoelectrocatalysts for water oxidation, our study establishesmore » ternary metal vanadates as a prolific class of photoanodematerials for generation of chemical fuels from sunlight and demonstrates our high-throughput theory-experiment pipeline as a prolific approach to materials discovery.« less

  13. High index glass thin film processing for photonics and photovoltaic (PV) applications

    NASA Astrophysics Data System (ADS)

    Ogbuu, Okechukwu Anthony

    To favorably compete with fossil-fuel technology, the greatest challenge for thin film solar-cells is to improve efficiency and reduce material cost. Thickness scaling to thin film reduces material cost but affects the light absorption in the cells; therefore a concept that traps incident photons and increases its optical path length is needed to boost absorption in thin film solar cells. One approach is the integration of low symmetric gratings (LSG), using high index material, on either the front-side or backside of 30 um thin c-Si cells. In this study, Multicomponent TeO2--Bi2O 3--ZnO (TBZ) glass thin films were prepared using RF magnetron sputtering under different oxygen flow rates. The influences of oxygen flow rate on the structural and optical properties of the resulting thin films were investigated. The structural origin of the optical property variation was studied using X-ray diffraction, X-ray photoelectron spectroscopy, Raman Spectroscopy, and transmission electron microscopy. The results indicate that TBZ glass thin film is a suitable material for front side LSG material photovoltaic and photonics applications due to their amorphous nature, high refractive index (n > 2), broad band optical transparency window, low processing temperature. We developed a simple maskless method to pattern sputtered tellurite based glass thin films using unconventional agarose hydrogel mediated wet etching. Conventional wet etching process, while claiming low cost and high throughput, suffers from reproducibility and pattern fidelity issues due to the isotropic nature of wet chemical etching when applied to glasses and polymers. This method overcomes these challenges by using an agarose hydrogel stamp to mediate a conformal etching process. In our maskless method, agarose hydrogel stamps are patterned following a standard soft lithography and replica molding process from micropatterned masters and soaked in a chemical etchant. The micro-scale features on the stamp are subsequently transferred into glass and polymer thin films via conformal wet etching. High refractive index chalcogenide glass (n = 2.6) thin films with composition As20Se80 was selected for backside LSG material due to their attractive properties. We developed an optimized integration protocol for LSG integration and successfully integrated these LSG structures at the back side of both 30 microm c-Si solar cells and standalone 30 microm c-Si wafers. Optical and electrical characterization of LSG on thin c-Si cells shows that LSG structures create higher absorption enhancement and external quantum efficiency at long wavelengths.

  14. Construction Cluster Volume I [Wood Structural Framing].

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Justice, Harrisburg. Bureau of Correction.

    The document is the first of a series, to be integrated with a G.E.D. program, containing instructional materials at the basic skills level for the construction cluster. It focuses on wood structural framing and contains 20 units: (1) occupational information; (2) blueprint reading; (3) using leveling instruments and laying out building lines; (4)…

  15. High char yield epoxy curing agents

    NASA Technical Reports Server (NTRS)

    Delvigs, P.; Serafini, T. T.; Vanucci, R. D.

    1981-01-01

    Class of imide-amine curing agents preserves structural integrity, prevents fiber release, and is fully compatible with conventional epoxy resins; agents do not detract from composite properties while greatly reducing char yield. Materials utilizing curing are used in aerospace, automotive, and other structural components where deterioration must be minimized and fiber release avoided in event of fire.

  16. Structural integrity of a confinement vessel for testing nuclear fuels for space propulsion

    NASA Astrophysics Data System (ADS)

    Bergmann, V. L.

    Nuclear propulsion systems for rockets could significantly reduce the travel time to distant destinations in space. However, long before such a concept can become reality, a significant effort must be invested in analysis and ground testing to guide the development of nuclear fuels. Any testing in support of development of nuclear fuels for space propulsion must be safely contained to prevent the release of radioactive materials. This paper describes analyses performed to assess the structural integrity of a test confinement vessel. The confinement structure, a stainless steel pressure vessel with bolted flanges, was designed for operating static pressures in accordance with the ASME Boiler and Pressure Vessel Code. In addition to the static operating pressures, the confinement barrier must withstand static overpressures from off-normal conditions without releasing radioactive material. Results from axisymmetric finite element analyses are used to evaluate the response of the confinement structure under design and accident conditions. For the static design conditions, the stresses computed from the ASME code are compared with the stresses computed by the finite element method.

  17. [Network structures in biological systems].

    PubMed

    Oleskin, A V

    2013-01-01

    Network structures (networks) that have been extensively studied in the humanities are characterized by cohesion, a lack of a central control unit, and predominantly fractal properties. They are contrasted with structures that contain a single centre (hierarchies) as well as with those whose elements predominantly compete with one another (market-type structures). As far as biological systems are concerned, their network structures can be subdivided into a number of types involving different organizational mechanisms. Network organization is characteristic of various structural levels of biological systems ranging from single cells to integrated societies. These networks can be classified into two main subgroups: (i) flat (leaderless) network structures typical of systems that are composed of uniform elements and represent modular organisms or at least possess manifest integral properties and (ii) three-dimensional, partly hierarchical structures characterized by significant individual and/or intergroup (intercaste) differences between their elements. All network structures include an element that performs structural, protective, and communication-promoting functions. By analogy to cell structures, this element is denoted as the matrix of a network structure. The matrix includes a material and an immaterial component. The material component comprises various structures that belong to the whole structure and not to any of its elements per se. The immaterial (ideal) component of the matrix includes social norms and rules regulating network elements' behavior. These behavioral rules can be described in terms of algorithms. Algorithmization enables modeling the behavior of various network structures, particularly of neuron networks and their artificial analogs.

  18. Investigations on injection molded, glass-fiber reinforced polyamide 6 integral foams using breathing mold technology

    NASA Astrophysics Data System (ADS)

    Roch, A.; Kehret, L.; Huber, T.; Henning, F.; Elsner, P.

    2015-05-01

    Investigations on PA6-GF50 integral foams have been carried out using different material systems: longfiber- and shortfiber-reinforced PA6 as well as unreinforced PA6 as a reference material. Both chemical and physical blowing agents were applied. Breathing mold technology (decompression of the mold) was selected for the foaming process. The integral foam design, which can be conceived as a sandwich structure, helps to save material in the neutral axis area and maintains a distance between load-bearing, unfoamed skin layers. For all test series an initial mold gap of 2.5 mm was chosen and the same amount of material was injected. In order to realize different density reductions, the mold opening stroke was varied. The experiments showed that, at a constant mass per unit area, integral polyamide 6 foams have a significantly higher bending stiffness than compact components, due to their higher area moment of inertia after foaming. At a constant surface weight the bending stiffness in these experiments could be increased by up to 600 %. Both shortfiber- and longfiber-reinforced polyamide 6 showed an increase in energy absorption during foaming.

  19. Application of fiber-reinforced bismaleimide materials to aircraft nacelle structures

    NASA Technical Reports Server (NTRS)

    Peros, Vasilios; Ruth, John; Trawinski, David

    1992-01-01

    Existing aircraft engine nacelle structures employ advanced composite materials to reduce weight and thereby increase overall performance. Use of advanced composite materials on existing aircraft nacelle structures includes fiber-reinforced epoxy structures and has typically been limited to regions furthest away from the hot engine core. Portions of the nacelle structure that are closer to the engine require materials with a higher temperature capability. In these portions, existing nacelle structures employ aluminum sandwich construction and skin/stringer construction. The aluminum structure is composed of many detail parts and assemblies and is usually protected by some form of ablative, insulator, or metallic thermal shield. A one-piece composite inner cowl for a new-generation engine nacelle structure has been designed using fiber-reinforced bismaleimide (BMI) materials and honeycomb core in a sandwich construction. The new composite design has many advantages over the existing aluminum structure. Multiple details were integrated into the one-piece composite design, thereby significantly reducing the number of detail parts and fasteners. The use of lightweight materials and the reduction of the number of joints result in a significant weight reduction over the aluminum design; manufacturing labor and the overall number of tools required have also been reduced. Several significant technical issues were addressed in the development of a BMI composite design. Technical evaluation of the available BMI systems led to the selection of a toughened BMI material which was resistant to microcracking under thermal cyclic loading and enhanced the damage tolerance of the structure. Technical evaluation of the degradation of BMI materials in contact with aluminum and other metals validated methods for isolation of the various materials. Graphite-reinforced BMI in contact with aluminum and some steels was found to degrade in salt spray testing. Isolation techniques such as those used for graphite-reinforced epoxy structures were shown to provide adequate protection. The springback and producibility of large BMI structures were evaluated by manufacturing prototype hardware which had the full-scale cross section of the one-piece composite structure.

  20. Computation of Anisotropic Bi-Material Interfacial Fracture Parameters and Delamination Creteria

    NASA Technical Reports Server (NTRS)

    Chow, W-T.; Wang, L.; Atluri, S. N.

    1998-01-01

    This report documents the recent developments in methodologies for the evaluation of the integrity and durability of composite structures, including i) the establishment of a stress-intensity-factor based fracture criterion for bimaterial interfacial cracks in anisotropic materials (see Sec. 2); ii) the development of a virtual crack closure integral method for the evaluation of the mixed-mode stress intensity factors for a bimaterial interfacial crack (see Sec. 3). Analytical and numerical results show that the proposed fracture criterion is a better fracture criterion than the total energy release rate criterion in the characterization of the bimaterial interfacial cracks. The proposed virtual crack closure integral method is an efficient and accurate numerical method for the evaluation of mixed-mode stress intensity factors.

  1. Digital Microdroplet Ejection Technology-Based Heterogeneous Objects Prototyping

    PubMed Central

    Yang, Jiquan; Feng, Chunmei; Yang, Jianfei; Zhu, Liya; Guo, Aiqing

    2016-01-01

    An integrate fabrication framework is presented to build heterogeneous objects (HEO) using digital microdroplets injecting technology and rapid prototyping. The heterogeneous materials part design and manufacturing method in structure and material was used to change the traditional process. The net node method was used for digital modeling that can configure multimaterials in time. The relationship of material, color, and jetting nozzle was built. The main important contributions are to combine the structure, material, and visualization in one process and give the digital model for manufacture. From the given model, it is concluded that the method is effective for HEO. Using microdroplet rapid prototyping and the model given in the paper HEO could be gotten basically. The model could be used in 3D biomanufacturing. PMID:26981110

  2. [Experimental-morphologic study of bone tissue reaction to carbon-containing material implantation with initiated X-ray contrast property].

    PubMed

    Grigorian, A S; Nabiev, F Kh; Golovin, R V

    2005-01-01

    In experimental study on 15 rabbits (chinchilla) influence of titanium plates implanted lapped on adjacent tissues in the region of the lower jaw body (comparison group) and carbon material with added boron in the concentrations of 8 and 15% (the study group) was studied. Results of the experimental-morphological investigation show that carbon-based materials with boron addition (with its content 8 and 15%) did not impede adaptive rebuilding of bone tissues and in particular bone structure regeneration in the process of reactive rebuilding of the "maternal" bone. Moreover, as the result of reactive processes developing in osseous tissues after implantation of the tested materials their successful integration in surrounding tissue structures was detected.

  3. Laser-assisted nanomaterial deposition, nanomanufacturing, in situ monitoring and associated apparatus

    DOEpatents

    Mao, Samuel S; Grigoropoulos, Costas P; Hwang, David J; Minor, Andrew M

    2013-11-12

    Laser-assisted apparatus and methods for performing nanoscale material processing, including nanodeposition of materials, can be controlled very precisely to yield both simple and complex structures with sizes less than 100 nm. Optical or thermal energy in the near field of a photon (laser) pulse is used to fabricate submicron and nanometer structures on a substrate. A wide variety of laser material processing techniques can be adapted for use including, subtractive (e.g., ablation, machining or chemical etching), additive (e.g., chemical vapor deposition, selective self-assembly), and modification (e.g., phase transformation, doping) processes. Additionally, the apparatus can be integrated into imaging instruments, such as SEM and TEM, to allow for real-time imaging of the material processing.

  4. Digital Microdroplet Ejection Technology-Based Heterogeneous Objects Prototyping.

    PubMed

    Li, Na; Yang, Jiquan; Feng, Chunmei; Yang, Jianfei; Zhu, Liya; Guo, Aiqing

    2016-01-01

    An integrate fabrication framework is presented to build heterogeneous objects (HEO) using digital microdroplets injecting technology and rapid prototyping. The heterogeneous materials part design and manufacturing method in structure and material was used to change the traditional process. The net node method was used for digital modeling that can configure multimaterials in time. The relationship of material, color, and jetting nozzle was built. The main important contributions are to combine the structure, material, and visualization in one process and give the digital model for manufacture. From the given model, it is concluded that the method is effective for HEO. Using microdroplet rapid prototyping and the model given in the paper HEO could be gotten basically. The model could be used in 3D biomanufacturing.

  5. Low temperature ablation models made by pressure/vacuum application

    NASA Technical Reports Server (NTRS)

    Fischer, M. C.; Heier, W. C.

    1970-01-01

    Method developed employs high pressure combined with strong vacuum force to compact ablation models into desired conical shape. Technique eliminates vapor hazard and results in high material density providing excellent structural integrity.

  6. Printing of microstructure strain sensor for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Le, Minh Quyen; Ganet, Florent; Audigier, David; Capsal, Jean-Fabien; Cottinet, Pierre-Jean

    2017-05-01

    Recent advances in microelectronics and materials should allow the development of integrated sensors with transduction properties compatible with being printed directly onto a 3D substrate, especially metallic and polymer substrates. Inorganic and organic electronic materials in microstructured and nanostructured forms, intimately integrated in ink, offer particularly attractive characteristics, with realistic pathways to sophisticated embodiments. Here, we report on these strategies and demonstrate the potential of 3D-printed microelectronics based on a structural health monitoring (SHM) application for the precision weapon systems. We show that our printed sensors can be employed in non-invasive, high-fidelity and continuous strain monitoring of handguns, making it possible to implement printed sensors on a 3D substrate in either SHM or remote diagnostics. We propose routes to commercialization and novel device opportunities and highlight the remaining challenges for research.

  7. Design and Manufacture of Structurally Efficient Tapered Struts

    NASA Technical Reports Server (NTRS)

    Brewster, Jebediah W.

    2009-01-01

    Composite materials offer the potential of weight savings for numerous spacecraft and aircraft applications. A composite strut is just one integral part of the node-to-node system and the optimization of the shut and node assembly is needed to take full advantage of the benefit of composites materials. Lockheed Martin designed and manufactured a very light weight one piece composite tapered strut that is fully representative of a full scale flight article. In addition, the team designed and built a prototype of the node and end fitting system that will effectively integrate and work with the full scale flight articles.

  8. Slow-wave propagation on monolithic microwave integrated circuits with layered and non-layered structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzuang, C.K.C.

    1986-01-01

    Various MMIC (monolithic microwave integrated circuit) planar waveguides have shown possible existence of a slow-wave propagation. In many practical applications of these slow-wave circuits, the semiconductor devices have nonuniform material properties that may affect the slow-wave propagation. In the first part of the dissertation, the effects of the nonuniform material properties are studied by a finite-element method. In addition, the transient pulse excitations of these slow-wave circuits also have great theoretical and practical interests. In the second part, the time-domain analysis of a slow-wave coplanar waveguide is presented.

  9. Modular initiator with integrated optical diagnostic

    DOEpatents

    Alam, M Kathleen [Cedar Crest, NM; Schmitt, Randal L [Tijeras, NM; Welle, Eric J [Niceville, FL; Madden, Sean P [Arlington, MA

    2011-05-17

    A slapper detonator which integrally incorporates an optical wavequide structure for determining whether there has been degradation of the explosive in the explosive device that is to be initiated by the detonator. Embodiments of this invention take advantage of the barrel-like character of a typical slapper detonator design. The barrel assembly, being in direct contact with the energetic material, incorporates an optical diagnostic device into the barrel assembly whereby one can monitor the state of the explosive material. Such monitoring can be beneficial because the chemical degradation of the explosive plays an important in achieving proper functioning of a detonator/initiator device.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balkin, Ethan R.; Gagnon, Katherine; Strong, Kevin T.

    This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity 186Re using deuteron irradiation of enriched 186W via the 186W(d,2n) 186Re reaction. Thick W and WO 3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxi-ally pressing powdered natural abundance W and WO 3, or 96.86% enriched 186W, into Al target supports. Alternatively, thick targets were prepared by pressing 186W between two layers of graphite powder or by placing pre-sintered (1105°C, 12 hours) natural abundance WO 3 pellets into an Al target support. Assessments ofmore » structural integrity were made on each target pre-pared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. With-in a minimum of 24 hours post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO 3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO 3 targets prepared and studied were unacceptable. By contrast, 186W metal was found to be a viable target material for 186Re production. Lastly, thick targets prepared with powdered 186W pressed between layers of graphite provided a particularly robust target configuration.« less

  11. Multi-Sensor Documentation of Metric and Qualitative Information of Historic Stone Structures

    NASA Astrophysics Data System (ADS)

    Adamopoulos, E.; Tsilimantou, E.; Keramidas, V.; Apostolopoulou, M.; Karoglou, M.; Tapinaki, S.; Ioannidis, C.; Georgopoulos, A.; Moropoulou, A.

    2017-08-01

    This paper focuses on the integration of multi-sensor techniques regarding the acquisition, processing, visualisation and management of data regarding historic stone structures. The interdisciplinary methodology that is carried out here comprises of two parts. In the first part, the acquisition of qualitative and quantitative data concerning the geometry, the materials and the degradation of the tangible heritage asset each time, is discussed. The second part, refers to the analysis, management and visualization of the interrelated data by using spatial information technologies. Through the paradigm of the surveying of the ancient temple of Pythian Apollo at Acropolis of Rhodes, Rhodes Island, Greece, it is aimed to highlight the issues deriving from the separate application of documentation procedures and how the fusion of these methods can contribute effectively to ensure the completeness of the measurements for complex structures. The surveying results are further processed to be compatible and integrated with GIS. Also, the geometric documentation derivatives are combined with environmental data and the results of the application of non-destructive testing and evaluation techniques in situ and analytical techniques in lab after sampling. GIS operations are utilized to document the building materials but also to model and to analyse the decay extent and patterns. Detailed surface measurements and geo-processing analysis are executed. This integrated approach, helps the assessment of past interventions on the monument, identify main causes of damage and decay, and finally assist the decision making on the most compatible materials and techniques for protection and restoration works.

  12. Bionic Nanosystems

    NASA Astrophysics Data System (ADS)

    Sebastian Mannoor, Manu

    Direct multidimensional integration of functional electronics and mechanical elements with viable biological systems could allow for the creation of bionic systems and devices possessing unique and advanced capabilities. For example, the ability to three dimensionally integrate functional electronic and mechanical components with biological cells and tissue could enable the creation of bionic systems that can have tremendous impact in regenerative medicine, prosthetics, and human-machine interfaces. However, as a consequence of the inherent dichotomy in material properties and limitations of conventional fabrication methods, the attainment of truly seamless integration of electronic and/or mechanical components with biological systems has been challenging. Nanomaterials engineering offers a general route for overcoming these dichotomies, primarily due to the existence of a dimensional compatibility between fundamental biological functional units and abiotic nanomaterial building blocks. One area of compelling interest for bionic systems is in the field of biomedical sensing, where the direct interfacing of nanosensors onto biological tissue or the human body could stimulate exciting opportunities such as on-body health quality monitoring and adaptive threat detection. Further, interfacing of antimicrobial peptide based bioselective probes onto the bionic nanosensors could offer abilities to detect pathogenic bacteria with bio-inspired selectivity. Most compellingly, when paired with additive manufacturing techniques such as 3D printing, these characteristics enable three dimensional integration and merging of a variety of functional materials including electronic, structural and biomaterials with viable biological cells, in the precise anatomic geometries of human organs, to form three dimensionally integrated, multi-functional bionic hybrids and cyborg devices with unique capabilities. In this thesis, we illustrate these approaches using three representative bionic systems: 1) Bionic Nanosensors: featuring bio-integrated graphene nanosensors for ubiquitous sensing, 2) Bionic Organs: featuring 3D printed bionic ears with three dimensionally integrated electronics and 3) Bionic Leaves: describing ongoing work in the direction of the creation of a bionic leaf enabled by the integration of plant derived photosynthetic functional units with electronic materials and components into a leaf-shaped hierarchical structure for harvesting photosynthetic bioelectricity.

  13. Advanced technology composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Walker, Thomas H.

    1991-01-01

    Work performed during the 25th month on NAS1-18889, Advanced Technology Composite Aircraft Structures, is summarized. The main objective of this program is to develop an integrated technology and demonstrate a confidence level that permits the cost- and weight-effective use of advanced composite materials in primary structures of future aircraft with the emphasis on pressurized fuselages. The period from 1-31 May 1991 is covered.

  14. Passive and Active Control of Space Structures (PACOSS)

    NASA Astrophysics Data System (ADS)

    Morosow, G.; Harcrow, H.; Rogers, L.

    1985-04-01

    Passive and Active Control of Space Structures (PACOSS) is a five-year program designed to investigate highly damped structures in conjunction with active control systems, and in particular to develop technology that integrates passive damping and active control to achieve precise pointing control. Major areas of research include metal matrix composites; viscoelastic materials; damping devices; dynamic test article design, fabrication and testing; and active damping.

  15. Ferroelectrics for semiconductor devices

    NASA Astrophysics Data System (ADS)

    Sayer, M.; Wu, Z.; Vasant Kumar, C. V. R.; Amm, D. T.; Griswold, E. M.

    1992-11-01

    The technology for the implementation of the integration of thin film ferroelectrics with silicon processing for various devices is described, and factors affecting the integration of ferroelectric films with semiconductor processing are discussed. Consideration is also given to film properties, the properties of electrode materials and structures, and the phenomena of ferroelectric fatigue and aging. Particular attention is given to the nonmemory device application of ferroelectrics.

  16. Three-Dimensional Microvascular Fiber-Reinforced Composites

    DTIC Science & Technology

    2011-03-01

    are varied to meet the desired design criteria. The interstitial pore space between fi bers is infi ltrated with a low- viscosity thermosetting resin...depolymerization and monomer vaporization results in a 3D microvascular network integrated into a structural composite; d) fl uid (yellow) fi lls...VaSC method uses commercially available materials and can be seamlessly integrated with conventional fi ber-reinforced composite manufacturing

  17. Additive manufacturing of RF absorbers

    NASA Astrophysics Data System (ADS)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  18. Organic Micro/Nanoscale Lasers.

    PubMed

    Zhang, Wei; Yao, Jiannian; Zhao, Yong Sheng

    2016-09-20

    Micro/nanoscale lasers that can deliver intense coherent light signals at (sub)wavelength scale have recently captured broad research interest because of their potential applications ranging from on-chip information processing to high-throughput sensing. Organic molecular materials are a promising kind of ideal platform to construct high-performance microlasers, mainly because of their superiority in abundant excited-state processes with large active cross sections for high gain emissions and flexibly assembled structures for high-quality microcavities. In recent years, ever-increasing efforts have been dedicated to developing such organic microlasers toward low threshold, multicolor output, broadband tunability, and easy integration. Therefore, it is increasingly important to summarize this research field and give deep insight into the structure-property relationships of organic microlasers to accelerate the future development. In this Account, we will review the recent advances in organic miniaturized lasers, with an emphasis on tunable laser performances based on the tailorable microcavity structures and controlled excited-state gain processes of organic materials toward integrated photonic applications. Organic π-conjugated molecules with weak intermolecular interactions readily assemble into regular nanostructures that can serve as high-quality optical microcavities for the strong confinement of photons. On the basis of rational material design, a series of optical microcavities with different structures have been controllably synthesized. These microcavity nanostructures can be endowed with effective four-level dynamic gain processes, such as excited-state intramolecular charge transfer, excited-state intramolecular proton transfer, and excimer processes, that exhibit large dipole optical transitions for strongly active gain behaviors. By tailoring these excited-state processes with molecular/crystal engineering and external stimuli, people have effectively modulated the performances of organic micro/nanolasers. Furthermore, by means of controlled assembly and tunable laser performances, efficient outcoupling of microlasers has been successfully achieved in various organic hybrid microstructures, showing considerable potential for the integrated photonic applications. This Account starts by presenting an overview of the research evolution of organic microlasers in terms of microcavity resonators and energy-level gain. Then a series of strategies to tailor the microcavity structures and excited-state dynamics of organic nanomaterials for the modulation of lasing performances are highlighted. In the following part, we introduce the construction and advanced photonic functionalities of organic-microlaser-based hybrid structures and their applications in integrated nanophotonics. Finally, we provide our outlook on the current challenges as well as the future development of organic microlasers. It is anticipated that this Account will provide inspiration for the development of miniaturized lasers with desired performances by tailoring of excited-state processes and microcavity structures toward integrated photonic applications.

  19. Smart skin spiral antenna with chiral absorber

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Varadan, Vasundara V.

    1995-05-01

    Recently there has been considerable interest toward designing 'smart skins' for aircraft. The smart skin is a composite layer which may contain conformal radars, conformal microstrip antennas or spiral antennas for electromagnetic applications. These embedded antennas will give rise to very low radar cross section (RCS) or can be completely 'hidden' to tracking radar. In addition, they can be used to detect, monitor or even jam other unwanted electromagnetic field signatures. This paper is designed to address some technical advances made to reduce the size of spiral antennas using tunable dielectric materials and chiral absorbers. The purpose is to design, develop and fabricate a thin, wideband, conformal spiral antenna architecture that is structurally integrable and which uses advanced Penn State dielectric and absorber materials to achieve wideband ground planes, and together with low RCS. Traditional practice has been to design radome and antenna as separate entities and then resolve any interface problems during an integration phase. A structurally integrable conformal antenna, however, demands that the functional components be highly integrated both conceptually and in practice. Our concept is to use the lower skin of the radome as a substrate on which the radiator can be made using standard photolithography, thick film or LTCC techniques.

  20. Lightning protection guidelines and test data for adhesively bonded aircraft structures

    NASA Technical Reports Server (NTRS)

    Pryzby, J. E.; Plumer, J. A.

    1984-01-01

    The highly competitive marketplace and increasing cost of energy has motivated manufacturers of general aviation aircraft to utilize composite materials and metal-to-metal bonding in place of conventional fasteners and rivets to reduce weight, obtain smoother outside surfaces and reduce drag. The purpose of this program is protection of these new structures from hazardous lightning effects. The program began with a survey of advance-technology materials and fabrication methods under consideration for future designs. Sub-element specimens were subjected to simulated lightning voltages and currents. Measurements of bond line voltages, electrical sparking, and mechanical strength degradation were made to comprise a data base of electrical properties for new technology materials and basic structural configurations. The second hase of the program involved tests on full scale wing structures which contained integral fuel tanks and which were representative of examples of new technology structures and fuel systems. The purpose of these tests was to provide a comparison between full scale structural measurements and those obtained from the sub-element specimens.

  1. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring

    PubMed Central

    Chang, Shu-Wei; Kuo, Shih-Yu; Huang, Ting-Hsuan

    2017-01-01

    This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future. PMID:29271937

  2. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring.

    PubMed

    Chang, Shu-Wei; Lin, Tzu-Kang; Kuo, Shih-Yu; Huang, Ting-Hsuan

    2017-12-22

    This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.

  3. Multifunctional Nanotube Polymer Nanocomposites for Aerospace Applications: Adhesion between SWCNT and Polymer Matrix

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Wise, Kristopher E.; Kang, Jin Ho; Kim, Jae-Woo; Sauti, Godfrey; Lowther, Sharon E.; Lillehei, Peter T.; Smith, Michael W.; Siochi, Emilie J.; Harrison, Joycelyn S.; hide

    2008-01-01

    Multifunctional structural materials can enable a novel design space for advanced aerospace structures. A promising route to multifunctionality is the use of nanotubes possessing the desired combination of properties to enhance the characteristics of structural polymers. Recent nanotube-polymer nanocomposite studies have revealed that these materials have the potential to provide structural integrity as well as sensing and/or actuation capabilities. Judicious selection or modification of the polymer matrix to promote donor acceptor and/or dispersion interactions can improve adhesion at the interface between the nanotubes and the polymer matrix significantly. The effect of nanotube incorporation on the modulus and toughness of the polymer matrix will be presented. Very small loadings of single wall nanotubes in a polyimide matrix yield an effective sensor material that responds to strain, stress, pressure, and temperature. These materials also exhibit significant actuation in response to applied electric fields. The objective of this work is to demonstrate that physical properties of multifunctional material systems can be tailored for specific applications by controlling nanotube treatment (different types of nanotubes), concentration, and degree of alignment.

  4. Optical research of biomaterials of Sorbulak

    NASA Astrophysics Data System (ADS)

    Esyrev, O. V.; Kupchishin, A. A.; Kupchishin, A. I.; Voronova, N. A.

    2016-02-01

    Within the framework of optical research it was established that on the unpolluted samples of sedge stems occurs structuring of material, whereas on contaminated and irradiated blurring of its structure takes place. Sampling of sedges and rushes for research was carried out in areas near the first dam Sorbulak. For comparison, samples of same materials were taken far away from populated areas. Irradiation was carried out with high-energy electrons with energy of 2 MeV and integral dose of 3·105 Gr. Irradiation leads to a more pronounced structuredness of material. There is a significant difference in the structural elements (epidermis, vascular bundles, parenchymal cells, etc.). There are traced dark spots and bands associated with the presence of huge amounts of heavy metals against the background of a green matrix.

  5. Microassembly of Heterogeneous Materials using Transfer Printing and Thermal Processing

    PubMed Central

    Keum, Hohyun; Yang, Zining; Han, Kewen; Handler, Drew E.; Nguyen, Thong Nhu; Schutt-Aine, Jose; Bahl, Gaurav; Kim, Seok

    2016-01-01

    Enabling unique architectures and functionalities of microsystems for numerous applications in electronics, photonics and other areas often requires microassembly of separately prepared heterogeneous materials instead of monolithic microfabrication. However, microassembly of dissimilar materials while ensuring high structural integrity has been challenging in the context of deterministic transferring and joining of materials at the microscale where surface adhesion is far more dominant than body weight. Here we present an approach to assembling microsystems with microscale building blocks of four disparate classes of device-grade materials including semiconductors, metals, dielectrics, and polymers. This approach uniquely utilizes reversible adhesion-based transfer printing for material transferring and thermal processing for material joining at the microscale. The interfacial joining characteristics between materials assembled by this approach are systematically investigated upon different joining mechanisms using blister tests. The device level capabilities of this approach are further demonstrated through assembling and testing of a microtoroid resonator and a radio frequency (RF) microelectromechanical systems (MEMS) switch that involve optical and electrical functionalities with mechanical motion. This work opens up a unique route towards 3D heterogeneous material integration to fabricate microsystems. PMID:27427243

  6. Uncertainty aggregation and reduction in structure-material performance prediction

    NASA Astrophysics Data System (ADS)

    Hu, Zhen; Mahadevan, Sankaran; Ao, Dan

    2018-02-01

    An uncertainty aggregation and reduction framework is presented for structure-material performance prediction. Different types of uncertainty sources, structural analysis model, and material performance prediction model are connected through a Bayesian network for systematic uncertainty aggregation analysis. To reduce the uncertainty in the computational structure-material performance prediction model, Bayesian updating using experimental observation data is investigated based on the Bayesian network. It is observed that the Bayesian updating results will have large error if the model cannot accurately represent the actual physics, and that this error will be propagated to the predicted performance distribution. To address this issue, this paper proposes a novel uncertainty reduction method by integrating Bayesian calibration with model validation adaptively. The observation domain of the quantity of interest is first discretized into multiple segments. An adaptive algorithm is then developed to perform model validation and Bayesian updating over these observation segments sequentially. Only information from observation segments where the model prediction is highly reliable is used for Bayesian updating; this is found to increase the effectiveness and efficiency of uncertainty reduction. A composite rotorcraft hub component fatigue life prediction model, which combines a finite element structural analysis model and a material damage model, is used to demonstrate the proposed method.

  7. Evolving the machine

    NASA Astrophysics Data System (ADS)

    Bailey, Brent Andrew

    Structural designs by humans and nature are wholly distinct in their approaches. Engineers model components to verify that all mechanical requirements are satisfied before assembling a product. Nature, on the other hand; creates holistically: each part evolves in conjunction with the others. The present work is a synthesis of these two design approaches; namely, spatial models that evolve. Topology optimization determines the amount and distribution of material within a model; which corresponds to the optimal connectedness and shape of a structure. Smooth designs are obtained by using higher-order B-splines in the definition of the material distribution. Higher-fidelity is achieved using adaptive meshing techniques at the interface between solid and void. Nature is an exemplary basis for mass minimization, as processing material requires both resources and energy. Topological optimization techniques were originally formulated as the maximization of the structural stiffness subject to a volume constraint. This research inverts the optimization problem: the mass is minimized subject to deflection constraints. Active materials allow a structure to interact with its environment in a manner similar to muscles and sensory organs in animals. By specifying the material properties and design requirements, adaptive structures with integrated sensors and actuators can evolve.

  8. Multi-scale predictive modeling of nano-material and realistic electron devices

    NASA Astrophysics Data System (ADS)

    Palaria, Amritanshu

    Among the challenges faced in further miniaturization of electronic devices, heavy influence of the detailed atomic configuration of the material(s) involved, which often differs significantly from that of the bulk material(s), is prominent. Device design has therefore become highly interrelated with material engineering at the atomic level. This thesis aims at outlining, with examples, a multi-scale simulation procedure that allows one to integrate material and device aspects of nano-electronic design to predict behavior of novel devices with novel material. This is followed in four parts: (1) An approach that combines a higher time scale reactive force field analysis with density functional theory to predict structure of new material is demonstrated for the first time for nanowires. Novel stable structures for very small diameter silicon nanowires are predicted. (2) Density functional theory is used to show that the new nanowire structures derived in 1 above have properties different from diamond core wires even though the surface bonds in some may be similar to the surface of bulk silicon. (3) Electronic structure of relatively large-scale germanium sections of realistically strained Si/strained Ge/ strained Si nanowire heterostructures is computed using empirical tight binding and it is shown that the average non-homogeneous strain in these structures drives their interesting non-conventional electronic characteristics such as hole effective masses which decrease as the wire cross-section is reduced. (4) It is shown that tight binding, though empirical in nature, is not necessarily limited to the material and atomic structure for which the parameters have been empirically derived, but that simple changes may adapt the derived parameters to new bond environments. Si (100) surface electronic structure is obtained from bulk Si parameters.

  9. Study of structural design concepts for an arrow wing supersonic transport configuration, volume 1. Tasks 1 and 2

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A structural design study was made, based on a 1975 level of technology, to assess the relative merits of structural concepts and materials for an advanced supersonic transport cruising at Mach 2.7. Preliminary studies were made to insure compliance of the configuration with general design criteria, to integrate the propulsion system with the airframe, to select structural concepts and materials, and to define an efficient structural arrangement. An advanced computerized structural design system was used, in conjunction with a relatively large, complex finite element model, for detailed analysis and sizing of structural members to satisfy strength and flutter criteria. A baseline aircraft design was developed for assessment of current technology and for use in future studies of aerostructural trades, and application of advanced technology. Criteria, analysis methods, and results are presented.

  10. Method for the thermal characterization, visualization, and integrity evaluation of conducting material samples or complex structures

    DOEpatents

    Ortiz, Marcos G.

    1992-01-01

    A method for modeling a conducting material sample or structure (herein called a system) as at least two regions which comprise an electrical network of resistances, for measuring electric resistance between at least two selected pairs of external leads attached to the surface of the system, wherein at least one external lead is attached to the surface of each of the regions, and, using basic circuit theory, for translating measured resistances into temperatures or thermophysical properties in corresponding regions of the system.

  11. Method for the thermal characterization, visualization, and integrity evaluation of conducting material samples or complex structures

    DOEpatents

    Ortiz, M.G.

    1992-11-24

    Disclosed is a method for modeling a conducting material sample or structure (herein called a system) as at least two regions which comprise an electrical network of resistances, for measuring electric resistance between at least two selected pairs of external leads attached to the surface of the system, wherein at least one external lead is attached to the surface of each of the regions, and, using basic circuit theory, for translating measured resistances into temperatures or thermophysical properties in corresponding regions of the system. 16 figs.

  12. Integral resistors and capacitors for mixed-signal packages using electroless plating and polymer-ceramic nanocomposites

    NASA Astrophysics Data System (ADS)

    Chahal, Premjeet

    In this work, new approaches to achieving integral resistors and capacitors on large area substrates at low temperatures in a high density wiring (HDW) environment using non-vacuum deposition techniques are introduced. This includes the use of polymer-ceramic nanocomposites for integral capacitors and electroless plating for integral resistors. From the literature review it is believed that resistors in the range of 5--50 ohm/square and capacitors in the range of 1--20 nF/cm2 can satisfy most of the mixed-signal application needs. The proposed materials can satisfy this need as demonstrated in this work. Several test vehicles were fabricated and measured to characterize the material properties, and demonstrate conventional and novel circuits for mixed-signal applications. To begin with, several polymer-ceramic combinations were analyzed under varying conditions to gain a fundamental understanding of the material system. Experimental advances have been made to achieve high dielectric constant values for both epoxy-ceramic and polyimide-ceramic systems. These material systems in general can satisfy specific capacitances in the range of 1--22 nF/cm2. These materials were found to be stable into the GHz range and have low loss-tangent. For electroless resistors, several plating baths were studied and a combination of Ni-P/Ni-W-P was found to produce the best results. Uniform plating was achieved through better nucleation of PdCl2 catalyst through the use of organosilane surface treatment. The Ni-P/Ni-W-P films produced sheet resistance in the range of 5--50 ohm/square and TCR below 50 ppm/°C. The material is stable into the GHz range. Upon optimizing the electrical properties and processing of capacitors and resistors, several test vehicles were fabricated to demonstrate some conventional and novel passive structures for RF and mixed-signal applications (e.g., filters, delay lines, etc.). Some of the structures were modeled using MDS and PSPICE and a good correlation between measured and modeled results were obtained. Capacitors on large area PWB substrates using meniscus coating are also demonstrated with a typical capacitance of 10 nF/cm2. The yield of the capacitor structures is found to be affected by the surface roughness of the bottom copper electrode. Resistors have been demonstrated on 6″ x 6″ substrates using a simple set-up.

  13. Carbon materials-functionalized tin dioxide nanoparticles toward robust, high-performance nitrogen dioxide gas sensor.

    PubMed

    Zhang, Rui; Liu, Xiupeng; Zhou, Tingting; Wang, Lili; Zhang, Tong

    2018-08-15

    Carbon (C) materials, which process excellent electrical conductivity and high carrier mobility, are promising sensing materials as active units for gas sensors. However, structural agglomeration caused by chemical processes results in a small resistance change and low sensing response. To address the above issues, structure-derived carbon-coated tin dioxide (SnO 2 ) nanoparticles having distinct core-shell morphology with a 3D net-like structure and highly uniform size are prepared by careful synthesis and fine structural design. The optimum carbon-coated SnO 2 nanoparticles (SnO 2 /C)-based gas sensor exhibits a low working temperature, excellent selectivity and fast response-recovery properties. In addition, the SnO 2 /C-based gas sensor can maintain a sensitivity to nitrogen dioxide (NO 2 ) of 3 after being cycled 4 times at 140 °C for, suggesting its good long-term stability. The structural integrity, good synergistic properties, and high gas-sensing performance of SnO 2 /C render it a promising sensing material for advanced gas sensors. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Impedance based sensor technology to monitor stiffness of biological structures

    NASA Astrophysics Data System (ADS)

    Annamdas, Venu Gopal Madhav; Annamdas, Kiran Kishore Kumar

    2010-04-01

    In countries like USA or Japan it is not so uncommon to have wooden structures in their homes. However, metals and its alloys are the most widely used engineering materials in construction of any military or civil structure. Revisiting natural disasters like the recent Haiti earthquake (12 Jan 2010) or Katrina (cyclones) reminds the necessity to have better housing infrastructure with robust monitoring systems. Traditionally wood is accepted as excellent rehabilitation material, after any disaster. The recycling materials extracted from in-organic, biodegradable wastes, also can be used for rehabilitation. The key issue which dampens the life of these rehabilitated structure including green materials (like wood) is unnecessary deposits (nails, screws, bolts etc)/damages due to insect attack. Thus, a few health monitoring techniques have emerged in the recent past. Electromechanical Impedance technique is one such technique, which is simple but robust to detect variations in the integrity of structures. In this paper, impedance based piezoceramic sensor was bonded on wooden sample, which was used to study changes due to metallic (steel nails) deposits at various locations. A study of weight deposits on aluminum plate was used for comparisons.

  15. Additive Manufacturing of Composites and Complex Materials

    NASA Astrophysics Data System (ADS)

    Spowart, Jonathan E.; Gupta, Nikhil; Lehmhus, Dirk

    2018-03-01

    Advanced composite materials form an important class of high-performance industrial materials used in weight-sensitive applications such as aerospace structures, automotive structures and sports equipment. In many of these applications, parts are made in small production runs, are highly customized and involve long process development times. Developments in additive manufacturing (AM) methods have helped in overcoming many of these limitations. The special topic of Additive Manufacturing of Composites and Complex Materials captures the state of the art in this area by collecting nine papers that present much novel advancement in this field. The studies under this topic show advancement in the area of AM of carbon fiber and graphene-reinforced composites with high thermal and electrical conductivities, development of new hollow glass particle-filled syntactic foam filaments for printing lightweight structures and integration of sensors or actuators during AM of metallic parts. Some of the studies are focused on process optimization or modification to increase the manufacturing speed or tuning manufacturing techniques to enable AM of new materials.

  16. Harmonised framework for ecological risk assessment of sediments from ports and estuarine zones of North and South Atlantic.

    PubMed

    Choueri, R B; Cesar, A; Abessa, D M S; Torres, R J; Riba, I; Pereira, C D S; Nascimento, M R L; Morais, R D; Mozeto, A A; DelValls, T A

    2010-04-01

    This paper presents a harmonised framework of sediment quality assessment and dredging material characterisation for estuaries and port zones of North and South Atlantic. This framework, based on the weight-of-evidence approach, provides a structure and a process for conducting sediment/dredging material assessment that leads to a decision. The main structure consists of "step 1" (examination of available data); "step 2" (chemical characterisation and toxicity assessment); "decision 1" (any chemical level higher than reference values? are sediments toxic?); "step 3" (assessment of benthic community structure); "step 4" (integration of the results); "decision 2" (are sediments toxic or benthic community impaired?); "step 5" (construction of the decision matrix) and "decision 3" (is there environmental risk?). The sequence of assessments may be interrupted when the information obtained is judged to be sufficient for a correct characterisation of the risk posed by the sediments/dredging material. This framework brought novel features compared to other sediment/dredging material risk assessment frameworks: data integration through multivariate analysis allows the identification of which samples are toxic and/or related to impaired benthic communities; it also discriminates the chemicals responsible for negative biological effects; and the framework dispenses the use of a reference area. We demonstrated the successful application of this framework in different port and estuarine zones of the North (Gulf of Cádiz) and South Atlantic (Santos and Paranaguá Estuarine Systems).

  17. Development of a Design Supporting System for Nano-Materials based on a Framework for Integrated Knowledge of Functioning-Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Tarumi, Shinya; Kozaki, Kouji; Kitamura, Yoshinobu; Mizoguchi, Riichiro

    In the recent materials research, much work aims at realization of ``functional materials'' by changing structure and/or manufacturing process with nanotechnology. However, knowledge about the relationship among function, structure and manufacturing process is not well organized. So, material designers have to consider a lot of things at the same time. It would be very helpful for them to support their design process by a computer system. In this article, we discuss a conceptual design supporting system for nano-materials. Firstly, we consider a framework for representing functional structures and manufacturing processes of nano-materials with relationships among them. We expand our former framework for representing functional knowledge based on our investigation through discussion with experts of nano-materials. The extended framework has two features: 1) it represents functional structures and manufacturing processes comprehensively, 2) it expresses parameters of function and ways with their dependencies because they are important for material design. Next, we describe a conceptual design support system we developed based on the framework with its functionalities. Lastly, we evaluate the utility of our system in terms of functionality for design supports. For this purpose, we tried to represent two real examples of material design. And then we did an evaluation experiment on conceptual design of material using our system with the collaboration of domain experts.

  18. CMOS compatible IR sensors by cytochrome c protein

    NASA Astrophysics Data System (ADS)

    Liao, Chien-Jen; Su, Guo-Dung

    2013-09-01

    In recent years, due to the progression of the semiconductor industrial, the uncooled Infrared sensor - microbolometer has opened the opportunity for achieving low cost infrared imaging systems for both military and commercial applications. Therefore, various fabrication processes and different materials based microbolometer have been developed sequentially. The cytochrome c (protein) thin film has be reported high temperature coefficient of resistance (TCR), which is related to the performance of microbolometer directly. Hence the superior TCR value will increase the performance of microbolometer. In this paper, we introduced a novel fabrication process using aluminum which is compatible with the Taiwan Semiconductor Manufacture Company (TSMC) D35 2P4M process as the main structure material, which benefits the device to integrate with readout integrated circuit (ROIC).The aluminum split structure is suspended by sacrificial layer utilizing the standard photolithography technology and chemical etching. The height and thickness of the structure are already considered. Besides, cytochrome c solutions were ink-jetted onto the aluminum structure by using the inkjet printer, applying precise control of the Infrared absorbing layer. In measurement, incident Infrared radiation can be detected and later the heat can be transmitted to adjacent pads to readout the signal. This approach applies an inexpensive and simple fabrication process and makes the device suitable for integration. In addition, the performance can be further improved with low noise readout circuits.

  19. Two Dimensional Heat Transfer around Penetrations in Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.; Kelly, Andrew O.; Jumper, Kevin M.

    2012-01-01

    The objective of this task was to quantify thermal losses involving integrating MLI into real life situations. Testing specifically focused on the effects of penetrations (including structural attachments, electrical conduit/feedthroughs, and fluid lines) through MLI. While there have been attempts at quantifying these losses both analytically and experimentally, none have included a thorough investigation of the methods and materials that could be used in such applications. To attempt to quantify the excess heat load coming into the system due to the integration losses, a calorimeter was designed to study two dimensional heat transfer through penetrated MLI. The test matrix was designed to take as many variables into account as was possible with the limited test duration and system size. The parameters varied were the attachment mechanism, the buffer material (for buffer attachment mechanisms only), the thickness of the buffer, and the penetration material. The work done under this task is an attempt to measure the parasitic heat loads and affected insulation areas produced by system integration, to model the parasitic loads, and from the model produce engineering equations to allow for the determination of parasitic heat loads in future applications. The methods of integration investigated were no integration, using a buffer to thermally isolate the strut from the MLI, and temperature matching the MLI on the strut. Several materials were investigated as a buffer material including aerogel blankets, aerogel bead packages, cryolite, and even an evacuated vacuum space (in essence a no buffer condition).

  20. Piezo impedance sensors to monitor degradation of biological structure

    NASA Astrophysics Data System (ADS)

    Annamdas, Kiran Kishore Kumar; Annamdas, Venu Gopal Madhav

    2010-04-01

    In some countries it is common to have wooden structures in their homes, especially Japan. However, metals and its alloys are the most widely used engineering materials in construction of any military or civil structure. Re-visiting natural disasters like the recent Haiti earthquake (12 Jan 2010) or Katrina (cyclones) reminds the necessity to have better housing infrastructure with robust monitoring systems. Traditionally wood (green material) was accepted as excellent rehabilitation material, after any disaster. In recent times, the recycling materials extracted from inorganic, biodegradable wastes are converted into blocks or sheets, and are also used to assist public in rehabilitation camps. The key issue which decreases the life of these rehabilitated structure including green materials (like wood) is unnecessary degradation or deterioration over time due to insect or acid attack or rain/ice fall. The recycling material also needs monitoring to protect them against acid or rain/ice attacks. Thus, a few health monitoring techniques have emerged in the recent past. Electromechanical Impedance technique is one such technique, which is simple but robust to detect variations in the integrity of structures. In this paper, impedance based piezoceramic sensor was bonded on wooden sample, which was subjected to degradation in presence of acids. Variations in mass of plank are studied.

  1. Integrated Design Software Predicts the Creep Life of Monolithic Ceramic Components

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Significant improvements in propulsion and power generation for the next century will require revolutionary advances in high-temperature materials and structural design. Advanced ceramics are candidate materials for these elevated-temperature applications. As design protocols emerge for these material systems, designers must be aware of several innate features, including the degrading ability of ceramics to carry sustained load. Usually, time-dependent failure in ceramics occurs because of two different, delayedfailure mechanisms: slow crack growth and creep rupture. Slow crack growth initiates at a preexisting flaw and continues until a critical crack length is reached, causing catastrophic failure. Creep rupture, on the other hand, occurs because of bulk damage in the material: void nucleation and coalescence that eventually leads to macrocracks which then propagate to failure. Successful application of advanced ceramics depends on proper characterization of material behavior and the use of an appropriate design methodology. The life of a ceramic component can be predicted with the NASA Lewis Research Center's Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design programs. CARES/CREEP determines the expected life of a component under creep conditions, and CARES/LIFE predicts the component life due to fast fracture and subcritical crack growth. The previously developed CARES/LIFE program has been used in numerous industrial and Government applications.

  2. ENGINEERING BULLETIN: SOLIDIFICATION/STABILIZATION OF ORGANICS AND INORGANICS

    EPA Science Inventory

    Solidification refers to techniques that encapsulate hazardous waste into a solid material of high structural integrity. Encapsulation involves either fine waste particles (microencapsulation) or a large block or container of wastes (macroencapsulation). Stabilization refe...

  3. Organic emitters: Light-emitting fabrics

    NASA Astrophysics Data System (ADS)

    Ortí, Enrique; Bolink, Henk J.

    2015-04-01

    Light-emitting fibres that suit integration with textiles are prepared by dip-coating a steel wire with an electroluminescent material and then cleverly wrapping the structure with a carbon nanotube sheet that functions as a transparent electrode.

  4. Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors

    PubMed Central

    Yuan, Liang (Leon); Herman, Peter R.

    2016-01-01

    Three-dimensional (3D) periodic nanostructures underpin a promising research direction on the frontiers of nanoscience and technology to generate advanced materials for exploiting novel photonic crystal (PC) and nanofluidic functionalities. However, formation of uniform and defect-free 3D periodic structures over large areas that can further integrate into multifunctional devices has remained a major challenge. Here, we introduce a laser scanning holographic method for 3D exposure in thick photoresist that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form uniform 3D nanostructure with beam size scaled to small 200 μm diameter. In this way, laser scanning is presented as a facile means to embed 3D PC structure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems. PMID:26922872

  5. Energy Based Multiscale Modeling with Non-Periodic Boundary Conditions

    DTIC Science & Technology

    2013-05-13

    below in Figure 8. At each incremental step in the analysis , the user material defined subroutine (UMAT) was utilized to perform the communication...initiation and modeling using XFEM. Appropriate localization schemes will be developed to allow for deformations conducive for crack opening...REFERENCES 1. Talreja R., 2006, “Damage analysis for structural integrity and durability of composite materials ,” Fatigue & Fracture of

  6. Progress Toward an Integration of Process-Structure-Property-Performance Models for "Three-Dimensional (3-D) Printing" of Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Collins, P. C.; Haden, C. V.; Ghamarian, I.; Hayes, B. J.; Ales, T.; Penso, G.; Dixit, V.; Harlow, G.

    2014-07-01

    Electron beam direct manufacturing, synonymously known as electron beam additive manufacturing, along with other additive "3-D printing" manufacturing processes, are receiving widespread attention as a means of producing net-shape (or near-net-shape) components, owing to potential manufacturing benefits. Yet, materials scientists know that differences in manufacturing processes often significantly influence the microstructure of even widely accepted materials and, thus, impact the properties and performance of a material in service. It is important to accelerate the understanding of the processing-structure-property relationship of materials being produced via these novel approaches in a framework that considers the performance in a statistically rigorous way. This article describes the development of a process model, the assessment of key microstructural features to be incorporated into a microstructure simulation model, a novel approach to extract a constitutive equation to predict tensile properties in Ti-6Al-4V (Ti-64), and a probabilistic approach to measure the fidelity of the property model against real data. This integrated approach will provide designers a tool to vary process parameters and understand the influence on performance, enabling design and optimization for these highly visible manufacturing approaches.

  7. Heterogeneous Deformable Modeling of Bio-Tissues and Haptic Force Rendering for Bio-Object Modeling

    NASA Astrophysics Data System (ADS)

    Lin, Shiyong; Lee, Yuan-Shin; Narayan, Roger J.

    This paper presents a novel technique for modeling soft biological tissues as well as the development of an innovative interface for bio-manufacturing and medical applications. Heterogeneous deformable models may be used to represent the actual internal structures of deformable biological objects, which possess multiple components and nonuniform material properties. Both heterogeneous deformable object modeling and accurate haptic rendering can greatly enhance the realism and fidelity of virtual reality environments. In this paper, a tri-ray node snapping algorithm is proposed to generate a volumetric heterogeneous deformable model from a set of object interface surfaces between different materials. A constrained local static integration method is presented for simulating deformation and accurate force feedback based on the material properties of a heterogeneous structure. Biological soft tissue modeling is used as an example to demonstrate the proposed techniques. By integrating the heterogeneous deformable model into a virtual environment, users can both observe different materials inside a deformable object as well as interact with it by touching the deformable object using a haptic device. The presented techniques can be used for surgical simulation, bio-product design, bio-manufacturing, and medical applications.

  8. Computational and experimental studies of microvascular void features for passive-adaptation of structural panel dynamic properties

    NASA Astrophysics Data System (ADS)

    Sears, Nicholas C.; Harne, Ryan L.

    2018-01-01

    The performance, integrity, and safety of built-up structural systems are critical to their effective employment in diverse engineering applications. In conflict with these goals, harmonic or random excitations of structural panels may promote large amplitude oscillations that are particularly harmful when excitation energies are concentrated around natural frequencies. This contributes to fatigue concerns, performance degradation, and failure. While studies have considered active or passive damping treatments that adapt material characteristics and configurations for structural control, it remains to be understood how vibration properties of structural panels may be tailored via internal material transitions. Motivated to fill this knowledge gap, this research explores an idea of adapting the static and dynamic material distribution of panels through embedded microvascular channels and strategically placed voids that permit the internal movement of fluids within the panels for structural dynamic control. Finite element model and experimental investigations probe how redistributing material in the form of microscale voids influences the global vibration modes and natural frequencies of structural panels. Through parameter studies, the relationships among void shape, number, size, and location are quantified towards their contribution to the changing structural dynamics. For the panel composition and boundary conditions considered in this report, the findings reveal that transferring material between strategically placed voids may result in eigenfrequency changes as great as 10.0, 5.0, and 7.4% for the first, second, and third modes, respectively.

  9. Synthesis, structure, and optoelectronic properties of II-IV-V 2 materials

    DOE PAGES

    Martinez, Aaron D.; Fioretti, Angela N.; Toberer, Eric S.; ...

    2017-03-07

    II-IV-V 2 materials offer the promise of enhanced functionality in optoelectronic devices due to their rich ternary chemistry. In this review, we consider the potential for new optoelectronic devices based on nitride, phosphide, and arsenide II-IV-V 2 materials. As ternary analogs to the III-V materials, these compounds share many of the attractive features that have made the III-Vs the basis of modern optoelectronic devices (e.g. high mobility, strong optical absorption). Control of cation order parameter in the II-IV-V 2 materials can produce significant changes in optoelectronic properties at fixed chemical composition, including decoupling band gap from lattice parameter. Recent progressmore » has begun to resolve outstanding questions concerning the structure, dopability, and optical properties of the II-IV-V 2 materials. Furthermore, remaining research challenges include growth optimization and integration into heterostructures and devices.« less

  10. FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOEpatents

    Davidson, J.K.

    1963-11-19

    A fuel element structure particularly useful in high temperature nuclear reactors is presented. Basically, the structure comprises two coaxial graphite sleeves integrally joined together by radial fins. Due to the high structural strength of graphite at high temperatures and the rigidity of this structure, nuclear fuel encased within the inner sleeve in contiguous relation therewith is supported and prevented from expanding radially at high temperatures. Thus, the necessity of relying on the usual cladding materials with relatively low temperature limitations for structural strength is removed. (AEC)

  11. Materials Safety - Not just Flammability and Toxic Offgassing

    NASA Technical Reports Server (NTRS)

    Pedley, Michael D.

    2007-01-01

    For many years, the safety community has focused on a limited subset of materials and processes requirements as key to safety: Materials flammability, Toxic offgassing, Propellant compatibility, Oxygen compatibility, and Stress-corrosion cracking. All these items are important, but the exclusive focus on these items neglects many other items that are equally important to materials safety. Examples include (but are not limited to): 1. Materials process control -- proper qualification and execution of manufacturing processes such as structural adhesive bonding, welding, and forging are crucial to materials safety. Limitation of discussions on materials process control to an arbitrary subset of processes, known as "critical processes" is a mistake, because any process where the quality of the product cannot be verified by inspection can potentially result in unsafe hardware 2 Materials structural design allowables -- development of valid design allowables when none exist in the literature requires extensive testing of multiple lots of materials and is extremely expensive. But, without valid allowables, structural analysis cannot verify structural safety 3. Corrosion control -- All forms of corrosion, not just stress corrosion, can affect structural integrity of hardware 4. Contamination control during ground processing -- contamination control is critical to manufacturing processes such as adhesive bonding and also to elimination foreign objects and debris (FOD) that are hazardous to the crew of manned spacecraft in microgravity environments. 5. Fasteners -- Fastener design, the use of verifiable secondary locking features, and proper verification of fastener torque are essential for proper structural performance This presentation discusses some of these key factors and the importance of considering them in ensuring the safety of space hardware.

  12. Thin film materials and devices for resistive temperature sensing applications

    NASA Astrophysics Data System (ADS)

    Basantani, Hitesh A.

    Thin films of vanadium oxide (VOx) and hydrogenated amorphous silicon (a-Si:H) are the two dominant material systems used in resistive infrared radiation detectors (microbolometers) for sensing long wave infrared (LWIR) wavelengths in the 8--14 microm range. Typical thin films of VO x (x < 2) currently used in the bolometer industry have a magnitude of temperature coefficient of resistance (TCR) between 2%/K -- 3%/K. In contrast, thin films of hydrogenated germanium (SiGe:H) have |TCR| between 3%/K to 4%/K. Devices made from either of these materials have resulted in similar device performance with NETD ≈ 25 mK. The performance of the microbolometers is limited by the electronic noise, especially 1/f noise. Therefore, regardless of the choice of bolometer sensing material and read out circuitry, manufacturers are constantly striving to reduce 1/f noise while simultaneously increasing TCR to give better signal to noise ratios in their bolometers and ultimately, better image quality with more thermal information to the end user. In this work, thin films of VOx and hydrogenated germanium (Ge:H), having TCR values > 4 %/K are investigated as potential candidates for higher sensitivity next generation of microbolometers. Thin films of VO x were deposited by Biased Target Ion Beam Deposition (BTIBD) (˜85 nm thick). Electrical characterization of lateral resistor structures showed resistivity ranging from 104 O--cm to 2.1 x 104 O--cm, TCR varying from --4%/K to --5%/K, normalized Hooge parameter (alphaH/n) of 5 x 10 -21 to 5 x 10-18 cm3. Thin films of Ge:H were deposited by plasma enhanced chemical vapor deposition (PECVD) by incorporating an increasing amount of crystal fraction in the growing thin films. Thin films of Ge:H having a mixed phase, amorphous + nanocrystalline, having a |TCR| > 6 %/K were deposited with resistivity < 2,300 O--cm and a normalized Hooge's parameter 'alphaH/n' < 2 x 10-20 cm3. Higher TCR materials are desired, however, such materials have higher resistivity and therefore unacceptable large electrical resistance in a lateral resistor configuration. This work looks at an alternate bolometer device design which incorporates higher TCR materials in a vertically integrated configuration. Thin films of high TCR hydrogenated germanium (Ge:H, |TCR| > 6%/K) and vanadium oxide (VOx, TCR > 5%/K) were integrated in lateral and through film configuration. The electrical performance of the vertically integrated devices is compared with lateral resistance structures. It was confirmed experimentally that the device impedance was significantly lowered while maintaining the signal to noise ratio of the lateral resistor configuration. The vertically integrated devices allow higher device currents without any increase in self heating. These structures may help reduce integration time and may result in higher frame rate. Finally, one dimensional arrays were fabricated using both lateral and vertically integrated configurations and their performance was evaluated. It was found that the performance of the lateral devices was limited by noise floor of the measurement setup used. However, due to the lower impedance of the vertically integrated resistors, a higher signal and therefore higher signal to noise ratio could be obtained. These vertically integrated devices exhibited low RMS noise values of 12 mK.

  13. Next generation control system for reflexive aerostructures

    NASA Astrophysics Data System (ADS)

    Maddux, Michael R.; Meents, Elizabeth P.; Barnell, Thomas J.; Cable, Kristin M.; Hemmelgarn, Christopher; Margraf, Thomas W.; Havens, Ernie

    2010-04-01

    Cornerstone Research Group Inc. (CRG) has developed and demonstrated a composite structural solution called reflexive composites for aerospace applications featuring CRG's healable shape memory polymer (SMP) matrix. In reflexive composites, an integrated structural health monitoring (SHM) system autonomously monitors the structural health of composite aerospace structures, while integrated intelligent controls monitor data from the SHM system to characterize damage and initiate healing when damage is detected. Development of next generation intelligent controls for reflexive composites were initiated for the purpose of integrating prognostic health monitoring capabilities into the reflexive composite structural solution. Initial efforts involved data generation through physical inspections and mechanical testing. Compression after impact (CAI) testing was conducted on composite-reinforced shape memory polymer samples to induce damage and investigate the effectiveness of matrix healing on mechanical performance. Non-destructive evaluation (NDE) techniques were employed to observe and characterize material damage. Restoration of mechanical performance was demonstrated through healing, while NDE data showed location and size of damage and verified mitigation of damage post-healing. Data generated was used in the development of next generation reflexive controls software. Data output from the intelligent controls could serve as input to Integrated Vehicle Health Management (IVHM) systems and Integrated Resilient Aircraft Controls (IRAC). Reflexive composite technology has the ability to reduce maintenance required on composite structures through healing, offering potential to significantly extend service life of aerospace vehicles and reduce operating and lifecycle costs.

  14. Energy--Structure--Life, A Learning System for Understanding Science.

    ERIC Educational Resources Information Center

    Bixby, Louis W.; And Others

    Material for the first year of Energy/Structure/Life, a two-year high school program in integrated science, is contained in this learning guide. The program, a sequence of physics, chemistry, and biology, presents the physical science phase during the first year with these 13 chapters: (1) distance/time/velocity; (2) velocity/change/acceleration;…

  15. NSSEFF Designing New Higher Temperature Superconductors

    DTIC Science & Technology

    2017-04-13

    electronic structure calculations are integrated with the synthesis of new superconducting materials, with the aim of providing a rigorous test of the...apparent association of high temperature superconductivity with electron delocalization transitions occurring at quantum critical points. We will use...realistic electronic structure calculations to assess which transition metal monopnictides are closest to electron delocalization, and hence optimal for

  16. The Virtual Steel Sculpture--Limit State Analyses and Applications of Steel Connections

    ERIC Educational Resources Information Center

    Chou, Karen C.; Moaveni, Saeed; Sapp, James D.

    2017-01-01

    The integrity of a structural system depends on the strength of materials, shape of the individual member and the elements used to hold the members together. In most undergraduate civil engineering curricula, a structural steel and/or reinforced concrete design course is required. Usually, the main focus of these courses is on member selection…

  17. An Overview of Materials Structures for Extreme Environments Efforts for 2015 SBIR Phases I and II

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for Agency projects. This report highlights innovative SBIR 2015 Phase I and II projects that specifically address areas in Materials and Structures for Extreme Environments, one of six core competencies at NASA Glenn Research Center. Each article describes an innovation, defines its technical objective, and highlights NASA applications as well as commercial and industrial applications. Ten technologies are featured: metamaterials-inspired aerospace structures, metallic joining to advanced ceramic composites, multifunctional polyolefin matrix composite structures, integrated reacting fluid dynamics and predictive materials degradation models for propulsion system conditions, lightweight inflatable structural airlock (LISA), copolymer materials for fused deposition modeling 3-D printing of nonstandard plastics, Type II strained layer superlattice materials development for space-based focal plane array applications, hydrogenous polymer-regolith composites for radiation-shielding materials, a ceramic matrix composite environmental barrier coating durability model, and advanced composite truss printing for large solar array structures. This report serves as an opportunity for NASA engineers, researchers, program managers, and other personnel to learn about innovations in this technology area as well as possibilities for collaboration with innovative small businesses that could benefit NASA programs and projects.

  18. Recent progress of atomic layer deposition on polymeric materials.

    PubMed

    Guo, Hong Chen; Ye, Enyi; Li, Zibiao; Han, Ming-Yong; Loh, Xian Jun

    2017-01-01

    As a very promising surface coating technology, atomic layer deposition (ALD) can be used to modify the surfaces of polymeric materials for improving their functions and expanding their application areas. Polymeric materials vary in surface functional groups (number and type), surface morphology and internal structure, and thus ALD deposition conditions that typically work on a normal solid surface, usually do not work on a polymeric material surface. To date, a large variety of research has been carried out to investigate ALD deposition on various polymeric materials. This paper aims to provide an in-depth review of ALD deposition on polymeric materials and its applications. Through this review, we will provide a better understanding of surface chemistry and reaction mechanism for controlled surface modification of polymeric materials by ALD. The integrated knowledge can aid in devising an improved way in the reaction between reactant precursors and polymer functional groups/polymer backbones, which will in turn open new opportunities in processing ALD materials for better inorganic/organic film integration and potential applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Structural Integrity Of Low-Velocity Impacted C/SIC Ceramic Matrix Composites

    NASA Astrophysics Data System (ADS)

    Knoche, R.; Drose, A.

    2012-07-01

    Carbon fibre reinforced silicon carbide (C/SiC) ceramic matrix composites (CMC) are most favourable for thermal protection systems & hot structures in re-entry vehicles since they offer superior heat resistance, high specific strength as well as a low coefficient of temperature expansion (CTE). To ensure the structural integrity of these C/SiC structures and thus mission safety all potential degradation effects during manufacturing and lifetime have to be considered. One of the most probable defects which may harm the structural integrity significantly can be caused by low-velocity impacts (LVI) which may occur during transportation and integration by e.g. dropping of tools. Thus the present study focuses on the residual mechanical and thermo-mechanical performance of C/SiC composites after being exposed to a low-velocity impact in terms of initial and residual mechanical performance, changes in microstructure, as well as thermo-mechanical performance through exposing specimens to multiple experimentally simulated re-entries. The results reveal the impact characteristics and damage mechanisms of C/SiC CMC exposed to a low-velocity impact and evidence the functional reliability as well as the damage tolerance of the C/SiC material investigated.

  20. Thermal Structures Technology Development for Reusable Launch Vehicle Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Natividad, Roderick; Rivers, H. Kevin; Smith, Russell

    1998-01-01

    Analytical and experimental studies conducted at the NASA Langley Research Center for investigating integrated cryogenic propellant tank systems for a Reusable Launch Vehicle are described. The cryogenic tanks are investigated as an integrated tank system. An integrated tank system includes the tank wall, cryogenic insulation, Thermal Protection System (TPS) attachment sub-structure, and TPS. Analysis codes are used to size the thicknesses of cryogenic insulation and TPS insulation for thermal loads, and to predict tank buckling strengths at various ring frame spacings. The unique test facilities developed for the testing of cryogenic tank components are described. Testing at cryogenic and high-temperatures verifies the integrity of materials, design concepts, manufacturing processes, and thermal/structural analyses. Test specimens ranging from the element level to the subcomponent level are subjected to projected vehicle operational mechanical loads and temperatures. The analytical and experimental studies described in this paper provide a portion of the basic information required for the development of light-weight reusable cryogenic propellant tanks.

  1. Thermal Structures Technology Development for Reusable Launch Vehicle Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Natividad, Roderick; Rivers, H. Kevin; Smith, Russell W.

    2005-01-01

    Analytical and experimental studies conducted at the NASA, Langley Research Center (LaRC) for investigating integrated cryogenic propellant tank systems for a reusable launch vehicle (RLV) are described. The cryogenic tanks are investigated as an integrated tank system. An integrated tank system includes the tank wall, cryogenic insulation, thermal protection system (TPS) attachment sub-structure, and TPS. Analysis codes are used to size the thicknesses of cryogenic insulation and TPS insulation for thermal loads, and to predict tank buckling strengths at various ring frame spacings. The unique test facilities developed for the testing of cryogenic tank components are described. Testing at cryogenic and high-temperatures verifies the integrity of materials, design concepts, manufacturing processes, and thermal/structural analyses. Test specimens ranging from the element level to the subcomponent level are subjected to projected vehicle operational mechanical loads and temperatures. The analytical and experimental studies described in this paper provide a portion of the basic information required for the development of light-weight reusable cryogenic propellant tanks.

  2. New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications.

    PubMed

    Kong, Biao; Selomulya, Cordelia; Zheng, Gengfeng; Zhao, Dongyuan

    2015-11-21

    Prussian blue (PB), the oldest synthetic coordination compound, is a classic and fascinating transition metal coordination material. Prussian blue is based on a three-dimensional (3-D) cubic polymeric porous network consisting of alternating ferric and ferrous ions, which provides facile assembly as well as precise interaction with active sites at functional interfaces. A fundamental understanding of the assembly mechanism of PB hetero-interfaces is essential to enable the full potential applications of PB crystals, including chemical sensing, catalysis, gas storage, drug delivery and electronic displays. Developing controlled assembly methods towards functionally integrated hetero-interfaces with adjustable sizes and morphology of PB crystals is necessary. A key point in the functional interface and device integration of PB nanocrystals is the fabrication of hetero-interfaces in a well-defined and oriented fashion on given substrates. This review will bring together these key aspects of the hetero-interfaces of PB nanocrystals, ranging from structure and properties, interfacial assembly strategies, to integrated hetero-structures for diverse sensing.

  3. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1994-01-01

    International technical experts in durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The symposium focused on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure, criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and advanced approaches to resist corrosion and environmentally assisted fatigue.

  4. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, part 2

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1994-01-01

    The international technical experts in the areas of durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The principal focus of the symposium was on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on the following topics: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and corrosion resistance.

  5. Miniaturized supercapacitors: key materials and structures towards autonomous and sustainable devices and systems.

    PubMed

    Soavi, Francesca; Bettini, Luca Giacomo; Piseri, Paolo; Milani, Paolo; Santoro, Carlo; Atanassov, Plamen; Arbizzani, Catia

    2016-09-15

    Supercapacitors (SCs) are playing a key role for the development of self-powered and self-sustaining integrated systems for different fields ranging from remote sensing, robotics and medical devices. SC miniaturization and integration into more complex systems that include energy harvesters and functional devices are valuable strategies that address system autonomy. Here, we discuss about novel SC fabrication and integration approaches. Specifically, we report about the results of interdisciplinary activities on the development of thin, flexible SCs by an additive technology based on Supersonic Cluster Beam Deposition (SCBD) to be implemented into supercapacitive electrolyte gated transistors and supercapacitive microbial fuel cells. Such systems integrate at materials level the specific functions of devices, like electric switch or energy harvesting with the reversible energy storage capability. These studies might open new frontiers for the development and application of new multifunction-energy storage elements.

  6. Realization of MEMS-IC Vertical Integration Utilizing Smart Bumpless Bonding

    NASA Astrophysics Data System (ADS)

    Shiozaki, Masayoshi; Moriguchi, Makoto; Sasaki, Sho; Oba, Masatoshi

    This paper reports fundamental technologies, properties, and new experimental results of SBB (Smart Bumpless Bonding) to realize MEMS-IC vertical integration. Although conventional bonding technologies have had difficulties integrating MEMS and its processing circuit because of their rough bonding surfaces, fragile structures, and thermal restriction, SBB technology realized the vertical integration without thermal treatment, any adhesive materials including bumps, and chemical mechanical polishing. The SBB technology bonds sealing parts for vacuum sealing and electrodes for electrical connection simultaneously as published in previous experimental study. The plasma CVD SiO2 is utilized to realize vacuum sealing as sealing material. And Au projection studs are formed on each electrode and connected electrically between two wafers by compressive plastic deformation and surface activation. In this paper, new experimental results including vacuum sealing properties, electrical improvement, IC bonding results on the described fundamental concept and properties are reported.

  7. BIPV: a real-time building performance study for a roof-integrated facility

    NASA Astrophysics Data System (ADS)

    Aaditya, Gayathri; Mani, Monto

    2018-03-01

    Building integrated photovoltaic system (BIPV) is a photovoltaic (PV) integration that generates energy and serves as a building envelope. A building element (e.g. roof and wall) is based on its functional performance, which could include structure, durability, maintenance, weathering, thermal insulation, acoustics, and so on. The present paper discusses the suitability of PV as a building element in terms of thermal performance based on a case study of a 5.25 kWp roof-integrated BIPV system in tropical regions. Performance of PV has been compared with conventional construction materials and various scenarios have been simulated to understand the impact on occupant comfort levels. In the current case study, PV as a roofing material has been shown to cause significant thermal discomfort to the occupants. The study has been based on real-time data monitoring supported by computer-based building simulation model.

  8. Miniaturized supercapacitors: key materials and structures towards autonomous and sustainable devices and systems

    NASA Astrophysics Data System (ADS)

    Soavi, Francesca; Bettini, Luca Giacomo; Piseri, Paolo; Milani, Paolo; Santoro, Carlo; Atanassov, Plamen; Arbizzani, Catia

    2016-09-01

    Supercapacitors (SCs) are playing a key role for the development of self-powered and self-sustaining integrated systems for different fields ranging from remote sensing, robotics and medical devices. SC miniaturization and integration into more complex systems that include energy harvesters and functional devices are valuable strategies that address system autonomy. Here, we discuss about novel SC fabrication and integration approaches. Specifically, we report about the results of interdisciplinary activities on the development of thin, flexible SCs by an additive technology based on Supersonic Cluster Beam Deposition (SCBD) to be implemented into supercapacitive electrolyte gated transistors and supercapacitive microbial fuel cells. Such systems integrate at materials level the specific functions of devices, like electric switch or energy harvesting with the reversible energy storage capability. These studies might open new frontiers for the development and application of new multifunction-energy storage elements.

  9. Airborne Transducer Integrity under Operational Environment for Structural Health Monitoring

    PubMed Central

    Salmanpour, Mohammad Saleh; Sharif Khodaei, Zahra; Aliabadi, Mohammad Hossein

    2016-01-01

    This paper investigates the robustness of permanently mounted transducers used in airborne structural health monitoring systems, when exposed to the operational environment. Typical airliners operate in a range of conditions, hence, structural health monitoring (SHM) transducer robustness and integrity must be demonstrated for these environments. A set of extreme temperature, altitude and vibration environment test profiles are developed using the existing Radio Technical Commission for Aeronautics (RTCA)/DO-160 test methods. Commercially available transducers and manufactured versions bonded to carbon fibre reinforced polymer (CFRP) composite materials are tested. It was found that the DuraAct transducer is robust to environmental conditions tested, while the other transducer types degrade under the same conditions. PMID:27973450

  10. Elastic metamaterials for tuning circular polarization of electromagnetic waves

    PubMed Central

    Zárate, Yair; Babaee, Sahab; Kang, Sung H.; Neshev, Dragomir N.; Shadrivov, Ilya V.; Bertoldi, Katia; Powell, David A.

    2016-01-01

    Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed. PMID:27320212

  11. Elastic metamaterials for tuning circular polarization of electromagnetic waves.

    PubMed

    Zárate, Yair; Babaee, Sahab; Kang, Sung H; Neshev, Dragomir N; Shadrivov, Ilya V; Bertoldi, Katia; Powell, David A

    2016-06-20

    Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed.

  12. Behavior of auxetic structures under compression and impact forces

    NASA Astrophysics Data System (ADS)

    Yang, Chulho; Vora, Hitesh D.; Chang, Young

    2018-02-01

    In recent years, various auxetic material structures have been designed and fabricated for diverse applications that utilize normal materials that follow Hooke’s law but still show the properties of negative Poisson’s ratios (NPR). One potential application is body protection pads that are comfortable to wear and effective in protecting body parts by reducing impact force and preventing injuries in high-risk individuals such as elderly people, industrial workers, law enforcement and military personnel, and athletes. This paper reports an integrated theoretical, computational, and experimental investigation conducted for typical auxetic materials that exhibit NPR properties. Parametric 3D CAD models of auxetic structures such as re-entrant hexagonal cells and arrowheads were developed. Then, key structural characteristics of protection pads were evaluated through static analyses of FEA models. Finally, impact analyses were conducted through dynamic simulations of FEA models to validate the results obtained from the static analyses. Efforts were also made to relate the individual and/or combined effect of auxetic structures and materials to the overall stiffness and shock-absorption performance of the protection pads. An advanced additive manufacturing (3D printing) technique was used to build prototypes of the auxetic structures. Three different materials typically used for fused deposition modeling technology, namely polylactic acid (PLA) and thermoplastic polyurethane material (NinjaFlex® and SemiFlex®), were used for different stiffness and shock-absorption properties. The 3D printed prototypes were then tested and the results were compared to the computational predictions. The results showed that the auxetic material could be effective in reducing the shock forces. Each structure and material combination demonstrated unique structural properties such as stiffness, Poisson’s ratio, and efficiency in shock absorption. Auxetic structures showed better shock absorption performance than non-auxetic ones. The mechanism for ideal input force distribution or shunting could be suggested for designing protectors using various shapes, thicknesses, and materials of auxetic materials to reduce the risk of injury.

  13. Higher-Order Theory for Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Aboudi, J.; Pindera, M. J.; Arnold, Steven M.

    2001-01-01

    Functionally graded materials (FGM's) are a new generation of engineered materials wherein the microstructural details are spatially varied through nonuniform distribution of the reinforcement phase(s). Engineers accomplish this by using reinforcements with different properties, sizes, and shapes, as well as by interchanging the roles of the reinforcement and matrix phases in a continuous manner (ref. 1). The result is a microstructure that produces continuously or discretely changing thermal and mechanical properties at the macroscopic or continuum scale. This new concept of engineering the material's microstructure marks the beginning of a revolution both in the materials science and mechanics of materials areas since it allows one, for the first time, to fully integrate the material and structural considerations into the final design of structural components. Functionally graded materials are ideal candidates for applications involving severe thermal gradients, ranging from thermal structures in advanced aircraft and aerospace engines to computer circuit boards. Owing to the many variables that control the design of functionally graded microstructures, full exploitation of the FGM's potential requires the development of appropriate modeling strategies for their response to combined thermomechanical loads. Previously, most computational strategies for the response of FGM's did not explicitly couple the material's heterogeneous microstructure with the structural global analysis. Rather, local effective or macroscopic properties at a given point within the FGM were first obtained through homogenization based on a chosen micromechanics scheme and then subsequently used in a global thermomechanical analysis.

  14. Novel cost controlled materials and processing for primary structures

    NASA Technical Reports Server (NTRS)

    Dastin, S. J.

    1993-01-01

    Textile laminates, developed a number of years ago, have recently been shown to be applicable to primary aircraft structures for both small and large components. Such structures have the potential to reduce acquisition costs but require advanced automated processing to keep costs controlled while verifying product reliability and assuring structural integrity, durability and affordable life-cycle costs. Recently, resin systems and graphite-reinforced woven shapes have been developed that have the potential for improved RTM processes for aircraft structures. Ciba-Geigy, Brochier Division has registered an RTM prepreg reinforcement called 'Injectex' that has shown effectivity for aircraft components. Other novel approaches discussed are thermotropic resins producing components by injection molding and ceramic polymers for long-duration hot structures. The potential of such materials and processing will be reviewed along with initial information/data available to date.

  15. Impact analysis of automotive structures with distributed smart material systems

    NASA Astrophysics Data System (ADS)

    Peelamedu, Saravanan M.; Naganathan, Ganapathy; Buckley, Stephen J.

    1999-06-01

    New class of automobiles has structural skins that are quite different from their current designs. Particularly, new families of composite skins are developed with new injection molding processes. These skins while support the concept of lighter vehicles of the future, are also susceptible to damage upon impact. It is important that their design should be based on a better understanding on the type of impact loads and the resulting strains and damage. It is possible that these skins can be integrally designed with active materials to counter damages. This paper presents a preliminary analysis of a new class of automotive skins, using piezoceramic as a smart material. The main objective is to consider the complex system with, the skin to be modeled as a layered plate structure involving a lightweight material with foam and active materials imbedded on them. To begin with a cantilever beam structure is subjected to a load through piezoceramic and the resulting strain at the active material site is predicted accounting for the material properties, piezoceramic thickness, adhesive thickness including the effect of adhesives. A finite element analysis is carried out to compare experimental work. Further work in this direction would provide an analytical tool that will provide the basis for algorithms to predict and counter impacts on the future class of automobiles.

  16. Overview of the ACT program

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr.

    1992-01-01

    NASA's Advanced Composites Program (ACT) was initiated in 1988. A National Research Announcement was issued to solicit innovative ideas that could significantly contribute to development and demonstration of an integrated technology data base and confidence level that permits cost-effective use of composite primary structures in transport aircraft. Fifteen contracts were awarded by the Spring of 1989 and the participants include commercial and military airframe manufacturers, materials developers and suppliers, universities, and government laboratories. The program approach is to develop materials, structural mechanics methodology, design concepts, and fabrication procedures that offer the potential to make composite structures cost-effective compared to aluminum structure. Goals for the ACT program included 30-50 percent weight reduction, 20-25 percent acquisition cost reduction, and provided the scientific basis for predicting materials and structures performance. This paper provides an overview of the ACT program status, plans, and selected technical accomplishments. Sixteen additional papers, which provide more detailed information on the research and development accomplishments, are contained in this publication.

  17. Puncture Self-Healing Polymers for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L.; Penner, Ronald K.; Bogert, Phil B.; Yost, W. T.; Siochi, Emilie J.

    2011-01-01

    Space exploration launch costs on the order of $10K per pound provide ample incentive to seek innovative, cost-effective ways to reduce structural mass without sacrificing safety and reliability. Damage-tolerant structural systems can provide a route to avoiding weight penalty while enhancing vehicle safety and reliability. Self-healing polymers capable of spontaneous puncture repair show great promise to mitigate potentially catastrophic damage from events such as micrometeoroid penetration. Effective self-repair requires these materials to heal instantaneously following projectile penetration while retaining structural integrity. Poly(ethylene-co-methacrylic acid) (EMMA), also known as Surlyn is an ionomer-based copolymer that undergoes puncture reversal (self-healing) following high impact puncture at high velocities. However EMMA is not a structural engineering polymer, and will not meet the demands of aerospace applications requiring self-healing engineering materials. Current efforts to identify candidate self-healing polymer materials for structural engineering systems are reported. Rheology, high speed thermography, and high speed video for self-healing semi-crystalline and amorphous polymers will be reported.

  18. Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Xue, D.; Shi, Y.

    2013-01-01

    A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.

  19. High-throughput determination of structural phase diagram and constituent phases using GRENDEL

    NASA Astrophysics Data System (ADS)

    Kusne, A. G.; Keller, D.; Anderson, A.; Zaban, A.; Takeuchi, I.

    2015-11-01

    Advances in high-throughput materials fabrication and characterization techniques have resulted in faster rates of data collection and rapidly growing volumes of experimental data. To convert this mass of information into actionable knowledge of material process-structure-property relationships requires high-throughput data analysis techniques. This work explores the use of the Graph-based endmember extraction and labeling (GRENDEL) algorithm as a high-throughput method for analyzing structural data from combinatorial libraries, specifically, to determine phase diagrams and constituent phases from both x-ray diffraction and Raman spectral data. The GRENDEL algorithm utilizes a set of physical constraints to optimize results and provides a framework by which additional physics-based constraints can be easily incorporated. GRENDEL also permits the integration of database data as shown by the use of critically evaluated data from the Inorganic Crystal Structure Database in the x-ray diffraction data analysis. Also the Sunburst radial tree map is demonstrated as a tool to visualize material structure-property relationships found through graph based analysis.

  20. Update on ongoing tank car crashworthiness research : predicted performance and fabrication approach

    DOT National Transportation Integrated Search

    2008-04-22

    Research is currently underway to develop strategies for maintaining the structural integrity of railroad tank cars carrying hazardous materials during collisions. This research, sponsored by the Federal Railroad Administration (FRA), has focused on ...

  1. Improved tank car safety research

    DOT National Transportation Integrated Search

    2007-09-11

    Three recent accidents involving the release of hazardous : material have focused attention on the structural integrity of : railroad tank cars: (1) Minot, ND, on January 18, 2002; (2) : Macdona, TX, on June 28, 2004; and (3) Graniteville, SC, on : J...

  2. Materials for the General Aviation Industry: Effect of Environment on Mechanical Properties of Glass Fabric/Rubber Toughened Vinyl Ester Laminates

    NASA Technical Reports Server (NTRS)

    McBride, Timothy M.

    1995-01-01

    A screening evaluation is being conducted to determine the performance of several glass fabric/vinyl ester composite material systems for use in primary General Aviation aircraft structures. In efforts to revitalize the General Aviation industry, the Integrated Design and Manufacturing Work Package for General Aviation Airframe and Propeller Structures is seeking to develop novel composite materials and low-cost manufacturing methods for lighter, safer and more affordable small aircraft. In support of this Work Package, this study is generating material properties for several glass fabric/rubber toughened vinyl ester composite systems and investigates the effect of environment on property retention. All laminates are made using the Seemann Composites Resin Infusion Molding Process (SCRIMP), a potential manufacturing method for the General Aviation industry.

  3. Optimization of Layered Cathode Materials for Lithium-Ion Batteries

    PubMed Central

    Julien, Christian; Mauger, Alain; Zaghib, Karim; Groult, Henri

    2016-01-01

    This review presents a survey of the literature on recent progress in lithium-ion batteries, with the active sub-micron-sized particles of the positive electrode chosen in the family of lamellar compounds LiMO2, where M stands for a mixture of Ni, Mn, Co elements, and in the family of yLi2MnO3•(1 − y)LiNi½Mn½O2 layered-layered integrated materials. The structural, physical, and chemical properties of these cathode elements are reported and discussed as a function of all the synthesis parameters, which include the choice of the precursors and of the chelating agent, and as a function of the relative concentrations of the M cations and composition y. Their electrochemical properties are also reported and discussed to determine the optimum compositions in order to obtain the best electrochemical performance while maintaining the structural integrity of the electrode lattice during cycling. PMID:28773717

  4. Fusion of nacre, mussel, and lotus leaf: bio-inspired graphene composite paper with multifunctional integration.

    PubMed

    Zhong, Da; Yang, Qinglin; Guo, Lin; Dou, Shixue; Liu, Kesong; Jiang, Lei

    2013-07-07

    Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self-cleaning, anti-corrosion, and remarkable mechanical properties underwater.

  5. Formation of Micro- and Nanostructures on the Nanotitanium Surface by Chemical Etching and Deposition of Titania Films by Atomic Layer Deposition (ALD)

    PubMed Central

    Nazarov, Denis V.; Zemtsova, Elena G.; Valiev, Ruslan Z.; Smirnov, Vladimir M.

    2015-01-01

    In this study, an integrated approach was used for the preparation of a nanotitanium-based bioactive material. The integrated approach included three methods: severe plastic deformation (SPD), chemical etching and atomic layer deposition (ALD). For the first time, it was experimentally shown that the nature of the etching medium (acidic or basic Piranha solutions) and the etching time have a significant qualitative impact on the nanotitanium surface structure both at the nano- and microscale. The etched samples were coated with crystalline biocompatible TiO2 films with a thickness of 20 nm by Atomic Layer Deposition (ALD). Comparative study of the adhesive and spreading properties of human osteoblasts MG-63 has demonstrated that presence of nano- and microscale structures and crystalline titanium oxide on the surface of nanotitanium improve bioactive properties of the material. PMID:28793716

  6. A comprehensive strategy for designing a Web-based medical curriculum.

    PubMed Central

    Zucker, J.; Chase, H.; Molholt, P.; Bean, C.; Kahn, R. M.

    1996-01-01

    In preparing for a full featured online curriculum, it is necessary to develop scaleable strategies for software design that will support the pedagogical goals of the curriculum and which will address the issues of acquisition and updating of materials, of robust content-based linking, and of integration of the online materials into other methods of learning. A complete online curriculum, as distinct from an individual computerized module, must provide dynamic updating of both content and structure and an easy pathway from the professor's notes to the finished online product. At the College of Physicians and Surgeons, we are developing such strategies including a scripted text conversion process that uses the Hypertext Markup Language (HTML) as structural markup rather than as display markup, automated linking by the use of relational databases and the Unified Medical Language System (UMLS), integration of text, images, and multimedia along with interface designs which promote multiple contexts and collaborative study. PMID:8947624

  7. Using graphene networks to build bioinspired self-monitoring ceramics

    PubMed Central

    Picot, Olivier T.; Rocha, Victoria G.; Ferraro, Claudio; Ni, Na; D'Elia, Eleonora; Meille, Sylvain; Chevalier, Jerome; Saunders, Theo; Peijs, Ton; Reece, Mike J.; Saiz, Eduardo

    2017-01-01

    The properties of graphene open new opportunities for the fabrication of composites exhibiting unique structural and functional capabilities. However, to achieve this goal we should build materials with carefully designed architectures. Here, we describe the fabrication of ceramic-graphene composites by combining graphene foams with pre-ceramic polymers and spark plasma sintering. The result is a material containing an interconnected, microscopic network of very thin (20–30 nm), electrically conductive, carbon interfaces. This network generates electrical conductivities up to two orders of magnitude higher than those of other ceramics with similar graphene or carbon nanotube contents and can be used to monitor ‘in situ' structural integrity. In addition, it directs crack propagation, promoting stable crack growth and increasing the fracture resistance by an order of magnitude. These results demonstrate that the rational integration of nanomaterials could be a fruitful path towards building composites combining unique mechanical and functional performances. PMID:28181518

  8. Study of the influence of volume fraction of ceramic inclusions in NiCr-TiC composite with columnar structure on its mechanical behavior

    NASA Astrophysics Data System (ADS)

    Eremina, Galina M.; Smolin, Alexey Yu.; Shilko, Evgeny V.

    2017-12-01

    Metal-ceramic materials are characterized by high mechanical and tribological properties. The surface treatment of the composite by an electron beam in inert gas plasma leads to a qualitative and quantitative change in its microstructure as well as to a change in mechanical properties of the components: a columnar structure forms in the modified layer. Different treatment regimes result in different concentrations of inclusions in the surface layer. In this paper, the effect of the volume concentration of inclusions on the integral mechanical properties of a dispersion-strengthened NiCr-TiC composite is studied on the basis of 3D numerical simulation. The results of computer simulation show that the change in concentration significantly affects the integral mechanical characteristics of the composite material as well as the nature of the nucleation and development of damages in it.

  9. MANTECH project book

    NASA Astrophysics Data System (ADS)

    The effective integration of processes, systems, and procedures used in the production of aerospace systems using computer technology is managed by the Integration Technology Division (MTI). Under its auspices are the Information Management Branch, which is actively involved with information management, information sciences and integration, and the Implementation Branch, whose technology areas include computer integrated manufacturing, engineering design, operations research, and material handling and assembly. The Integration Technology Division combines design, manufacturing, and supportability functions within the same organization. The Processing and Fabrication Division manages programs to improve structural and nonstructural materials processing and fabrication. Within this division, the Metals Branch directs the manufacturing methods program for metals and metal matrix composites processing and fabrication. The Nonmetals Branch directs the manufacturing methods programs, which include all manufacturing processes for producing and utilizing propellants, plastics, resins, fibers, composites, fluid elastomers, ceramics, glasses, and coatings. The objective of the Industrial Base Analysis Division is to act as focal point for the USAF industrial base program for productivity, responsiveness, and preparedness planning.

  10. Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip.

    PubMed

    Kim, Je-Hyung; Aghaeimeibodi, Shahriar; Richardson, Christopher J K; Leavitt, Richard P; Englund, Dirk; Waks, Edo

    2017-12-13

    Scalable quantum photonic systems require efficient single photon sources coupled to integrated photonic devices. Solid-state quantum emitters can generate single photons with high efficiency, while silicon photonic circuits can manipulate them in an integrated device structure. Combining these two material platforms could, therefore, significantly increase the complexity of integrated quantum photonic devices. Here, we demonstrate hybrid integration of solid-state quantum emitters to a silicon photonic device. We develop a pick-and-place technique that can position epitaxially grown InAs/InP quantum dots emitting at telecom wavelengths on a silicon photonic chip deterministically with nanoscale precision. We employ an adiabatic tapering approach to transfer the emission from the quantum dots to the waveguide with high efficiency. We also incorporate an on-chip silicon-photonic beamsplitter to perform a Hanbury-Brown and Twiss measurement. Our approach could enable integration of precharacterized III-V quantum photonic devices into large-scale photonic structures to enable complex devices composed of many emitters and photons.

  11. Nonlinear Optical Properties of Organic and Polymeric Thin Film Materials of Potential for Microgravity Processing Studies

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin; Frazier, Donald O.; Paley, Mark S.; Penn, Benjamin; Witherow, William K.; Bank, Curtis; Shields, Angela; Hicks, Rosline; Ashley, Paul R.

    1996-01-01

    In this paper, we will take a closer look at the state of the art of polydiacetylene, and metal-free phthalocyanine films, in view of the microgravity impact on their optical properties, their nonlinear optical properties and their potential advantages for integrated optics. These materials have many attractive features with regard to their use in integrated optical circuits and optical switching. Thin films of these materials processed in microgravity environment show enhanced optical quality and better molecular alignment than those processed in unit gravity. Our studies of these materials indicate that microgravity can play a major role in integrated optics technology. Polydiacetylene films are produced by UV irradiation of monomer solution through an optical window. This novel technique of forming polydiacetylene thin films has been modified for constructing sophisticated micro-structure integrated optical patterns using a pre-programmed UV-Laser beam. Wave guiding through these thin films by the prism coupler technique has been demonstrated. The third order nonlinear parameters of these films have been evaluated. Metal-free phthalocyanine films of good optical quality are processed in our laboratories by vapor deposition technique. Initial studies on these films indicate that they have excellent chemical, laser, and environmental stability. They have large nonlinear optical parameters and show intrinsic optical bistability. This bistability is essential for optical logic gates and optical switching applications. Waveguiding and device making investigations of these materials are underway.

  12. Integrated ion sensor device applications based on printed hybrid material systems (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    List-Kratochvil, Emil J. W.

    2016-09-01

    Comfortable, wearable sensors and computers will enhance every person's awareness of his or her health condition, environment, chemical pollutants, potential hazards, and information of interest. In agriculture and in the food industry there is a need for a constant control of the condition and needs of plants, animals, and farm products. Yet many of these applications depend upon the development of novel, cheap devices and sensors that are easy to implement and to integrate. Organic semiconductors as well as several inorganic materials and hybrid material systems have proven to combine a number of intriguing optical and electronic properties with simple processing methods. As it will be reviewed in this contribution, these materials are believed to find their application in printed electronic devices allowing for the development of smart disposable devices in food-, health-, and environmental monitoring, diagnostics and control, possibly integrated into arrays of sensor elements for multi-parameter detection. In this contribution we review past and recent achievements in the field. Followed by a brief introduction, we will focus on two topics being on the agenda recently: a) the use of electrolyte-gated organic field-effect transistor (EGOFET) and ion-selective membrane based sensors for in-situ sensing of ions and biological substances and b) the development of hybrid material based resistive switches and their integration into fully functional, printed hybrid crossbar sensor array structures.

  13. Key issues in application of composites to transport aircraft

    NASA Technical Reports Server (NTRS)

    Stone, M.

    1978-01-01

    The application of composite materials to transport aircraft was identified and reviewed including the major contributing disciplines of design, manufacturing, and processing. Factors considered include: crashworthiness considerations (structural integrity, postcrash fires, and structural fusing), electrical/avionics subsystems integration, lightning, and P-static protection design; manufacturing development, evaluation, selection, and refining of tooling and curing procedures; and major joint design considerations. Development of the DC-10 rudder, DC-10 vertical stabilizer, and the DC-9 wing study project was reviewed. The Federal Aviation Administration interface and the effect on component design of compliance with Federal Aviation Regulation 25 Composite Guidelines are discussed.

  14. High-throughput materials discovery and development: breakthroughs and challenges in the mapping of the materials genome

    NASA Astrophysics Data System (ADS)

    Buongiorno Nardelli, Marco

    High-Throughput Quantum-Mechanics computation of materials properties by ab initio methods has become the foundation of an effective approach to materials design, discovery and characterization. This data driven approach to materials science currently presents the most promising path to the development of advanced technological materials that could solve or mitigate important social and economic challenges of the 21st century. In particular, the rapid proliferation of computational data on materials properties presents the possibility to complement and extend materials property databases where the experimental data is lacking and difficult to obtain. Enhanced repositories such as AFLOWLIB open novel opportunities for structure discovery and optimization, including uncovering of unsuspected compounds, metastable structures and correlations between various properties. The practical realization of these opportunities depends almost exclusively on the the design of efficient algorithms for electronic structure simulations of realistic material systems beyond the limitations of the current standard theories. In this talk, I will review recent progress in theoretical and computational tools, and in particular, discuss the development and validation of novel functionals within Density Functional Theory and of local basis representations for effective ab-initio tight-binding schemes. Marco Buongiorno Nardelli is a pioneer in the development of computational platforms for theory/data/applications integration rooted in his profound and extensive expertise in the design of electronic structure codes and in his vision for sustainable and innovative software development for high-performance materials simulations. His research activities range from the design and discovery of novel materials for 21st century applications in renewable energy, environment, nano-electronics and devices, the development of advanced electronic structure theories and high-throughput techniques in materials genomics and computational materials design, to an active role as community scientific software developer (QUANTUM ESPRESSO, WanT, AFLOWpi)

  15. Procedure for measuring simultaneously the solar and visible properties of glazing with complex internal or external structures.

    PubMed

    Gentle, A R; Smith, G B

    2014-10-20

    Accurate solar and visual transmittances of materials in which surfaces or internal structures are complex are often not easily amenable to standard procedures with laboratory-based spectrophotometers and integrating spheres. Localized "hot spots" of intensity are common in such materials, so data on small samples is unreliable. A novel device and simple protocols have been developed and undergone validation testing. Simultaneous solar and visible transmittance and reflectance data have been acquired for skylight components and multilayer polycarbonate roof panels. The pyranometer and lux sensor setups also directly yield "light coolness" in lumens/watt. Sample areas must be large, and, although mainly in sheet form, some testing has been done on curved panels. The instrument, its operation, and the simple calculations used are described. Results on a subset of diffuse and partially diffuse materials with no hot spots have been cross checked using 150 mm integrating spheres with a spectrophotometer and the Air Mass 1.5 spectrum. Indications are that results are as good or better than with such spheres for transmittance, but reflectance techniques need refinement for some sample types.

  16. Carbon Nanotube Self-Gating Diode and Application in Integrated Circuits.

    PubMed

    Si, Jia; Liu, Lijun; Wang, Fanglin; Zhang, Zhiyong; Peng, Lian-Mao

    2016-07-26

    A nano self-gating diode (SGD) based on nanoscale semiconducting material is proposed, simulated, and realized on semiconducting carbon nanotubes (CNTs) through a doping-free fabrication process. The relationships between the performance and material/structural parameters of the SGD are explored through numerical simulation and verified by experiment results. Based on these results, performance optimization strategy is outlined, and high performance CNT SGDs are fabricated and demonstrated to surpass other published CNT diodes. In particular the CNT SGD exhibits high rectifier factor of up to 1.4 × 10(6) while retains large on-state current. Benefiting from high yield and stability, CNT SGDs are used for constructing logic and analog integrated circuits. Two kinds of basic digital gates (AND and OR) have been realized on chip through using CNT SGDs and on-chip Ti wire resistances, and a full wave rectifier circuit has been demonstrated through using two CNT SGDs. Although demonstrated here using CNT SGDs, this device structure may in principle be implemented using other semiconducting nanomaterials, to provide ideas and building blocks for electronic applications based on nanoscale materials.

  17. Economical processing of fiber-reinforced components with thermal expansion molding

    NASA Technical Reports Server (NTRS)

    Schneider, K.

    1979-01-01

    The concept of economical fabrication of fiber-reinforced structural components is illustrated with an example of a typical control surface (aileron). The concept provides for fabricating struts, ribs, and a cover plate as an integral structure in a hardening device and then joining the closure cover plate mechanically. Fabrication of the integral structure is achieved by the 'thermal expansion molding' technique. The hardening pressure is produced by silicone rubber cores which expand under the influence of temperature. Test results are presented for several rubber materials as well as for various structural pieces. The technique is demonstrated extensively for an aileron, consisting of five ribs, struts, and a cover plate. Economically, for a large scale technical production of an aileron, cost savings of twenty-five percent can be realized compared to those for a sheet metal structure.

  18. Deposition of PTFE thin films by ion beam sputtering and a study of the ion bombardment effect

    NASA Astrophysics Data System (ADS)

    He, J. L.; Li, W. Z.; Wang, L. D.; Wang, J.; Li, H. D.

    1998-02-01

    Ion beam sputtering technique was employed to prepare thin films of Polytetrafluroethylene (PTFE). Simultaneous ion beam bombardment during film growth was also conducted in order to study the bombardment effects. Infrared absorption (IR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis was used to evaluate the material's integrity. It was found that PTFE thin films could be grown at room temperature by direct sputtering of a PTFE target. The film's composition and structure were shown to be dependent on the sputtering energy. Films deposited by single sputtering at higher energy (˜1500 eV) were structurally quite similar to the original PTFE material. Simultaneous ion beam bombarding during film growth caused defluorination and structural changes. Mechanism for sputtering deposition of such a polymeric material is also discussed.

  19. Recent advances in design and fabrication of on-chip micro-supercapacitors

    NASA Astrophysics Data System (ADS)

    Beidaghi, Majid; Wang, Chunlei

    2012-06-01

    Recent development in miniaturized electronic devices has increased the demand for power sources that are sufficiently compact and can potentially be integrated on a chip with other electronic components. Miniaturized electrochemical capacitors (EC) or micro-supercapacitors have great potential to complement or replace batteries and electrolytic capacitors in a variety of applications. Recently, we have developed several types of micro-supercapacitors with different structural designs and active materials. Carbon-Microelectromechanical Systems (C-MEMS) with three dimensional (3D) interdigital structures are employed both as electrode material for electric double layer capacitor (EDLC) or as three dimensional (3D) current collectors of pseudo-capacitive materials. More recently, we have also developed microsupercapacitor based on hybrid graphene and carbon nanotube interdigital structures. In this paper, the recent advances in design and fabrication of on-chip micro-supercapacitors are reviewed.

  20. Active Materials Integrated with Actomyosin

    NASA Astrophysics Data System (ADS)

    Ito, Hiroaki; Makuta, Masahiro; Nishigami, Yukinori; Ichikawa, Masatoshi

    2017-10-01

    Muscles are the engine of our body, and actomyosin is the engine of a cell. Both muscle and the actomyosin use the same proteins, namely, actin, and myosin, which are the pair of cytoskeleton and motor proteins generating a force to realize deformation. The properties of force generation by actomyosin at a single-molecule level have been studied for many years. Moreover, the active properties of higher-order structures integrated by actomyosin are attracting the attention of researchers. Here, we review the recent progress in the study of reconstituted actomyosin systems in vitro toward real-space models of nonequilibrium systems, collective motion, biological phenomena, and active materials.

  1. Fractal design concepts for stretchable electronics.

    PubMed

    Fan, Jonathan A; Yeo, Woon-Hong; Su, Yewang; Hattori, Yoshiaki; Lee, Woosik; Jung, Sung-Young; Zhang, Yihui; Liu, Zhuangjian; Cheng, Huanyu; Falgout, Leo; Bajema, Mike; Coleman, Todd; Gregoire, Dan; Larsen, Ryan J; Huang, Yonggang; Rogers, John A

    2014-01-01

    Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.

  2. Fractal design concepts for stretchable electronics

    NASA Astrophysics Data System (ADS)

    Fan, Jonathan A.; Yeo, Woon-Hong; Su, Yewang; Hattori, Yoshiaki; Lee, Woosik; Jung, Sung-Young; Zhang, Yihui; Liu, Zhuangjian; Cheng, Huanyu; Falgout, Leo; Bajema, Mike; Coleman, Todd; Gregoire, Dan; Larsen, Ryan J.; Huang, Yonggang; Rogers, John A.

    2014-02-01

    Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.

  3. Investigating the wetting behavior of a surface with periodic reentrant structures using integrated microresonators

    NASA Astrophysics Data System (ADS)

    Klingel, S.; Oesterschulze, E.

    2017-08-01

    The apparent contact angle is frequently used as an indicator of the wetting state of a surface in contact with a liquid. However, the apparent contact angle is subject to hysteresis that depends furthermore strongly on both the material properties and the roughness and structure of the sample surface. In this work, we show that integrated microresonators can be exploited to determine the wetting state by measuring both the frequency shift caused by the hydrodynamic mass of the liquid and the change in the quality factor as a result of damping. For this, we integrated electrically driven hybrid bridge resonators (HBRs) into a periodically structured surface intended for wetting experiments. We could clearly differentiate between the Wenzel state and the Cassie-Baxter state because the resonant frequency and quality factor of the HBR changed by over 35% and 40%, respectively. This offers the capability to unambiguously distinguish between the different wetting states.

  4. A multi-structural and multi-functional integrated fog collection system in cactus

    PubMed Central

    Ju, Jie; Bai, Hao; Zheng, Yongmei; Zhao, Tianyi; Fang, Ruochen; Jiang, Lei

    2012-01-01

    Multiple biological structures have demonstrated fog collection abilities, such as beetle backs with bumps and spider silks with periodic spindle-knots and joints. Many Cactaceae species live in arid environments and are extremely drought-tolerant. Here we report that one of the survival systems of the cactus Opuntia microdasys lies in its efficient fog collection system. This unique system is composed of well-distributed clusters of conical spines and trichomes on the cactus stem; each spine contains three integrated parts that have different roles in the fog collection process according to their surface structural features. The gradient of the Laplace pressure, the gradient of the surface-free energy and multi-function integration endow the cactus with an efficient fog collection system. Investigations of the structure–function relationship in this system may help us to design novel materials and devices to collect water from fog with high efficiencies. PMID:23212376

  5. Surface studies of solids using integral x-ray-induced photoemission yield

    DOE PAGES

    Stoupin, Stanislav; Zhernenkov, Mikhail; Shi, Bing

    2016-11-22

    X-ray induced photoemission yield contains structural information complementary to that provided by X-ray Fresnel reflectivity, which presents an advantage to a wide variety of surface studies if this information is made easily accessible. Photoemission in materials research is commonly acknowledged as a method with a probing depth limited by the escape depth of the photoelectrons. Here we show that the integral hard-X-ray-induced photoemission yield is modulated by the Fresnel reflectivity of a multilayer structure and carries structural information that extends well beyond the photoelectron escape depth. A simple electric self-detection of the integral photoemission yield and Fourier data analysis permitmore » extraction of thicknesses of individual layers. The approach does not require detection of the reflected radiation and can be considered as a framework for non-invasive evaluation of buried layers with hard X-rays under grazing incidence.« less

  6. Monolithic integration of a MOSFET with a MEMS device

    DOEpatents

    Bennett, Reid; Draper, Bruce

    2003-01-01

    An integrated microelectromechanical system comprises at least one MOSFET interconnected to at least one MEMS device on a common substrate. A method for integrating the MOSFET with the MEMS device comprises fabricating the MOSFET and MEMS device monolithically on the common substrate. Conveniently, the gate insulator, gate electrode, and electrical contacts for the gate, source, and drain can be formed simultaneously with the MEMS device structure, thereby eliminating many process steps and materials. In particular, the gate electrode and electrical contacts of the MOSFET and the structural layers of the MEMS device can be doped polysilicon. Dopant diffusion from the electrical contacts is used to form the source and drain regions of the MOSFET. The thermal diffusion step for forming the source and drain of the MOSFET can comprise one or more of the thermal anneal steps to relieve stress in the structural layers of the MEMS device.

  7. Surface studies of solids using integral X-ray-induced photoemission yield

    PubMed Central

    Stoupin, Stanislav; Zhernenkov, Mikhail; Shi, Bing

    2016-01-01

    X-ray induced photoemission yield contains structural information complementary to that provided by X-ray Fresnel reflectivity, which presents an advantage to a wide variety of surface studies if this information is made easily accessible. Photoemission in materials research is commonly acknowledged as a method with a probing depth limited by the escape depth of the photoelectrons. Here we show that the integral hard-X-ray-induced photoemission yield is modulated by the Fresnel reflectivity of a multilayer structure and carries structural information that extends well beyond the photoelectron escape depth. A simple electric self-detection of the integral photoemission yield and Fourier data analysis permit extraction of thicknesses of individual layers. The approach does not require detection of the reflected radiation and can be considered as a framework for non-invasive evaluation of buried layers with hard X-rays under grazing incidence. PMID:27874041

  8. 3D printed hierarchical honeycombs with shape integrity under large compressive deformations

    DOE PAGES

    Chen, Yanyu; Li, Tiantian; Jia, Zian; ...

    2017-10-12

    Here, we describe the in-plane compressive performance of a new type of hierarchical cellular structure created by replacing cell walls in regular honeycombs with triangular lattice configurations. The fabrication of this relatively complex material architecture with size features spanning from micrometer to centimeter is facilitated by the availability of commercial 3D printers. We apply to these hierarchical honeycombs a thermal treatment that facilitates the shape preservation and structural integrity of the structures under large compressive loading. The proposed hierarchical honeycombs exhibit a progressive failure mode, along with improved stiffness and energy absorption under uniaxial compression. High energy dissipation and shapemore » integrity at large imposed strains (up to 60%) have also been observed in these hierarchical honeycombs under cyclic loading. Experimental and numerical studies suggest that these anomalous mechanical behaviors are attributed to the introduction of a structural hierarchy, intrinsically controlled by the cell wall slenderness of the triangular lattice and by the shape memory effect induced by the thermal and mechanical compressive treatment.« less

  9. Developments in Nano-Satellite Structural Subsystem Design at NASA-GSFC

    NASA Technical Reports Server (NTRS)

    Rossoni, Peter; Panetta, Peter V.

    1999-01-01

    The NASA-GSFC Nano-satellite Technology Development Program will enable flying constellations of tens to hundreds of nano-satellites for future NASA Space and Earth Science missions. Advanced technology components must be developed to make these future spacecraft compact, lightweight, low-power, low-cost, and survivable to a radiation environment over a two-year mission lifetime. This paper describes the efforts underway to develop lightweight, low cost, and multi-functional structures, serviceable designs, and robust mechanisms. As designs shrink, the integration of various subsystems becomes a vital necessity. This paper also addresses structurally integrated electrical power, attitude control, and thermal systems. These innovations bring associated fabrication, integration, and test challenges. Candidate structural materials and processes are examined and the merits of each are discussed. Design and fabrication processes include flat stock composite construction, cast aluminum-beryllium alloy, and an injection molded fiber-reinforced plastic. A viable constellation deployment scenario is described as well as a Phase-A Nano-satellite Pathfinder study.

  10. 3D printed hierarchical honeycombs with shape integrity under large compressive deformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yanyu; Li, Tiantian; Jia, Zian

    Here, we describe the in-plane compressive performance of a new type of hierarchical cellular structure created by replacing cell walls in regular honeycombs with triangular lattice configurations. The fabrication of this relatively complex material architecture with size features spanning from micrometer to centimeter is facilitated by the availability of commercial 3D printers. We apply to these hierarchical honeycombs a thermal treatment that facilitates the shape preservation and structural integrity of the structures under large compressive loading. The proposed hierarchical honeycombs exhibit a progressive failure mode, along with improved stiffness and energy absorption under uniaxial compression. High energy dissipation and shapemore » integrity at large imposed strains (up to 60%) have also been observed in these hierarchical honeycombs under cyclic loading. Experimental and numerical studies suggest that these anomalous mechanical behaviors are attributed to the introduction of a structural hierarchy, intrinsically controlled by the cell wall slenderness of the triangular lattice and by the shape memory effect induced by the thermal and mechanical compressive treatment.« less

  11. A new SMART sensing system for aerospace structures

    NASA Astrophysics Data System (ADS)

    Zhang, David C.; Yu, Pin; Beard, Shawn; Qing, Peter; Kumar, Amrita; Chang, Fu-Kuo

    2007-04-01

    It is essential to ensure the safety and reliability of in-service structures such as unmanned vehicles by detecting structural cracking, corrosion, delamination, material degradation and other types of damage in time. Utilization of an integrated sensor network system can enable automatic inspection of such damages ultimately. Using a built-in network of actuators and sensors, Acellent is providing tools for advanced structural diagnostics. Acellent's integrated structural health monitoring system consists of an actuator/sensor network, supporting signal generation and data acquisition hardware, and data processing, visualization and analysis software. This paper describes the various features of Acellent's latest SMART sensing system. The new system is USB-based and is ultra-portable using the state-of-the-art technology, while delivering many functions such as system self-diagnosis, sensor diagnosis, through-transmission mode and pulse-echo mode of operation and temperature measurement. Performance of the new system was evaluated for assessment of damage in composite structures.

  12. George E. Pake Prize Lecture: CMOS Technology Roadmap: Is Scaling Ending?

    NASA Astrophysics Data System (ADS)

    Chen, Tze-Chiang (T. C.)

    The development of silicon technology has been based on the principle of physics and driven by the system needs. Traditionally, the system needs have been satisfied by the increase in transistor density and performance, as suggested by Moore's Law and guided by ''Dennard CMOS scaling theory''. As the silicon industry moves towards the 14nm node and beyond, three of the most important challenges facing Moore's Law and continued CMOS scaling are the growing standby power dissipation, the increasing variability in device characteristics and the ever increasing manufacturing cost. Actually, the first two factors are the embodiments of CMOS approaching atomistic and quantum-mechanical physics boundaries. Industry directions for addressing these challenges are also developing along three primary approaches: Extending silicon scaling through innovations in materials and device structure, expanding the level of integration through three-dimensional structures comprised of through-silicon-vias holes and chip stacking in order to enhance functionality and parallelism and exploring post-silicon CMOS innovation with new nano-devices based on distinctly different principles of physics, new materials and new processes such as spintronics, carbon nanotubes and nanowires. Hence, the infusion of new materials, innovative integration and novel device structures will continue to extend CMOS technology scaling for at least another decade.

  13. Fluorescence microscopy for the characterization of structural integrity

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W.; Leonhardt, Todd A.

    1991-01-01

    The absorption characteristics of light and the optical technique of fluorescence microscopy for enhancing metallographic interpretation are presented. Characterization of thermally sprayed coatings by optical microscopy suffers because of the tendency for misidentification of the microstructure produced by metallographic preparation. Gray scale, in bright field microscopy, is frequently the only means of differentiating the actual structural details of porosity, cracking, and debonding of coatings. Fluorescence microscopy is a technique that helps to distinguish the artifacts of metallographic preparation (pullout, cracking, debonding) from the microstructure of the specimen by color contrasting structural differences. Alternative instrumentation and the use of other dye systems are also discussed. The combination of epoxy vacuum infiltration with fluorescence microscopy to verify microstructural defects is an effective means to characterize advanced materials and to assess structural integrity.

  14. Spider-web inspired multi-resolution graphene tactile sensor.

    PubMed

    Liu, Lu; Huang, Yu; Li, Fengyu; Ma, Ying; Li, Wenbo; Su, Meng; Qian, Xin; Ren, Wanjie; Tang, Kanglai; Song, Yanlin

    2018-05-08

    Multi-dimensional accurate response and smooth signal transmission are critical challenges in the advancement of multi-resolution recognition and complex environment analysis. Inspired by the structure-activity relationship between discrepant microstructures of the spiral and radial threads in a spider web, we designed and printed graphene with porous and densely-packed microstructures to integrate into a multi-resolution graphene tactile sensor. The three-dimensional (3D) porous graphene structure performs multi-dimensional deformation responses. The laminar densely-packed graphene structure contributes excellent conductivity with flexible stability. The spider-web inspired printed pattern inherits orientational and locational kinesis tracking. The multi-structure construction with homo-graphene material can integrate discrepant electronic properties with remarkable flexibility, which will attract enormous attention for electronic skin, wearable devices and human-machine interactions.

  15. Ground Systems Integration Domain (GSID) Materials for Ground Platforms

    DTIC Science & Technology

    2010-09-20

    Vehicles • Heavy Brigade Combat Team • Strykers • MRAPs • Ground Combat Vehicles (Future) Tactical Vehicles • HMMWVs • Trailers • Heavy, Medium and...efficient structural material solutions • Signature management, electromagnetic shielding over potentially non-metallic surfaces • Diagnostics...Occupant-Centric Survivability Focused): 1. 4500 lbs + trailer towing capacity; 4-6 man crew compartmentPayload 2. 14,000 lb curb vehicle weightPerformance

  16. Workflow for Integrating Mesoscale Heterogeneities in Materials Structure with Process Simulation of Titanium Alloys (Postprint)

    DTIC Science & Technology

    2014-10-01

    offer a practical solution to calculating the grain -scale hetero- geneity present in the deformation field. Consequently, crystal plasticity models...process/performance simulation codes (e.g., crystal plasticity finite element method). 15. SUBJECT TERMS ICME; microstructure informatics; higher...iii) protocols for direct and efficient linking of materials models/databases into process/performance simulation codes (e.g., crystal plasticity

  17. Fabrication of biofunctional nanomaterials via Escherichia coli OmpF protein air/water interface insertion/integration with copolymeric amphiphiles.

    PubMed

    Ho, Dean; Chang, Stacy; Montemagno, Carlo D

    2006-06-01

    Fabrication of next-generation biologically active materials will involve the integration of proteins with synthetic membrane materials toward a wide spectrum of applications in nanoscale medicine, including high-throughput drug testing, energy conversion for powering medical devices, and bio-cloaking films for mimicry of cellular membrane surfaces toward the enhancement of implant biocompatibility. We have used ABA triblock copolymer membranes (PMOXA-PDMS-PMOXA) of varied thicknesses as platform materials for Langmuir film-based functionalization with the OmpF pore protein from Escherichia coli by fabricating monolayers of copolymer amphiphile-protein complexes on the air/water interface. Here we demonstrate that the ability for protein insertion at the air/water interface during device fabrication is dependent upon the initial surface coverage with the copolymer as well as copolymer thickness. Methacrylate-terminated block copolymer structures that were 4 nm (4METH) and 8 nm (8METH) in length were used as the protein reconstitution matrix, whereas a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid (~4 nm thickness) was used as a comparison to demonstrate the effects of copolymer length on protein integration capabilities. Wilhemy surface pressure measurements (mN/m) revealed a greater protein insertion in the 4METH and POPC structures compared with the 8METH structure, indicating that shorter copolymer chains possess enhanced biomimicry of natural lipid-based membranes. In addition, comparisons between the isothermal characteristics of the 4METH, 8METH, and POPC membranes reveal that phase transitions of the 4METH resemble a blend of the 8METH and POPC materials, indicating that the 4METH chain may possess hybrid properties of both copolymers and lipids. Furthermore, we have shown that following the deposition of the amphiphilic materials on the air/water interface, the OmpF can be deposited directly on top of the amphiphiles (surface addition), thus effectively further enhancing protein insertion because of the buoying effects of the membranes. These characteristics of Langmuir-Blodgett-based fabrication of copolymer-biomolecule hybrids represent a synthesis strategy for next-generation biomedical materials.

  18. Deuteron irradiation of W and WO 3 for production of high specific activity 186Re: Challenges associated with thick target preparation

    DOE PAGES

    Balkin, Ethan R.; Gagnon, Katherine; Strong, Kevin T.; ...

    2016-06-28

    This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity 186Re using deuteron irradiation of enriched 186W via the 186W(d,2n) 186Re reaction. Thick W and WO 3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxi-ally pressing powdered natural abundance W and WO 3, or 96.86% enriched 186W, into Al target supports. Alternatively, thick targets were prepared by pressing 186W between two layers of graphite powder or by placing pre-sintered (1105°C, 12 hours) natural abundance WO 3 pellets into an Al target support. Assessments ofmore » structural integrity were made on each target pre-pared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. With-in a minimum of 24 hours post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO 3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO 3 targets prepared and studied were unacceptable. By contrast, 186W metal was found to be a viable target material for 186Re production. Lastly, thick targets prepared with powdered 186W pressed between layers of graphite provided a particularly robust target configuration.« less

  19. Deuteron irradiation of W and WO3 for production of high specific activity (186)Re: Challenges associated with thick target preparation.

    PubMed

    Balkin, Ethan R; Gagnon, Katherine; Strong, Kevin T; Smith, Bennett E; Dorman, Eric F; Emery, Robert C; Pauzauskie, Peter J; Fassbender, Michael E; Cutler, Cathy S; Ketring, Alan R; Jurisson, Silvia S; Wilbur, D Scott

    2016-09-01

    This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity (186)Re using deuteron irradiation of enriched (186)W via the (186)W(d,2n)(186)Re reaction. Thick W and WO3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxially pressing powdered natural abundance W and WO3, or 96.86% enriched (186)W, into Al target supports. Alternatively, thick targets were prepared by pressing (186)W between two layers of graphite powder or by placing pre-sintered (1105°C, 12h) natural abundance WO3 pellets into an Al target support. Assessments of structural integrity were made on each target prepared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. Within a minimum of 24h post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO3 targets prepared and studied were unacceptable. By contrast, (186)W metal was found to be a viable target material for (186)Re production. Thick targets prepared with powdered (186)W pressed between layers of graphite provided a particularly robust target configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Strong tissue glue with tunable elasticity.

    PubMed

    Kelmansky, Regina; McAlvin, Brian J; Nyska, Abraham; Dohlman, Jenny C; Chiang, Homer H; Hashimoto, Michinao; Kohane, Daniel S; Mizrahi, Boaz

    2017-04-15

    Many bio-adhesive materials adhere weakly to tissue due to their high water content and weak structural integrity. Others provide desirable adhesive strength but suffer from rigid structure and lack of elasticity after administration. We have developed two water-free, liquid four-armed PEG pre-polymers modified with NHS or with NH 2 end groups which upon mixing changed from liquids to an elastic solid. The sealant and adhesive properties increased with the amount of the %v/v PEG 4 -NHS pre-polymer, and achieved adhesive properties comparable to those of cyanoacrylate glues. All mixtures showed minimal cytotoxicity in vitro. Mixtures of 90%v/v PEG 4 -NHS were retained in the subcutaneous space in vivo for up to 14days with minimal inflammation. This material's combination of desirable mechanical properties and biocompatibility has potential in numerous biomedical applications. Many bio-adhesive materials adhere weakly to tissue (e.g. hydrogels) due to their high water content and weak structural integrity. Others provide desirable mechanical properties but suffer from poor biocompatibility (e.g. cyanoacrylates). This study proposes a new concept for the formation of super strong and tunable tissue glues. Our bio-materials' enhanced performance is the product of new neat (without water or other solvents) liquid polymers that solidify after administration while allowing interactions with the tissue. Moreover, the elastic modulus of these materials could easily be tuned without compromising biocompatibility. This system could be an attractive alternative to sutures and staples since it can be applied more quickly, causes less pain and may require less equipment while maintaining the desired adhesion strength. Copyright © 2017 Acta Materialia Inc. All rights reserved.

  1. Potentials of Optical Damage Assessment Techniques in Automotive Crash-Concepts composed of FRP-Steel Hybrid Material Systems

    NASA Astrophysics Data System (ADS)

    Dlugosch, M.; Spiegelhalter, B.; Soot, T.; Lukaszewicz, D.; Fritsch, J.; Hiermaier, S.

    2017-05-01

    With car manufacturers simultaneously facing increasing passive safety and efficiency requirements, FRP-metal hybrid material systems are one way to design lightweight and crashworthy vehicle structures. Generic automotive hybrid structural concepts have been tested under crash loading conditions. In order to assess the state of overall damage and structural integrity, and primarily to validate simulation data, several NDT techniques have been assessed regarding their potential to detect common damage mechanisms in such hybrid systems. Significant potentials were found particularly in combining 3D-topography laser scanning and X-Ray imaging results. Ultrasonic testing proved to be limited by the signal coupling quality on damaged or curved surfaces.

  2. Thermoviscoplastic nonlinear constitutive relationships for structural analysis of high temperature metal matrix composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Hopkins, D. A.

    1985-01-01

    A set of thermoviscoplastic nonlinear constitutive relationships (1VP-NCR) is presented. The set was developed for application to high temperature metal matrix composites (HT-MMC) and is applicable to thermal and mechanical properties. Formulation of the TVP-NCR is based at the micromechanics level. The TVP-NCR are of simple form and readily integrated into nonlinear composite structural analysis. It is shown that the set of TVP-NCR is computationally effective. The set directly predicts complex materials behavior at all levels of the composite simulation, from the constituent materials, through the several levels of composite mechanics, and up to the global response of complex HT-MMC structural components.

  3. Bio-Based Artificial Nacre with Excellent Mechanical and Barrier Properties Realized by a Facile In Situ Reduction and Cross-Linking Reaction.

    PubMed

    Shahzadi, Kiran; Mohsin, Imran; Wu, Lin; Ge, Xuesong; Jiang, Yijun; Li, Hui; Mu, Xindong

    2017-01-24

    Demands for high strength integrated materials have substantially increased across various kinds of industries. Inspired by the relationship of excellent integration of mechanical properties and hierarchical nano/microscale structure of the natural nacre, a simple and facile method to fabricate high strength integrated artificial nacre based on sodium carboxymethylcellulose (CMC) and borate cross-linked graphene oxide (GO) sheets has been developed. The tensile strength and toughness of cellulose-based hybrid material reached 480.5 ± 13.1 MPa and 11.8 ± 0.4 MJm -3 by a facile in situ reduction and cross-linking reaction between CMC and GO (0.7%), which are 3.55 and 6.55 times that of natural nacre. This hybrid film exhibits better thermal stability and flame retardancy. More interestingly, the hybrid material showed good water stability compared to that in the original water-soluble CMC. This type of hybrid has great potential applications in aerospace, artificial muscle, and tissue engineering.

  4. Nano-Array Integrated Structured Catalysts: A New Paradigm upon Conventional Wash-Coated Monolithic Catalysts?

    DOE PAGES

    Weng, Junfei; Lu, Xingxu; Gao, Pu-Xian

    2017-08-28

    The monolithic catalyst, namely the structured catalyst, is one of the important categories of catalysts used in various fields, especially in catalytic exhaust after-treatment. Despite its successful application in conventional wash-coated catalysts in both mobile and stationary catalytic converters, washcoat-based technologies are facing multi-fold challenges, including: (1) high Pt-group metals (PGM) material loading being required, driving the market prices; (2) less-than ideal distribution of washcoats in typically square-shaped channels associated with pressure drop sacrifice; and (3) far from clear correlations between macroscopic washcoat structures and their catalytic performance. To tackle these challenges, the well-defined nanostructure array (nano-array)-integrated structured catalysts whichmore » we invented and developed recently have been proven to be a promising class of cost-effective and efficient devices that may complement or substitute wash-coated catalysts. This new type of structured catalysts is composed of honeycomb-structured monoliths, whose channel surfaces are grown in situ with a nano-array forest made of traditional binary transition metal oxide support such as Al 2O 3, CeO 2, Co 3O 4, MnO 2, TiO 2, and ZnO, or newer support materials including perovskite-type ABO3 structures, for example LaMnO 3, LaCoO 3, LaNiO, and LaFeO 3. The integration strategy parts from the traditional washcoat technique. Instead, an in situ nanomaterial assembly method is utilized, such as a hydro (solva-) thermal synthesis approach, in order to create sound structure robustness, and increase ease and complex-shaped substrate adaptability. Specifically, the critical fabrication procedures for nano-array structured catalysts include deposition of seeding layer, in situ growth of nano-array, and loading of catalytic materials. The generic methodology utilization in both the magnetic stirring batch process and continuous flow reactor synthesis offers the nano-array catalysts with great potential to be scaled up readily and cost-effectively. The tunability of the structure and catalytic performance could be achieved through morphology and geometry adjustment and guest atoms and defect manipulation, as well as composite nano-array catalyst manufacture. Excellent stabilities under various conditions were also present compared to conventional wash-coated catalysts.« less

  5. Nano-Array Integrated Structured Catalysts: A New Paradigm upon Conventional Wash-Coated Monolithic Catalysts?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weng, Junfei; Lu, Xingxu; Gao, Pu-Xian

    The monolithic catalyst, namely the structured catalyst, is one of the important categories of catalysts used in various fields, especially in catalytic exhaust after-treatment. Despite its successful application in conventional wash-coated catalysts in both mobile and stationary catalytic converters, washcoat-based technologies are facing multi-fold challenges, including: (1) high Pt-group metals (PGM) material loading being required, driving the market prices; (2) less-than ideal distribution of washcoats in typically square-shaped channels associated with pressure drop sacrifice; and (3) far from clear correlations between macroscopic washcoat structures and their catalytic performance. To tackle these challenges, the well-defined nanostructure array (nano-array)-integrated structured catalysts whichmore » we invented and developed recently have been proven to be a promising class of cost-effective and efficient devices that may complement or substitute wash-coated catalysts. This new type of structured catalysts is composed of honeycomb-structured monoliths, whose channel surfaces are grown in situ with a nano-array forest made of traditional binary transition metal oxide support such as Al 2O 3, CeO 2, Co 3O 4, MnO 2, TiO 2, and ZnO, or newer support materials including perovskite-type ABO3 structures, for example LaMnO 3, LaCoO 3, LaNiO, and LaFeO 3. The integration strategy parts from the traditional washcoat technique. Instead, an in situ nanomaterial assembly method is utilized, such as a hydro (solva-) thermal synthesis approach, in order to create sound structure robustness, and increase ease and complex-shaped substrate adaptability. Specifically, the critical fabrication procedures for nano-array structured catalysts include deposition of seeding layer, in situ growth of nano-array, and loading of catalytic materials. The generic methodology utilization in both the magnetic stirring batch process and continuous flow reactor synthesis offers the nano-array catalysts with great potential to be scaled up readily and cost-effectively. The tunability of the structure and catalytic performance could be achieved through morphology and geometry adjustment and guest atoms and defect manipulation, as well as composite nano-array catalyst manufacture. Excellent stabilities under various conditions were also present compared to conventional wash-coated catalysts.« less

  6. Thin Films and Inflatable Applications in Exploration Habitat Structures

    NASA Technical Reports Server (NTRS)

    Frazier, Donald O.; Paley, Mark S.; Strong, Janet D.

    2005-01-01

    NASA's vision to return to the Moon and then extend human exploration to Mars will benefit from human habitat technology development using new and creative applications of polymer materials and concepts. Thin Film and Inflatable (TFVI) materials are particularly interesting for exploration applications due to their light weight and low volume. Whereas TF/I materials can be launched and carried from Earth to multiple and distant exploration sites without the constraints of upmass limitations, eventually, with recycling and reclamation efforts, these materials may be developed using in-situ resources. These materials can be useful for fabricating, patching and repairing vehicles, replacement parts and even habitat structures, as well as for developing stand-alone habitat structure technologies and for nested and integrated applications. TF/Is can also be ideal environmental containment vessels within lunar or Martian regolith walls or as liners inside caves or raw regolith exterior structures for the provisions of atmosphere containment, debris protection and cleanliness. Further, TFOs can be specialized and matured for various and diverse applications. The desired range of applications will require materials specification for such properties as transparency, elasticity, thermal conductivity, mechanical strength, heat capacity, chemical resistance, and permeability. This paper will discuss Marshall Space Flight Center's plans to analyze and prioritize TF/I materials properties and classifications and to develop applications for these highly desirable materials in human habitat construction projects on the Moon and Mars.

  7. Managing Small Group Instruction in an Integrated Preschool Setting.

    ERIC Educational Resources Information Center

    O'Connell, Joanne Curry

    1986-01-01

    A structured small group instructional setting helps to teach mainstreamed handicapped preschoolers the skills necessary to interact with the classroom materials without direct supervision. Examples are cited of individualized play activities with puzzles, paint, and play dough. (CL)

  8. Responsive 3D microstructures from virus building blocks.

    PubMed

    Oh, Seungwhan; Kwak, Eun-A; Jeon, Seongho; Ahn, Suji; Kim, Jong-Man; Jaworski, Justyn

    2014-08-13

    Fabrication of 3D biological structures reveals dynamic response to external stimuli. A liquid-crystalline bridge extrusion technique is used to generate 3D structures allowing the capture of Rayleigh-like instabilities, facilitating customization of smooth, helical, or undulating periodic surface textures. By integrating intrinsic biochemical functionality and synthetic components into controlled structures, this strategy offers a new form of adaptable materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Energy--Structure--Life. A Learning System for Understanding Science, Book Two.

    ERIC Educational Resources Information Center

    Bixby, Louis W.; And Others

    This learning guide contains materials for the second year of Energy/Structure/ Life, a two year high school program in integrated science. The guide is programed to permit the student to proceed on his own at a self-determined pace. The two year course is a sequence of physics, chemistry, and biology with the chemical (continued from the first…

  10. Evaluation of stress intensity factors for bi-material interface cracks using displacement jump methods

    NASA Astrophysics Data System (ADS)

    Nehar, K. C.; Hachi, B. E.; Cazes, F.; Haboussi, M.

    2017-12-01

    The aim of the present work is to investigate the numerical modeling of interfacial cracks that may appear at the interface between two isotropic elastic materials. The extended finite element method is employed to analyze brittle and bi-material interfacial fatigue crack growth by computing the mixed mode stress intensity factors (SIF). Three different approaches are introduced to compute the SIFs. In the first one, mixed mode SIF is deduced from the computation of the contour integral as per the classical J-integral method, whereas a displacement method is used to evaluate the SIF by using either one or two displacement jumps located along the crack path in the second and third approaches. The displacement jump method is rather classical for mono-materials, but has to our knowledge not been used up to now for a bi-material. Hence, use of displacement jump for characterizing bi-material cracks constitutes the main contribution of the present study. Several benchmark tests including parametric studies are performed to show the effectiveness of these computational methodologies for SIF considering static and fatigue problems of bi-material structures. It is found that results based on the displacement jump methods are in a very good agreement with those of exact solutions, such as for the J-integral method, but with a larger domain of applicability and a better numerical efficiency (less time consuming and less spurious boundary effect).

  11. Current conducting end plate of fuel cell assembly

    DOEpatents

    Walsh, Michael M.

    1999-01-01

    A fuel cell assembly has a current conducting end plate with a conductive body formed integrally with isolating material. The conductive body has a first surface, a second surface opposite the first surface, and an electrical connector. The first surface has an exposed portion for conducting current between a working section of the fuel cell assembly and the electrical connector. The isolating material is positioned on at least a portion of the second surface. The conductive body can have support passage(s) extending therethrough for receiving structural member(s) of the fuel cell assembly. Isolating material can electrically isolate the conductive body from the structural member(s). The conductive body can have service passage(s) extending therethrough for servicing one or more fluids for the fuel cell assembly. Isolating material can chemically isolate the one or more fluids from the conductive body. The isolating material can also electrically isolate the conductive body from the one or more fluids.

  12. NDE of polymeric composite material bridge components

    NASA Astrophysics Data System (ADS)

    Duke, John C., Jr.; Horne, Michael R.

    1998-03-01

    Rapid advancements with respect to utilization of polymeric composite materials for bridge components is occurring. This situation is driven primarily by the potential improvements offered by these materials with respect to long term durability. However, because of the developmental nature of these materials much of the materials characterization has involved short term testing without the synergistic effects of environmental exposure. Efforts to develop nondestructive evaluation procedures, essential for any wide spread use in critical structural applications, have been consequently limited. This paper discuses the effort to develop NDE methods for field inspection of hybrid glass and carbon fiber reinforced vinyl ester pultruded 'double box' I beams that are installed in a small bridge over Tom's Creek, in Blacksburg, Virginia. Integrated structural element sensors, dormant infrared devices, as well as acousto-ultrasonic methods are under development for detecting and monitoring the occurrence and progression of life limiting deterioration mechanisms.

  13. Long-Term Lunar Radiation Degradation Effects on Materials

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; ORourke, Mary Jane; Koontz, Steve; Alred, John; Hill, Charles; Devivar, Rodrigo; Morera-Felix, Shakira; Atwell, William; Nutt, Steve; Sabbann, Leslie

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is focused on developing technologies for extending human presence beyond low Earth orbit. These technologies are to advance the state-of-the-art and provide for longer duration missions outside the protection of Earth's magnetosphere. One technology of great interest for large structures is advanced composite materials, due to their weight and cost savings, enhanced radiation protection for the crew, and potential for performance improvements when compared with existing metals. However, these materials have not been characterized for the interplanetary space environment, and particularly the effects of high energy radiation, which is known to cause damage to polymeric materials. Therefore, a study focusing on a lunar habitation element was undertaken to investigate the integrity of potential structural composite materials after exposure to a long-term lunar radiation environment. An overview of the study results are presented, along with a discussion of recommended future work.

  14. Soil and Living Things. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 4.

    ERIC Educational Resources Information Center

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P7 SIS unit focuses on: (1) the structure of the two main soil types in Seychelles; (2) the role of roots in…

  15. Structural integrity—Searching the key factor to supress the voltage fade of Li-rich layered cathode materials through 3D X-ray imaging and spectroscopy techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yahong; Hu, Enyuan; Yang, Feifei

    Li-rich layered materials are important cathode compounds used in commercial lithium ion batteries, which, however, suffers from some drawbacks including the so-called voltage fade upon electrochemical cycling. This study employs novel transmission X-ray microscopy to investigate the electrochemical reaction induced morphological and chemical changes in the Li-rich Li 2Ru 0.5Mn 0.5O 3 cathode particles at the meso to nano scale. Combined X-ray spectroscopy, diffraction and microscopy experiments are performed to systematically study this cathode material's evolution upon cycling as well as to establish a comprehensive understanding of the structural origin of capacity fade through 2D and 3D fine length scalemore » morphology and heterogeneity change of this material. This work suggests that atomic manipulation (e.g. doping, substitution etc.) or nano engineering (e.g. nano-sizing, heterogeneous structure) are important strategies to mitigate the internal strain and defects induced by extensive lithium insertion/extraction. In conclusion, it also shows that maintaining the structural integrity is the key in designing and synthesizing lithium-rich layered materials with better cycle stability.« less

  16. Structural integrity—Searching the key factor to supress the voltage fade of Li-rich layered cathode materials through 3D X-ray imaging and spectroscopy techniques

    DOE PAGES

    Xu, Yahong; Hu, Enyuan; Yang, Feifei; ...

    2016-08-17

    Li-rich layered materials are important cathode compounds used in commercial lithium ion batteries, which, however, suffers from some drawbacks including the so-called voltage fade upon electrochemical cycling. This study employs novel transmission X-ray microscopy to investigate the electrochemical reaction induced morphological and chemical changes in the Li-rich Li 2Ru 0.5Mn 0.5O 3 cathode particles at the meso to nano scale. Combined X-ray spectroscopy, diffraction and microscopy experiments are performed to systematically study this cathode material's evolution upon cycling as well as to establish a comprehensive understanding of the structural origin of capacity fade through 2D and 3D fine length scalemore » morphology and heterogeneity change of this material. This work suggests that atomic manipulation (e.g. doping, substitution etc.) or nano engineering (e.g. nano-sizing, heterogeneous structure) are important strategies to mitigate the internal strain and defects induced by extensive lithium insertion/extraction. In conclusion, it also shows that maintaining the structural integrity is the key in designing and synthesizing lithium-rich layered materials with better cycle stability.« less

  17. Performance characterization of active fiber-composite actuators for helicopter rotor blade applications

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Viresh K.; Hagood, Nesbitt W.

    2002-07-01

    The primary objective of this work was to characterize the performance of the Active Fiber Composite (AFC) actuator material system for the Boeing Active Material Rotor (AMR) blade application. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to orient the driving electric field in the fiber direction to use the primary piezoelectric effect. These actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural actuation for vibration control in helicopters. Therefore, it was necessary to conduct extensive electromechanical material characterization to evaluate AFCs both as actuators and as structural components of the rotor blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included stress-strain tests, free strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing process developed to evaluate the relevant AFC material properties. The results from this comprehensive performance characterization of the AFC material system supported the design and operation of the Boeing AMR blade scheduled for hover and forward flight wind tunnel tests.

  18. Influence of alkali metal cations/type of activator on the structure of alkali-activated fly ash - ATR-FTIR studies

    NASA Astrophysics Data System (ADS)

    Król, M.; Rożek, P.; Chlebda, D.; Mozgawa, W.

    2018-06-01

    Coal fly ash as a secondary aluminosiliceous raw material that is commonly used in the so-called geopolymerization process has been activated with different alkali hydroxides solutions: LiOH, NaOH and KOH. Changes in the aluminosilicate structure of the material during alkali-activation have been analyzed in detail on the basis of ATR/FT-IR spectra. These changes mainly affect both the integral intensity and FWHM of bands in the range of 1200-950 cm-1, however dehydration and carbonation process can be also analyzed based on obtaining results.

  19. Integrated optimization of nonlinear R/C frames with reliability constraints

    NASA Technical Reports Server (NTRS)

    Soeiro, Alfredo; Hoit, Marc

    1989-01-01

    A structural optimization algorithm was researched including global displacements as decision variables. The algorithm was applied to planar reinforced concrete frames with nonlinear material behavior submitted to static loading. The flexural performance of the elements was evaluated as a function of the actual stress-strain diagrams of the materials. Formation of rotational hinges with strain hardening were allowed and the equilibrium constraints were updated accordingly. The adequacy of the frames was guaranteed by imposing as constraints required reliability indices for the members, maximum global displacements for the structure and a maximum system probability of failure.

  20. Overview of Heatshield for Extreme Entry Environment Technology (HEEET)

    NASA Technical Reports Server (NTRS)

    Driver, David M.; Ellerby, Donald T.; Gasch, Matthew J.; Mahzari, Milad; Milos, Frank S.; Nishioka, Owen S.; Stackpoole, Margaret M.; Venkatapathy, Ethiraj; Young, Zion W.; Gage, Peter J.; hide

    2018-01-01

    The Heatshield for Extreme Entry Environment Technology (HEEET) projects objective is to mature a 3-D Woven Thermal Protection System (TPS) to Technical Readiness Level (TRL) 6 to support future NASA missions to destinations such as Venus and Saturn. The scope of the project, status of which will be discussed, encompasses development of manufacturing and integration processes, fabrication of a prototype 1m diameter engineering test unit (ETU) that will undergo a series of structural tests, characterizing material aerothermal performance including development of a material response model, and structural testing and analysis to develop tools to support design and establish system capability.

  1. Ultrasonic assessment of additive manufactured Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Schehl, Norman; Kramb, Vicki; Dierken, Josiah; Aldrin, John; Schwalbach, Edwin; John, Reji

    2018-04-01

    Additive Manufacturing (AM) processes offer the potential for manufacturing cost savings and rapid insertion into service through production of near net shape components for complicated structures. Use of these parts in high reliability applications such as those in the aerospace industry will require nondestructive characterization methods to ensure post-process material quality in as-built condition. Ultrasonic methods can be used for this quality verification. Depending on the application, the service life of AM components can be sensitive to the part surface condition. The surface roughness and layered structure inherent to the electron-beam powder-bed fusion process necessitates new approaches to evaluate subsurface material integrity in its presence. Experimental methods and data analytics may improve the evaluation of as-built additively manufactured materials. This paper discusses the assessment of additively manufactured EBM Ti-6Al-4V panels using ultrasonic methods and the data analytics applied to evaluate material integrity. The assessment was done as an exploratory study as the discontinuities of interest in these test samples were not known when the measurements were performed. Water immersion ultrasonic techniques, including pulse-echo and through transmission with 10 MHz focused transducers, were used to explore the material integrity of as-built plates. Subsequent destructive mechanical tests of specimens extracted from the plates provided fracture locations indicating critical flaws. To further understand the effect of surface-roughness, an evaluation of ultrasonic response in the presence of as-built surfaces and with the surface removed was performed. The assessment of additive manufactured EBM Ti-6Al-4V panels with ultrasonic techniques indicated that ultrasonic energy was attenuated by the as-built surface roughness. In addition, feature detection was shown to be sensitive to experimental ultrasonic parameters and flaw morphology.

  2. Nonlinear ultrasonics for material state awareness

    NASA Astrophysics Data System (ADS)

    Jacobs, L. J.

    2014-02-01

    Predictive health monitoring of structural components will require the development of advanced sensing techniques capable of providing quantitative information on the damage state of structural materials. By focusing on nonlinear acoustic techniques, it is possible to measure absolute, strength based material parameters that can then be coupled with uncertainty models to enable accurate and quantitative life prediction. Starting at the material level, this review will present current research that involves a combination of sensing techniques and physics-based models to characterize damage in metallic materials. In metals, these nonlinear ultrasonic measurements can sense material state, before the formation of micro- and macro-cracks. Typically, cracks of a measurable size appear quite late in a component's total life, while the material's integrity in terms of toughness and strength gradually decreases due to the microplasticity (dislocations) and associated change in the material's microstructure. This review focuses on second harmonic generation techniques. Since these nonlinear acoustic techniques are acoustic wave based, component interrogation can be performed with bulk, surface and guided waves using the same underlying material physics; these nonlinear ultrasonic techniques provide results which are independent of the wave type used. Recent physics-based models consider the evolution of damage due to dislocations, slip bands, interstitials, and precipitates in the lattice structure, which can lead to localized damage.

  3. A self-diagnostic adhesive for monitoring bonded joints in aerospace structures

    NASA Astrophysics Data System (ADS)

    Zhuang, Yitao; Li, Yu-hung; Kopsaftopoulos, Fotis; Chang, Fu-Kuo

    2016-04-01

    Bondline integrity is still one of the most critical concerns in the design of aircraft structures up to date. Due to the lack of confidence on the integrity of the bondline both during fabrication and service, the industry standards and regulations still require assembling the composite using conventional fasteners. Furthermore, current state-of-the-art non-destructive evaluation (NDE) and structural health monitoring (SHM) techniques are incapable of offering mature solutions on the issue of bondline integrity monitoring. Therefore, the objective of this work is the development of an intelligent adhesive film with integrated micro-sensors for monitoring the integrity of the bondline interface. The proposed method makes use of an electromechanical-impedance (EMI) based method, which is a rapidly evolving approach within the SHM family. Furthermore, an innovative screen-printing technique to fabricate piezoelectric ceramic sensors with minimal thickness has been developed at Stanford. The approach presented in this study is based on the use of (i) micro screen-printed piezoelectric sensors integrated into adhesive leaving a minimal footprint on the material, (ii) numerical and analytical modeling of the EMI spectrum of the adhesive bondline, (iii) novel diagnostic algorithms for monitoring the bondline integrity based on advanced signal processing techniques, and (iv) the experimental assessment via prototype adhesively bonded structures in static (varying loads) and dynamic (fatigue) environments. The proposed method will provide a huge confidence on the use of bonded joints for aerospace structures and lead to a paradigm change in their design by enabling enormous weight savings while maximizing the economic and performance efficiency.

  4. Space Spider - A concept for fabrication of large structures

    NASA Technical Reports Server (NTRS)

    Britton, W. R.; Johnston, J. D.

    1978-01-01

    The Space Spider concept for the automated fabrication of large space structures involves a specialized machine which roll-forms thin gauge material such as aluminum and develops continuous spiral structures with radial struts to sizes of 600-1,000 feet in diameter by 15 feet deep. This concept allows the machine and raw material to be integrated using the Orbiter capabilities, then boosting the rigid system to geosynchronous equatorial orbit (GEO) without high sensitivity to acceleration forces. As a teleoperator controlled device having repetitive operations, the fabrication process can be monitored and verified from a ground-based station without astronaut involvement in GEO. The resultant structure will be useful as an intermediate size platform or as a structural element to be used with other elements such as the space-fabricated beams or composite nested tubes.

  5. Nonlinear material behaviour of spider silk yields robust webs.

    PubMed

    Cranford, Steven W; Tarakanova, Anna; Pugno, Nicola M; Buehler, Markus J

    2012-02-01

    Natural materials are renowned for exquisite designs that optimize function, as illustrated by the elasticity of blood vessels, the toughness of bone and the protection offered by nacre. Particularly intriguing are spider silks, with studies having explored properties ranging from their protein sequence to the geometry of a web. This material system, highly adapted to meet a spider's many needs, has superior mechanical properties. In spite of much research into the molecular design underpinning the outstanding performance of silk fibres, and into the mechanical characteristics of web-like structures, it remains unknown how the mechanical characteristics of spider silk contribute to the integrity and performance of a spider web. Here we report web deformation experiments and simulations that identify the nonlinear response of silk threads to stress--involving softening at a yield point and substantial stiffening at large strain until failure--as being crucial to localize load-induced deformation and resulting in mechanically robust spider webs. Control simulations confirmed that a nonlinear stress response results in superior resistance to structural defects in the web compared to linear elastic or elastic-plastic (softening) material behaviour. We also show that under distributed loads, such as those exerted by wind, the stiff behaviour of silk under small deformation, before the yield point, is essential in maintaining the web's structural integrity. The superior performance of silk in webs is therefore not due merely to its exceptional ultimate strength and strain, but arises from the nonlinear response of silk threads to strain and their geometrical arrangement in a web.

  6. A critical review of nanotechnologies for composite aerospace structures

    NASA Astrophysics Data System (ADS)

    Kostopoulos, Vassilis; Masouras, Athanasios; Baltopoulos, Athanasios; Vavouliotis, Antonios; Sotiriadis, George; Pambaguian, Laurent

    2017-03-01

    The past decade extensive efforts have been invested in understanding the nano-scale and revealing the capabilities offered by nanotechnology products to structural materials. Integration of nano-particles into fiber composites concludes to multi-scale reinforced composites and has opened a new wide range of multi-functional materials in industry. In this direction, a variety of carbon based nano-fillers has been proposed and employed, individually or in combination in hybrid forms, to approach the desired performance. Nevertheless, a major issue faced lately more seriously due to the interest of industry is on how to incorporate these nano-species into the final composite structure through existing manufacturing processes and infrastructure. This interest originates from several industrial applications needs that request the development of new multi-functional materials which combine enhanced mechanical, electrical and thermal properties. In this work, an attempt is performed to review the most representative processes and related performances reported in literature and the experience obtained on nano-enabling technologies of fiber composite materials. This review focuses on the two main composite manufacturing technologies used by the aerospace industry; Prepreg/Autoclave and Resin Transfer technologies. It addresses several approaches for nano-enabling of composites for these two routes and reports latest achieved results focusing on performance of nano-enabled fiber reinforced composites extracted from literature. Finally, this review work identifies the gap between available nano-technology integration routes and the established industrial composite manufacturing techniques and the challenges to increase the Technology Readiness Level to reach the demands for aerospace industry applications.

  7. Life Predicted in a Probabilistic Design Space for Brittle Materials With Transient Loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Palfi, Tamas; Reh, Stefan

    2005-01-01

    Analytical techniques have progressively become more sophisticated, and now we can consider the probabilistic nature of the entire space of random input variables on the lifetime reliability of brittle structures. This was demonstrated with NASA s CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code combined with the commercially available ANSYS/Probabilistic Design System (ANSYS/PDS), a probabilistic analysis tool that is an integral part of the ANSYS finite-element analysis program. ANSYS/PDS allows probabilistic loads, component geometry, and material properties to be considered in the finite-element analysis. CARES/Life predicts the time dependent probability of failure of brittle material structures under generalized thermomechanical loading--such as that found in a turbine engine hot-section. Glenn researchers coupled ANSYS/PDS with CARES/Life to assess the effects of the stochastic variables of component geometry, loading, and material properties on the predicted life of the component for fully transient thermomechanical loading and cyclic loading.

  8. Piezoelectric paints as one approach to smart structural materials with health-monitoring capabilities

    NASA Astrophysics Data System (ADS)

    Egusa, Shigenori; Iwasawa, Naozumi

    1998-08-01

    Piezoelectric paints have a potential to change a conventional structural material into an intelligent material system with health-monitoring capabilities such as vibration sensing and damage detection. Such paints were prepared using lead zirconate titanate (PZT) ceramic powder as a pigment and epoxy resin as a binder. The obtained paints were coated on aluminum test specimens, and were cured at room temperature or at 150 0964-1726/7/4/002/img5, thus forming the paint films having different thicknesses of 25-300 0964-1726/7/4/002/img6. These films were then poled at room temperature, and were evaluated with regard to the sensitivities as vibration and acoustic emission sensors in the frequency ranges of 0-250 Hz and 0-1.0 MHz, respectively. This paper mainly describes the effects of the film thickness and the cure temperature on the poling behavior of the PZT/epoxy paint film. This paper describes also the application of the paint film as a vibration modal sensor integrated into a structural material.

  9. Ordered macroporous platinum electrode and enhanced mass transfer in fuel cells using inverse opal structure.

    PubMed

    Kim, Ok-Hee; Cho, Yong-Hun; Kang, Soon Hyung; Park, Hee-Young; Kim, Minhyoung; Lim, Ju Wan; Chung, Dong Young; Lee, Myeong Jae; Choe, Heeman; Sung, Yung-Eun

    2013-01-01

    Three-dimensional, ordered macroporous materials such as inverse opal structures are attractive materials for various applications in electrochemical devices because of the benefits derived from their periodic structures: relatively large surface areas, large voidage, low tortuosity and interconnected macropores. However, a direct application of an inverse opal structure in membrane electrode assemblies has been considered impractical because of the limitations in fabrication routes including an unsuitable substrate. Here we report the demonstration of a single cell that maintains an inverse opal structure entirely within a membrane electrode assembly. Compared with the conventional catalyst slurry, an ink-based assembly, this modified assembly has a robust and integrated configuration of catalyst layers; therefore, the loss of catalyst particles can be minimized. Furthermore, the inverse-opal-structure electrode maintains an effective porosity, an enhanced performance, as well as an improved mass transfer and more effective water management, owing to its morphological advantages.

  10. Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering☆

    PubMed Central

    Moioli, Eduardo K.; Clark, Paul A.; Xin, Xuejun; Lal, Shan; Mao, Jeremy J.

    2010-01-01

    Current treatments for diseases and trauma of dental, oral and craniofacial (DOC) structures rely on durable materials such as amalgam and synthetic materials, or autologous tissue grafts. A paradigm shift has taken place to utilize tissue engineering and drug delivery approaches towards the regeneration of these structures. Several prototypes of DOC structures have been regenerated such as temporomandibular joint (TMJ) condyle, cranial sutures, tooth structures and periodontium components. However, many challenges remain when taking in consideration the high demand for esthetics of DOC structures, the complex environment and yet minimal scar formation in the oral cavity, and the need for accommodating multiple tissue phenotypes. This review highlights recent advances in the regeneration of DOC structures, including the tooth, periodontium, TMJ, cranial sutures and implant dentistry, with specific emphasis on controlled release of signaling cues for stem cells, biomaterial matrices and scaffolds, and integrated tissue engineering approaches. PMID:17499385

  11. Macro-/Micro-Controlled 3D Lithium-Ion Batteries via Additive Manufacturing and Electric Field Processing.

    PubMed

    Li, Jie; Liang, Xinhua; Liou, Frank; Park, Jonghyun

    2018-01-30

    This paper presents a new concept for making battery electrodes that can simultaneously control macro-/micro-structures and help address current energy storage technology gaps and future energy storage requirements. Modern batteries are fabricated in the form of laminated structures that are composed of randomly mixed constituent materials. This randomness in conventional methods can provide a possibility of developing new breakthrough processing techniques to build well-organized structures that can improve battery performance. In the proposed processing, an electric field (EF) controls the microstructures of manganese-based electrodes, while additive manufacturing controls macro-3D structures and the integration of both scales. The synergistic control of micro-/macro-structures is a novel concept in energy material processing that has considerable potential for providing unprecedented control of electrode structures, thereby enhancing performance. Electrochemical tests have shown that these new electrodes exhibit superior performance in their specific capacity, areal capacity, and life cycle.

  12. Gravity and thermal deformation of large primary mirror in space telescope

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Jiang, Shouwang; Wan, Jinlong; Shu, Rong

    2016-10-01

    The technology of integrating mechanical FEA analysis with optical estimation is essential to simulate the gravity deformation of large main mirror and the thermal deformation such as static or temperature gradient of optical structure. We present the simulation results of FEA analysis, data processing, and image performance. Three kinds of support structure for large primary mirror which have the center holding structure, the edge glue fixation and back support, are designed and compared to get the optimal gravity deformation. Variable mirror materials Zerodur/SiC are chosen and analyzed to obtain the small thermal gradient distortion. The simulation accuracy is dependent on FEA mesh quality, the load definition of structure, the fitting error from discrete data to smooth surface. A main mirror with 1m diameter is designed as an example. The appropriate structure material to match mirror, the central supporting structure, and the key aspects of FEA simulation are optimized for space application.

  13. A new zinc-1,3,5-benzenetricarboxylate framework integrated three distinct subunits (SBUs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yi-Ming, E-mail: ymxie@fjirsm.ac.cn

    2013-06-01

    A new metal-organic framework (MOF) [Zn₅(btc)₃(H₂O)₀.₅(O)₀.₅(DMA)₃]·1.75(DMA) (1; btc=1,3,5-benzenetricarboxylate; DMA=N,N´-dimethyl acetamide) has been solvothermally synthesized. Unusually, three distinct subunits (SBUs), [Zn₂(CO₂)₄(DMA)₂], [(μ₃-H₂O)Zn₃(CO₂)₆(DMA)] and [(µ₄-O)Zn₄(CO₂)₆(DMA)₂] are observed in 1 simultaneously. The integration of three distinct SBUs leads to an interesting Zn-btc framework materials with unusual structural topology. - Graphical abstract: Presented here is a new zinc-1,3,5-benzenetricarboxylate framework integrated three distinct subunits (SBUs). - Highlights: • A new zinc-1,3,5-benzenetricarboxylate framework has been synthesized. • Three distinct subunits (SBUs) are observed in 1 simultaneously. • The integration of three distinct SBUs leads to an unusual structural topology.

  14. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications.

    PubMed

    Attalla, R; Ling, C; Selvaganapathy, P

    2016-02-01

    The lack of a simple and effective method to integrate vascular network with engineered scaffolds and tissue constructs remains one of the biggest challenges in true 3D tissue engineering. Here, we detail the use of a commercially available, low-cost, open-source 3D printer modified with a microfluidic print-head in order to develop a method for the generation of instantly perfusable vascular network integrated with gel scaffolds seeded with cells. The print-head features an integrated coaxial nozzle that allows the fabrication of hollow, calcium-polymerized alginate tubes that can be easily patterned using 3D printing techniques. The diameter of the hollow channel can be precisely controlled and varied between 500 μm - 2 mm by changing applied flow rates or print-head speed. These channels are integrated into gel layers with a thickness of 800 μm - 2.5 mm. The structural rigidity of these constructs allows the fabrication of multi-layered structures without causing the collapse of hollow channels in lower layers. The 3D printing method was fully characterized at a range of operating speeds (0-40 m/min) and corresponding flow rates (1-30 mL/min) were identified to produce precise definition. This microfluidic design also allows the incorporation of a wide range of scaffold materials as well as biological constituents such as cells, growth factors, and ECM material. Media perfusion of the channels causes a significant viability increase in the bulk of cell-laden structures over the long-term. With this setup, gel constructs with embedded arrays of hollow channels can be created and used as a potential substitute for blood vessel networks.

  15. Fabricating Composite-Material Structures Containing SMA Ribbons

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Cano, Roberto J.; Lach, Cynthia L.

    2003-01-01

    An improved method of designing and fabricating laminated composite-material (matrix/fiber) structures containing embedded shape-memory-alloy (SMA) actuators has been devised. Structures made by this method have repeatable, predictable properties, and fabrication processes can readily be automated. Such structures, denoted as shape-memory-alloy hybrid composite (SMAHC) structures, have been investigated for their potential to satisfy requirements to control the shapes or thermoelastic responses of themselves or of other structures into which they might be incorporated, or to control noise and vibrations. Much of the prior work on SMAHC structures has involved the use SMA wires embedded within matrices or within sleeves through parent structures. The disadvantages of using SMA wires as the embedded actuators include (1) complexity of fabrication procedures because of the relatively large numbers of actuators usually needed; (2) sensitivity to actuator/ matrix interface flaws because voids can be of significant size, relative to wires; (3) relatively high rates of breakage of actuators during curing of matrix materials because of sensitivity to stress concentrations at mechanical restraints; and (4) difficulty of achieving desirable overall volume fractions of SMA wires when trying to optimize the integration of the wires by placing them in selected layers only.

  16. Heterogeneously integrated microsystem-on-a-chip

    DOEpatents

    Chanchani, Rajen [Albuquerque, NM

    2008-02-26

    A microsystem-on-a-chip comprises a bottom wafer of normal thickness and a series of thinned wafers can be stacked on the bottom wafer, glued and electrically interconnected. The interconnection layer comprises a compliant dielectric material, an interconnect structure, and can include embedded passives. The stacked wafer technology provides a heterogeneously integrated, ultra-miniaturized, higher performing, robust and cost-effective microsystem package. The highly integrated microsystem package, comprising electronics, sensors, optics, and MEMS, can be miniaturized both in volume and footprint to the size of a bottle-cap or less.

  17. Computer modeling of the mechanical behavior of composites -- Interfacial cracks in fiber-reinforced materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmauder, S.; Haake, S.; Mueller, W.H.

    Computer modeling of materials and especially modeling the mechanical behavior of composites became increasingly popular in the past few years. Among them are examples of micromechanical modeling of real structures as well as idealized model structures of linear elastic and elasto-plastic material response. In this paper, Erdogan`s Integral Equation Method (IEM) is chosen as an example for a powerful method providing principle insight into elastic fracture mechanical situations. IEM or, alternatively, complex function techniques sometimes even allow for deriving analytical solutions such as in the case of a circumferential crack along a fiber/matrix interface. The analytical formulae of this interfacemore » crack will be analyzed numerically and typical results will be presented graphically.« less

  18. Mechanical properties of tank car steels retired from the fleet

    DOT National Transportation Integrated Search

    2009-03-03

    As a consequence of recent accidents involving the release of hazardous materials (hazmat), the structural integrity and crashworthiness of railroad tank cars have come under scrutiny. Particular attention has been given to the older portion of the f...

  19. Safe, High-Performance, Sustainable Precast School Design

    ERIC Educational Resources Information Center

    Finsen, Peter I.

    2011-01-01

    School design utilizing integrated architectural and structural precast and prestressed concrete components has gained greater acceptance recently for numerous reasons, including increasingly sophisticated owners and improved learning environments based on material benefits such as: sustainability, energy efficiency, indoor air quality, storm…

  20. A Biomimetic Structural Health Monitoring Approach Using Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Yingtao; Rajadas, Abhishek; Chattopadhyay, Aditi

    2012-07-01

    A self-sensing nanocomposite material has been developed to track the presence of damage in complex composite structures. Multiwalled carbon nanotubes are integrated with polymer matrix to develop a novel bonding material with sensing capabilities. The changes of the piezoresistance in the presence of damage are used to monitor the condition of bonded joints, where the usual bonding material is replaced by the self-sensing nanocomposite. The feasibility of this concept is investigated through experiments conducted on single-lap joints subject to monotonic tensile loading conditions. The results show that the self-sensing nanocomposite is sensitive to crack propagation within the matrix material. An acoustic emission-based sensing technique has been used to validate these results and shows good correlation with damage growth. A digital image correlation system is used to measure the shear strain field in the joint area.

  1. 3D Ultrasonic Wave Simulations for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.

    2011-01-01

    Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.

  2. On finite element implementation and computational techniques for constitutive modeling of high temperature composites

    NASA Technical Reports Server (NTRS)

    Saleeb, A. F.; Chang, T. Y. P.; Wilt, T.; Iskovitz, I.

    1989-01-01

    The research work performed during the past year on finite element implementation and computational techniques pertaining to high temperature composites is outlined. In the present research, two main issues are addressed: efficient geometric modeling of composite structures and expedient numerical integration techniques dealing with constitutive rate equations. In the first issue, mixed finite elements for modeling laminated plates and shells were examined in terms of numerical accuracy, locking property and computational efficiency. Element applications include (currently available) linearly elastic analysis and future extension to material nonlinearity for damage predictions and large deformations. On the material level, various integration methods to integrate nonlinear constitutive rate equations for finite element implementation were studied. These include explicit, implicit and automatic subincrementing schemes. In all cases, examples are included to illustrate the numerical characteristics of various methods that were considered.

  3. Integration of infrared thermography and high-frequency electromagnetic methods in archaeological surveys

    NASA Astrophysics Data System (ADS)

    di Maio, Rosa; Meola, Carosena; Fedi, Maurizio; Carlomagno, Giovanni Maria

    2010-05-01

    An integration of high-resolution non-destructive techniques is presented for the inspection and evaluation of ancient architectonic structures. Infrared thermography (IRT) represents a valuable tool for nondestructive evaluation of architectonic structures and artworks because it is capable of giving indications about most of the degradation sources of artworks and buildings of both historical interest and civil use. In particular, it is possible to detect cracks, disbondings, alteration of material consistency, etc. Indeed, by choosing the most adequate thermographic technique, it is possible to monitor the conservation state of artworks in time and to detect the presence of many types of defects (e.g., voids, cracks, disbondings, etc.) in different types of materials (e.g., concrete, masonry structures, bronze, etc.). The main advantages of infrared thermography when dealing with precious artworks may be summarized with three words: non-contact, non-invasive, and two-dimensionality. It is possible to inspect either a large surface such as the facade of a palace, or a very small surface of only few square millimetres. Conversely, the inspection depth is quite small; generally, of the order of centimetres. However, as demonstrated in previous work, IRT well matches with electric-and electromagnetic-type geophysical methods to characterize the overlapping zone from low-to-high depth in masonry structures. In particular, the use of high-frequency electromagnetic techniques, such as the ground penetrating radar (GPR), permits to reach investigation depths of some ten of centimetres by choosing appropriate frequencies of the transmitted electromagnetic signal. In the last decade a large utilisation of the GPR methodology to non-destructive analysis of engineering and architectural materials and structures has been experienced. This includes diverse features, such as definition of layer thickness, characterisation of different constructive materials, identification of voids and/or degraded zones, water content mapping, location of reinforcing bars and metal elements in concrete structures. The attention of this work is focused on the integration of both techniques for inspection of architectonic structures. First, an integration of techniques is performed in laboratory by considering an ad hoc specimen with insertion of anomalies. Then, the techniques are used for the inspection in situ of some important Italian archaeological sites, such as Pompei (Naples) and Nora (Cagliari). In the first site, the exploration is devoted to the analysis of wall decoration of the architectonical complex of Villa Imperiale with the aim to support the hypothesis that attributes the Villa to Imperial property as well as to evaluate the state of conservation of frescoes and underneath structure. As main findings, the applied techniques allows for detection of hidden previous decorative layers and for discrimination of different types of paint used as well as for identification of areas damaged by ingression in-depth of moisture and/or by disaggregation of the constituent materials. In the archaeological area of Nora, instead, the prospecting is devised to the evaluation of the state of degradation of two significant buildings of the ancient site: the temple and the theatre. Due to the very high horizontal and vertical resolution of the performed surveys, detailed physical anomaly maps of the investigated structures are obtained. Large portions of the masonry walls appear interested by decomposition of the mortar binding the stone blocks, which sometimes propagates along the whole stone wall. The information coming from a joint interpretation of IRT and GPR data allows detailed 3D images of the two investigated buildings, which are useful for future restoration planning.

  4. Natural Materials, Systems & Extremophiles

    DTIC Science & Technology

    2012-03-06

    system. Linked: FY11 AFRL/RX pgm • Structural Coloration – new area, several PIs moving in and out; MURI (Harvard) • Biopolymers – Mainly silk but...looking at other biopolymers . The silk work is well integrated with AFRL; many exchanges of personnel & material. Some PIs moving out with...it pertains to marking items. • Silk – DARPA has contributed to my existing program. ARO has a single grantee. ONR funds a single investigator. NSF

  5. Symposium Z: Materials Challenges for Energy Storage Across Multiple Scales

    DTIC Science & Technology

    2015-04-02

    materials significantly improve the conductivity of the S and effectively buffer the structural strain/stress caused by the large volume change during...UNCD coating provide effective conduction channels for both electrons and Li-ions and protect the integrity of SiNWs by featuring electrochemical...approach circumvents the need to apply coatings to the carbon or for thermal infusion of the sulfur into a porous carbon host. Preliminary thermodynamic

  6. Porous biodegradable lumbar interbody fusion cage design and fabrication using integrated global-local topology optimization with laser sintering.

    PubMed

    Kang, Heesuk; Hollister, Scott J; La Marca, Frank; Park, Paul; Lin, Chia-Ying

    2013-10-01

    Biodegradable cages have received increasing attention for their use in spinal procedures involving interbody fusion to resolve complications associated with the use of nondegradable cages, such as stress shielding and long-term foreign body reaction. However, the relatively weak initial material strength compared to permanent materials and subsequent reduction due to degradation may be problematic. To design a porous biodegradable interbody fusion cage for a preclinical large animal study that can withstand physiological loads while possessing sufficient interconnected porosity for bony bridging and fusion, we developed a multiscale topology optimization technique. Topology optimization at the macroscopic scale provides optimal structural layout that ensures mechanical strength, while optimally designed microstructures, which replace the macroscopic material layout, ensure maximum permeability. Optimally designed cages were fabricated using solid, freeform fabrication of poly(ε-caprolactone) mixed with hydroxyapatite. Compression tests revealed that the yield strength of optimized fusion cages was two times that of typical human lumbar spine loads. Computational analysis further confirmed the mechanical integrity within the human lumbar spine, although the pore structure locally underwent higher stress than yield stress. This optimization technique may be utilized to balance the complex requirements of load-bearing, stress shielding, and interconnected porosity when using biodegradable materials for fusion cages.

  7. Integrated modeling/analyses of thermal-shock effects in SNS targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taleyarkhan, R.P.; Haines, J.

    1996-06-01

    In a spallation neutron source (SNS), extremely rapid energy pulses are introduced in target materials such as mercury, lead, tungsten, uranium, etc. Shock phenomena in such systems may possibly lead to structural material damage beyond the design basis. As expected, the progression of shock waves and interaction with surrounding materials for liquid targets can be quite different from that in solid targets. The purpose of this paper is to describe ORNL`s modeling framework for `integrated` assessment of thermal-shock issues in liquid and solid target designs. This modeling framework is being developed based upon expertise developed from past reactor safety studies,more » especially those related to the Advanced Neutron Source (ANS) Project. Unlike previous separate-effects modeling approaches employed (for evaluating target behavior when subjected to thermal shocks), the present approach treats the overall problem in a coupled manner using state-of-the-art equations of state for materials of interest (viz., mercury, tungsten and uranium). That is, the modeling framework simultaneously accounts for localized (and distributed) compression pressure pulse generation due to transient heat deposition, the transport of this shock wave outwards, interaction with surrounding boundaries, feedback to mercury from structures, multi-dimensional reflection patterns & stress induced (possible) breakup or fracture.« less

  8. Development and Sizing of the JWST Integrated Science Instrument Module (ISIM) Metering Structure

    NASA Technical Reports Server (NTRS)

    Johnston, John; Kunt, Cengiz; Bartoszyk, Andrew; Hendricks, Steve; Cofie, Emmanuel

    2006-01-01

    The JWST Integrated Science Instrument Module (ISIM) includes a large metering structure (approx. 2m x 2m x 1.5m) that houses the science instruments and guider. Stringent dimensional stability and repeatability requirements combined with mass limitations led to the selection of a composite bonded frame design comprised of biased laminate tubes. Even with the superb material specific stiffness, achieving the required frequency for the given mass allocations in conjunction with severe spatial limitations imposed by the instrument complement has proven challenging. In response to the challenge, the ISIM structure team considered literally over 100 primary structure topology and kinematic mount configurations, and settled on a concept comprised of over 70 m of tubes, over 50 bonded joint assemblies, and a "split bi-pod" kinematic mount configuration. In this paper, we review the evolution of the ISIM primary structure topology and kinematic mount configuration to the current baseline concept.

  9. Enhancement of Structured Reporting - an Integration Reporting Module with Radiation Dose Collection Supporting.

    PubMed

    Lee, Ming-Che; Chuang, Kei-Shih; Hsu, Tien-Cheng; Lee, Chien-Ding

    2016-11-01

    Collection of radiation dose derived from radiological examination is necessary not only for radiation protection, but also for fulfillment of structured reports. However, the material regarding of radiation dose cannot be directly utilized by the Radiological Information System (RIS) since it is generated and only stored in the Picture Archiving and Communication System (PACS). In this paper, an integration reporting module is proposed to facilitate handling of dose information and structured reporting by providing two functionalities. First, a gateway is established to automatically collect the related information from PACS for further analyzing and monitoring the accumulated radiation. Second, the designated structured reporting patterns with corresponding radiation dose measurements can be acquired by radiologists as necessary. In the design, the radiation dose collection gateway and the well-established pattern are collocated to achieve that there is no need to do manual entry for structured reporting, thus increasing productivity and medical quality.

  10. A polymer-based Fabry-Perot filter integrated with 3-D MEMS structures

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Polymers have been considered as one of the most versatile materials in making optical devices for communication and sensor applications. They provide good optical transparency to form filters, lenses and many optical components with ease of fabrication. They are scalable and compatible in dimensions with requirements in optics and can be fabricated on inorganic substrates, such as silicon and quartz. Recent polymer synthesis also made great progresses on conductive and nonlinear polymers, opening opportunities for new applications. In this paper, we discussed hybrid-material integration of polymers on silicon-based microelectromechanical system (MEMS) devices. The motivation is to combine the advantages of demonstrated silicon-based MEMS actuators and excellent optical performance of polymers. We demonstrated the idea with a polymer-based out-of-plane Fabry-Perot filter that can be self-assembled by scratch drive actuators. We utilized a fabrication foundry service, MUMPS (Multi-User MEMS Process), to demonstrate the feasibility and flexibility of integration. The polysilicon, used as the structural material for construction of 3-D framework and actuators, has high absorption in the visible and near infrared ranges. Therefore, previous efforts using a polysilicon layer as optical interfaces suffer from high losses. We applied the organic compound materials on the silicon-based framework within the optical signal propagation path to form the optical interfaces. In this paper, we have shown low losses in the optical signal processing and feasibility of building a thin-film Fabry-Perot filter. We discussed the optical filter designs, mechanical design, actuation mechanism, fabrication issues, optical measurements, and results.

  11. Biofilm based attached cultivation technology for microalgal biorefineries-A review.

    PubMed

    Wang, Junfeng; Liu, Wen; Liu, Tianzhong

    2017-11-01

    The attached cultivation for microalga has many superiorities over the conventional aqua-suspend methods, which make it a promising pathway to supply feedstock for microalgae based bio-refinery attempts. In this review, the current reports on bioreactor, application, modeling, substratum material and engineering aspects were summarized and the future research and developments should be focused on the following aspects: 1) Build principles and guidelines for rational structure design by studying the relationship of physiological properties with typical structures and light regimes; 2) Set up theory foundation of substratum material selection by studying the physic-chemical properties of algal cells and substratum materials; 3) Further understanding the mass transfer behaviors of both CO 2 and nutrients in biofilm for enhanced growth rate and products accumulation; 4) New equipment and machines for inoculation, harvesting and moisture keeping should be developed and integrated with bioreactor structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. MinOmics, an Integrative and Immersive Tool for Multi-Omics Analysis.

    PubMed

    Maes, Alexandre; Martinez, Xavier; Druart, Karen; Laurent, Benoist; Guégan, Sean; Marchand, Christophe H; Lemaire, Stéphane D; Baaden, Marc

    2018-06-21

    Proteomic and transcriptomic technologies resulted in massive biological datasets, their interpretation requiring sophisticated computational strategies. Efficient and intuitive real-time analysis remains challenging. We use proteomic data on 1417 proteins of the green microalga Chlamydomonas reinhardtii to investigate physicochemical parameters governing selectivity of three cysteine-based redox post translational modifications (PTM): glutathionylation (SSG), nitrosylation (SNO) and disulphide bonds (SS) reduced by thioredoxins. We aim to understand underlying molecular mechanisms and structural determinants through integration of redox proteome data from gene- to structural level. Our interactive visual analytics approach on an 8.3 m2 display wall of 25 MPixel resolution features stereoscopic three dimensions (3D) representation performed by UnityMol WebGL. Virtual reality headsets complement the range of usage configurations for fully immersive tasks. Our experiments confirm that fast access to a rich cross-linked database is necessary for immersive analysis of structural data. We emphasize the possibility to display complex data structures and relationships in 3D, intrinsic to molecular structure visualization, but less common for omics-network analysis. Our setup is powered by MinOmics, an integrated analysis pipeline and visualization framework dedicated to multi-omics analysis. MinOmics integrates data from various sources into a materialized physical repository. We evaluate its performance, a design criterion for the framework.

  13. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering

    PubMed Central

    Wang, Alan X.; Kong, Xianming

    2015-01-01

    Surface-enhanced Raman scattering (SERS) has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs) enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs). Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene. PMID:26900428

  14. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering.

    PubMed

    Wang, Alan X; Kong, Xianming

    2015-06-01

    Surface-enhanced Raman scattering (SERS) has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs) enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs). Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene.

  15. A strong integrated strength and toughness artificial nacre based on dopamine cross-linked graphene oxide.

    PubMed

    Cui, Wei; Li, Mingzhu; Liu, Jiyang; Wang, Ben; Zhang, Chuck; Jiang, Lei; Cheng, Qunfeng

    2014-09-23

    Demands of the strong integrated materials have substantially increased across various industries. Inspired by the relationship of excellent integration of mechanical properties and hierarchical nano/microscale structure of the natural nacre, we have developed a strategy for fabricating the strong integrated artificial nacre based on graphene oxide (GO) sheets by dopamine cross-linking via evaporation-induced assembly process. The tensile strength and toughness simultaneously show 1.5 and 2 times higher than that of natural nacre. Meanwhile, the artificial nacre shows high electrical conductivity. This type of strong integrated artificial nacre has great potential applications in aerospace, flexible supercapacitor electrodes, artificial muscle, and tissue engineering.

  16. Determination of Stress Coefficient Terms in Cracked Solids for Monoclinic Materials with Plane Symmetry at x3 = 0

    NASA Technical Reports Server (NTRS)

    Yuan, F. G.

    1998-01-01

    Determination of all the coefficients in the crack tip field expansion for monoclinic materials under two-dimensional deformation is presented in this report. For monoclinic materials with a plane of material symmetry at x(sub 3) = 0, the in-plane deformation is decoupled from the anti-plane deformation. In the case of in-plane deformation, utilizing conservation laws of elasticity and Betti's reciprocal theorem, together with selected auxiliary fields, T-stress and third-order stress coefficients near the crack tip are evaluated first from path-independent line integrals. To determine the T-stress terms using the J-integral and Betti's reciprocal work theorem, auxiliary fields under a concentrated force and moment acting at the crack tip are used respectively. Through the use of Stroh formalism in anisotropic elasticity, analytical expressions for all the coefficients including the stress intensity factors are derived in a compact form that has surprisingly simple structure in terms of the Barnett-Lothe tensors, L. The solution forms for degenerated materials, orthotropic, and isotropic materials are presented.

  17. Bonded and Sealed External Insulations for Liquid-Hydrogen-Fueled Rocket Tanks During Atmospheric Flight

    NASA Technical Reports Server (NTRS)

    Gray, V. H.; Gelder, T. F.; Cochran, R. P.; Goodykoontz, J. H.

    1960-01-01

    Several currently available nonmetallic insulation materials that may be bonded onto liquid-hydrogen tanks and sealed against air penetration into the insulation have been investigated for application to rockets and spacecraft. Experimental data were obtained on the thermal conductivities of various materials in the cryogenic temperature range, as well as on the structural integrity and ablation characteristics of these materials at high temperatures occasioned by aerodynamic heating during atmospheric escape. Of the materials tested, commercial corkboard has the best overall properties for the specific requirements imposed during atmospheric flight of a high-acceleration rocket vehicle.

  18. High-pressure studies with x-rays using diamond anvil cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Guoyin; Mao, Ho Kwang

    2016-11-22

    Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials' properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. Thesemore » HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and magnetic properties of materials over a wide range of pressure-temperature conditions.« less

  19. Solid state 31phosphorus nuclear magnetic resonance of iron-, manganese-, and copper-containing synthetic hydroxyapatites

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Taylor, R. E.; Hossner, L. R.; Ming, D. W.

    2002-01-01

    The incorporation of micronutrients into synthetic hydroxyapatite (SHA) is proposed for slow release of these nutrients to crops in the National Aeronautics and Space Administration's (NASA's) Advanced Life Support (ALS) program for Lunar or Martian outposts. Solid state 31P nuclear magnetic resonance (NMR) was utilized to examine the paramagnetic effects of Fe3+, Mn2+, and Cu2+ to determine if they were incorporated into the SHA structure. Separate Fe3+, Mn2+, and Cu2+ containing SHA materials along with a transition metal free SHA (pure-SHA) were synthesized using a precipitation method. The proximity (<1 nm) of the transition metals to the 31P nuclei of SHA were apparent when comparing the integrated 31P signal intensities of the pure-SHA (87 arbitrary units g-1) with the Fe-, Mn-, and Cu-SHA materials (37-71 arbitrary units g-1). The lower integrated 31P signal intensities of the Fe-, Mn-, and Cu-SHA materials relative to the pure-SHA suggested that Fe3+, Mn2+, and Cu2+ were incorporated in the SHA structure. Further support for Fe3+, Mn2+, and Cu2+ incorporation was demonstrated by the reduced spin-lattice relaxation constants of the Fe-, Mn-, and Cu-SHA materials (T'=0.075-0.434s) relative to pure-SHA (T1=58.4s). Inversion recovery spectra indicated that Fe3+, Mn2+, and Cu2+ were not homogeneously distributed about the 31P nuclei in the SHA structure. Extraction with diethylene-triamine-penta-acetic acid (DTPA) suggested that between 50 and 80% of the total starting metal concentrations were incorporated in the SHA structure. Iron-, Mn-, and Cu-containing SHA are potential slow release sources of Fe, Mn, and Cu in the ALS cropping system.

  20. Analysis of singular interface stresses in dissimilar material joints for plasma facing components

    NASA Astrophysics Data System (ADS)

    You, J. H.; Bolt, H.

    2001-10-01

    Duplex joint structures are typical material combinations for the actively cooled plasma facing components of fusion devices. The structural integrity under the incident heat loads from the plasma is one of the most crucial issues in the technology of these components. The most critical domain in a duplex joint component is the free surface edge of the bond interface between heterogeneous materials. This is due to the fact that the thermal stress usually shows a singular intensification in this region. If the plasma facing armour tile consists of a brittle material, the existence of the stress singularity can be a direct cause of failure. The present work introduces a comprehensive analytical tool to estimate the impact of the stress singularity for duplex PFC design and quantifies the relative stress intensification in various materials joints by use of a model formulated by Munz and Yang. Several candidate material combinations of plasma facing armour and metallic heat sink are analysed and the results are compared with each other.

  1. Fabrication and Characterization of Thin Film Ion Implanted Composite Materials for Integrated Nonlinear Optical Devices

    NASA Technical Reports Server (NTRS)

    Sarkisov, S.; Curley, M.; Williams, E. K.; Wilkosz, A.; Ila, D.; Poker, D. B.; Hensley, D. K.; Smith, C.; Banks, C.; Penn, B.; hide

    1998-01-01

    Ion implantation has been shown to produce a high density of metal colloids within the layer regions of glasses and crystalline materials. The high-precipitate volume fraction and small size of metal nanoclusters formed leads to values for the third-order susceptibility much greater than those for metal doped solids. This has stimulated interest in use of ion implantation to make nonlinear optical materials. On the other side, LiNbO3 has proved to be a good material for optical waveguides produced by MeV ion implantation. Light confinement in these waveguides is produced by refractive index step difference between the implanted region and the bulk material. Implantation of LiNbO3 with MeV metal ions can therefore result into nonlinear optical waveguide structures with great potential in a variety of device applications. We describe linear and nonlinear optical properties of a waveguide structure in LiNbO3-based composite material produced by silver ion implantation in connection with mechanisms of its formation.

  2. Structural Integrity of Intelligent Materials and Structures

    DTIC Science & Technology

    1998-03-01

    Fortunately, one of the best biocompatible alloys in the class we are concerned with is NiTi . The main concern with regard to biocompatibility or...buildings, bridges and lifelines, and sensitive biocompatible medical instrumentation. The rebuilding and enhancement of our Nation’s...recoverable deflections. In addition, shape memory alloys are relatively lightweight, biocompatible , easy to manufacture and have a high force to weight ratio

  3. Direct Prototyping of Patterned Nanoporous Carbon: A Route from Materials to On-chip Devices

    PubMed Central

    Shen, Caiwei; Wang, Xiaohong; Zhang, Wenfeng; Kang, Feiyu

    2013-01-01

    Prototyping of nanoporous carbon membranes with three-dimensional microscale patterns is significant for integration of such multifunctional materials into various miniaturized systems. Incorporating nano material synthesis into microelectronics technology, we present a novel approach to direct prototyping of carbon membranes with highly nanoporous structures inside. Membranes with significant thicknesses (1 ~ 40 μm) are rapidly prototyped at wafer level by combining nano templating method with readily available microfabrication techniques, which include photolithography, high-temperature annealing and etching. In particular, the high-surface-area membranes are specified as three-dimensional electrodes for micro supercapacitors and show high performance compared to reported ones. Improvements in scalability, compatibility and cost make the general strategy promising for batch fabrication of operational on-chip devices or full integration of three-dimensional nanoporous membranes with existing micro systems. PMID:23887486

  4. Integrated CoPtP Permanent Magnets for MEMS Electromagnetic Energy Harvesting Applications

    NASA Astrophysics Data System (ADS)

    Mallick, Dhiman; Roy, Saibal

    2016-10-01

    This work reports the development of integrated Co rich CoPtP hard magnetic material for MEMS applications such as Electromagnetic Vibration Energy Harvesting. We report a new method of electrodeposition compared to the conventional DC plating, involving a combination of forward and reverse pulses for optimized deposition of Co rich CoPtP hard magnetic material. This results in significant improvements in the microstructure of the developed films as the pulse reverse plated films are smooth, stress free and uniform. Such improvements in the structural properties are reflected in the hard magnetic properties of the material as well. The intrinsic coercivities of the pulse reverse deposited film are more than 6 times higher for both in-plane and out-of-plane measurement directions and the squareness of the hysteresis loops also improve due to the similar reasons.

  5. Fracture and fatigue analysis of functionally graded and homogeneous materials using singular integral equation approach

    NASA Astrophysics Data System (ADS)

    Zhao, Huaqing

    There are two major objectives of this thesis work. One is to study theoretically the fracture and fatigue behavior of both homogeneous and functionally graded materials, with or without crack bridging. The other is to further develop the singular integral equation approach in solving mixed boundary value problems. The newly developed functionally graded materials (FGMs) have attracted considerable research interests as candidate materials for structural applications ranging from aerospace to automobile to manufacturing. From the mechanics viewpoint, the unique feature of FGMs is that their resistance to deformation, fracture and damage varies spatially. In order to guide the microstructure selection and the design and performance assessment of components made of functionally graded materials, in this thesis work, a series of theoretical studies has been carried out on the mode I stress intensity factors and crack opening displacements for FGMs with different combinations of geometry and material under various loading conditions, including: (1) a functionally graded layer under uniform strain, far field pure bending and far field axial loading, (2) a functionally graded coating on an infinite substrate under uniform strain, and (3) a functionally graded coating on a finite substrate under uniform strain, far field pure bending and far field axial loading. In solving crack problems in homogeneous and non-homogeneous materials, a very powerful singular integral equation (SEE) method has been developed since 1960s by Erdogan and associates to solve mixed boundary value problems. However, some of the kernel functions developed earlier are incomplete and possibly erroneous. In this thesis work, mode I fracture problems in a homogeneous strip are reformulated and accurate singular Cauchy type kernels are derived. Very good convergence rates and consistency with standard data are achieved. Other kernel functions are subsequently developed for mode I fracture in functionally graded materials. This work provides a solid foundation for further applications of the singular integral equation approach to fracture and fatigue problems in advanced composites. The concept of crack bridging is a unifying theory for fracture at various length scales, from atomic cleavage to rupture of concrete structures. However, most of the previous studies are limited to small scale bridging analyses although large scale bridging conditions prevail in engineering materials. In this work, a large scale bridging analysis is included within the framework of singular integral equation approach. This allows us to study fracture, fatigue and toughening mechanisms in advanced materials with crack bridging. As an example, the fatigue crack growth of grain bridging ceramics is studied. With the advent of composite materials technology, more complex material microstructures are being introduced, and more mechanics issues such as inhomogeneity and nonlinearity come into play. Improved mathematical and numerical tools need to be developed to allow theoretical modeling of these materials. This thesis work is an attempt to meet these challenges by making contributions to both micromechanics modeling and applied mathematics. It sets the stage for further investigations of a wide range of problems in the deformation and fracture of advanced engineering materials.

  6. Physical security and cyber security issues and human error prevention for 3D printed objects: detecting the use of an incorrect printing material

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2017-06-01

    A wide variety of characteristics of 3D printed objects have been linked to impaired structural integrity and use-efficacy. The printing material can also have a significant impact on the quality, utility and safety characteristics of a 3D printed object. Material issues can be created by vendor issues, physical security issues and human error. This paper presents and evaluates a system that can be used to detect incorrect material use in a 3D printer, using visible light imaging. Specifically, it assesses the ability to ascertain the difference between materials of different color and different types of material with similar coloration.

  7. Open-Source, Distributed Computational Environment for Virtual Materials Exploration

    DTIC Science & Technology

    2015-01-01

    compromising structural integrity.  For  example, advanced designs could specify advanced materials processing techniques such as heat  treatments  in specific...orchestration of execution of multiple standalone codes at varying  length scales will need advanced  high ‐performance computing (HPC) integration in...possible hooks that could be used to  coordinate larger  workflows spanning tools developed by different groups.    The  high  level approach explored

  8. Damping Experiment of Spinning Composite Plates With Embedded Viscoelastic Material

    NASA Technical Reports Server (NTRS)

    Mehmed, Oral

    1998-01-01

    One way to increase gas turbine engine blade reliability and durability is to reduce blade vibration. It is well known that vibration can be reduced by adding damping to metal and composite blade-disk systems. As part of a joint research effort of the NASA Lewis Research Center and the University of California, San Diego, the use of integral viscoelastic damping treatment to reduce the vibration of rotating composite fan blades was investigated. The objectives of this experiment were to verify the structural integrity of composite plates with viscoelastic material patches embedded between composite layers while under large steady forces from spinning, and to measure the damping and natural frequency variation with rotational speed.

  9. High-Performance WSe2 Complementary Metal Oxide Semiconductor Technology and Integrated Circuits.

    PubMed

    Yu, Lili; Zubair, Ahmad; Santos, Elton J G; Zhang, Xu; Lin, Yuxuan; Zhang, Yuhao; Palacios, Tomás

    2015-08-12

    Because of their extraordinary structural and electrical properties, two-dimensional materials are currently being pursued for applications such as thin-film transistors and integrated circuit. One of the main challenges that still needs to be overcome for these applications is the fabrication of air-stable transistors with industry-compatible complementary metal oxide semiconductor (CMOS) technology. In this work, we experimentally demonstrate a novel high performance air-stable WSe2 CMOS technology with almost ideal voltage transfer characteristic, full logic swing and high noise margin with different supply voltages. More importantly, the inverter shows large voltage gain (∼38) and small static power (picowatts), paving the way for low power electronic system in 2D materials.

  10. Optimized structural designs for stretchable silicon integrated circuits.

    PubMed

    Kim, Dae-Hyeong; Liu, Zhuangjian; Kim, Yun-Soung; Wu, Jian; Song, Jizhou; Kim, Hoon-Sik; Huang, Yonggang; Hwang, Keh-Chih; Zhang, Yongwei; Rogers, John A

    2009-12-01

    Materials and design strategies for stretchable silicon integrated circuits that use non-coplanar mesh layouts and elastomeric substrates are presented. Detailed experimental and theoretical studies reveal many of the key underlying aspects of these systems. The results shpw, as an example, optimized mechanics and materials for circuits that exhibit maximum principal strains less than 0.2% even for applied strains of up to approximately 90%. Simple circuits, including complementary metal-oxide-semiconductor inverters and n-type metal-oxide-semiconductor differential amplifiers, validate these designs. The results suggest practical routes to high-performance electronics with linear elastic responses to large strain deformations, suitable for diverse applications that are not readily addressed with conventional wafer-based technologies.

  11. Beyond assemblies: system convergence and multi-materiality.

    PubMed

    Wiscombe, Tom

    2012-03-01

    The architectural construction industry has become increasingly more specialized over the past 50 years, creating a culture of layer thinking over part-to-whole thinking. Building systems and technologies are often cobbled together in conflicting and uncorrelated ways, even when referred to as 'integrated', such as by way of building information modeling. True integration of building systems requires rethinking how systems and architectural morphologies can push and pull on one another, creating not only innovation in technology but in aesthetics. The revolution in composite materials, with unprecedented plasticity and performance features, opens up a huge range of possibilities for achieving this kind of convergence. Composites by nature fuse envelope and structure, but through various types of inflections, they can also be made to conduct air and fluids through cavities and de-laminations, as well as integrate lighting and energy systems. Assembly as we know it moves away from mineral materials and hardware and toward polymers and 'healing'. Further, when projected into the near-future realm of multi-materiality and 3D manufacturing, possibilities for embedding systems and creating gradients of rigidity and opacity open up, pointing to an entirely new realm of architectural thinking.

  12. Annotated bibliography of structural equation modelling: technical work.

    PubMed

    Austin, J T; Wolfle, L M

    1991-05-01

    Researchers must be familiar with a variety of source literature to facilitate the informed use of structural equation modelling. Knowledge can be acquired through the study of an expanding literature found in a diverse set of publishing forums. We propose that structural equation modelling publications can be roughly classified into two groups: (a) technical and (b) substantive applications. Technical materials focus on the procedures rather than substantive conclusions derived from applications. The focus of this article is the former category; included are foundational/major contributions, minor contributions, critical and evaluative reviews, integrations, simulations and computer applications, precursor and historical material, and pedagogical textbooks. After a brief introduction, we annotate 294 articles in the technical category dating back to Sewall Wright (1921).

  13. Fatigue and fail-safe design features of the DC-10 airplane

    NASA Technical Reports Server (NTRS)

    Stone, M. E.

    1972-01-01

    The philosophy and methods used in the design of the DC-10 aircraft to assure structural reliability against cracks under repeated service loads are described in detail. The approach consists of three complementary parts: (1) the structure is designed to be fatigue resistant for a crack-free life of 60,000 flight hours; (2) inasmuch as small undetected cracks could develop from other sources, such as material flaws and manufacturing preloads, the structure also is designed to arrest and control cracks within a reasonable service-inspection interval; and (3) a meaningful service-inspection program has been defined on the basis of analysis and test experience from the design development program. This service-inspection program closes the loop to assure the structural integrity of the DC-10 airframe. Selected materials, fasteners, and structural arrangements are used to achieve these design features with minimum structural weight and with economy in manufacturing and maintenance. Extensive analyses and testing were performed to develop and verify the design. The basic design considerations for fatigue-resistant structure are illustrated in terms of material selection, design loads spectra, methods for accurate stress and fatigue damage analysis, and proven concepts for efficient detail design.

  14. New materials: Fountainhead for new technologies and new science

    NASA Technical Reports Server (NTRS)

    Rustum, Roy

    1993-01-01

    The role of materials as the benchmark technologies which give epochs of human history their names continues into the present. The discovery of new materials has nearly always been the source of new materials science, and frequently of new technologies. This paper analyzes the actual processes by which new materials are synthesized, i.e. whether driven by serendipitous observations, new knowledge is pulled by the market, or integrated into a technological thrust. This analysis focuses on modern ceramic materials discoveries, since World War 2 and uses 45 years experience in materials synthesis in the author's own laboratory as case studies. A dozen different families of materials or processes are involved: hydrothermal reactions; sol-gel processing; clays and zeolites; electroceramics; zero expansion ceramics; diamond films; and radioactive waste host phases. Nanocomposite concepts introduced by the author a decade ago offer an entire, large, new class of materials which will dominate synthesis for the next period. The future of materials research for the next 25 years cannot be extrapolated from the past 25 years. We are near the asymptote for materials utilization in most metals. Likewise we are approaching saturation in improvement of many useful properties. Justifying much further 'basic' R/D for incremental improvement in civilian-oriented industries will not be easy. In materials synthesis, the near-term future is sure to emphasize not new phases, but tailored micro- and nanocomposites for chemical, electrical, optical, and magnetic uses. Unexpected new discoveries such as the Lanxide process may offer rarer chances for step function advances. The new structure of knowledge management will rely less on local research than on integration of worldwide inputs. Better scientific and technological opportunities will lie in designing knowledge intensive materials to meet the new environmental and conservation goals, and the human needs of the very large numbers at the bottom of the socio-economic structures of the world.

  15. Towards Lego Snapping; Integration of Carbon Nanotubes and Few-Layer Graphene

    NASA Astrophysics Data System (ADS)

    Nasseri, Mohsen; Boland, Mathias; Farrokhi, M. Javad; Strachan, Douglas

    Integration of semiconducting, conducting, and insulating nanomaterials into precisely aligned complicated systems is one of the main challenges to the ultimate size scaling of electronic devices, which is a key goal in nanoscience and nanotechnology. This integration could be made more effective through controlled alignment of the crystallographic lattices of the nanoscale components. Of the vast number of materials of atomically-thin materials, two of the sp2 bonded carbon structures, graphene and carbon nanotubes, are ideal candidates for this type of application since they are built from the same backbone carbon lattice. Here we report carbon nanotube and graphene hybrid nanostructures fabricated through their catalytic synthesis and etching. The growth formations we have investigated through various high-resolution microscopy techniques provide evidence of lego-snapped interfaces between nanotubes and graphene into device-relevant orientations. We will finish with a discussion of the various size and energy regimes relevant to these lego-snapped interfaces and their implications on developing these integrated formations.

  16. Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials.

    PubMed

    Choi, Suji; Lee, Hyunjae; Ghaffari, Roozbeh; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2016-06-01

    Flexible and stretchable electronics and optoelectronics configured in soft, water resistant formats uniquely address seminal challenges in biomedicine. Over the past decade, there has been enormous progress in the materials, designs, and manufacturing processes for flexible/stretchable system subcomponents, including transistors, amplifiers, bio-sensors, actuators, light emitting diodes, photodetector arrays, photovoltaics, energy storage elements, and bare die integrated circuits. Nanomaterials prepared using top-down processing approaches and synthesis-based bottom-up methods have helped resolve the intrinsic mechanical mismatch between rigid/planar devices and soft/curvilinear biological structures, thereby enabling a broad range of non-invasive, minimally invasive, and implantable systems to address challenges in biomedicine. Integration of therapeutic functional nanomaterials with soft bioelectronics demonstrates therapeutics in combination with unconventional diagnostics capabilities. Recent advances in soft materials, devices, and integrated systems are reviewes, with representative examples that highlight the utility of soft bioelectronics for advanced medical diagnostics and therapies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials.

    PubMed

    Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola; Calandra, Matteo; Car, Roberto; Cavazzoni, Carlo; Ceresoli, Davide; Chiarotti, Guido L; Cococcioni, Matteo; Dabo, Ismaila; Dal Corso, Andrea; de Gironcoli, Stefano; Fabris, Stefano; Fratesi, Guido; Gebauer, Ralph; Gerstmann, Uwe; Gougoussis, Christos; Kokalj, Anton; Lazzeri, Michele; Martin-Samos, Layla; Marzari, Nicola; Mauri, Francesco; Mazzarello, Riccardo; Paolini, Stefano; Pasquarello, Alfredo; Paulatto, Lorenzo; Sbraccia, Carlo; Scandolo, Sandro; Sclauzero, Gabriele; Seitsonen, Ari P; Smogunov, Alexander; Umari, Paolo; Wentzcovitch, Renata M

    2009-09-30

    QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

  18. Adaptive wing structures

    NASA Astrophysics Data System (ADS)

    Reed, John L., Jr.; Hemmelgarn, Christopher D.; Pelley, Bryan M.; Havens, Ernie

    2005-05-01

    Cornerstone Research Group, Inc. (CRG) is developing a unique adaptive wing structure intended to enhance the capability of loitering Unmanned Air Vehicles (UAVs). In order to tailor the wing design to a specific application, CRG has developed a wing structure capable of morphing in chord and increasing planform area by 80 percent. With these features, aircraft will be capable of optimizing their flight efficiency throughout the entire mission profile. The key benefit from this morphing design is increased maneuverability, resulting in improved effectiveness over the current design. During the development process CRG has overcome several challenges in the design of such a structure while incorporating advanced materials capable of maintaining aerodynamic shape and transferring aerodynamic loads while enabling crucial changes in planform shape. To overcome some of these challenges, CRG is working on integration of their shape memory polymer materials into the wing skin to enable seamless morphing. This paper will address the challenges associated with the development of a morphing aerospace structure capable of such large shape change, the materials necessary for enabling morphing capabilities, and the current status of the morphing program within CRG.

  19. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 4: Sections 15 through 21

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The analyses performed to provide structural mass estimates for the arrow wing supersonic cruise aircraft are presented. To realize the full potential for structural mass reduction, a spectrum of approaches for the wing and fuselage primary structure design were investigated. The objective was: (1) to assess the relative merits of various structural arrangements, concepts, and materials; (2) to select the structural approach best suited for the Mach 2.7 environment; and (3) to provide construction details and structural mass estimates based on in-depth structural design studies. Production costs, propulsion-airframe integration, and advanced technology assessment are included.

  20. A model of how targeted and universal welfare entitlements impact on material, psycho-social and structural determinants of health in older adults.

    PubMed

    Green, Judith; Buckner, Stefanie; Milton, Sarah; Powell, Katie; Salway, Sarah; Moffatt, Suzanne

    2017-08-01

    A growing body of research attests to the impact of welfare regimes on health and health equity. However, the mechanisms that link different kinds of welfare entitlement to health outcomes are less well understood. This study analysed the accounts of 29 older adults in England to delineate how the form of entitlement to welfare and other resources (specifically, whether this was understood as a universal entitlement or as targeted to those in need) impacts on the determinants of health. Mechanisms directly affecting access to material resources (through deterring uptake of benefits) have been well documented, but those that operate through psychosocial and more structural pathways less so, in part because they are more challenging to identify. Entitlement that was understood collectively, or as arising from financial or other contributions to a social body, had positive impacts on wellbeing beyond material gains, including facilitating access to important health determinants: social contact, recognition and integration. Entitlement understood as targeted in terms of individualised concepts of need or vulnerability deterred access to material resources, but also fostered debate about legitimacy, thus contributing to negative impacts on individual wellbeing and the public health through the erosion of social integration. This has important implications for both policy and evaluation. Calls to target welfare benefits at those in most need emphasise direct material pathways to health impact. We suggest a model for considering policy change and evaluation which also takes into account how psychosocial and structural pathways are affected by the nature of entitlement. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

Top