Mechanical Properties of Degraded PMR-15 Resin
NASA Technical Reports Server (NTRS)
Tsuji, Luis C.
2000-01-01
Thermo-oxidative aging produces a nonuniform degradation state in PMR-15 resin. A surface layer, usually attributed to oxidative degradation, forms. This surface layer has different properties from the inner material. A set of material tests was designed to separate the properties of the oxidized surface layer from the properties of interior material. Test specimens were aged at 316 C in either air or nitrogen, for durations of up to 800 hr. The thickness of the oxidized surface layer in air aged specimens, and the shrinkage and coefficient of thermal expansion (CTE) of nitrogen aged specimens were measured directly. The nitrogen-aged specimens were assumed to have the same properties as the interior material in the air-aged specimens. Four-point-bend tests were performed to determine modulus of both the oxidized surface layer and the interior material. Bimaterial strip specimens consisting of oxidized surface material and unoxidized interior material were constructed and used to determine surface layer shrinkage and CTE. Results confirm that the surface layer and core materials have substantially different properties.
Mechanical Properties of Degraded PMR-15 Resin
NASA Technical Reports Server (NTRS)
Tsuji, Luis C.; McManus, Hugh L.; Bowles, Kenneth J.
1998-01-01
Thermo-oxidative aging produces a non-uniform degradation state in PMR-15 resin. A surface layer, usually attributed to oxidative degradation, forms. This surface layer has different properties from the inner material. A set of material tests was designed to separate the properties of the oxidized surface layer from the properties of interior material. Test specimens were aged at 316 C in either air or nitrogen, for durations of up to 800 hours. The thickness of the oxidized surface layer in air aged specimens, and the shrinkage and Coefficient of Thermal Expansion (CTE) of nitrogen aged specimens were measured directly. Four-point-bend tests were performed to determine modulus of both the oxidized surface layer and the interior material. Bimaterial strip specimens consisting of oxidized surface material and unoxidized interior material were constructed and used to determine surface layer shrinkage and CTE. Results confirm that the surface layer and core materials have substantially different properties.
Theoretical study on the electronic and optical properties of bulk and surface (001) InxGa1-xAs
NASA Astrophysics Data System (ADS)
Liu, XueFei; Ding, Zhao; Luo, ZiJiang; Zhou, Xun; Wei, JieMin; Wang, Yi; Guo, Xiang; Lang, QiZhi
2018-05-01
The optical properties of surface and bulk InxGa1-xAs materials are compared systematically first time in this paper. The band structures, density of states and optical properties including dielectric function, reflectivity, absorption coefficient, loss function and refractive index of bulk and surface InxGa1-xAs materials are investigated by first-principles based on plane-wave pseudo-potentials method within the LDA approximation. The results agree well with the available theoretical and experimental studies and indicate that the electronic and optical properties of bulk and surface InxGa1-xAs materials are much different, and the results show that the considered optical properties of the both materials vary with increasing indium composition in an opposite way. The calculations show that the optical properties of surface In0.75Ga0.25As material are unexpected to be far from the other two indium compositions of surface InxGa1-xAs materials while the optical properties of bulk InxGa1-xAs materials vary with increasing indium composition in an expected regular way.
Shur, Jagdeep; Pitchayajittipong, Chonladda; Rogueda, Philippe; Price, Robert
2013-08-01
Influence of air-jet micronization, post-micronization conditioning and storage on the surface properties of budesonide in dry-powder inhaler formulations was investigated. Crystalline budesonide was air jet-micronized and conditioned using organic vapor. Particle engineering was also used to fabricate respirable particles of budesonide. Surface imaging by atomic force microscopy suggested that micronized material possessed process-induced surface disorder, which relaxed upon conditioning with organic vapor. Particle engineered material was devoid of such surface disorder. Surface interfacial properties of all batches were different and correlated to in vitro fine particle delivery. The surface properties and in vitro performance of the conditioned material changed upon storage of the budesonide at 44% relative humidity and 25°C, while the micronized and particle-engineered material remained stable. These data suggest that processing conditions of budesonide affected the surface properties of the material, which was demonstrated to have direct affect on dry-powder inhaler formulation performance.
NASA Technical Reports Server (NTRS)
Moore, H. J.
1991-01-01
A semiquantitative appreciation for the physical properties of the Mars surface materials and their global variations can be gained from the Viking Lander and remote sensing observations. Analyses of Lander data yields estimates of the mechanical properties of the soil-like surface materials and best guess estimates can be made for the remote sensing signatures of the soil-like materials at the landing sites. Results show that significant thickness of powderlike surface materials with physical properties similar to drift material are present on Mars and probably pervasive in the Tharsis region. It also appears likely that soil-like materials similar to crusty to cloddy material are typical for Mars, and that soil-like material similar to blocky material are common on Mars.
Solid-State Division progress report for period ending March 31, 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, P.H.; Watson, D.M.
1983-09-01
Progress and activities are reported on: theoretical solid-state physics (surfaces; electronic, vibrational, and magnetic properties; particle-solid interactions; laser annealing), surface and near-surface properties of solids (surface, plasma-material interactions, ion implantation and ion-beam mixing, pulsed-laser and thermal processing), defects in solids (radiation effects, fracture, impurities and defects, semiconductor physics and photovoltaic conversion), transport properties of solids (fast-ion conductors, superconductivity, mass and charge transport in materials), neutron scattering (small-angle scattering, lattice dynamics, magnetic properties, structure and instrumentation), and preparation and characterization of research materials (growth and preparative methods, nuclear waste forms, special materials). (DLC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rappe, Andrew
This research project explored the catalytic properties of complex surfaces of functional materials. The PI used first-principles density functional theory (DFT) calculations to explore a tightly integrated set of properties. The physical properties of complex functional materials that influence surface chemistry were explored, including bulk and surface electric dipoles, and surface conductivity. The energetic, compositional, electronic, and chemical properties of the surfaces of these materials were explored in detail, and connections between material properties and chemical reactivity were established. This project led to 28 publications, including Nat. Comm., JACS, 3 PRL, 7 PRB, 2 ACS Nano, 2 Nano Lett., 4more » JPCL, 2 JCP, Chem. Mater., ACS Appl. Mater. Interfaces, Phys. Rev. Appl., and a U.S. Patent on surface catalysts. The key accomplishments in this project involved work in six coordinated areas: pioneering ways to control bulk dipoles in order to dynamically affect catalysis, exploring novel ways of bringing charge to the surface for redox catalysis, nonstoichiometric surfaces offering new sites for heterogeneous catalysis, illustrating how surface catalysis responds to applied pressure, catalytic growth of carbon-based materials, and new computational methods allowing more accurate exploration of molecule-surface interactions« less
Electronics materials research
NASA Technical Reports Server (NTRS)
1982-01-01
The electronic materials and is aimed at the establishment of quantitative relationships underlying crystal growth parameters, materials properties, electronic characteristics and device applications. The overall program evolves about the following main thrust areas: (1) crystal growth novel approaches to engineering of semiconductor materials; (2) investigation of materials properties and electronic characteristics on a macro and microscale; (3) surface properties and surface interactions with the bulk and ambients; (4) electronic properties controlling device applications and device performance.
Membranes with Surface-Enhanced Antifouling Properties for Water Purification
Shahkaramipour, Nima; Tran, Thien N.; Ramanan, Sankara; Lin, Haiqing
2017-01-01
Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted. PMID:28273869
Membranes with Surface-Enhanced Antifouling Properties for Water Purification.
Shahkaramipour, Nima; Tran, Thien N; Ramanan, Sankara; Lin, Haiqing
2017-03-05
Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted.
Manipulating Ferroelectrics through Changes in Surface and Interface Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balke, Nina; Ramesh, Ramamoorthy; Yu, Pu
Ferroelectric materials are used in many applications of modern technologies including information storage, transducers, sensors, tunable capacitors, and other novel device concepts. In many of these applications, the ferroelectric properties, such as switching voltages, piezoelectric constants, or stability of nanodomains, are crucial. For any application, even for material characterization, the material itself needs to be interfaced with electrodes. On the basis of the structural, chemical, and electronic properties of the interfaces, the measured material properties can be determined by the interface. This is also true for surfaces. However, the importance of interfaces and surfaces and their effect on experiments aremore » often neglected, which results in many dramatically different experimental results for nominally identical samples. Therefore, it is crucial to understand the role of the interface and surface properties on internal bias fields and the domain switching process. Here, the nanoscale ferroelectric switching process and the stability of nanodomains for Pb(Zr,Ti)O 3 thin films are investigated by using scanning probe microscopy. Interface and surface properties are modulated through the selection/redesign of electrode materials as well as tuning the surface-near oxygen vacancies, which both can result in changes of the electric fields acting across the sample, and consequently this controls the measured ferroelectric and domain retention properties. By understanding the role of surfaces and interfaces, ferroelectric properties can be tuned to eliminate the problem of asymmetric domain stability by combining the effects of different electrode materials. Lastly, this study forms an important step toward integrating ferroelectric materials in electronic devices.« less
Manipulating Ferroelectrics through Changes in Surface and Interface Properties
Balke, Nina; Ramesh, Ramamoorthy; Yu, Pu
2017-10-23
Ferroelectric materials are used in many applications of modern technologies including information storage, transducers, sensors, tunable capacitors, and other novel device concepts. In many of these applications, the ferroelectric properties, such as switching voltages, piezoelectric constants, or stability of nanodomains, are crucial. For any application, even for material characterization, the material itself needs to be interfaced with electrodes. On the basis of the structural, chemical, and electronic properties of the interfaces, the measured material properties can be determined by the interface. This is also true for surfaces. However, the importance of interfaces and surfaces and their effect on experiments aremore » often neglected, which results in many dramatically different experimental results for nominally identical samples. Therefore, it is crucial to understand the role of the interface and surface properties on internal bias fields and the domain switching process. Here, the nanoscale ferroelectric switching process and the stability of nanodomains for Pb(Zr,Ti)O 3 thin films are investigated by using scanning probe microscopy. Interface and surface properties are modulated through the selection/redesign of electrode materials as well as tuning the surface-near oxygen vacancies, which both can result in changes of the electric fields acting across the sample, and consequently this controls the measured ferroelectric and domain retention properties. By understanding the role of surfaces and interfaces, ferroelectric properties can be tuned to eliminate the problem of asymmetric domain stability by combining the effects of different electrode materials. Lastly, this study forms an important step toward integrating ferroelectric materials in electronic devices.« less
USDA-ARS?s Scientific Manuscript database
This study investigated the surface properties of the semi-synthetic enteric coating materials for potential colon- targeted bioactive delivery. The enteric coating materials were produced by combining nanoscale resistant starch, pectin, and carboxymethylcellulose. The surface properties of the co...
Solid State Division progress report, September 30, 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-04-01
Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials,more » and special materials); and isotope research materials. Publications and papers are listed. (WHK)« less
Design, development and applications of novel techniques for studying surface mechanical properties
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1989-01-01
Research is reviewed for the adhesion, friction, and micromechanical properties of materials and examples of the results presented. The ceramic and metallic materials studied include silicon carbide, aluminum oxide, and iron-base amorphous alloys. The design and operation of a torsion balance adapted for study of adhesion from the Cavendish balance are discussed first. The pull-off force (adhesion) and shear force (friction) required to break the interfacial junctions between contacting surfaces of the materials were examined at various temperatures in a vacuum. The surface chemistry of the materials was analyzed by X-ray photoelectron spectroscopy. Properties and environmental conditions of the surface regions which affect adhesion and friction-such as surface segregation, composition, crystal structure, surface chemistry, and temperature were also studied.
Low-dimensional carbon and MXene-based electrochemical capacitor electrodes.
Yoon, Yeoheung; Lee, Keunsik; Lee, Hyoyoung
2016-04-29
Due to their unique structure and outstanding intrinsic physical properties such as extraordinarily high electrical conductivity, large surface area, and various chemical functionalities, low-dimension-based materials exhibit great potential for application in electrochemical capacitors (ECs). The electrical properties of electrochemical capacitors are determined by the electrode materials. Because energy charge storage is a surface process, the surface properties of the electrode materials greatly influence the electrochemical performance of the cell. Recently, graphene, a single layer of sp(2)-bonded carbon atoms arrayed into two-dimensional carbon nanomaterial, has attracted wide interest as an electrode material for electrochemical capacitor applications due to its unique properties, including a high electrical conductivity and large surface area. Several low-dimensional materials with large surface areas and high conductivity such as onion-like carbons (OLCs), carbide-derived carbons (CDCs), carbon nanotubes (CNTs), graphene, metal hydroxide, transition metal dichalcogenides (TMDs), and most recently MXene, have been developed for electrochemical capacitors. Therefore, it is useful to understand the current issues of low-dimensional materials and their device applications.
Method for measuring thermal properties using a long-wavelength infrared thermal image
Walker, Charles L [Albuquerque, NM; Costin, Laurence S [Albuquerque, NM; Smith, Jody L [Albuquerque, NM; Moya, Mary M [Albuquerque, NM; Mercier, Jeffrey A [Albuquerque, NM
2007-01-30
A method for estimating the thermal properties of surface materials using long-wavelength thermal imagery by exploiting the differential heating histories of ground points in the vicinity of shadows. The use of differential heating histories of different ground points of the same surface material allows the use of a single image acquisition step to provide the necessary variation in measured parameters for calculation of the thermal properties of surface materials.
Fracture surface analysis in composite and titanium bonding
NASA Technical Reports Server (NTRS)
Devilbiss, T. A.; Wightman, J. P.
1985-01-01
To understand the mechanical properties of fiber-reinforced composite materials, it is necessary to understand the mechanical properties of the matrix materials and of the reinforcing fibers. Another factor that can affect the mechanical properties of a composite material is the interaction between the fiber and the matrix. In general, composites with strong fiber matrix bonding will give higher modulus, lower toughness composites. Composites with weak bonding will have a lower modulus and more ductility. The situation becomes a bit more complex when all possibilities are examined. To be considered are the following: the properties of the surface layer on the fiber, the interactive forces between polymer and matrix, the surface roughness and porosity of the fiber, and the morphology of the matrix polymer at the fiber surface. In practice, the surface of the fibers is treated to enhance the mechanical properties of a composite. These treatments include anodization, acid etching, high temperature oxidation, and plasma oxidation, to name a few. The goal is to be able to predict the surface properties of carbon fibers treated in various ways, and then to relate surface properties to fiber matrix bonding.
NASA Technical Reports Server (NTRS)
Lee, R. B., III
1972-01-01
Experimental investigations of the percent polarization of sunlight reflected from the surfaces of each of the Echo 2 Satellite and PAGEOS (Passive Geodetic Earth Orbiting Satellite) were performed to determine the stability of their surfaces in the space environment. The Echo 2 surface material was amorphous phosphate chemically bonded to a rolled aluminum substrate while the PAGEOS 1 surface material is vapor deposited aluminum on a poly (ethylene terephthalate) film. The stability of the satellites' surfaces was analyzed by comparing the light polarizing properties of the satellites, to those of test surfaces representative of the satellites' surfaces. The properties of flat test surfaces were measured experimentally in the laboratory, and the effects of surface strain, surface geometry, and vacuum upon these properties were examined. The laboratory analyses revealed that the polarization properties of the Echo 2 surface were significantly affected by surface geometry and vacuum, and that the properties of the PAGEOS 1 surface were not significantly altered by any of the above mechanisms.
Evanescent Field Based Photoacoustics: Optical Property Evaluation at Surfaces
Goldschmidt, Benjamin S.; Rudy, Anna M.; Nowak, Charissa A.; Tsay, Yowting; Whiteside, Paul J. D.; Hunt, Heather K.
2016-01-01
Here, we present a protocol to estimate material and surface optical properties using the photoacoustic effect combined with total internal reflection. Optical property evaluation of thin films and the surfaces of bulk materials is an important step in understanding new optical material systems and their applications. The method presented can estimate thickness, refractive index, and use absorptive properties of materials for detection. This metrology system uses evanescent field-based photoacoustics (EFPA), a field of research based upon the interaction of an evanescent field with the photoacoustic effect. This interaction and its resulting family of techniques allow the technique to probe optical properties within a few hundred nanometers of the sample surface. This optical near field allows for the highly accurate estimation of material properties on the same scale as the field itself such as refractive index and film thickness. With the use of EFPA and its sub techniques such as total internal reflection photoacoustic spectroscopy (TIRPAS) and optical tunneling photoacoustic spectroscopy (OTPAS), it is possible to evaluate a material at the nanoscale in a consolidated instrument without the need for many instruments and experiments that may be cost prohibitive. PMID:27500652
1980-07-01
41 3.2 EXPERIMENTAL DETERMINATION OF THE DEPENDENCE OF RAYLEIGH WAVE AMPLITUDE ON PROPERTIES OF THE SOURCE MATERIAL ...Surface Wave Observations ...... ................ 48 3.3.3 Surface Wave Dependence on Source Material Properties ..... ................ .. 51 SYSTEMS...with various aspects of the problem of estimating yield from single station recordings of surface waves. The material in these four summaries has been
Effects of Material Properties on Bacterial Adhesion and Biofilm Formation.
Song, F; Koo, H; Ren, D
2015-08-01
Adhesion of microbes, such as bacteria and fungi, to surfaces and the subsequent formation of biofilms cause multidrug-tolerant infections in humans and fouling of medical devices. To address these challenges, it is important to understand how material properties affect microbe-surface interactions and engineer better nonfouling materials. Here we review the recent progresses in this field and discuss the main challenges and opportunities. In particular, we focus on bacterial biofilms and review the effects of surface energy, charge, topography, and stiffness of substratum material on bacterial adhesion. We summarize how these surface properties influence oral biofilm formation, and we discuss the important findings from nondental systems that have potential applications in dental medicine. © International & American Associations for Dental Research 2015.
Lunar surface engineering properties experiment definition
NASA Technical Reports Server (NTRS)
Mitchell, J. K.; Goodman, R. E.; Hurlbut, F. C.; Houston, W. N.; Willis, D. R.; Witherspoon, P. A.; Hovland, H. J.
1971-01-01
Research on the mechanics of lunar soils and on developing probes to determine the properties of lunar surface materials is summarized. The areas of investigation include the following: soil simulation, soil property determination using an impact penetrometer, soil stabilization using urethane foam or phenolic resin, effects of rolling boulders down lunar slopes, design of borehole jack and its use in determining failure mechanisms and properties of rocks, and development of a permeability probe for measuring fluid flow through porous lunar surface materials.
Bioinspired Functional Surfaces for Technological Applications
NASA Astrophysics Data System (ADS)
Sharma, Vipul; Kumar, Suneel; Reddy, Kumbam Lingeshwar; Bahuguna, Ashish; Krishnan, Venkata
2016-08-01
Biological matters have been in continuous encounter with extreme environmental conditions leading to their evolution over millions of years. The fittest have survived through continuous evolution, an ongoing process. Biological surfaces are the important active interfaces between biological matters and the environment, and have been evolving over time to a higher state of intelligent functionality. Bioinspired surfaces with special functionalities have grabbed attention in materials research in the recent times. The microstructures and mechanisms behind these functional biological surfaces with interesting properties have inspired scientists to create artificial materials and surfaces which possess the properties equivalent to their counterparts. In this review, we have described the interplay between unique multiscale (micro- and nano-scale) structures of biological surfaces with intrinsic material properties which have inspired researchers to achieve the desired wettability and functionalities. Inspired by naturally occurring surfaces, researchers have designed and fabricated novel interfacial materials with versatile functionalities and wettability, such as superantiwetting surfaces (superhydrophobic and superoleophobic), omniphobic, switching wettability and water collecting surfaces. These strategies collectively enable functional surfaces to be utilized in different applications such as fog harvesting, surface-enhanced Raman spectroscopy (SERS), catalysis, sensing and biological applications. This paper delivers a critical review of such inspiring biological surfaces and artificial bioinspired surfaces utilized in different applications, where material science and engineering have merged by taking inspiration from the natural systems.
Electromagnetic properties of material coated surfaces
NASA Technical Reports Server (NTRS)
Beard, L.; Berrie, J.; Burkholder, R.; Dominek, A.; Walton, E.; Wang, N.
1989-01-01
The electromagnetic properties of material coated conducting surfaces were investigated. The coating geometries consist of uniform layers over a planar surface, irregularly shaped formations near edges and randomly positioned, electrically small, irregularly shaped formations over a surface. Techniques to measure the scattered field and constitutive parameters from these geometries were studied. The significance of the scattered field from these geometries warrants further study.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 9 2012-10-01 2012-10-01 false Roadway, tunnels and subways, bridges and culverts, ties, rails, other track material, ballast, track laying and surfacing, and road property damaged... culverts, ties, rails, other track material, ballast, track laying and surfacing, and road property damaged...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 9 2011-10-01 2011-10-01 false Roadway, tunnels and subways, bridges and culverts, ties, rails, other track material, ballast, track laying and surfacing, and road property damaged... culverts, ties, rails, other track material, ballast, track laying and surfacing, and road property damaged...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 9 2013-10-01 2013-10-01 false Roadway, tunnels and subways, bridges and culverts, ties, rails, other track material, ballast, track laying and surfacing, and road property damaged... culverts, ties, rails, other track material, ballast, track laying and surfacing, and road property damaged...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 9 2014-10-01 2014-10-01 false Roadway, tunnels and subways, bridges and culverts, ties, rails, other track material, ballast, track laying and surfacing, and road property damaged... culverts, ties, rails, other track material, ballast, track laying and surfacing, and road property damaged...
Systems and Methods of Laser Texturing of Material Surfaces and Their Applications
NASA Technical Reports Server (NTRS)
Gupta, Mool C. (Inventor); Nayak, Barada K. (Inventor)
2014-01-01
The surface of a material is textured and by exposing the surface to pulses from an ultrafast laser. The laser treatment causes pillars to form on the treated surface. These pillars provide for greater light absorption. Texturing and crystallization can be carried out as a single step process. The crystallization of the material provides for higher electric conductivity and changes in optical and electronic properties of the material. The method may be performed in vacuum or a gaseous environment. The gaseous environment may aid in texturing and/or modifying physical and chemical properties of the surfaces. This method may be used on various material surfaces, such as semiconductors, metals and their alloys, ceramics, polymers, glasses, composites, as well as crystalline, nanocrystalline, polycrystalline, microcrystalline, and amorphous phases.
Copoly(imide siloxane) Abhesive Materials with Varied Siloxane Oligomer Length
NASA Technical Reports Server (NTRS)
Wohl, Christoper J.; Atkins, Brad M.; Lin, Yi; Belcher, Marcus A.; Connell, John W.
2010-01-01
In this work, low surface energy copoly(imide siloxane)s were synthesized with various siloxane segment lengths. Characterization of these materials revealed that domain formation of the low surface energy component within the matrix was more prevalent for longer siloxane segments as indicated by increased opacity, decreased mechanical properties, and variation of the Tg. Incorporation of siloxanes lowered the polymer s surface energy as indicated by water contact angle values. Topographical modification of these materials by laser ablation patterning further reduced the surface energy, even generating superhydrophobic surfaces. Combined, the contact angle data and particle adhesion testing indicated that copoly(imide siloxane) materials may provide greater mitigation to particulate adhesion than polyimide materials alone. These enhanced surface properties for abhesive applications did result in a reduction of the tensile moduli of the copolymers. It is possible that lower siloxane loading levels would result in retention of the mechanical properties of the polyimide while still affording abhesive surface properties. This hypothesis is currently being investigated. Laser ablation patterning offers further reduction in particle retention as the available surface area for particle adhesion is reduced. Pattern variation and size dependencies are currently being evaluated. For the purposes of lunar dust adhesion mitigation, it is likely that this approach, termed passive due to the lack of input from an external energy source, would not be sufficient to mitigate surface contamination or clean contaminated surfaces for some lunar applications. It is feasible to combine these materials with active mitigation strategies - methods that utilize input from external energy sources - would broaden the applicability of such materials for abhesive purposes. Collaborative efforts along these lines have been initiated with researchers at NASA Kennedy Space Center where experiments are being conducted involving a series of embedded electrodes within polymeric matrices.
NASA Technical Reports Server (NTRS)
Smith, T. M.; Nelson, G. L.
2005-01-01
Electrostatic dissipative polymers are used for a variety of functions. Typical methods utilized to transform electrically insulating polymers into either charge dissipative or conductive materials involve incorporating a conductive filler, conductive polymer, oxidizing the surface using plasma, or incorporating surfactants that act as surface wetting agents. Another approach is to synthesize a block copolymer that is expected to result in better electrical properties with minimal impacts to physical, fire, and thermal properties. One such block that can be added into the main chain of polymers is a diol terminated ferrocene oligomer, which is expected to impart electrostatic dissipative properties into the host polymer while concurrently improving the overall fire properties. Previous work with polyurethanes incorporating a ferrocene oligomer into the main chain resulted in much improved fire retardancy. In dealing with electrostatic dissipative materials the important questions are: how easily does the material charge and how quickly can the charge move to ground. One normally describes the materials conductivity, but conductivity only measures the fastest path for an electron not the slowest path. The slowest path is the one of interest, since it is left on the surface and thus can cause discharges. In order to assess ease of charging and decay times corona charge dissipation measurements can accurately assess these properties by introducing a charge on the surface of the material then measuring the surface voltage and the amount of charge deposited. The charge decay curve then will give an indication of a materials electrostatic dissipation properties. Normally, triboelectric testing can be performed, but results vary. Corona charge dissipation results are more repeatable.
Structural properties of TiO2 nanomaterials
NASA Astrophysics Data System (ADS)
Kusior, Anna; Banas, Joanna; Trenczek-Zajac, Anita; Zubrzycka, Paulina; Micek-Ilnicka, Anna; Radecka, Marta
2018-04-01
The surface of solids is characterized by active, energy-rich sites that determine physicochemical interaction with gaseous and liquid media and possible applications in photocatalysis. The behavior of materials in such processes is related to their form and amount of various species, especially water and forms of oxygen adsorbed on the surface. The preparation of materials with controlled morphology, which includes modifications of the size, geometry, and composition, is currently an important way of optimizing properties, as many of them depend on not only the size and phase composition, but also on shape. Hydroxylated centers on the surface, which can be treated as trapping sites, are particularly significant. Water adsorbed on the surface bridging hydroxyl groups can distinctly modulate the properties of the surface of titania. The saturation of the surface with hydroxyl groups may improve the photocatalytic properties. TiO2 nanomaterials were obtained via different methods. SEM and TEM analysis were performed to study the morphology. The analysis of XRD and Raman data revealed a phase composition of obtained materials. To examine the surface properties, FTIR absorption spectra of TiO2 nanomaterials were recorded. The photocatalytic activity of titanium dioxide nanoparticles was investigated through the decomposition of methylene blue. It was demonstrated that each surface modification affects the amount of adsorbed hydroxyl groups. The different contributions of the two species to the ν(H2O) FTIR bands for different nanostructures result from the preparation conditions. It was noted that pre-adsorbed water (the surface-bridging hydroxyl) might significantly modulate the surface properties of the material. The increase in hydroxyl group density on the titanium dioxide surface enhances the effectiveness of the photocatalytic processes. It was demonstrated that flower-like titania obtained via hydrothermal synthesis exhibits the weakest catalytic activity, in contrast to the typical spherical TiO2.
Setterbo, Jacob J.; Chau, Anh; Fyhrie, Patricia B.; Hubbard, Mont; Upadhyaya, Shrini K.; Symons, Jennifer E.; Stover, Susan M.
2012-01-01
Background Racetrack surface is a risk factor for racehorse injuries and fatalities. Current research indicates that race surface mechanical properties may be influenced by material composition, moisture content, temperature, and maintenance. Race surface mechanical testing in a controlled laboratory setting would allow for objective evaluation of dynamic properties of surface and factors that affect surface behavior. Objective To develop a method for reconstruction of race surfaces in the laboratory and validate the method by comparison with racetrack measurements of dynamic surface properties. Methods Track-testing device (TTD) impact tests were conducted to simulate equine hoof impact on dirt and synthetic race surfaces; tests were performed both in situ (racetrack) and using laboratory reconstructions of harvested surface materials. Clegg Hammer in situ measurements were used to guide surface reconstruction in the laboratory. Dynamic surface properties were compared between in situ and laboratory settings. Relationships between racetrack TTD and Clegg Hammer measurements were analyzed using stepwise multiple linear regression. Results Most dynamic surface property setting differences (racetrack-laboratory) were small relative to surface material type differences (dirt-synthetic). Clegg Hammer measurements were more strongly correlated with TTD measurements on the synthetic surface than the dirt surface. On the dirt surface, Clegg Hammer decelerations were negatively correlated with TTD forces. Conclusions Laboratory reconstruction of racetrack surfaces guided by Clegg Hammer measurements yielded TTD impact measurements similar to in situ values. The negative correlation between TTD and Clegg Hammer measurements confirms the importance of instrument mass when drawing conclusions from testing results. Lighter impact devices may be less appropriate for assessing dynamic surface properties compared to testing equipment designed to simulate hoof impact (TTD). Potential Relevance Dynamic impact properties of race surfaces can be evaluated in a laboratory setting, allowing for further study of factors affecting surface behavior under controlled conditions. PMID:23227183
Mineralogy of the Martian Surface: Crustal Composition to Surface Processes
NASA Technical Reports Server (NTRS)
Mustard, John F.
1997-01-01
The main results have been published in the refereed literature, and thus this report serves mainly to summarize the main findings and indicate where the detailed papers may be found. Reflectance spectroscopy has been an important tool for determining the mineralogic makeup of the near surface materials on Mars. Analysis of the spectral properties of the surface have demonstrated that these attributes are heterogeneous from the coarse spatial but high spectral resolution spectra obtained with telescopes to the high spatial but coarse spectral resolution Viking data (e.g. Arvidson et al., 1989; McEwen et al., 1989). Low albedo materials show strong evidence for the presence of igneous rock forming minerals while bright materials are generally interpreted as representing heavily altered crustal material. How these materials are physically and genetically related has important implications for understanding martian surface properties and processes, weathering histories and paths, and crustal composition. The goal of this research is to characterize the physical and chemical properties of low albedo materials on Mars and the relationship to intermediate and high albedo materials. Fundamental science questions to be pursued include: (1) the observed distributions of soil, rock, and dust a function of physical processes or weathering and (2) different stages of chemical and physical alteration fresh rock identified. These objectives will be addressed through detailed analyses and modelling of the ISM data from the Phobos-2 mission with corroborating evidence of surface composition and properties provided by data from the Viking mission.
Evaluation of the surface free energy of plant surfaces: toward standardizing the procedure
Fernández, Victoria; Khayet, Mohamed
2015-01-01
Plant surfaces have been found to have a major chemical and physical heterogeneity and play a key protecting role against multiple stress factors. During the last decade, there is a raising interest in examining plant surface properties for the development of biomimetic materials. Contact angle measurement of different liquids is a common tool for characterizing synthetic materials, which is just beginning to be applied to plant surfaces. However, some studies performed with polymers and other materials showed that for the same surface, different surface free energy values may be obtained depending on the number and nature of the test liquids analyzed, materials' properties, and surface free energy calculation methods employed. For 3 rough and 3 rather smooth plant materials, we calculated their surface free energy using 2 or 3 test liquids and 3 different calculation methods. Regardless of the degree of surface roughness, the methods based on 2 test liquids often led to the under- or over-estimation of surface free energies as compared to the results derived from the 3-Liquids method. Given the major chemical and structural diversity of plant surfaces, it is concluded that 3 different liquids must be considered for characterizing materials of unknown physico-chemical properties, which may significantly differ in terms of polar and dispersive interactions. Since there are just few surface free energy data of plant surfaces with the aim of standardizing the calculation procedure and interpretation of the results among for instance, different species, organs, or phenological states, we suggest the use of 3 liquids and the mean surface tension values provided in this study. PMID:26217362
NASA Technical Reports Server (NTRS)
Manning, J. R.
1981-01-01
Measurement of materials properties and thermophysical properties is described. The topics discussed are: surface tensions and their variations with temperature and impurities; convection during unidirectional solidification: measurement of high temperature thermophysical properties of tungsten liquid and solid; thermodynamic properties of refractory materials at high temperatures; and experimental and theoretical studies in wetting and multilayer adsorption.
Interdisciplinary research on the nature and properties of ceramic materials
NASA Technical Reports Server (NTRS)
1980-01-01
Several investigations concerning the properties and processing of brittle ceramic materials as related to design considerations are briefly described. Surface characterization techniques, fractography, high purity materials, creep properties, impact and thermal shock resistance, and reaction bonding are discussed.
2004-12-31
the macroscopic expression of common physical or material properties are examples of programmable material concepts. Toffoli [42] identifies a...could establish a means to effect material properties at many point locations, achieving in effect a programmable material surface. Figure 4
NASA Astrophysics Data System (ADS)
Blodgett, David W.; Spicer, James B.
2001-12-01
The ability to characterize the sub-surface mechanical properties of a bulk or thin film material at the sub-micron level has applications in the microelectronics and thin film industries. In the microelectronics industry, with the decrease of line widths and the increase of component densities, sub-surface voids have become increasingly detrimental. Any voids along an integrated circuit (IC) line can lead to improper electrical connections between components and can cause failure of the device. In the thin film industry, the detection of impurities is also important. Any impurities can detract from the film's desired optical, electrical, or mechanical properties. Just as important as the detection of voids and impurities, is the measurement of the elastic properties of a material on the nanometer scale. These elastic measurements provide insight into the microstructural properties of the material. We have been investigating a technique that couples the high-resolution surface imaging capabilities of the apertureless near-field scanning optical microscope (ANSOM) with the sub-surface characterization strengths of high-frequency ultrasound. As an ultrasonic wave propagates, the amplitude decreases due to geometrical spreading, attenuation from absorption, and scattering from discontinuities. Measurement of wave speeds and attenuation provides the information needed to quantify the bulk or surface properties of a material. The arrival of an ultrasonic wave at or along the surface of a material is accompanied with a small surface displacement. Conventional methods for the ultrasound detection rely on either a contact transducer or optical technique (interferometric, beam deflection, etc.). However, each of these methods is limited by the spatial resolution dictated by the detection footprint. As the footprint size increases, variations across the ultrasonic wavefront are effectively averaged, masking the presence of any nanometer-scale sub-surface or surface mechanical property variations. The use of an ANSOM for sensing ultrasonic wave arrivals reduces the detection footprint allowing any nanometer scale variations in the microstructure of a material to be detected. In an ANSOM, the ultrasonic displacement is manifested as perturbations on the near-field signal due to the small variations in the tip-sample caused by the wave arrival. Due to the linear dependence of the near-field signal on tip-sample separation, these perturbations can be interpreted using methods identical to those for conventional ultrasonic techniques. In this paper, we report results using both contact transducer (5 MHz) and laser-generated ultrasound.
NASA Astrophysics Data System (ADS)
Yang, Sijie
Since the discovery of graphene, two dimensional materials (2D materials) have become a focus of interest for material research due to their many unique physical properties embedded in their 2D structure. While they host many exciting potential applications, some of these 2D materials are subject to environmental instability issues induced by interaction between material and gas molecules in air, which poses a barrier to further application and manufacture. To overcome this, it is necessary to understand the origin of material instability and interaction with molecules commonly found in air, as well as developing a reproducible and manufacturing compatible method to post-process these materials to extend their lifetime. In this work, the very first investigation on environmental stability on Te containing anisotropic 2D materials such as GaTe and ZrTe 3 is reported. Experimental results have demonstrated that freshly exfoliated GaTe quickly deteriorate in air, during which the Raman spectrum, surface morphology, and surface chemistry undergo drastic changes. Environmental Raman spectroscopy and XPS measurements demonstrate that H2O molecules in air interact strongly on the surface while O2, N 2, and inert gases don't show any detrimental effects on GaTe surface. Moreover, the anisotropic properties of GaTe slowly disappear during the aging process. To prevent this gas/material interaction based surface transformation, diazonium based surface functionalization is adopted on these Te based 2D materials. Environmental Raman spectroscopy results demonstrate that the stability of functionalized Te based 2D materials exhibit much higher stability both in ambient and extreme conditions. Meanwhile, PL spectroscopy, angle resolved Raman spectroscopy, atomic force microscopy measurements confirm that many attractive physical properties of the material are not affected by surface functionalization. Overall, these findings unveil the degradation mechanism of Te based 2D materials as well as provide a way to significantly enhance their environmental stability through an inexpensive and reproducible surface chemical functionalization route.
Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications.
Wen, Gang; Guo, ZhiGuang; Liu, Weimin
2017-03-09
Numerous research studies have contributed to the development of mature superhydrophobic systems. The fabrication and applications of polymeric superhydrophobic surfaces have been discussed and these have attracted tremendous attention over the past few years due to their excellent properties. In general, roughness and chemical composition, the two most crucial factors with respect to surface wetting, provide the basic criteria for yielding polymeric superhydrophobic materials. Furthermore, with their unique properties and flexible configurations, polymers have been one of the most efficient materials for fabricating superhydrophobic materials. This review aims to summarize the most recent progress in polymeric superhydrophobic surfaces. Significantly, the fundamental theories for designing these materials will be presented, and the original methods will be introduced, followed by a summary of multifunctional superhydrophobic polymers and their applications. The principles of these methods can be divided into two categories: the first involves adding nanoparticles to a low surface energy polymer, and the other involves combining a low surface energy material with a textured surface, followed by chemical modification. Notably, surface-initiated radical polymerization is a versatile method for a variety of vinyl monomers, resulting in controlled molecular weights and low polydispersities. The surfaces produced by these methods not only possess superhydrophobicity but also have many applications, such as self-cleaning, self-healing, anti-icing, anti-bioadhesion, oil-water separation, and even superamphiphobic surfaces. Interestingly, the combination of responsive materials and roughness enhances the responsiveness, which allows the achievement of intelligent transformation between superhydrophobicity and superhydrophilicity. Nevertheless, surfaces with poor physical and chemical properties are generally unable to withstand the severe conditions of the outside world; thus, it is necessary to optimize the performances of such materials to yield durable superhydrophobic surfaces. To sum up, some challenges and perspectives regarding the future research and development of polymeric superhydrophobic surfaces are presented.
Pramatarova, L; Pecheva, E; Krastev, V; Riesz, F
2007-03-01
Material surfaces play critical role in biology and medicine since most biological reactions occur on surfaces and interfaces. There are many examples showing that the surface properties of the materials control and are directly involved in biological reactions and processes in-vitro like blood compatibility, protein absorption, cell development, etc. The rules that govern the diversity of biological surface phenomenon are fundamental physical laws. Stainless steel doped with Cr, Ni and Mo is widely used material in medicine and dentistry due to its excellent corrosion resistance and mechanical properties. The interest in this material has stimulated extensive studies on improving its bone-bonding properties. This paper describes the surface modification of Cr-Ni stainless steel (AISI 316) by a whole surface sequential implantation of Ca and P ions (the basic ions of hydroxyapatite). Three groups of stainless steel samples are prepared: (i) ion-implanted, (ii) ion-implanted and thermally treated at 600( composite function)C in air for 1 h and (iii) initials. The surface chemistry and topography before and after the surface modification are characterized by X-ray photoelectron spectroscopy, Auger electron spectroscopy, magic mirror method, atomic force microscopy and contact angle measurements.
Effects on optical systems from interactions with oxygen atoms in low earth orbits
NASA Technical Reports Server (NTRS)
Peters, P. N.; Swann, J. T.; Gregory, J. C.
1986-01-01
Modifications of material surface properties due to interactions with ambient atomic oxygen have been observed on surfaces facing the orbital direction in low earth orbits. Some effects are very damaging to surface optical properties while some are more subtle and even beneficial. Most combustible materials are heavily etched, and some coatings, such as silver and osmium, are seriously degraded or removed as volatile oxides. The growth of oxide films on metals and semiconductors considered stable in dry air was measured. Material removal, surface roughness, reflectance, and optical densities are reported. Effects of temperature, contamination, and overcoatings are noted.
Effects on optical systems from interactions with oxygen atoms in low earth orbits
NASA Astrophysics Data System (ADS)
Peters, P. N.; Swann, J. T.; Gregory, J. C.
1986-04-01
Modifications of material surface properties due to interactions with ambient atomic oxygen have been observed on surfaces facing the orbital direction in low earth orbits. Some effects are very damaging to surface optical properties while some are more subtle and even beneficial. Most combustible materials are heavily etched, and some coatings, such as silver and osmium, are seriously degraded or removed as volatile oxides. The growth of oxide films on metals and semiconductors considered stable in dry air was measured. Material removal, surface roughness, reflectance, and optical densities are reported. Effects of temperature, contamination, and overcoatings are noted.
Methods and apparatus for altering material using ion beams
Bloomquist, Douglas D.; Buchheit, Rudy; Greenly, John B.; McIntyre, Dale C.; Neau, Eugene L.; Stinnett, Regan W.
1996-01-01
A method and apparatus for treating material surfaces using a repetitively pulsed ion beam. In particular, a method of treating magnetic material surfaces in order to reduce surface defects, and produce amorphous fine grained magnetic material with properties that can be tailored by adjusting treatment parameters of a pulsed ion beam. In addition to a method of surface treating materials for wear and corrosion resistance using pulsed particle ion beams.
Effect of fibre laser marking on surface properties and corrosion resistance of a Fe-Ni-Cr alloy
NASA Astrophysics Data System (ADS)
Astarita, Antonello; Mandolfino, Chiara; Lertora, Enrico; Gambaro, Carla; Squillace, Antonino; Scherillo, Fabio
2017-10-01
Fiber laser techniques are increasing their use in many applications, including modification of material surface properties. In particular they are often used for materials' marking as a non-contact processing. In spite of this, the impact of the laser beam on the surface causes metallurgical and morphological changes. The developments during the laser-material interaction can also affect other surface properties, especially corrosion properties which are crucial in the case of Iron-Nickel alloys. Effect of laser marking on a Fe-Cr-Ni alloy using a Tm-fibre laser (IPG Photonics TRL1904; maximum power: 50W, wavelength: 1904 nm), is described in this paper. In order to evaluate the effect of the laser on corrosion properties a specific ageing test in salt spray has been performed. Moreover, superficial morphology analyses have been performed on samples before and after corrosion tests. Possibilities and limitations of laser marking on these alloys have been discussed, in particular from the point of view of the marked surface corrosion resistance preservation.
Radiation protection using Martian surface materials in human exploration of Mars
NASA Technical Reports Server (NTRS)
Kim, M. H.; Thibeault, S. A.; Wilson, J. W.; Heilbronn, L.; Kiefer, R. L.; Weakley, J. A.; Dueber, J. L.; Fogarty, T.; Wilkins, R.
2001-01-01
To develop materials for shielding astronauts from the hazards of GCR, natural Martian surface materials are considered for their potential as radiation shielding for manned Mars missions. The modified radiation fluences behind various kinds of Martian rocks and regolith are determined by solving the Boltzmann equation using NASA Langley's HZETRN code along with the 1977 Solar Minimum galactic cosmic ray environmental model. To develop structural shielding composite materials for Martian surface habitats, theoretical predictions of the shielding properties of Martian regolith/polyimide composites has been computed to assess their shielding effectiveness. Adding high-performance polymer binders to Martian regolith to enhance structural properties also enhances the shielding properties of these composites because of the added hydrogenous constituents. Heavy ion beam testing of regolith simulant/polyimide composites is planned to validate this prediction. Characterization and proton beam tests are performed to measure structural properties and to compare the shielding effects on microelectronic devices, respectively.
Wetting, superhydrophobicity, and icephobicity in biomimetic composite materials
NASA Astrophysics Data System (ADS)
Hejazi, Vahid
Recent developments in nano- and bio-technology require new materials. Among these new classes of materials which have emerged in the recent years are biomimetic materials, which mimic structure and properties of materials found in living nature. There are a large number of biological objects including bacteria, animals and plants with properties of interest for engineers. Among these properties is the ability of the lotus leaf and other natural materials to repel water, which has inspired researchers to prepare similar surfaces. The Lotus effect involving roughness-induced superhydrophobicity is a way to design nonwetting, self-cleaning, omniphobic, icephobic, and antifouling surfaces. The range of actual and potential applications of superhydrophobic surfaces is diverse including optical, building and architecture, textiles, solar panels, lab-on-a-chip, microfluidic devices, and applications requiring antifouling from biological and organic contaminants. In this thesis, in chapter one, we introduce the general concepts and definitions regarding the wetting properties of the surfaces. In chapter two, we develop novel models and conduct experiments on wetting of composite materials. To design sustainable superhydrophobic metal matrix composite (MMC) surfaces, we suggest using hydrophobic reinforcement in the bulk of the material, rather than only at its surface. We experimentally study the wetting properties of graphite-reinforced Al- and Cu-based composites and conclude that the Cu-based MMCs have the potential to be used in the future for the applications where the wear-resistant superhydrophobicity is required. In chapter three, we introduce hydrophobic coating at the surface of concrete materials making them waterproof to prevent material failure, because concretes and ceramics cannot stop water from seeping through them and forming cracks. We create water-repellant concretes with CA close to 160o using superhydrophobic coating. In chapter four, experimental data are collected in terms of oleophobicity especially when underwater applications are of interest. We develop models for four-phase rough interface of underwater oleophobicity and develop a novel approach to predict the CA of organic liquid on the rough surfaces immersed in water. We investigate wetting transition on a patterned surface in underwater systems, using a phase field model. We demonstrated that roughening on an immersed solid surface can drive the transition from Wenzel to Cassie-Baxter state. This discovery improves our understanding of underwater systems and their surface interactions during the wetting phenomenon and can be applied for the development of underwater oil-repellent materials which are of interest for various applications in the water industry, and marine devices. In chapter five, we experimentally and theoretically investigate the icephobicity of composite materials. A novel comprehensive definition of icephobicity, broad enough to cover a variety of situations including low adhesion strength, delayed ice crystallization, and bouncing is determined. Wetting behavior and ice adhesion properties of various samples are theoretically and experimentally compared. We conclude superhydrophobic surfaces are not necessarily icephobic. The models are tested against the experimental data to verify the good agreement between them. The models can be used for the design of novel superhydrophobic, oleophobic, omniphobic and icephobic composite materials. Finally we conclude that creating surface micro/nanostructures using mechanical abrasion or chemical etching as well as applying low energy materials are the most simple, inexpensive, and durable techniques to create superhydrophobic, oleophobic, and icephobic materials.
Innovative potential of plasma technology
NASA Astrophysics Data System (ADS)
Budaev, V. P.
2017-11-01
The review summarizes recent experimental observations of materials exposed to extreme hot plasma loads in fusion devices and plasma facilities with high-temperature plasma. Plasma load on the material in such devices lead to the stochastic clustering and fractal growth of the surface on scales from tens of nanometers to hundreds of micrometers forming statistical self-similarity of the surface roughness with extremely high specific area. Statistical characteristics of hierarchical granularity and scale invariance of such materials surface qualitatively differ from the properties of the roughness of the ordinary Brownian surface which provides a potential of innovative plasma technologies for synthesis of new nanostructured materials with programmed roughness properties, for hypersonic technologies, for biotechnology and biomedical applications.
NASA Technical Reports Server (NTRS)
Davis, P. R.; Swanson, L. W.
1979-01-01
The techniques of fabricating and characterizing the surface properties of electrode materials were investigated. The basic surface properties of these materials were studied with respect to their utilization as thermionic energy converter electrodes. Emphasis was placed on those factors (e.g, cesium disorption kinetic and mechanisms of low work function production) which are of primary concern to thermionic converter performance.
The role of the micro environment on the tribological behavior of materials
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1980-01-01
The properties of the environment which exert an influence upon adhesion, friction, wear, and lubrication of materials in solid state contact are discussed. The effect of the environment upon lubricants and lubricant properties is considered in relation to the interaction of the lubricant with the material surfaces in solid state contact and the ability of lubricants to provide protective surface films.
Shin, Sung-Ho; Bae, Young Eun; Moon, Hyun Kyung; Kim, Jungkil; Choi, Suk-Ho; Kim, Yongho; Yoon, Hyo Jae; Lee, Min Hyung; Nah, Junghyo
2017-06-27
Triboelectric charging involves frictional contact of two different materials, and their contact electrification usually relies on polarity difference in the triboelectric series. This limits the choices of materials for triboelectric contact pairs, hindering research and development of energy harvest devices utilizing triboelectric effect. A progressive approach to resolve this issue involves modification of chemical structures of materials for effectively engineering their triboelectric properties. Here, we describe a facile method to change triboelectric property of a polymeric surface via atomic-level chemical functionalizations using a series of halogens and amines, which allows a wide spectrum of triboelectric series over single material. Using this method, tunable triboelectric output power density is demonstrated in triboelectric generators. Furthermore, molecular-scale calculation using density functional theory unveils that electrons transferred through electrification are occupying the PET group rather than the surface functional group. The work introduced here would open the ability to tune triboelectric property of materials by chemical modification of surface and facilitate the development of energy harvesting devices and sensors exploiting triboelectric effect.
NASA Astrophysics Data System (ADS)
Ahern, A.; Rogers, D.
2017-12-01
Better constraints on the physical properties (e.g. grain size, rock abundance, cohesion, porosity and amount of induration) of Martian surface materials can lead to greater understanding of outcrop origin (e.g. via sedimentary, effusive volcanic, pyroclastic processes). Many outcrop surfaces on Mars likely contain near-surface (<3 cm) vertical heterogeneity in physical properties due to thin sediment cover, induration, and physical weathering, that can obscure measurement of the bulk thermal conductivity of the outcrop materials just below. Fortunately, vertical heterogeneity within near-surface materials can result in unique, and possibly predictable, diurnal and seasonal temperature patterns. The KRC thermal model has been utilized in a number of previous studies to predict thermal inertia of surface materials on Mars. Here we use KRC to model surface temperatures from overlapping Mars Odyssey THEMIS surface temperature observations that span multiple seasons and local times, in order to constrain both the nature of vertical heterogeneity and the underlying outcrop thermal inertia for various spectrally distinctive outcrops on Mars. We utilize spectral observations from TES and CRISM to constrain the particle size of the uppermost surface. For this presentation, we will focus specifically on chloride-bearing units in Terra Sirenum and Meridiani Planum, as well as mafic and feldspathic bedrock locations with distinct spectral properties, yet uncertain origins, in Noachis Terra and Nili Fossae. We find that many of these surfaces exhibit variations in apparent thermal inertia with season and local time that are consistent with low thermal inertia materials overlying higher thermal inertia substrates. Work is ongoing to compare surface temperature measurements with modeled two-layer scenarios in order to constrain the top layer thickness and bottom layer thermal inertia. The information will be used to better interpret the origins of these distinctive outcrops.
Braun, Ulrike; Lorenz, Edelgard; Weimann, Christiane; Sturm, Heinz; Karimov, Ilham; Ettl, Johannes; Meier, Reinhard; Wohlgemuth, Walter A; Berger, Hermann; Wildgruber, Moritz
2016-12-01
Central venous port devices made of two different polymeric materials, thermoplastic polyurethane (TPU) and silicone rubber (SiR), were compared due their material properties. Both naïve catheters as well as catheters after removal from patients were investigated. In lab experiments the influence of various chemo-therapeutic solutions on material properties was investigated, whereas the samples after removal were compared according to the implanted time in patient. The macroscopic, mechanical performance was assessed with dynamic, specially adapted tests for elasticity. The degradation status of the materials was determined with common tools of polymer characterisation, such as infrared spectroscopy, molecular weight measurements and various methods of thermal analysis. The surface morphology was analysed using scanning electron microscopy. A correlation between material properties and clinical performance was proposed. The surface morphology and chemical composition of the polyurethane catheter materials can potentially result in increased susceptibility of the catheter to bloodstream infections and thrombotic complications. The higher mechanic failure, especially with increasing implantation time of the silicone catheters is related to the lower mechanical performance compared to the polyurethane material as well as loss of barium sulphate filler particles near the surface of the catheter. This results in preformed microscopic notches, which act as predetermined sites of fracture. Copyright © 2016 Elsevier Ltd. All rights reserved.
Importance and Definition of Materials in Tribology. Status of Understanding
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1984-01-01
In general, tribological systems consist of three basic components: the material surfaces in contact, the lubricant, and the environment. The materials in contact and the influence of both bulk and surface properties, indicating the importance of material characterization, on tribological behavior are addressed. Since metals and metallic alloys are the most widely used class of materials in practical devices, attention is focused principally on them. With respect to surface behavior, the effect of contaminants both from within the material and from the environment on adhesive behavior is addressed. The various surface events that alter adhesion, friction, and wear are discussed. These include surface reconstruction, segregation, chemisorption, and compound formation. Examples of these events are presented. Minor nuances in the structure of the outermost layers of solids have a pronounced effect on tribological properties. The importance of characterizing the materials of solids in contact in order to achieve a fundamental understanding of adhesion, friction, and wear and accordingly of methods for their control are addressed.
Flury, Simon; Diebold, Elisabeth; Peutzfeldt, Anne; Lussi, Adrian
2017-06-01
Because of the different composition of resin-ceramic computer-aided design and computer-aided manufacturing (CAD-CAM) materials, their polishability and their micromechanical properties vary. Moreover, depending on the composition of the materials, their surface roughness and micromechanical properties are likely to change with time. The purpose of this in vitro study was to investigate the effect of artificial toothbrushing and water storage on the surface roughness (Ra and Rz) and the micromechanical properties, surface hardness (Vickers [VHN]) and indentation modulus (E IT ), of 5 different tooth-colored CAD-CAM materials when polished with 2 different polishing systems. Specimens (n=40 per material) were cut from a composite resin (Paradigm MZ100; 3M ESPE), a feldspathic ceramic (Vitablocs Mark II; Vita Zahnfabrik), a resin nanoceramic (Lava Ultimate; 3M ESPE), a hybrid dental ceramic (Vita Enamic; Vita Zahnfabrik), and a nanocomposite resin (Ambarino High-Class; Creamed). All specimens were roughened in a standardized manner and polished either with Sof-Lex XT discs or the Vita Polishing Set Clinical. Surface roughness, VHN, and E IT were measured after polishing and after storage for 6 months (tap water, 37°C) with periodic, artificial toothbrushing. The surface roughness, VHN, and E IT results were analyzed with a nonparametric ANOVA followed by Kruskal-Wallis and exact Wilcoxon rank sum tests (α=.05). Irrespective of polishing system and of artificial toothbrushing and storage, Lava Ultimate generally showed the lowest surface roughness and Vitablocs Mark II the highest. As regards micromechanical properties, the following ranking of the CAD-CAM materials was found (from highest VHN/E IT to lowest VHN/E IT ): Vitablocs Mark II > Vita Enamic > Paradigm MZ100 > Lava Ultimate > Ambarino High-Class. Irrespective of material and of artificial toothbrushing and storage, polishing with Sof-Lex XT discs resulted in lower surface roughness than the Vita Polishing Set Clinical (P≤.016). However, the polishing system generally had no influence on the micromechanical properties (P>.05). The effect of artificial toothbrushing and storage on surface roughness depended on the material and the polishing system: Ambarino High-Class was most sensitive to storage, Lava Ultimate and Vita Enamic were least sensitive. Artificial toothbrushing and storage generally resulted in a decrease in VHN and E IT for Paradigm MZ100, Lava Ultimate, and Ambarino High-Class but not for Vita Enamic and Vitablocs Mark II. Tooth-colored CAD-CAM materials with lower VHN and E IT generally showed better polishability. However, these materials were more prone to degradation by artificial toothbrushing and water storage than materials with higher VHN and E IT . Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Computational characterization of ordered nanostructured surfaces
NASA Astrophysics Data System (ADS)
Mohieddin Abukhdeir, Nasser
2016-08-01
A vital and challenging task for materials researchers is to determine relationships between material characteristics and desired properties. While the measurement and assessment of material properties can be complex, quantitatively characterizing their structure is frequently a more challenging task. This issue is magnified for materials researchers in the areas of nanoscience and nanotechnology, where material structure is further complicated by phenomena such as self-assembly, collective behavior, and measurement uncertainty. Recent progress has been made in this area for both self-assembled and nanostructured surfaces due to increasing accessibility of imaging techniques at the nanoscale. In this context, recent advances in nanomaterial surface structure characterization are reviewed including the development of new theory and image processing methods.
[Study on preparation and physicochemical properties of surface modified sintered bone].
Li, Jingfeng; Zheng, Qixin; Guo, Xiaodong
2012-06-01
The aim of this study is to investigate a new method for preparing a biomimetic bone material-surface modified sintered bovine cancellous bone, and to improve its bioactivity as a tissue engineering bone. The prepared sintered bovine cancellous bones with the same size were randomly divided into two groups, immersing in 1 and 1. 5 times simulated body fluid (SBF), respectively. The three time periods of soak time were 7, 14, and 21 days. After sintered bone was dried, the surface morphology of sintered bone and surface mineralization composition were observed under scanning electron microscopy (SEM). By comparing the effect of surface modification of sintered bone materials, we chose the most ideal material and studied its pore size, the rate of the porosity, the compress and bend intensity. And then the material and the sintered bone material without surface modification were compared. The study indicated that sintered bone material immersed in SBF (1.5 times) for 14 days showed the best effect of surface modification, retaining the original physico-chemical properties of sintered bone.
Method of varying a physical property of a material through its depth
Daniel, Claus
2015-04-21
A method is disclosed for varying a mechanical property of a material at two depths. The method involves the application of at least two laser pulses of different durations. The method involves a determination of the density of the material from the surface to each depth, a determination of the heat capacity of the material from the surface to each depth, and a determination of the thermal conductivity of the material from the surface to each depth. Each laser pulse may affect the density, heat capacity, and thermal conductivity of the material, so it may be necessary to re-evaluate those parameters after each laser pulse and prior to the next pulse. The method may be applied to implantation materials to improve osteoblast and osteoclast activity.
Sezen, Meltem; Bakan, Feray
2015-12-01
Irradiation damage, caused by the use of beams in electron and ion microscopes, leads to undesired physical/chemical material property changes or uncontrollable modification of structures. Particularly, soft matter such as polymers or biological materials is highly susceptible and very much prone to react on electron/ion beam irradiation. Nevertheless, it is possible to turn degradation-dependent physical/chemical changes from negative to positive use when materials are intentionally exposed to beams. Especially, controllable surface modification allows tuning of surface properties for targeted purposes and thus provides the use of ultimate materials and their systems at the micro/nanoscale for creating functional surfaces. In this work, XeF2 and I2 gases were used in the focused ion beam scanning electron microscope instrument in combination with gallium ion etching of high-density polyethylene surfaces with different beam currents and accordingly different gas exposure times resulting at the same ion dose to optimize and develop new polymer surface properties and to create functional polymer surfaces. Alterations in the surface morphologies and surface chemistry due to gas-assisted etching-based nanostructuring with various processing parameters were tracked using high-resolution SEM imaging, complementary energy-dispersive spectroscopic analyses, and atomic force microscopic investigations.
Effect of Atomic Oxygen Exposure on Surface Resistivity Change of Spacecraft Insulator Material
NASA Astrophysics Data System (ADS)
Mundari, Noor Danish Ahrar; Khan, Arifur Rahman; Chiga, Masaru; Okumura, Teppei; Masui, Hirokazu; Iwata, Minoru; Toyoda, Kazuhiro; Cho, Mengu
Spacecraft surface charging can lead to arcing and a loss of electricity generation capability in solar panels or even loss of a satellite. The charging problem may be further aggravated by atomic oxygen (AO) exposure in Low Earth orbits, which modifies the surface of materials like polyimide, Teflon, anti-reflective coatings, cover glass etc, used on satellite surfaces, affecting materials properties, such as resistivity, secondary electron emissivity and photo emission, which govern the charging behavior. These properties are crucial input parameters for spacecraft charging analysis. To study the AO exposure effect on charging governing properties, an atomic oxygen exposure facility based on laser detonation of oxygen was built. The facility produces AO with a peak velocity value around 10-12km/s and a higher flux than that existing in orbit. After exposing the polyimide test material to the equivalent of 10 years of AO fluence at an altitude of 700-800 km, surface charging properties like surface resistivity and volume resistivity were measured. The measurement was performed in a vacuum using the charge storage decay method at room temperature, which is considered the most appropriate for measuring resistivity for space applications. The results show that the surface resistivity increases and the volume resistivity remains almost the same for the AO exposure fluence of 5.4×1018 atoms cm-2.
Evans, Nathan T; Irvin, Cameron W; Safranski, David L; Gall, Ken
2016-06-01
The ability to control the surface topography of orthopedic implant materials is desired to improve osseointegration but is often at the expense of mechanical performance in load bearing environments. Here we investigate the effects of surface modifications, roughness and porosity, on the mechanical properties of a set of polymers with diverse chemistry and structure. Both roughness and surface porosity resulted in samples with lower strength, failure strain and fatigue life due to stress concentrations at the surface; however, the decrease in ductility and fatigue strength were greater than the decrease in monotonic strength. The fatigue properties of the injection molded polymers did not correlate with yield strength as would be traditionally observed in metals. Rather, the fatigue properties and the capacity to maintain properties with the introduction of surface porosity correlated with the fracture toughness of the polymers. Polymer structure impacted the materials relative capacity to maintain monotonic and cyclic properties in the face of surface texture and porosity. Generally, amorphous polymers with large ratios of upper to lower yield points demonstrated a more significant drop in ductility and fatigue strength with the introduction of porosity compared to crystalline polymers with smaller ratios in their upper to lower yield strength. The latter materials have more effective dissipation mechanisms to minimize the impact of surface porosity on both monotonic and cyclic damage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Benko, Aleksandra; Frączek-Szczypta, Aneta; Menaszek, Elżbieta; Wyrwa, Jan; Nocuń, Marek; Błażewicz, Marta
2015-11-01
Coating the material with a layer of carbon nanotubes (CNTs) has been a subject of particular interest for the development of new biomaterials. Such coatings, made of properly selected CNTs, may constitute an implantable electronic device that facilitates tissue regeneration both by specific surface properties and an ability to electrically stimulate the cells. The goal of the presented study was to produce, evaluate physicochemical properties and test the applicability of highly conductible material designed as an implantable electronic device. Two types of CNTs with varying level of oxidation were chosen. The process of coating involved suspension of the material of choice in the diluent followed by the electrophoretic deposition to fabricate layers on the surface of a highly biocompatible metal-titanium. Presented study includes an assessment of the physicochemical properties of the material's surface along with an electrochemical evaluation and in vitro biocompatibility, cytotoxicity and apoptosis studies in contact with the murine fibroblasts (L929) in attempt to answer the question how the chemical composition and CNTs distribution in the layer alters the electrical properties of the sample and whether any of these properties have influenced the overall biocompatibility and stimulated adhesion of fibroblasts. The results indicate that higher level of oxidation of CNTs yielded materials more conductive than the metal they are deposited on. In vitro study revealed that both materials were biocompatible and that the cells were not affected by the amount of the functional group and the morphology of the surface they adhered to.
Experimental study on surface properties of the PMMA used in high power spark gaps
NASA Astrophysics Data System (ADS)
Han, Ruoyu; Wu, Jiawei; Ding, Weidong; Liu, Yunfei; Gou, Yang
2017-10-01
This paper studies the surface properties of the Polymethylmethacrylate (PMMA) insulator samples used in high power spark gaps. Experiments on surface morphology, surface profile, surface chemical composition and surface leakage current were performed. Metal particles ejected in tangent direction of discharge spots were researched on the sample surface. Three kinds of distinct bands were found on the surface after 1500 shots: colorless and transparent sinking band, black band, and grey powdered coating band. The thickness of the coating band was tens of microns and the maximum radial erosion rate was about 10 μm/C. Surface content analysis indicated that the powdered coating was a mixture of decomposed insulator material and electrode material oxides. In addition, leakage current significantly depended on water content in the chamber and presented an U-shape curve distribution along the insulator surface, in keeping with the amount of powdered coating due to shock waves. Possible reasons of the surface property changes were discussed. Electroconductive oxides of low valence states of Cu and W produced by the reactions between electrode materials and arc plasmas were considered to be the cause of dielectric performance degradation.
Alternative Fluoropolymers to Avoid the Challenges Associated with Perfluorooctanoic Acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo,J.; Resnick, P.; Efimenko, K.
2008-01-01
The degradation of stain-resistant coating materials leads to the release of biopersistent perfluorooctanoic acid (PFOA) to the environment. In order to find the environmentally friendly substitutes, we have designed and synthesized a series of nonbiopersistant fluorinated polymers containing perfluorobutyl groups in the side chains. The surface properties of the new coating materials were characterized by static and dynamic contact angle measurements. The new coating materials demonstrate promising hydrophobic and oleophobic properties with low surfaces tensions. The wetting properties and surface structure of the polymers were tuned by varying the 'spacer' structures between the polymer backbones and the perfluorinated groups ofmore » the side chains. The relationship between orientations of the fluorinated side chains and performances of polymer surfaces were further investigated by near-edge X-ray fine absorption structure (NEXAFS) experiments and differential scanning calorimetry (DSC).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Gang; Otuonye, Amy N.; Blair, Elizabeth A.
2009-07-15
The adsorption capacity and release properties of mesoporous materials for drug molecules can be improved by functionalizing their surfaces with judiciously chosen organic groups. Functionalized ordered mesoporous materials containing various types of organic groups via a co-condensation synthetic method from 15% organosilane and by post-grafting organosilanes onto a pre-made mesoporous silica were synthesized. Comparative studies of their adsorption and release properties for various model drug molecules were then conducted. Functional groups including 3-aminopropyl, 3-mercaptopropyl, vinyl, and secondary amine groups were used to functionalize the mesoporous materials while rhodamine 6G and ibuprofen were utilized to investigate the materials' relative adsorption andmore » release properties. The self-assembly of the mesoporous materials was carried out in the presence of cetyltrimethylammonium bromide (CTAB) surfactant, which produced MCM-41 type materials with pore diameters of {approx}2.7-3.3 nm and moderate to high surface areas up to {approx}1000 m{sup 2}/g. The different functional groups introduced into the materials dictated their adsorption capacity and release properties. While mercaptopropyl and vinyl functionalized samples showed high adsorption capacity for rhodamine 6G, amine functionalized samples exhibited higher adsorption capacity for ibuprofen. While the diffusional release of ibuprofen was fitted on the Fickian diffusion model, the release of rhodamine 6G followed Super Case-II transport model. - Graphical abstract: The adsorption capacity and release properties of mesoporous materials for various drug molecules are tuned by functionalizing the surfaces of the materials with judiciously chosen organic groups. This work reports comparative studies of the adsorption and release properties of functionalized ordered mesoporous materials containing different hydrophobic and hydrophilic groups that are synthesized via a co-condensation and post-grafting methods for various model drug molecules.« less
1988-09-01
surfaces as components of materials . In particular, we hope to develop the ability to rationalize and predict the macroscooic properties of surfaces...of much of the current research in areas such as materials science, condensed matter and device physics, and polymer physical chemistry. Surface...6 Underlying our program in surface chemistry is a broad interest in the prop- erties of organic surfaces as components of materials . In particular
NASA Astrophysics Data System (ADS)
Rajath, S.; Siddaraju, C.; Nandakishora, Y.; Roy, Sukumar
2018-04-01
The objective of this research is to evaluate certain specific mechanical properties of certain stainless steel wire mesh supported Selective catalytic reduction catalysts structures wherein the physical properties of the metal wire mesh and also its surface treatments played vital role thereby influencing the mechanical properties. As the adhesion between the stainless steel wire mesh and the catalyst material determines the bond strength and the erosion resistance of catalyst structures, surface modifications of the metal- wire mesh structure in order to facilitate the interface bonding is therefore very important to realize enhanced level of mechanical properties. One way to enhance such adhesion properties, the stainless steel wire mesh is treated with the various acids, i.e., chromic acid, phosphoric acid including certain mineral acids and combination of all those in various molar ratios that could generate surface active groups on metal surface that promotes good interface structure between the metal- wire mesh and metal oxide-based catalyst material and then the stainless steel wire mesh is dipped in the glass powder slurry containing some amount of organic binder. As a result of which the said catalyst material adheres to the metal-wire mesh surface more effectively that improves the erosion profile of supported catalysts structure including bond strength.
NASA Astrophysics Data System (ADS)
Bergslien, Elisa; Fountain, John; Giese, Rossman
2004-05-01
Epoxy models have been used as analogs for fractured rock surfaces in many laboratory investigations of multiphase flow processes. However, there is no agreement on how well or poorly such an analog replicates the surface chemistry of geologic materials, nor is there a satisfactory analysis of the surface properties of epoxy. This paper addresses the issue of accurately characterizing the surface chemistry of a typical epoxy used in laboratory multiphase flow studies and comparing that surface to a polystyrene surface and a radio frequency glow discharge treated polystyrene surface. Surface properties were determined using direct contact angle measurements of polar and apolar liquids on flat test samples. The epoxy was determined to have surface properties as follows: γ = 62.3, γLW = 39, γAB = 23.3, γ⊕ = 0, and γ? = 23.3 mJ/m2, where γ is the total surface tension of the solid, γLW is the Lifshitz-van der Waals (LW) surface tension component, γAB is the Lewis acid base (AB) surface tension component, γ? is the electron-donor (negative) parameter, and γ⊕ is the electron-acceptor (positive) parameter. Values of γ? < 27.9 mJ/m2 indicate a hydrophobic surface, which means that epoxy is not a good analog for most geologic materials. This study also explores the use of radio frequency glow discharge plasma to add hydroxyl functionality to polymer surfaces producing a material with alterable surface properties and the same optical and casting properties as epoxy. Using this method, the degree of alteration of the surface chemistry of polymer fracture models can be controlled, allowing the creation of models with a variety of different wettabilities. The resultant models were found to be durable, long lasting, and a potentially very useful alternative to the more typical epoxy models.
Effect of surface etching and electrodeposition of copper on nitinol
NASA Astrophysics Data System (ADS)
Ramos-Moore, E.; Rosenkranz, A.; Matamala, L. F.; Videla, A.; Durán, A.; Ramos-Grez, J.
2017-10-01
Nitinol-based materials are very promising for medical and dental applications since those materials can combine shape memory, corrosion resistance, biocompatibility and antibacterial properties. In particular, surface modifications and coating deposition can be used to tailor and to unify those properties. We report preliminary results on the study of the effect of surface etching and electrodeposition of Copper on Nitinol using optical, chemical and thermal techniques. The results show that surface etching enhances the surface roughness of Nitinol, induces the formation of Copper-based compounds at the Nitinol-Copper interface, reduces the austenitic-martensitic transformations enthalpies and reduces the Copper coating roughness. Further studies are needed in order to highlight the influence of the electrodeposited Copper on the memory shape properties of NiTi.
Investigating the thermophysical properties of indurated materials on Mars
NASA Astrophysics Data System (ADS)
Murphy, Nathaniel William
Indurated materials have been observed on the surface of Mars at every landing site and inferred from orbital remote-sensing data by the Viking, Mars Global Surveyor, and Mars Odyssey spacecraft. However, indurated materials on Mars are poorly understood because there is no ground truth for the indurated surfaces inferred from thermal remote-sensing data. I adopted two approaches to investigate indurated materials on Mars: (1) remote-sensing analysis of the Isidis basin, which shows some of the highest thermal inertia values derived from TES 1 observations, and (2) laboratory analyses of terrestrial indurated materials. To characterize the surface of the Isidis basin, I combined a variety of remote-sensing datasets, including thermal inertia data derived from TES and MO-THEMIS, TES albedo, THEMIS thermal and visible imaging, and Earth-based radar observations. From these observations I concluded that the thermal inertia values in the Isidis basin are likely the result of variations in the degree of cementation of indurated materials. To examine the thermophysical properties of indurated materials I collected four examples of terrestrial indurated materials. These included two types of gypcrete collected from a gypcrete deposit near Upham Hills, NM, clay-materials from Lunar Lake Playa, NV, and a pyroclastic material from the Bandelier Tuff near Los Alamos, NM. Despite significant differences in their physical properties and origins, all of these materials have thermal inertia values consistent with inferred indurated surfaces on Mars. There are no strong correlations between the thermal and physical properties of the collected samples due to thermal effects of the fabrics of the indurated materials. 1 Thermal Emission Spectrometer onboard the Mars Global Surveyor spacecraft. 2 Thermal Emission Imaging System onboard the Mars Odyssey spacecraft
NASA Astrophysics Data System (ADS)
Loftfield, Nina; Kästner, Markus; Reithmeier, Eduard
2018-06-01
Local and global liquid transport properties correlate strongly with the morphology of porous materials. Therefore, by characterizing the porous network information is indirectly gained on the materials properties. Properties like the open-porosity are easily accessible with techniques like mercury porosimetry. However, the 3D image reconstruction, destructive or non-destructive, holds advantages like an accurate spatially resolved representation of the investigated material. Common 3D data acquisition is done by x-ray microtomography or a combination of focused ion beam based milling and scanning electron microscopy. In this work a reconstruction approach similar to the latter one is implemented. The porous network is reconstructed based on an alternating process of milling the surface by fly cutting and measuring the surface data with a confocal laser scanning microscope. This has the benefit of reconstructing the pore network on the basis of surface height data, measuring the structure boundaries directly. The stack of milled surface height data needs to be registered and the pore structure to be segmented. The segmented pore structure is connected throughout each height layer and afterwards meshed. The investigated materials are porous surface coatings of aluminum oxide for the usage in tribological pairings.
Mei, May L.; So, Sam Y. C.; Li, Hao; Chu, Chun-Hung
2015-01-01
This study concerned the effect of heat treatment during setting on the physical properties of four resin-based provisional restorative materials: Duralay (polymethyl methacrylate), Trim II (polyethyl methacrylate), Luxatemp (bis-acrylic composite), and Protemp 4 (bis-acrylic composite). Specimens were prepared at 23, 37, or 60 °C for evaluation of flexural strength, surface roughness, color change and marginal discrepancy. Flexural strength was determined by a three-point bending test. Surface profile was studied using atomic force microscopy. Color change was evaluated by comparing the color of the materials before and after placement in coffee. A travelling microscope helped prepare standardized crowns for assessment of marginal discrepancy. Flexural strength of all tested materials cured at 23 °C or 37 °C did not significantly change. The surface roughness and marginal discrepancy of the materials increased at 60 °C curing temperature. Marginal discrepancies, color stability, and other physical properties of materials cured at 23 °C or 37 °C did not significantly change. Flexural strength of certain provisional materials cured at 60 °C increased, but there was also an increase in surface roughness and marginal discrepancy. PMID:28788031
NASA Technical Reports Server (NTRS)
Birkebak, R. C.
1974-01-01
The successful landings on the moon of the Apollo flights and the return of samples of lunar surface material has permitted the measurement of the thermophysical properties necessary for heat transfer calculations. The characteristics of the Apollo samples are discussed along with remote sensing results which made it possible to deduce many of the thermophysical properties of the lunar surface. Definitions considered in connection with thermal radiation measurements include the bond albedo, the geometric albedo, the normal albedo, the directional reflectance, the bidirectional reflectance, and the directional emittance. The measurement techniques make use of a directional reflectance apparatus, a bidirectional reflectance apparatus, and a spectral emittance apparatus.
Atmospheric-Pressure Plasma Jet Surface Treatment for Use in Improving Adhesion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuettner, Lindsey Ann
Atmospheric-pressure plasma jets (APPJs) are a method of plasma treatment that plays an important role in material processing and modifying surface properties of materials, especially polymers. Gas plasmas react with polymer surfaces in numerous ways such as oxidation, radical formation, degradation, and promotion of cross-linking. Because of this, gas and plasma conditions can be explored for chosen processes to maximize desired properties. The purpose of this study is to investigate plasma parameters in order to modify surface properties for improved adhesion between aluminum and epoxy substrates using two types of adhesives. The background, results to date, and future work willmore » be discussed.« less
The role of the micro environment on the tribological behavior of materials
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1980-01-01
The paper reviews studies of the role of the microenvironment in the adhesion, friction, and wear behavior of materials in solid-state contact. The microenvironment is defined as the environment on the surface of solids in solid-state contact. Properties of the environment are discussed which exert an influence on the adhesion, friction, wear, and lubrication of materials in contact. The effect of the environment on lubricants and their properties is considered with respect to the interaction of lubricants with material surfaces in contact; the effect on the ability of lubricants to provide protective surface films is also considered. It is concluded that naturally occurring oxides are probably the best available natural solid-film lubricants.
Computational design of surfaces, nanostructures and optoelectronic materials
NASA Astrophysics Data System (ADS)
Choudhary, Kamal
Properties of engineering materials are generally influenced by defects such as point defects (vacancies, interstitials, substitutional defects), line defects (dislocations), planar defects (grain boundaries, free surfaces/nanostructures, interfaces, stacking faults) and volume defects (voids). Classical physics based molecular dynamics and quantum physics based density functional theory can be useful in designing materials with controlled defect properties. In this thesis, empirical potential based molecular dynamics was used to study the surface modification of polymers due to energetic polyatomic ion, thermodynamics and mechanics of metal-ceramic interfaces and nanostructures, while density functional theory was used to screen substituents in optoelectronic materials. Firstly, polyatomic ion-beams were deposited on polymer surfaces and the resulting chemical modifications of the surface were examined. In particular, S, SC and SH were deposited on amorphous polystyrene (PS), and C2H, CH3, and C3H5 were deposited on amorphous poly (methyl methacrylate) (PMMA) using molecular dynamics simulations with classical reactive empirical many-body (REBO) potentials. The objective of this work was to elucidate the mechanisms by which the polymer surface modification took place. The results of the work could be used in tailoring the incident energy and/or constituents of ion beam for obtaining a particular chemistry inside the polymer surface. Secondly, a new Al-O-N empirical potential was developed within the charge optimized many body (COMB) formalism. This potential was then used to examine the thermodynamic stability of interfaces and mechanical properties of nanostructures composed of aluminum, its oxide and its nitride. The potentials were tested for these materials based on surface energies, defect energies, bulk phase stability, the mechanical properties of the most stable bulk phase, its phonon properties as well as with a genetic algorithm based evolution theory of the materials to ensure that no spurious phases had a lower cohesive energy. Thirdly, lanthanide doped and co-doped Y3Al5O 12 were examined using density functional theory (DFT) with semi-local and local functional. Theoretical results were compared and validated with experimental data and new co-doped materials with high efficiency were predicted. Finally, Transition element doped CH3NH3PbI3 were studied with DFT for validation of the model with experimental data and replacement materials for toxic Pb were predicted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullin, I.Sh.; Bragin, V.E.; Bykanov, A.N.
Gas discharge plasma modification of polymer materials and metals is one of the known physical approaches for improving of materials biocompatibility in ophthalmology and surgery. The surface treatment in RF discharges can be effectively realized in the discharge afterglow and in the discharge region itself too. This modification method is more convenient and produces more uniform surfaces in comparison with other discharge types. The carried out experiments and published up to now results show that interaction of UV radiation, fluxes of ions, electrons and metastable particles with material`s surface changes chemical composition and surface structure. The exerting of these agentsmore » on the sample surface produces the following effects. There are processes of physical and plasma-chemical surface etching producing effective surface cleaning of different types of contaminations. It may be surface contaminations by hydrocarbons because of preliminary surface contacts with biological or physical bodies. It may be surface contaminations caused by characteristic properties of chemical technology too. There is a surface layer with thickness from some angstroms up to few hundreds of angstroms. The chemical content and structure of this layer is distinguished from the bulk polymer properties. The presence of such {open_quotes}technological{close_quotes} contaminations produces the layer of material substantially differing from the base polymer. The basic layer physical and chemical properties for example, gas permeation rate may substantially differ from the base polymer. Attempts to clean the surface from these contaminations by chemical methods (solutions) have not been successful and produced contaminations of more deep polymer layers. So the plasma cleaning is the most profitable method of polymer treatment for removing the surface contaminations. The improving of wettability occurs during this stage of treatment.« less
Using surfaces, ligands, and dimensionality to obtain desired nanostructure properties
NASA Astrophysics Data System (ADS)
Nagpal, Prashant; Singh, Vivek; Ding, Yuchen
2014-03-01
Nanostructured materials are intensively investigated to obtain material properties different from their bulk counterparts. It has been demonstrated that nanoscaled semiconductor can have interesting size, shape and morphology dependent optoelectronic properties. But the effect of surfaces, ligands and dimensionality (0D quantum dots to 2D nanosheets) has been largely unexplored. Here, we will show how tuning the surface and dimensionality can affect the electronic states of the semiconductor, and how these states can play an important role in their fundamental photophysical properties or thermal transport. Using the specific case for silicon, we will show how ``new'' surface states in small uniform can lead to light absorption/emission without phonon assistance, while hindering the phonon-drag of charge carriers leading to low Seebeck coefficient for thermoelectric applications. These measurements will shed light on designing appropriate surface, size, and dimensionality for desired applications of nanostructured films.
NASA Technical Reports Server (NTRS)
Jordan, Kelvin; Clinton, Raymond; Jeelani, Shaik
1989-01-01
The effects of moisture and surface finish on the mechanical and physical properties of the interfacial bond between the carbon/phenolic (C/P) and glass/phenolic (G/P) composite materials are presented. Four flat panel laminates were fabricated using the C/P and G/P materials. Of the four laminates, one panel was fabricated in which the C/P and G/P materials were cured simultaneously. It was identified as the cocure. The remaining laminates were processed with an initial simultaneous cure of the three C/P billets. Two surface finishes, one on each half, were applied to the top surface. Prior to the application and cure of the G/P material to the machined surface of the three C/P panels, each was subjected to the specific environmental conditioning. Types of conditioning included: (1) nominal fabrication environment, (2) a prescribed drying cycle, and (3) a total immersion in water at 160 F. Physical property tests were performed on specimens removed from the C/P materials of each laminate for determination of the specific gravity, residual volatiles and and resin content. Comparisons of results with shuttle solid rocket motor (SRM) nozzle material specifications verified that the materials used in fabricating the laminates met acceptance criteria and were representative of SRM nozzle materials. Mechanical property tests were performed at room temperature on specimens removed from the G/P, the C/P and the interface between the two materials for each laminate. The double-notched shear strength test was used to determine the ultimate interlaminar shear strength. Results indicate no appreciable difference in the C/P material of the four laminates with the exception of the cocure laminate, where 20 percent reduction in the strength was observed. The most significant effect and the ultimate strength was significantly reduced in the wet material. No appreciable variation was noted between the surface finishes in the wet laminate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haker, C.D.; Rix, G.J.; Lai, C.G.
The seismic stability of municipal solid waste (MSW) landfills is often a significant consideration in landfill design. However, until recently, the dynamic properties of the waste material itself, which govern the seismic response of MSW landfills, have often been approximated or assumed. Tests to determine the dynamic properties of the material directly have been limited. Measurements of seismic surface waves were used to determine the dynamic properties of MSW, which are the initial tangent shear modulus and low-strain hysteretic damping ratio. Surface wave tests were performed at three MSW landfills to determine their shear modulus and damping ratio profiles. Surfacemore » wave tests are ideal for measuring the near-surface shear modulus and damping profiles of MSW landfills because the tests are non-invasive, an advantage for testing environmentally sensitive waste material. Factors which influence the dynamic properties of waste including density, confinement, age, and placement techniques are used to interpret the measured shear modulus and damping ratio profiles.« less
Laser surface texturing of polymers for biomedical applications
NASA Astrophysics Data System (ADS)
Riveiro, Antonio; Maçon, Anthony L. B.; del Val, Jesus; Comesaña, Rafael; Pou, Juan
2018-02-01
Polymers are materials widely used in biomedical science because of their biocompatibility, and good mechanical properties (which, in some cases, are similar to those of human tissues); however, these materials are, in general, chemically and biologically inert. Surface characteristics, such as topography (at the macro-, micro, and nanoscale), surface chemistry, surface energy, charge or wettability are interrelated properties, and they cooperatively influence the biological performance of materials when used for biomedical applications. They regulate the biological response at the implant/tissue interface (e.g., influencing the cell adhesion, cell orientation, cell motility, etc.). Several surface processing techniques have been explored to modulate these properties for biomedical applications. Despite their potentials, these methods have limitations that prevent their applicability. In this regard, laser-based methods, in particular laser surface texturing (LST), can be an interesting alternative. Different works have showed the potentiality of this technique to control the surface properties of biomedical polymers and enhance their biological performance; however, more research is needed to obtain the desired biological response. This work provides a general overview of the basics and applications of LST for the surface modification of polymers currently used in the clinical practice (e.g. PEEK, UHMWPE, PP, etc.). The modification of roughness, wettability, and their impact on the biological response is addressed to offer new insights on the surface modification of biomedical polymers.
NASA Astrophysics Data System (ADS)
Barsbay, Murat; Güven, Olgun
2009-12-01
Surface grafting of polymeric materials is attracting increasing attention as it enables the preparation of new materials from known and commercially available polymers having desirable bulk properties such as thermal stability, elasticity, permeability, etc., in conjunction with advantageous newly tailored surface properties such as biocompatibility, biomimicry, adhesion, etc. Ionizing radiation, particularly γ radiation is one of the most powerful tools for preparing graft copolymers as it generates radicals on most substrates. With the advent of living free-radical polymerization techniques, application of γ radiation has been extended to a new era of grafting; grafting in a controlled manner to achieve surfaces with tailored and well-defined properties. This report presents the current use of γ radiation in living free-radical polymerization and highlights the use of both techniques together as a combination to present an advance in the ability to prepare surfaces with desired, tunable and well-defined properties.
Why the dish makes a difference: quantitative comparison of polystyrene culture surfaces.
Zeiger, Adam S; Hinton, Benjamin; Van Vliet, Krystyn J
2013-07-01
There is wide anecdotal recognition that biological cell viability and behavior can vary significantly as a function of the source of commercial tissue culture polystyrene (TCPS) culture vessels to which those cells adhere. However, this marked material dependency is typically resolved by selecting and then consistently using the same manufacturer's product - following protocol - rather than by investigating the material properties that may be responsible for such experimental variation. Here, we quantified several physical properties of TCPS surfaces obtained from a wide range of commercial sources and processing steps, through the use of atomic force microscopy (AFM)-based imaging and analysis, goniometry and protein adsorption quantification. We identify qualitative differences in surface features, as well as quantitative differences in surface roughness and wettability that cannot be attributed solely to differences in surface chemistry. We also find significant differences in cell morphology and proliferation among cells cultured on different TCPS surfaces, and resolve a correlation between nanoscale surface roughness and cell proliferation rate for both cell types considered. Interestingly, AFM images of living adherent cells on these nanotextured surfaces demonstrate direct interactions between cellular protrusions and topographically distinct features. These results illustrate and quantify the significant differences in material surface properties among these ubiquitous materials, allowing us to better understand why the dish can make a difference in biological experiments. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Chen, Hong; Yang, Jintao; Xiao, Shengwei; Hu, Rundong; Bhaway, Sarang M; Vogt, Bryan D; Zhang, Mingzhen; Chen, Qiang; Ma, Jie; Chang, Yung; Li, Lingyan; Zheng, Jie
2016-08-01
Development of smart regenerative surface is a highly challenging but important task for many scientific and industrial applications. Specifically, very limited research efforts were made for surface regeneration between bio-adhesion and antifouling properties, because bioadhesion and antifouling are the two highly desirable but completely opposite properties of materials. Herein, we developed salt-responsive polymer brushes of poly(3-(1-(4-vinylbenzyl)-1H-imidazol-3-ium-3-yl) propane-1-sulfonate) (polyVBIPS), which can be switched reversibly and repeatedly between protein capture/release and surface wettability in a controllable manner. PolyVBIPS brush has demonstrated its switching ability to resist both protein adsorption from 100% blood plasma/serum and bacterial attachment in multiple cycles. PolyVBIPS brush also exhibits reversible surface wettability from ∼40° to 25° between in PBS and in 1M NaCl solutions in multiple cycles. Overall, the salt-responsive behaviors of polyVBIPS brushes can be interpreted by the "anti-polyelectrolyte effect", i.e. polyVBIPS brushes adopt a collapsed chain conformation at low ionic strengths to achieve surface adhesive, but an extended chain conformation at high ionic strength to realize antifouling properties. We expect that polyVBIPS will provide a simple, robust, and promising system for the fabrication of smart surfaces with biocompatible, reliable, and regenerative properties. Unlike many materials with "one-time switching" capability for surface regeneration, we developed a new regenerative surface of zwitterionic polymer brush, which exhibits a reversible salt-induced switching property between a biomolecule-adhesive state and a biomolecule repellent state in complex media for multiple cycles. PolyVBIPS is easily synthesized and can be straightforward coated on the surface, which provides a simple, robust, and promising system for the fabrication of smart surfaces with biocompatible, reliable, regenerative properties. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Huang, Lu; Tian, Mengkun; Wu, Dong; ...
2017-11-24
In this paper, a new materials platform, utilizing the amorphous microstructure of bulk metallic glasses (BMGs) and the versatility of ion implantation, was developed for the fundamental investigation of cell responses to substrate-rigidity variations in the gigapascal modulus range, which was previously unattainable with polymeric materials. The surface rigidity of a Zr-Al- Ni-Cu-Y BMG was modulated with low-energy Ar-ion implantation owing to the impartment of Ar nanobubbles into the amorphous matrix. Surface softening was achieved due to the formation of nanobubble-doped transitional zones in the Zrbased BMG substrate. Bone-forming cell studies on this newly designed platform demonstrated that mechanical cues,more » accompanied with the potential effects of other surface properties (i.e. roughness, morphology, and chemistry), contributed to modulating cell behaviors. Cell adhesion and actin filaments were found to be less established on less stiff surfaces, especially on the surface with an elastic modulus of 51 GPa. Cell growth appeared to be affected by surface mechanical properties. A lower stiffness was generally related to a higher growth rate. Findings in this study broadened our fundamental understanding concerning the mechanosensing of bone cells on stiff substrates. It also suggests that surface mechano-engineering of metallic materials could be a potential strategy to promote osseointegration of such materials for bone-implant applications. Further investigations are proposed to fine tune the ion implantation variables in order to further distinguish the surface-mechanical effect on bone-forming cell activities from the contributions of other surface properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lu; Tian, Mengkun; Wu, Dong
In this paper, a new materials platform, utilizing the amorphous microstructure of bulk metallic glasses (BMGs) and the versatility of ion implantation, was developed for the fundamental investigation of cell responses to substrate-rigidity variations in the gigapascal modulus range, which was previously unattainable with polymeric materials. The surface rigidity of a Zr-Al- Ni-Cu-Y BMG was modulated with low-energy Ar-ion implantation owing to the impartment of Ar nanobubbles into the amorphous matrix. Surface softening was achieved due to the formation of nanobubble-doped transitional zones in the Zrbased BMG substrate. Bone-forming cell studies on this newly designed platform demonstrated that mechanical cues,more » accompanied with the potential effects of other surface properties (i.e. roughness, morphology, and chemistry), contributed to modulating cell behaviors. Cell adhesion and actin filaments were found to be less established on less stiff surfaces, especially on the surface with an elastic modulus of 51 GPa. Cell growth appeared to be affected by surface mechanical properties. A lower stiffness was generally related to a higher growth rate. Findings in this study broadened our fundamental understanding concerning the mechanosensing of bone cells on stiff substrates. It also suggests that surface mechano-engineering of metallic materials could be a potential strategy to promote osseointegration of such materials for bone-implant applications. Further investigations are proposed to fine tune the ion implantation variables in order to further distinguish the surface-mechanical effect on bone-forming cell activities from the contributions of other surface properties.« less
Characterization of surface active materials derived from farm products
USDA-ARS?s Scientific Manuscript database
Surface active materials obtained by chemical modification of plant protein isolates (lupin, barley, oat), corn starches (dextrin, normal, high amylose, and waxy) and soybean oil (soybean oil based polysoaps, SOPS) were investigated for their surface and interfacial properties using axisymmetric dro...
Plasma assisted surface treatments of biomaterials.
Minati, L; Migliaresi, C; Lunelli, L; Viero, G; Dalla Serra, M; Speranza, G
2017-10-01
The biocompatibility of an implant depends upon the material it is composed of, in addition to the prosthetic device's morphology, mechanical and surface properties. Properties as porosity and pore size should allow, when required, cells penetration and proliferation. Stiffness and strength, that depend on the bulk characteristics of the material, should match the mechanical requirements of the prosthetic applications. Surface properties should allow integration in the surrounding tissues by activating proper communication pathways with the surrounding cells. Bulk and surface properties are not interconnected, and for instance a bone prosthesis could possess the necessary stiffness and strength for the application omitting out prerequisite surface properties essential for the osteointegration. In this case, surface treatment is mandatory and can be accomplished using various techniques such as applying coatings to the prosthesis, ion beams, chemical grafting or modification, low temperature plasma, or a combination of the aforementioned. Low temperature plasma-based techniques have gained increasing consensus for the surface modification of biomaterials for being effective and competitive compared to other ways to introduce surface functionalities. In this paper we review plasma processing techniques and describe potentialities and applications of plasma to tailor the interface of biomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.
Engineered Multifunctional Surfaces for Fluid Handling
NASA Technical Reports Server (NTRS)
Thomas, Chris; Ma, Yonghui; Weislogel, Mark
2012-01-01
Designs incorporating variations in capillary geometry and hydrophilic and/or antibacterial surface properties have been developed that are capable of passive gas/liquid separation and passive water flow. These designs can incorporate capillary grooves and/or surfaces arranged to create linear and circumferential capillary geometry at the micro and macro scale, radial fin configurations, micro holes and patterns, and combinations of the above. The antibacterial property of this design inhibits the growth of bacteria or the development of biofilm. The hydrophilic property reduces the water contact angle with a treated substrate such that water spreads into a thin layer atop the treated surface. These antibacterial and hydrophilic properties applied to a thermally conductive surface, combined with capillary geometry, create a novel heat exchanger capable of condensing water from a humid, two-phase water and gas flow onto the treated heat exchanger surfaces, and passively separating the condensed water from the gas flow in a reduced gravity application. The overall process to generate the antibacterial and hydrophilic properties includes multiple steps to generate the two different surface properties, and can be divided into two major steps. Step 1 uses a magnetron-based sputtering technique to implant the silver atoms into the base material. A layer of silver is built up on top of the base material. Completion of this step provides the antibacterial property. Step 2 uses a cold-plasma technique to generate the hydrophilic surface property on top of the silver layer generated in Step 1. Completion of this step provides the hydrophilic property in addition to the antibacterial property. Thermally conductive materials are fabricated and then treated to create the antibacterial and hydrophilic surface properties. The individual parts are assembled to create a condensing heat exchanger with antibacterial and hydrophilic surface properties and capillary geometry, which is capable of passive phase separation in a reduced gravity application. The plasma processes for creating antibacterial and hydrophilic surface properties are suitable for applications where water is present on an exposed surface for an extended time, such that bacteria or biofilms could form, and where there is a need to manage the water on the surface. The processes are also suitable for applications where only the hydrophilic property is needed. In particular, the processes are applicable to condensing heat exchangers (CHXs), which benefit from the antibacterial properties as well as the hydrophilic properties. Water condensing onto the control surfaces of the CHX will provide the moist conditions necessary for the growth of bacteria and the formation of biofilms. The antibacterial properties of the base layer (silver) will mitigate and prevent the growth of bacteria and formation of biofilms that would otherwise reduce the CHX performance. In addition, the hydrophilic properties reduce the water contact angle and prevent water droplets from bridging between control surfaces. Overall, the hydrophilic properties reduce the pressure drop across the CHX.
Surface properties of ancient cratered terrain in the northern hemisphere of Mars
NASA Technical Reports Server (NTRS)
Zimbelman, J. R.; Greeley, R.
1982-01-01
Viking high resolution IR data is used in an examination of the hilly and cratered material of Scott and Carr (1978), supposed to be the oldest extensively exposed surface on Mars. Measured nighttime temperatures at 11 and 20 microns indicate inertia blocks, surrounded by lower thermal inertia soil. Geologic features crossed by the Viking data generally show no difference from the regional properties. Imaging data from within and around the Arabia low thermal inertia region indicate that subdued surface morphology is not always associated with low thermal inertias. The mantling of ancient northern hemisphere cratered terrain by fine grained material does not allow thermal measurements to be directly related to rock unit properties, but less mantling may be present in southern hemisphere locations of this material.
NASA Astrophysics Data System (ADS)
Yang, Cheng
2007-12-01
This thesis presents the research achievements on the design, preparation, characterization, and analysis of a series of composite materials. By studying the interface interaction of the composite materials using nanotechnology, we developed composite materials that achieve satisfactory mechanical properties in two classes of materials. Durable press (DP) natural textiles are important consumer products usually achieved by erosslinking the molecules in the textiles to achieve long-term wrinkle resistance, which, however, also leads to the simultaneous significant drop of mechanical properties. Herein, a series of polymeric nanoparticl es were investigated, the application of as little as ˜0.14 wt% addition of the nanoparticles improved the mechanical property of the DP cotton fabric by 56% in tearing resistance and 100% in abrasion resistance; the loss in recovery angle is negligible. The author also studied the enzyme-triggered DP treatments of silk fabrics, as a green process method. After the treatment of enzymes, excellent DP property was achieved with improved strain property. Injectable calcium phosphate powder containing acrylic bone cements are widely used in orthopedic surgery to fix artificial prostheses. However, the bending strength is still unsatisfactory. The author modified the surface of the strontium (Sr) containing hydroxyapatite (HA) filler powders with acrylolpamidronate in order to improve the overall mechanical performance of the bone cement composites. By adding 0.25 wt% of acrylolpamidronate to the Sr-HA nanopowders, more than 19% of the bending strength and more than 23% compression strength of the Sr-HA bone cement were improved. Biological evaluations revealed that these bone cement composites were biocompatible and bioactive in cell culture. The results obtained in this thesis work show an effective method to significantly enhance the mechanical properties of composite materials. Different from other available methods, by developing a new series of chemical compounds and nanoparticles, we successfully bound them to the surface or to the constitutional components of the materials through covalent bond. The treatment can enhance and modulate the interface-bonding of the filler materials and enhances the mechanical property of the surface through grafting a thin nano-layer. Since only surface reaction is involved, very small amount of the new material is needed, and the treatment can be readily integrated to the existing processes. The work is instructive in modifying available composite materials to acquire ultra-high mechanical performance.
Lunar soil properties and soil mechanics
NASA Technical Reports Server (NTRS)
Mitchell, J. K.; Houston, W. N.
1974-01-01
The long-range objectives were to develop methods of experimentation and analysis for the determination of the physical properties and engineering behavior of lunar surface materials under in situ environmental conditions. Data for this purpose were obtained from on-site manned investigations, orbiting and softlanded spacecraft, and terrestrial simulation studies. Knowledge of lunar surface material properties are reported for the development of models for several types of lunar studies and for the investigation of lunar processes. The results have direct engineering application for manned missions to the moon.
NASA Technical Reports Server (NTRS)
Yon, S. A.; Pieters, C. M.
1988-01-01
The nature of the interactions of visible and NIR radiation with the surfaces of rock and mineral samples was investigated by measuring the reflectance and the polarization properties of scattered and reflected light for slab samples of obsidian and fine-grained basalt, prepared to controlled surface roughness. It is shown that the degree to which radiation can penetrate a surface and then scatter back out, an essential criterion for mineralogic determinations based on reflectance spectra, depends not only upon the composition of the material, but also on its physical condition such as sample grain size and surface roughness. Comparison of the experimentally measured reflectance and polarization from smooth and rough slab materials with the predicted models indicates that single Fresnel reflections are responsible for the largest part of the reflected intensity resulting from interactions with the surfaces of dielectric materials; multiple Fresnel reflections are much less important for such surfaces.
Milling induced amorphisation and recrystallization of α-lactose monohydrate.
Badal Tejedor, Maria; Pazesh, Samaneh; Nordgren, Niklas; Schuleit, Michael; Rutland, Mark W; Alderborn, Göran; Millqvist-Fureby, Anna
2018-02-15
Preprocessing of pharmaceutical powders is a common procedure to condition the materials for a better manufacturing performance. However, such operations may induce undesired material properties modifications when conditioning particle size through milling, for example. Modification of both surface and bulk material structure will change the material properties, thus affecting the processability of the powder. Hence it is essential to control the material transformations that occur during milling. Topographical and mechanical changes in surface properties can be a preliminary indication of further material transformations. Therefore a surface evaluation of the α-lactose monohydrate after short and prolonged milling times has been performed. Unprocessed α-lactose monohydrate and spray dried lactose were evaluated in parallel to the milled samples as reference examples of the crystalline and amorphous lactose structure. Morphological differences between unprocessed α-lactose, 1 h and 20 h milled lactose and spray dried lactose were detected from SEM and AFM images. Additionally, AFM was used to simultaneously characterize particle surface amorphicity by measuring energy dissipation. Extensive surface amorphicity was detected after 1 h of milling while prolonged milling times showed only a moderate particle surface amorphisation. Bulk material characterization performed with DSC indicated a partial amorphicity for the 1 h milled lactose and a fully amorphous thermal profile for the 20 h milled lactose. The temperature profiles however, were shifted somewhat in the comparison to the amorphous reference, particularly after extended milling, suggesting a different amorphous state compared to the spray-dried material. Water loss during milling was measured with TGA, showing lower water content for the lactose amorphized through milling compared to spray dried amorphous lactose. The combined results suggest a surface-bulk propagation of the amorphicity during milling in combination with a different amorphous structural conformation to that of the amorphous spray dried lactose. The hardened surface may be due to either surface crystallization of lactose or to formation of a low-water glass transition. Copyright © 2017 Elsevier B.V. All rights reserved.
Laser modification of macroscopic properties of metal surface layer
NASA Astrophysics Data System (ADS)
Kostrubiec, Franciszek
1995-03-01
Surface laser treatment of metals comprises a number of diversified technological operations out of which the following can be considered the most common: oxidation and rendering surfaces amorphous, surface hardening of steel, modification of selected physical properties of metal surface layers. In the paper basic results of laser treatment of a group of metals used as base materials for electric contacts have been presented. The aim of the study was to test the usability of laser treatment from the viewpoint of requirements imposed on materials for electric contacts. The results presented in the paper refer to two different surface treatment technologies: (1) modification of infusible metal surface layer: tungsten and molybdenum through laser fusing of their surface layer and its crystallization, and (2) modification of surface layer properties of other metals through laser doping of their surface layer with foreign elements. In the paper a number of results of experimental investigations obtained by the team under the author's supervision are presented.
NASA Astrophysics Data System (ADS)
Nyaguly, E.; Craştiu, I.; Deac, S.; Gozman-Pop, C.; Drăgănescu, G.; Bereteu, L.
2018-01-01
Most of the surface coatings are based on the synthetic polymers, which are substances composed from very large molecules that form tough, flexible, adhesive films when applied to surfaces. The other components of surface coverings materials are pigments that provide colour, opacity, gloss and other properties. Surface coatings are two-phase composite materials: constitute a polymer matrix on the one side, and on the other side of the pigments and additives dispersed in the matrix. Their role is not only aesthetically but also to ensure anticorrosive protection or even improve some mechanical properties of coated surfaces. In this paper it will follow, starting from the mechanical properties of the substrate, the metallic sheet in general, to determine the new properties of the assembly of substrate and the two coating layers, also the determination of mechanical properties of the layers. From the analysis of vibroacoustic signals obtained by the impulse excitation of the sample, one can determine the elasticity modulus. These results come to validate the results based on finite element analysis (FEA) of the same samples.
(Bio)hybrid materials based on optically active particles
NASA Astrophysics Data System (ADS)
Reitzig, Manuela; Härtling, Thomas; Opitz, Jörg
2014-03-01
In this contribution we provide an overview of current investigations on optically active particles (nanodiamonds, upconversion phospors) for biohybrid and sensing applications. Due to their outstanding properties nanodiamonds gain attention in various application elds such as microelectronics, optical monitoring, medicine, and biotechnology. Beyond the typical diamond properties such as high thermal conductivity and extreme hardness, the carbon surface and its various functional groups enable diverse chemical and biological surface functionalization. At Fraunhofer IKTS-MD we develop a customization of material surfaces via integration of chemically modi ed nanodiamonds at variable surfaces, e.g bone implants and pipelines. For the rst purpose, nanodiamonds are covalently modi ed at their surface with amino or phosphate functionalities that are known to increase adhesion to bone or titanium alloys. The second type of surface is approached via mechanical implementation into coatings. Besides nanodiamonds, we also investigate the properties of upconversion phosphors. In our contribution we show how upconversion phosphors are used to verify sterilization processes via a change of optical properties due to sterilizing electron beam exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafrir, S.N.; Lambropoulos, J.C.; Jacobs, S.D.
2007-03-23
Surface features of tungsten carbide composites processed by bound abrasive deterministic microgrinding and magnetorheological finishing (MRF) were studied for five WC-Ni composites, including one binderless material. All the materials studied were nonmagnetic with different microstructures and mechanical properties. White-light interferometry, scanning electron microscopy, and atomic force microscopy were used to characterize the surfaces after various grinding steps, surface etching, and MRF spot-taking.
Lunar and Planetary Science XXXV: Mars: Surface Coatings, Mineralogy, and Surface Properties
NASA Technical Reports Server (NTRS)
2004-01-01
The session "Mars: Surface Coatings, Mineralogy, and Surface Properties" contained the following reports:High-Silica Rock Coatings: TES Surface-Type 2 and Chemical Weathering on Mars; Old Desert Varnish-like Coatings and Young Breccias at the Mars Pathfinder Landing Site; Analyses of IR-Stealthy and Coated Surface Materials: A Comparison of LIBS and Reflectance Spectra and Their Application to Mars Surface Exploration; Contrasting Interpretations of TES Spectra of the 2003 Rover:Opportunity-Landing Site: Hematite Coatings and Gray Hematite; A New Hematite Formation Mechanism for Mars; Geomorphic and Diagenetic Analogs to Hematite Regions on Mars: Examples from Jurassic Sandstones of Southern Utah, USA; The Geologic Record of Early Mars: A Layered, Cratered, and "Valley-"ed: Volume; A Simple Approach to Estimating Surface Emissivity with THEMIS; A Large Scale Topographic Correction for THEMIS Data; Thermophysical Properties of Meridiani Planum, Mars; Thermophysical and Spectral Properties of Gusev, the MER-Spirit Landing Site on Mars; Determining Water Content of Geologic Materials Using Reflectance Spectroscopy; and Global Mapping of Martian Bound Water at 6.1 Microns Based on TES Data: Seasonal Hydration.
Yarce, Cristhian J.; Echeverri, Juan D.; Palacio, Mario A.; Rivera, Carlos A.; Salamanca, Constain H.
2017-01-01
This work is the continuation of a study focused on establishing relations between surface thermodynamic properties and in vitro release mechanisms using a model drug (ampicillin trihydrate), besides analyzing the granulometric properties of new polymeric materials and thus establishing the potential to be used in the pharmaceutical field as modified delivery excipients. To do this, we used copolymeric materials derived from maleic anhydride with decreasing polarity corresponding to poly(isobutylene-alt-maleic acid) (hydrophilic), sodium salt of poly(maleic acid-alt-octadecene) (amphiphilic), poly(maleic anhydride-alt-octadecene) (hydrophobic) and the reference polymer hydroxyl-propyl-methyl-cellulose (HPMC). Each material alone and in blends underwent spectroscopic characterization by FTIR, thermal characterization by DSC and granulometric characterization using flow and compaction tests. Each tablet was prepared at different polymer ratios of 0%, 10%, 20%, 30% and 40%, and the surface properties were determined, including the roughness by micro-visualization, contact angle and water absorption rate by the sessile drop method and obtaining Wadh and surface free energy (SFE) using the semi-empirical models of Young–Dupré and Owens-Wendt-Rabel-Käelbe (OWRK), respectively. Dissolution profiles were determined simulating physiological conditions in vitro, where the kinetic models of order-zero, order-one, Higuchi and Korsmeyer–Peppas were evaluated. The results showed a strong relationship between the proportion and nature of the polymer to the surface thermodynamic properties and kinetic release mechanism. PMID:28125020
Zwitterionic materials for antifouling membrane surface construction.
He, Mingrui; Gao, Kang; Zhou, Linjie; Jiao, Zhiwei; Wu, Mengyuan; Cao, Jialin; You, Xinda; Cai, Ziyi; Su, Yanlei; Jiang, Zhongyi
2016-08-01
Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with equivalent positive and negative charged groups, are well known for their superior antifouling properties and have been broadly utilized to construct antifouling surfaces for medical devices, biosensors and marine coatings applications. In recent years, zwitterionic materials have been more and more frequently utilized for constructing antifouling membrane surfaces. In this review, the antifouling mechanisms of zwitterionic materials as well as their biomimetic prototypes in cell membranes will be discussed, followed by the survey of common approaches to incorporate zwitterionic materials onto membrane surfaces including surface grafting, surface segregation, biomimetic adhesion, surface coating and so on. The potential applications of these antifouling membranes are also embedded. Finally, we will present a brief perspective on the future development of zwitterionic materials modified antifouling membranes. Membrane fouling is a severe problem hampering the application of membrane separation technology. The properties of membrane surfaces play a critical role in membrane fouling and antifouling behavior/performance. Antifouling membrane surface construction has evolved as a hot research issue for the development of membrane processes. Zwitterionic modification of membrane surfaces has been recognized as an effective strategy to resist membrane fouling. This review summarizes the antifouling mechanisms of zwitterionic materials inspired by cell membranes as well as the popular approaches to incorporate them onto membrane surfaces. It can help form a comprehensive knowledge about the principles and methods of modifying membrane surfaces with zwitterionic materials. Finally, we propose the possible future research directions of zwitterionic materials modified antifouling membranes. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Plasma technologies application for building materials surface modification
NASA Astrophysics Data System (ADS)
Volokitin, G. G.; Skripnikova, N. K.; Volokitin, O. G.; Shehovtzov, V. V.; Luchkin, A. G.; Kashapov, N. F.
2016-01-01
Low temperature arc plasma was used to process building surface materials, such as silicate brick, sand lime brick, concrete and wood. It was shown that building surface materials modification with low temperature plasma positively affects frost resistance, water permeability and chemical resistance with high adhesion strength. Short time plasma processing is rather economical than traditional processing thermic methods. Plasma processing makes wood surface uniquely waterproof and gives high operational properties, dimensional and geometrical stability. It also increases compression resistance and decreases inner tensions level in material.
Surface dynamics of amorphous polymers used for high-voltage insulators.
Shemella, Philip T; Laino, Teodoro; Fritz, Oliver; Curioni, Alessandro
2011-11-24
Amorphous siloxane polymers are the backbone of high-voltage insulation materials. The natural hydrophobicity of their surface is a necessary property for avoiding leakage currents and dielectric breakdown. As these surfaces are exposed to the environment, electrical discharges or strong mechanical impact can temporarily destroy their water-repellent properties. After such events, however, a self-healing process sets in and restores the original hydrophobicity within some hours. In the present study, we investigate possible mechanisms of this restoration process. Using large-scale, all-atom molecular dynamics simulations, we show that molecules on the material surface have augmented motion that allows them to rearrange with a net polarization. The overall surface region has a net orientation that contributes to hydrophobicity, and charged groups that are placed at the surface migrate inward, away from the vacuum interface and into the bulk-like region. Our simulations provide insight into the mechanisms for hydrophobic self-recovery that repair material strength and functionality and suggest material compositions for future high-voltage insulators. © 2011 American Chemical Society
Tangible display systems: bringing virtual surfaces into the real world
NASA Astrophysics Data System (ADS)
Ferwerda, James A.
2012-03-01
We are developing tangible display systems that enable natural interaction with virtual surfaces. Tangible display systems are based on modern mobile devices that incorporate electronic image displays, graphics hardware, tracking systems, and digital cameras. Custom software allows the orientation of a device and the position of the observer to be tracked in real-time. Using this information, realistic images of surfaces with complex textures and material properties illuminated by environment-mapped lighting, can be rendered to the screen at interactive rates. Tilting or moving in front of the device produces realistic changes in surface lighting and material appearance. In this way, tangible displays allow virtual surfaces to be observed and manipulated as naturally as real ones, with the added benefit that surface geometry and material properties can be modified in real-time. We demonstrate the utility of tangible display systems in four application areas: material appearance research; computer-aided appearance design; enhanced access to digital library and museum collections; and new tools for digital artists.
Chemical, Mineralogical, and Physical Properties of Martian Dust and Soil
NASA Technical Reports Server (NTRS)
Ming, D. W.; Morris, R. V.
2017-01-01
Global and regional dust storms on Mars have been observed from Earth-based telescopes, Mars orbiters, and surface rovers and landers. Dust storms can be global and regional. Dust is material that is suspended into the atmosphere by winds and has a particle size of 1-3 micrometer. Planetary scientist refer to loose unconsolidated materials at the surface as "soil." The term ''soil'' is used here to denote any loose, unconsolidated material that can be distinguished from rocks, bedrock, or strongly cohesive sediments. No implication for the presence or absence of organic materials or living matter is intended. Soil contains local and regional materials mixed with the globally distributed dust by aeolian processes. Loose, unconsolidated surface materials (dust and soil) may pose challenges for human exploration on Mars. Dust will no doubt adhere to spacesuits, vehicles, habitats, and other surface systems. What will be the impacts on human activity? The objective of this paper is to review the chemical, mineralogical, and physical properties of the martian dust and soil.
Bioactivity of plasma implanted biomaterials
NASA Astrophysics Data System (ADS)
Chu, Paul K.
2006-01-01
Plasma immersion ion implantation and deposition (PIII&D) is an effective technique to enhance the surface bioactivity of materials. In this paper, recent progress made in our laboratory on plasma surface modification of biomedical materials is described. NiTi alloys have unique super-elastic and shape memory properties and are suitable for orthopedic implants but the leaching of toxic Ni may pose health hazards in humans. We have recently investigated the use of acetylene, oxygen and nitrogen PIII&D to prevent out-diffusion of nickel and good results have been obtained. Silicon is the most important material in the microelectronics industry but its surface biocompatibility has not been investigated in details. We have recently performed hydrogen PIII into silicon to improve the surface bioactivity and observed biomimetic growth of apatite on the surface in simulated body fluids. Diamond-like carbon (DLC) is widely used in the industry due to its excellent mechanical properties and chemical inertness and by incorporation of elements such as nitrogen and phosphorus, the surface blood compatibility can be improved. The properties as well as in vitro biological test results are discussed in this article.
Method and apparatus for implementing material thermal property measurement by flash thermal imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jiangang
A method and apparatus are provided for implementing measurement of material thermal properties including measurement of thermal effusivity of a coating and/or film or a bulk material of uniform property. The test apparatus includes an infrared camera, a data acquisition and processing computer coupled to the infrared camera for acquiring and processing thermal image data, a flash lamp providing an input of heat onto the surface of a two-layer sample with an enhanced optical filter covering the flash lamp attenuating an entire infrared wavelength range with a series of thermal images is taken of the surface of the two-layer sample.
Process parameter and surface morphology of pineapple leaf electrospun nanofibers (PALF)
NASA Astrophysics Data System (ADS)
Surip, S. N.; Aziz, F. M. A.; Bonnia, N. N.; Sekak, K. A.; Zakaria, M. N.
2017-09-01
In recent times, nanofibers have attracted the attention of researchers due to their pronounced micro and nano structural characteristics that enable the development of advanced materials that have sophisticated applications. The production of nanofibers by the electrospinning process is influenced both by the electrostatic forces and the viscoelastic behavior of the polymer. Process parameters, like solution feed rate, applied voltage, nozzle-collector distance, and spinning environment, and material properties, like solution concentration, viscosity, surface tension, conductivity, and solvent vapor pressure, influence the structure and properties of electrospun nanofibers. Significant work has been done to characterize the properties of PALF nanofibers as a function of process and material parameters.
NASA Astrophysics Data System (ADS)
Kostrubiec, Franciszek; Pawlak, Ryszard; Raczynski, Tomasz; Walczak, Maria
1994-09-01
Laser treatment of the surface of materials is of major importance for many fields technology. One of the latest and most significant methods of this treatment is laser alloying consisting of introducing foreign atoms into the metal surface layer during the reaction of laser radiation with the surface. This opens up vast possibilities for the modification of properties of such a layer (obtaining layers of increased microhardness, increased resistance to electroerosion in an electric arc, etc.). Conductivity of the material is a very important parameter in case of conductive materials used for electrical contacts. The paper presents the results of studies on change in electrical conductivity of the surface layer of metals alloyed with a laser. A comparative analysis of conductivity of base metal surface layers prior to and following laser treatment has been performed. Depending on the base metal and the alloying element, optical treatment parameters allowing a required change in the surface layer conductivity have been selected. A very important property of the contact material is its resistance to plastic strain. It affects the real value of contact surface coming into contact and, along with the material conductivity, determines contact resistance and the amount of heat generated in place of contact. These quantities are directly related to the initiation and the course of an arc discharge, hence they also affect resistance to electroerosion. The parameter that reflects plastic properties with loads concentrated on a small surface, as is the case with a reciprocal contact force of two real surfaces with their irregularities being in contact, is microhardness. In the paper, the results of investigations into microhardness of modified surface layers compared with base metal microhardness have been presented.
Use of Atmospheric-Pressure Plasma Jet for Polymer Surface Modification: An Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuettner, Lindsey A.
Atmospheric-pressure plasma jets (APPJs) are playing an increasingly important role in materials processing procedures. Plasma treatment is a useful tool to modify surface properties of materials, especially polymers. Plasma reacts with polymer surfaces in numerous ways thus the type of process gas and plasma conditions must be explored for chosen substrates and materials to maximize desired properties. This report discusses plasma treatments and looks further into atmospheric-pressure plasma jets and the effects of gases and plasma conditions. Following the short literature review, a general overview of the future work and research at Los Alamos National Laboratory (LANL) is discussed.
Perspectives on surface nanobubbles
Zhang, Xuehua; Lohse, Detlef
2014-01-01
Materials of nanoscale size exhibit properties that macroscopic materials often do not have. The same holds for bubbles on the nanoscale: nanoscale gaseous domains on a solid-liquid interface have surprising properties. These include the shape, the long life time, and even superstability. Such so-called surface nanobubbles may have wide applications. This prospective article covers the basic properties of surface nanobubbles and gives several examples of potential nanobubble applications in nanomaterials and nanodevices. For example, nanobubbles can be used as templates or nanostructures in surface functionalization. The nanobubbles produced in situ in a microfluidic system can even induce an autonomous motion of the nanoparticles on which they form. Their formation also has implications for the fluid transport in narrow channels in which they form. PMID:25379084
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarikurt, Sevil; Çakır, Deniz; Keçeli, Murat
The structural model ( i.e. adsorption site of oxygen atom on the surface of MXene) has a paramount impact on the electronic and thermoelectric properties of MXene crystals, which can be exploited to engineer the thermoelectric properties of these materials.
Sarikurt, Sevil; Çakır, Deniz; Keçeli, Murat; ...
2018-01-01
The structural model ( i.e. adsorption site of oxygen atom on the surface of MXene) has a paramount impact on the electronic and thermoelectric properties of MXene crystals, which can be exploited to engineer the thermoelectric properties of these materials.
Atomic Scale Structure-Chemistry Relationships at Oxide Catalyst Surfaces and Interfaces
NASA Astrophysics Data System (ADS)
McBriarty, Martin E.
Oxide catalysts are integral to chemical production, fuel refining, and the removal of environmental pollutants. However, the atomic-scale phenomena which lead to the useful reactive properties of catalyst materials are not sufficiently understood. In this work, the tools of surface and interface science and electronic structure theory are applied to investigate the structure and chemical properties of catalytically active particles and ultrathin films supported on oxide single crystals. These studies focus on structure-property relationships in vanadium oxide, tungsten oxide, and mixed V-W oxides on the surfaces of alpha-Al2O3 and alpha-Fe2O 3 (0001)-oriented single crystal substrates, two materials with nearly identical crystal structures but drastically different chemical properties. In situ synchrotron X-ray standing wave (XSW) measurements are sensitive to changes in the atomic-scale geometry of single crystal model catalyst surfaces through chemical reaction cycles, while X-ray photoelectron spectroscopy (XPS) reveals corresponding chemical changes. Experimental results agree with theoretical calculations of surface structures, allowing for detailed electronic structure investigations and predictions of surface chemical phenomena. The surface configurations and oxidation states of V and W are found to depend on the coverage of each, and reversible structural shifts accompany chemical state changes through reduction-oxidation cycles. Substrate-dependent effects suggest how the choice of oxide support material may affect catalytic behavior. Additionally, the structure and chemistry of W deposited on alpha-Fe 2O3 nanopowders is studied using X-ray absorption fine structure (XAFS) measurements in an attempt to bridge single crystal surface studies with real catalysts. These investigations of catalytically active material surfaces can inform the rational design of new catalysts for more efficient and sustainable chemistry.
Ribeiro, Marta; Monteiro, Fernando J.; Ferraz, Maria P.
2012-01-01
Staphylococcus comprises up to two-thirds of all pathogens in orthopedic implant infections and they are the principal causative agents of two major types of infection affecting bone: septic arthritis and osteomyelitis, which involve the inflammatory destruction of joint and bone. Bacterial adhesion is the first and most important step in implant infection. It is a complex process influenced by environmental factors, bacterial properties, material surface properties and by the presence of serum or tissue proteins. Properties of the substrate, such as chemical composition of the material, surface charge, hydrophobicity, surface roughness and the presence of specific proteins at the surface, are all thought to be important in the initial cell attachment process. The biofilm mode of growth of infecting bacteria on an implant surface protects the organisms from the host immune system and antibiotic therapy. The research for novel therapeutic strategies is incited by the emergence of antibiotic-resistant bacteria. This work will provide an overview of the mechanisms and factors involved in bacterial adhesion, the techniques that are currently being used studying bacterial-material interactions as well as provide insight into future directions in the field. PMID:23507884
Method of noncontacting ultrasonic process monitoring
Garcia, Gabriel V.; Walter, John B.; Telschow, Kenneth L.
1992-01-01
A method of monitoring a material during processing comprising the steps of (a) shining a detection light on the surface of a material; (b) generating ultrasonic waves at the surface of the material to cause a change in frequency of the detection light; (c) detecting a change in the frequency of the detection light at the surface of the material; (d) detecting said ultrasonic waves at the surface point of detection of the material; (e) measuring a change in the time elapsed from generating the ultrasonic waves at the surface of the material and return to the surface point of detection of the material, to determine the transit time; and (f) comparing the transit time to predetermined values to determine properties such as, density and the elastic quality of the material.
Solid surface vs. liquid surface: nanoarchitectonics, molecular machines, and DNA origami.
Ariga, Katsuhiko; Mori, Taizo; Nakanishi, Waka; Hill, Jonathan P
2017-09-13
The investigation of molecules and materials at interfaces is critical for the accumulation of new scientific insights and technological advances in the chemical and physical sciences. Immobilization on solid surfaces permits the investigation of different properties of functional molecules or materials with high sensitivity and high spatial resolution. Liquid surfaces also present important media for physicochemical innovation and insight based on their great flexibility and dynamicity, rapid diffusion of molecular components for mixing and rearrangements, as well as drastic spatial variation in the prevailing dielectric environment. Therefore, a comparative discussion of the relative merits of the properties of materials when positioned at solid or liquid surfaces would be informative regarding present-to-future developments of surface-based technologies. In this perspective article, recent research examples of nanoarchitectonics, molecular machines, DNA nanotechnology, and DNA origami are compared with respect to the type of surface used, i.e. solid surfaces vs. liquid surfaces, for future perspectives of interfacial physics and chemistry.
Sol-gel Technology and Advanced Electrochemical Energy Storage Materials
NASA Technical Reports Server (NTRS)
Chu, Chung-tse; Zheng, Haixing
1996-01-01
Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.
Solid state division progress report, period ending February 29, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-09-01
Research is reported concerning theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; crystal growth and characterization; and isotope research materials.
Thermal properties of granulated materials.
NASA Technical Reports Server (NTRS)
Wechsler, A. E.; Glaser, P. E.; Fountain, J. A.
1972-01-01
Review of the thermophysical properties of granular materials or silicates believed to simulate the lunar surface layer. Emphasis is placed on thermal conductivity data and the effects of material and environmental variables on the thermal conductivity. There are three basic mechanisms of heat transfer in particulate materials: conduction by the gas contained in the void spaces between the particles; conduction within the solid particles and across the interparticle contacts; and thermal radiation within the particles, across the void spaces between particle surfaces, and between void spaces themselves. Gas and solid conduction, thermal radiation, and the interaction between conduction and radiation are considered.
Zemtsova, Elena
2014-01-01
We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1) preparation of porous metal matrix; (2) surface structuring of the porous metal matrix by TiC nanowires; (3) pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1–50 nm. This material can be represented as the material type “frame in the frame” that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based) materials with improved mechanical properties for the different areas of technology. PMID:24695459
Zemtsova, Elena; Yurchuk, Denis; Smirnov, Vladimir
2014-01-01
We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1) preparation of porous metal matrix; (2) surface structuring of the porous metal matrix by TiC nanowires; (3) pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1-50 nm. This material can be represented as the material type "frame in the frame" that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based) materials with improved mechanical properties for the different areas of technology.
Surface Chemistry of Nano-Structured Mixed Metal Oxide Films
2012-12-11
surface chemical and catalytic properties of the films, and finally (iv) we also investigated some of these materials as electrodes for the photo-oxidation of water and as anode materials for lithium ion batteries .
Thermal Characterization of Fe3O4 Nanoparticles Formed from Poorly Crystalline Siderite
NASA Technical Reports Server (NTRS)
Lauer, H. V., Jr.; Ming, D. W.; Golden, D. C.
2005-01-01
Increasing interest in environmental geochemistry has led to the recognition that crystals with sizes in the nanometer range (e.g., colloids and nanoscale precipitates) and poorly crystalline compounds (e.g., ferrihydrites) may comprise the majority of reactive mineral surface area near the Earth s surface. When the diameters of individual particles are in the range of 100 nm or less, the surface energy contribution to the free energy modifies phase stability. This results in stabilization of polymorphs not normally encountered in the macrocrystal domain. These phases potentially have very different surface-site geometries, adsorptive properties, and growth mechanisms, and exhibit size-dependent kinetic behavior. Thus nanophases dramatically modify the physical and chemical properties of soils and sediments. In a more general sense, the characteristics of nanocrystals are of intense technological interest because small particle size confers novel chemical, optical, and electronic properties. Thus, nanocrystalline materials are finding applications as catalytic substrates, gas phase separation materials, and even more importantly in the field of medicine. This is an opportune time for mineral physicists working on nanocrystalline materials to develop collaborative efforts with materials scientists, chemists, and others working on nanophase materials of technological interest (e.g., for magnetic memories). Our objective in this study was to synthesize submicron (<200 nm) magnetite and to study their thermal and particle size properties.
Selective cell response on natural polymer bio-interfaces textured by femtosecond laser
NASA Astrophysics Data System (ADS)
Daskalova, A.; Trifonov, A.; Bliznakova, I.; Nathala, C.; Ajami, A.; Husinsky, W.; Declercq, H.; Buchvarov, I.
2018-02-01
This study reports on the evaluation of laser processed natural polymer-chitosan, which is under consideration as a biointerface used for temporary applications as skin and cartilage substitutes. It is employed for tissue engineering purposes, since it possesses a significant degree of biocompatibility and biodegradability. Chitosan-based thin films were processed by femtosecond laser radiation to enhance the surface properties of the material. Various geometry patterns were produced on polymer surfaces and employed to examine cellular adhesion and orientation. The topography of the modified zones was observed using scanning electron microscopy and confocal microscopy. Test of the material cytotoxicity was performed by evaluating the life/dead cell correlation. The obtained results showed that texturing with femtosecond laser pulses is appropriate method to initiate a predefined cellular response. Formation of surface modifications in the form of foams with an expansion of the material was created under laser irradiation with a number of applied laser pulses from N = 1-5. It is shown that irradiation with N > 5 results in disturbance of microfoam. Material characterization reveals a decrease in water contact angle values after laser irradiation of chitosan films. Consequently, changes in surface roughness of chitosan thin-film surface result in its functionalization. Cultivation of MC3T3 and ATMSC cells show cell orientational migration concerning different surface patterning. The influence of various pulse durations (varying from τ = 30-500 fs) over biofilms surface was examined regarding the evolution of surface morphology. The goal of this study was to define the optimal laser conditions (laser energy, number of applied pulses, and pulse duration) to alter surface wettability properties and porosity to improve material performance. The acquired set of results indicate the way to tune the surface properties to optimize cell-interface interaction.
Roll-to-Roll Manufacturing of Robust Superhydrophobic Coating on Metallic Engineering Materials.
Dong, Shuliang; Wang, Zhenlong; Wang, Yukui; Bai, Xuelin; Fu, Yong Qing; Guo, Bin; Tan, Chaoliang; Zhang, Jia; Hu, PingAn
2018-01-17
Creating a robust superhydrophobic surface on the conventional engineering materials at mass production is of great importance for a self-cleaning, anti-icing, nonwetting surface and low flow resistance in industrial applications. Herein, we report a roll-to-roll strategy to create durable and robust superhydrophobic surfaces with designed micro-/nanoscale hierarchical structures on many conventional engineering materials by combining electrical discharge machining and coating of carbon nanoparticles, followed by oil penetration and drying. The treated surface shows good superhydrophobic properties with a static water contact angle of 170 ± 2° and slide angle of 3 ± 1°. The treated surface also exhibits good resilience and maintains the performance after being tested in various harsh conditions, including water flushing for several days, sand abrasion, scratching with sandpapers, and corrosive solution. Significantly, the superhydrophobic surfaces also show a high efficiency of self-cleaning properties even after oil contamination during applications.
NASA Astrophysics Data System (ADS)
Marshall, Ashley R.
Semiconductor quantum dots (QDs) are interesting materials that, after less than 40 years of research, are used in commercial products. QDs are now found in displays, such as Samsung televisions and the Kindle Fire, and have applications in lighting, bio-imaging, quantum computing, and photovoltaics. They offer a large range of desirable properties: a controllable band gap, solution processability, controlled energy levels, and are currently the best materials for multiple exciton generation. The tunable optoelectronic properties of QDs can be controlled using size, shape, composition, and surface treatments--as shown here. Due to the quasi-spherical shape of QDs the surface to volume ratio is high, i.e. many of the constituent atoms are found on the QD surface. This makes QDs highly sensitive to surface chemistry modifications. This thesis encompasses the effects of surface treatments for QDs of two semiconducting materials: lead chalcogenides and CsPbI3. Our group developed a new synthetic technique for lead chalcogenide QDs via the cation exchange of cadmium chalcogenides. An in-depth chemical analysis is paired with optical and electrical studies and we find that metal halide residue contributes to the oxidative stability and decreased trap state density in cation-exchanged PbS QDs. We exploit these properties to make air-stable QD photovoltaic devices from both PbS and PbSe QD materials. Beyond the effects of residual atoms left from the synthetic technique, I investigated how to controllably add atoms onto the surface of QDs. I found that by introducing metal halides as a post-treatment in an electronically coupled array I am able to control the performance parameters in QD photovoltaic devices. These treatments fully infiltrate the assembled film, even under short exposure times and allow me to add controlled quantities of surface atoms to study their effects on film properties and photovoltaic device performance. Finally, I sought to apply the knowledge of the lead chalcogenide QD surfaces to produce QD photovoltaics from a new material: CsPbI3. I fabricated the first perovskite QD photovoltaic devices and using similar treatment methods as the lead chalcogenide QD arrays, I am able to influence the photophysical properties of CsPbI3 QD arrays.
Improved Composites Using Crosslinked, Surface-Modified Carbon Nanotube Materials
NASA Technical Reports Server (NTRS)
Baker, James Stewart
2014-01-01
Individual carbon nanotubes (CNTs) exhibit exceptional tensile strength and stiffness; however, these properties have not translated well to the macroscopic scale. Premature failure of bulk CNT materials under tensile loading occurs due to the relatively weak frictional forces between adjacent CNTs, leading to poor load transfer through the material. When used in polymer matrix composites (PMCs), the weak nanotube-matrix interaction leads to the CNTs providing less than optimal reinforcement.Our group is examining the use of covalent crosslinking and surface modification as a means to improve the tensile properties of PMCs containing carbon nanotubes. Sheet material comprised of unaligned multi-walled carbon nanotubes (MWCNT) was used as a drop-in replacement for carbon fiber in the composites. A variety of post-processing methods have been examined for covalently crosslinking the CNTs to overcome the weak inter-nanotube shear interactions, resulting in improved tensile strength and modulus for the bulk sheet material. Residual functional groups from the crosslinking chemistry may have the added benefit of improving the nanotube-matrix interaction. Composites prepared using these crosslinked, surface-modified nanotube sheet materials exhibit superior tensile properties to composites using the as received CNT sheet material.
Properties of the moon, Mars, Martian satellites, and near-earth asteroids
NASA Technical Reports Server (NTRS)
Taylor, Jeffrey G.
1989-01-01
Environments and surface properties of the moon, Mars, Martian satellites, and near-earth asteroids are discussed. Topics include gravity, atmospheres, surface properties, surface compositions, seismicity, radiation environment, degradation, use of robotics, and environmental impacts. Gravity fields vary from large fractions of the earth's field such as 1/3 on Mars and 1/6 on the moon to smaller fractions of 0.0004 g on an asteroid 1 km in diameter. Spectral data and the analogy with meteor compositions suggest that near-earth asteroids may contain many resources such as water-rich carbonaceous materials and iron-rich metallic bodies. It is concluded that future mining and materials processing operations from extraterrestrial bodies require an investment now in both (1) missions to the moon, Mars, Phobos, Deimos, and near-earth asteroids and (2) earth-based laboratory research in materials and processing.
Yazdi, Iman K; Ziemys, Arturas; Evangelopoulos, Michael; Martinez, Jonathan O; Kojic, Milos; Tasciotti, Ennio
2015-10-01
Controlling size, shape and uniformity of porous constructs remains a major focus of the development of porous materials. Over the past two decades, we have seen significant developments in the fabrication of new, porous-ordered structures using a wide range of materials, resulting in properties well beyond their traditional use. Porous materials have been considered appealing, due to attractive properties such as pore size length, morphology and surface chemistry. Furthermore, their utilization within the life sciences and medicine has resulted in significant developments in pharmaceutics and medical diagnosis. This article focuses on various classes of porous materials, providing an overview of principle concepts with regard to design and fabrication, surface chemistry and loading and release kinetics. Furthermore, predictions from a multiscale mathematical model revealed the role pore length and diameter could have on payload release kinetics.
Optical Spectroscopy of New Materials
NASA Technical Reports Server (NTRS)
White, Susan M.; Arnold, James O. (Technical Monitor)
1993-01-01
Composites are currently used for a rapidly expanding number of applications including aircraft structures, rocket nozzles, thermal protection of spacecraft, high performance ablative surfaces, sports equipment including skis, tennis rackets and bicycles, lightweight automobile components, cutting tools, and optical-grade mirrors. Composites are formed from two or more insoluble materials to produce a material with superior properties to either component. Composites range from dispersion-hardened alloys to advanced fiber-reinforced composites. UV/VIS and FTIR spectroscopy currently is used to evaluate the bonding between the matrix and the fibers, monitor the curing process of a polymer, measure surface contamination, characterize the interphase material, monitor anion transport in polymer phases, characterize the void formation (voids must be minimized because, like cracks in a bulk material, they lead to failure), characterize the surface of the fiber component, and measure the overall optical properties for energy balances.
Geophysical methods for determining the geotechnical engineering properties of earth materials.
DOT National Transportation Integrated Search
2010-03-01
Surface and borehole geophysical methods exist to measure in-situ properties and structural : characteristics of earth materials. Application of such methods has demonstrated cost savings through : reduced design uncertainty and lower investigation c...
Ding, Yong; Xu, Sheng; Zhang, Yue; Wang, Aurelia C; Wang, Melissa H; Xiu, Yonghao; Wong, Ching Ping; Wang, Zhong Lin
2008-09-03
Although butterfly wings and water strider legs have an anti-wetting property, their working conditions are quite different. Water striders, for example, live in a wet environment and their legs need to support their weight and bear the high pressure during motion. In this work, we have focused on the importance of the surface geometrical structures in determining their performance. We have applied an atomic layer deposition technique to coat the surfaces of both butterfly wings and water strider legs with a uniform 30 nm thick hydrophilic Al(2)O(3) film. By keeping the surface material the same, we have studied the effect of different surface roughness/structure on their hydrophobic property. After the surface coating, the butterfly wings changed to become hydrophilic, while the water strider legs still remained super-hydrophobic. We suggest that the super-hydrophobic property of the water strider is due to the special shape of the long inclining spindly cone-shaped setae at the surface. The roughness in the surface can enhance the natural tendency to be hydrophobic or hydrophilic, while the roughness in the normal direction of the surface is favorable for forming a composite interface.
Mnisi, Robert Londi; Ndibewu, Peter Papoh
2017-11-04
The bark of Moringa oleifera, a cheap and readily available natural biopolymeric resource material, found to significantly reduce coliform load and turbidity in contaminated water is investigated in this paper. Its surface and adsorptive properties are investigated to explore its adsorptive potential in removing V(V) from aqueous solutions. Surface properties were investigated using FTIR, HRSEM/EDS, IC, and BET-N 2 adsorption techniques. Adsorptive properties were investigated by optimizing adsorption parameters such as pH, temperature, initial metal concentration, and adsorbent dosage, using V(V) as an adsorbate. The adsorption-desorption isotherms are typical of type II with a H3 hysteresis loop and is characteristic of a largely macroporous material. Bottle ink pores are observed, which can provide good accessibility of the active sites, even though the internal BET surface area is typically low (1.79 g/m 2 ). Solution pH significantly influences the adsorptive potential of the material. The low surface area negatively impacts on the adsorption capacity, but is compensated for by the exchangeable anions (Cl - , F - , PO 4 3- , NO 3 - , and SO 4 2- ) and cations (Ca 2+ , K + , Mg 2+ , and Al 3+ ) at the surface and the accessibility of the active sites. Adsorption isotherm modeling show that the surface is largely heterogeneous with complex multiple sites and adsorption is not limited to monolayer.
Atomic-Scale Design, Synthesis and Characterization of Two-Dimensional Material Interfaces
NASA Astrophysics Data System (ADS)
Kiraly, Brian Thomas
The reduction of material dimensions to near atomic-scales leads to changes in the properties of these materials. The most recent development in reduced dimensionality is the isolation of atomically thin materials with 2 "bulk" or large-scale dimensions. The isolation of a single plane of carbon atoms has thus paved the way for the study of material properties when one of three dimensions is confined. Early studies revealed a wealth of exotic physical phenomena in these two-dimensional (2D) layers due to the valence and crystalline symmetry of the materials, focusing primarily on understanding the intrinsic properties of the system. Recent studies have begun to investigate the influence that the surroundings have on the 2D material properties and how those effects may be used to tune the composite system properties. In this thesis, I will examine the synthesis and characterization of these 2D interfaces to understand how the constituents impact the overall observations and discuss how these interfaces might be used to deliberately manipulate 2D materials. I will begin by demonstrating how ultra-high vacuum (UHV) conditions enable the preparation and synthesis of 2D materials on air-unstable surfaces by utilizing a characteristic example of crystalline silver. The lack of catalytic activity of silver toward carbon-containing precursors is overcome by using atomic carbon to grow the graphene on the surface. The resulting system provides unique insight into graphene-metal interactions as it marks the lower boundary for graphene-metal interaction strength. I will then show how new 2D materials can be grown utilizing this growth motif, demonstrating the methodology with elemental silicon. The atomically thin 2D silicon grown on the silver surfaces clearly demonstrates a diamond-cubic crystal structure, including an electronic bandgap of 1eV. This work marks the realization of both a new 2D semiconductor and the direct scaling limit for bulk sp3 silicon. The common growth technique is extended to integrate the two 2D materials onto the same silver surface under vacuum conditions; these new interfaces reveal characteristics of van der Waals interactions and electronic decoupling from the metallic substrate. The heterogeneous 2D system provides key insight into the competition between physical and chemical interactions in this novel material system. Finally, a larger scale graphene-semiconductor interface is examined between graphene and crystalline germanium. The covalent-bonding of the germanium crystal provides strong anisotropy at the surface, leading to symmetry-dependent growth and behavior. These systems show unique tunability afforded by strain at the interface, leading to the potential for wafer-scale manipulation. These results clearly call for the treatment of 2D material interfaces as composite material systems, with effective properties derived from each constituent material.
Spectroscopic imaging scanning tunneling microscopy of a Dirac line node material ZrSiS
NASA Astrophysics Data System (ADS)
Zhou, Lihui; He, Qingyu; Queiroz, Raquel; Grüneis, Andreas; Schnyder, Andreas; Ast, Christian; Schoop, Leslie; Takagi, Hide; Rost, Andreas
3D Dirac materials are an intensive area of current condensed matter research. The related Dirac line node materials have come into focus due to many shared properties such as unconventional magneto-transport and the potential to host topologically nontrivial phases. ZrSiS is one of the first discovered materials of this new family, hosting a nodal line and an unconventional surface state. Spectroscopic imaging scanning tunneling microscopy (SI-STM) detects quasiparticle interference and has been extensively used to study the scattering mechanism and the band structures of exotic materials with high energy resolution at the atomic scale. Here in this presentation, we report the investigation of ZrSiS by SI-STM at the atomic scale, in combination with DFT calculations. We succeeded in visualizing the Dirac nodal line both in real and momentum space, adding key pieces of evidences confirming the existence of a nodal line in this material and highlighting its exceptional properties. The breaking of a non-symmorphic symmetry at the surface induces an unusual surface state whose dispersion was mapped. In particular, we observed spectroscopic signatures of a type-II Dirac fermion hosted by the surface state. Our data as seen by SI-STM has impact beyond ZrSiS providing crucial insights into the properties of Dirac line node materials in particular and non-symmorphic crystals in general.
NASA Astrophysics Data System (ADS)
Grady, Maxwell
For some time there has been interest in the fundamental physical properties of low- dimensional material systems. The discovery of graphene as a stable two-dimensional form of solid carbon lead to an exponential increase in research in two-dimensional and other re- duced dimensional systems. It is now known that there is a wide range of materials which are stable in two-dimensional form. These materials span a large configuration space of struc- tural, mechanical, and electronic properties, which results in the potential to create novel electronic devices from nano-scale heterostructures with exactly tailored device properties. Understanding the material properties at the nanoscale level requires specialized tools to probe materials with atomic precision. Here I present the growth and analysis of a novel graphene-ruthenium system which exhibits unique polymorphism in its surface structure, hereby referred to as polymorphic graphene. Scanning Tunneling Microscopy (STM) investigations of the polymorphic graphene surface reveal a periodically rippled structure with a vast array of domains, each exhibiting xvia unique moire period. The majority of moire domains found in this polymorphic graphene system are previously unreported in past studies of the structure of graphene on ruthenium. To better understand many of the structural properties of this system, characterization methods beyond those available at the UNH surface science lab are employed. Further investigation using Low Energy Electron Microscopy (LEEM) has been carried out at Sandia National Laboratory's Center for Integrated Nanotechnology and the Brookhaven National Laboratory Center for Functional Nanomaterials. To aid in analysis of the LEEM data, I have developed an open source software package to automate extraction of electron reflectivity curves from real space and reciprocal space data sets. This software has been used in the study of numerous other two-dimensional materials beyond graphene. When combined with computational modeling, the analysis of electron I(V) curves presents a method to quantify structural parameters in a material with angstrom level precision. While many materials studied in this thesis offer unique electronic properties, my work focuses primarily on their structural aspects, as well as the instrumentation required to characterize the structure with ultra high resolution.
NASA Astrophysics Data System (ADS)
Thoemel, J.; Cosson, E.; Chazot, O.
2009-01-01
In the framework of the creation of an aerothermodynamic database for the design the Intermediate Experimental Vehicle, surface properties of heat shield materials that represent the boundary conditions are reviewed. Catalytic and radiative characteristics available in the literature are critically analyzed and summarized. It turns out that large uncertainties on the parameters exist. Finally, simple and conservative values are proposed.
Microstructure Characterization of Al-TiC Surface Composite Fabricated by Friction Stir Processing
NASA Astrophysics Data System (ADS)
Shiva, Apireddi; Cheepu, Muralimohan; Charan Kantumuchu, Venkata; Kumar, K. Ravi; Venkateswarlu, D.; Srinivas, B.; Jerome, S.
2018-03-01
Titanium carbide (TiC) is an exceedingly hard and wear refractory ceramic material. The surface properties of the material are very important and the corrosion, wear and fatigue resistance behaviour determines its ability and applications. It is necessary to modify the surface properties of the materials to enhance their performance. The present work aims on developing a new surface composite using commercially pure aluminum and TiC reinforcement powder with a significant fabrication technique called friction stir processing (FSP). The metal matrix composite of Al/TiC has been developed without any defects formation to investigate the particles distribution in the composite, microstructural changes and mechanical properties of the material. The microstructural observations exhibited that the grain refinement in the nugget compared to the base metal and FSP without TiC particles. The developed composite properties showed substantial improvement in micro-hardness, friction factor, wear resistance and microstructural characteristics in comparison to parent metal. On the other side, the ductility of the composite specimens was diminished over the substrate. The FSPed specimens were characterised using X-ray diffraction technique and revealed that the formation of AlTi compounds and the presence of Ti phases in the matrix. The microstructures of the samples illustrated the uniform distribution of particles in the newly developed metal matrix composite.
NASA Technical Reports Server (NTRS)
Fusaro, R. L.
1985-01-01
Graphite fiber reinforced polyimide composite pins were slid against seven different counterfaces to determine the effect of material type on the tribological properties of polymer composites. In addition, the effect of sliding a new pin on a pre-established transfer film was investigated. The results indicated that almost a five order of magnitude difference in composite wear rate can occur just by varying the counterface material. An attempt to make all surfaces as smooth as possible was made, but due to differences in material composition this was not possible and a range of surface roughnesses were obtained. The results indicate that the smoother the surface, the lower the composite wear rate; but that small protrusions (not discernible with arithmetic surface roughness measurements) can markedly increase wear rates. A pre-established transfer film improved both run in and steady state wear rates.
Bykova, Iu; Weinhardt, V; Kashkarova, A; Lebedev, S; Baumbach, T; Pichugin, V; Zaitsev, K; Khlusov, I
2014-08-01
The applications of synchrotron radiation (SR) in medical imaging have become of great use, particularly in angiography, bronchography, mammography, computed tomography, and X-ray microscopy. Thanks to recently developed phase contrast imaging techniques non-destructive preclinical testing of low absorbing materials such as polymers has become possible. The focus of the present work is characterization and examination of UHMWPE-derived materials widely used in medicine, before and after their exposure to SR during such testing. Physical properties, such as wettability, surface energy, IR-spectroscopy, roughness, optical microscopy, microhardness measurements of UHMWPE samples were studied before and after SR. The relationship between a growth of UHMWPE surface hydrophilicity after SR and surface colonization by stromal cells was studied in vitro. Obtained results demonstrate that SR may be used as prospective direction to examine bulk (porous) structure of polymer materials and/or to modify polymer surface and volume for tissue engineering.
NASA Astrophysics Data System (ADS)
Gao, Fei
Semiconductor substrates are widely used in many applications. Multiple practical uses involving these materials require the ability to tune their physical and chemical properties to adjust those to a specific application. In recent years, surface and interface reactions have affected dramatically device fabrication and material design. Novel surface functionalization techniques with diverse chemical approaches make the desired physical, thermal, electrical, and mechanical properties attainable. Meanwhile, the modified surface can serve as one of the most important key steps for further assembly process in order to make novel devices and materials. In the following chapters, novel chemical approaches to the functionalization of silicon and zinc oxide substrates will be reviewed and discussed. The specific functionalities including amines, azides, and alkynes on surfaces of different materials will be applied to address subsequent attachment of large molecules and assembly processes. This research is aimed to develop new strategies for manipulating the surface properties of semiconductor materials in a controlled way. The findings of these investigations will be relevant for future applications in molecular and nanoelectronics, sensing, and solar energy conversion. The ultimate goals of the projects are: 1) Preparation of an oxygen-and carbon-free silicon surface based exclusively on Si-N linkages for further modification protocols.. This project involves designing the surface reaction of hydrazine on chlorine-terminated silicon surface, introduction of additional functional group through dehydrohalogenation condensation reaction and direct covalent attachment of C60. 2) Demonstrating alternative method to anchor carbon nanotubes to solid substrates directly through the carbon cage.. This project targets surface modification of silicon and gold substrates with amine-terminated organic monolayers and the covalent attachment of nonfunctionalized and carboxylic acid-functionalized carbon nanotubes. 3) Designing a universal method for the modular functionalization of zinc oxide surface for the chemical protection of material morphology.. This project involves surface modification of zinc oxide nanopowder under vacuum condition with propiolic acid, followed by "click" reaction. A combination of spectroscopy and microscopy techniques was utilized to study the surface functionalization and assembly processes. Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and time of fight secondary ion mass spectroscopy (ToF-SIMS) were employed to elucidate the chemical structure of the modified surface. Atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were combined to obtain the surface morphological information. Density functional theory (DFT) calculations were applied to confirm the experimental results and to suggest plausible reaction mechanisms. Other complementary techniques for these projects also include nuclear magnetic resonance (NMR) spectroscopy to identify the chemical species on the surface and charge-carrier lifetime measurements to evaluate the electronic property of C60-modified silicon surface.
Improvement of reusable surface insulation material
NASA Technical Reports Server (NTRS)
1972-01-01
The results are presented of a program to improve the reusable surface insulation (RSI) system through the improvement of the LI-1500 material properties and the simplification of the RSI system. The improvements made include: 2500 F-capability RSI systems, water-impervious surface coatings, establishment of a high-emittance coating constituent, development of a secondary water-reduction system, and achievement of a lower density (9 pcf) RSI material.
NASA Astrophysics Data System (ADS)
Abdalla, Ahmed M.; Majdi, Tahereh; Ghosh, Suvojit; Puri, Ishwar K.
2016-12-01
To utilize their superior properties, multiwall carbon nanotubes (MWNTs) must be manipulated and aligned end-to-end. We describe a nondestructive method to magnetize MWNTs and provide a means to remotely manipulate them through the electroless deposition of magnetic nickel nanoparticles on their surfaces. The noncovalent bonds between Ni nanoparticles and MWNTs produce a Ni-MWNT hybrid material (NiCH) that is electrically conductive and has an enhanced magnetic susceptibility and elastic modulus. Our experiments show that MWNTs can be plated with Ni for Ni:MWNT weight ratios of γ = 1, 7, 14 and 30, to control the material properties. The phase, atom-level, and morphological information from x-ray diffraction, energy dispersive x-ray spectroscopy, scanning electron microscopy, transmission electron microscopy, dark field STEM, and atomic force microscopy clarify the plating process and reveal the mechanical properties of the synthesized material. Ni metalizes at the surface of the Pd catalyst, forming a continuous wavy layer that encapsulates the MWNT surfaces. Subsequently, Ni acts as an autocatalyst, allowing the plating to continue even after the original Pd catalyst has been completely covered. Raising γ increases the coating layer thickness from 10 to 150 nm, which influences the NiCH magnetic properties and tunes its elastic modulus from 12.5 to 58.7 GPa. The NiCH was used to fabricate Ni-MWNT macrostructures and tune their morphologies by changing the direction of an applied magnetic field. Leveraging the hydrophilic Ni-MWNT outer surface, a water-based conductive ink was created and used to print a conductive path that had an electrical resistivity of 5.9 Ω m, illustrating the potential of this material for printing electronic circuits.
Surface properties of anatase TiO2 nanowire films grown from a fluoride-containing solution.
Berger, Thomas; Anta, Juan A; Morales-Flórez, Víctor
2013-06-03
Controlling the surface chemistry of nucleating seeds during wet-chemical synthesis allows for the preparation of morphologically well-defined nanostructures. Synthesis conditions play a key role in the surface properties, which directly affect the functional properties of the material. Therefore, it is important to establish post-synthesis treatments to facilitate the optimization of surface properties with respect to a specific application, without losing the morphological peculiarity of the nanostructure. We studied the surface properties of highly crystalline and porous anatase TiO2 nanowire (NW) electrodes, grown by chemical-bath deposition in fluoride-containing solutions, using a combined electrochemical and spectroscopic approach. As-deposited films showed low capacity for catechol adsorption and a poor photoelectrocatalytic activity for water oxidation. Mild thermal annealing at 200 °C resulted in a significant improvement of the electrode photoelectrocatalytic activity, whereas the bulk properties of the NWs (crystal structure, band-gap energy) remained unchanged. Enhancement of the functional properties of the material is discussed on the basis of adsorption capacity and electronic properties. The temperature-induced decrease of recombination centers, along with the concomitant increase of adsorption and reaction sites upon thermal annealing are called to be responsible for such improved performance. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CH-π Interaction Driven Macroscopic Property Transition on Smart Polymer Surface
NASA Astrophysics Data System (ADS)
Li, Minmin; Qing, Guangyan; Xiong, Yuting; Lai, Yuekun; Sun, Taolei
2015-10-01
Life systems have evolved to utilize weak noncovalent interactions, particularly CH-π interaction, to achieve various biofunctions, for example cellular communication, immune response, and protein folding. However, for artificial materials, it remains a great challenge to recognize such weak interaction, further transform it into tunable macroscopic properties and realize special functions. Here we integrate monosaccharide-based CH-π receptor capable of recognizing aromatic peptides into a smart polymer with three-component “Recognition-Mediating-Function” design, and report the CH-π interaction driven surface property switching on smart polymer film, including wettability, adhesion, viscoelasticity and stiffness. Detailed studies indicate that, the CH-π interaction induces the complexation between saccharide unit and aromatic peptide, which breaks the initial amphiphilic balance of the polymer network, resulting in contraction-swelling conformational transition for polymer chains and subsequent dramatic switching in surface properties. This work not only presents a new approach to control the surface property of materials, but also points to a broader research prospect on CH-π interaction at a macroscopic level.
CH-π Interaction Driven Macroscopic Property Transition on Smart Polymer Surface.
Li, Minmin; Qing, Guangyan; Xiong, Yuting; Lai, Yuekun; Sun, Taolei
2015-10-29
Life systems have evolved to utilize weak noncovalent interactions, particularly CH-π interaction, to achieve various biofunctions, for example cellular communication, immune response, and protein folding. However, for artificial materials, it remains a great challenge to recognize such weak interaction, further transform it into tunable macroscopic properties and realize special functions. Here we integrate monosaccharide-based CH-π receptor capable of recognizing aromatic peptides into a smart polymer with three-component "Recognition-Mediating-Function" design, and report the CH-π interaction driven surface property switching on smart polymer film, including wettability, adhesion, viscoelasticity and stiffness. Detailed studies indicate that, the CH-π interaction induces the complexation between saccharide unit and aromatic peptide, which breaks the initial amphiphilic balance of the polymer network, resulting in contraction-swelling conformational transition for polymer chains and subsequent dramatic switching in surface properties. This work not only presents a new approach to control the surface property of materials, but also points to a broader research prospect on CH-π interaction at a macroscopic level.
NASA Astrophysics Data System (ADS)
Klecka, Michael A.
Case hardened materials, popularly used in many demanding engineering applications such as bearings, gears, and wear/impact surfaces, have high surface hardness and a gradient in material properties (hardness, yield strength, etc.) as a function of depth; therefore, they behave as plastically graded materials. In the current study, two different commercially available case carburized steels along with two through hardened steels are characterized to obtain relationships among the volume fraction of subsurface carbides, indentation hardness, elastic modulus, and yield strength as a function of depth. A variety of methods including microindentation, nanoindentation, ultrasonic measurements, compression testing, rule of mixtures, and upper and lower bound models are used to determine the relationships for elastic modulus and compare the experimental results with model predictions. In addition, the morphology, composition, and properties of the carbide particles are also determined. The gradient in hardness with depth in graded materials is commonly determined using microindentation on the cross-section of the material which contains the gradation in microstructure or composition. In the current study, a novel method is proposed to predict the hardness gradient profile using solely surface indentations at a range of loads. The method does not require the graded material to be sectioned, and has practical utility in the surface heat-treatment industry. For a material with a decreasing gradient in hardness, higher indent loads result in a lower measured hardness due to the influence of the softer subsurface layers. A power-law model is presented which relates the measured surface indentation hardness under increasing load to the subsurface gradient in hardness. A coordinated experimental and numerical study is presented to extract the constitutive response of graded materials, utilizing relationships between hardness, plastic deformation, and strain hardening response. The average plastic strain induced by an indent is shown to be an effective measure of the representative plastic strain, which is used in order to relate hardness to yield strength in both virgin and plastically deformed materials. It is shown that the two carburized steels contain gradients in yield strength, but constant strain hardening exponent with depth. The resulting model of material behavior is used to characterize the influence of specific gradients in material properties on the surface indentation behavior under increasing indentation loads. It is also shown that the response of the material is not greatly influenced by strain hardening exponent, while a gradient in strain hardening ability only has minimal impact. Gradients in elastic properties are also shown to have negligible influence for a fixed gradient in hardness. The depth of subsurface plastic deformation is shown to increase with sharper gradients in hardness, but is not altered by gradients in elastic properties. The proposed approach is not specific to case hardened materials and can be used to determine the subsurface hardness gradient for any graded material.
Properties of the "Orgamax" osteoplastic material made of a demineralized allograft bone
NASA Astrophysics Data System (ADS)
Podorognaya, V. T.; Kirilova, I. A.; Sharkeev, Yu. P.; Uvarkin, P. V.; Zhelezny, P. A.; Zheleznaya, A. P.; Akimova, S. E.; Novoselov, V. P.; Tupikova, L. N.
2016-08-01
We investigated properties of the "Orgamax" osteoplastic material, which was produced from a demineralized bone, in the treatment of extensive caries, in particular chronic pulpitis of the permanent teeth with unformed roots in children. The "Orgamax" osteoplastic material consists of demineralized bone chips, a collagen additive, and antibiotics. The surface morphology of the "Orgamax" osteoplastic material is macroporous, with the maximum pore size of 250 µm, whereas the surface morphology of the major component of "Orgamax", demineralized bone chips, is microporous, with a pore size of 10-20 µm. Material "Orgamax" is used in the treatment of complicated caries, particularly chronic pulpitis of permanent teeth with unformed roots in children. "Orgamax" filling a formed cavity exhibits antimicrobial properties, eliminates inflammation in the dental pulp, and, due to its osteoconductive and osteoinductive properties, undergoes gradual resorption, stimulates regeneration, and provides replacement of the defect with newly formed tissue. The dental pulp viability is completely restored, which ensures the complete formation of tooth roots with root apex closure in the long-term period.
Implant Surface Design Regulates Mesenchymal Stem Cell Differentiation and Maturation
Boyan, B.D.; Cheng, A.; Olivares-Navarrete, R.; Schwartz, Z.
2016-01-01
Changes in dental implant materials, structural design, and surface properties can all affect biological response. While bulk properties are important for mechanical stability of the implant, surface design ultimately contributes to osseointegration. This article reviews the surface parameters of dental implant materials that contribute to improved cell response and osseointegration. In particular, we focus on how surface design affects mesenchymal cell response and differentiation into the osteoblast lineage. Surface roughness has been largely studied at the microscale, but recent studies have highlighted the importance of hierarchical micron/submicron/nanosurface roughness, as well as surface roughness in combination with surface wettability. Integrins are transmembrane receptors that recognize changes in the surface and mediate downstream signaling pathways. Specifically, the noncanonical Wnt5a pathway has been implicated in osteoblastic differentiation of cells on titanium implant surfaces. However, much remains to be elucidated. Only recently have studies been conducted on the differences in biological response to implants based on sex, age, and clinical factors; these all point toward differences that advocate for patient-specific implant design. Finally, challenges in implant surface characterization must be addressed to optimize and compare data across studies. An understanding of both the science and the biology of the materials is crucial for developing novel dental implant materials and surface modifications for improved osseointegration. PMID:26927483
Recent Progress on Stability and Passivation of Black Phosphorus.
Abate, Yohannes; Akinwande, Deji; Gamage, Sampath; Wang, Han; Snure, Michael; Poudel, Nirakar; Cronin, Stephen B
2018-05-11
From a fundamental science perspective, black phosphorus (BP) is a canonical example of a material that possesses fascinating surface and electronic properties. It has extraordinary in-plane anisotropic electrical, optical, and vibrational states, as well as a tunable band gap. However, instability of the surface due to chemical degradation in ambient conditions remains a major impediment to its prospective applications. Early studies were limited by the degradation of black phosphorous surfaces in air. Recently, several robust strategies have been developed to mitigate these issues, and these novel developments can potentially allow researchers to exploit the extraordinary properties of this material and devices made out of it. Here, the fundamental chemistry of BP degradation and the tremendous progress made to address this issue are extensively reviewed. Device performances of encapsulated BP are also compared with nonencapsulated BP. In addition, BP possesses sensitive anisotropic photophysical surface properties such as excitons, surface plasmons/phonons, and topologically protected and Dirac semi-metallic surface states. Ambient degradation as well as any passivation method used to protect the surface could affect the intrinsic surface properties of BP. These properties and the extent of their modifications by both the degradation and passivation are reviewed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Toommee, S.; Pratumpong, P.
2018-06-01
Zeolite was successfully modified by conventional synthetic route. Polyethylene glycol was employed for surface modification of zeolite. The surface of zeolite exhibited therefore hydrophobic properties. Less than 5 wt% of modified zeolites with uniform size and shape were integrated into polypropylene matrix. Mechanical properties of composite exhibited the similar trend compare to neat polypropylene. Oxygen transmission rate and water vapor transmission rate were evaluated and it exhibited the strong potential to be a good candidate material in active packaging.
Modified polyether-sulfone membrane: a mini review
Alenazi, Noof A.; Hussein, Mahmoud A.; Alamry, Khalid A.; Asiri, Abdullah M.
2017-01-01
Abstract Polyethersulfone has been widely used as a promising material in medical applications and waste-treatment membranes since it provides excellent mechanical and thermal properties. Hydrophobicity of polyethersulfone is considered one main disadvantage of using this material because hydrophobic surface causes biofouling effects to the membrane which is always thought to be a serious limitation to the use of polyethersulfone in membrane technology. Chemical modification to the material is a promising solution to this problem. More specifically surface modification is an excellent technique to introduce hydrophilic properties and functional groups to the polyethersulfone membrane surface. This review covers chemical modifications of the polyethersulfone and covers different methods used to enhance the hydrophilicity of polyethersulfone membrane. In particular, the addition of amino functional groups to polyethersulfone is used as a fundamental method either to introduce hydrophilic properties or introduce nanomaterials to the surface of polyethersulfone membrane. This work reviews also previous research reports explored the use of amino functionalized polyethersulfone with different nanomaterials to induce biological activity and reduce fouling effects of the fabricated membrane. PMID:29491825
Bio-functionalization of biomedical metals.
Xiao, M; Chen, Y M; Biao, M N; Zhang, X D; Yang, B C
2017-01-01
Bio-functionalization means to endow biomaterials with bio-functions so as to make the materials or devices more suitable for biomedical applications. Traditionally, because of the excellent mechanical properties, the biomedical metals have been widely used in clinic. However, the utilized functions are basically supporting or fixation especially for the implantable devices. Nowadays, some new functions, including bioactivity, anti-tumor, anti-microbial, and so on, are introduced to biomedical metals. To realize those bio-functions on the metallic biomedical materials, surface modification is the most commonly used method. Surface modification, including physical and chemical methods, is an effective way to alter the surface morphology and composition of biomaterials. It can endow the biomedical metals with new surface properties while still retain the good mechanical properties of the bulk material. Having analyzed the ways of realizing the bio-functionalization, this article briefly summarized the bio-functionalization concepts of six hot spots in this field. They are bioactivity, bony tissue inducing, anti-microbial, anti-tumor, anticoagulation, and drug loading functions. Copyright © 2016. Published by Elsevier B.V.
Modified polyether-sulfone membrane: a mini review.
Alenazi, Noof A; Hussein, Mahmoud A; Alamry, Khalid A; Asiri, Abdullah M
2017-01-01
Polyethersulfone has been widely used as a promising material in medical applications and waste-treatment membranes since it provides excellent mechanical and thermal properties. Hydrophobicity of polyethersulfone is considered one main disadvantage of using this material because hydrophobic surface causes biofouling effects to the membrane which is always thought to be a serious limitation to the use of polyethersulfone in membrane technology. Chemical modification to the material is a promising solution to this problem. More specifically surface modification is an excellent technique to introduce hydrophilic properties and functional groups to the polyethersulfone membrane surface. This review covers chemical modifications of the polyethersulfone and covers different methods used to enhance the hydrophilicity of polyethersulfone membrane. In particular, the addition of amino functional groups to polyethersulfone is used as a fundamental method either to introduce hydrophilic properties or introduce nanomaterials to the surface of polyethersulfone membrane. This work reviews also previous research reports explored the use of amino functionalized polyethersulfone with different nanomaterials to induce biological activity and reduce fouling effects of the fabricated membrane.
Effective conductivity of wire mesh reflectors for space deployable antenna systems
NASA Technical Reports Server (NTRS)
Davis, William A.
1994-01-01
This report summarizes efforts to characterize the measurement of conductive mesh and smooth surfaces using proximity measurements for a dielectric resonator. The resonator operates in the HEM11 mode and is shown to have an evanescent field behavior in the vicinity of the sample surface, raising some question to the validity of measurements requiring near normal incidence on the material. In addition, the slow radial field decay outside of the dielectric resonator validates the sensitivity to the planar supporting structure and potential radiation effects. Though these concerns become apparent along with the sensitivity to the gap between the dielectric and the material surface, the basic concept of the material measurement using dielectric resonators has been verified for useful comparison of material surface properties. The properties, particularly loss, may be obtained by monitoring the resonant frequency along with the resonator quality factor (Q), 3 dB bandwidth, or the midband transmission amplitude. Comparison must be made to known materials to extract the desired data.
NASA Technical Reports Server (NTRS)
Etters, R. D.
1985-01-01
Work directed toward understanding the high pressure properties of molecular solids and molecular surfaces deposited on hetrogeneous substrates is reported. The motivation, apart from expanding our basic knowledge about these systems, was to understand and predict the properties of new materials synthesized at high pressure, including pressure induced metallic and superconducting states. As a consequence, information about the states of matter of the Jovian planets and their satellites, which are natural high pressure laboratories was also provided. The work on molecular surfaces and finite two and three dimensional clusters of atoms and molecules was connected with the composition and behavior of planetary atmospheres and on the processes involved in forming surface layers, which is vital to the development of composite materials and microcircuitry.
Low earth orbit durability evaluation of Haynes 188 solar receiver material
NASA Technical Reports Server (NTRS)
De Groh, Kim K.; Rutledge, Sharon K.; Burke, Christopher A.; Dever, Therese M.; Olle, Raymond M.; Terlep, Judith A.
1992-01-01
The effects of elevated-temperature vacuum and elevated-temperature atomic oxygen exposure on the mass, surface chemistry, surface morphology, and optical properties of Haynes 188, a possible heat receiver material for space-based solar dynamic power systems, have been studied. Pristine and surface modified Haynes 188 were exposed to vacuum less than or equal to 10 exp -6 torr at 820 C for 5215.5 h, and to atomic oxygen in an air plasma asher at 34 and 827 C for fluences up to 5.6 x 10 exp 21 atoms/sq cm. Results obtained indicate that vacuum heat treatment caused surface morphology and chemistry changes with corresponding optical property changes. Atomic oxygen exposure caused optical property changes which diminished with time. Mass changes are considered to be negligible for both exposures.
Materials characterization study of conductive flexible second surface mirrors
NASA Technical Reports Server (NTRS)
Levadou, F.; Bosma, S. J.; Paillous, A.
1981-01-01
The status of prequalification and qualification work on conductive flexible second surface mirrors is described. The basic material is FEP Teflon witn either aluminium or silver vacuum deposited reflectors. The top layer has been made conductive by deposition of layer of a indium oxide. The results of a prequalification program comprised of decontamination, humidity, thermal cycling, thermal shock and vibration tests are presented. Thermo-optical and electrical properties. The results of a prequalification program comprised of decontamination, humidity, thermal cycling, thermal shock and vibration tests are presented. Thermo-optical and electrical properties, the electrostatic behavior of the materials under simulated substorm environment and electrical conductivity at low temperatures are characterized. The effects of simulated ultra violet and particles irradiation on electrical and thermo-optical properties of the materials are also presented.
Influence of the electromagnetic parameters on the surface wave attenuation in thin absorbing layers
NASA Astrophysics Data System (ADS)
Li, Yinrui; Li, Dongmeng; Wang, Xian; Nie, Yan; Gong, Rongzhou
2018-05-01
This paper describes the relationships between the surface wave attenuation properties and the electromagnetic parameters of radar absorbing materials (RAMs). In order to conveniently obtain the attenuation constant of TM surface waves over a wide frequency range, the simplified dispersion equations in thin absorbing materials were firstly deduced. The validity of the proposed method was proved by comparing with the classical dispersion equations. Subsequently, the attenuation constants were calculated separately for the absorbing layers with hypothetical relative permittivity and permeability. It is found that the surface wave attenuation properties can be strongly tuned by the permeability of RAM. Meanwhile, the permittivity should be appropriate so as to maintain high cutoff frequency. The present work provides specific methods and designs to improve the attenuation performances of radar absorbing materials.
Nikkhoo, Mohammad; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin
2013-06-01
Finite element analysis is an effective tool to evaluate the material properties of living tissue. For an interactive optimization procedure, the finite element analysis usually needs many simulations to reach a reasonable solution. The meta-model analysis of finite element simulation can be used to reduce the computation of a structure with complex geometry or a material with composite constitutive equations. The intervertebral disc is a complex, heterogeneous, and hydrated porous structure. A poroelastic finite element model can be used to observe the fluid transferring, pressure deviation, and other properties within the disc. Defining reasonable poroelastic material properties of the anulus fibrosus and nucleus pulposus is critical for the quality of the simulation. We developed a material property updating protocol, which is basically a fitting algorithm consisted of finite element simulations and a quadratic response surface regression. This protocol was used to find the material properties, such as the hydraulic permeability, elastic modulus, and Poisson's ratio, of intact and degenerated porcine discs. The results showed that the in vitro disc experimental deformations were well fitted with limited finite element simulations and a quadratic response surface regression. The comparison of material properties of intact and degenerated discs showed that the hydraulic permeability significantly decreased but Poisson's ratio significantly increased for the degenerated discs. This study shows that the developed protocol is efficient and effective in defining material properties of a complex structure such as the intervertebral disc.
Galileo Probe forebody thermal protection
NASA Technical Reports Server (NTRS)
Green, M. J.; Davy, W. C.
1981-01-01
Material response solutions for the forebody heat shield on the candidate 310-kg Galileo Probe are presented. A charring material ablation analysis predicts thermochemical surface recession, insulation thickness, and total required heat shield mass. Benchmark shock layer solutions provide the imposed entry heating environments on the ablating surface. Heat shield sizing results are given for a nominal entry into modeled nominal and cool-heavy Jovian atmospheres, and for two heat-shield property models. The nominally designed heat shield requires a mass of at least 126 kg and would require an additional 13 kg to survive entry into the less probable cool-heavy atmosphere. The material-property model with a 30% surface reflectance reduces these mass requirements by as much as 16%.
Functionalization of graphene for efficient energy conversion and storage.
Dai, Liming
2013-01-15
As global energy consumption accelerates at an alarming rate, the development of clean and renewable energy conversion and storage systems has become more important than ever. Although the efficiency of energy conversion and storage devices depends on a variety of factors, their overall performance strongly relies on the structure and properties of the component materials. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. As a building block for carbon materials of all other dimensionalities (such as 0D buckyball, 1D nanotube, 3D graphite), the two-dimensional (2D) single atomic carbon sheet of graphene has emerged as an attractive candidate for energy applications due to its unique structure and properties. Like other materials, however, a graphene-based material that possesses desirable bulk properties rarely features the surface characteristics required for certain specific applications. Therefore, surface functionalization is essential, and researchers have devised various covalent and noncovalent chemistries for making graphene materials with the bulk and surface properties needed for efficient energy conversion and storage. In this Account, I summarize some of our new ideas and strategies for the controlled functionalization of graphene for the development of efficient energy conversion and storage devices, such as solar cells, fuel cells, supercapacitors, and batteries. The dangling bonds at the edge of graphene can be used for the covalent attachment of various chemical moieties while the graphene basal plane can be modified via either covalent or noncovalent functionalization. The asymmetric functionalization of the two opposite surfaces of individual graphene sheets with different moieties can lead to the self-assembly of graphene sheets into hierarchically structured materials. Judicious application of these site-selective reactions to graphene sheets has opened up a rich field of graphene-based energy materials with enhanced performance in energy conversion and storage. These results reveal the versatility of surface functionalization for making sophisticated graphene materials for energy applications. Even though many covalent and noncovalent functionalization methods have already been reported, vast opportunities remain for developing novel graphene materials for highly efficient energy conversion and storage systems.
Modeling micromechanical measurements of depth-varying properties with scanning acoustic microscopy
NASA Astrophysics Data System (ADS)
Marangos, Orestes; Misra, Anil
2018-02-01
Scanning acoustic microscopy (SAM) has been applied to measure the near-surface elastic properties of materials. For many substrates, the near-surface property is not constant but varies with depth. In this paper, we aim to interpret the SAM data from such substrates by modeling the interaction of the focused ultrasonic field with a substrate having a near-surface graded layer. The focused ultrasonic field solutions were represented as spherical harmonic expansions while the substrate solutions were represented as plane wave expansions. The bridging of the two solutions was achieved through the decomposition of the ultrasonic pressure fields in their angular spectra. Parametric studies were performed, which showed that near-surface graded layers exhibit distinctive frequency dependence of their reflectance functions. This behavior is characteristic to the material property gradation profile as well as the extent of the property gradation. The developed model was used to explain the frequency-dependent reflection coefficients measured from an acid-etched dentin substrate. Based on the model calculations, the elastic property variations of the acid-etched dentin near-surface indicate that the topmost part of the etched layer is very soft (3-6 GPa) and transitions to the native dentin through a depth of 27 and 36 microns.
NASA Astrophysics Data System (ADS)
Liu, Runhan; Yuan, Ying; Long, Huabao; Peng, Sha; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng
2018-02-01
The intense surface plasmons (SPs) can be generated by patterned metal nano-structure arrays, through coupling incident light onto the functioned metal surface, so as to construct highly constrained surface electromagnetic modes. Therefore, a localized micro-nano-field array with a highly compressed surface electron distribution, can also be shaped and even nano-focused over the surface, which will lead to a lot of special physical effects such as anti-reflection effect, and thus indicate many new potential applications in the field of nano-photonics and -optoelectronics. In this paper, several typical patterned sub-wavelength metal nano-structure arrays were designed according to the process, in which common silicon wafer was employed as the substrate material and aluminum as the metal film with different structural size and arrangement circle. In addition, by adjusting the dielectric constant of metal material appropriately, the power control effect on metallic nanostructure was simulated. The key properties such as the excitation intensity of the surface plasmons were studied by simulating the reflectivity characteristic curves and the electric field distribution of the nanostructure excited by incident infrared beams. It is found that the angle of corners, the arrangement cycle and the metal material properties of the patterned nano-structures can be utilized as key factors to control the excitation intensity of surface plasmons.
Evaluation of the interfacial bond properties between carbon phenolic and glass phenolic composites
NASA Technical Reports Server (NTRS)
Jordan, K.; Clinton, R.; Jeelani, S.
1991-01-01
The effects of moisture and surface finish on the mechanical and physical properties of the interfacial bond between carbon/phenolic (C/P) and glass/phenolic (G/P) composite materials have been studied. Test results indicate that moisture substantially degrades the integrity of the interfacial bond between C/P and G/P materials. The apparent effect of the autoclave curing of the C/P material reduces the ultimate interlaminar shear length of the C/P material by 20 percent compared to the hydroclave curing of the C/P material. The variation in applied surface finishes is found to have no appreciable effect on the ultimate interlaminar shear strength of the interface in the wet laminate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Hao; Huang, Xiaochen; Li, Dongyang, E-mail: dongyang.li@ualberta.ca
2014-11-07
Properties of metallic materials are intrinsically determined by their electron behavior. However, relevant theoretical treatment involving quantum mechanics is complicated and difficult to be applied in materials design. Electron work function (EWF) has been demonstrated to be a simple but fundamental parameter which well correlates properties of materials with their electron behavior and could thus be used to predict material properties from the aspect of electron activities in a relatively easy manner. In this article, we propose a method to extract the electron work functions of binary solid solutions or alloys from their phase diagrams and use this simple approachmore » to predict their mechanical strength and surface properties, such as adhesion. Two alloys, Fe-Ni and Cu-Zn, are used as samples for the study. EWFs extracted from phase diagrams show same trends as experimentally observed ones, based on which hardness and surface adhesive force of the alloys are predicted. This new methodology provides an alternative approach to predict material properties based on the work function, which is extractable from the phase diagram. This work may also help maximize the power of phase diagram for materials design and development.« less
Guo, Ying; Lippitz, Andreas; Saftien, Paul; Unger, Wolfgang E S; Kemnitz, Erhard
2015-03-21
Sol-gel prepared ternary FeF3-MgF2 materials have become promising heterogeneous catalysts due to their porosity and surface Lewis/Brønsted acidity (bi-acidity). Despite the good catalytic performance, nanoscopic characterisations of this type of material are still missing and the key factors controlling the surface properties have not yet been identified, impeding both a better understanding and further development of ternary fluoride catalysts. In this study, we characterised the interaction between the bi-acidic component (FeF3) and the matrix (MgF2) on the nano-scale. For the first time, the formation pathway of FeF3-MgF2 was profiled and the template effect of MgF2 during the synthesis process was discovered. Based on these new insights two novel materials, FeF3-CaF2 and FeF3-SrF2, were established, revealing that with decreasing the atomic numbers (from Sr to Mg), the ternary fluorides exhibited increasing surface acidity and surface area but decreasing pore size. These systematic changes gave rise to a panel of catalysts with tuneable surface and bulk properties either by changing the matrix alkaline earth metal fluoride or by adjusting their ratios to Fe or both. The template effect of the alkaline earth metal fluoride matrix was identified as the most probable key factor determining the surface properties and further influencing the catalytic performance in ternary fluoride based catalysts, and paves the way to targeted design of next-generation catalysts with tunable properties.
NASA Astrophysics Data System (ADS)
Roubidoux, J. A.; Jackson, J. E.; Lasseigne, A. N.; Mishra, B.; Olson, D. L.
2010-02-01
This paper correlates nonlinear material properties to nondestructive electronic measurements by using wave analysis techniques (e.g. Perturbation Methods) and incorporating higher-order phenomena. The correlations suggest that nondestructive electronic property measurements and practices can be used to assess thin films, surface layers, and other advanced materials that exhibit modified behaviors based on their space-charged interfacial behavior.
The Anti-Biofouling Properties of Superhydrophobic Surfaces are Short-Lived.
Hwang, Gi Byoung; Page, Kristopher; Patir, Adnan; Nair, Sean P; Allan, Elaine; Parkin, Ivan P
2018-06-12
Superhydrophobic surfaces are present in nature on the leaves of many plant species. Water rolls on these surfaces, and the rolling motion picks up particles including bacteria and viruses. Man-made superhydrophobic surfaces have been made in an effort to reduce biofouling. We show here that the anti-biofouling property of a superhydrophobic surface is due to an entrapped air-bubble layer that reduces contact between the bacteria and the surface. Further, we showed that prolonged immersion of superhydrophobic surfaces in water led to loss of the bubble-layer and subsequent bacterial adhesion that unexpectedly exceeded that of the control materials. This behavior was not restricted to one particular type of material but was evident on different types of superhydrophobic surfaces. This work is important in that it suggests that superhydrophobic surfaces may actually encourage bacterial adhesion during longer term exposure.
NASA Astrophysics Data System (ADS)
Daitoku, Tadafumi; Utaka, Yoshio
In air-conditioning systems, it is desirable that the liquid-solid phase change temperature of a cool energy storage material is approximately 10 °C from the perspective of improving coefficient of performance (COP). Moreover, a thermal storage material that forms slurry can realize large heat capacity of working fluids. Since the solid that adheres to the heat transfer surface forms a thermal resistance layer and remarkably reduces the rate of cold storage, it is important to avoid the adhesion of a thick solid layer on the surface so as to realize efficient energy storage. Considering a harvest type cooling unit, the force required for removing the solid phase from the heat transfer surface was studied. Tetra-n-butylammonium Bromide (TBAB) clathrate hydrate was used as a cold storage material. The effect of the heat transfer surface properties on the scraping force for detachment of adhered solid of TBAB hydrate to the heat transfer surface was examined experimentally.
Practical colloidal processing of multication ceramics
Bell, Nelson S.; Monson, Todd C.; Diantonio, Christopher; ...
2015-09-07
The use of colloidal processing principles in the formation of ceramic materials is well appreciated for developing homogeneous material properties in sintered products, enabling novel forming techniques for porous ceramics or 3D printing, and controlling microstructure to enable optimized material properties. The solution processing of electronic ceramic materials often involves multiple cationic elements or dopants to affect microstructure and properties. Material stability must be considered through the steps of colloidal processing to optimize desired component properties. This review provides strategies for preventing material degradation in particle synthesis, milling processes, and dispersion, with case studies of consolidation using spark plasma sinteringmore » of these systems. The prevention of multication corrosion in colloidal dispersions can be achieved by utilizing conditions similar to the synthesis environment or by the development of surface passivation layers. The choice of dispersing surfactants can be related to these surface states, which are of special importance for nanoparticle systems. A survey of dispersant chemistries related to some common synthesis conditions is provided for perovskite systems as an example. Furthermore, these principles can be applied to many colloidal systems related to electronic and optical applications.« less
Fabrication of TEOS/PDMS/F127 hybrid coating materials for conservation of historic stone sculptures
NASA Astrophysics Data System (ADS)
Liu, Yurong; Liu, Jia
2016-08-01
The present work was aimed to develop a new kind of stone conservation materials (TEOS/PDMS/F127 hybrid coating) by a facile sol-gel method for the protection of decayed sandstones of Chongqing Dazu stone sculptures in China. The hydrophobic property, surface morphology, water vapor permeability, ultraviolet aging resistance and mechanical properties were measured to evaluate the effectiveness of TEOS/PDMS/F127 hybrid coating as a stone conservation material. The results showed that the addition of hydroxyl-terminated polydimethylsiloxane (PDMS-OH) contributed to improve the hydrophobic properties and incorporation of PEO-PPO-PEO (F127) surfactant resulted in the formation of superficial protrusions with micro- and nanoscopic structures and overall alteration of surface morphology and roughness, thus preventing the coating materials from cracking. After treatment with TEOS/PDMS/F127 hybrid coating materials, the ultraviolet aging resistance and mechanical properties of stone were also improved without the obvious effects on the breathability and color of the stone, indicating promising applications of TEOS/PDMS/F127 hybrid coating materials for conservation of historic stone sculptures.
Bulk and Thin film Properties of Nanoparticle-based Ionic Materials
NASA Astrophysics Data System (ADS)
Fang, Jason
2008-03-01
Nanoparticle-based ionic materials (NIMS) offer exciting opportunities for research at the forefront of science and engineering. NIMS are hybrid particles comprised of a charged oligomeric corona attached to hard, inorganic nanoparticle cores. Because of their hybrid nature, physical properties --rheological, optical, electrical, thermal - of NIMS can be tailored over an unusually wide range by varying geometric and chemical characteristics of the core and canopy and thermodynamic variables such as temperature and volume fraction. On one end of the spectrum are materials with a high core content, which display properties similar to crystalline solids, stiff waxes, and gels. At the opposite extreme are systems that spontaneously form particle-based fluids characterized by transport properties remarkably similar to simple liquids. In this poster I will present our efforts to synthesize NIMS and discuss their bulk and surface properties. In particular I will discuss our work on preparing smart surfaces using NIMS.
Acoustic sensor for real-time control for the inductive heating process
Kelley, John Bruce; Lu, Wei-Yang; Zutavern, Fred J.
2003-09-30
Disclosed is a system and method for providing closed-loop control of the heating of a workpiece by an induction heating machine, including generating an acoustic wave in the workpiece with a pulsed laser; optically measuring displacements of the surface of the workpiece in response to the acoustic wave; calculating a sub-surface material property by analyzing the measured surface displacements; creating an error signal by comparing an attribute of the calculated sub-surface material properties with a desired attribute; and reducing the error signal below an acceptable limit by adjusting, in real-time, as often as necessary, the operation of the inductive heating machine.
Hulsman, Marc; Hulshof, Frits; Unadkat, Hemant; Papenburg, Bernke J; Stamatialis, Dimitrios F; Truckenmüller, Roman; van Blitterswijk, Clemens; de Boer, Jan; Reinders, Marcel J T
2015-03-01
Surface topographies of materials considerably impact cellular behavior as they have been shown to affect cell growth, provide cell guidance, and even induce cell differentiation. Consequently, for successful application in tissue engineering, the contact interface of biomaterials needs to be optimized to induce the required cell behavior. However, a rational design of biomaterial surfaces is severely hampered because knowledge is lacking on the underlying biological mechanisms. Therefore, we previously developed a high-throughput screening device (TopoChip) that measures cell responses to large libraries of parameterized topographical material surfaces. Here, we introduce a computational analysis of high-throughput materiome data to capture the relationship between the surface topographies of materials and cellular morphology. We apply robust statistical techniques to find surface topographies that best promote a certain specified cellular response. By augmenting surface screening with data-driven modeling, we determine which properties of the surface topographies influence the morphological properties of the cells. With this information, we build models that predict the cellular response to surface topographies that have not yet been measured. We analyze cellular morphology on 2176 surfaces, and find that the surface topography significantly affects various cellular properties, including the roundness and size of the nucleus, as well as the perimeter and orientation of the cells. Our learned models capture and accurately predict these relationships and reveal a spectrum of topographies that induce various levels of cellular morphologies. Taken together, this novel approach of high-throughput screening of materials and subsequent analysis opens up possibilities for a rational design of biomaterial surfaces. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Surface chemistry and tribology of MEMS.
Maboudian, Roya; Carraro, Carlo
2004-01-01
The microscopic length scale and high surface-to-volume ratio, characteristic of microelectro-mechanical systems (MEMS), dictate that surface properties are of paramount importance. This review deals with the effects of surface chemical treatments on tribological properties (adhesion, friction, and wear) of MEMS devices. After a brief review of materials and processes that are utilized in MEMS technology, the relevant tribological and chemical issues are discussed. Various MEMS microinstruments are discussed, which are commonly employed to perform adhesion, friction, and wear measurements. The effects of different surface treatments on the reported tribological properties are discussed.
Titanium as a Reconstruction and Implant Material in Dentistry: Advantages and Pitfalls
Özcan, Mutlu; Hämmerle, Christoph
2012-01-01
Commercial pure titanium (cpTi) has been the material of choice in several disciplines of dentistry due to its biocompatibility, resistance to corrosion and mechanical properties. Despite a number of favorable characteristics, cpTi as a reconstruction and oral implant material has several shortcomings. This paper highlights current knowledge on material properties, passive oxidation film formation, corrosion, surface activation, cell interactions, biofilm development, allergy, casting and machining properties of cpTi for better understanding and potential improvement of this material for its clinical applications.
Modeling the microstructure of surface by applying BRDF function
NASA Astrophysics Data System (ADS)
Plachta, Kamil
2017-06-01
The paper presents the modeling of surface microstructure using a bidirectional reflectance distribution function. This function contains full information about the reflectance properties of the flat surfaces - it is possible to determine the share of the specular, directional and diffuse components in the reflected luminous stream. The software is based on the authorial algorithm that uses selected elements of this function models, which allows to determine the share of each component. Basing on obtained data, the surface microstructure of each material can be modeled, which allows to determine the properties of this materials. The concentrator directs the reflected solar radiation onto the photovoltaic surface, increasing, at the same time, the value of the incident luminous stream. The paper presents an analysis of selected materials that can be used to construct the solar concentrator system. The use of concentrator increases the power output of the photovoltaic system by up to 17% as compared to the standard solution.
Ab initio theory of point defects in oxide materials: structure, properties, chemical reactivity
NASA Astrophysics Data System (ADS)
Pacchioni, Gianfranco
2000-05-01
Point defects play a fundamental role in determining the physical and chemical properties of inorganic materials. This holds not only for the bulk properties but also for the surface of oxides where several kinds of point defects exist and exhibit a rich and complex chemistry. A particularly important defect in oxides is the oxygen vacancy. Depending on the electronic structure of the material the nature of oxygen vacancies changes dramatically. In this article we provide a rationalization of the very different electronic structure of neutral and charged oxygen vacancies in SiO 2 and MgO, two oxide materials with completely different electronic structure (from very ionic, MgO, to largely covalent, SiO 2). We used methods of ab initio quantum chemistry, from density functional theory (DFT) to configuration interaction (CI), to determine the ground and excited state properties of these defects. The theoretical results are combined with recent spectroscopic measurements. A series of observable properties has been determined in this way: defect formation energies, hyperfine interactions in electron paramagnetic resonance (EPR) spectra of paramagnetic centers, optical spectra, surface chemical reactivity. The interplay between experimental and theoretical information allows one to unambiguously identify the structure of oxygen vacancies in these binary oxides and on their surfaces.
Meier, Miriam Julia; Bourauel, Christoph; Roehlike, Jan; Reimann, Susanne; Keilig, Ludger; Braumann, Bert
2014-07-01
The aim of this work was to investigate whether electrochemical surface treatment of nickel-titanium (NiTi) and titanium-molybdenum (TiMo) archwires (OptoTherm and BetaTitan; Ortho-Dent Specials, Kisdorf, Germany) reduces friction inside the bracket-archwire complex. We also evaluated further material properties and compared these to untreated wires. The material properties of the surface-treated wires (Optotherm/LoFrix and BetaTitan/LoFrix) were compared to untreated wires made by the same manufacturer (see above) and by another manufacturer (Neo Sentalloy; GAC, Bohemia, NY, USA). We carried out a three-point bending test, leveling test, and friction test using an orthodontic measurement and simulation system (OMSS). In addition, a pure bending test was conducted at a special test station, and scanning electron micrographs were obtained to analyze the various wire types for surface characteristics. Finally, edge beveling and cross-sectional dimensions were assessed. Force losses due to friction were reduced by 10 percentage points (from 36 to 26%) in the NiTi and by 12 percentage points (from 59 to 47%) in the TiMo wire specimens. Most of the other material properties exhibited no significant changes after surface treatment. While the three-point bending tests revealed mildly reduced force levels in the TiMo specimens due to diameter losses of roughly 2%, these force levels remained almost unchanged in the NiTi specimens. Compared to untreated NiTi and TiMo archwire specimens, the surface-treated specimens demonstrated reductions in friction loss by 10 and 12 percentage points, respectively.
NASA Astrophysics Data System (ADS)
Randi, Joseph A., III
2005-12-01
This thesis makes use of microindentation, nanoindentation and nanoscratching methods to better understand the mechanical properties of single crystalline silicon, calcium fluoride, and magnesium fluoride. These properties are measured and are used to predict the material's response to material removal, specifically by grinding and polishing, which is a combination of elastic, plastic and fracture processes. The hardness anisotropy during Knoop microindentation, hardness from nanoindentation, and scratch morphology from nanoscratching are reported. This information is related to the surface microroughness from grinding. We show that mechanical property relationships that predict the surface roughness from lapping and deterministic microgrinding of optical glasses are applicable to single crystals. We show the range of hardness from some of the more common crystallographic faces. Magnesium fluoride, having a tetragonal structure, has 2-fold hardness anisotropy. Nanoindentation, as expected provides higher hardness than microindentation, but anisotropy is not observed. Nanoscratching provides the scratch profile during loading, after the load has been removed, and the coefficient of friction during the loading. Ductile and brittle mode scratching is present with brittle mode cracking being orientation specific. Subsurface damage (SSD) measurements are made using a novel process known as the MRF technique. Magnetorheological finishing is used to polish spots into the ground surface where SSD can be viewed. SSD is measured using an optical microscope and knowledge of the spot profile. This technique is calibrated with a previous technique and implemented to accurately measure SSD in single crystals. The data collected are compared to the surface microroughness of the ground surface, resulting in an upper bound relationship. The results indicate that SSD is always less than 1.4 times the peak-to-valley surface microroughness for single crystals regardless of the grinding conditions or mechanical properties. Single crystals have greater strain rate effects associated than optical glasses. Hence, the strain rate is investigated during grinding by applying more aggressive process parameters and measuring the resulting surface finish. It is observed that while there are weak materials and crystallographic orientation effects from process parameters, the changes in strain rate do not affect the surface finish of these materials.
Temperature dependence of nonlinear optical properties in Li doped nano-carbon bowl material
NASA Astrophysics Data System (ADS)
Li, Wei-qi; Zhou, Xin; Chang, Ying; Quan Tian, Wei; Sun, Xiu-Dong
2013-04-01
The mechanism for change of nonlinear optical (NLO) properties with temperature is proposed for a nonlinear optical material, Li doped curved nano-carbon bowl. Four stable conformations of Li doped corannulene were located and their electronic properties were investigated in detail. The NLO response of those Li doped conformations varies with relative position of doping agent on the curved carbon surface of corannulene. Conversion among those Li doped conformations, which could be controlled by temperature, changes the NLO response of bulk material. Thus, conformation change of alkali metal doped carbon nano-material with temperature rationalizes the variation of NLO properties of those materials.
Determination of Hydrophobic Contact Angle of Epoxy Resin Compound Silicon Rubber and Silica
NASA Astrophysics Data System (ADS)
Syakur, Abdul; Hermawan; Sutanto, Heri
2017-04-01
Epoxy resin is a thermosetting polymeric material which is very good for application of high voltage outdoor insulator in electrical power system. This material has several advantages, i.e. high dielectric strength, light weight, high mechanical strength, easy to blend with additive, and easy maintenance if compared to that of porcelain and glass outdoor insulators which are commonly used. However, this material also has several disadvantages, i.e. hydrophilic property, very sensitive to aging and easily degraded when there is a flow of contaminants on its surface. The research towards improving the performance of epoxy resin insulation materials were carried out to obtain epoxy resin insulating material with high water repellent properties and high surface tracking to aging. In this work, insulating material was made at room temperature vulcanization, with material composition: Diglycidyl Ether Bisphenol A (DGEBA), Metaphenylene Diamine (MPDA) as hardener with stoichiometric value of unity, and nanosilica mixed with Silicon Rubber (SiR) with 10% (RTV21), 20% (RTV22), 30% (RTV23), 40% (RTV24) and 50% (RTV25) variation. The usage of nanosilica and Silicon Rubber (SIR) as filler was expected to provide hydrophobic properties and was able to increase the value of surface tracking of materials. The performance of the insulator observed were contact angle of hydrophobic surface materials. Tests carried out using Inclined Plane Tracking procedure according to IEC 60-587: 1984 with Ammonium Chloride (NH4Cl) as contaminants flowed using peristaltic pumps. The results show that hydrophobic contact angle can be determined from each sample, and RTV25 has maximum contact angle among others.
Application of Glow Discharge Plasma to Alter Surface Properties of Materials
NASA Technical Reports Server (NTRS)
Trigwell, Steve; Buhler, Charles R.; Calle, Carlos I.
2005-01-01
Some polymer materials that are considered important for spaceport operations are rendered noncompliant when subjected to the Kennedy Space Center (KSC) Standard electrostatic testing. These materials operate in stringent environmental conditions, such as high humidity. Treating materials that fail electrostatic testing and altering their surface properties so that they become compliant would result in considerable cost savings. Significant improvement in electrostatic dissipation of Saf-T-Vu PVC after treatment with air Atmospheric Plasma Glow Discharge (APGD) was observed and the material now passed the KSC electrostatic test. The O:C ratio on the surface, as monitored by X-ray Photoelectron Spectroscopy, increased from 0.165 tO 0.275 indicating enhanced oxidation, and surface contact angle measurements decreased from 107.5 to 72.6 showing increased hydrophilicity that accounted for the increased conductivity. Monitoring of the aging showed that the materials hydrophobic recovery resulted in it failing the electrostatic test 30 hours after treatment. This was probably due to the out-diffusion of the added Zn, Ba, and Cd salt stabilizers detected on the surface and/or diffusion of low molecular weight oligomers. On going work includes improving the long term hydrophilicity by optimizing the APGD process with different gas mixtures. Treatment of other spaceport materials is also presented.
Sorption of agrochemical model compounds by sorbent materials containing beta-cyclodextrin.
Wilson, Lee D; Mohamed, Mohamed H; Guo, Rui; Pratt, Dawn Y; Kwon, Jae Hyuck; Mahmud, Sarker T
2010-04-01
Polymeric sorbent materials that incorporate beta-cyclodextrin (CD) have been prepared and their sorption behavior toward two model agrochemical contaminant compounds, p-nitrophenol (PNP) and methyl chloride examined. The sorption of PNP was studied in aqueous solution using ultraviolet-visible (UV-Vis) spectroscopy, whereas the sorption of methyl chloride from the gas phase was studied using a Langmuir adsorption method. The sorption results for PNP in solution were compared between granular activated carbon (GAC), modified GAC, CD copolymers, and CD-based mesoporous silica hybrid materials. Nitrogen porosimetry at 77 K was used to estimate the surface area and pore structure properties of the sorbent materials. The sorbents displayed variable surface areas as follows: copolymers (36.2-157 m(2)/g), CD-silica materials (307-906 m(2)/g), surface modified GAC (657 m(2)/g), and granular activated carbon (approximately 10(3) m(2)/g). The sorption capacities for PNP and methyl chloride with the different sorbents are listed in descending order as follows: GAC > copolymers > surface modified GAC > CD-silica hybrid materials. In general, the differences in the sorption properties of the sorbents were related to the following: (i) surface area of the sorbent, (ii) CD content and accessibility, (iii) and the chemical nature of the sorbent material.
Recognizing Materials using Perceptually Inspired Features
Sharan, Lavanya; Liu, Ce; Rosenholtz, Ruth; Adelson, Edward H.
2013-01-01
Our world consists not only of objects and scenes but also of materials of various kinds. Being able to recognize the materials that surround us (e.g., plastic, glass, concrete) is important for humans as well as for computer vision systems. Unfortunately, materials have received little attention in the visual recognition literature, and very few computer vision systems have been designed specifically to recognize materials. In this paper, we present a system for recognizing material categories from single images. We propose a set of low and mid-level image features that are based on studies of human material recognition, and we combine these features using an SVM classifier. Our system outperforms a state-of-the-art system [Varma and Zisserman, 2009] on a challenging database of real-world material categories [Sharan et al., 2009]. When the performance of our system is compared directly to that of human observers, humans outperform our system quite easily. However, when we account for the local nature of our image features and the surface properties they measure (e.g., color, texture, local shape), our system rivals human performance. We suggest that future progress in material recognition will come from: (1) a deeper understanding of the role of non-local surface properties (e.g., extended highlights, object identity); and (2) efforts to model such non-local surface properties in images. PMID:23914070
Saka, Cafer
2018-01-02
The use of carbon materials for many applications is due to the unique diversity of structures and properties ranging from chemical bonds between the carbon atoms of the materials to nanostructures, crystallite alignment, and microstructures. Carbon nanotubes and other nanoscale carbonaceous materials draw much attention due to their physical and chemical properties, such as high strength, high resistance to corrosion, electrical and thermal conductivity, stability and a qualified adsorbent. Carbon-based nanomaterials, which have a relatively large specific area and layered structure, can be used as an adsorbent for efficient removal of organic and inorganic contaminants. However, one of the biggest obstacles to the development of carbon-based nanomaterials adsorbents is insolubility and the lack of functional groups on the surface. There are several approaches to introduce functional groups on carbon nanotubes. One of these approaches, plasma applications, now has an important place in the creation of surface functional groups as a flexible, fast, and environmentally friendly method. This review focuses on recent information concerning the surface functionalization and modification of plasma treated carbon nanotube. This review considers the surface properties, advantages, and disadvantages of plasma-applied carbon nanotubes. It also examines the reaction mechanisms involved in the functional groups on the surface.
Surface corrections for peridynamic models in elasticity and fracture
NASA Astrophysics Data System (ADS)
Le, Q. V.; Bobaru, F.
2018-04-01
Peridynamic models are derived by assuming that a material point is located in the bulk. Near a surface or boundary, material points do not have a full non-local neighborhood. This leads to effective material properties near the surface of a peridynamic model to be slightly different from those in the bulk. A number of methods/algorithms have been proposed recently for correcting this peridynamic surface effect. In this study, we investigate the efficacy and computational cost of peridynamic surface correction methods for elasticity and fracture. We provide practical suggestions for reducing the peridynamic surface effect.
The properties and applications of nanodiamonds.
Mochalin, Vadym N; Shenderova, Olga; Ho, Dean; Gogotsi, Yury
2011-12-18
Nanodiamonds have excellent mechanical and optical properties, high surface areas and tunable surface structures. They are also non-toxic, which makes them well suited to biomedical applications. Here we review the synthesis, structure, properties, surface chemistry and phase transformations of individual nanodiamonds and clusters of nanodiamonds. In particular we discuss the rational control of the mechanical, chemical, electronic and optical properties of nanodiamonds through surface doping, interior doping and the introduction of functional groups. These little gems have a wide range of potential applications in tribology, drug delivery, bioimaging and tissue engineering, and also as protein mimics and a filler material for nanocomposites.
Size-Dependent Materials Properties Toward a Universal Equation
2010-01-01
Due to the lack of experimental values concerning some material properties at the nanoscale, it is interesting to evaluate this theoretically. Through a “top–down” approach, a universal equation is developed here which is particularly helpful when experiments are difficult to lead on a specific material property. It only requires the knowledge of the surface area to volume ratio of the nanomaterial, its size as well as the statistic (Fermi–Dirac or Bose–Einstein) followed by the particles involved in the considered material property. Comparison between different existing theoretical models and the proposed equation is done. PMID:20596422
NASA Astrophysics Data System (ADS)
Ji, Songbai; Fan, Xiaoyao; Hartov, Alex; Roberts, David W.; Paulsen, Keith D.
2013-03-01
Accurate measurement of soft tissue material properties is critical for characterizing its biomechanical behaviors but can be challenging especially for the human brain. Recently, we have applied stereovision to track motion of the exposed cortical surface noninvasively for patients undergoing open skull neurosurgical operations. In this paper, we conduct a proof-of-concept study to evaluate the feasibility of the technique in measuring material properties of soft tissue in vivo using a tofu phantom. A block of soft tofu was prepared with black pepper randomly sprinkled on the top surface to provide texture to facilitate image-based displacement mapping. A disk-shaped indenter made of high-density tungsten was placed on the top surface to induce deformation through its weight. Stereoscopic images were acquired before and after indentation using a pair of stereovision cameras mounted on a surgical microscope with its optical path perpendicular to the imaging surface. Rectified left camera images obtained from stereovision reconstructions were then co-registered using optical flow motion tracking from which a 2D surface displacement field around the indenter disk was derived. A corresponding finite element model of the tofu was created subjected to the indenter weight and a hyperelastic material model was chosen to account for large deformation around the intender edges. By successively assigning different shear stiffness constant, computed tofu surface deformation was obtained, and an optimal shear stiffness was obtained that matched the model-derived surface displacements with those measured from the images. The resulting quasi-static, long-term shear stiffness for the tofu was 1.04 k Pa, similar to that reported in the literature. We show that the stereovision and free-weight indentation techniques coupled with an FE model are feasible for in vivo measurement of the human brain material properties, and it may also be feasible for other soft tissues.
NASA Astrophysics Data System (ADS)
Carli, C.; Brunetto, R.; Strazzulla, G.; Serventi, G.; Poulet, F.; Capaccioni, F.; Langevin, Y.; Gardes, E.; Martinez, R.; Boduch, P.; Domaracka, A.; Rothard, H.
2018-05-01
Mercury’s surface is affected by space weathering processes, interesting mineral properties. Here, we present a spectral study of swift heavy ion irradiation of two minerals, olivine and nepheline, as a simulation of heavy ion irradiation at Mercury.
Effect of Mg doping on the Structure and Reflectivity of Alumina surfaces
NASA Astrophysics Data System (ADS)
Pennycook, Timothy; Idrobo, Juan C.; Varga, Kalman; Pantelides, Sokrates T.
2008-03-01
Mg is used in the fabrication of Al alloys to increase the strength of the material. In typical applications, a layer of alumina is present on the surface. The high diffusivity and chemical reactivity of Mg means that Mg can migrate from the bulk alloy to the alumina film and the surface, where it can affect the structural and optical properties of the material. The doping of Al alloys with Mg is known to cause ``darkening'' and affect the coloration of the material. We will report results of first principles density functional theory calculations that explore the segregation modes of Mg in the near-surface region of alumina and the corresponding effect on optical properties, i.e., reflectivity. This work is supported in part by NSF grant DMR-0513048 and ALCOA Inc.
NASA Astrophysics Data System (ADS)
Kaptay, George
2018-05-01
Nano-materials are materials with at least one nano-phase. A nano-phase is a phase with at least one of its dimensions below 100 nm. It is shown here that nano-phases have at least 1% of their atoms along their surface layer. The ratio of surface atoms is proportional to the specific surface area of the phase, defined as the ratio of its surface area to its volume. Each specific/molar property has its bulk value and its surface value for the given phase, being always different, as the energetic states of the atoms in the bulk and in the surface layer of a phase are different. The average specific/molar property of a nano-phase is modeled here as a linear combination of the bulk and surface values of the same property, scaled with the ratio of the surface atoms. That makes the performance of all nano-phases proportional to their specific surface area. As the characteristic size of the nano-phase is inversely proportional to its specific surface area, all specific/molar properties of nano-phases are inversely proportional to the characteristic size of the phase. This is applied to the size dependence of the molar Gibbs energy of the nano-phase, which appears to be in agreement with the thermodynamics of Gibbs. This agreement proves the general validity of the present model on the size dependence of the specific/molar properties of independent nano-phases. It is shown that the properties of nano-phases are different for independent nano-phases (surrounded only by their equilibrium vapor phase) and for nano-phases in multi-phase situations, such as a liquid nano-droplet in the sessile drop configuration.
NASA Astrophysics Data System (ADS)
Zeng, Yu; Chen, XiFang; Yi, Zao; Yi, Yougen; Xu, Xibin
2018-05-01
The pyramidal silicon substrate is formed by wet etching, then ZnO nanorods are grown on the surface of the pyramidal microstructure by a hydrothermal method to form a moth-eye composite heterostructure. The composite heterostructure of this material determines its excellent anti-reflection properties and ability to absorb light from all angles. In addition, due to the effective heterojunction binding area, the composite micro/nano structure has excellent photoelectric conversion performance. Its surface structure and the large specific surface area gives the material super hydrophilicity, excellent gas sensing characteristic, and photocatalytic properties. Based on the above characteristics, the micro/nano heterostructure can be used in solar cells, sensors, light-emitting devices, and photocatalytic fields.
Gold nanorods-silicone hybrid material films and their optical limiting property
NASA Astrophysics Data System (ADS)
Li, Chunfang; Qi, Yanhai; Hao, Xiongwen; Peng, Xue; Li, Dongxiang
2015-10-01
As a kind of new optical limiting materials, gold nanoparticles have optical limiting property owing to their optical nonlinearities induced by surface plasmon resonance (SPR). Gold nanorods (GNRs) possess transversal SPR absorption and tunable longitudinal SPR absorption in the visible and near-infrared region, so they can be used as potential optical limiting materials against tunable laser pulses. In this letter, GNRs were prepared using seed-mediated growth method and surface-modified by silica coating to obtain good dispersion in polydimethylsiloxane prepolymers. Then the silicone rubber films doped with GNRs were prepared after vulcanization, whose optical limiting property and optical nonlinearity were investigated. The silicone rubber samples doped with more GNRs were found to exhibit better optical limiting performance.
Kakamu, Takeyasu; Kanda, Hideyuki; Tsuji, Masayoshi; Kobayashi, Daisuke; Miyake, Masao; Hayakawa, Takehito; Katsuda, Shin-ichiro; Mori, Yayoi; Okouchi, Toshiyasu; Hazama, Akihiro; Fukushima, Tetsuhito
2013-01-01
After the Great East Japan Earthquake on 11 March 2011, the environmental radiation dose in Fukushima City increased. On 11 April, 1 mo after the earthquake, the environmental radiation dose rate at various surfaces in the same area differed greatly by surface property. Environmental radiation measurements continue in order to determine the estimated time to 50% reduction in environmental radiation dose rates by surface property in order to make suggestions for decontamination in Fukushima. The measurements were carried out from 11 April to 11 November 2011. Forty-eight (48) measurement points were selected, including four kinds of ground surface properties: grass (13), soil (5), artificial turf (7), and asphalt (23). Environmental radiation dose rate was measured at heights of 100 cm above the ground surface. Time to 50% reduction of environmental radiation dose rates was estimated for each ground surface property. Radiation dose rates on 11 November had decreased significantly compared with those on 11 April for all surface properties. Artificial turf showed the longest time to 50% reduction (544.32 d, standard error: 96.86), and soil showed the shortest (213.20 d, standard error: 35.88). The authors found the environmental radiation dose rate on artificial materials to have a longer 50% reduction time than that on natural materials. These results contribute to determining an order of priority for decontamination after nuclear disasters.
Current characterization methods for cellulose nanomaterials.
Foster, E Johan; Moon, Robert J; Agarwal, Umesh P; Bortner, Michael J; Bras, Julien; Camarero-Espinosa, Sandra; Chan, Kathleen J; Clift, Martin J D; Cranston, Emily D; Eichhorn, Stephen J; Fox, Douglas M; Hamad, Wadood Y; Heux, Laurent; Jean, Bruno; Korey, Matthew; Nieh, World; Ong, Kimberly J; Reid, Michael S; Renneckar, Scott; Roberts, Rose; Shatkin, Jo Anne; Simonsen, John; Stinson-Bagby, Kelly; Wanasekara, Nandula; Youngblood, Jeff
2018-04-23
A new family of materials comprised of cellulose, cellulose nanomaterials (CNMs), having properties and functionalities distinct from molecular cellulose and wood pulp, is being developed for applications that were once thought impossible for cellulosic materials. Commercialization, paralleled by research in this field, is fueled by the unique combination of characteristics, such as high on-axis stiffness, sustainability, scalability, and mechanical reinforcement of a wide variety of materials, leading to their utility across a broad spectrum of high-performance material applications. However, with this exponential growth in interest/activity, the development of measurement protocols necessary for consistent, reliable and accurate materials characterization has been outpaced. These protocols, developed in the broader research community, are critical for the advancement in understanding, process optimization, and utilization of CNMs in materials development. This review establishes detailed best practices, methods and techniques for characterizing CNM particle morphology, surface chemistry, surface charge, purity, crystallinity, rheological properties, mechanical properties, and toxicity for two distinct forms of CNMs: cellulose nanocrystals and cellulose nanofibrils.
NASA Astrophysics Data System (ADS)
Guignier, Claire; Bueno, Marie-Ange; Camillieri, Brigitte; Durand, Bernard
2017-10-01
Carbon nanotubes (CNTs) grafted on carbon surfaces can be used to reinforce composite materials. During an industrial process of CNTs production and composite processing, friction stresses will be applied on CNTs. This study showed that CNTs formed a transfer film under friction stresses and that the wear of the CNTs has no influence on the wettability of the surface, so we can predict no decrease in the properties of composites.
NASA Astrophysics Data System (ADS)
Zemljič, Lidija Fras; Tkavc, Tina; Vesel, Alenka; Šauperl, Olivera
2013-01-01
In this paper advanced surface treatment of PET plastic film is presented for introduction of antimicrobial properties as a potential application for food (as for example meat) packaging material. Adsorption/desorption of chitosan onto PET plastic film surface was studied using several analytical techniques such as: X-Ray Photoelectron Spectroscopy (XPS), ATR-FTIR spectroscopy and titrations. Kinetic desorption of chitosan from PET surface was analysed by polyelectrolyte titration and spectrophotometric Ninhydrine reaction. Standard antimicrobial test ASTM E2149-01 was performed for functionalised PET materials in order to determine their antimicrobial properties; i. e. to measure the reductions of some of the meat pathogens; such as bacteria Salmonella enterica, Campylobacter spp., Escherichia coli, Listeria monocytogenes and fungi Candida albicans.
Preface: Special Topic Section on Advanced Electronic Structure Methods for Solids and Surfaces.
Michaelides, Angelos; Martinez, Todd J; Alavi, Ali; Kresse, Georg; Manby, Frederick R
2015-09-14
This Special Topic section on Advanced Electronic Structure Methods for Solids and Surfaces contains a collection of research papers that showcase recent advances in the high accuracy prediction of materials and surface properties. It provides a timely snapshot of a growing field that is of broad importance to chemistry, physics, and materials science.
Surface Termination of the Metal-Organic Framework HKUST-1: A Theoretical Investigation.
Amirjalayer, Saeed; Tafipolsky, Maxim; Schmid, Rochus
2014-09-18
The surface morphology and termination of metal-organic frameworks (MOF) is of critical importance in many applications, but the surface properties of these soft materials are conceptually different from those of other materials like metal or oxide surfaces. Up to now, experimental investigations are scarce and theoretical simulations have focused on the bulk properties. The possible surface structure of the archetypal MOF HKUST-1 is investigated by a first-principles derived force field in combination with DFT calculations of model systems. The computed surface energies correctly predict the [111] surface to be most stable and allow us to obtain an unprecedented atomistic picture of the surface termination. Entropic factors are identified to determine the preferred surface termination and to be the driving force for the MOF growth. On the basis of this, reported strategies like employing "modulators" during the synthesis to tailor the crystal morphology are discussed.
Hydroxylation of organic polymer surface: method and application.
Yang, Peng; Yang, Wantai
2014-03-26
It may be hardly believable that inert C-H bonds on a polymeric material surface could be quickly and efficiently transformed into C-OH by a simple and mild way. Thanks to the approaches developed recently, it is now possible to transform surface H atoms of a polymeric substrate into monolayer OH groups by a simple/mild photochemical reaction. Herein the method and application of this small-molecular interfacial chemistry is highlighted. The existence of hydroxyl groups on material surfaces not only determines the physical and chemical properties of materials but also provides effective reaction sites for postsynthetic sequential modification to fulfill the requirements of various applications. However, organic synthetic materials based on petroleum, especially polyolefins comprise mainly C and H atoms and thus present serious surface problems due to low surface energy and inertness in reactivity. These limitations make it challenging to perform postsynthetic surface sequential chemical derivatization toward enhanced functionalities and properties and also cause serious interfacial problems when bonding or integrating polymer substrates with natural or inorganic materials. Polymer surface hydroxylation based on direct conversion of C-H bonds on polymer surfaces is thus of significant importance for academic and practical industrial applications. Although highly active research results have reported on small-molecular C-H bond activation in solution (thus homogeneous), most of them, featuring the use of a variety of transition metals as catalysts, present a slow reaction rate, a low atom economy and an obvious environmental pollution. In sharp contrast to these conventional C-H activation strategies, the present Spotlight describes a universal confined photocatalytic oxidation (CPO) system that is able to directly convert polymer surface C-H bonds to C-OSO3(-) and, subsequently, to C-OH through a simple hydrolysis. Generally speaking, these newly implanted hydroxyl groups preserve their own reactivity toward other complementary compounds, thus creating a novel base with distinct surface properties. Thanks to this functionalized platform, a wide range of organic, inorganic and metal materials have been attached to conventional organic polymer substrates through the rational engineering of surface molecular templates from small functional groups to macromolecules. It is expected that the proposed novel CPO method and its versatile usages in advanced material applications will offer new opportunities for a variety of scientific communities, especially for those working on surface/interface modulation.
Wesolowski, David J.; Wang, Hsiu -Wen; Page, Katharine L.; ...
2015-12-08
MXenes are a recently discovered family of two-dimensional (2D) early transition metal carbides and carbonitrides, which have already shown many attractive properties and great promise in energy storage and many other applications. But, a complex surface chemistry and small coherence length have been obstacles in some applications of MXenes, also limiting the accuracy of predictions of their properties. In this study, we describe and benchmark a novel way of modeling layered materials with real interfaces (diverse surface functional groups and stacking order between the adjacent monolayers) against experimental data. The structures of three kinds of Ti 3C 2T x MXenesmore » (T stands for surface terminating species, including O, OH, and F) produced under different synthesis conditions were resolved for the first time using atomic pair distribution function obtained by high-quality neutron total scattering. We present the true nature of the material can be easily captured with the sensitivity of neutron scattering to the surface species of interest and the detailed “third-generation” structure model. The modeling approach leads to new understanding of MXene structural properties and can replace the currently used idealized models in predictions of a variety of physical, chemical, and functional properties of Ti 3C 2-based MXenes. Moreover, the developed models can be employed to guide the design of new MXene materials with selected surface termination and controlled contact angle, catalytic, optical, electrochemical, and other properties. Finally, we suggest that the multilevel structural modeling should form the basis for a generalized methodology on modeling diffraction and pair distribution function data for 2D and layered materials.« less
NASA Astrophysics Data System (ADS)
Agrawal, Narendra Kumar; Sharma, Tamanna Kumari; Chauhan, Manish; Agarwal, Ravi; Vijay, Y. K.; Swami, K. C.
2016-05-01
Biomaterials are nonviable material used in medical devices, intended to interact with biological systems, which are becoming necessary for the development of artificial material for biological systems such as artificial skin diaphragm, valves for heart and kidney, lenses for eye etc. Polymers having novel properties like antibacterial, antimicrobial, high adhesion, blood compatibility and wettability are most suitable for synthesis of biomaterial, but all of these properties does not exist in any natural or artificial polymeric material. Nano particles and plasma treatment can offer these properties to the polymers. Hence a new nano-biomaterial has been developed by modifying the surface and chemical properties of Ag nanocomposite polymer membranes (NCPM) by Argon ion plasma treatment. These membranes were characterized using different techniques for surface and chemical modifications occurred. Bacterial adhesion and wettability were also tested for these membranes, to show direct use of this new class of nano-biomaterial for biomedical applications.
NASA Astrophysics Data System (ADS)
Nieroda, Jolanta; Rybak, Andrzej; Kmita, Grzegorz; Sitarz, Maciej
2018-05-01
Metallic glasses are metallic materials, which exhibit an amorphous structure. These are mostly three or more component alloys, and some of them are magnetic metals. Materials of this kind are characterized by high electrical resistivity and at the same time exhibit very good magnetic properties (e.g. low-magnetization loss). The above mentioned properties are very useful in electrical engineering industry and this material is more and more popular as a substance for high-efficiency electrical devices production. This industry area is still evolving, and thus even higher efficiency of apparatus based on amorphous material is expected. A raw material must be carefully investigated and characterized before the main production process is started. Presented work contains results of complementary examination of amorphous metal Metglas 2605. Studies involve two ways to obtain clean and oxidized surface with high reactivity, namely degreasing followed by annealing process and plasma treatment. The amorphous metal parameters were examined by means of several techniques: surface free energy (SFE) measurements by sessile drop method, X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and both ex situ and in situ Raman spectroscopy. Additionally, influence of plasma parameters on wetting properties were optimized in systematic way with Design of Experiments (DOE) method. A wide range of used methods allow to fully investigate the amorphous metal material during preliminary preparation of surface. Obtained results provide information about appropriate parameters that should be applied in order to obtain highly reactive surface with functional oxide layer on it.
Enhancement of endothelialisation of coronary stents by laser surface engineering.
Li, Lin; Mirhosseini, Nazanin; Michael, Alun; Liu, Zhu; Wang, Tao
2013-11-01
Coronary stents have been widely used in the treatment of coronary heart disease. However, complications have hampered the long-term success of the device. Bare-metal stents (BMS) have a high rate of restenosis and poor endothelialisation. The drug-eluting stents (DES), although dramatically reduce restenosis, significantly prevent endothelialisation leading to late thrombosis and behave the same way as BMS after drug releasing. Rapid adhesion and growth of endothelial cells on the stent surface is a key process for early vascular healing after coronary stenting which contributes to the reduction of major complications. Surface properties manipulate cell growth and directly determine the success and life-span of the implants. However, the ideal surface properties of coronary stents are not yet fully understood. The objective of this research is to understand how surface micro/nano textures and associated material chemistry changes generated by a laser beam affect the behavior of endothelial cells on bare metal 316L stents. A high power laser beam was applied to modifying the surface properties of 316L coronary stent material and the commercial coronary stents, followed by examination of the adhesion and proliferation of human coronary endothelial cells that were growing on the surfaces. Surface properties were examined by scanning electron microscopy, contact angle measurement, and X-ray photoelectron spectroscopy. A novel surface with combined micro/nano features was created on stent material 316L and coronary stent with a specific surface chemistry. This surface gives rise to a threefold increase in the adhesion and eightfold increase in the proliferation of endothelial cells. Interestingly, such effects were only observed when the surface texture was produced in the nitrogen atmosphere suggesting the importance of the surface chemistry, including the dramatic increase of chromium nitride, for the interaction of endothelial cells with the material surface. This novel surface is also super-hydrophilic with close to zero water/cell culture fluid contact angles and low cytotoxicity. A novel surface created by laser surface-engineering with a combination of defined surface texture and surface chemistry was found beneficial for the improvement of coronary stent endothelialisation. The technology presented here could work with both DES and BMS with added benefit for the improvement of the biocompatibility of current coronary stents. © 2013 Wiley Periodicals, Inc.
Microstructural and Morphological Factors Affecting Uncertainty in Small Scale Mechanical Properties
NASA Astrophysics Data System (ADS)
Maughan, Michael R.
If materials are to be developed from the ground up, the process will be dependent upon accurate and well-defined models of material behavior. These models can be closed-form solutions developed from first principles, simulations, or empirically derived equations, among others. Material behavior at the mesoscale is in general well understood, having had several centuries of study. However, behavior at the micro or nanoscale still requires characterization. Understanding the collective influence of the microstructure on the bulk material, for example with models like the Hall-Petch relation, has advanced our ability to manipulate the material to our advantage. We now have the ability to study not only the structure of the material, but also the material behavior and properties at the nanoscale. Understanding this behavior is critical to developing a framework for interpreting and utilizing these properties in materials design. This research aims to improve the fundamental understanding of the mechanical performance of materials and the subsequent variation in measured properties. The literature reports widely varying material properties such as hardness, elastic modulus, and yield point when measured at the nanoscale. Proposed variation mechanisms in these properties include surface preparation, error in measurement, heterogeneous dislocation density and distribution, crystal orientation, surface oxide film fracture, and others. Among other things, this work shows that these sources of variation can be determined and quantified, and that this information can be utilized as a characterization and/or predictive tool. The main goals of this work are to 1) continue basic research on sources of variation in the nanoscale properties of materials, specifically hardness and modulus in crystalline and glassy solids, 2) study the abrupt transition from elastic to plastic material behavior known as pop-in and resolve the problem of pseudo-elastic behavior prior to plasticity, and 3) integrate the sources of and propagate the variation into materials simulations, 4) study the influence of dislocation processes on indentation size effects, and 5) apply this learning to difficult to measure or interpret materials applications.
Magnetic and electrical control of engineered materials
Schuller, Ivan K.; de La Venta Granda, Jose; Wang, Siming; Ramirez, Gabriel; Erekhinskiy, Mikhail; Sharoni, Amos
2016-08-16
Methods, systems, and devices are disclosed for controlling the magnetic and electrical properties of materials. In one aspect, a multi-layer structure includes a first layer comprising a ferromagnetic or ferrimagnetic material, and a second layer positioned within the multi-layer structure such that a first surface of the first layer is in direct physical contact with a second surface of the second layer. The second layer includes a material that undergoes structural phase transitions and metal-insulator transitions upon experiencing a change in temperature. One or both of the first and second layers are structured to allow a structural phase change associated with the second layer cause a change magnetic properties of the first layer.
Ejecta Production and Properties
NASA Astrophysics Data System (ADS)
Williams, Robin
2017-06-01
The interaction of an internal shock with the free surface of a dense material leads to the production of jets of particulate material from the surface into its environment. Understanding the processes which control the production of these jets -- both their occurrence, and properties such as the mass, velocity, and particle size distribution of material injected -- has been a topic of active research at AWE for over 50 years. I will discuss the effect of material physics, such as strength and spall, on the production of ejecta, drawing on experimental history and recent calculations, and consider the processes which determine the distribution of particle sizes which result as ejecta jets break up. British Crown Owned Copyright 2017/AWE.
Cell adhesion pattern created by OSTE polymers.
Liu, Wenjia; Li, Yiyang; Ding, Xianting
2017-04-24
Engineering surfaces with functional polymers is a crucial issue in the field of micro/nanofabrication and cell-material interface studies. For many applications of surface patterning, it does not need cells to attach on the whole surface. Herein, we introduce a novel polymer fabrication protocol of off-stoichiometry thiol-ene (OSTE) polymers to create heterogeneity on the surface by utilizing 3D printing and soft-lithography. By choosing two OSTE polymers with different functional groups, we create a pattern where only parts of the surface can facilitate cell adhesion. We also study the hydrophilic property of OSTE polymers by mixing poly(ethylene glycol) (PEG) directly with pre-polymers and plasma treatments afterwards. Moreover, we investigate the effect of functional groups' excess ratio and hydrophilic property on the cell adhesion ability of OSTE polymers. The results show that the cell adhesion ability of OSTE materials can be tuned within a wide range by the coupling effect of functional groups' excess ratio and hydrophilic property. Meanwhile, by mixing PEG with pre-polymers and undergoing oxygen plasma treatment afterward can significantly improve the hydrophilic property of OSTE polymers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaelides, Angelos, E-mail: angelos.michaelides@ucl.ac.uk; Martinez, Todd J.; Alavi, Ali
This Special Topic section on Advanced Electronic Structure Methods for Solids and Surfaces contains a collection of research papers that showcase recent advances in the high accuracy prediction of materials and surface properties. It provides a timely snapshot of a growing field that is of broad importance to chemistry, physics, and materials science.
Nano- and microstructured materials for in vitro studies of the physiology of vascular cells
Chen, Hao; Biela, Sarah A; Kaufmann, Dieter
2016-01-01
The extracellular environment of vascular cells in vivo is complex in its chemical composition, physical properties, and architecture. Consequently, it has been a great challenge to study vascular cell responses in vitro, either to understand their interaction with their native environment or to investigate their interaction with artificial structures such as implant surfaces. New procedures and techniques from materials science to fabricate bio-scaffolds and surfaces have enabled novel studies of vascular cell responses under well-defined, controllable culture conditions. These advancements are paving the way for a deeper understanding of vascular cell biology and materials–cell interaction. Here, we review previous work focusing on the interaction of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) with materials having micro- and nanostructured surfaces. We summarize fabrication techniques for surface topographies, materials, geometries, biochemical functionalization, and mechanical properties of such materials. Furthermore, various studies on vascular cell behavior and their biological responses to micro- and nanostructured surfaces are reviewed. Emphasis is given to studies of cell morphology and motility, cell proliferation, the cytoskeleton and cell-matrix adhesions, and signal transduction pathways of vascular cells. We finalize with a short outlook on potential interesting future studies. PMID:28144512
The IRGen infrared data base modeler
NASA Technical Reports Server (NTRS)
Bernstein, Uri
1993-01-01
IRGen is a modeling system which creates three-dimensional IR data bases for real-time simulation of thermal IR sensors. Starting from a visual data base, IRGen computes the temperature and radiance of every data base surface with a user-specified thermal environment. The predicted gray shade of each surface is then computed from the user specified sensor characteristics. IRGen is based on first-principles models of heat transport and heat flux sources, and it accurately simulates the variations of IR imagery with time of day and with changing environmental conditions. The starting point for creating an IRGen data base is a visual faceted data base, in which every facet has been labeled with a material code. This code is an index into a material data base which contains surface and bulk thermal properties for the material. IRGen uses the material properties to compute the surface temperature at the specified time of day. IRGen also supports image generator features such as texturing and smooth shading, which greatly enhance image realism.
NASA Astrophysics Data System (ADS)
Kamgang, J. O.; Naitali, M.; Herry, J.-M.; Bellon-Fontaine, M.-N.; Brisset, J.-L.; Briandet, R.
2009-04-01
This study addressed the effects of treatment with gliding discharge plasma on the surface properties of solid materials, as well as the consequences concerning adherence of a model bacterium. As evaluated by contact angles with selected liquids, plasma treatment caused an increase in surface hydrophilicity and in the Lewis acid-base components of the surface energy of all materials tested. These modifications were more marked for low density polyethylene and stainless steel than for polytetrafluoroethylene. After treatment, the hydrophilicity of the materials remained relatively stable for at least 20 days. Moreover, analysis of the topography of the materials by atomic force microscopy revealed that the roughness of both polymers was reduced by glidarc plasma treatment. As a result of all these modifications, solid substrates were activated towards micro-organisms and the adherence of S. epidermidis, a negatively charged Lewis-base and mildly hydrophilic strain selected as the model, was increased in almost all the cases tested.
Properties that influence the specific surface areas of carbon nanotubes and nanofibers.
Birch, M Eileen; Ruda-Eberenz, Toni A; Chai, Ming; Andrews, Ronnee; Hatfield, Randal L
2013-11-01
Commercially available carbon nanotubes and nanofibers were analyzed to examine possible relationships between their Brunauer-Emmett-Teller specific surface areas (SSAs) and their physical and chemical properties. Properties found to influence surface area were number of walls/diameter, impurities, and surface functionalization with hydroxyl and carboxyl groups. Characterization by electron microscopy, energy-dispersive X-ray spectrometry, thermogravimetric analysis, and elemental analysis indicates that SSA can provide insight on carbon nanomaterials properties, which can differ vastly depending on synthesis parameters and post-production treatments. In this study, how different properties may influence surface area is discussed. The materials examined have a wide range of surface areas. The measured surface areas differed from product specifications, to varying degrees, and between similar products. Findings emphasize the multiple factors that influence surface area and mark its utility in carbon nanomaterial characterization, a prerequisite to understanding their potential applications and toxicities. Implications for occupational monitoring are discussed.
Asensio-Lozano, Juan; Suárez-Peña, Beatriz; Vander Voort, George F.
2014-01-01
6063 aluminum anodized extrusions may exhibit a common surface defect known as streaking, characterized by the formation of narrow bands with a surface gloss different from the surrounding material. The origin of this banding lies in the differential surface topography produced after etching during the anodizing stage, shown to be connected to certain microstructural characteristics. The present study has attempted to determine the origin of these defects and measure the mechanical properties in these zones, properties which were either barely acceptable or did not meet the specification’s requirements. Quantitative metallography and mechanical testing, both tensile and microhardness, were used for materials assessment at the different steps of the process of manufacturing 6063 anodized extrusions. The results of this research show that nonequilibrium solidification rates during billet casting could lead to the formation of coarse eutectic Mg2Si particles which have a deleterious effect on both mechanical properties and surface appearance in the anodized condition. However, differences in the size and density of the coarse Mg2Si particles have been found to exist in the streak profile compared to the surrounding zones. The study revealed the importance of these particles in explaining the origin of the marginal or sub-marginal properties and anodizing surface defects found. PMID:28788673
Asensio-Lozano, Juan; Suárez-Peña, Beatriz; Vander Voort, George F
2014-05-30
6063 aluminum anodized extrusions may exhibit a common surface defect known as streaking, characterized by the formation of narrow bands with a surface gloss different from the surrounding material. The origin of this banding lies in the differential surface topography produced after etching during the anodizing stage, shown to be connected to certain microstructural characteristics. The present study has attempted to determine the origin of these defects and measure the mechanical properties in these zones, properties which were either barely acceptable or did not meet the specification's requirements. Quantitative metallography and mechanical testing, both tensile and microhardness, were used for materials assessment at the different steps of the process of manufacturing 6063 anodized extrusions. The results of this research show that nonequilibrium solidification rates during billet casting could lead to the formation of coarse eutectic Mg₂Si particles which have a deleterious effect on both mechanical properties and surface appearance in the anodized condition. However, differences in the size and density of the coarse Mg₂Si particles have been found to exist in the streak profile compared to the surrounding zones. The study revealed the importance of these particles in explaining the origin of the marginal or sub-marginal properties and anodizing surface defects found.
Physical properties of the surface materials at the Viking landing sites on Mars
Moore, H.J.; Hutton, R.E.; Clow, G.D.; Spitzer, C.R.
1987-01-01
This report summarizes the results of the Physical Properties Investigation of the Viking '75 Project, activities of the surface samplers, and relevant results from other investigations. The two Viking Landers operated for nearly four martian years after landing on July 20 (Lander 1) and Sept. 3 (Lander 2), 1976; Lander 1 acquired its last pictures on or about Nov. 5, 1982. Lander 1 rests on a smooth, cratered plain at the west edge of Chryse Planitia (22.5 ? N, 48.0? W), and Lander 2 rests 200 km west of the crater Mie in Utopia Planitia (48.0? N, 225.7? W). Lander 1 views showed that dune-like deposits of drift material were superposed on rock-strewn surfaces. Soil-like material from the rock-strewn areas was called blocky material. Lander 2 views also showed a rock-strewn surface. Polygonal to irregular features, etched by the wind, revealed crusty to cloddy material among rocks. Both landers descended to the surface along nearly vertical trajectories. Velocities at touchdown were about 2 m/s for both landers. Footpad 2 of Lander 1 penetrated drift material 0.165 m, and footpad 3 penetrated blocky material 0.036 m. The two visible footpads of Lander 2 struck rocks. Erosion by exhausts from the forward engines produced craters with rims of mixed fine-grained material and platy to equidimensional clods, crusts, and fragments. Comparison of engine-exhaust erosion on Mars with terrestrial data suggested that drift material behaved like a weakly cohesive material with a grain size less than 3-9 /-lm. Although not sand, blocky and crusty to cloddy materials eroded like sand-with grain sizes of 0.01 or 0.2 cm. The surface samplers accomplished an impressive number of tasks. All experiments that required samples received samples. Deep holes, as much as 0.22 m deep, were excavated by both landers. Lander 2 successfully pushed rocks and collected samples from areas originally beneath the rocks. Tasks specifically accomplished for the Physical Properties Investigation include: (1) acquiring motor-current data while excavating trenches, (2) performing surface-bearing tests, (3) performing backhoe touchdowns, (4) attempting to chip or scratch rocks, (5) comminuting samples, (6) measuring subsurface diurnal temperatures, and (7) constructing conical piles of materials on and among rocks. Sample trenches in the three major types of soil-like materials were different from one another. Trenches in drift material, which were typically 0.06 m deep, had steep walls along much of their lengths, lumpy tailings and floors, and smooth domed surfaces with sparse fine fractures around their tips. Trenches in blocky material, which were typically 0.03-0.04 m deep, had steep walls near their tips, and surfaces around their tips were displaced upward and some appeared blocky. Trenches in crusty to cloddy material, which were typically 0.04-0.05 m deep, had steep and often irregular slopes near their tips, clods and slabs of crust in their tailings, and disrupted areas around their tips composed of mixed fine-grained material and slabs of crust or thick polygonal clods that had been displaced upwards. Data acquired during landing, trenching, surface-bearing tests, backhoe touchdowns, and from other science experiments were used to determine the mechanical properties of drift, blocky, and crusty to cloddy materials. Drift material appeared to be very fine grained, with local planes of weakness; in general, the drift material was consistent with a material having an angle of internal friction about 18?, a cohesion ranging from 0.7 to 3.0 kPa, and a bulk density of 1,200 kg/m 3 . Blocky material was consistent with a material having an angle of internal friction about 30?, cohesions from 1.5 to 16 kPa, and a bulk density of 1,600 kg/m 3 . Crusty to cloddy material had variable properties. For chiefly crusty to cloddy material, angles of internal friction were about 35 ? , and cohesions were from 0.5 to 5.2 kPa. For mixed fines and crusts, a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernando, Amendra; Weerawardene, K. L. Dimuthu M.; Karimova, Natalia V.
Here, metal, metal oxide, and metal chalcogenide materials have a wide variety of applications. For example, many metal clusters and nanoparticles are used as catalysts for reactions varying from the oxidation of carbon monoxide to the reduction of protons to hydrogen gas. Noble metal nanoparticles have unique optical properties such as a surface plasmon resonance for large nanoparticles that yield applications in sensing and photonics. In addition, a number of transition metal clusters are magnetic. Metal oxide clusters and surfaces are commonly used as catalysts for reactions such as water splitting. Both metal oxide and metal chalcogenide materials can bemore » semiconducting, which leads to applications in sensors, electronics, and solar cells. Many researchers have been interested in studying nanoparticles and/or small clusters of these materials. Some of the system sizes under investigation have been experimentally synthesized, which enables direct theory–experiment comparison. Other clusters that have been examined theoretically are of interest as models of larger systems or surfaces. Often, the size-dependence of their properties such as their HOMO–LUMO gap, magnetic properties, optical properties, etc., is of interest.« less
Surface nucleation in complex rheological systems
NASA Astrophysics Data System (ADS)
Herfurth, J.; Ulrich, J.
2017-07-01
Forced nucleation induced by suitable foreign seeds is an important tool to control the production of defined crystalline products. The quality of a surface provided by seed materials represents an important variable in the production of crystallizing layers that means for the nucleation process. Parameters like shape and surface structure, size and size distribution of the seed particles as well as the ability to hold up the moisture (the solvent), can have an influence on the nucleation process of different viscous supersaturated solutions. Here the properties of different starch powders as seeds obtained from corn, potato, rice, tapioca and wheat were tested. It could be found, that the best nucleation behavior of a sugar solution could be reached with the use of corn starch as seed material. Here the surface of the crystallized sugar layer is smooth, crystallization time is short (<3 h) and the shape of the product is easily reproducible. Beneficial properties of seed materials are therefore an edged, uneven surface, small particle sizes as well as low moisture content at ambient conditions within the seed materials.
NASA Astrophysics Data System (ADS)
Yue, Dewu; Yoo, Won Jong
Despite that the novel quantum mechanical properties of two-dimension (2D) materials are well explored theoretically, their electronic performance is limited by the contact resistance of the metallic interface and therefore their inherent novel properties are rarely realized experimentally. In this study, we demonstrate that we can largely reduce the contact resistance induced between metal and 2D materials, by controlling the surface condition of 2D materials, eg. surface flatness and van der Waals bonding. To induce the number of more effective carrier conducting modes, we engineer the surface roughness and dangling bonds of the 2D interface in contact with metal. As a result, electrical contact resistance of the metal interface is significantly reduced and carrier mobility in the device level is enhanced correspondingly. This work was supported by the Global Research Laboratory and Global Frontier R&D Programs at the Center for Hybrid Interface Materials, both funded by the Ministry of Science, ICT & Future Planning via the National Research Foundation of Korea (NRF).
Examining the Uppermost Surface of the Moon
NASA Technical Reports Server (NTRS)
Noble, Sarah K.
2010-01-01
Understanding the properties of the uppermost lunar surface is critical as it is the optical surface that is probed by remote-sensing data, like that which is and will be generated by instruments on orbiting missions (e.g. M3, LRO). The uppermost material is also the surface with which future lunar astronauts and their equipment will be in direct contact, and thus understanding its properties will be important for dust mitigation and toxicology issues. Furthermore, exploring the properties of this uppermost surface may provide insight into conditions at this crucial interface, such as grain charging and levitation
Simple route for nano-hydroxyapatite properties expansion.
Rojas, L; Olmedo, H; García-Piñeres, A J; Silveira, C; Tasic, L; Fraga, F; Montero, M L
2015-10-20
Simple surface modification of nano-hydroxyapatite, through acid-basic reactions, allows expanding the properties of this material. Introduction of organic groups such as hydrophobic alkyl chains, carboxylic acid, and amide or amine basic groups on the hydroxyapatite surface systematically change the polarity, surface area, and reactivity of hydroxyapatite without modifying its phase. Physical and chemical properties of the new derivative particles were analyzed. The biocompatibility of modified Nano-Hap on Raw 264.7 cells was also assessed.
NBS (National Bureau of Standards): Materials measurements. [space processing experiments
NASA Technical Reports Server (NTRS)
Manning, J. R.
1983-01-01
Work directed toward the measurement of materials properties important to the design and interpretation of space processing experiments and determinations of how the space environment may offer a unique opportunity for performing improved measurements and producing materials with improved properties is reported. Surface tensions and their variations with temperature and impurities; convection during undirectional solidification; and measurement of the high temperature thermophysical properties of tungsten group liquids and solids are discussed and results are summarized.
Inhibition of Staphylococcus epidermidis biofilms using polymerizable vancomycin derivatives.
Lawson, McKinley C; Hoth, Kevin C; Deforest, Cole A; Bowman, Christopher N; Anseth, Kristi S
2010-08-01
Biofilm formation on indwelling medical devices is a ubiquitous problem causing considerable patient morbidity and mortality. In orthopaedic surgery, this problem is exacerbated by the large number and variety of material types that are implanted. Metallic hardware in conjunction with polymethylmethacrylate (PMMA) bone cement is commonly used. We asked whether polymerizable derivatives of vancomycin might be useful to (1) surface modify Ti-6Al-4V alloy and to surface/bulk modify PMMA bone cement to prevent Staphylococcus epidermidis biofilm formation and (2) whether the process altered the compressive modulus, yield strength, resilience, and/or fracture strength of cement copolymers. A Ti-6Al-4V alloy was silanized with methacryloxypropyltrimethoxysilane in preparation for subsequent polymer attachment. Surfaces were then coated with polymers formed from PEG(375)-acrylate or a vancomycin-PEG(3400)-PEG(375)-acrylate copolymer. PMMA was loaded with various species, including vancomycin and several polymerizable vancomycin derivatives. To assess antibiofilm properties of these materials, initial bacterial adherence to coated Ti-6Al-4V was determined by scanning electron microscopy (SEM). Biofilm dry mass was determined on PMMA coupons; the compressive mechanical properties were also determined. SEM showed the vancomycin-PEG(3400)-acrylate-type surface reduced adherent bacteria numbers by approximately fourfold when compared with PEG(375)-acrylate alone. Vancomycin-loading reduced all mechanical properties tested; in contrast, loading a vancomycin-acrylamide derivative restored these deficits but demonstrated no antibiofilm properties. A polymerizable, PEGylated vancomycin derivative reduced biofilm attachment but resulted in inferior cement mechanical properties. The approaches presented here may offer new strategies for developing biofilm-resistant orthopaedic materials. Specifically, polymerizable derivatives of traditional antibiotics may allow for direct polymerization into existing materials such as PMMA bone cement while minimizing mechanical property compromise. Questions remain regarding ideal monomer structure(s) that confer biologic and mechanical benefits.
Functionalization of polydimethylsiloxane membranes to be used in the production of voice prostheses
NASA Astrophysics Data System (ADS)
Ferreira, Paula; Carvalho, Álvaro; Ruivo Correia, Tiago; Paiva Antunes, Bernardo; Joaquim Correia, Ilídio; Alves, Patrícia
2013-10-01
The voice is produced by the vibration of vocal cords which are located in the larynx. Therefore, one of the major consequences for patients subjected to laryngectomy is losing their voice. In these cases, a synthetic one-way valve set (voice prosthesis) can be implanted in order to allow restoration of speech. Most voice prostheses are produced with silicone-based materials such as polydimethylsiloxane (PDMS). This material has excellent properties, such as optical transparency, chemical and biological inertness, non-toxicity, permeability to gases and excellent mechanical resistance that are fundamental for its application in the biomedical field. However, PDMS is very hydrophobic and this property causes protein adsorption which is followed by microbial adhesion and biofilm formation. To overcome these problems, surface modification of materials has been proposed in this study. A commercial silicone elastomer, SylgardTM 184 was used to prepare membranes whose surface was modified by grafting 2-hydroxyethylmethacrylate and methacrylic acid by low-pressure plasma treatment. The hydrophilicity, hydrophobic recovery and surface energy of the produced materials were determined. Furthermore, the cytotoxicity and antibacterial activity of the materials were also assessed. The results obtained revealed that the PDMS surface modification performed did not affect the material's biocompatibility, but decreased their hydrophobic character and bacterial adhesion and growth on its surface.
NASA Astrophysics Data System (ADS)
Chan, Hoi Lam
This work systematically investigates two of the most promising synthesis methods for producing nanostructured (NS) materials: surface mechanical attrition treatment (SMAT) and the electrodeposition (ED) process, and obtains the proper conditions for fabricating NS materials in bulk form and studies the properties of these materials. SMAT is one of the recently developed processes to form nano-crystallized surface layer and refine grains in the subsurface layers, by actuating a number of spherical projectiles to impact the sample surface. In this work, the detailed measurement of ball impinging velocity is presented, and the resulted strain-rate and strains are theoretically modeled. Consequently the relation between plastic strain history and the observed microstructures is established. The SMAT process with different numbers of balls is explored to manifest that an optimum number of balls exists for the highest efficiency. ED process is widely used in producing NS materials these days. In this work, the relationships among non-metallic substrates, current type, current densities, microstructure and crystallographic textures, and mechanical properties is presented in order to demonstrate the influences of the deposition parameters in obtaining nano-grains and nano-twins microstructures. This work also examines the availability of obtaining bulk NS materials with desirable ductility in production-scale conditions through understanding these relationships. In the last part of the study, the effect of SMAT on the electrodeposits is studied. Tensile properties, microstructures and textures of the SMATed electrodeposits have been examined. The results demonstrate that the NS matrix obtained by the ED process with sufficient thickness retains desirable ductility after employing SMAT technology, and the SMAT process further enhances the strength of the electrodeposits.
Contact mechanics for layered materials with randomly rough surfaces.
Persson, B N J
2012-03-07
The contact mechanics model of Persson is applied to layered materials. We calculate the M function, which relates the surface stress to the surface displacement, for a layered material, where the top layer (thickness d) has different elastic properties than the semi-infinite solid below. Numerical results for the contact area as a function of the magnification are presented for several cases. As an application, we calculate the fluid leak rate for laminated rubber seals.
Chemically Layered Porous Solids
NASA Technical Reports Server (NTRS)
Koontz, Steve
1991-01-01
Aerogels and other porous solids in which surfaces of pores have chemical properties varying with depth below macroscopic surfaces prepared by sequences of chemical treatments. Porous glass or silica bead treated to make two depth zones having different chemical properties. Beads dropped along tube filled with flowing gas containing atomic oxygen, generated in microwave discharge. General class of materials treatable include oxides of aluminum, silicon, zirconium, tin, titanium, and nickel, and mixtures of these oxides. Potential uses of treated materials include chromatographic separations, membrane separations, controlled releases of chemicals, and catalysis.
Molecular characterization of biochars and their influence on microbiological properties of soil
USDA-ARS?s Scientific Manuscript database
The composition and surface chemistry of carbon rich biochar materials is highly uncertain and believed to change with feedstock and biomass conversion process. The tentative connection between the biochar surface chemical properties and their influence on microbially mediated mineralization of C, N...
NASA Astrophysics Data System (ADS)
Kumeeva, T. Yu.; Prorokova, N. P.
2018-02-01
The surface properties of ultradisperse polytetrafluoroethylene coatings on polyethylene terephthalate materials modified in a supercritical carbon dioxide medium with co-solvent additions (aliphatic alcohols) were analyzed. An atomic force microscopy study revealed the peculiarities of the morphology of the hydrophobic coatings formed in the presence of co-solvents. The contribution of the co-solvents to the formation of the surface layer with a low surface energy was evaluated from the surface energy components of the modified polyester material. The stability of the coatings against dry friction was analyzed.
Studies of Lubricating Materials in Vacuum
NASA Technical Reports Server (NTRS)
Buckley, D. H.; Johnson, R. L.; Swikert, M. A.
1964-01-01
Lubricating materials for use in a vacuum environment have been the subject of a series of experimental investigations. Evaporation properties were evaluated for solid polymeric compositions. Friction and wear studies explored the behavior during sliding contact for series of polymeric compositions, binary alloys containing soft film-forming phases, complex alloys with film-forming materials, and a burnished MoS2 film. Friction and wear experiments were conducted at 10(exp-9)mm Hg with a 3/16-inch-radius-hemisphere rider specimen sliding on the flat surface of a rotating 2-1/2-inch-diameter disk specimen with materials that had low rates of evaporation. The influence of fillers in polytetrafluoroethylene (PTFE) on decomposition during vacuum friction studies was determined with a mass spectrometer. A real advantage in reducing decomposition and improving friction wear properties is gained by adding fillers (e.g., copper) that improve thermal conductivity through the composite materials. A polyimide and an epoxy-MoS2 composition material were found to have better friction and wear properties than PTFE compositions. A series of alloys (cast binary as well as more complex alloys) that contained microinclusions of potential film-forming material was studied. These materials replaced the normal surface oxides as they were worn away on sliding contact. Iron sulfide, nickel oxide, and tin are typical film-forming materials employed and were demonstrated to be effective in inhibiting surface welding and reducing friction. A burnished MoS2 film applied to type 440-C stainless steel in argon with a rotating soft wire brush had good endurance properties but somewhat higher friction than commercially available bonded films. An oil film applied to the burnished MoS2 markedly reduced its endurance life.
Role of Exposed Surfaces on Zinc Oxide Nanostructures in the Catalytic Ethanol Transformation.
Morales, María V; Asedegbega-Nieto, Esther; Iglesias-Juez, Ana; Rodríguez-Ramos, Inmaculada; Guerrero-Ruiz, Antonio
2015-07-08
For a series of nanometric ZnO materials, the relationship between their morphological and surface functionalities and their catalytic properties in the selective decomposition of ethanol to yield acetaldehyde was explored. Six ZnO solids were prepared by a microemulsion-precipitation method and the thermal decomposition of different precursors and compared with a commercial sample. All these materials were characterized intensively by XRD and SEM to obtain their morphological specificities. Additionally, surface area determinations and IR spectroscopy were used to detect differences in the surface properties. The density of acid surface sites was determined quantitatively using an isopropanol dehydration test. Based on these characterization studies and on the results of the catalytic tests, it has been established that ZnO basal surfaces seem to be responsible for the production of ethylene as a minor product as well as for secondary reactions that yield acetyl acetate. Furthermore, one specific type of exposed hydroxyl groups appears to govern the surface catalytic properties. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ceramic microstructure and adhesion
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1984-01-01
When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.
Ceramic microstructure and adhesion
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1985-01-01
When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.
NASA Technical Reports Server (NTRS)
Johnson, Robert L; Swikert, Max A; Bisson, Edmond E
1952-01-01
An investigation of wear and friction properties of a number of materials sliding against SAE 52100 steel was conducted. These materials included brass, bronze, beryllium copper, monel, nichrome v, 24s-t aluminum, nodular iron, and gray cast iron. The metals investigated may be useful as possible cage (separator or retainer) materials for rolling-contact bearings of high-speed turbine engines. The ability of materials to form surface films that prevent welding is a most important factor in both dry friction and boundary lubrication. On the basis of wear and resistance to welding only, the cast irons were the most promising materials investigated; they showed the least wear and the least tendency to surface failure when run dry, and when boundary lubricated they showed the highest load capacity. On the basis of mechanical properties, nodular iron is superior to gray cast iron. Bronze had the lowest friction coefficient under dry sliding conditions. The results with brass, beryllium copper, and aluminum were poor and these materials do not appear, with regard to friction and wear, to be suitable for cages.
The effect of mechano-chemical treatment on structural properties of the drawn TiNi-based alloy wire
NASA Astrophysics Data System (ADS)
Anikeev, Sergey; Hodorenko, Valentina; Gunther, Victor; Chekalkin, Timofey; Kang, Ji-hoon; Kang, Seung-baik
2018-01-01
The rapid development of biomedical materials with the advanced functional characteristics is a challenging task because of the growing demands for better material properties in-clinically employed. Modern medical devices that can be implanted into humans have evolved steadily by replacing TiNi-based alloys for titanium and stainless steel. In this study, the effect of the mechano-chemical treatment on structural properties of the matrix and surface layer of the drawn TiNi-based alloy wire was assessed. A range of samples have been prepared using different drawing and etching procedures. It is clear from the results obtained that the fabricated samples show a composite structure comprising the complex matrix and textured oxycarbonitride spitted surface layer. The suggested method of surface treatment is a concept to increase the surface roughness for the enhanced bio-performance and better in vivo integration.
Effect of size on bulk and surface cohesion energy of metallic nano-particles
NASA Astrophysics Data System (ADS)
Yaghmaee, M. S.; Shokri, B.
2007-04-01
The knowledge of nano-material properties not only helps us to understand the extreme behaviour of small-scale materials better (expected to be different from what we observe from their bulk value) but also helps us to analyse and design new advanced functionalized materials through different nano technologies. Among these fundamental properties, the cohesion (binding) energy mainly describes most behaviours of materials in different environments. In this work, we discuss this fundamental property through a nano-thermodynamical approach using two algorithms, where in the first approach the size dependence of the inner (bulk) cohesion energy is studied, and in the second approach the surface cohesion energy is considered too. The results, which are presented through a computational demonstration (for four different metals: Al, Ga, W and Ag), can be compared with some experimental values for W metallic nano-particles.
NASA Astrophysics Data System (ADS)
Sivai Bharasi, N.; Thyagarajan, K.; Shaikh, H.; Balamurugan, A. K.; Bera, Santanu; Kalavathy, S.; Gurumurthy, K.; Tyagi, A. K.; Dayal, R. K.; Rajan, K. K.; Khatak, H. S.
2008-07-01
AISI type 316LN stainless steel was exposed to flowing sodium in mass transfer loop (MTL) at 823 K for 16 000 h and then examined for changes in the tensile properties due to the mass transfer and corrosion effects. Comparisons in microstructural and mechanical properties were made between annealed, thermally aged and sodium exposed materials. Microstructural examination of thermally aged and sodium exposed materials revealed precipitation of carbides at the grain boundaries. The sodium exposed samples contained a degraded layer at the surface up to a depth of around 10 μm and a surface carburized layer of about 30 μm. There was about 15% increase in yield strength and a decrease of about 20% in ductility for the sodium exposed material vis-a-vis thermally aged material and this was attributed to carburization effects and microstructural changes.
NASA Astrophysics Data System (ADS)
Chan, Chi-Wai; Carson, Louise; Smith, Graham C.; Morelli, Alessio; Lee, Seunghwan
2017-05-01
Implant failure caused by bacterial infection is extremely difficult to treat and usually requires the removal of the infected components. Despite the severe consequence of bacterial infection, research into bacterial infection of orthopaedic implants is still at an early stage compared to the effort on enhancing osseointegration, wear and corrosion resistance of implant materials. In this study, the effects of laser surface treatment on enhancing the antibacterial properties of commercially pure (CP) Ti (Grade 2), Ti6Al4V (Grade 5) and CoCrMo alloy implant materials were studied and compared for the first time. Laser surface treatment was performed by a continuous wave (CW) fibre laser with a near-infrared wavelength of 1064 nm in a nitrogen-containing environment. Staphylococcus aureus, commonly implicated in infection associated with orthopaedic implants, was used to investigate the antibacterial properties of the laser-treated surfaces. The surface roughness and topography of the laser-treated materials were analysed by a 2D roughness testing and by AFM. The surface morphologies before and after 24 h of bacterial cell culture were captured by SEM, and bacterial viability was determined using live/dead staining. Surface chemistry was analysed by XPS and surface wettability was measured using the sessile drop method. The findings of this study indicated that the laser-treated CP Ti and Ti6Al4V surfaces exhibited a noticeable reduction in bacterial adhesion and possessed a bactericidal effect. Such properties were attributable to the combined effects of reduced hydrophobicity, thicker and stable oxide films and presence of laser-induced nano-features. No similar antibacterial effect was observed in the laser-treated CoCrMo.
NASA Astrophysics Data System (ADS)
Farahmand, Parisa
In oil and gas industry, soil particles, crude oil, natural gas, particle-laden liquids, and seawater can carry various highly aggressive elements, which accelerate the material degradation of component surfaces by combination of slurry erosion, corrosion, and wear mechanisms. This material degradation results into the loss of mechanical properties such as strength, ductility, and impact strength; leading to detachment, delamination, cracking, and ultimately premature failure of components. Since the failure of high valued equipment needs considerable cost and time to be repaired or replaced, minimizing the tribological failure of equipment under aggressive environment has been gaining increased interest. It is widely recognized that effective management of degradation mechanisms will contribute towards the optimization of maintenance, monitoring, and inspection costs. The hardfacing techniques have been widely used to enhance the resistance of surfaces against degradation mechanisms. Applying a surface coating improves wear and corrosion resistance and ensures reliability and long-term performance of coated parts. A protective layer or barrier on the components avoids the direct mechanical and chemical contacts of tool surfaces with process media and will reduce the material loss and ultimately its failure. Laser cladding as an advanced hardfacing technique has been widely used for industrial applications in order to develop a protective coating with desired material properties. During the laser cladding, coating material is fused into the base material by means of a laser beam in order to rebuild a damaged part's surface or to enhance its surface function. In the hardfacing techniques such as atmospheric plasma spraying (APS), high velocity oxygen-fuel (HVOF), and laser cladding, mixing of coating materials with underneath surface has to be minimized in order to utilize the properties of the coating material most effectively. In this regard, laser cladding offers advantages due to creating coating layers with superior properties in terms of purity, homogeneity, low dilution, hardness, bonding, and microstructure. In the development of modern materials for hardfacing applications, the functionality is often improved by combining materials with different properties into composites. Metal Matrix Composite (MMC) coating is a composite material with two constituent parts, i.e., matrix and the reinforcement. This class of composites are addressing improved mechanical properties such as stiffness, strength, toughness, and tribological and chemical resistance. Fabrication of MMCs is to achieve a combination of properties not achievable by any of the materials acting alone. MMCs have attracted significant attention for decades due to their combination of wear-resistivity, corrosion-resistivity, thermal, electrical and magnetic properties. Presently, there is a strong emphasis on the development of advanced functional coatings for corrosion, erosion, and wear protection for different industrial applications. In this research, a laser cladding system equipped with a high power direct diode laser associated with gas driven metal powder delivery system was used to develop advanced MMC coatings. The high power direct diode laser used in this study offers wider beam spot, shorter wavelength and uniform power distribution. These properties make the cladding set-up ideal for coating due to fewer cladding tracks, lower operation cost, higher laser absorption, and improved coating qualities. In order to prevent crack propagation, porosity, and uniform dispersion of carbides in MMC coating, cladding procedure was assisted by an induction heater as a second heat source. The developed defect free MMC coatings were combined with nano-size particles of WC, rare earth (RE) element (La2O3), and Mo as a refractory metal to enhance mechanical properties, chemical composition, and subsequently improve the tribological performance of the coatings. The resistance of developed MMC coatings were examined under highly accelerated slurry erosion, corrosion, and wear as the most frequently encountered failure modes of mechanical components. The microstructure, mechanical properties, and the level of induced residual stress on the coating after cladding procedure are closely related to cladding process variables. Study about the effect of processing parameters on clad quality and experienced thermal history and thermally-induced stress evolution requires both theoretical and experimental understanding of the associated physical phenomena. Numerical modeling offers a cost-efficient way to better understand the related complex physics in laser cladding process. It helps to reveal the effects and significance of each processing parameters on the desired characteristics of clad parts. Successful numerical simulation can provide unique insight into complex laser cladding process, efficiently calculate the complex procedure, and help to obtain coating parts with quality integrity. Therefore, current study develops a three-dimensional (3D) transient and uncoupled thermo-elastic-plastic model to study thermal history, molten pool evolution, thermally induced residual stress, and the effect of utilizing an induction heater as a second heat source on the mechanical properties and microstructural properties of final cladded coating.
Chemistry and materials science progress report, FY 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-07-01
Research is reported in the areas of surface science, fundamentals of the physics and processing of metals, energetic materials, transactinide materials and properties and other indirectly related areas of weapons research.
NASA Astrophysics Data System (ADS)
Alamri, Sabri; Lasagni, Andrés. F.
2017-02-01
It is well known that micro and sub-micrometer periodical structures play a significant role on the properties of a surface. Ranging from friction reduction to the bacterial adhesion control, the modification of the material surface is the key for improving the performance of a device or even creating a completely new function. Among different laser processing techniques, Direct Laser Interference Patterning (DLIP) relies on the local surface modification process induced when two or more beams interfere and produce periodic surface structures. Although the produced features have controllable pitch and geometry, identical experimental conditions applied to different polymers can result on totally different topologies. In this frame, observations from pigmented and transparent polycarbonate treated with ultraviolet (263 nm) and infrared (1053 nm) laser radiation permitted to identify different phenomena related with the optical and chemical properties of the polymers. As a result from the experimental data analysis, a set of material-dependent constants can be obtained and both profile and surface simulations can be retrieved, reproducing the material surface topography after the surface patterning process.
Aging and the Haptic Perception of Material Properties.
Norman, J Farley; Adkins, Olivia C; Hoyng, Stevie C; Dowell, Catherine J; Pedersen, Lauren E; Gilliam, Ashley N
2016-12-01
The ability of 26 younger (mean age was 22.5 years) and older adults (mean age was 72.6 years) to haptically perceive material properties was evaluated. The participants manually explored (for 5 seconds) 42 surfaces twice and placed each of these 84 experimental stimuli into one of seven categories: paper, plastic, metal, wood, stone, fabric, and fur/leather. In general, the participants were best able to identify fur/leather and wood materials; in contrast, recognition performance was worst for stone and paper. Despite similar overall patterns of performance for younger and older participants, the younger adults' recognition accuracies were 26.5% higher. The participants' tactile acuities (assessed by tactile grating orientation discrimination) affected their ability to identify surface material. In particular, the Pearson r correlation coefficient relating the participants' grating orientation thresholds and their material identification performance was -0.8: The higher the participants' thresholds, the lower the material recognition ability. While older adults are able to effectively perceive the solid shape of environmental objects using the sense of touch, their ability to perceive surface materials is significantly compromised.
Physical Properties of the MER and Beagle II Landing Sites on Mars
NASA Astrophysics Data System (ADS)
Jakosky, B. M.; Pelkey, S. M.; Mellon, M. T.; Putzig, N.; Martinez-Alonso, S.; Murphy, N.; Hynek, B.
2003-12-01
The ESA Beagle II and the NASA Mars Exploration Rover spacecraft are scheduled to land on the martian surface in December 2003 and January 2004, respectively. Mission operations and success depends on the physical properties of the surfaces on which they land. Surface structural characteristics such as the abundances of loose, unconsolidated fine material, of fine material that has been cemented into a duricrust, and of rocks affect the ability to safely land and to successfully sample and traverse the surface. Also, physical properties affect surface and atmospheric temperatures, which affect lander and rover functionality. We are in the process of analyzing surface temperature information for these sites, derived from MGS TES and Odyssey THEMIS daytime and nighttime measurements. Our approach is to: (i) remap thermal inertia using TES data at ~3-km resolution, to obtain the most complete coverage possible; (ii) interpret physical properties from TES coverage in conjunction with other remote-sensing data sets; (iii) map infrared brightness using daytime and nighttime THEMIS data at 100-m resolution, and do qualitative analysis of physical properties and processes; and (iv) derive thermal inertia from THEMIS nighttime data in conjunction with daytime albedo measurements derived from TES, THEMIS, and MOC observations. In addition, we will use measured temperatures and derived thermal inertia to predict surface temperatures for the periods of the missions.
NASA Technical Reports Server (NTRS)
Grossman, J. J.; Mukherjee, N. R.; Ryan, J. A.
1972-01-01
Knowledge of the reactivity of lunar material surfaces is important for understanding the effects of the lunar or space environment upon this material, particularly its nature, behavior and exposure history in comparison to terrestrial materials. Adsorptive properties are one of the important techniques for such studies. Gas adsorption measurements were made on an Apollo 12 ultrahigh vacuum-stored sample and Apollo 14 and 15 N2-stored samples. Surface area measurements were made on the latter two. Adsorbate gases used were N2, A, O2 and H2O. Krypton was used for the surface area determinations. Runs were made at room and liquid nitrogen temperature in volumetric and gravimetric systems. It was found that the adsorptive/desorptive behavior was in general significantly different from that of terrestrial materials of similar type and form. Specifically (1) the UHV-stored sample exhibited very high initial adsorption indicative of high surface reactivity, and (2) the N2-stored samples at room and liquid nitrogen temperatures showed that more gas was desorbed than introduced during adsorption, indicative of gas release from the samples. The high reactivity is a scribed cosmic ray track and solar wind damage.
Using Response Surface Methods to Correlate the Modal Test of an Inflatable Test Article
NASA Technical Reports Server (NTRS)
Gupta, Anju
2013-01-01
This paper presents a practical application of response surface methods (RSM) to correlate a finite element model of a structural modal test. The test article is a quasi-cylindrical inflatable structure which primarily consists of a fabric weave, with an internal bladder and metallic bulkheads on either end. To mitigate model size, the fabric weave was simplified by representing it with shell elements. The task at hand is to represent the material behavior of the weave. The success of the model correlation is measured by comparing the four major modal frequencies of the analysis model to the four major modal frequencies of the test article. Given that only individual strap material properties were provided and material properties of the overall weave were not available, defining the material properties of the finite element model became very complex. First it was necessary to determine which material properties (modulus of elasticity in the hoop and longitudinal directions, shear modulus, Poisson's ratio, etc.) affected the modal frequencies. Then a Latin Hypercube of the parameter space was created to form an efficiently distributed finite case set. Each case was then analyzed with the results input into RSM. In the resulting response surface it was possible to see how each material parameter affected the modal frequencies of the analysis model. If the modal frequencies of the analysis model and its corresponding parameters match the test with acceptable accuracy, it can be said that the model correlation is successful.
Controlled nanostructrures formation by ultra fast laser pulses for color marking.
Dusser, B; Sagan, Z; Soder, H; Faure, N; Colombier, J P; Jourlin, M; Audouard, E
2010-02-01
Precise nanostructuration of surface and the subsequent upgrades in material properties is a strong outcome of ultra fast laser irradiations. Material characteristics can be designed on mesoscopic scales, carrying new optical properties. We demonstrate in this work, the possibility of achieving material modifications using ultra short pulses, via polarization dependent structures generation, that can generate specific color patterns. These oriented nanostructures created on the metal surface, called ripples, are typically smaller than the laser wavelength and in the range of visible spectrum. In this way, a complex colorization process of the material, involving imprinting, calibration and reading, has been performed to associate a priori defined colors. This new method based on the control of the laser-driven nanostructure orientation allows cumulating high quantity of information in a minimal surface, proposing new applications for laser marking and new types of identifying codes.
NASA Astrophysics Data System (ADS)
Levy, Yoann; Bulgakova, Nadezhda M.; Mocek, Tomáš
2017-05-01
To get insight into laser-induced periodic surface structures (LIPSS) formation, the relaxation of a modulation in the temperature profile is investigated numerically on surfaces of two different kinds of materials (metals and dielectrics; gold and fused silica as examples) upon irradiation by ultrashort laser pulses. The temperature modulation is assumed to originate from the interference between the incoming laser pulse and the surface electromagnetic wave, which is considered as the main mechanism of LIPSS formation. For comparative studies of laser energy dissipation, a simplified 2D approach is used. It is based on the two-temperature model (TTM) and considers the mechanisms of nonlinear absorption of laser light (multiphoton ionization in fused silica; temperature-dependent thermophysical and optical properties in gold) and relaxation (electron trapping to excitonic states in fused silica). The TTM is coupled with the Drude model, considering the evolution of optical properties as a function of free-carrier density and/or temperature. The development and decay of the lattice temperature modulation, which can govern the LIPSS formation, is followed during electron-lattice thermalization time and beyond. It is shown that strong temperature gradients can form along the surfaces of both kinds of materials under study within the fluence range typical for LIPSS formation. Considerable changes in optical properties of these materials are found as a function of time, including metals, for which a constant reflectivity is usually assumed. Effects of nonlinear absorption on the surface temperature dynamics are reported.
Electrostatic Levitation for Studies of Additive Manufactured Materials
NASA Technical Reports Server (NTRS)
SanSoucie, Michael P.; Rogers, Jan R.; Tramel, Terri
2014-01-01
The electrostatic levitation (ESL) laboratory at NASA's Marshall Space Flight Center is a unique facility for investigators studying high temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified. Electrostatic levitation minimizes gravitational effects and allows materials to be studied without contact with a container or instrumentation. The lab also has a high temperature emissivity measurement system, which provides normal spectral and normal total emissivity measurements at use temperature. The ESL lab has been instrumental in many pioneering materials investigations of thermophysical properties, e.g., creep measurements, solidification, triggered nucleation, and emissivity at high temperatures. Research in the ESL lab has already led to the development of advanced high temperature materials for aerospace applications, coatings for rocket nozzles, improved medical and industrial optics, metallic glasses, ablatives for reentry vehicles, and materials with memory. Modeling of additive manufacturing materials processing is necessary for the study of their resulting materials properties. In addition, the modeling of the selective laser melting processes and its materials property predictions are also underway. Unfortunately, there is very little data for the properties of these materials, especially of the materials in the liquid state. Some method to measure thermophysical properties of additive manufacturing materials is necessary. The ESL lab is ideal for these studies. The lab can provide surface tension and viscosity of molten materials, density measurements, emissivity measurements, and even creep strength measurements. The ESL lab can also determine melting temperature, surface temperatures, and phase transition temperatures of additive manufactured materials. This presentation will provide background on the ESL lab and its capabilities, provide an approach to using the ESL in supporting the development and modeling of the selective laser melting process for metals, and provide an overview of the results to date.
Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.
Lee, Kyu Tae; Jeong, Sookyung; Cho, Jaephil
2013-05-21
Motivated by new applications including electric vehicles and the smart grid, interest in advanced lithium ion batteries has increased significantly over the past decade. Therefore, research in this field has intensified to produce safer devices with better electrochemical performance. Most research has focused on the development of new electrode materials through the optimization of bulk properties such as crystal structure, ionic diffusivity, and electric conductivity. More recently, researchers have also considered the surface properties of electrodes as critical factors for optimizing performance. In particular, the electrolyte decomposition at the electrode surface relates to both a lithium ion battery's electrochemical performance and safety. In this Account, we give an overview of the major developments in the area of surface chemistry for lithium ion batteries. These ideas will provide the basis for the design of advanced electrode materials. Initially, we present a brief background to lithium ion batteries such as major chemical components and reactions that occur in lithium ion batteries. Then, we highlight the role of surface chemistry in the safety of lithium ion batteries. We examine the thermal stability of cathode materials: For example, we discuss the oxygen generation from cathode materials and describe how cells can swell and heat up in response to specific conditions. We also demonstrate how coating the surfaces of electrodes can improve safety. The surface chemistry can also affect the electrochemistry of lithium ion batteries. The surface coating strategy improved the energy density and cycle performance for layered LiCoO2, xLi2MnO3·(1 - x)LiMO2 (M = Mn, Ni, Co, and their combinations), and LiMn2O4 spinel materials, and we describe a working mechanism for these enhancements. Although coating the surfaces of cathodes with inorganic materials such as metal oxides and phosphates improves the electrochemical performance and safety properties of batteries, the microstructure of the coating layers and the mechanism of action are not fully understood. Therefore, researchers will need to further investigate the surface coating strategy during the development of new lithium ion batteries.
NASA Astrophysics Data System (ADS)
Zellner, Michael; McNeil, Wendy; Gray, George, III; Huerta, David; King, Nicholas; Neal, George; Payton, Jeremy; Rubin, Jim; Stevens, Gerald; Turley, William; Buttler, William
2008-03-01
This effort investigates surface-preparation methods to enhance dynamic surface-property measurements of shocked metal surfaces. To assess the ability of making reliable and consistent dynamic surface-property measurements, the amount of material ejected from the free-surface upon shock release to vacuum (ejecta) was monitored for shocked Al-1100 and Sn targets. Four surface preparation methods were considered: fly-cut machined finish, diamond-turned machine finish, polished finish, and ball-rolled. The samples were shock loaded by in-contact detonation of HE PBX-9501 on the front-side of the metal coupons. Ejecta production at the back-side or free-side of the metal coupons was monitored using piezoelectric pins, optical shadowgraphy, and x-ray attenuation radiography.
NASA Astrophysics Data System (ADS)
Zellner, M. B.; Vogan McNeil, W.; Gray, G. T.; Huerta, D. C.; King, N. S. P.; Neal, G. E.; Valentine, S. J.; Payton, J. R.; Rubin, J.; Stevens, G. D.; Turley, W. D.; Buttler, W. T.
2008-04-01
This effort investigates surface-preparation methods to enhance dynamic surface-property measurements of shocked metal surfaces. To assess the ability of making reliable and consistent dynamic surface-property measurements, the amount of material ejected from the free surface upon shock release to vacuum (ejecta) was monitored for shocked Al-1100 and Sn targets. Four surface-preparation methods were considered: Fly-cut machine finish, diamond-turned machine finish, polished finish, and ball rolled. The samples were shock loaded by in-contact detonation of HE PBX-9501 on the front side of the metal coupons. Ejecta production at the back side or free side of the metal coupons was monitored using piezoelectric pins, optical shadowgraphy, and x-ray attenuation radiography.
Grinthal, Alison; Aizenberg, Joanna
2013-10-14
Life creates some of its most robust, extreme surface materials not from solids but from liquids: a purely liquid interface, stabilized by underlying nanotexture, makes carnivorous plant leaves ultraslippery, the eye optically perfect and dirt-resistant, our knees lubricated and pressure-tolerant, and insect feet reversibly adhesive and shape-adaptive. Novel liquid surfaces based on this idea have recently been shown to display unprecedented omniphobic, self-healing, anti-ice, antifouling, optical, and adaptive properties. In this Perspective, we present a framework and a path forward for developing and designing such liquid surfaces into sophisticated, versatile multifunctional materials. Drawing on concepts from solid materials design andmore » fluid dynamics, we outline how the continuous dynamics, responsiveness, and multiscale patternability of a liquid surface layer can be harnessed to create a wide range of unique, active interfacial functions-able to operate in harsh, changing environments-not achievable with static solids. We discuss how, in partnership with the underlying substrate, the liquid surface can be programmed to adaptively and reversibly reconfigure from a defect-free, molecularly smooth, transparent interface through a range of finely tuned liquid topographies in response to environmental stimuli. In conclusion, with nearly unlimited design possibilities and unmatched interfacial properties, liquid materials-as long-term stable interfaces yet in their fully liquid state-may potentially transform surface design everywhere from medicine to architecture to energy infrastructure.« less
Park, Geon Woo; Jeon, Sang Kwon; Yang, Jin Yong; Choi, Sung Dae; Kim, Geon Joong
2016-05-01
RGO/Resol carbon composites were prepared from a mixture of reduced GO and a low-molecular-weight phenolic resin (Resol) solution. The effects of the calcination temperature, amount of Resol added and KOH treatment on the electrochemical performance of the RGO/Resol composites were investigated. The physical and electrochemical properties of the composite materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer, Emmett and Teller (BET) surface areas measurements, and cyclic voltammetry (CV). The relationships between their physical properties and their electrochemical performance were examined for use as super-capacitors (SCs). The RGO/Resol composite calcined at 400 degrees C after the KOH loading showed dramatically improved electrochemical properties, showing a high BET surface and capacitance of 2190 m2/g and 220 F/g, respectively. The RGO/Resol composites calcined after the KOH treatment showed much better capacitor performance than those treated only thermally at the same temperature without KOH impregnation. The fabrication of high surface electrodes was essential for improving the SCs properties.
A new series of two-dimensional silicon crystals with versatile electronic properties
NASA Astrophysics Data System (ADS)
Chae, Kisung; Kim, Duck Young; Son, Young-Woo
2018-04-01
Silicon (Si) is one of the most extensively studied materials owing to its significance to semiconductor science and technology. While efforts to find a new three-dimensional (3D) Si crystal with unusual properties have made some progress, its two-dimensional (2D) phases have not yet been explored as much. Here, based on a newly developed systematic ab initio materials searching strategy, we report a series of novel 2D Si crystals with unprecedented structural and electronic properties. The new structures exhibit perfectly planar outermost surface layers of a distorted hexagonal network with their thicknesses varying with the atomic arrangement inside. Dramatic changes in electronic properties ranging from semimetal to semiconducting with indirect energy gaps and even to one with direct energy gaps are realized by varying thickness as well as by surface oxidation. Our predicted 2D Si crystals with flat surfaces and tunable electronic properties will shed light on the development of silicon-based 2D electronics technology.
Environmental and Biomedical Applications of Iron Oxide/Mesoporous Silica Core-Shell Nanocomposites
NASA Astrophysics Data System (ADS)
Egodawatte, Shani Nirasha
Mesoporous silica has shown great potential as an adsorbent for environmental contaminants and as a host for imaging and therapeutic agents. Mesoporous silica materials have a high surface area, tunable pore sizes and well defined surface properties which are governed by the surface hydroxyl groups. Surface modification of the mesoporous silica can tailor the adsorption properties for a specific metal ion or a small drug molecule by providing better sites for chelation or electrostatic interactions. Iron oxide / mesoporous silica core shell materials couple the favorable properties of both the iron oxide and mesoporous silica materials. The core-shell materials have higher adsorption properties compared to the parent material. With magnetic iron oxide nanoparticle cores, an additional magnetic property is introduced that can be used as magnetic recovery or separation. Heavy metals such as Chromium (Cr) and Arsenic (As) discharged from residential and environmental sources pose a serious threat to human health as well as groundwater pollution. In this thesis, iron oxide nanoparticles and nanofibers were coated with mesoporous silica and functionalized with (3-aminopropyl)triethoxysilane (APTES) using the post synthesis grafting method. The parent and the functionalized magnetic silica samples were characterized using powder X-ray diffraction (pXRD), thermal gravimetric analysis (TGA), Fourier Transform Infrared (FTIR) spectroscopy and nitrogen adsorption desorption isotherms for surface area and pore volumes. These materials were evaluated for Cr(III) and As(III)/As(V) adsorption from aqueous solutions in the optimum pH range for the specific metal. The aminopropyl functionalized magnetic mesoporous silica displayed the highest adsorption capacity for Cr(III) and Cu(II) of all the materials evaluated in this study. The high heavy metal adsorption capacity was attributed to a synergistic effect of iron oxide nanoparticles and amine functionalization on mesoporous silica as well as a judicious choice of pH. Modified magnetic mesoporous silica material was also found to have high adsorption capacity for high and low pH aqueous solutions of Uranium (VI). Tuning the loading and release of a small drug molecule (5-FU) onto these iron oxide/ mesoporous silica core-shell materials was also investigated. The polarity of the solvent used to load 5-FU onto the host had an impact not only on the loading but also on the release percentage of 5-FU. The synthesis of a novel core-shell material with a hematite nanofiber core and a SBA type mesoporous silica shell was also explored.
Thickness-dependent surface energies of few-layered arsenene and antimonene films in α and β phases
NASA Astrophysics Data System (ADS)
Zhao, N.; Zhu, Y. F.; Jiang, Q.
2018-07-01
Group V elemental few-layered materials with semiconducting electronic properties are emerging as promising 2D layered materials. Since the layered configurations need substrate for device fabrications, their surface energy values could decide their properties. Here, we have performed a systematic density functional theory (DFT) investigation on the surface energies of arsenene and antimonene films as the function of thickness. The results show that the surface energy of β phase increases with increased layered numbers and converges to a constant value at about five layers, while the surface energy of α phase is size-independent. Since the surface energies of both α and β phase are similar, there is the existence possibility of α phase. Those could give references for future manufacture of arsenene and antimonene nano-devices.
Coatings could protect composites from hostile space environment
NASA Technical Reports Server (NTRS)
Whitaker, Ann F.
1991-01-01
An experiment has been conducted on about 100 different material/process combinations, most of which were candidates for use in solar arrays having high power-to-weight ratios. These substances were exposed to the LEO environment during Long-Duration Exposure Facility Experiment A0171 in order to evaluate the synergistic effects of the LEO environment on the materials' mechanical, electrical, and optical properties. Materials evaluated include solar cells, cover slips having antireflectance coatings, adhesives, encapsulants, reflective materials, mast and harness materials, structural composites, and thermal control thin films. About one-sixth of the experiment tray was devoted to composite-material tensile specimens, which were specifically to be studied for changes in their mechanical properties. Preliminary results of the surface-damage evaluation are presented. These surface effects are dominated by atomic-oxygen erosion and micrometeoroid/space debris impacts.
Wu, Wei; Wu, Zhaohui; Yu, Taekyung; Jiang, Changzhong; Kim, Woo-Sik
2015-01-01
This review focuses on the recent development and various strategies in the preparation, microstructure, and magnetic properties of bare and surface functionalized iron oxide nanoparticles (IONPs); their corresponding biological application was also discussed. In order to implement the practical in vivo or in vitro applications, the IONPs must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of IONPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The new functionalized strategies, problems and major challenges, along with the current directions for the synthesis, surface functionalization and bioapplication of IONPs, are considered. Finally, some future trends and the prospects in these research areas are also discussed. PMID:27877761
Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings.
Bixler, Gregory D; Theiss, Andrew; Bhushan, Bharat; Lee, Stephen C
2014-04-01
Material scientists often look to biology for new engineering solutions to materials science problems. For example, unique surface characteristics of rice leaves and butterfly wings combine the shark skin (antifouling) and lotus leaf (self-cleaning) effects, producing the so-called rice and butterfly wing effect. In this paper, we study antifouling properties of four microstructured surfaces inspired by rice leaves and fabricated with photolithography and hot embossing techniques. Anti-biofouling effectiveness is determined with bioassays using Escherichia coli whilst inorganic fouling with simulated dirt particles. Antifouling data are presented to understand the role of surface geometrical features resistance to fouling. Conceptual modeling provides design guidance when developing novel antifouling surfaces for applications in the medical, marine, and industrial fields. Copyright © 2013 Elsevier Inc. All rights reserved.
Evaluation of cellular glasses for solar mirror panel applications
NASA Technical Reports Server (NTRS)
Giovan, M.; Adams, M.
1979-01-01
An analytic technique was developed to compare the structural and environmental performance of various materials considered for backing of second surface glass solar mirrors. Cellular glass was determined to be a prime candidate due to its low cost, high stiffness-to-weight ratio, thermal expansion match to mirror glass, evident minimal environmental impact and chemical and dimensional stability under conditions of use. The current state of the art and anticipated developments in cellular glass technology are discussed; material properties are correlated to design requirements. A mathematical model is presented which suggests a design approach which allows minimization of life cost; and, a mechanical and environmental testing program is outlined, designed to provide a material property basis for development of cellular glass hardware, together with methodology for collecting lifetime predictive data. Preliminary material property data from measurements are given. Microstructure of several cellular materials is shown, and sensitivity of cellular glass to freeze-thaw degradation and to slow crack growth is discussed. The effect of surface coating is addressed.
Chapter 19: Catalysis by Metal Carbides and Nitrides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaidle, Joshua A; Nash, Connor P; Yung, Matthew M
Early transition metal carbides and nitrides (ETMCNs), materials in which carbon or nitrogen occupies interstitial sites within a parent metal lattice, possess unique physical and chemical properties that motivate their use as catalysts. Specifically, these materials possess multiple types of catalytic sites, including metallic, acidic, and basic sites, and as such, exhibit reactivities that differ from their parent metals. Moreover, their surfaces are dynamic under reaction conditions. This chapter reviews recent (since 2010) experimental and computational investigations into the catalytic properties of ETMCN materials for applications including biomass conversion, syngas and CO2 upgrading, petroleum and natural gas refining, and electrocatalyticmore » energy conversion, energy storage, and chemicals production, and attempts to link catalyst performance to active site identity/surface structure in order to elucidate the present level of understanding of structure-function relationships for these materials. The chapter concludes with a perspective on leveraging the unique properties of these materials to design and develop improved catalysts through a dedicated, multidisciplinary effort.« less
Surface modification of Ni–Ti alloys for stent application after magnetoelectropolishing
Musaramthota, Vishal; Munroe, Norman; Datye, Amit; Dua, Rupak; Haider, Waseem; McGoron, Anthony; Rokicki, Ryszard
2015-01-01
The constant demand for new implant materials and the multidisciplinary design approaches for stent applications have expanded vastly over the past decade. The biocompatibility of these implant materials is a function of their surface characteristics such as morphology, surface chemistry, roughness, surface charge and wettability. These surface characteristics can directly influence the material's corrosion resistance and biological processes such as endothelialization. Surface morphology affects the thermodynamic stability of passivating oxides, which renders corrosion resistance to passivating alloys. Magnetoelectropolishing (MEP) is known to alter the morphology and composition of surface films, which assist in improving corrosion resistance of Nitinol alloys. This work aims at analyzing the surface characteristics of MEP Nitinol alloys by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The wettability of the alloys was determined by contact angle measurements and the mechanical properties were assessed by Nanoindentation. Improved mechanical properties were observed with the addition of alloying elements. Cyclic potentiodynamic polarization tests were performed to determine the corrosion susceptibility. Further, the alloys were tested for their cytotoxicity and cellular growth with endothelial cells. Improved corrosion resistance and cellular viability were observed with MEP surface treated alloys. PMID:25746243
Biological response on a titanium implant-grade surface functionalized with modular peptides☆
Yazici, H.; Fong, H.; Wilson, B.; Oren, E.E.; Amos, F.A.; Zhang, H.; Evans, J.S.; Snead, M.L.; Sarikaya, M.; Tamerler, C.
2015-01-01
Titanium (Ti) and its alloys are among the most successful implantable materials for dental and orthopedic applications. The combination of excellent mechanical and corrosion resistance properties makes them highly desirable as endosseous implants that can withstand a demanding biomechanical environment. Yet, the success of the implant depends on its osteointegration, which is modulated by the biological reactions occurring at the interface of the implant. A recent development for improving biological responses on the Ti-implant surface has been the realization that bifunctional peptides can impart material binding specificity not only because of their molecular recognition of the inorganic material surface, but also through their self-assembly and ease of biological conjugation properties. To assess peptide-based functionalization on bioactivity, the present authors generated a set of peptides for implant-grade Ti, using cell surface display methods. Out of 60 unique peptides selected by this method, two of the strongest titanium binding peptides, TiBP1 and TiBP2, were further characterized for molecular structure and adsorption properties. These two peptides demonstrated unique, but similar molecular conformations different from that of a weak binder peptide, TiBP60. Adsorption measurements on a Ti surface revealed that their disassociation constants were 15-fold less than TiBP60. Their flexible and modular use in biological surface functionalization were demonstrated by conjugating them with an integrin recognizing peptide motif, RGDS. The functionalization of the Ti surface by the selected peptides significantly enhanced the bioactivity of osteoblast and fibroblast cells on implant-grade materials. PMID:23159566
40 CFR 270.17 - Specific part B information requirements for surface impoundments.
Code of Federal Regulations, 2011 CFR
2011-07-01
... volume, physical, and chemical characteristics of the wastes, including their potential to migrate through soil or to volatilize or escape into the atmosphere; (2) The attenuative properties of underlying and surrounding soils or other materials; (3) The mobilizing properties of other materials co-disposed...
Ramakrishna, S.; Santhosh Kumar, K. S.; Mathew, Dona; Reghunadhan Nair, C. P.
2015-01-01
Superhydrophobic (SH) materials are essential for a myriad of applications such as anti-icing and self-cleaning due to their extreme water repellency. A single, robust material simultaneously possessing melt-coatability, bulk water repellency, self-cleanability, self-healability, self-refreshability, and adhesiveness has been remaining an elusive goal. We demonstrate a unique class of melt-processable, bulk SH coating by grafting long alkyl chains on silica nanoparticle surface by a facile one-step method. The well-defined nanomaterial shows SH property in the bulk and is found to heal macro-cracks on gentle heating. It retains wettability characteristics even after abrading with a sand paper. The surface regenerates SH features (due to reversible self-assembly of nano structures) quickly at ambient temperature even after cyclic water impalement, boiling water treatment and multiple finger rubbing tests. It exhibits self-cleaning properties on both fresh and cut surfaces. This kind of coating, hitherto undisclosed, is expected to be a breakthrough in the field of melt-processable SH coatings. PMID:26679096
Stoleru, Elena; Zaharescu, Traian; Hitruc, Elena Gabriela; Vesel, Alenka; Ioanid, Emil G; Coroaba, Adina; Safrany, Agnes; Pricope, Gina; Lungu, Maria; Schick, Christoph; Vasile, Cornelia
2016-11-23
Both cold nitrogen radiofrequency plasma and gamma irradiation have been applied to activate and functionalize the polylactic acid (PLA) surface and the subsequent lactoferrin immobilization. Modified films were comparatively characterized with respect to the procedure of activation and also with unmodified sample by water contact angle measurements, mass loss, X-ray photoelectron spectroscopy (XPS), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM), and chemiluminescence measurements. All modified samples exhibit enhanced surface properties mainly those concerning biocompatibility, antimicrobial, and antioxidant properties, and furthermore, they are biodegradable and environmentally friendly. Lactoferrin deposited layer by covalent coupling using carbodiimide chemistry showed a good stability. It was found that the lactoferrin-modified PLA materials present significantly increased oxidative stability. Gamma-irradiated samples and lactoferrin-functionalized samples show higher antioxidant, antimicrobial, and cell proliferation activity than plasma-activated and lactoferrin-functionalized ones. The multifunctional materials thus obtained could find application as biomaterials or as bioactive packaging films.
Derivation of mechanical characteristics for Ni/Au intermetallic surface with SAC305 solder
NASA Astrophysics Data System (ADS)
Kim, Jong-Min; Lee, Hyun-Boo; Chang, Yoon-Suk; Choi, Jae-Boong
2013-03-01
Many surface finish methods are used to connect a substrate with the electric components of IT products in the micro-packaging process, and various types of lead-free solder have been developed as alternative materials to lead-based solder to reduce environmental contamination. However, there has been little research on the mechanical properties of the inter-metallic surface which is generated in the bumping process between the lead-free solder and surface films such as Ni/Au. The present work is to derive the material properties of a Ni/Au inter-metallic surface with SAC305 solder. A series of indentation tests were carried out by changing four nano-scale indentation depths and two strain rates. Also, a reverse algorithm method was adopted to determine the elastic-plastic stress-strain curve based on the load-displacement curve from the indentation test data. As a result of the material characterization effort, the mean elastic modulus, yield strength and strain hardening exponent of IMC with Ni/Au finish were determined.
Optimisation of powders for pulmonary delivery using supercritical fluid technology.
Rehman, Mahboob; Shekunov, Boris Y; York, Peter; Lechuga-Ballesteros, David; Miller, Danforth P; Tan, Trixie; Colthorpe, Paul
2004-05-01
Supercritical fluid technology exploited in this work afforded single-step production of respirable particles of terbutaline sulphate (TBS). Different crystal forms of TBS were produced consistently, including two polymorphs, a stoichiometric monohydrate and amorphous material as well as particles with different degrees of crystallinity, size, and morphology. Different solid-state and surface characterisation techniques were applied in conjunction with measurements of powder flow properties using AeroFlow device and aerosol performance by Andersen Cascade Impactor tests. Improved fine particle fraction (FPF) was demonstrated for some powders produced by the SCF process when compared to the micronised material. Such enhanced flow properties and dispersion correlated well with the reduced surface energy parameters demonstrated by these powders. It is shown that semi-crystalline particles exhibited lower specific surface energy leading to a better performance in the powder flow and aerosol tests than crystalline materials. This difference of the surface and bulk crystal structure for selected powder batches is explained by the mechanism of precipitation in SCF which can lead to surface conditioning of particles produced.
Nanoscale β-nuclear magnetic resonance depth imaging of topological insulators
Koumoulis, Dimitrios; Morris, Gerald D.; He, Liang; Kou, Xufeng; King, Danny; Wang, Dong; Hossain, Masrur D.; Wang, Kang L.; Fiete, Gregory A.; Kanatzidis, Mercouri G.; Bouchard, Louis-S.
2015-01-01
Considerable evidence suggests that variations in the properties of topological insulators (TIs) at the nanoscale and at interfaces can strongly affect the physics of topological materials. Therefore, a detailed understanding of surface states and interface coupling is crucial to the search for and applications of new topological phases of matter. Currently, no methods can provide depth profiling near surfaces or at interfaces of topologically inequivalent materials. Such a method could advance the study of interactions. Herein, we present a noninvasive depth-profiling technique based on β-detected NMR (β-NMR) spectroscopy of radioactive 8Li+ ions that can provide “one-dimensional imaging” in films of fixed thickness and generates nanoscale views of the electronic wavefunctions and magnetic order at topological surfaces and interfaces. By mapping the 8Li nuclear resonance near the surface and 10-nm deep into the bulk of pure and Cr-doped bismuth antimony telluride films, we provide signatures related to the TI properties and their topological nontrivial characteristics that affect the electron–nuclear hyperfine field, the metallic shift, and magnetic order. These nanoscale variations in β-NMR parameters reflect the unconventional properties of the topological materials under study, and understanding the role of heterogeneities is expected to lead to the discovery of novel phenomena involving quantum materials. PMID:26124141
Modification of the surface properties of glass-ceramic materials at low-pressure RF plasma stream
NASA Astrophysics Data System (ADS)
Tovstopyat, Alexander; Gafarov, Ildar; Galeev, Vadim; Azarova, Valentina; Golyaeva, Anastasia
2018-05-01
The surface roughness has a huge effect on the mechanical, optical, and electronic properties of materials. In modern optical systems, the specifications for the surface accuracy and smoothness of substrates are becoming even more stringent. Commercially available pre-polished glass-ceramic substrates were treated with the radio frequency (RF) inductively coupled (13.56 MHz) low-pressure plasma to clean the surface of the samples and decrease the roughness. Optical emission spectroscopy was used to investigate the plasma stream parameters and phase-shifted interferometry to investigate the surface of the specimen. In this work, the dependence of RF inductively coupled plasma on macroscopic parameters was investigated with the focus on improving the surfaces. The ion energy, sputtering rate, and homogeneity were investigated. The improvements of the glass-ceramic surfaces from 2.6 to 2.2 Å root mean square by removing the "waste" after the previous operations had been achieved.
Photopolarimetry of scattering surfaces and their interpretation by computer model
NASA Technical Reports Server (NTRS)
Wolff, M.
1979-01-01
Wolff's computer model of a rough planetary surface was simplified and revised. Close adherence to the actual geometry of a pitted surface and the inclusion of a function for diffuse light resulted in a quantitative model comparable to observations by planetary satellites and asteroids. A function is also derived to describe diffuse light emitted from a particulate surface. The function is in terms of the indices of refraction of the surface material, particle size, and viewing angles. Computer-generated plots describe the observable and theoretical light components for the Moon, Mercury, Mars and a spectrum of asteroids. Other plots describe the effects of changing surface material properties. Mathematical results are generated to relate the parameters of the negative polarization branch to the properties of surface pitting. An explanation is offered for the polarization of the rings of Saturn, and the average diameter of ring objects is found to be 30 to 40 centimeters.
Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P
2013-07-09
An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.
Liang, Qin-ye; Wu, Xia-yi; Lin, Xue-feng
2012-04-01
To investigate the surface roughness property of the titanium castings cast in a new investment for titanium casting. Six wax patterns (20 mm × 20 mm × 0.5 mm) were invested using two investments: three in a new titanium investment material and three in the control material (Rematitan Plus). Six titanium specimens were obtained by conventional casting. After casting, surface roughness of the specimens were evaluated with a surface profilometer. The surface roughness of the specimens cast in new titanium investment material was (1.72 ± 0.08) µm, which was much smaller than that from Rematitan Plus [(1.91 ± 0.15) µm, P < 0.05]. The surfaces of titanium cast using these two investment materials are both smooth enough to fulfill the demand of the titanium precision-casting for prosthodontic clinical use.
Enhancing Aluminum Reactivity by Exploiting Surface Chemistry and Mechanical Properties
2015-06-01
alter its mechanical properties . In bulk material processing , annealing and quenching metals such as Al can relieve residual stress and improve...increasing Al reactivity is to alter its mechanical properties . In bulk material processing , annealing and quenching metals such as Al can relieve...mechanical properties . On a single particle level, affecting mechanical properties may also affect Al particle reactivity. Aluminum particles underwent
NASA Astrophysics Data System (ADS)
Xuan, Yue
Background. Soft materials such as polymers and soft tissues have diverse applications in bioengineering, medical care, and industry. Quantitative mechanical characterization of soft materials at multiscales is required to assure that appropriate mechanical properties are presented to support the normal material function. Indentation test has been widely used to characterize soft material. However, the measurement of in situ contact area is always difficult. Method of Approach. A transparent indenter method was introduced to characterize the nonlinear behaviors of soft materials under large deformation. This approach made the direct measurement of contact area and local deformation possible. A microscope was used to capture the contact area evolution as well as the surface deformation. Based on this transparent indenter method, a novel transparent indentation measurement systems has been built and multiple soft materials including polymers and pericardial tissue have been characterized. Seven different indenters have been used to study the strain distribution on the contact surface, inner layer and vertical layer. Finite element models have been built to simulate the hyperelastic and anisotropic material behaviors. Proper material constants were obtained by fitting the experimental results. Results.Homogeneous and anisotropic silicone rubber and porcine pericardial tissue have been examined. Contact area and local deformation were measured by real time imaging the contact interface. The experimental results were compared with the predictions from the Hertzian equations. The accurate measurement of contact area results in more reliable Young's modulus, which is critical for soft materials. For the fiber reinforced anisotropic silicone rubber, the projected contact area under a hemispherical indenter exhibited elliptical shape. The local surface deformation under indenter was mapped using digital image correlation program. Punch test has been applied to thin films of silicone rubber and porcine pericardial tissue and results were analyzed using the same method. Conclusions. The transparent indenter testing system can effectively reduce the material properties measurement error by directly measuring the contact radii. The contact shape can provide valuable information for the anisotropic property of the material. Local surface deformation including contact surface, inner layer and vertical plane can be accurately tracked and mapped to study the strain distribution. The potential usage of the transparent indenter measurement system to investigate biological and biomaterials was verified. The experimental data including the real-time contact area combined with the finite element simulation would be powerful tool to study mechanical properties of soft materials and their relation to microstructure, which has potential in pathologies study such as tissue repair and surgery plan. Key words: transparent indenter, large deformation, soft material, anisotropic.
Pressure-viscosity coefficient of biobased lubricants
USDA-ARS?s Scientific Manuscript database
Film thickness is an important tribological property that is dependent on the combined effect of lubricant properties, material property of friction surfaces, and the operating conditions of the tribological process. Pressure-viscosity coefficient (PVC) is one of the lubricant properties that influe...
Li, Weiyan; Sun, Jian
2018-05-10
BACKGROUND Polymer-infiltrated ceramic-network (PICN) dental material is a new and practical development in orthodontics. Sintering is the process of forming a stable solid mass from a powder by heating without melting. The aim of this study was to evaluate the effects of sintering temperature on the mechanical properties of a PICN zirconia dental material. MATERIAL AND METHODS A dense zirconia ceramic and four PICN zirconia dental materials, with varying porosities, were sintered at three different temperatures; 12 PICN zirconia dental materials based on these porous ceramics were prepared, as well as a pure polymer. After the specimen preparation, flexural strength and elastic modulus values were measured using the three-point bending test, and fracture toughness were determined by the single-edge notched beam (SENB) method. The Vickers hardness test method was used with an indentation strength (IS) test. Scanning electron microscopy (SEM) was used to examine the microstructure of the ceramic surface and the fracture surface. RESULTS Mechanical properties of the PICN dental materials, including flexural strength, elastic modulus, fracture toughness, and hardness, were more similar to the properties of natural teeth when compared with traditional dental ceramic materials, and were affected by the density and sintering temperature. SEM showed that the porous ceramic network became cohesive and that the length of cracks in the PICN dental material was reduced. CONCLUSIONS PICN zirconia dental materials were characterized by similar mechanical properties to natural dental tissues, but further studies are required continue to improve the similarities with natural human enamel and dentin.
Li, Weiyan
2018-01-01
Background Polymer-infiltrated ceramic-network (PICN) dental material is a new and practical development in orthodontics. Sintering is the process of forming a stable solid mass from a powder by heating without melting. The aim of this study was to evaluate the effects of sintering temperature on the mechanical properties of a PICN zirconia dental material. Material/Methods A dense zirconia ceramic and four PICN zirconia dental materials, with varying porosities, were sintered at three different temperatures; 12 PICN zirconia dental materials based on these porous ceramics were prepared, as well as a pure polymer. After the specimen preparation, flexural strength and elastic modulus values were measured using the three-point bending test, and fracture toughness were determined by the single-edge notched beam (SENB) method. The Vickers hardness test method was used with an indentation strength (IS) test. Scanning electron microscopy (SEM) was used to examine the microstructure of the ceramic surface and the fracture surface. Results Mechanical properties of the PICN dental materials, including flexural strength, elastic modulus, fracture toughness, and hardness, were more similar to the properties of natural teeth when compared with traditional dental ceramic materials, and were affected by the density and sintering temperature. SEM showed that the porous ceramic network became cohesive and that the length of cracks in the PICN dental material was reduced. Conclusions PICN zirconia dental materials were characterized by similar mechanical properties to natural dental tissues, but further studies are required continue to improve the similarities with natural human enamel and dentin. PMID:29746449
Linking Surface and Subsurface Processes: Implications for Seismic Hazards in Southern California
NASA Astrophysics Data System (ADS)
Lin, J. C.; Moon, S.; Yong, A.; Meng, L.; Martin, A. J.; Davis, P. M.
2017-12-01
Earth's surface and subsurface processes such as bedrock weathering, soil production, and river incision can influence and be influenced by spatial variations in the mechanical strength of surface material. Mechanically weakened rocks tend to have reduced seismic velocity, which can result in larger ground-motion amplification and greater potential for earthquake-induced damages. However, the influence and extent of surface and subsurface processes on the mechanical strength of surface material and seismic site conditions in southern California remain unclear. In this study, we examine whether physics-based models of surface and subsurface processes can explain the spatial variability and non-linearity of near-surface seismic velocity in southern California. We use geophysical measurements (Yong et al., 2013; Ancheta et al., 2014), consisting of shear-wave velocity (Vs) tomography data, Vs profiles, and the time-averaged Vs in the upper 30 m of the crust (Vs30) to infer lateral and vertical variations of surface material properties. Then, we compare Vs30 values with geologic and topographic attributes such as rock type, slope, elevation, and local relief, as well as metrics for surface processes such as soil production and bedrock weathering from topographic stress, frost cracking, chemical reactions, and vegetation presence. Results from this study will improve our understanding of physical processes that control subsurface material properties and their influences on local variability in seismic site conditions.
Kiss, Gábor; Sebők, Béla; Szabó, Péter J; Joób, Arpád F; Szabó, György
2014-05-01
In the present work, surface analytical investigation of unimplanted as well as retrieved pyrolytic carbon-covered carbon/carbon composite implants and Ti osteosynthesis plates is reported. The Ti plates were covered by a 200-nm-thick, anodically and thermally formed TiO2 layer. Our results suggest that although the oxide layer on the Ti miniplates remained stable during the time spent in the human body, there is still material transport between the implant and the human body. In case of the carbon/carbon composite implants, damage of the carbon fibers constituting the material was found on one side of the sterile implant and attributed to the manufacturing process. The NaCl crystals originally present on the surface of the sterile material disappeared during the time spent in the human body. As a result of the interaction with the human body, a new surface layer (mainly constituted of carbon) appeared on the implant. The results indicate that both the time spent in the human organism and the preparation of the implants before operation can have detectable effects on the investigated surface properties. Surface analytical investigations could therefore provide information not only about the biocompatibility of these materials but also about the effect of their treatment before operation.
Enhancement of surface durability of space materials and structures in LEO environment
NASA Astrophysics Data System (ADS)
Gudimenko, Y.; Ng, R.; Kleiman, J. I.; Iskanderova, Z. A.; Tennyson, R. C.; Hughes, P. C.; Milligan, D.; Grigorevski, A.; Shuiski, M.; Kiseleva, L.; Edwards, D.; Finckenor, M.
2003-09-01
Results of on-going program that involves surface modification treatments of thin polymer films and various organic-based thermal control coatings by an innovative Photosil surface modification technology for space durability improvement are presented, as well as results of ground-based testing in an oxygen plasma asher and in fast atomic oxygen (FAO) beam facility. In addition, independent ground-based FAO + VUV test results from NASA Marshall Space Flight Center (MSFC) are also presented. Recent results are presented to further improve the AO durability of conductive thermal control paints, never previously treated by the Photosil process. The thermal control coatings evaluated in this program represent existing commercially available space-approved materials and experimental coatings, which are still under development. Functional properties and performance characteristics, such as AO stability, thermal optical properties, surface resistivity, and outgassing characteristics of pristine and treated materials were also verified. FAO+VUV exposure tests results revealed that some of the successfully treated materials did not show any mass loss or surface morphology change, thus indicating good protection from the severe oxidative environment. A few complementary surface analysis techniques, such as X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) have been used to examine the composition and structure of the protective surface-modified layer.
Tuning the acid/base properties of nanocarbons by functionalization via amination.
Arrigo, Rosa; Hävecker, Michael; Wrabetz, Sabine; Blume, Raoul; Lerch, Martin; McGregor, James; Parrott, Edward P J; Zeitler, J Axel; Gladden, Lynn F; Knop-Gericke, Axel; Schlögl, Robert; Su, Dang Sheng
2010-07-21
The surface chemical properties and the electronic properties of vapor grown carbon nanofibers (VGCNFs) have been modified by treatment of the oxidized CNFs with NH(3). The effect of treatment temperature on the types of nitrogen functionalities introduced was evaluated by synchrotron based X-ray photoelectron spectroscopy (XPS), while the impact of the preparation methods on the surface acid-base properties was investigated by potentiometric titration, microcalorimetry, and zeta potential measurements. The impact of the N-functionalization on the electronic properties was measured by THz-Time Domain spectroscopy. The samples functionalized via amination are characterized by the coexistence of acidic and basic O and N sites. The population of O and N species is temperature dependent. In particular, at 873 K nitrogen is stabilized in substitutional positions within the graphitic structure, as heterocyclic-like moieties. The surface presents heterogeneously distributed and energetically different basic sites. A small amount of strong basic sites gives rise to a differential heat of CO(2) adsorption of 150 kJ mol(-1). However, when functionalization is carried out at 473 K, nitrogen moieties with basic character are introduced and the maximum heat of adsorption is significantly lower, at approximately 90 kJ mol(-1). In the latter sample, energetically different basic sites coexist with acidic oxygen groups introduced during the oxidative step. Under these conditions, a bifunctional acidic and basic surface is obtained with high hydrophilic character. N-functionalization carried out at higher temperature changes the electronic properties of the CNFs as evaluated by THz-TDS. The functionalization procedure presented in this work allows high versatility and flexibility in tailoring the surface chemistry of nanocarbon material to specific needs. This work shows the potential of the N-containing nanocarbon materials obtained via amination in catalysis as well as electronic device materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laskin, Julia; Johnson, Grant E.; Prabhakaran, Venkateshkumar
Immobilization of complex molecules and clusters on supports plays an important role in a variety of disciplines including materials science, catalysis and biochemistry. In particular, deposition of clusters on surfaces has attracted considerable attention due to their non-scalable, highly size-dependent properties. The ability to precisely control the composition and morphology of clusters and small nanoparticles on surfaces is crucial for the development of next generation materials with rationally tailored properties. Soft- and reactive landing of ions onto solid or liquid surfaces introduces unprecedented selectivity into surface modification by completely eliminating the effect of solvent and sample contamination on the qualitymore » of the film. The ability to select the mass-to-charge ratio of the precursor ion, its kinetic energy and charge state along with precise control of the size, shape and position of the ion beam on the deposition target makes soft-landing an attractive approach for surface modification. High-purity uniform thin films on surfaces generated using mass-selected ion deposition facilitate understanding of critical interfacial phenomena relevant to catalysis, energy generation and storage, and materials science. Our efforts have been directed toward understanding charge retention by soft-landed metal and metal-oxide cluster ions, which may affect both their structure and reactivity. Specifically, we have examined the effect of the surface on charge retention by both positively and negatively charged cluster ions. We found that the electronic properties of the surface play an important role in charge retention by cluster cations. Meanwhile, the electron binding energy is a key factor determining charge retention by cluster anions. These findings provide the scientific foundation for the rational design of interfaces for advanced catalysts and energy storage devices. Further optimization of electrode-electrolyte interfaces for applications in energy storage and electrocatalysis may be achieved by understanding and controlling the properties of soft-landed cluster ions.« less
NASA Astrophysics Data System (ADS)
Lu, Wei; Wang, Weihua; Jiang, Haiyan; Zuo, Guizhong; Pan, Baoguo; Xu, Wei; Chu, Delin; Hu, Jiansheng; Qi, Junli
2017-10-01
The dual-cooled lead lithium (PbLi) blanket is considered as one of the main options for the Chinese demonstration reactor (DEMO). Liquid PbLi alloy is used as the breeder material and coolant. Reduced activation ferritic/martensitic (RAFM) steel, stainless steel and the silicon carbide ceramic matrix composite (SiCf) are selected as the substrate materials for different use. To investigate the wetting property and inter-facial interactions of PbLi/RAFM steel, PbLi/SS316L, PbLi/SiC and PbLi/SiCf couples, in this paper, the special vacuum experimental device is built, and the 'dispensed droplet' modification for the classic sessile droplet technique is made. Contact angles are measured between the liquid PbLi and the various candidate materials at blanket working temperature from 260 to 480 °C. X-ray photoelectron spectroscopy (XPS) is used to characterize the surface components of PbLi droplets and substrate materials, in order to study the element trans-port and corrosion mechanism. Results show that SiC composite (SiCf) and SiC ceramic show poor wetting properties with the liquid PbLi alloy. Surface roughness and testing temperature only provide tiny improvements on the wetting property below 480 °C. RAFM steel performs better wetting properties and corrosion residence when contacted with molten PbLi, while SS316L shows low corrosion residence above 420 °C for the decomposition of protective surface film mainly consisted of chromic sesquioxide. The results could provide meaningful compatibility database of liquid PbLi alloy and valuable reference in engineering design of candidate structural and functional materials for future fusion blanket.
NASA Astrophysics Data System (ADS)
Knauer, A.; Gramlich, S.; Staske, R.
1988-11-01
Comprehensive studies were made of the relationship between the photoluminescence intensity and the effective carrier lifetime, on the one hand, and the quality of the surface treatment of wafers (damage, oxide layer thickness) and the initial properties of a material (surface and bulk defects, inhomogeneity of the dopant concentration), on the other.
Lee, Jung Heon; Yi, Gyu Sung; Lee, Jin Woong; Kim, Deug Joong
2017-12-01
The physicochemical properties of a xenograft are very important because they strongly influence the bone regeneration capabilities of the graft material. Even though porcine xenografts have many advantages, only a few porcine xenografts are commercially available, and most of their physicochemical characteristics have yet to be reported. Thus, in this work we aimed to investigate the physicochemical characteristics of a porcine bone grafting material and compare them with those of 2 commercially available bovine xenografts to assess the potential of xenogenic porcine bone graft materials for dental applications. We used various characterization techniques, such as scanning electron microscopy, the Brunauer-Emmett-Teller adsorption method, atomic force microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and others, to compare the physicochemical properties of xenografts of different origins. The porcine bone grafting material had relatively high porosity (78.4%) and a large average specific surface area (SSA; 69.9 m 2 /g), with high surface roughness (10-point average roughness, 4.47 µm) and sub-100-nm hydroxyapatite crystals on the surface. Moreover, this material presented a significant fraction of sub-100-nm pores, with negligible amounts of residual organic substances. Apart from some minor differences, the overall characteristics of the porcine bone grafting material were very similar to those of one of the bovine bone grafting material. However, many of these morphostructural properties were significantly different from the other bovine bone grafting material, which exhibited relatively smooth surface morphology with a porosity of 62.0% and an average SSA of 0.5 m 2 /g. Considering that both bovine bone grafting materials have been successfully used in oral surgery applications in the last few decades, this work shows that the porcine-derived grafting material possesses most of the key physiochemical characteristics required for its application as a highly efficient xenograft material for bone replacement.
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher (Inventor)
2014-01-01
A method and an apparatus confer full superelastic properties to the active surface of a mechanical component constructed of a superelastic material prior to service. A compressive load is applied to the active surface of the mechanical component followed by removing the compressive load from the active surface whereby substantially all load strain is recoverable after applying and removing of subsequent compressive loads.
Poly(dimethyl siloxane) surface modification with biosurfactants isolated from probiotic strains.
Pinto, S; Alves, P; Santos, A C; Matos, C M; Oliveiros, B; Gonçalves, S; Gudiña, E; Rodrigues, L R; Teixeira, J A; Gil, M H
2011-09-15
Depending on the final application envisaged for a given biomaterial, many surfaces must be modified before use. The material performance in a biological environment is mainly mediated by its surface properties that can be improved using suitable modification methods. The aim of this work was to coat poly(dimethyl siloxane) (PDMS) surfaces with biosurfactants (BSs) and to evaluate how these compounds affect the PDMS surface properties. BSs isolated from four probiotic strains (Lactococcus lactis, Lactobacillus paracasei, Streptococcus thermophilus A, and Streptococcus thermophilus B) were used. Bare PDMS and PDMS coated with BSs were characterized by contact angle measurements, infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The influence of the surface modifications on the materials blood compatibility was studied through thrombosis and hemolysis assays. The cytotoxicity of these materials was tested against rat peritoneal macrophages. AFM results demonstrated the successful coating of the surfaces. Also, by contact angle measurements, an increase of the coated surfaces hydrophilicity was seen. Furthermore, XPS analysis indicated a decrease of the silicon content at the surface, and ATR-FTIR results showed the presence of BS characteristic groups as a consequence of the modification. All the studied materials revealed no toxicity and were found to be nonhemolytic. The proposed approach for the modification of PDMS surfaces was found to be effective and opens new possibilities for the application of these surfaces in the biomedical field. Copyright © 2011 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Muhleman, D. O.; Jakosky, B. M.
1979-01-01
The thermal interia of the surface of Mars varies spatially by a factor of eight. This is attributable to changes in the average particle size of the fine material, the surface elevation, the atmospheric opacity due to dust, and the fraction of the surface covered by rocks and fine material. The effects of these non-ideal properties on the surface temperatures and derived thermal inertias are modeled, along with the the effects of slopes, CO2 condensed onto the surface, and layering of fine material upon solid rock. The non-ideal models are capable of producing thermal behavior similar to that observed by the Viking Infrared Thermal Mapper, including a morning delay in the post-dawn temperature rise and an enhanced cooling in the afternoon relative to any ideal, homogeneous model. The enhanced afternoon cooling observed at the Viking-1 landing site is reproduced by the non-ideal models while that atop Arsia Mons volcano is not, but may be attributed to the observing geometry.
NASA Astrophysics Data System (ADS)
Urkude, Rajashri; Rawat, Rajeev; Palikundwar, Umesh
2018-04-01
In 3D topological insulators, achieving a genuine bulk-insulating state is an important topic of research. The material system (Bi,Sb)2(Te,Se)3 has been proposed as a topological insulator with high resistivity and low carrier concentration. Topological insulators are predicted to present interesting surface transport phenomena but their experimental studies have been hindered by metallic bulk conduction that overwhelms the surface transport. Here we present a study of the bulk-insulating properties of (Bi0.3Sb0.7)2Te3. We show that a high resistivity exceeding 1 Ωm as a result of variable-range hopping behavior of state and Shubnikov-de Haas oscillations as coming from the topological surface state. We have been able to clarify both the bulk and surface transport channels, establishing a comprehensive understanding of the transport properties in this material. Our results demonstrate that (Bi0.3Sb0.7)2Te3 is a good material for studying the surface quantum transport in a topological insulator.
NASA Astrophysics Data System (ADS)
Vlahos, Vasilios; Lee, Yueh-Lin; Booske, John H.; Morgan, Dane; Turek, Ladislav; Kirshner, Mark; Kowalczyk, Richard; Wilsen, Craig
2009-05-01
Scandate cathodes (BaxScyOz on W) are important thermionic electron emission materials whose emission mechanism remains unclear. Ab initio modeling is used to investigate the surface properties of both scandate and traditional B-type (Ba-O on W) cathodes. We demonstrate that the Ba-O dipole surface structure believed to be present in active B-type cathodes is not thermodynamically stable, suggesting that a nonequilibrium steady state dominates the active cathode's surface structure. We identify a stable, low work function BaxScyOz surface structure, which may be responsible for some scandate cathode properties and demonstrate that multicomponent surface coatings can lower cathode work functions.
Relationship between Surface Modifications of Nanoparticle and Invasion into Suspension Cells
NASA Astrophysics Data System (ADS)
Matsui, Y.; Sakai, N.; Tsuda, A.; Yoneda, M.
2011-07-01
Nanomaterials have a variety of properties for each material. There is little information available on which kinds of material properties have effects on toxicity and kinetics. This paper presents that a relationship between material properties and hazard data by undertaking a bibliographical survey at first. With respect to cytotoxicity, it probably depends mainly on the particle volume dose and to a certain degree on particle solubility. It can be concluded from these results that there is a relationship between material properties and hazard data. Many activities involving nano risk are occurring all over the world. Secondly, we assayed actually for cellular uptake of three kinds of Quantum dots (15 nm, 5.5×1012 particles/ml) to demonstrate our result of bibliographical survey. Three different surface modification quantum dots (non-modification, -COOH, -NH3) were mixed with floating Jurkat cells in each. After thirty minute, we washed these cells three times and detected fluorescence by flow cytometer. Almost all the carboxylate particles invaded a cell, about 60% aminated them also invaded and few non-modification particles were taken up. Nanomaterials are often very broadly categorized and named based upon their basic material composition or product shape. Our results confirm that we have to examine which physical-chemical properties affect some adverse effects for each nanomaterial.
Metals and Ceramics Division annual progress report, October 1, 1978-June 30, 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, S.
Research is reported concerning: (1) engineering materials including materials compatibility, mechanical properties, nondestructive testing, pressure vessel technology, and welding and brazing; (2) fuels and processes consisting of ceramic technology, fuel cycle technology, fuels evaluation, fuels fabrication and metals processing; and (3) materials science which includes, ceramic studies, physical metallurgy and properties, radiation effects and microstructural analysis, metastable and superconducting materials, structure and properties of surfaces, theoretical research, and x-ray research and applications. Highlights of the work of the metallographic group and the current status of the High-Temperature Materials Laboratory (HTML) and the Materials and Structures Technology Management Center (MSTMC) aremore » presented. (FS)« less
PHOTONICS AND NANOTECHNOLOGY Laser nanostructuring of materials surfaces
NASA Astrophysics Data System (ADS)
Zavestovskaya, I. N.
2010-12-01
This paper reviews results of experimental and theoretical studies of surface micro- and nanostructuring of metals and other materials irradiated directly by short and ultrashort laser pulses. Special attention is paid to direct laser action involving melting of the material (with or without ablation), followed by ultrarapid surface solidification, which is an effective approach to producing surface nanostructures. Theoretical analysis of recrystallisation kinetics after irradiation by ultrashort laser pulses makes it possible to determine the volume fraction of crystallised phase and the average size of forming crystalline structures as functions of laser treatment regime and thermodynamic properties of the material. The present results can be used to optimise pulsed laser treatment regime in order to ensure control nanostructuring of metal surfaces.
Synthesis and characterization of thin-transparent nanostructured films for surface protection
NASA Astrophysics Data System (ADS)
Veltri, S.; Sokullu, E.; Barberio, M.; Gauthier, M. A.; Antici, P.
2017-01-01
This work demonstrates that very thin and optically transparent nanocomposite films can be conveniently applied on surface materials, displaying potent antibacterial properties without affecting the aesthetics of the underlying material. In our approach we propose new composite materials, which ensure the surface protection by inactivating the bacteria before a biofilm can be formed. The films contain very small loadings of TiO2, graphene, or fullerene, and can easily be applied on large surfaces using conventional brushes or air-brushes. These nanocomposite films are very promising candidates for the preservation of statues, mosaics, floors, buildings, and other objects that are exposed to challenging environmental conditions such as Architectonical Heritage or building materials (materials featuring stone, pigments, bronze, granite, marble, and glass).
Improvement of Functional Properties by Sever Plastic Deformation on Parts of Titanium Biomaterials
NASA Astrophysics Data System (ADS)
Czán, Andrej; Babík, Ondrej; Daniš, Igor; Martikáň, Pavol; Czánová, Tatiana
2017-12-01
Main task of materials for invasive implantology is their biocompatibility with the tissue but also requirements for improving the functional properties of given materials are increasing constantly. One of problems of materials biocompatibility is the impossibility to improve of functional properties by change the percentage of the chemical elements and so it is necessary to find other innovative methods of improving of functional properties such as mechanical action in the form of high deformation process. This paper is focused on various methods of high deformation process such as Equal Channel Angular Pressing (ECAP) when rods with record strength properties were obtained.The actual studies of the deformation process properties as tri-axial compress stress acting on workpiece with high speed of deformation shows effects similar to results obtained using the other methods, but in lower levels of stress. Hydrostatic extrusion (HE) is applying for the purpose of refining the structure of the commercially pure titanium up to nano-scale. Experiments showed the ability to reduce the grain size below 100 nm. Due to the significant change in the performance of the titanium materials by severe plastic deformation is required to identify the processability of materials with respect to the identification of created surfaces and monitoring the surface integrity, where the experimental results show ability of SPD technologies application on biomaterials.
Deformation and relaxation of an incompressible viscoelastic body with surface viscoelasticity
NASA Astrophysics Data System (ADS)
Liu, Liping; Yu, Miao; Lin, Hao; Foty, Ramsey
2017-01-01
Measuring mechanical properties of cells or cell aggregates has proven to be an involved process due to their geometrical and structural complexity. Past measurements are based on material models that completely neglect the elasticity of either the surface membrane or the interior bulk. In this work, we consider general material models to account for both surface and bulk viscoelasticity. The boundary value problems are formulated for deformations and relaxations of a closed viscoelastic surface coupled with viscoelastic media inside and outside of the surface. The linearized surface elasticity models are derived for the constant surface tension model and the Helfrich-Canham bending model for coupling with the bulk viscoelasticity. For quasi-spherical surfaces, explicit solutions are obtained for the deformation, stress-strain and relaxation behaviors under a variety of loading conditions. These solutions can be applied to extract the intrinsic surface and bulk viscoelastic properties of biological cells or cell aggregates in the indentation, electro-deformation and relaxation experiments.
Creation of hydrophilic nitric oxide releasing polymers via plasma surface modification.
Pegalajar-Jurado, A; Joslin, J M; Hawker, M J; Reynolds, M M; Fisher, E R
2014-08-13
Herein, we describe the surface modification of an S-nitrosated polymer derivative via H2O plasma treatment, resulting in polymer coatings that maintained their nitric oxide (NO) releasing capabilities, but exhibited dramatic changes in surface wettability. The poly(lactic-co-glycolic acid)-based hydrophobic polymer was nitrosated to achieve a material capable of releasing the therapeutic agent NO. The NO-loaded films were subjected to low-temperature H2O plasma treatments, where the treatment power (20-50 W) and time (1-5 min) were varied. The plasma treated polymer films were superhydrophilic (water droplet spread completely in <100 ms), yet retained 90% of their initial S-nitrosothiol content. Under thermal conditions, NO release profiles were identical to controls. Under buffer soak conditions, the NO release profile was slightly lowered for the plasma-treated materials; however, they still result in physiologically relevant NO fluxes. XPS, SEM-EDS, and ATR-IR characterization suggests the plasma treatment resulted in polymer rearrangement and implantation of hydroxyl and carbonyl functional groups. Plasma treated samples maintained both hydrophilic surface properties and NO release profiles after storage at -18 °C for at least 10 days, demonstrating the surface modification and NO release capabilities are stable over time. The ability to tune polymer surface properties while maintaining bulk properties and NO release properties, and the stability of those properties under refrigerated conditions, represents a unique approach toward creating enhanced therapeutic biopolymers.
NASA Astrophysics Data System (ADS)
Rathnayake, R. M. N. M.; Mantilaka, M. M. M. G. P. G.; Hara, Masanori; Huang, Hsin-Hui; Wijayasinghe, H. W. M. A. C.; Yoshimura, Masamichi; Pitawala, H. M. T. G. A.
2017-07-01
Solid polymer composite systems are widely being used for potential technological applications in secondary energy sources and electrochromic devices. In this study, we synthesized and characterized a composite material composed of polyaniline (PANI) and natural needle platy (NPG) vein graphite. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), micro-Raman analysis, thermogravimetric and differential thermal analysis (TGA/DTA), transmission electron microscopy (TEM) were used to study the structural and electrochemical properties of the prepared PANI/NPG graphite composite. XPS, FTIR, and micro-Raman analysis confirmed the existence of relevant functional groups and bonding in the prepared PANI/NPG composite material. The composite shows a very low corrosion rate, approximately 29 μm per year, and high hydrophobicity on steel surfaces, which helps to prevent the corrosion due to O2 penetration towards the metal surface. It indicates that the composite can be used as a high potential surface coating material to anticorrosion. The specific capacitance of PANI/NPG composite is 833.3 F g-1, which is higher than that of PANI. This synergistic electrical performance result proves the prepared PANI/NPG graphite composite as a suitable protective coating material for steel surfaces.
Ion Implantation of Perfluoropolyether-Lubricated Surfaces for Improved Tribological Performance
NASA Technical Reports Server (NTRS)
Shogrin, Brad
1998-01-01
For over 30 years, perfluoropolyethers (PFPE's) have been the liquid lubricants of choice for space applications because of their proven tribological performance and desirable properties, such as low vapor pressure and a wide liquid temperature range. These oils are used in such space mechanisms as gyroscopes, scanning mirrors, actuators, and filter wheels. In the past few years, there have been several incidents during which PFPE-lubricated space mechanisms have shown anomalous behavior. These anomalies are thought to be the result of PFPE degradation. Investigative research focused on understanding and modeling the degradation of PFPE lubricants has shown that PFPE's degrade and lose their desirable properties while under boundary-lubricated, sliding/rolling contacts and at elevated temperatures. These performance deficiencies are strongly dependent on the surface chemistry and reactivity of the lubricated contacts, which dictate the formation of harmful catalytic by-products. One way to inhibit tribo-induced degradation may be to use passivated surfaces that do not promote the formation of harmful by-products. Such a passivated surface would inhibit PFPE degradation and increase the lifetime of the lubricated mechanism. Ion implantation is one such passivation technique. This surface-treatment technique can modify the surface properties of materials without affecting either the properties or dimensions of the bulk material beneath the treated layer. By introducing a foreign species into a submicron surface layer, ion implantation can induce unique surface microstructures.
NASA Technical Reports Server (NTRS)
Murchie, Scott L.; Britt, Daniel T.; Head, James W.; Pratt, Stephen F.; Fisher, Paul C.
1991-01-01
Color ratio images created from multispectral observations of Phobos are analyzed in order to characterize the spectral properties of Phobos' surface, to assess their spatial distributions and relationships with geologic features, and to compare Phobos' surface materials with possible meteorite analogs. Data calibration and processing is briefly discussed, and the observed spectral properties of Phobos and their lateral variations are examined. Attention is then given to the color properties of different types of impact craters, the origin of lateral variations in surface color, the relation between the spatial distribution of color properties and independently identifiable geologic features, and the relevance of color variation spatial distribution to the origin of the grooves.
Nanostructural Evolution of Hard Turning Layers in Carburized Steel
NASA Astrophysics Data System (ADS)
Bedekar, Vikram
The mechanisms of failure for components subjected to contact fatigue are sensitive to the structure and properties of the material surface. Although, the bulk material properties are determined by the steel making, forming and the heat treatment; the near surface material properties are altered during final material removal processes such as hard turning or grinding. Therefore, the ability to optimize, modulate and predict the near surface properties during final metal removal operations would be extremely useful in the enhancement of service life of a component. Hard machining is known to induce severely deformed layers causing dramatic microstructural transformations. These transformations occur via grain refinement or thermal phenomena depending upon cutting conditions. The aim of this work is to engineer the near surface nanoscale structure and properties during hard turning by altering strain, strain rate, temperature and incoming microstructure. The near surface material transformations due to hard turning were studied on carburized SAE 8620 bearing steel. Variations in parent material microstructures were introduced by altering the retained austenite content. The strain, strain rate and temperature achieved during final metal cutting were altered by varying insert geometry, insert wear and cutting speed. The subsurface evolution was quantified by a series of advanced characterization techniques such as transmission electron microscopy (TEM), glancing angle X-ray diffraction (GAXRD), X-ray stress evaluation and nanoindentation which were coupled with numerical modeling. Results showed that the grain size of the nanocrystalline near surface microstructure can be effectively controlled by altering the insert geometry, insert wear, cutting speed and the incoming microstructure. It was also evident that the near surface retained austenite decreased at lower cutting speed indicating transformation due to plastic deformation, while it increased at higher cutting speed indicated thermal transformation. Nanoindentation tests showed that the substructures produced by plastic deformation follow the Hall-Petch relationship while the structures produced by thermal transformation did not. This indicated a change in the hardness driver from dislocation hardening to phase transformation, both of which have a significant impact on fatigue life. Using hardness based flow stress numerical model, these relationships between the processing conditions and structural parameters were further explored. Results indicated that the hard turning process design space can be partitioned into three regions based on thermal phase transformations, plastic grain refinement, and a third regime where both mechanisms are active. It was found that the Zener-Holloman parameter can not only be used to predict post-turning grain size but also to partition the process space into regions of dominant microstructural mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, Donald R.; Engelhard, Mark H.; Johnson, Grant E.
2013-08-27
This review examines the characterization challenges inherently associated with understanding nanomaterials and how surface characterization methods can help meet those challenges. In parts of the research community, there is growing recognition that many studies and published reports on the properties and behaviors of nanomaterials have involved inadequate characterization. As a consequence, the true value of the data in these reports is, at best, uncertain. As the importance of nanomaterials in fundamental research and technological applications increases, it is necessary for researchers to recognize the challenges associated with reproducible materials synthesis, maintaining desired materials properties during handling and processing, and themore » dynamic nature of nanomaterials, especially nanoparticles. Researchers also need to understand how characterization approaches (surface and otherwise) can be used to minimize synthesis surprises and to determine how (and how quickly) materials and properties change in different environments. The types of information that can be provided by traditional surface sensitive analysis methods (including X-ray photoelectron and Auger electron spectroscopies, scanning probe microscopy and secondary ion mass spectroscopy) and less common or evolving surface sensitive methods (e.g., nuclear magnetic resonance, sum frequency generation, and low and medium energy ion scattering) are discussed and various of their use in nanomaterial research are presented.« less
Decoupling Polymer Properties to Elucidate Mechanisms Governing Cell Behavior
Wang, Xintong; Boire, Timothy C.; Bronikowski, Christine; Zachman, Angela L.; Crowder, Spencer W.
2012-01-01
Determining how a biomaterial interacts with cells (“structure-function relationship”) reflects its eventual clinical applicability. Therefore, a fundamental understanding of how individual material properties modulate cell-biomaterial interactions is pivotal to improving the efficacy and safety of clinically translatable biomaterial systems. However, due to the coupled nature of material properties, their individual effects on cellular responses are difficult to understand. Structure-function relationships can be more clearly understood by the effective decoupling of each individual parameter. In this article, we discuss three basic decoupling strategies: (1) surface modification, (2) cross-linking, and (3) combinatorial approaches (i.e., copolymerization and polymer blending). Relevant examples of coupled material properties are briefly reviewed in each section to highlight the need for improved decoupling methods. This follows with examples of more effective decoupling techniques, mainly from the perspective of three primary classes of synthetic materials: polyesters, polyethylene glycol, and polyacrylamide. Recent strides in decoupling methodologies, especially surface-patterning and combinatorial techniques, offer much promise in further understanding the structure-function relationships that largely govern the success of future advancements in biomaterials, tissue engineering, and drug delivery. PMID:22536977
Localised anodic oxidation of aluminium material using a continuous electrolyte jet
NASA Astrophysics Data System (ADS)
Kuhn, D.; Martin, A.; Eckart, C.; Sieber, M.; Morgenstern, R.; Hackert-Oschätzchen, M.; Lampke, T.; Schubert, A.
2017-03-01
Anodic oxidation of aluminium and its alloys is often used as protection against material wearout and corrosion. Therefore, anodic oxidation of aluminium is applied to produce functional oxide layers. The structure and properties of the oxide layers can be influenced by various factors. These factors include for example the properties of the substrate material, like alloy elements and heat treatment or process parameters, like operating temperature, electric parameters or the type of the used electrolyte. In order to avoid damage to the work-piece surface caused by covering materials in masking applications, to minimize the use of resources and to modify the surface in a targeted manner, the anodic oxidation has to be localised to partial areas. Within this study a proper alternative without preparing the substrate by a mask is investigated for generating locally limited anodic oxidation by using a continuous electrolyte jet. Therefore aluminium material EN AW 7075 is machined by applying a continuous electrolyte jet of oxalic acid. Experiments were carried out by varying process parameters like voltage or processing time. The realised oxide spots on the aluminium surface were investigated by optical microscopy, SEM and EDX line scanning. Furthermore, the dependencies of the oxide layer properties from the process parameters are shown.
Shrink-induced superhydrophobic and antibacterial surfaces in consumer plastics.
Freschauf, Lauren R; McLane, Jolie; Sharma, Himanshu; Khine, Michelle
2012-01-01
Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this study, we present a rapid fabrication method for creating such superhydrophobic surfaces in consumer hard plastic materials with resulting antibacterial effects. To replace complex fabrication materials and techniques, the initial mold is made with commodity shrink-wrap film and is compatible with large plastic roll-to-roll manufacturing and scale-up techniques. This method involves a purely structural modification free of chemical additives leading to its inherent consistency over time and successive recasting from the same molds. Finally, antibacterial properties are demonstrated in polystyrene (PS), polycarbonate (PC), and polyethylene (PE) by demonstrating the prevention of gram-negative Escherichia coli (E. coli) bacteria growth on our structured plastic surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brannon, R.M.
1996-12-31
A mathematical framework is developed for the study of materials containing axisymmetric inclusions or flaws such as ellipsoidal voids, penny-shaped cracks, or fibers of circular cross-section. The general case of nonuniform statistical distributions of such heterogeneities is attacked by first considering a spatially uniform distribution of flaws that are all oriented in the same direction. Assuming an isotropic substrate, the macroscopic material properties of this simpler microstructure naturally should be transversely isotropic. An orthogonal basis for the linear subspace consisting of all double-symmetric transversely-isotropic fourth-order tensors associated with a given material vector is applied to deduce the explicit functional dependencemore » of the material properties of these aligned materials on the shared symmetry axis. The aligned and uniform microstructure seems geometrically simple enough that the macroscopic transversely isotropic properties could be derived in closed form. Since the resulting properties are transversely isotropic, the analyst must therefore be able to identify the appropriate coefficients of the transverse basis. Once these functions are identified, a principle of superposition of strain rates ay be applied to define an expectation integral for the composite properties of a material containing arbitrary anisotropic distributions of axisymmetric inhomogeneities. A proposal for coupling plastic anisotropy to the elastic anisotropy is presented in which the composite yield surface is interpreted as a distortion of the isotropic substrate yield surface; the distortion directions are coupled to the elastic anisotropy directions. Finally, some commonly assumed properties (such as major symmetry) of the Cauchy tangent stiffness tensor are shown to be inappropriate for large distortions of anisotropic materials.« less
Predicting the structure of screw dislocations in nanoporous materials
NASA Astrophysics Data System (ADS)
Walker, Andrew M.; Slater, Ben; Gale, Julian D.; Wright, Kate
2004-10-01
Extended microscale crystal defects, including dislocations and stacking faults, can radically alter the properties of technologically important materials. Determining the atomic structure and the influence of defects on properties remains a major experimental and computational challenge. Using a newly developed simulation technique, the structure of the 1/2a <100> screw dislocation in nanoporous zeolite A has been modelled. The predicted channel structure has a spiral form that resembles a nanoscale corkscrew. Our findings suggest that the dislocation will enhance the transport of molecules from the surface to the interior of the crystal while retarding transport parallel to the surface. Crucially, the dislocation creates an activated, locally chiral environment that may have enantioselective applications. These predictions highlight the influence that microscale defects have on the properties of structurally complex materials, in addition to their pivotal role in crystal growth.
The Extraterrestrial Materials Simulation Laboratory
NASA Technical Reports Server (NTRS)
Green, J. R.
2001-01-01
In contrast to fly-by and orbital missions, in situ missions face an incredible array of challenges in near-target navigation, landing site selection, descent, landing, science operations, sample collection and handling, drilling, anchoring, subsurface descent, communications, and contamination. The wide range of materials characteristics and environments threaten mission safety and success. For example, many physical properties are poorly characterized, including strength, composition, heterogeneity, phase change, texture, thermal properties, terrain features, atmospheric interaction, and stratigraphy. Examples of the range of materials properties include, for example: (1) Comets, with a possible compressive strength ranging from a light fluff to harder than concrete: 10(exp 2) to 10 (exp 8) Pa; (2) Europa, including a possible phase change at the surface, unknown strength and terrain roughness; and (3) Titan, with a completely unknown surface and possible liquid ocean. Additional information is contained in the original extended abstract.
Universal properties of materials with the Dirac dispersion relation of low-energy excitations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Protogenov, A. P., E-mail: alprot@appl.sci-nnov.ru; Chulkov, E. V.
2015-12-15
The N-terminal scheme is considered for studying the contribution of edge states to the response of a two-dimensional topological insulator. A universal distribution of the nonlocal resistance between terminals is determined in the ballistic transport approach. The calculated responses are identical to experimentally observed values. The spectral properties of surface electronic states in Weyl semimetals are also studied. The density of surface states is accurately determined. The universal behavior of these characteristics is a distinctive feature of the considered Dirac materials which can be used in practical applications.
Sorption of nonpolar aromatic contaminants by chlorosilane surface modified natural minerals.
Huttenloch, P; Roehl, K E; Czurda, K
2001-11-01
The efficacy of the surface modification of natural diatomite and zeolite material by chlorosilanes is demonstrated. Chlorosilanes used were trimethylchlorosilane (TMSCI), tert-butyldimethylchlorosilane (TBDMSCI), dimethyloctadecylchlorosilane (DMODSCI), and diphenyldichlorosilane (DPDSCI) possessing different headgroups and chemical properties. Silanol groups of the diatomite and zeolite were modified by chemical reaction with the chlorosilanes resulting in a stable covalent attachment of the organosilanes to the mineral surface. The alteration of surface properties of the modified material was proved by measurements of water adsorption capacity, total organic carbon (TOC) content, and thermoanalytical data. The surface modified material showed great stability even when exposed to extremes in ionic strength, pH, and to pure organic solvents. Sorption of toluene, o-xylene, and naphthalene from water was greatly enhanced by the surface modification compared to the untreated materials which showed no measurable sorption of these compounds. The enhanced sorption was dependent on the organic carbon content as well as on chemical characteristics of the chlorosilanes used. Batch sorption experiments showed that the phenyl headgroups of DPDSCI have the best affinity for aromatic compounds. Removal from an aqueous solution of 10 mg/L of naphthalene, o-xylene, and toluene was 71%, 60%, and 30% for surface modified diatomite and 51%, 30%, and 16% for modified clinoptilolite, respectively. Sorption data were well described by the Freundlich isotherm equation, which indicated physical adsorption onto the lipophilic surface rather than partitioning into the surface organic phase. The chlorosilane modified materials have an apparent potential for application in environmental technologies such as permeable reactive barriers (PRB) or wastewater treatment.
NASA Astrophysics Data System (ADS)
Zhang, X. C.; Lu, J.; Shi, S. Q.
2010-05-01
As a technique of grain refinement process by plastic deformation, surface mechanical attrition treatment (SMAT) has been developed to be one of the most effective ways to optimize the mechanical properties of various materials including pure metals and alloys. SMAT can significantly reduce grain size into nanometer regime in the surface layer of bulk materials, providing tremendous opportunities for improving physical, chemical and mechanical properties of the materials. In this work, a computational modeling of the surface mechanical attrition treatment (SMAT) process is presented, in which Johnson-Cook plasticity model and the finite element method were employed to study the high strain rate, elastic-plastic dynamic process of ball impact on a metallic target. AISI 304 steel with low stacking fault energy was chosen as the target material. First, a random impact model was used to analyze the statistic characteristics of ball impact, and then the plastic deformation behavior and residual stress distribution in AISI 304 stainless steel during SMAT were studied. The simulation results show that the compressive residual stress and vertical deformation of the surface structures were directly affected by ball impact frequency, incident impact angle and ball diameter used in SMAT process.
NASA Astrophysics Data System (ADS)
Derrien, Thibault J.-Y.; Bulgakova, Nadezhda M.
2017-05-01
During the last decades, femtosecond laser irradiation of materials has led to the emergence of various applications based on functionalization of surfaces at the nano- and microscale. Via inducing a periodic modification on material surfaces (band gap modification, nanostructure formation, crystallization or amorphization), optical and mechanical properties can be tailored, thus turning femtosecond laser to a key technology for development of nanophotonics, bionanoengineering, and nanomechanics. Although modification of semiconductor surfaces with femtosecond laser pulses has been studied for more than two decades, the dynamics of coupling of intense laser light with excited matter remains incompletely understood. In particular, swift formation of a transient overdense electron-hole plasma dynamically modifies optical properties in the material surface layer and induces large gradients of hot charge carriers, resulting in ultrafast charge-transport phenomena. In this work, the dynamics of ultrafast laser excitation of a semiconductor material is studied theoretically on the example of silicon. A special attention is paid to the electron-hole pair dynamics, taking into account ambipolar diffusion effects. The results are compared with previously developed simulation models, and a discussion of the role of charge-carrier dynamics in localization of material modification is provided.
Influence of nanohydroxyapatite surface properties on Staphylococcus epidermidis biofilm formation.
Barros, J; Grenho, L; Manuel, C M; Ferreira, C; Melo, L; Nunes, O C; Monteiro, F J; Ferraz, M P
2014-05-01
Nanohydroxyapatite (nanoHA), due to its chemical properties, has appeared as an exceptionally promising bioceramic to be used as bone regeneration material. Staphylococcus epidermidis have emerged as major nosocomial pathogens associated with infections of implanted medical devices. In this work, the purpose was to study the influence of the nanoHA surface characteristics on S. epidermidis RP62A biofilm formation. Therefore, two different initial inoculum concentrations (Ci) were used in order to check if these would affect the biofilm formed on the nanoHA surfaces. Biofilm formation was followed by the enumeration of cultivable cells and by scanning electron microscopy. Surface topography, contact angle, total surface area and porosimetry of the biomaterials were studied and correlated with the biofilm data. The surface of nanoHA sintered at 830 (nanoHA830) showed to be more resistant to S. epidermidis attachment and accumulation than that of nanoHA sintered at 1000 (nanoHA1000). The biofilm formed on nanoHA830 presented differences in terms of structure, surface coverage and EPS production when compared to the one formed on nanoHA1000 surface. It was observed that topography and surface area of nanoHA surfaces had influence on the bacterial attachment and accumulation. Ci influenced bacteria attachment and accumulation on nanoHA surfaces over time. The choice of the initial inoculum concentration was relevant proving to have an effect on the extent of adherence thus being a critical point for human health if these materials are used in implantable devices. This study showed that the initial inoculum concentration and surface material properties determine the rate of microbial attachment to substrata and consequently are related to biofilm-associated infections in biomaterials.
Li, Gang; Qu, Shengguan; Xie, Mingxin; Ren, Zhaojun; Li, Xiaoqiang
2017-01-01
The main purpose of this paper was to investigate the effect of a surface plastic deformation layer introduced by multi-pass ultrasonic surface rolling (MUSR) on the mechanical and fatigue properties of HIP Ti-6Al-4V alloys. Some microscopic analysis methods (SEM, TEM and XRD) were used to characterize the modified microstructure in the material surface layer. The results indicated that the material surface layer experienced a certain extent plastic deformation, accompanied by some dense dislocations and twin generation. Moreover, surface microhardness, residual stress and roughness values of samples treated by MUSR were also greatly improved compared with that of untreated samples. Surface microhardness and compressive residual stress were increased to 435 HV and −1173 MPa, respectively. The minimum surface roughness was reduced to 0.13 μm. The maximum depth of the surface hardening layer was about 55 μm. However, the practical influence depth was about 450 μm judging from the tensile and fatigue fracture surfaces. The ultimate tensile strength of the MUSR-treated sample increased to 990 MPa from the initial 963 MPa. The fatigue strength of the MUSR-treated sample was increased by about 25% on the base of 107 cycles, and the lifetime was prolonged from two times to two orders of magnitude at the applied stress amplitudes of 650–560 MPa. The improved mechanical and fatigue properties of MUSR-treated samples should be attributed to the combined effects of the increased microhardness and compressive residual stress, low surface roughness, grain refinement and micro-pore healing in the material surface-modified layer. PMID:28772494
NASA Astrophysics Data System (ADS)
Czán, Andrej; Kubala, Ondrej; Danis, Igor; Czánová, Tatiana; Holubják, Jozef; Mikloš, Matej
2017-12-01
The ever-increasing production and the usage of hard-to-machine progressive materials are the main cause of continual finding of new ways and methods of machining. One of these ways is the ceramic milling tool, which combines the pros of conventional ceramic cutting materials and pros of conventional coating steel-based insert. These properties allow to improve cutting conditions and so increase the productivity with preserved quality known from conventional tools usage. In this paper, there is made the identification of properties and possibilities of this tool when machining of hard-to-machine materials such as nickel alloys using in airplanes engines. This article is focused on the analysis and evaluation ordinary technological parameters and surface quality, mainly roughness of surface and quality of machined surface and tool wearing.
[Fabric static effect after the use of synthetic detergents].
Golenkova, L G; Voloshchenko, O I; Antomonov, M Iu
2003-01-01
The residues of surfactants that are present on textile materials were found to affect the surface charge of tissues. If physical properties of clothes materials, such as electrifiability, the positive or negative charge, resistivity, hygroscopicity are known, you may predict the values of residues of surfactants to be adsorbed onto the surface of tissues.
Effect of degumming time on silkworm silk fibre for biodegradable polymer composites
NASA Astrophysics Data System (ADS)
Ho, Mei-po; Wang, Hao; Lau, Kin-tak
2012-02-01
Recently, many studies have been conducted on exploitation of natural materials for modern product development and bioengineering applications. Apart from plant-based materials (such as sisal, hemp, jute, bamboo and palm fibre), animal-based fibre is a kind of sustainable natural materials for making novel composites. Silkworm silk fibre extracted from cocoon has been well recognized as a promising material for bio-medical engineering applications because of its superior mechanical and bioresorbable properties. However, when producing silk fibre reinforced biodegradable/bioresorbable polymer composites, hydrophilic sericin has been found to cause poor interfacial bonding with most polymers and thus, it results in affecting the resultant properties of the composites. Besides, sericin layers on fibroin surface may also cause an adverse effect towards biocompatibility and hypersensitivity to silk for implant applications. Therefore, a proper pre-treatment should be done for sericin removal. Degumming is a surface modification process which allows a wide control of the silk fibre's properties, making the silk fibre possible to be used for the development and production of novel bio-composites with unique/specific mechanical and biodegradable properties. In this paper, a cleaner and environmentally friendly surface modification technique for tussah silk in polymer based composites is proposed. The effectiveness of different degumming parameters including degumming time and temperature on tussah silk is discussed through the analyses of their mechanical and morphological properties. Based on results obtained, it was found that the mechanical properties of tussah silk are affected by the degumming time due to the change of the fibre structure and fibroin alignment.
Probing and controlling terahertz-driven structural dynamics with surface sensitivity
Bowlan, Pamela Renee; Bowlan, J.; Trugman, S. A.; ...
2017-03-17
Intense, single-cycle terahertz (THz) pulses are powerful tools to understand and control material properties through low-energy resonances, such as phonons. Combining this with optical second harmonic generation (SHG) makes it possible to observe the resulting ultrafast structural changes with surface sensitivity. This makes SHG an ideal method to probe phonon dynamics in topological insulators (TI), materials with unique surface transport properties. Here, we resonantly excite a phonon mode in the TI Bi 2Se 3with THz pulses and use SHG to separate the resulting symmetry changes at the surface from the bulk. Furthermore, we coherently control the lattice vibrations with amore » pair of THz pulses. Lastly, our work demonstrates a versatile, table-top tool to probe and control phonon dynamics in a range of systems, particularly at surfaces and interfaces.« less
NASA Astrophysics Data System (ADS)
Pawde, S. M.; Parab, Sanmesh S.
2008-05-01
Polystyrene (PS) films are used in packaging and biomedical applications because of their transparency and good environmental properties. The present investigation is centered on the antifungal and antibacterial activities involved in the film surface. Subsequently, microbial formations were immobilized on the modified PS films. Living microorganisms such as bacteria and yeast were used. Untreated PS films show very fast rate of growth of bacteria within few hours. The study involves developments of polymer surfaces with bacterial growth and further studies after giving antibacterial treatment such as plasma treatment. Major emphasis has been given to study the effect of various parameters which can affect the performance of the improved material. Films were prepared by two methods: plasma treatment under vacuum and under ongoing He-Ne laser source. The parameters such as (1) surface area by contact angle measurements, (2) quality of material before and after treatment by SEM and FTIR spectra and (3) material characterization by UV-vis spectra were studied. It was observed that plasma treatment of the PS material for different processing time improved the surface properties of PS films.
Fernando, Amendra; Weerawardene, K. L. Dimuthu M.; Karimova, Natalia V.; ...
2015-04-21
Here, metal, metal oxide, and metal chalcogenide materials have a wide variety of applications. For example, many metal clusters and nanoparticles are used as catalysts for reactions varying from the oxidation of carbon monoxide to the reduction of protons to hydrogen gas. Noble metal nanoparticles have unique optical properties such as a surface plasmon resonance for large nanoparticles that yield applications in sensing and photonics. In addition, a number of transition metal clusters are magnetic. Metal oxide clusters and surfaces are commonly used as catalysts for reactions such as water splitting. Both metal oxide and metal chalcogenide materials can bemore » semiconducting, which leads to applications in sensors, electronics, and solar cells. Many researchers have been interested in studying nanoparticles and/or small clusters of these materials. Some of the system sizes under investigation have been experimentally synthesized, which enables direct theory–experiment comparison. Other clusters that have been examined theoretically are of interest as models of larger systems or surfaces. Often, the size-dependence of their properties such as their HOMO–LUMO gap, magnetic properties, optical properties, etc., is of interest.« less
Prevention of bacterial adhesion to zwitterionic biocompatible mesoporous glasses.
Sánchez-Salcedo, Sandra; García, Ana; Vallet-Regí, María
2017-07-15
Novel materials, based on Mesoporous Bioactive Glasses (MBGs) in the ternary system SiO 2 -CaO-P 2 O 5 , decorated with (3-aminopropyl)triethoxysilane (APTES) and subsequently with amino acid Lysine (Lys), by post-grafting method on the external surface of the glasses (named MBG-NH 2 and MBG-Lys), are reported. The surface functionalization with organic groups did not damage the mesoporous network and their structural and textural properties were also preserved despite the high solubility of MBG matrices. The incorporation of Lys confers a zwitterionic nature to these MBG materials due to the presence of adjacent amine and carboxylic groups in the external surface. At physiologic pH, this coexistence of basic amine and carboxilic acid groups from anchored Lys provided zero surface charge named zwitterionic effect. This behaviour could give rise to potential applications of antibacterial adhesion. Therefore, in order to assess the influence of zwitterionic nature in in vitro bacterial adhesion, studies were carried out with Staphylococcus aureus. It was demonstrated that the efficient interaction of these zwitterionic pairs onto the MBG surfaces reduced bacterial adhesion up to 99.9% compared to bare MBGs. In order to test the suitability of zwitterionic MBGs materials as bone grafts, their cytocompatibility was investigated in vitro with MC3T3-E1 preosteoblasts. These findings suggested that the proposed surface functionalization strategy provided MBG materials with notable antibacterial adhesion properties, hence making these materials promising candidates for local bone infection therapy. The present research work is focused in finding a preventive treatment of bone infection based on Mesoporous Bioactive Glasses (MBGs) with antibacterial adhesion properties obtained by zwitterionic surface modification. MBGs exhibit unique nanostructural, textural and bioactive characteristics. The novelty and originality of this manuscript is based on the design and optimization of a straightforward functionalization method capable of providing MBGs with zwitterionic surfaces that are able to inhibit bacterial adhesion without affecting their cytocompatibility. This new characteristic enhanced the MBG properties to avoid the bacterial adherence onto the implant surfaces for bone tissue engineering applications. Subsequently, it could help to decrease the infection rates after implantation surgery, which represents one of the most serious complications associated to surgical treatments of bone diseases and fractures. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Effective electromagnetic properties of microheterogeneous materials with surface phenomena
NASA Astrophysics Data System (ADS)
Levin, Valery; Markov, Mikhail; Mousatov, Aleksandr; Kazatchenko, Elena; Pervago, Evgeny
2017-10-01
In this paper, we present an approach to calculate the complex dielectric permittivity of a micro-heterogeneous medium composed of non-conductive solid inclusions embedded into the conductive liquid continuous host. To take into account the surface effects, we approximate the inclusion by a layered ellipsoid consisting of a dielectric core and an infinitesimally thin outer shell corresponding to an electrical double layer (EDL). To predict the effective complex dielectric permittivity of materials with a high concentration of inclusions, we have modified the Effective Field Method (EFM) for the layered ellipsoidal particles with complex electrical properties. We present the results of complex permittivity calculations for the composites with randomly and parallel oriented ellipsoidal inclusions. To analyze the influence of surface polarization, we have accomplished modeling in a wide frequency range for different existing physic-chemical models of double electrical layer. The results obtained show that the tensor of effective complex permittivity of a micro-heterogeneous medium with surface effects has complicate dependences on the component electrical properties, spatial material texture, and the inclusion shape (ellipsoid aspect ratio) and size. The dispersion of dielectric permittivity corresponds to the frequency dependence for individual inclusion of given size, and does not depend on the inclusion concentration.
Boinovich, Ludmila B; Modin, Evgeny B; Sayfutdinova, Adeliya R; Emelyanenko, Kirill A; Vasiliev, Alexander L; Emelyanenko, Alexandre M
2017-10-24
Industrial application of metallic materials is hindered by several shortcomings, such as proneness to corrosion, erosion under abrasive loads, damage due to poor cold resistance, or weak resistance to thermal shock stresses, etc. In this study, using the aluminum-magnesium alloy as an example of widely spread metallic materials, we show that a combination of functional nanoengineering and nanosecond laser texturing with the appropriate treatment regimes can be successfully used to transform a metal into a superhydrophobic material with exceptional mechanical and chemical properties. It is demonstrated that laser chemical processing of the surface may be simultaneously used to impart multimodal roughness and to modify the composition and physicochemical properties of a thick surface layer of the substrate itself. Such integration of topographical and physicochemical modification leads to specific surface nanostructures such as nanocavities filled with hydrophobic agent and hard oxynitride nanoinclusions. The combination of superhydrophobic state, nano- and micro features of the hierarchical surface, and the appropriate composition of the surface textured layer allowed us to provide the surface with the outstanding level of resistance of superhydrophobic coatings to external chemical and mechanical impacts. In particular, experimental data presented in this study indicate high resistance of the fabricated coatings to pitting corrosion, superheated water vapor, sand abrasive wear, and rapid temperature cycling from liquid nitrogen to room temperatures, without notable degradation of superhydrophobic performance.
Surface Treated Natural Fibres as Filler in Biocomposites
NASA Astrophysics Data System (ADS)
Schwarzova, I.; Stevulova, N.; Singovszka, E.; Terpakova, E.
2015-11-01
Biocomposites based on natural fibres as organic filler have been studied for several years because traditional building materials such as concrete are increasingly being replaced by advanced composite materials. Natural fibres are a potential replacement of glass fibres in composite materials. Inherent advantages such as low density, biodegradability and comparable specific mechanical properties make natural fibres an attractive option. However, limitations such as poor thermal stability, moisture absorption and poor compatibility with matrix are challenges that need to be resolved. The primary objective of this research was to study the effect of surface treatment on properties of hemp hurds like a natural lignocellulosic material and composites made thereof. Industrial hemp fibre is the one of the most suitable fibres for use in composite materials because of its good specific properties, as well as it being biologically degradable and CO2 neutral. Improving interfacial bonding between fibres and matrix is an important factor in using hemp fibres as reinforcement in composites. In order to improve interfacial bonding, modifications can be made to the hemp fibres to remove non- cellulosic compounds, separate hemp fibres from their bundles, and modify the fibre surface. This paper contains the comparison of FTIR spectra caused by combination of physical and chemical treatment of hemp material with unmodified sample. Modification of hemp hurds was carried out by NaOH solution and by ultrasonic treatment (deionized water and NaOH solution were used as the cleaning mediums).
Modeling of nanostructured porous thermoelastic composites with surface effects
NASA Astrophysics Data System (ADS)
Nasedkin, A. V.; Nasedkina, A. A.; Kornievsky, A. S.
2017-01-01
The paper presents an integrated approach for determination of effective properties of anisotropic porous thermoelastic materials with a nanoscale stochastic porosity structure. This approach includes the effective moduli method for composite me-chanics, the simulation of representative volumes and the finite element method. In order to take into account nanoscale sizes of pores, the Gurtin-Murdoch model of surface stresses and the highly conducting interface model are used at the borders between material and pores. The general methodology for determination of effective properties of porous composites is demonstrated for a two-phase composite with special conditions for stresses and heat flux discontinuities at the phase interfaces. The mathematical statements of boundary value problems and the resulting formulas to determine the complete set of effective constants of the two-phase composites with arbitrary anisotropy and with surface properties are described; the generalized statements are formulated and the finite element approximations are given. It is shown that the homogenization procedures for porous composites with surface effects can be considered as special cases of the corresponding procedures for the two-phase composites with interphase stresses and heat fluxes if the moduli of nanoinclusions are negligibly small. These approaches have been implemented in the finite element package ANSYS for a model of porous material with cubic crystal system for various values of surface moduli, porosity and number of pores. It has been noted that the magnitude of the area of the interphase boundaries has influence on the effective moduli of the porous materials with nanosized structure.
Ultrasonic grinding of optical materials
NASA Astrophysics Data System (ADS)
Cahill, Michael; Bechtold, Michael; Fess, Edward; Stephan, Thomas; Bechtold, Rob
2017-10-01
Hard ceramic optical materials such as sapphire, ALON, Spinel, PCA, or Silicon Carbide can present a significant challenge in manufacturing precision optical components due to their tough mechanical properties. These are also the same mechanical properties that make them desirable materials when used in harsh environments. Slow processing speeds, premature tool wear, and poor surface quality are common results of the tough mechanical properties of these materials. Often, as a preparatory stage for polishing, the finish of the ground surface greatly influences the polishing process and the resulting finished product. To overcome these challenges, OptiPro Systems has developed an ultrasonic assisted grinding technology, OptiSonic, which has been designed for the precision optics and ceramics industry. OptiSonic utilizes a custom tool holder designed to produce oscillations, in microns of amplitude, in line with the rotating spindle. A software package, IntelliSonic, is integral to the function of this platform. IntelliSonic can automatically characterize tooling during setup to identify and select the ideal resonant peak which to operate at. Then, while grinding, IntelliSonic continuously adjusts the output frequency for optimal grinding efficiency while in contact with the part. This helps maintain a highly consistent process under changing load conditions for a more precise surface. Utilizing a variety of instruments, tests have proven to show a reduction in force between tool and part by up to 50%, while increasing the surface quality and reducing tool wear. This paper will present the challenges associated with these materials and solutions created to overcome them.
Sandeep, Chitta Sai; Senetakis, Kostas
2018-01-31
In the study we experimentally examine the influence of elastic properties and surface morphology on the inter-particle friction of natural soil grains. The experiments are conducted with a custom-built micromechanical apparatus and the database is enhanced by testing engineered-reference grains. Naturally-occurring geological materials are characterized by a wide spectrum of mechanical properties (e.g., Young's modulus) and surface morphology (e.g., roughness), whereas engineered grains have much more consistent characteristics. Comparing to engineered materials, geological materials are found to display more pronounced initial plastic behavior during compression. Under the low normal load range applied in the study, between 1 and 5 N, we found that the frictional force is linearly correlated with the applied normal load, but we acknowledge that the data are found more scattered for natural soil grains, especially for rough and weathered materials which have inconsistent characteristics. The inter-particle coefficient of friction is found to be inversely correlated with the Young's modulus and the surface roughness. These findings are important in geophysical and petroleum engineering contents, since a number of applications, such as landslides and granular flows, hydraulic fracturing using proppants, and weathering process of cliffs, among others, can be simulated using discrete numerical methods. These methods employ contact mechanics properties at the grain scale and the inter-particle friction is one of these critical components. It is stressed in our study that friction is well correlated with the elastic and morphological characteristics of the grains.
Development of novel antibiofouling materials from natural phenol compounds
NASA Astrophysics Data System (ADS)
Chelikani, Rahul; Kim, Dong Shik
2007-03-01
Biofilms consist of a gelatinous matrix formed on a solid surface by microbial organisms.Biofilm is caused due to the adhesion of microbes to solid surfaces with production of extracellular polymers and the process of the biofilm formation is reffered to as biofouling.Biofouling causes serious problems in chemical, medical and pharmaceutical industries.Although there have been some antibiofouling materials developed over the years,no plausible results have been found yet.Natural polyphenolic compounds like flavanoids,cathechins have strong antioxidant and antimicrobial properties.Recently,apocynin,a phenol derivative,was polymerized to form oligomers,which can regulate intracellular pathways in cancer cells preventing cell proliferation and migration.These natural phenolic compounds have never been applied to solid surfaces to prevent biofouling.It is thought that probably because of the difficulty to crosslink them to form a stable coating.In this study,some novel polyphenolic compounds synthesized using enzymatic technique from cashew nut shell liquid,a cheap and renewable byproduct of the cashew industry are used as coating materials to prevent biofouling.The interaction of these materials with microbes preventing fouling on surfaces and the chemico-physical properties of the materials causing the antibiofouling effect will be discussed.It is critical to understand the antibiofouling mechanism of these materials for better design and application in various fields.
Micrometeoroid/space debris effects on materials
NASA Technical Reports Server (NTRS)
Zwiener, James M.; Finckenor, Miria M.
1993-01-01
The Long Duration Exposure Facility (LDEF) micrometeoroid/space debris impact data has been reduced in terms that are convenient for evaluating the overall quantitative effect on material properties. Impact crater flux has been evaluated as a function of angle from velocity vector and as a function of crater size. This data is combined with spall data from flight and ground testing to calculate effective solar absorption and emittance values versus time. Results indicate that the surface damage from micrometeoroid/space debris does not significantly affect the overall surface optical thermal physical properties. Of course the local damage around impact craters radically alter optical properties. Damage to composites and solar cells on an overall basis was minimal.
Laassiri, Said; Bion, Nicolas; Duprez, Daniel; Royer, Sébastien; Alamdari, Houshang
2014-03-07
Microstructural properties of mixed oxides play essential roles in their oxygen mobility and consequently in their catalytic performances. Two families of mixed oxides (perovskite and hexaaluminate) with different microstructural features, such as crystal size and specific surface area, were prepared using the activated reactive synthesis (ARS) method. It was shown that ARS is a flexible route to synthesize both mixed oxides with nano-scale crystal size and high specific surface area. Redox properties and oxygen mobility were found to be strongly affected by the material microstructure. Catalytic activities of hexaaluminate and perovskite materials for methane oxidation were discussed in the light of structural, redox and oxygen mobility properties.
Alves, P; Pinto, S; Kaiser, Jean-Pierre; Bruinink, Arie; de Sousa, Hermínio C; Gil, M H
2011-02-01
The material performance, in a biological environment, is mainly mediated by its surface properties and by the combination of chemical, physical, biological, and mechanical properties required, for a specific application. In this study, the surface of a thermoplastic polyurethane (TPU) material (Elastollan(®)1180A50) was activated either by plasma or by ultra-violet (UV) irradiation. After surface activation, methacrylic acid (MAA) was linked to the surface of TPU in order to improve its reactivity and to reduce cell adhesion. Grafted surfaces were evaluated by X-ray photoelectron spectroscopy (XPS), by atomic force microscopy (AFM) and by contact angle measurements. Blood compatibility studies and cell adhesion tests with human bone marrow cells (HBMC) were also performed. If was found that UV grafting method led to better results than the plasma activation method, since cell adhesion was reduced when methacrylic acid was grafted to the TPU surface by UV. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Badiya, Pradeep Kumar; Patnaik, Sai Gourang; Srinivasan, Venkatesh; Reddy, Narendra; Manohar, Chelli Sai; Vedarajan, Raman; Mastumi, Noriyoshi; Belliraj, Siva Kumar; Ramamurthy, Sai Sathish
2017-10-01
We report the use of silver decorated plant proteins as spacer material for augmented surface plasmon-coupled emission (120-fold enhancement) and plasmon-enhanced Raman scattering. We extracted several proteins from different plant sources [Triticum aestivum (TA), Aegle marmelos (AM), Ricinus communis (RC), Jatropha curcas (JC) and Simarouba glauca (SG)] followed by evaluation of their optical properties and simulations to rationalize observed surface plasmon resonance. Since the properties exhibited by protein thin films is currently gaining research interest, we have also carried out simulation studies with Ag-protein biocomposites as spacer materials in metal-dielectric-metal planar microcavity architecture for guided emission of Fabry-Perot mode-coupled fluorescence.
NASA Astrophysics Data System (ADS)
Li, Qian; Lu, Teng; Schiemer, Jason; Laanait, Nouamane; Balke, Nina; Zhang, Zhan; Ren, Yang; Carpenter, Michael A.; Wen, Haidan; Li, Jiangyu; Kalinin, Sergei V.; Liu, Yun
2018-04-01
Ferroelectrics possess spontaneous electric polarization at macroscopic scales which nonetheless imposes strict limitations on the material classes. Recent discoveries of untraditional symmetry-breaking phenomena in reduced material dimensions have indicated feasibilities to extend polar properties to broader types of materials, potentially opening up the freedom for designing materials with hybrid functionalities. Here, we report the unusual electromechanical properties of L a2M o2O9 (LAMOX) oxygen ion conductors, systematically investigated at both bulk and surface length levels. We first observed giant electrostriction effects in L a2M o2O9 bulk ceramics that are thermally enhanced in concert with their low-energy oxygen-vacancy hopping dynamics. Moreover, while no clear bulk polarization was detected, the surface phases of LAMOX were found to be manifestly polar, likely originating from the coupling between the intrinsic structural flexibilities with strain gradients (i.e., flexoelectricity) and/or chemical heterogeneities present in the materials. These findings identify L a2M o2O9 as a promising electromechanical material system and suggest that the flexible structural and chemical configurations in ionically active materials could enable fundamentally different venues to accommodate electric polarization.
Anderson, Marc A.; Liu, Kuo -Chuan; Mohr, Charles M.
1999-10-05
An inexpensive porous metal oxide material having high surface area, good conductivity and high specific capacitance is advantageously used in an electrochemical capacitor. The materials are formed in a sol-gel process which affords control over the properties of the resultant metal oxide materials.
NASA Astrophysics Data System (ADS)
Raza, Mohammad Shahid; Hussain, Manowar; Kumar, Vikash; Das, Alok Kumar
2017-01-01
The growing need for high wear-resistant surface with enhanced physical properties has led to extensive researches in the field of surface engineering. Laser cladding emerged to be a promising method to achieve these objectives in a cost-effective way. The present paper studies the viability of cladding of tungsten disulfide (WS2) powder by using 400 W continuous-wave fiber laser. WS2 was used as a coating material, which was decomposed at higher temperature and underwent several chemical reactions. By this process, in situ formation of metal matrix composites and hard face coating on the substrate surface were attained. The characterization of laser cladded surface was done to study its morphological, microstructural, mechanical and tribological properties. It was observed that cladding of WS2 powder on 304 SS resulted in the formation of Cr-W-C-Fe metal matrix composite having improved mechanical and tribological properties. The value of microhardness of the coated surface was found to increase three to four times in comparison with the parent material surface. Wear test results indicated a decrease in wear by 1/9th (maximum) as compared to the parent 304 SS surface. The volume fractions of tungsten particles on the cladded surface were also investigated through EDS analysis.
Nanopatterning of optical surfaces during low-energy ion beam sputtering
NASA Astrophysics Data System (ADS)
Liao, Wenlin; Dai, Yifan; Xie, Xuhui
2014-06-01
Ion beam figuring (IBF) provides a highly deterministic method for high-precision optical surface fabrication, whereas ion-induced microscopic morphology evolution would occur on surfaces. Consequently, the fabrication specification for surface smoothness must be seriously considered during the IBF process. In this work, low-energy ion nanopatterning of our frequently used optical material surfaces is investigated to discuss the manufacturability of an ultrasmooth surface. The research results indicate that ion beam sputtering (IBS) can directly smooth some amorphous or amorphizable material surfaces, such as fused silica, Si, and ULE under appropriate processing conditions. However, for IBS of a Zerodur surface, preferential sputtering together with curvature-dependent sputtering overcome ion-induced smoothing mechanisms, leading to the granular nanopatterns' formation and the coarsening of the surface. Furthermore, the material property difference at microscopic scales and the continuous impurity incorporation would affect the ion beam smoothing of optical surfaces. Overall, IBS can be used as a promising technique for ultrasmooth surface fabrication, which strongly depends on processing conditions and material characters.
NASA Technical Reports Server (NTRS)
Gaffey, M. J.
1984-01-01
The surface material and the surface material heterogeneities of the asteroid Flora are characterized using the best available data sets and the most sophisticated interpretive calibrations. Five spectrally derived mineralogic and patrologic properties of the surface assemblage of Flora which are relevant to whether this body is a differentiated or undifferentiated object are considered: bulk mineralogy, mafic mineral assemblage, metallic phase, pyroxene composition and structural type, and mineralogic variation. All of these properties indicate that Flora is a differentiated body. Flora is probably the residual core of an intensely heated, thermally evolved, and magnetically differentiated planetesimal which was subsequently disrupted. The present surface sample layers formed at or near the core-mantle boundary in the parent body.
Ultra-high density diffraction grating
Padmore, Howard A.; Voronov, Dmytro L.; Cambie, Rossana; Yashchuk, Valeriy V.; Gullikson, Eric M.
2012-12-11
A diffraction grating structure having ultra-high density of grooves comprises an echellette substrate having periodically repeating recessed features, and a multi-layer stack of materials disposed on the echellette substrate. The surface of the diffraction grating is planarized, such that layers of the multi-layer stack form a plurality of lines disposed on the planarized surface of the structure in a periodical fashion, wherein lines having a first property alternate with lines having a dissimilar property on the surface of the substrate. For example, in one embodiment, lines comprising high-Z and low-Z materials alternate on the planarized surface providing a structure that is suitable as a diffraction grating for EUV and soft X-rays. In some embodiments, line density of between about 10,000 lines/mm to about 100,000 lines/mm is provided.
Tutorial on Atomic Oxygen Effects and Contamination
NASA Technical Reports Server (NTRS)
Miller, Sharon K.
2017-01-01
Atomic oxygen is the most predominant specie in low Earth orbit (LEO) and is contained in the upper atmosphere of many other planetary bodies. Formed by photo-dissociation of molecular oxygen, it is highly reactive and energetic enough to break chemical bonds on the surface of many materials and react with them to form either stable or volatile oxides. The extent of the damage for spacecraft depends a lot on how much atomic oxygen arrives at the surface, the energy of the atoms, and the reactivity of the material that is exposed to it. Oxide formation can result in shrinkage, cracking, or erosion which can also result in changes in optical, thermal, or mechanical properties of the materials exposed. The extent of the reaction can be affected by mechanical loading, temperature, and other environmental components such as ultraviolet radiation or charged particles. Atomic oxygen generally causes a surface reaction, but it can scatter under coatings and into crevices causing oxidation much farther into a spacecraft surface or structure than would be expected. Contamination can also affect system performance. Contamination is generally caused by arrival of volatile species that condense on spacecraft surfaces. The volatiles are typically a result of outgassing of materials that are on the spacecraft. Once the volatiles are condensed on a surface, they can then be fixed on the surface by ultraviolet radiation andor atomic oxygen reaction to form stable surface contaminants that can change optical and thermal properties of materials in power systems, thermal systems, and sensors. This tutorial discusses atomic oxygen erosion and contaminate formation, and the effect they have on typical spacecraft materials. Scattering of atomic oxygen, some effects of combined environments and examples of effects of atomic oxygen and contamination on spacecraft systems and components will also be presented.
Ferroelectrics: A pathway to switchable surface chemistry and catalysis
NASA Astrophysics Data System (ADS)
Kakekhani, Arvin; Ismail-Beigi, Sohrab; Altman, Eric I.
2016-08-01
It has been known for more than six decades that ferroelectricity can affect a material's surface physics and chemistry thereby potentially enhancing its catalytic properties. Ferroelectrics are a class of materials with a switchable electrical polarization that can affect surface stoichiometry and electronic structure and thus adsorption energies and modes; e.g., molecular versus dissociative. Therefore, ferroelectrics may be utilized to achieve switchable surface chemistry whereby surface properties are not fixed but can be dynamically controlled by, for example, applying an external electric field or modulating the temperature. Several important examples of applications of ferroelectric and polar materials in photocatalysis and heterogeneous catalysis are discussed. In photocatalysis, the polarization direction can control band bending at water/ferroelectric and ferroelectric/semiconductor interfaces, thereby facilitating charge separation and transfer to the electrolyte and enhancing photocatalytic activity. For gas-surface interactions, available results suggest that using ferroelectrics to support catalytically active transition metals and oxides is another way to enhance catalytic activity. Finally, the possibility of incorporating ferroelectric switching into the catalytic cycle itself is described. In this scenario, a dynamic collaboration of two polarization states can be used to drive reactions that have been historically challenging to achieve on surfaces with fixed chemical properties (e.g., direct NOx decomposition and the selective partial oxidation of methane). These predictions show that dynamic modulation of the polarization can help overcome some of the fundamental limitations on catalytic activity imposed by the Sabatier principle.
Electronic and Chemical Properties of a Surface-Terminated Screw Dislocation in MgO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mckenna, Keith P.
2013-12-18
Dislocations represent an important and ubiquitous class of topological defect found at the surfaces of metal oxide materials. They are thought to influence processes as diverse as crystal growth, corrosion, charge trapping, luminescence, molecular adsorption and catalytic activity, however, their electronic and chemical properties remain poorly understood. Here, through a detailed first principles investigation into the properties of a surface terminated screw dislocation in MgO we provide atomistic insight into these issues. We show that surface dislocations can exhibit intriguing electron trapping properties which are important for understanding the chemical and electronic characteristics of oxide surfaces. The results presented inmore » this article taken together with recent experimental reports show that surface dislocations can be equally as important as more commonly considered surface defects, such as steps, kinks and vacanies, but are now just beginning to be understood.« less
Electronic and Chemical Properties of a Surface-Terminated Screw Dislocation in MgO
2013-01-01
Dislocations represent an important and ubiquitous class of topological defect found at the surfaces of metal oxide materials. They are thought to influence processes as diverse as crystal growth, corrosion, charge trapping, luminescence, molecular adsorption, and catalytic activity; however, their electronic and chemical properties remain poorly understood. Here, through a detailed first-principles investigation into the properties of a surface-terminated screw dislocation in MgO we provide atomistic insight into these issues. We show that surface dislocations can exhibit intriguing electron trapping properties which are important for understanding the chemical and electronic characteristics of oxide surfaces. The results presented in this article taken together with recent experimental reports show that surface dislocations can be equally as important as more commonly considered surface defects, such as steps, kinks, and vacancies, but are now just beginning to be understood. PMID:24279391
Analysis of speckle and material properties in laider tracer
NASA Astrophysics Data System (ADS)
Ross, Jacob W.; Rigling, Brian D.; Watson, Edward A.
2017-04-01
The SAL simulation tool Laider Tracer models speckle: the random variation in intensity of an incident light beam across a rough surface. Within Laider Tracer, the speckle field is modeled as a 2-D array of jointly Gaussian random variables projected via ray tracing onto the scene of interest. Originally, all materials in Laider Tracer were treated as ideal diffuse scatterers, for which the far-field return computed uses the Lambertian Bidirectional Reflectance Distribution Function (BRDF). As presented here, we implement material properties into Laider Tracer via the Non-conventional Exploitation Factors Data System: a database of properties for thousands of different materials sampled at various wavelengths and incident angles. We verify the intensity behavior as a function of incident angle after material properties are added to the simulation.
Surface modifications of magnesium alloys for biomedical applications.
Yang, Jingxin; Cui, Fuzhai; Lee, In Seop
2011-07-01
In recent years, research on magnesium (Mg) alloys had increased significantly for hard tissue replacement and stent application due to their outstanding advantages. Firstly, Mg alloys have mechanical properties similar to bone which avoid stress shielding. Secondly, they are biocompatible essential to the human metabolism as a factor for many enzymes. In addition, main degradation product Mg is an essential trace element for human enzymes. The most important reason is they are perfectly biodegradable in the body fluid. However, extremely high degradation rate, resulting in too rapid loss of mechanical strength in chloride containing environments limits their applications. Engineered artificial biomaterials with appropriate mechanical properties, surface chemistry, and surface topography are in a great demand. As the interaction between the cells and tissues with biomaterials at the tissue--implant interface is a surface phenomenon; surface properties play a major role in determining both the biological response to implants and the material response to the physiological condition. Therefore, the ability to modify the surface properties while preserve the bulk properties is important, and surface modification to form a hard, biocompatible and corrosion resistant modified layer have always been an interesting topic in biomaterials field. In this article, attempts are made to give an overview of the current research and development status of surface modification technologies of Mg alloys for biomedical materials research. Further, the advantages/disadvantages of the different methods and with regard to the most promising method for Mg alloys are discussed. Finally, the scientific challenges are proposed based on own research and the work of other scientists.
Campeau, Marc-Antoine; Lortie, Audrey; Tremblay, Pierrick; Béliveau, Marc-Olivier; Dubé, Dominic; Langelier, Ève; Rouleau, Léonie
2017-07-14
Mechanobiological studies allow the characterization of cell response to mechanical stresses. Cells need to be supported by a material with properties similar to the physiological environment. Silicone elastomers have been used to produce various in vitro scaffolds of different geometries for endothelial cell studies given its relevant mechanical, optical and surface properties. However, obtaining defined and repeatable properties is a challenge as depending on the different manufacturing and processing steps, mechanical and surface properties may vary significantly between research groups. The impact of different manufacturing and processing methods on the mechanical and surface properties was assessed by measuring the Young's modulus and the contact angle. Silicone samples were produced using different curing temperatures and processed with different sterilization techniques and hydrophilization conditions. Different curing temperatures were used to obtain materials of different stiffness with a chosen silicone elastomer, i.e. Sylgard 184 ® . Sterilization by boiling had a tendency to stiffen samples cured at lower temperatures whereas UV and ethanol did not alter the material properties. Hydrophilization using sulphuric acid allowed to decrease surface hydrophobicity, however this effect was lost over time as hydrophobic recovery occurred. Extended contact with water maintained decreased hydrophobicity up to 7 days. Mechanobiological studies require complete cell coverage of the scaffolds used prior to mechanical stresses exposure. Different concentrations of fibronectin and collagen were used to coat the scaffolds and cell seeding density was varied to optimize cell coverage. This study highlights the potential bias introduced by manufacturing and processing conditions needed in the preparation of scaffolds used in mechanobiological studies involving endothelial cells. As manufacturing, processing and cell culture conditions are known to influence cell adhesion and function, they should be more thoroughly assessed by research groups that perform such mechanobiological studies using silicone.
Radiometric Measurements of the Thermal Conductivity of Complex Planetary-like Materials
NASA Astrophysics Data System (ADS)
Piqueux, S.; Christensen, P. R.
2012-12-01
Planetary surface temperatures and thermal inertias are controlled by the physical and compositional characteristics of the surface layer material, which result from current and past geological activity. For this reason, temperature measurements are often acquired because they provide fundamental constraints on the geological history and habitability. Examples of regolith properties affecting surface temperatures and inertias are: grain sizes and mixture ratios, solid composition in the case of ices, presence of cement between grains, regolith porosity, grain roughness, material layering etc.. Other important factors include volatile phase changes, and endogenic or exogenic heat sources (i.e. geothermal heat flow, impact-related heat, biological activity etc.). In the case of Mars, the multitude of instruments observing the surface temperature at different spatial and temporal resolutions (i.e. IRTM, Thermoskan, TES, MiniTES, THEMIS, MCS, REMS, etc.) in conjunction with other instruments allows us to probe and characterize the thermal properties of the surface layer with an unprecedented resolution. While the derivation of thermal inertia values from temperature measurements is routinely performed by well-established planetary regolith numerical models, constraining the physical properties of the surface layer from thermal inertia values requires the additional step of laboratory measurements. The density and specific heat are usually constant and sufficiently well known for common geological materials, but the bulk thermal conductivity is highly variable as a function of the physical characteristics of the regolith. Most laboratory designs do not allow an investigation of the thermal conductivity of complex regolith configurations similar to those observed on planetary surfaces (i.e. cemented material, large grains, layered material, and temperature effects) because the samples are too small and need to be soft to insert heating or measuring devices. For this reason, we have built a new type of apparatus to measure the thermal conductivity of sample significantly larger than previous apparatus under planetary conditions of atmosphere and gas composition. Samples' edges are cooled down from room to LN2 temperature and the surface material temperature is recorded by an infrared camera without inserting thermocouples or heat sources. Sample surface cooling trends are fit with finite element models of heat transfer to retrieve the material thermal conductivity. Preliminary results confirm independent numerical modeling results predicting the thermal conductivity of complex materials: the thermal inertia of particulate material under Mars conditions is temperature-dependent, small amounts of cements significantly increase the bulk conductivity and inertia of particulate material, and one-grain-thick armors similar to those observed by the Mars Exploration Rovers behave like a thin highly conductive layer that does not significantly influence apparent thermal inertias. These results are used to further our interpretation of Martian temperature observations. For example local amounts of subsurface water ice or the fraction of cementing phase in the global Martian duricrust can be constrained; the search for subtle changes in near-surface heat flow can be performed more accurately, and surface thermal inertias under various atmospheric conditions of pressure and gas composition can be predicted.
NASA Astrophysics Data System (ADS)
Mukaida, Jun; Nishitani, Yosuke; Kitano, Takeshi
2015-05-01
For the purpose of developing the new engineering materials such as structural materials and tribomaterials based on all plants-derived materials, the effect of the addition of plant-derived polyamide 11 Elastomer (PA11E) on the mechanical and tribological properties of hemp fiber(HF) reinforced polyamide 1010 (HF/PA1010) composites was investigated. PA1010 and PA11E (except the polyether groups used as soft segment) were made from plant-derived castor oil. Hemp fiber was surface-treated by two types of treatment: alkali treatment by NaOH solution and surface treatment by ureido silane coupling agent. HF/PA1010/PA11E ternary composites were extruded by a twin screw extruder and injection-molded. Their mechanical properties such as tensile, bending, Izod impact and tribological properties by ring-on-plate type sliding wear testing were evaluated. The effect of the addition of PA11E on the mechanical and tribological properties of HF/PA1010 composite differed for each property. Izod impact strength and specific wear rate improved with the addition of PA11E although tensile strength, modulus, and friction coefficient decreased with PA11E. It follows from these results that it may be possible to develop the new engineering materials with sufficient balance between mechanical and tribological properties.
Self-organizing layers from complex molecular anions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warneke, Jonas; McBriarty, Martin E.; Riechers, Shawn L.
Ions are promising building blocks for tunable self-organizing materials with advanced technological applications. However, because of strong Coulomb attraction with counterions, the intrinsic properties of ions are difficult to exploit for preparation of bulk materials. Here, we report the precisely-controlled preparation of macroscopic surface layers by soft landing of mass selected complex anions which determine the self organization of the layers with their molecular properties. The family of halogenated dodecaborates [B12X12]2- (X = F, Cl, Br, I), in which the internal charge distribution between core and shell regions of the molecular ions systematically vary, was deposited on different self assembledmore » monolayer surfaces (SAMs) on gold at high coverage. Layers of anions were found to be stabilized by accumulation of neutral molecules. Different phases, self-organization mechanisms and optical properties were observed to depend upon the internal charge distribution of the deposited anions, the underlying surface and the coadsorbed molecules. This demonstrates rational control of the properties of anion based layers.« less
NCTM of liquids at high temperatures using polarization techniques
NASA Technical Reports Server (NTRS)
Krishnan, Shankar; Weber, J. K. Richard; Nordine, Paul C.; Schiffman, Robert A.
1990-01-01
Temperature measurement and control is extremely important in any materials processing application. However, conventional techniques for non-contact temperature measurement (mainly optical pyrometry) are very uncertain because of unknown or varying surface emittance. Optical properties like other properties change during processing. A dynamic, in-situ measurement of optical properties including the emittance is required. Intersonics is developing new technologies using polarized laser light scattering to determine surface emittance of freely radiating bodies concurrent with conventional optical pyrometry. These are sufficient to determine the true surface temperature of the target. Intersonics is currently developing a system called DAPP, the Division of Amplitude Polarimetric Pyrometer, that uses polarization information to measure the true thermodynamic temperature of freely radiating objects. This instrument has potential use in materials processing applications in ground and space based equipment. Results of thermophysical and thermodynamic measurements using laser reflection as a temperature measuring tool are presented. The impact of these techniques on thermophysical property measurements at high temperature is discussed.
NASA Astrophysics Data System (ADS)
Yu, Huadong; Lian, Zhongxu; Xu, Jinkai; Wan, Yanling; Wang, Zuobin; Li, Yiquan; Yu, Zhanjiang; Weng, Zhankun
2018-04-01
Despite the success of previous methods for fabricating underwater superoleophobic surfaces, most of the surfaces based on soft materials are prone to collapse and deformation due to their mechanically fragile nature, and they fail to perform their designed functions after the surface materials are damaged in water. In this work, the nanosecond laser-induced oxide coatings on hydrophilic bulk metals are reported which overcomes the limitation and shows the robust underwater superoleophobicity to a mechanical challenge encountered by surfaces deployed in water environment. The results show that the surface materials have the advantage that the underwater superoleophobicity is still preserved after the surfaces are scratched by knife or sandpaper and even completely destroyed because of the hydrophilic property of damaged materials in water. It is important that the results provide a guide for the design of durable underwater superoleophobic surfaces, and the development of superoleophobic materials in many potential applications such as the oil-repellent and the oil/water separation. Additionally, the nanosecond laser technology is simple, cost-effective and suitable for the large-area and mass fabrication of mechanically durable underwater superoleophobic metal materials.
Atomic Layer Deposition in Bio-Nanotechnology: A Brief Overview.
Bishal, Arghya K; Butt, Arman; Selvaraj, Sathees K; Joshi, Bela; Patel, Sweetu B; Huang, Su; Yang, Bin; Shukohfar, Tolou; Sukotjo, Cortino; Takoudis, Christos G
2015-01-01
Atomic layer deposition (ALD) is a technique increasingly used in nanotechnology and ultrathin film deposition; it is ideal for films in the nanometer and Angstrom length scales. ALD can effectively be used to modify the surface chemistry and functionalization of engineering-related and biologically important surfaces. It can also be used to alter the mechanical, electrical, chemical, and other properties of materials that are increasingly used in biomedical engineering and biological sciences. ALD is a relatively new technique for optimizing materials for use in bio-nanotechnology. Here, after a brief review of the more widely used modes of ALD and a few of its applications in biotechnology, selected results that show the potential of ALD in bio-nanotechnology are presented. ALD seems to be a promising means for tuning the hydrophilicity/hydrophobicity characteristics of biomedical surfaces, forming conformal ultrathin coatings with desirable properties on biomedical substrates with a high aspect ratio, tuning the antibacterial properties of substrate surfaces of interest, and yielding multifunctional biomaterials for medical implants and other devices.
Reinvestigating the surface and bulk electronic properties of Cd3As2
NASA Astrophysics Data System (ADS)
Roth, S.; Lee, H.; Sterzi, A.; Zacchigna, M.; Politano, A.; Sankar, R.; Chou, F. C.; Di Santo, G.; Petaccia, L.; Yazyev, O. V.; Crepaldi, A.
2018-04-01
Cd3As2 is widely considered among the few materials realizing the three-dimensional (3D) Dirac semimetal phase. Linearly dispersing states, responsible for the ultrahigh charge mobility, have been reported by several angle-resolved photoelectron spectroscopy (ARPES) investigations. However, in spite of the general agreement between these studies, some details are at odds. From scanning tunneling microscopy and optical experiments under magnetic field, a puzzling scenario emerges in which multiple states show linear dispersion at different energy scales. Here, we solve this apparent controversy by reinvestigating the electronic properties of the (112) surface of Cd3As2 by combining ARPES and theoretical calculations. We disentangle the presence of massive and massless metallic bulk and surface states, characterized by different symmetries. Our systematic experimental and theoretical study clarifies the complex band dispersion of Cd3As2 by extending the simplistic 3D Dirac semimetal model to account for multiple bulk and surface states crossing the Fermi level, and thus contributing to the unique material transport properties.
Gonçalves, Juliana P L; Shaikh, Afnan Q; Reitzig, Manuela; Kovalenko, Daria A; Michael, Jan; Beutner, René; Cuniberti, Gianaurelio; Scharnweber, Dieter; Opitz, Jörg
2014-01-01
Due to their outstanding properties nanodiamonds are a promising nanoscale material in various applications such as microelectronics, polishing, optical monitoring, medicine and biotechnology. Beyond the typical diamond characteristics like extreme hardness or high thermal conductivity, they have additional benefits as intrinsic fluorescence due to lattice defects without photobleaching, obtained during the high pressure high temperature process. Further the carbon surface and its various functional groups in consequence of the synthesis, facilitate additional chemical and biological modification. In this work we present our recent results on chemical modification of the nanodiamond surface with phosphate groups and their electrochemically assisted immobilization on titanium-based materials to increase adhesion at biomaterial surfaces. The starting material is detonation nanodiamond, which exhibits a heterogeneous surface due to the functional groups resulting from the nitrogen-rich explosives and the subsequent purification steps after detonation synthesis. Nanodiamond surfaces are chemically homogenized before proceeding with further functionalization. Suspensions of resulting surface-modified nanodiamonds are applied to the titanium alloy surfaces and the nanodiamonds subsequently fixed by electrochemical immobilization. Titanium and its alloys have been widely used in bone and dental implants for being a metal that is biocompatible with body tissues and able to bind with adjacent bone during healing. In order to improve titanium material properties towards biomedical applications the authors aim to increase adhesion to bone material by incorporating nanodiamonds into the implant surface, namely the anodically grown titanium dioxide layer. Differently functionalized nanodiamonds are characterized by infrared spectroscopy and the modified titanium alloys surfaces by scanning and transmission electron microscopy. The process described shows an adsorption and immobilization of modified nanodiamonds on titanium; where aminosilanized nanodiamonds coupled with O-phosphorylethanolamine show a homogeneous interaction with the titanium substrate.
Amino acid-based zwitterionic polymers: antifouling properties and low cytotoxicity.
Li, Wenchen; Liu, Qingsheng; Liu, Lingyun
2014-01-01
A group of five amino acid containing zwitterionic vinyl monomers, based on serine, lysine, ornithine, glutamic acid, and aspartic acid, respectively, were proposed and developed for potential antifouling applications. Their polymer brushes were grafted on gold chips by surface-initiated photoiniferter-mediated polymerization. We then compared their performance in resisting protein adsorption from full human serum and plasma. All five polymers can reduce protein adsorption by more than 90% compared to the unmodified gold. The ornithine-based and aspartic acid-based poly(methacrylamide) can most strongly resist protein adsorption from serum and plasma, compared to the other three. The ability of surfaces to suppress bacterial adhesion is another criterion in evaluating antifouling properties of materials. Our results show that the five polymer-grafted surfaces can significantly suppress Escherichia coli K12 adhesion to 99% compared to the bare gold surface. The zwitterionic structure of amino acids, with homogenously distributed and balanced positive and negative charges, is responsible for the outstanding antifouling properties. Considering multiple potential applications (e.g. medical devices and drug delivery) of the antifouling materials, we further systematically evaluated the cytotoxicity of both monomers and polymer nanogels for all five materials at various concentrations. Very low cytotoxicity was observed for all tested amino acid-based monomers and nanogels, which is comparable or even lower than the traditional and some newly developed antifouling materials, which might be related to the biomimetic nature of amino acids.
NASA Astrophysics Data System (ADS)
Lan, Xiwei; Xin, Yue; Wang, Libin; Hu, Xianluo
2018-03-01
Li-rich layered oxides (LLOs) have been developed as a high-capacity cathode material for Li-ion batteries, but the structural complexity and unique initial charging behavior lead to several problems including large initial capacity loss, capacity and voltage fading, poor cyclability, and inferior rate capability. Since the surface conditions are critical to electrochemical performance and the drawbacks, nanoscale surface modification for improving LLO's properties is a general strategy. This review mainly summarizes the surface modification of LLOs and classifies them into three types of surface pre-treatment, surface gradient doping, and surface coating. Surface pre-treatment usually introduces removal of Li2O for lower irreversible capacity while surface doping is aimed to stabilize the structure during electrochemical cycling. Surface coating layers with different properties, protective layers to suppress the interface side reaction, coating layers related to structural transformation, and electronic/ionic conductive layers for better rate capability, can avoid the shortcomings of LLOs. In addition to surface modification for performance enhancement, other strategies can also be investigated to achieve high-performance LLO-based cathode materials.
Enhanced protective role in materials with gradient structural orientations: Lessons from Nature.
Liu, Zengqian; Zhu, Yankun; Jiao, Da; Weng, Zhaoyong; Zhang, Zhefeng; Ritchie, Robert O
2016-10-15
Living organisms are adept at resisting contact deformation and damage by assembling protective surfaces with spatially varied mechanical properties, i.e., by creating functionally graded materials. Such gradients, together with multiple length-scale hierarchical structures, represent the two prime characteristics of many biological materials to be translated into engineering design. Here, we examine one design motif from a variety of biological tissues and materials where site-specific mechanical properties are generated for enhanced protection by adopting gradients in structural orientation over multiple length-scales, without manipulation of composition or microstructural dimension. Quantitative correlations are established between the structural orientations and local mechanical properties, such as stiffness, strength and fracture resistance; based on such gradients, the underlying mechanisms for the enhanced protective role of these materials are clarified. Theoretical analysis is presented and corroborated through numerical simulations of the indentation behavior of composites with distinct orientations. The design strategy of such bioinspired gradients is outlined in terms of the geometry of constituents. This study may offer a feasible approach towards generating functionally graded mechanical properties in synthetic materials for improved contact damage resistance. Living organisms are adept at resisting contact damage by assembling protective surfaces with spatially varied mechanical properties, i.e., by creating functionally-graded materials. Such gradients, together with multiple length-scale hierarchical structures, represent the prime characteristics of many biological materials. Here, we examine one design motif from a variety of biological tissues where site-specific mechanical properties are generated for enhanced protection by adopting gradients in structural orientation at multiple length-scales, without changes in composition or microstructural dimension. The design strategy of such bioinspired gradients is outlined in terms of the geometry of constituents. This study may offer a feasible approach towards generating functionally-graded mechanical properties in synthetic materials for improved damage resistance. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Manoonpong, Poramate; Petersen, Dennis; Kovalev, Alexander; Wörgötter, Florentin; Gorb, Stanislav N.; Spinner, Marlene; Heepe, Lars
2016-12-01
Based on the principles of morphological computation, we propose a novel approach that exploits the interaction between a passive anisotropic scale-like material (e.g., shark skin) and a non-smooth substrate to enhance locomotion efficiency of a robot walking on inclines. Real robot experiments show that passive tribologically-enhanced surfaces of the robot belly or foot allow the robot to grip on specific surfaces and move effectively with reduced energy consumption. Supplementing the robot experiments, we investigated tribological properties of the shark skin as well as its mechanical stability. It shows high frictional anisotropy due to an array of sloped denticles. The orientation of the denticles to the underlying collagenous material also strongly influences their mechanical interlocking with the substrate. This study not only opens up a new way of achieving energy-efficient legged robot locomotion but also provides a better understanding of the functionalities and mechanical properties of anisotropic surfaces. That understanding will assist developing new types of material for other real-world applications.
Manoonpong, Poramate; Petersen, Dennis; Kovalev, Alexander; Wörgötter, Florentin; Gorb, Stanislav N.; Spinner, Marlene; Heepe, Lars
2016-01-01
Based on the principles of morphological computation, we propose a novel approach that exploits the interaction between a passive anisotropic scale-like material (e.g., shark skin) and a non-smooth substrate to enhance locomotion efficiency of a robot walking on inclines. Real robot experiments show that passive tribologically-enhanced surfaces of the robot belly or foot allow the robot to grip on specific surfaces and move effectively with reduced energy consumption. Supplementing the robot experiments, we investigated tribological properties of the shark skin as well as its mechanical stability. It shows high frictional anisotropy due to an array of sloped denticles. The orientation of the denticles to the underlying collagenous material also strongly influences their mechanical interlocking with the substrate. This study not only opens up a new way of achieving energy-efficient legged robot locomotion but also provides a better understanding of the functionalities and mechanical properties of anisotropic surfaces. That understanding will assist developing new types of material for other real-world applications. PMID:28008936
Comparative abrasive wear resistance and surface analysis of dental resin-based materials
Nayyer, Maleeha; Zahid, Shahreen; Hassan, Syed Hammad; Mian, Salman Aziz; Mehmood, Sana; Khan, Haroon Ahmed; Kaleem, Muhammad; Zafar, Muhammad Sohail; Khan, Abdul Samad
2018-01-01
Objective: The objective of this study was to assess the surface properties (microhardness and wear resistance) of various composites and compomer materials. In addition, the methodologies used for assessing wear resistance were compared. Materials and Methods: This study was conducted using restorative material (Filtek Z250, Filtek Z350, QuiXfil, SureFil SDR, and Dyract XP) to assess wear resistance. A custom-made toothbrush simulator was employed for wear testing. Before and after wear resistance, structural, surface, and physical properties were assessed using various techniques. Results: Structural changes and mass loss were observed after treatment, whereas no significant difference in terms of microhardness was observed. The correlation between atomic force microscopy (AFM) and profilometer and between wear resistance and filler volume was highly significant. The correlation between wear resistance and microhardness were insignificant. Conclusions: The AFM presented higher precision compared to optical profilometers at a nanoscale level, but both methods can be used in tandem for a more detailed and precise roughness analysis. PMID:29657526
Ab initio study of perovskite type oxide materials for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Lee, Yueh-Lin
2011-12-01
Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen exchange rates, and key OR energetics of the SOFC cathode perovskites, can be described by a single descriptor, either the bulk O p-band or the bulk oxygen vacancy formation energy. These simple descriptors will further enable first-principles optimization/design of new SOFC cathodes.
Thermal diffusivity determination using heterodyne phase insensitive transient grating spectroscopy
NASA Astrophysics Data System (ADS)
Dennett, Cody A.; Short, Michael P.
2018-06-01
The elastic and thermal transport properties of opaque materials may be measured using transient grating spectroscopy (TGS) by inducing and monitoring periodic excitations in both reflectivity and surface displacement. The "phase grating" response encodes both properties of interest, but complicates quantitative analysis by convolving temperature dynamics with surface displacement dynamics. Thus, thermal transport characteristics are typically determined using the "amplitude grating" response to isolate the surface temperature dynamics. However, this signal character requires absolute heterodyne phase calibration and contains no elastic property information. Here, a method is developed by which phase grating TGS measurements may be consistently analyzed to determine thermal diffusivity with no prior knowledge of the expected properties. To demonstrate this ability, the wavelength-dependent 1D effective thermal diffusivity of pure germanium is measured using this type of response and found to be consistent with theoretical predictions made by solving the Boltzmann transport equation. This ability to determine the elastic and thermal properties from a single set of TGS measurements will be particularly advantageous for new in situ implementations of the technique being used to study dynamic materials systems.
Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrov, D. A.; Bell, G. I.; Smedley, J.
Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less
Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes
Dimitrov, D. A.; Bell, G. I.; Smedley, J.; ...
2017-10-26
Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less
2015-01-01
Inspired by the lotus effect in nature, surface roughness engineering has led to novel materials and applications in many fields. Despite the rapid progress in superhydrophobic and superoleophobic materials, this concept of Mother Nature’s choice is yet to be applied in the design of advanced nanocarriers for drug delivery. Pioneering work has emerged in the development of nanoparticles with rough surfaces for gene delivery; however, the preparation of nanoparticles with hydrophilic compositions but with enhanced hydrophobic property at the nanoscale level employing surface topology engineering remains a challenge. Herein we report for the first time the unique properties of mesoporous hollow silica (MHS) nanospheres with controlled surface roughness. Compared to MHS with a smooth surface, rough mesoporous hollow silica (RMHS) nanoparticles with the same hydrophilic composition show unusual hydrophobicity, leading to higher adsorption of a range of hydrophobic molecules and controlled release of hydrophilic molecules. RMHS loaded with vancomycin exhibits an enhanced antibacterial effect. Our strategy provides a new pathway in the design of novel nanocarriers for diverse bioapplications. PMID:27162988
Low damage electrical modification of 4H-SiC via ultrafast laser irradiation
NASA Astrophysics Data System (ADS)
Ahn, Minhyung; Cahyadi, Rico; Wendorf, Joseph; Bowen, Willie; Torralva, Ben; Yalisove, Steven; Phillips, Jamie
2018-04-01
The electrical properties of 4H-SiC under ultrafast laser irradiation in the low fluence regime (<0.50 J/cm2) are presented. The appearance of high spatial frequency laser induced periodic surface structures is observed at a fluence near 0.25 J/cm2 and above, with variability in environments like in air, nitrogen, and a vacuum. In addition to the formation of periodic surface structures, ultrafast laser irradiation results in possible surface oxidation and amorphization of the material. Lateral conductance exhibits orders of magnitude increase, which is attributed to either surface conduction or modification of electrical contact properties, depending on the initial material conductivity. Schottky barrier formation on ultrafast laser irradiated 4H-SiC shows an increase in the barrier height, an increase in the ideality factor, and sub-bandgap photovoltaic responses, suggesting the formation of photo-active point defects. The results suggest that the ultrafast laser irradiation technique provides a means of engineering spatially localized structural and electronic modification of wide bandgap materials such as 4H-SiC with relatively low surface damage via low temperature processing.
Characterization Of Graphene-Ferroelectric Superlattice Hybrid Devices
NASA Astrophysics Data System (ADS)
Yusuf, Mohammed; Du, Xu; Dawber, Matthew
2013-03-01
Ferroelectric materials possess a spontaneous electrical polarization, which can be controlled by an electric field. A good interface between ferroelectric surface and graphene sheets can introduce a new generation of multifunctional devices, in which the ferroelectric material can be used to control the properties of graphene. In our approach, problems encountered in previous efforts to combine ferroelectric/carbon systems are overcome by the use of artificially layered superlattice materials grown in the form of epitaxial thin films. In these materials the phase transition temperature and dielectric response of the material can be tailored, allowing us to avoid polarization screening by surface absorbates, whilst maintaining an atomically smooth surface and optimal charge doping properties. Using ferroelectric PbTiO3/SrTiO3 superlattices, we have shown ultra-low-voltage operation of graphene field effect devices within +/- 1 V at room temperature. The switching of the graphene field effect transistors is characterized by pronounced resistance hysteresis, suitable for ultra-fast non-volatile electronics. Low temperature characterization confirmed that the coercive field required for the ferroelectric domain switching increases significantly with decreasing temperatures. National Science Foundation (NSF) (grant number 1105202)
Optical properties of micromachined polysilicon reflective surfaces with etching holes
NASA Astrophysics Data System (ADS)
Zou, Jun; Byrne, Colin; Liu, Chang; Brady, David J.
1998-08-01
MUMPS (Multi-User MEMS Process) is receiving increasingly wide use in micro optics. We have investigated the optical properties of the polysilicon reflective surface in a typical MUMPS chip within the visible light spectrum. The effect of etching holes on the reflected laser beam is studied. The reflectivity and diffraction patterns at five different wavelengths have been measured. The optical properties of the polysilicon reflective surface are greatly affected by the surface roughness, the etching holes, as well as the material. The etching holes contribute to diffraction and reduction of reflectivity. This study provides a basis for optimal design of micromachined free-space optical systems.
NASA Astrophysics Data System (ADS)
Zesers, A.; Krūmiņš, J.
2014-09-01
Concrete as a material is brittle, but adding short steel fibers to the matrix can significantly improve its mechanical properties. The chemical adhesion between concrete and steel is weak, and the fiber pullout properties are based on fiber geometry and frictional forces. Single-fiber pullout tests of steel fibers with toothed and smooth surfaces were performed in order to characterize the effects of fiber surface facture. The influence of fiber form, surface facture, and fiber orientation (relative to the pullout direction) on the fiber withdrawal resistance and the maximum pullout force were studied.
Effect of in-office bleaching agents on physical properties of dental composite resins.
Mourouzis, Petros; Koulaouzidou, Elisabeth A; Helvatjoglu-Antoniades, Maria
2013-04-01
The physical properties of dental restorative materials have a crucial effect on the longevity of restorations and moreover on the esthetic demands of patients, but they may be compromised by bleaching treatments. The purpose of this study was to evaluate the effects of in-office bleaching agents on the physical properties of three composite resin restorative materials. The bleaching agents used were hydrogen peroxide and carbamide peroxide at high concentrations. Specimens of each material were prepared, cured, and polished. Measurements of color difference, microhardness, and surface roughness were recorded before and after bleaching and data were examined statistically by analysis of variance (ANOVA) and Tukey HSD post-hoc test at P < .05. The measurements showed that hue and chroma of silorane-based composite resin altered after the bleaching procedure (P < .05). No statistically significant differences were found when testing the microhardness and surface roughness of composite resins tested (P > .05). The silorane-based composite resin tested showed some color alteration after bleaching procedures. The bleaching procedure did not alter the microhardness and the surface roughness of all composite resins tested.
Ultrafast control and monitoring of material properties using terahertz pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowlan, Pamela Renee
These are a set of slides on ultrafast control and monitoring of material properties using terahertz pulses. A few of the topics covered in these slides are: How fast is a femtosecond (fs), Different frequencies probe different properties of molecules or solids, What can a THz pulse do to a material, Ultrafast spectroscopy, Generating and measuring ultrashort THz pulses, Tracking ultrafast spin dynamics in antiferromagnets through spin wave resonances, Coherent two-dimensional THz spectroscopy, and Probing vibrational dynamics at a surface. Conclusions are: Coherent two-dimensional THz spectroscopy: a powerful approach for studying coherence and dynamics of low energy resonances. Applying thismore » to graphene we investigated the very strong THz light mater interaction which dominates over scattering. Useful for studying coupled excitations in multiferroics and monitoring chemical reactions. Also, THz-pump, SHG-probe spectoscopy: an ultrafast, surface sensitive probe of atomic-scale symmetry changes and nonlinear phonon dymanics. We are using this in Bi 2Se 3 to investigate the nonlinear surface phonon dynamics. This is potentially very useful for studying catalysis.« less
Modification of lignocellulosic materials by laccase
William Kenealy; John Klungness; Mandla Tshabalala; Roland Gleisner; Eric Horn; Masood Akhtar; Hilda Zulaica-Villagomez; Gisela Buschle-Diller
2003-01-01
Altering the surface properties of pulp can enhance binding, increase paper strength, and decrease the cost of fiber. In this study, we modified lignocellulosic materials (bark and pulp) with laccase and selected substrates to change the nature of the pulp surface. Modified pulps were evaluated by the amount of methylene blue (a cationic dye) that would bind to the...
Surface passivation of semiconducting oxides by self-assembled nanoparticles
Park, Dae-Sung; Wang, Haiyuan; Vasheghani Farahani, Sepehr K.; Walker, Marc; Bhatnagar, Akash; Seghier, Djelloul; Choi, Chel-Jong; Kang, Jie-Hun; McConville, Chris F.
2016-01-01
Physiochemical interactions which occur at the surfaces of oxide materials can significantly impair their performance in many device applications. As a result, surface passivation of oxide materials has been attempted via several deposition methods and with a number of different inert materials. Here, we demonstrate a novel approach to passivate the surface of a versatile semiconducting oxide, zinc oxide (ZnO), evoking a self-assembly methodology. This is achieved via thermodynamic phase transformation, to passivate the surface of ZnO thin films with BeO nanoparticles. Our unique approach involves the use of BexZn1-xO (BZO) alloy as a starting material that ultimately yields the required coverage of secondary phase BeO nanoparticles, and prevents thermally-induced lattice dissociation and defect-mediated chemisorption, which are undesirable features observed at the surface of undoped ZnO. This approach to surface passivation will allow the use of semiconducting oxides in a variety of different electronic applications, while maintaining the inherent properties of the materials. PMID:26757827
Mechanical properties of experimental composites with different calcium phosphates fillers.
Okulus, Zuzanna; Voelkel, Adam
2017-09-01
Calcium phosphates (CaPs)-containing composites have already shown good properties from the point of view of dental restorative materials. The purpose of this study was to examine the crucial mechanical properties of twelve hydroxyapatite- or tricalcium phosphate-filled composites. The raw and surface-treated forms of both CaP fillers were applied. As a reference materials two experimental glass-containing composites and one commercial dental restorative composite were applied. Nano-hardness, elastic modulus, compressive, flexural and diametral tensile strength of all studied materials were determined. Application of statistical methods (one-way analysis of variance and cluster agglomerative analysis) allowed for assessing the similarities between examined materials according to the values of studied parameters. The obtained results show that in almost all cases the mechanical properties of experimental CaPs-composites are comparable or even better than mechanical properties of examined reference materials. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jamil, N. H.; Ibrahim, W. M. A. W.; Abdullah, M. M. A. B.; Sandu, A. V.; Tahir, M. F. M.
2017-06-01
Porous ceramic nowadays has been investigated for a variety of its application such as filters, lightweight structural component and others due to their specific properties such as high surface area, stability and permeability. Besides, it has the properties of low thermal conductivity. Various formation techniques making these porous ceramic properties can be tailored or further fine-tuned to obtain the optimum characteristic. Porous materials also one of the good candidate for absorption properties. Conventional construction materials are not design to have good water absorption and retention that lead to the poor performance on these criteria. Temperature is a major driving force for moisture movement and influences sorption characteristics of many constructions materials. The effect of elevated temperatures on the water absorption coefficient and retention remain as critical issue that need to be investigated. Therefore, this paper will review the process parameters in fabricating porous ceramic for absorption properties.
Verbraeken, Bart; Hoogenboom, Richard
2017-06-12
Cyclic versus linear: The superiority of cyclic polymers over their linear counterparts is highlighted. Cyclic poly(2-oxazoline)s have been shown to provide excellent shielding properties when grafted to TiO 2 surfaces and Fe 3 O 4 nanoparticles owing to their ultrahigh grafting densities leading to low friction surfaces, superior antifouling properties, and extreme nanoparticle stabilization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conti, Malcolm Caligari; Karl, Andreas; Wismayer, Pierre Schembri; Buhagiar, Joseph
2014-01-01
High failure rates of cobalt-chromium-molybdenum (Co-Cr-Mo) metal-on-metal hip prosthesis were reported by various authors, probably due to the alloy's limited hardness and tribological properties. This thus caused the popularity of the alloy in metal-on-metal hip replacements to decrease due to its poor wear properties when compared with other systems such as ceramic-on-ceramic. S-phase surface engineering has become an industry standard when citing surface hardening of austenitic stainless steels. This hardening process allows the austenitic stainless steel to retain its corrosion resistance, while at the same time also improving its hardness and wear resistance. By coupling S-phase surface engineering, using the proprietary Kolsterising® treatment from Bodycote Hardiff GmbH, that is currently being used mainly on stainless steel, with Co-Cr-Mo alloys, an improvement in hardness and tribological characteristics is predicted. The objective of this paper is to analyze the biocompatibility of a Kolsterised® Co-Cr-Mo alloy, and to characterize the material surface in order to show the advantages gained by using the Kolsterised® material relative to the original untreated alloy, and other materials. This work has been performed on 3 fronts including; Material characterization, “In-vitro” corrosion testing, and Biological testing conforming to BS EN ISO 10993–18:2009 - Biological evaluation of medical devices. Using these techniques, the Kolsterised® cobalt-chromium-molybdenum alloys were found to have good biocompatibility and an augmented corrosion resistance when compared with the untreated alloy. The Kolsterised® samples also showed a 150% increase in surface hardness over the untreated material thus predicting better wear properties. PMID:24451266
Conti, Malcolm Caligari; Karl, Andreas; Wismayer, Pierre Schembri; Buhagiar, Joseph
2014-01-01
High failure rates of cobalt-chromium-molybdenum (Co-Cr-Mo) metal-on-metal hip prosthesis were reported by various authors, probably due to the alloy's limited hardness and tribological properties. This thus caused the popularity of the alloy in metal-on-metal hip replacements to decrease due to its poor wear properties when compared with other systems such as ceramic-on-ceramic. S-phase surface engineering has become an industry standard when citing surface hardening of austenitic stainless steels. This hardening process allows the austenitic stainless steel to retain its corrosion resistance, while at the same time also improving its hardness and wear resistance. By coupling S-phase surface engineering, using the proprietary Kolsterising(®) treatment from Bodycote Hardiff GmbH, that is currently being used mainly on stainless steel, with Co-Cr-Mo alloys, an improvement in hardness and tribological characteristics is predicted. The objective of this paper is to analyze the biocompatibility of a Kolsterised(®) Co-Cr-Mo alloy, and to characterize the material surface in order to show the advantages gained by using the Kolsterised(®) material relative to the original untreated alloy, and other materials. This work has been performed on 3 fronts including; Material characterization, "In-vitro" corrosion testing, and Biological testing conforming to BS EN ISO 10993-18:2009 - Biological evaluation of medical devices. Using these techniques, the Kolsterised(®) cobalt-chromium-molybdenum alloys were found to have good biocompatibility and an augmented corrosion resistance when compared with the untreated alloy. The Kolsterised(®) samples also showed a 150% increase in surface hardness over the untreated material thus predicting better wear properties.
Wang, Zhanhua; Zuilhof, Han
2016-07-05
Fluoropolymer brushes are widely used to prevent nonspecific adsorption of commercial polymeric or biological materials due to their strongly hydrophobic character. Herein, a series of fluoropolymer brushes with different compositions, thicknesses and molecular architectures was prepared via surface-initiated atom transfer radical polymerization (ATRP). Subsequently, the antifouling properties of these fluoropolymer brushes against organic polymers were studied in detail using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) measurements and polystyrene as a representative fouling polymer. Among all of the molecular architectures studied, homopolymerized methacrylate-based fluoropolymer brushes (PMAF17) show the best antifouling properties. Annealing the fluoropolymer brushes improves the antifouling property dramatically due to the reregulated surface composition. These fluoropolymer brushes can be combined with, e.g., micro- and nanostructuring and other advanced materials properties to yield even better long-term antifouling behavior under harsh environments.
Zhang, Long; Zhang, Fan; Yang, Xi; Long, Guankui; Wu, Yingpeng; Zhang, Tengfei; Leng, Kai; Huang, Yi; Ma, Yanfeng; Yu, Ao; Chen, Yongsheng
2013-01-01
Until now, few sp2 carbon materials simultaneously exhibit superior performance for specific surface area (SSA) and electrical conductivity at bulk state. Thus, it is extremely important to make such materials at bulk scale with those two outstanding properties combined together. Here, we present a simple and green but very efficient approach using two standard and simple industry steps to make such three-dimensional graphene-based porous materials at the bulk scale, with ultrahigh SSA (3523 m2/g) and excellent bulk conductivity. We conclude that these materials consist of mainly defected/wrinkled single layer graphene sheets in the dimensional size of a few nanometers, with at least some covalent bond between each other. The outstanding properties of these materials are demonstrated by their superior supercapacitor performance in ionic liquid with specific capacitance and energy density of 231 F/g and 98 Wh/kg, respectively, so far the best reported capacitance performance for all bulk carbon materials. PMID:23474952
On the performance of infrared sensors in earth observations
NASA Technical Reports Server (NTRS)
Johnson, L. F.
1972-01-01
The performance of infrared sensing systems is dependent upon the radiative properties of targets in addition to constraints imposed by system components. The unclassified state-of-the-art of infrared system performance figures is reviewed to indicate the relevance to system performance of target radiative properties. A theory of rough surface scattering is developed which allows the formulation of the reflective characteristics of extended targets. The thermal radiation emission from extended targets is formulated on the basis of internal radiation characteristics of natural materials and the transmissive scattering effects at the surface. Finally, the total radiative characteristics may be expressed as functions of material properties and incident and received directions, although the expressions are extremely complex functions and do not account for the effects of shadowing or multiple scattering. It is believed that the theory may be extended to include these effects and to incorporate the local radii of curvature of the surface.
Effects of (Oxy-)Fluorination on Various High-Performance Yarns.
Kruppke, Iris; Bartusch, Matthias; Hickmann, Rico; Hund, Rolf-Dieter; Cherif, Chokri
2016-08-26
In this work, typical high-performance yarns are oxy-fluorinated, such as carbon fibers, ultra-high-molecular-weight polyethylene, poly(p-phenylene sulfide) and poly(p-phenylene terephthalamide). The focus is on the property changes of the fiber surface, especially the wetting behavior, structure and chemical composition. Therefore, contact angle, XPS and tensile strength measurements are performed on treated and untreated fibers, while SEM is utilized to evaluate the surface structure. Different results for the fiber materials are observed. While polyethylene exhibits a relevant impact on both surface and bulk properties, polyphenylene terephthalamide and polyphenylene sulfide are only affected slightly by (oxy-)fluorination. The wetting of carbon fiber needs higher treatment intensities, but in contrast to the organic fibers, even its textile-physical properties are enhanced by the treatment. Based on these findings, the capability of (oxy-)fluorination to improve the adhesion of textiles in fiber-reinforced composite materials can be derived.
NASA Technical Reports Server (NTRS)
Startsev, Oleg V.; Nikishin, Eugene F.
1995-01-01
Specimens of polymeric composite materials for aviation and space applications such as glass fiber reinforced plastics (GFRP), carbon fiber reinforced plastics (CFRP), organic fiber reinforced plastics (OFRP), and hybrid plastics (HP) based on epoxy compounds were exposed to the space environment on the surface of Salyut-7 orbital station. The space exposure lasted 1501 days as a maximum. The data relating to the change in mechanical properties, mass losses, glass transition temperature, linear thermal expansion coefficient, and microstructure after various periods of exposure are given. It has been found that the change in properties is caused by the processes of binder postcuring and microerosion of the exposed surface of plastics. The phenomenon of strengthening of the surface layer of hybrid composites, due to which the nature of destruction changes at bending loads, has been revealed.
Thin Hydrogel Films for Optical Biosensor Applications
Mateescu, Anca; Wang, Yi; Dostalek, Jakub; Jonas, Ulrich
2012-01-01
Hydrogel materials consisting of water-swollen polymer networks exhibit a large number of specific properties highly attractive for a variety of optical biosensor applications. This properties profile embraces the aqueous swelling medium as the basis of biocompatibility, non-fouling behavior, and being not cell toxic, while providing high optical quality and transparency. The present review focuses on some of the most interesting aspects of surface-attached hydrogel films as active binding matrices in optical biosensors based on surface plasmon resonance and optical waveguide mode spectroscopy. In particular, the chemical nature, specific properties, and applications of such hydrogel surface architectures for highly sensitive affinity biosensors based on evanescent wave optics are discussed. The specific class of responsive hydrogel systems, which can change their physical state in response to externally applied stimuli, have found large interest as sophisticated materials that provide a complex behavior to hydrogel-based sensing devices. PMID:24957962
Electrical and material properties of hydrothermally grown single crystal (111) UO2
NASA Astrophysics Data System (ADS)
Dugan, Christina L.; Peterson, George Glenn; Mock, Alyssa; Young, Christopher; Mann, J. Matthew; Nastasi, Michael; Schubert, Mathias; Wang, Lu; Mei, Wai-Ning; Tanabe, Iori; Dowben, Peter A.; Petrosky, James
2018-04-01
The semiconductor and optical properties of UO2 are investigated. The very long drift carrier lifetimes, obtained from current-voltage I( V) and capacitance-voltage C( V) measurements, along with the well-defined optical properties provide little evidence of an abundance of material defects away from the surface region. Schottky barrier formation may be possible, but very much dependent on the choice of contact and surface stoichiometry and we find that Ohmic contacts are in fact favored. Depth resolved photoemission provided evidence of a chemical shift at the surface. Density functional theory, with the Heyd-Scuseria-Ernzerhof (HSE) functional, indicates a band gap of a 2.19 eV and an anti-ferromagnetic ground state. Ellipsometry measurements indicates at UO2 is relatively isotropic with a band gap of approximately 2.0 eV band gap, consistent with theoretical expectations.
NASA Technical Reports Server (NTRS)
Balckburn, Linda B.
1987-01-01
A study was undertaken to determine the mechanical properties and microstructures resulting from Liquid Interface Diffusion (LID -Registered) processing of foil-gauge specimens of Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo coated with varying amounts of LID material. In addition, the effects of various elevated temperature exposures on the concentration profiles of the LID alloying elements were investigated, using specimens with a narrow strip of LID material applied to the surface. Room and elevated temperature tensile properties were determined for both coated and uncoated specimens. Optical microscopy was used to examine alloy microstructures, and scanning electron microscopy to examine fracture surface morphologies. The chemical concentration profiles of the strip-coated specimens were determined with an electron microprobe.
Finite amplitude effects on drop levitation for material properties measurement
NASA Astrophysics Data System (ADS)
Ansari Hosseinzadeh, Vahideh; Holt, R. Glynn
2017-05-01
The method of exciting shape oscillation of drops to extract material properties has a long history, which is most often coupled with the technique of acoustic levitation to achieve non-contact manipulation of the drop sample. We revisit this method with application to the inference of bulk shear viscosity and surface tension. The literature is replete with references to a "10% oscillation amplitude" as a sufficient condition for the application of Lamb's analytical expressions for the shape oscillations of viscous liquids. Our results show that even a 10% oscillation amplitude leads to dynamic effects which render Lamb's results inapplicable. By comparison with samples of known viscosity and surface tension, we illustrate the complicating finite-amplitude effects (mode-splitting and excess dissipation associated with vorticity) that can occur and then show that sufficiently small oscillations allow us to recover the correct material properties using Lamb's formula.
Considerations Concerning the Development and Testing of In-situ Materials for Martian Exploration
NASA Technical Reports Server (NTRS)
Kim, M.-H. Y.; Heilbronn, L.; Thibeault, S. A.; Simonsen, L. C.; Wilson, J. W.; Chang, K.; Kiefer, R. L.; Maahs, H. G.
2000-01-01
Natural Martian surface materials are evaluated for their potential use as radiation shields for manned Mars missions. The modified radiation fluences behind various kinds of Martian rocks and regolith are determined by solving the Boltzmann equation using NASA Langley s HZETRN code along with the 1977 Solar Minimum galactic cosmic ray environmental model. To make structural shielding composite materials from constituents of the Mars atmosphere and from Martian regolith for Martian surface habitats, schemes for synthesizing polyimide from the Mars atmosphere and for processing Martian regolith/polyimide composites are proposed. Theoretical predictions of the shielding properties of these composites are computed to assess their shielding effectiveness. Adding high-performance polymer binders to Martian regolith to enhance structural properties enhances the shielding properties of these composites because of the added hydrogenous constituents. Laboratory testing of regolith simulant/polyimide composites is planned to validate this prediction.
Anti Rohumaa; Toni Antikainen; Christopher G. Hunt; Charles R. Frihart; Mark Hughes
2016-01-01
Wood material surface properties play an important role in adhesive bond formation and performance. In the present study, a test method was developed to evaluate the integrity of the wood surface, and the results were used to understand bond performance. Materials used were rotary cut birch (Betula pendula Roth) veneers, produced from logs soaked at 20 or 70 °C prior...
Flush Mounting Of Thin-Film Sensors
NASA Technical Reports Server (NTRS)
Moore, Thomas C., Sr.
1992-01-01
Technique developed for mounting thin-film sensors flush with surfaces like aerodynamic surfaces of aircraft, which often have compound curvatures. Sensor mounted in recess by use of vacuum pad and materials selected for specific application. Technique involves use of materials tailored to thermal properties of substrate in which sensor mounted. Together with customized materials, enables flush mounting of thin-film sensors in most situations in which recesses for sensors provided. Useful in both aircraft and automotive industries.
The environs of viking 2 lander.
Shorthill, R W; Moore, H J; Hutton, R E; Scott, R F; Spitzer, C R
1976-12-11
Forty-six days after Viking 1 landed, Viking 2 landed in Utopia Planitia, about 6500 kilometers away from the landing site of Viking 1. Images show that in the immediate vicinity of the Viking 2 landing site the surface is covered with rocks, some of which are partially buried, and fine-grained materials. The surface sampler, the lander cameras, engineering sensors, and some data from the other lander experiments were used to investigate the properties of the surface. Lander 2 has a more homogeneous surface, more coarse-grained material, an extensive crust, small rocks or clods which seem to be difficult to collect, and more extensive erosion by the retro-engine exhaust gases than lander 1. A report on the physical properties of the martian surface based on data obtained through sol 58 on Viking 2 and a brief description of activities on Viking 1 after sol 36 are given.
NASA Astrophysics Data System (ADS)
Goto, Taku; Iida, Masaki; Tan, Helen; Liu, Chang; Mayumi, Koichi; Maeda, Rina; Kitahara, Koichi; Hatakeyama, Kazuto; Ito, Tsuyohito; Shimizu, Yoshiki; Yokoyama, Hideaki; Kimura, Kaoru; Ito, Kohzo; Hakuta, Yukiya; Terashima, Kazuo
2018-03-01
We have developed a thermally conductive flexible elastomer as a composite material with slide-ring (SR) materials and boron nitride (BN) particles surface-modified via plasma in solution. This composite shows excellent properties as a flexible insulator for thermal management. Surface modification of BN particles using plasma in solution increases the tensile strength, extension ratio at break, toughness, and rubber characteristics of the composites, compared to SR and non-modified BN, while the Young's modulus values are identical. Furthermore, the thermal conductivity also improved as a result of plasma surface modification.
Spatial and directional control of self-assembled wrinkle patterns by UV light absorption
NASA Astrophysics Data System (ADS)
Kortz, C.; Oesterschulze, E.
2017-12-01
Wrinkle formation on surfaces is a phenomenon that is observed in layered systems with a compressed elastic thin capping layer residing on a viscoelastic film. So far, the properties of the viscoelastic material could only be changed replacing it by another material. Here, we propose to use a photosensitive material whose viscoelastic properties, Young's modulus, and glass transition temperature can easily be adjusted by the absorption of UV light. Employing UV lithography masks during the exposure, we gain additionally spatial and directional control of the self-assembled wrinkle pattern formation that relies on a spinodal decomposition process. Inspired by the results on surface wrinkling and its dependence on the intrinsic stress, we also derive a method to avoid wrinkling locally by tailoring the mechanical stress distribution in the layered system choosing UV masks with convex patterns. This is of particular interest in technical applications where the buckling of surfaces is undesirable.
Mhaede, Mansour; Pastorek, Filip; Hadzima, Branislav
2014-06-01
Magnesium alloys are promising materials for biomedical applications because of many outstanding properties like biodegradation, bioactivity and their specific density and Young's modulus are closer to bone than the commonly used metallic implant materials. Unfortunately their fatigue properties and low corrosion resistance negatively influenced their application possibilities in the field of biomedicine. These problems could be diminished through appropriate surface treatments. This study evaluates the influence of a surface pre-treatment by shot peening and shot peening+coating on the corrosion properties of magnesium alloy AZ31. The dicalcium phosphate dihydrate coating (DCPD) was electrochemically deposited in a solution containing 0.1M Ca(NO3)2, 0.06M NH4H2PO4 and 10mL/L of H2O2. The effect of shot peening on the surface properties of magnesium alloy was evaluated by microhardness and surface roughness measurements. The influence of the shot peening and dicalcium phosphate dihydrate layer on the electrochemical characteristics of AZ31 magnesium alloy was evaluated by potentiodynamic measurements and electrochemical impedance spectroscopy in 0.9% NaCl solution at a temperature of 22±1°C. The obtained results were analyzed by the Tafel-extrapolation method and equivalent circuit method. The results showed that the application of shot peening process followed by DCPD coating improves the properties of the AZ31 surface from corrosion and mechanical point of view. Copyright © 2014 Elsevier B.V. All rights reserved.
Schmid, M; Krimmel, B; Grupa, U; Noller, K
2014-09-01
This study examined how and to what extent the degree of denaturation affected the technological-functional properties of whey protein isolate (WPI)-based coatings. It was observed that denaturation affected the material properties of WPI-coated films significantly. Surface energy decreased by approximately 20% compared with native coatings. Because the surface energy of a coating should be lower than that of the substrate, this might result in enhanced wettability characteristics between WPI-based solution and substrate surface. Water vapor barrier properties increased by about 35% and oxygen barrier properties increased by approximately 33%. However, significant differences were mainly observed between coatings made of fully native WPI and ones with a degree of denaturation of 25%. Higher degrees of denaturation did not lead to further improvement of material properties. This observation offers cost-saving potential: a major share of denatured whey proteins may be replaced by fully native ones that are not exposed to energy-intensive heat treatment. Furthermore, native WPI solutions can be produced with higher dry matter content without gelatinizing. Hence, less moisture has to be removed through drying, resulting in reduced energy consumption. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Graphene oxide-based benzimidazole-crosslinked networks for high-performance supercapacitors
NASA Astrophysics Data System (ADS)
Cui, Yi; Cheng, Qian-Yi; Wu, Haiping; Wei, Zhixiang; Han, Bao-Hang
2013-08-01
The synthesis of graphene oxide (GO)-based benzimidazole-crosslinked network (GOBIN) materials is presented. These materials are prepared by the covalent crosslinking of GO sheets using a condensation reaction between the carboxylic acid moieties on the GO surface and the o-aminophenyl end groups of 3,3'-diaminobenzidine (or 1,2,4,5-benzenetetraamine tetrahydrochloride). An efficient one-pot catalyst- and template-free synthesis was performed. The obtained porous GO-based materials possess a Brunauer-Emmett-Teller specific surface area ranging from 260 to 920 m2 g-1. Electrochemical testing indicates that the GOBIN materials display a specific capacitance up to 370 F g-1 at a current density of 0.1 A g-1 and about 90% of the original capacitance is retained after 5000 cycles at a current density of 3 A g-1. Therefore, GOBIN materials can be employed as promising electrode materials for high-performance supercapacitors with outstanding cycling stability. Furthermore, owing to their significantly high specific surface area, these materials also show hydrogen uptake (up to 1.24 wt%, at 77 K and 1.0 bar) and carbon dioxide capture (up to 14.2 wt%, at 273 K and 1.0 bar) properties. As a result, these GO-based porous materials improve both the supercapacitor performance and gas sorption property, which demonstrate an excellent performance in the practical application of energy storage.The synthesis of graphene oxide (GO)-based benzimidazole-crosslinked network (GOBIN) materials is presented. These materials are prepared by the covalent crosslinking of GO sheets using a condensation reaction between the carboxylic acid moieties on the GO surface and the o-aminophenyl end groups of 3,3'-diaminobenzidine (or 1,2,4,5-benzenetetraamine tetrahydrochloride). An efficient one-pot catalyst- and template-free synthesis was performed. The obtained porous GO-based materials possess a Brunauer-Emmett-Teller specific surface area ranging from 260 to 920 m2 g-1. Electrochemical testing indicates that the GOBIN materials display a specific capacitance up to 370 F g-1 at a current density of 0.1 A g-1 and about 90% of the original capacitance is retained after 5000 cycles at a current density of 3 A g-1. Therefore, GOBIN materials can be employed as promising electrode materials for high-performance supercapacitors with outstanding cycling stability. Furthermore, owing to their significantly high specific surface area, these materials also show hydrogen uptake (up to 1.24 wt%, at 77 K and 1.0 bar) and carbon dioxide capture (up to 14.2 wt%, at 273 K and 1.0 bar) properties. As a result, these GO-based porous materials improve both the supercapacitor performance and gas sorption property, which demonstrate an excellent performance in the practical application of energy storage. Electronic supplementary information (ESI) available: Detailed methods of preparation of GOBINPPA, SEM images, IR spectra, TGA, nitrogen adsorption-desorption isotherms, pore size distribution, gravimetric hydrogen adsorption, carbon dioxide adsorption isotherms, and virial analysis of the adsorption data for GOBIN materials. See DOI: 10.1039/c3nr01480k
NASA Astrophysics Data System (ADS)
Bilek, M. M. M.; Newton-McGee, K.; McKenzie, D. R.; McCulloch, D. G.
2006-01-01
Plasma processes for the synthesis of new materials as thin films have enabled the production of a wide variety of new materials. These include meta-stable phases, which are not readily found in nature, and more recently, materials with structure on the nanoscale. Study of plasma synthesis processes at the fundamental level has revealed that ion energy, depositing flux and growth surface temperature are the critical parameters affecting the microstructure and the properties of the thin film materials formed. In this paper, we focus on the role of ion flux and impact energy in the creation of thin films with nanoscale structure in the form of multilayers. We describe three synthesis strategies, based on the extraction of ions from plasma sources and involving modulation of ion flux and ion energy. The microstructure, intrinsic stress and physical properties of the multilayered samples synthesized are studied and related back to the conditions at the growth surface during deposition. When energetic ions of a non-condensing species are used, it is possible to place active groups on the surfaces of materials such as polymers. These active groups can then be used as bonding sites in subsequent chemical attachment of proteins or other macromolecules. If the energy of the non-condensing ions is increased to a few keV then modified layers buried under the surface can be produced. Here we describe a method by which the aging effect, which is often observed in plasma surface modifications on polymers, can be reduced and even eliminated using high energy ion bombardment.
Material properties that predict preservative uptake for silicone hydrogel contact lenses.
Green, J Angelo; Phillips, K Scott; Hitchins, Victoria M; Lucas, Anne D; Shoff, Megan E; Hutter, Joseph C; Rorer, Eva M; Eydelman, Malvina B
2012-11-01
To assess material properties that affect preservative uptake by silicone hydrogel lenses. We evaluated the water content (using differential scanning calorimetry), effective pore size (using probe penetration), and preservative uptake (using high-performance liquid chromatography with spectrophotometric detection) of silicone and conventional hydrogel soft contact lenses. Lenses grouped similarly based on freezable water content as they did based on total water content. Evaluation of the effective pore size highlighted potential differences between the surface-treated and non-surface-treated materials. The water content of the lens materials and ionic charge are associated with the degree of preservative uptake. The current grouping system for testing contact lens-solution interactions separates all silicone hydrogels from conventional hydrogel contact lenses. However, not all silicone hydrogel lenses interact similarly with the same contact lens solution. Based upon the results of our research, we propose that the same material characteristics used to group conventional hydrogel lenses, water content and ionic charge, can also be used to predict uptake of hydrophilic preservatives for silicone hydrogel lenses. In addition, the hydrophobicity of silicone hydrogel contact lenses, although not investigated here, is a unique contact lens material property that should be evaluated for the uptake of relatively hydrophobic preservatives and tear components.
Nanoporous Metallic Networks: Fabrication, Optical Properties, and Applications.
Ron, Racheli; Haleva, Emir; Salomon, Adi
2018-05-17
Nanoporous metallic networks are a group of porous materials made of solid metals with suboptical wavelength sizes of both particles and voids. They are characterized by unique optical properties, as well as high surface area and permeability of guest materials. As such, they attract a great focus as novel materials for photonics, catalysis, sensing, and renewable energy. Their properties together with the ability for scaling-up evoke an increased interest also in the industrial field. Here, fabrication techniques of large-scale metallic networks are discussed, and their interesting optical properties as well as their applications are considered. In particular, the focus is on disordered systems, which may facilitate the fabrication technique, yet, endow the three-dimensional (3D) network with distinct optical properties. These metallic networks bridge the nanoworld into the macroscopic world, and therefore pave the way to the fabrication of innovative materials with unique optoelectronic properties. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Ceamanos, Xavier; Doute, S.; Fernando, J.; Pinet, P.; Lyapustin, A.
2013-01-01
This article addresses the correction for aerosol effects in near-simultaneous multiangle observations acquired by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard the Mars Reconnaissance Orbiter. In the targeted mode, CRISM senses the surface of Mars using 11 viewing angles, which allow it to provide unique information on the scattering properties of surface materials. In order to retrieve these data, however, appropriate strategies must be used to compensate the signal sensed by CRISM for aerosol contribution. This correction is particularly challenging as the photometric curve of these suspended particles is often correlated with the also anisotropic photometric curve of materials at the surface. This article puts forward an innovative radiative transfer based method named Multi-angle Approach for Retrieval of Surface Reflectance from CRISM Observations (MARS-ReCO). The proposed method retrieves photometric curves of surface materials in reflectance units after removing aerosol contribution. MARS-ReCO represents a substantial improvement regarding previous techniques as it takes into consideration the anisotropy of the surface, thus providing more realistic surface products. Furthermore, MARS-ReCO is fast and provides error bars on the retrieved surface reflectance. The validity and accuracy of MARS-ReCO is explored in a sensitivity analysis based on realistic synthetic data. According to experiments, MARS-ReCO provides accurate results (up to 10 reflectance error) under favorable acquisition conditions. In the companion article, photometric properties of Martian materials are retrieved using MARS-ReCO and validated using in situ measurements acquired during the Mars Exploration Rovers mission.
Fergason, R.L.; Christensen, P.R.; Golombek, M.P.; Parker, T.J.
2012-01-01
This work describes the interpretation of THEMIS-derived thermal inertia data at the Eberswalde, Gale, Holden, and Mawrth Vallis Mars Science Laboratory (MSL) candidate landing sites and determines how thermophysical variations correspond to morphology and, when apparent, mineralogical diversity. At Eberswalde, the proportion of likely unconsolidated material relative to exposed bedrock or highly indurated surfaces controls the thermal inertia of a given region. At Gale, the majority of the landing site region has a moderate thermal inertia (250 to 410 J m-2 K-1 s-1/2), which is likely an indurated surface mixed with unconsolidated materials. The primary difference between higher and moderate thermal inertia surfaces may be due to the amount of mantling material present. Within the mound of stratified material in Gale, layers are distinguished in the thermal inertia data; the MSL rover could be traversing through materials that are both thermophysically and compositionally diverse. The majority of the Holden ellipse has a thermal inertia of 340 to 475 J m-2 K-1 s-1/2 and consists of bed forms with some consolidated material intermixed. Mawrth Vallis has a mean thermal inertia of 310 J m-2 K-1 s-1/2 and a wide variety of materials is present contributing to the moderate thermal inertia surfaces, including a mixture of bedrock, indurated surfaces, bed forms, and unconsolidated fines. Phyllosilicates have been identified at all four candidate landing sites, and these clay-bearing units typically have a similar thermal inertia value (400 to 500 J m-2 K-1 s-1/2), suggesting physical properties that are also similar.
Materials and Manufacturing Technology Directorate Thermal Sciences and Materials Branch (Overview)
2010-09-01
Molecular Mechanics for thermo-mechanical response Materials Characterization • CNT modified durable thermal interface ( DTI ) • MEMS-based RTD micro...stabilization. Surface Characterization by Atomic Force Microscopy: Probing Thermal, Electrical, and Mechanical Properties Heater Current Path Anchor Leg 50 µm
NASA Astrophysics Data System (ADS)
Wakaki, Moriaki; Soujima, Nobuaki; Shibuya, Takehisa
2015-03-01
Porous MgF2 films synthesized by a sol-gel method exhibit the lowest refractive index among the dielectric optical materials and are the most useful materials for the anti-reflection coatings. On the other hand, surface plasmon resonance (SPR) absorptions of noble metal nanoparticles in various solid matrices have been extensively studied. New functional materials like a SERS (Surface Enhanced Raman Spectroscopy) tips are expected by synthesizing composite materials between porous MgF2 films featured by the network of MgF2 nanoparticles and noble metal nanoparticles introduced within the network. In this study, fundamental physical properties including morphology and optical properties are characterized for these materials to make clear the potential of the composite system. Composite materials of MgF2 films dispersed with noble metal (Ag, Au) nanoparticles were prepared using the sol-gel technique with various annealing temperatures and densities of noble metal nanoparticles. The structural morphology was analyzed by an X-ray diffractometer (XRD) and a scanning electron microscope (SEM). The size and shape distributions of the metal nanoparticles were observed using a transmission electron microscope (TEM). The optical properties of fabricated composite films were characterized by UV-Vis-NIR and FT-IR spectrophotometers. The absorption spectra due to the surface plasmon resonance (SPR) of the metal nanoparticles were analyzed using the dielectric function considering the effective medium approximation, typically Maxwell-Garnett model. The Raman scattering spectra were also studied to check the enhancement effect of specimen dropped on the MgF2: Ag nano-composite films deposited on Si substrate. Enhancement of the Raman intensity of pyridine solution specimen was observed.
ERIC Educational Resources Information Center
Sae, Andy S. W.
1991-01-01
Discusses 27 chemical demonstrations involving inexpensive, readily available materials that illustrate the following concepts: acid/base properties, gas properties, characteristics of carbon dioxide, chemiluminescence, freezing point depression, heat of vaporization; density, polymers, surface tension, polarity/nonpolarity, UV absorption,…
Bawolin, N K; Chen, X B
2017-04-01
Surface-degrading polymers have been widely used to fabricate scaffolds with the mechanical properties appropriate for tissue regeneration/repair. During their surface degradation, the material properties of polymers remain approximately unchanged, but the scaffold geometry and thus mechanical properties vary with time. This paper presents a novel method to determine the time-dependent mechanical properties, particularly stiffness, of scaffolds from the geometric changes captured by synchrotron-based imaging, with the help of finite element analysis (FEA). Three-dimensional (3D) tissue scaffolds were fabricated from surface-degrading polymers, and during their degradation, the tissue scaffolds were imaged via the synchrotron-based imaging to characterize their changing geometry. On this basis, the stiffness behavior of scaffolds was estimated from the FEA, and the results obtained were compared to the direct measurements of scaffold stiffness from the load-displacement material testing. The comparison illustrates that the Young's moduli estimated from the FEA and characterized geometry are in agreement with the ones of direct measurements. The developed method of estimating the mechanical behavior was also demonstrated effective with a nondegrading scaffold that displays the nonlinear stress-strain behavior. The in vivo monitoring of Young's modulus by morphology characterization also suggests the feasibility of characterizing experimentally the difference between in vivo and in vitro surface degradation of tissue engineering constructs.
Advances in the surface modification techniques of bone-related implants for last 10 years
Qiu, Zhi-Ye; Chen, Cen; Wang, Xiu-Mei; Lee, In-Seop
2014-01-01
At the time of implanting bone-related implants into human body, a variety of biological responses to the material surface occur with respect to surface chemistry and physical state. The commonly used biomaterials (e.g. titanium and its alloy, Co–Cr alloy, stainless steel, polyetheretherketone, ultra-high molecular weight polyethylene and various calcium phosphates) have many drawbacks such as lack of biocompatibility and improper mechanical properties. As surface modification is very promising technology to overcome such problems, a variety of surface modification techniques have been being investigated. This review paper covers recent advances in surface modification techniques of bone-related materials including physicochemical coating, radiation grafting, plasma surface engineering, ion beam processing and surface patterning techniques. The contents are organized with different types of techniques to applicable materials, and typical examples are also described. PMID:26816626
Chen, Hong; Zhang, Mingzhen; Yang, Jintao; Zhao, Chao; Hu, Rundong; Chen, Qiang; Chang, Yung; Zheng, Jie
2014-09-02
Rational design of effective antifouling polymers is challenging but important for many fundamental and applied applications. Herein we synthesize and characterize an N-acryloylaminoethoxyethanol (AAEE) monomer, which integrates three hydrophilic groups of hydroxyl, amide, and ethylene glycol in the same material. AAEE monomers were further grafted and polymerized on gold substrates to form polyAAEE brushes with well-controlled thickness via surface-initiated atomic transfer radical polymerization (SI-ATRP), with particular attention to a better understanding of the molecular structure-antifouling property relationship of hydroxyl-acrylic-based polymers. The surface hydrophilicity and antifouling properties of polyAAEE brushes as a function of film thickness are studied by combined experimental and computational methods including surface plasmon resonance (SPR) sensors, atomic force microscopy (AFM), cell adhesion assay, and molecular dynamics (MD) simulations. With the optimal polymer film thicknesses (∼10-40 nm), polyAAEE-grafted surfaces can effectively resist protein adsorption from single-protein solutions and undiluted human blood plasma and serum to a nonfouling level (i.e., <0.3 ng/cm(2)). The polyAAEE brushes also highly resist mammalian cell attachment up to 3 days. MD simulations confirm that the integration of three hydrophilic groups induce a stronger and closer hydration layer around polyAAEE, revealing a positive relationship between surface hydration and antifouling properties. The molecular structure-antifouling properties relationship of a series of hydroxyl-acrylic-based polymers is also discussed. This work hopefully provides a promising structural motif for the design of new effective antifouling materials beyond traditional ethylene glycol-based antifouling materials.
Experimental assessment of aggregate surfacing materials.
DOT National Transportation Integrated Search
2007-06-30
"An extensive suite of geotechnical laboratory tests were conducted to quantify differences in : engineering properties of three crushed aggregates commonly used on Montana highway projects. The : material types are identified in the Montana Suppleme...
NASA Astrophysics Data System (ADS)
Szabo, Gyorgy; Kovacs, Lajos; Barabas, Jozsef; Nemeth, Zsolt; Maironna, Carlo
2001-11-01
The purpose of this paper is to discuss the background to advanced surface modification technologies and to present a new technique, involving the formation of a titanium oxide ceramic coating, with relatively long-term results of its clinical utilization. Three general techniques are used to modify surfaces: the addition or removal of material and the change of material already present. Surface properties can also be changed without the addition or removal of material, through the laser or electron beam thermal treatment. The new technique outlined in this paper relates to the production of a corrosion-resistant 2000-2500 A thick, ceramic oxide layer with a coherent crystalline structure on the surface of titanium implants. The layer is grown electrochemically from the bulk of the metal and is modified by heat treatment. Such oxide ceramic-coated implants have a number of advantageous properties relative to implants covered with various other coatings: a higher external hardness, a greater force of adherence between the titanium and the oxide ceramic coating, a virtually perfect insulation between the organism and the metal (no possibility of metal allergy), etc. The coated implants were subjected to various physical, chemical, electronmicroscopic, etc. tests for a qualitative characterization. Finally, these implants (plates, screws for maxillofacial osteosynthesis and dental root implants) were applied in surgical practice for a period of 10 years. Tests and the experience acquired demonstrated the good properties of the titanium oxide ceramic-coated implants.
Effects of different hierarchical hybrid micro/nanostructure surfaces on implant osseointegration.
Cheng, Bingkun; Niu, Qiang; Cui, Yajun; Jiang, Wei; Zhao, Yunzhuan; Kong, Liang
2017-06-01
Hierarchical hybrid micro/nanostructure implant surfaces are considered to better mimic the hierarchical structure of bone and the nanostructures substantively influence osseointegration through managing cell behaviors. To enhance implant osseointegration for further clinical application, we evaluated the material properties and osseointegration effects of hierarchical surfaces with different nano-morphologies, using a rat model. Two representative surface fabrication methods, hydrofluoric (HF) acid etching combined with anodization (HF + AN) or magnetron sputtering (HF + MS), were selected. Sample material properties were evaluated by scanning electron microscopy, atomic force microscopy, X-ray diffraction, X-ray photoemission spectroscopy, and epoxy resin docking tensile test. Implants with different surfaces were inserted into the distal femurs of rats. After 12 weeks, osseointegration was examined by microcomputed tomography (micro-CT), histological, and biomechanical tests. Tensile testing demonstrated high bonding strength at coating/implant in the HF + MS group. Micro-CT revealed increased bone volume/total volume and significantly reduced trabecular separation in HF + MS versus other groups. Histological analysis showed significantly higher HF + MS bone-to-implant contact (74.78 ± 4.40%) versus HF + AN (65.11 ± 5.10%) and machined samples (56.03 ± 3.23%). The maximal HF + MS pull-out force increased by 33.7% versus HF + AN. These results indicated that HF + MS surfaces exhibited superior material property in terms of bonding strength and favorable implant osseointegration compared to other groups. © 2017 Wiley Periodicals, Inc.
Controlling the physics and chemistry of binary and ternary praseodymium and cerium oxide systems.
Niu, Gang; Zoellner, Marvin Hartwig; Schroeder, Thomas; Schaefer, Andreas; Jhang, Jin-Hao; Zielasek, Volkmar; Bäumer, Marcus; Wilkens, Henrik; Wollschläger, Joachim; Olbrich, Reinhard; Lammers, Christian; Reichling, Michael
2015-10-14
Rare earth praseodymium and cerium oxides have attracted intense research interest in the last few decades, due to their intriguing chemical and physical characteristics. An understanding of the correlation between structure and properties, in particular the surface chemistry, is urgently required for their application in microelectronics, catalysis, optics and other fields. Such an understanding is, however, hampered by the complexity of rare earth oxide materials and experimental methods for their characterisation. Here, we report recent progress in studying high-quality, single crystalline, praseodymium and cerium oxide films as well as ternary alloys grown on Si(111) substrates. Using these well-defined systems and based on a systematic multi-technique surface science approach, the corresponding physical and chemical properties, such as the surface structure, the surface morphology, the bulk-surface interaction and the oxygen storage/release capability, are explored in detail. We show that specifically the crystalline structure and the oxygen stoichiometry of the oxide thin films can be well controlled by the film preparation method. This work leads to a comprehensive understanding of the properties of rare earth oxides and highlights the applications of these versatile materials. Furthermore, methanol adsorption studies are performed on binary and ternary rare earth oxide thin films, demonstrating the feasibility of employing such systems for model catalytic studies. Specifically for ceria systems, we find considerable stability against normal environmental conditions so that they can be considered as a "materials bridge" between surface science models and real catalysts.
Evaluation of Some Finishing Properties of Oil Palm Particleboard for Furniture Application
NASA Astrophysics Data System (ADS)
Ratnasingam, J.; Nyugen, V.; Ioras, F.
The finishing properties of particleboard made from the Empty-Fruit Bunch (EFB) of oil palm (Elaeis guineensis Jacq.) were evaluated for its suitability for furniture applications, using different coating and overlay materials. The results found that the thick plastic-formica overlay provided the best surface finish, in terms of surface smoothness, adhesion strength and impact resistance. Although the polyurethane lacquer provided an acceptable finish, its quality and performance is not comparable to that of the thick plastic overlay. Despite the fact that the use of such overlay material may render the material not aesthetically appealing and limit it to concealed applications or where the thick overlay material is tolerated, its cost competitiveness and environmental friendliness may be able to position the oil palm particleboard as a substitute for the conventional wood-based particleboard in the furniture manufacturing industry.
The development of composite materials for spacecraft precision reflector panels
NASA Technical Reports Server (NTRS)
Tompkins, Stephen S.; Bowles, David E.; Funk, Joan G.; Towell, Timothy W.; Lavoie, J. A.
1990-01-01
One of the critical technology needs for large precision reflectors required for future astrophysics and optical communications is in the area of structural materials. Therefore, a major area of the Precision Segmented Reflector Program at NASA is to develop lightweight composite reflector panels with durable, space environmentally stable materials which maintain both surface figure and required surface accuracy necessary for space telescope applications. Results from the materials research and development program at NASA Langley Research Center are discussed. Advanced materials that meet the reflector panel requirements are identified. Thermal, mechanical and durability properties of candidate materials after exposure to simulated space environments are compared to the baseline material.
Liquid Metals as Plasma-facing Materials for Fusion Energy Systems: From Atoms to Tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, Howard A.; Koel, Bruce E.; Bernasek, Steven L.
The objective of our studies was to advance our fundamental understanding of liquid metals as plasma-facing materials for fusion energy systems, with a broad scope: from atoms to tokamaks. The flow of liquid metals offers solutions to significant problems of the plasma-facing materials for fusion energy systems. Candidate metals include lithium, tin, gallium, and their eutectic combinations. However, such liquid metal solutions can only be designed efficiently if a range of scientific and engineering issues are resolved that require advances in fundamental fluid dynamics, materials science and surface science. In our research we investigated a range of significant and timelymore » problems relevant to current and proposed engineering designs for fusion reactors, including high-heat flux configurations that are being considered by leading fusion energy groups world-wide. Using experimental and theoretical tools spanning atomistic to continuum descriptions of liquid metals, and bridging surface chemistry, wetting/dewetting and flow, our research has advanced the science and engineering of fusion energy materials and systems. Specifically, we developed a combined experimental and theoretical program to investigate flows of liquid metals in fusion-relevant geometries, including equilibrium and stability of thin-film flows, e.g. wetting and dewetting, effects of electromagnetic and thermocapillary fields on liquid metal thin-film flows, and how chemical interactions and the properties of the surface are influenced by impurities and in turn affect the surface wetting characteristics, the surface tension, and its gradients. Because high-heat flux configurations produce evaporation and sputtering, which forces rearrangement of the liquid, and any dewetting exposes the substrate to damage from the plasma, our studies addressed such evaporatively driven liquid flows and measured and simulated properties of the different bulk phases and material interfaces. The range of our studies included (i) quantum mechanical calculations that allow inclusion of many thousands of atoms for the characterization of the interface of liquid metals exposed to continuous bombardment by deuterium and tritium as expected in fusion, (ii) molecular dynamics studies of the phase behavior of liquid metals, which (a) utilize thermodynamic properties computed using our quantum mechanical calculations and (b) establish material and wetting properties of the liquid metals, including relevant eutectics, (iii) experimental investigations of the surface science of liquid metals, interacting both with the solid substrate as well as gaseous species, and (iv) fluid dynamical studies that incorporate the material and surface science results of (ii) and (iii) in order to characterize flow in capillary porous materials and the thin-film flow along curved boundaries, both of which are potentially major components of plasma-facing materials. The outcome of these integrated studies was new understanding that enables developing design rules useful for future developments of the plasma-facing components critical to the success of fusion energy systems.« less
Synthesis and characterization of methyltrihydroxysilane water repellent
NASA Astrophysics Data System (ADS)
Abidin, A. Z.; Harjandi, M. N.; Wirawan, V.; Suharno, S. M.
2018-03-01
Methyltrihydroxysilane (CH3Si (OH)3) as a water repellent has been synthesized from trichloromethylsilane and ethanol by varying their composition, reaction condition, and the addition of nanosilica. The properties of the material have been characterized using FTIR for identification of raw materials and water repellent product, SEM for identification of water repellent coating surface, and tensiometer for measurement of water repellent contact angle. The FTIR spectra confirm the reaction of the water-repellent formation. The water repellent product was applied by spraying or dip coating on the automotive window surface. This study shows that the best ethanol composition is 91% and the best contact angle of synthesized water repellent material is 149,46°. This contact angle is higher than that of a commercial product, which shows it as a property of the superhydrophobic material. Water repellency properties increase as the composition of trichloromethylsilane increases. It shows that the increasing of trichloromethylsilane composition can also increase methyltrihydroxysilane formation. However, glass surface becomes opaque as the composition of trichloromethylsilane increase because methyltrihydroxysilane will create the Si-O-Si layer that has a white color. The addition of nanomaterial also increases the surface roughness, but a binder is required to bind nanomaterial to the water-repellent layer. For an application, dip coating has better water repellency than spraying. This is because dip coating method creates more homogenous nanomaterial precipitation on the surface. On the other hand, the level of transparency is worse. Therefore, the water repellent of trichloromethylsilane is recommended for applications that do not need clarity such bathroom glass wall.
Kujawa, Joanna; Al-Gharabli, Samer; Kujawski, Wojciech; Knozowska, Katarzyna
2017-02-22
Four main tasks were presented: (i) ceramic membrane functionalization (TiO 2 5 kDa and 300 kDa), (ii) extended material characterization (physicochemistry and tribology) of pristine and modified ceramic samples, (iii) evaluation of chemical and mechanical stability, and finally (iv) assessment of membrane efficiency in vacuum membrane distillation applied for volatile organic compounds (VOCs) removal from water. Highly efficient molecular grafting with four types of perfluoroalkylsilanes and one nonfluorinated agent was developed. Materials with controllable tribological and physicochemical properties were achieved. The most meaningful finding is associated with the applicability of fluorinated and nonfluorinated grafting agents. The results of contact angle, hysteresis of contact angle, sliding angle, and critical surface tension as well as Young's modulus, nanohardness, and adhesion force for grafting by these two modifiers are comparable. This provides insight into the potential applicability of environmental friendly hydrophobic and superhydrophobic surfaces. The achieved hydrophobic membranes were very effective in the removal of VOCs (butanol, methyl-tert-butyl ether, and ethyl acetate) from binary aqueous solutions in vacuum membrane distillation. The correlation between membrane effectiveness and separated solvent polarity was compared in terms of material properties and resistance to the wetting (kinetics of wetting and in-depth liquid penetration). Material properties were interpreted considering Zisman theory and using Kao diagram. The significant influence of surface chemistry on the membrane performance was noticed (5 kDa, influence of hydrophobic nanolayer and separation controlled by solution-diffusion model; 300 kDa, no impact of surface chemistry and separation controlled by liquid-vapor equilibrium).
Ullmann-like reactions for the synthesis of complex two-dimensional materials
NASA Astrophysics Data System (ADS)
Quardokus, Rebecca C.; Tewary, V. K.; DelRio, Frank W.
2016-11-01
Engineering two-dimensional materials through surface-confined synthetic techniques is a promising avenue for designing new materials with tailored properties. Developing and understanding reaction mechanisms for surface-confined synthesis of two-dimensional materials requires atomic-level characterization and chemical analysis. Beggan et al (2015 Nanotechnology 26 365602) used scanning tunneling microscopy and x-ray photoelectron spectroscopy to elucidate the formation mechanism of surface-confined Ullmann-like coupling of thiophene substituted porphyrins on Ag(111). Upon surface deposition, bromine is dissociated and the porphyrins couple with surface adatoms to create linear strands and hexagonally packed molecules. Annealing the sample results in covalently-bonded networks of thienylporphyrin derivatives. A deeper understanding of surface-confined Ullmann-like coupling has the potential to lead to precision-engineered nano-structures through synthetic techniques. Contribution of the National Institute of Standards and Technology, not subject to copyright in the United States of America.
Structural transformation in monolayer materials: a 2D to 1D transformation.
Momeni, Kasra; Attariani, Hamed; LeSar, Richard A
2016-07-20
Reducing the dimensions of materials to atomic scales results in a large portion of atoms being at or near the surface, with lower bond order and thus higher energy. At such scales, reduction of the surface energy and surface stresses can be the driving force for the formation of new low-dimensional nanostructures, and may be exhibited through surface relaxation and/or surface reconstruction, which can be utilized for tailoring the properties and phase transformation of nanomaterials without applying any external load. Here we used atomistic simulations and revealed an intrinsic structural transformation in monolayer materials that lowers their dimension from 2D nanosheets to 1D nanostructures to reduce their surface and elastic energies. Experimental evidence of such transformation has also been revealed for one of the predicted nanostructures. Such transformation plays an important role in bi-/multi-layer 2D materials.
Thermal Infrared Spectral Band Detection Limits for Unidentified Surface Materials
NASA Technical Reports Server (NTRS)
Kirkland, Laurel E.; Herr, Kenneth C.; Salisbury, John W.
2001-01-01
Infrared emission spectra recorded by airborne or satellite spectrometers can be searched for spectral features to determine the composition of rocks on planetary surfaces. Surface materials are identified by detections of characteristic spectral bands. We show how to define whether to accept an observed spectral feature as a detection when the target material is unknown. We also use remotely sensed spectra measured by the Thermal Emission Spectrometer (TES) and the Spatially Enhanced Broadband Array Spectrograph System to illustrate the importance of instrument parameters and surface properties on band detection limits and how the variation in signal-to-noise ratio with wavelength affects the bands that are most detectable for a given instrument. The spectrometer's sampling interval, spectral resolution, signal-to-noise ratio as a function of wavelength, and the sample's surface properties influence whether the instrument can detect a spectral feature exhibited by a material. As an example, in the 6-13 micrometer wavelength region, massive carbonates exhibit two bands: a very strong, broad feature at approximately 6.5 micrometers and a less intense, sharper band at approximately 11.25 micrometers. Although the 6.5-micrometer band is stronger and broader in laboratory-measured spectra, the 11.25-micrometer band will cause a more detectable feature in TES spectra.
2010-04-14
assembly of new materials with magnetic, optical , and photonic properties, self-replicating colloidal structures, and sensors. (a) Papers published in...Nanostructures: New Properties Driving New Synthetic Opportunities” This talk explored optical properties of assemblies of structured colloids. - I...including experts on optical and photonic materials, numerical simulation, multiphase fluid flows, biomaterials, bacteriology, tribology
NASA Technical Reports Server (NTRS)
Sherwood, Peter M. A.; Lease, Kevin B.; Locke, James E.; Tomblin, John S.; Wang, Youqi
1996-01-01
Carbon fiber reinforced composites are materials where carbon fibers are used to reinforce a matrix to produce a light and strong material with important applications in the aerospace industry. There are many aspects of the preparation of these materials that would benefit from a study which combines the research of groups involved in the production, testing and analysis of these materials, and studies of the basic surface chemistry involved. This final reports presents the results of a project that has developed a collaboration between groups in all three of the major research universities in the State of Kansas, and promises to lead to a collaborative program that covers the major aspects of composite development and application. Sherwood has provided initial fiber surface treatment and sizing together with fiber and composite surface analysis; Lease, Tomblin and Wang have worked together toward the goal of preparing pre-preg and fabrication of laminated panels; Locke has developed computational models to evaluate the effect of surface treatment (and chemistry) on mechanical properties; Lease, Tomblin and Wang have worked together to perform all necessary mechanical testing. The research has been focused on materials that would benefit the High Speed Civil Transport (HSCT) program. The group has visited Dr. Howard Maars and his colleagues at NASA Langley, and has focused their studies on the NASA requirements discussed in this meeting. An important development, requested by NASA scientists, has been the acquisition and study of K3B as a matrix material for the composites. The project has led to the successful acquisition and surface analysis of K3B, together with the successful deposition of this material onto surface oxidized carbon fibers. Mechanical testing, modelling and the construction of composite preparation equipment has been achieved during the grant period.
Material scientific approach to predict nano materials risk of adverse health effects
NASA Astrophysics Data System (ADS)
Matsui, Yasuto; Miyaoi, Kenichi; Hayashi, Takeshi; Yamaguchi, Yukio
2009-05-01
To estimate the potential risk of nano materials, correlations were investigated between material properties and various biomarkers indicating adverse effects on humans. Nano materials have a variety of properties such as solubility, iso-electric point, crystal shape, BET specific surface area and so on. The purpose of our work was to predict relationships between material properties and hazard data by undertaking statistical survey of eleven papers arguing cell viability assays. The reviewed papers associate cytotoxicity (i) mainly with particle volume and (ii) a certain degree with particle solubility, with relatively large variability of toxicological responses. At present nanomaterials are often very broadly named, defined and categorized based upon only their chief chemical composition or product shape - e.g., "titanium," "carbon black," "nano tubes," etc. Such rough, imprecise categorization serves little or no useful purpose when attempting risk assessments for every nano material produced differently, since even materials with the same name can possess different properties and consequently different degrees of hazards.
Effect of mechanical properties on erosion resistance of ductile materials
NASA Astrophysics Data System (ADS)
Levin, Boris Feliksovih
Solid particle erosion (SPE) resistance of ductile Fe, Ni, and Co-based alloys as well as commercially pure Ni and Cu was studied. A model for SPE behavior of ductile materials is presented. The model incorporates the mechanical properties of the materials at the deformation conditions associated with SPE process, as well as the evolution of these properties during the erosion induced deformation. An erosion parameter was formulated based on consideration of the energy loss during erosion, and incorporates the material's hardness and toughness at high strain rates. The erosion model predicts that materials combining high hardness and toughness can exhibit good erosion resistance. To measure mechanical properties of materials, high strain rate compression tests using Hopkinson bar technique were conducted at strain rates similar to those during erosion. From these tests, failure strength and strain during erosion were estimated and used to calculate toughness of the materials. The proposed erosion parameter shows good correlation with experimentally measured erosion rates for all tested materials. To analyze subsurface deformation during erosion, microhardness and nanoindentation tests were performed on the cross-sections of the eroded materials and the size of the plastically deformed zone and the increase in materials hardness due to erosion were determined. A nanoindentation method was developed to estimate the restitution coefficient within plastically deformed regions of the eroded samples which provides a measure of the rebounding ability of a material during particle impact. An increase in hardness near the eroded surface led to an increase in restitution coefficient. Also, the stress rates imposed below the eroded surface were comparable to those measured during high strain-rate compression tests (10sp3-10sp4 ssp{-1}). A new parameter, "area under the microhardness curve" was developed that represents the ability of a material to absorb impact energy. By incorporating this parameter into a new erosion model, good correlation was observed with experimentally measured erosion rates. An increase in area under the microhardness curve led to an increase in erosion resistance. It was shown that an increase in hardness below the eroded surface occurs mainly due to the strain-rate hardening effect. Strain-rate sensitivities of tested materials were estimated from the nanoindentation tests and showed a decrease with an increase in materials hardness. Also, materials combining high hardness and strain-rate sensitivity may offer good erosion resistance. A methodology is presented to determine the proper mechanical properties to incorporate into the erosion parameter based on the physical model of the erosion mechanism in ductile materials.
NASA Astrophysics Data System (ADS)
Paredes, Virginia; Salvagni, Emiliano; Rodríguez-Castellón, Enrique; Manero, José María
2017-08-01
Metals are widely employed for many biological artificial replacements, and it is known that the quality and the physical/chemical properties of the surface are crucial for the success of the implant. Therefore, control over surface implant materials and their elastic moduli may be crucial to avoid undesired effects. In this study, surface modification upon cleaning and activation of a low elastic modulus Ti alloy (Ti25Hf21Nb) was investigated. Two different methods, oxygen plasma (OP) cleaning and piranha (PI) solution, were studied and compared. Both surface treatments were effective for organic contaminant removal and to increase the Ti-oxide layer thickness rather than other metal-oxides present at the surface, which is beneficial for biocompatibility of the material. Furthermore, both techniques drastically increased hydrophilicity and introduced oxidation and hydroxylation (OH)-functional groups at the surface that may be beneficial for further chemical modifications. However, these treatments did not alter the surface roughness and bulk material properties. The surfaces were fully characterized in terms of surface roughness, wettability, oxide layer composition, and hydroxyl surface density through analytical techniques (interferometry, X-ray photoelectron spectroscopy (XPS), contact angle, and zinc complexation). These findings provide essential information when planning surface modifications for cleanliness, oxide layer thickness, and surface hydroxyl density, as control over these factors is essential for many applications, especially in biomaterials.
Multiscale Modeling of Advanced Materials for Damage Prediction and Structural Health Monitoring
2015-05-01
Viscoplasticity Model ................................................. 71 4.1. PZT (APC 850) Orthotropic Properties...surface-mounted lead zirconate titanate ( PZT ) transducer using a coupled FEM-normal mode expansion method. Other researchers have also utilized the...orthotropic material properties of the PZT piezoelectric actuators and sensors are presented in Table 4.1. A 5 cycle cosine tone burst signal, seen in
NASA Astrophysics Data System (ADS)
Xiong, Yuting; Jiang, Ge; Li, Minmin; Qing, Guangyan; Li, Xiuling; Liang, Xinmiao; Sun, Taolei
2017-01-01
Biological systems that utilize multiple weak non-covalent interactions and hierarchical assemblies to achieve various bio-functions bring much inspiration for the design of artificial biomaterials. However, it remains a big challenge to correlate underlying biomolecule interactions with macroscopic level of materials, for example, recognizing such weak interaction, further transforming it into regulating material’s macroscopic property and contributing to some new bio-applications. Here we designed a novel smart polymer based on polyacrylamide (PAM) grafted with lactose units (PAM-g-lactose0.11), and reported carbohydrate-carbohydrate interaction (CCI)-promoted macroscopic properties switching on this smart polymer surface. Detailed investigations indicated that the binding of sialic acid molecules with the grafted lactose units via the CCIs induced conformational transformation of the polymer chains, further resulted in remarkable and reversible switching in surface topography, wettability and stiffness. With these excellent recognition and response capacities towards sialic acid, the PAM-g-lactose0.11 further facilitated good selectivity, strong anti-interference and high adsorption capacity in the capture of sialylated glycopeptides (important biomarkers for cancers). This work provides some enlightenment for the development of biointerface materials with tunable property, as well as high-performance glycopeptide enrichment materials.
NASA Astrophysics Data System (ADS)
Rusinov, P. O.; Blednova, Zh M.; Borovets, O. I.
2017-05-01
The authors studied a complex method of surface modification of steels for materials with shape memory effect (SME) Ti-Ni-Zr with a high-velocity oxygen-fuel spraying (HVOF) of mechanically activated (MA) powder in a protective medium. We assessed the functional properties and X-ray diffraction studies, which showed that the formation of surface layers according to the developed technology ensures the manifestation of the shape memory effect.
Ab Initio Studies of Metal Hexaboride Materials
NASA Astrophysics Data System (ADS)
Schmidt, Kevin M.
Metal hexaborides are refractory ceramics with several qualities relevant to materials design, such as low work functions, high hardness, low thermal expansion coefficients, and high melting points, among many other properties of interest for industrial applications. Thermal and mechanical stability is a common feature provided by the covalently-bonded network boron atoms, and electronic properties can vary significantly with the resident metal. While these materials are currently employed as electron emitters and abrasives, promising uses of these materials also include catalytic applications for chemical dissociation reactions of various molecules such as hydrogen, water and carbon monoxide, for example. However, these extensions require a thorough understanding of particular mechanical and electronic properties. This dissertation is a collection of studies focused on understanding the behavior of metal hexaboride materials using computational modeling methods to investigate materials properties of these from both classical and quantum mechanical points of view. Classical modeling is performed using molecular dynamics methods with interatomic potentials obtained from density functional theory (DFT) calculations. Atomic mean-square displacements from the quasi-harmonic approximation and lattice energetic data are produced with DFT for developing the potentials. A generalized method was also developed for the inversion of cohesive energy curves of crystalline materials; pairwise interatomic potentials are extracted using detailed geometrical descriptions of the atomic interactions and a list of atomic displacements and degeneracies. The surface structure of metal hexaborides is studied with DFT using several model geometries to describe the terminal cation layouts, and these provide a basis for further studies on metal hexaboride interactions with hydrogen. The surface electronic structure calculations show that segregated regions of metal and boron-terminations produce the lowest energies for di-cations of CaB6, SrB6 and BaB6, while tri-valent LaB6 minimizes its surface energy by arranging the metal ions in parallel rows on the surface. Studies involving hydrogen suggest that a single molecule per surface unit-cell is possible, and evidence is given for a dissociative adsorption pathway. Ternary mixtures of metal hexaborides containing two alkaline-earth cations in each crystal are also investigated with electronic structure methods. Multiple geometries are used to understand how spatial arrangements of cations within the mixture can affect properties related to stability. Bond-lengths within the boron framework are found to be heavily dependent upon the local cation environment, and energies taken at absolute zero suggest certain stoichiometries naturally lead to phase splitting.
The joint effect of mesoscale and microscale roughness on perceived gloss.
Qi, Lin; Chantler, Mike J; Siebert, J Paul; Dong, Junyu
2015-10-01
Computer simulated stimuli can provide a flexible method for creating artificial scenes in the study of visual perception of material surface properties. Previous work based on this approach reported that the properties of surface roughness and glossiness are mutually interdependent and therefore, perception of one affects the perception of the other. In this case roughness was limited to a surface property termed bumpiness. This paper reports a study into how perceived gloss varies with two model parameters related to surface roughness in computer simulations: the mesoscale roughness parameter in a surface geometry model and the microscale roughness parameter in a surface reflectance model. We used a real-world environment map to provide complex illumination and a physically-based path tracer for rendering the stimuli. Eight observers took part in a 2AFC experiment, and the results were tested against conjoint measurement models. We found that although both of the above roughness parameters significantly affect perceived gloss, the additive model does not adequately describe their mutually interactive and nonlinear influence, which is at variance with previous findings. We investigated five image properties used to quantify specular highlights, and found that perceived gloss is well predicted using a linear model. Our findings provide computational support to the 'statistical appearance models' proposed recently for material perception. Copyright © 2015 Elsevier Ltd. All rights reserved.
Surface Catalysis and Characterization of Proposed Candidate TPS for Access-to-Space Vehicles
NASA Technical Reports Server (NTRS)
Stewart, David A.
1997-01-01
Surface properties have been obtained on several classes of thermal protection systems (TPS) using data from both side-arm-reactor and arc-jet facilities. Thermochemical stability, optical properties, and coefficients for atom recombination were determined for candidate TPS proposed for single-stage-to-orbit vehicles. The systems included rigid fibrous insulations, blankets, reinforced carbon carbon, and metals. Test techniques, theories used to define arc-jet and side-arm-reactor flow, and material surface properties are described. Total hemispherical emittance and atom recombination coefficients for each candidate TPS are summarized in the form of polynomial and Arrhenius expressions.
Tuning and predicting the wetting of nanoengineered material surface
NASA Astrophysics Data System (ADS)
Ramiasa-MacGregor, M.; Mierczynska, A.; Sedev, R.; Vasilev, K.
2016-02-01
The wetting of a material can be tuned by changing the roughness on its surface. Recent advances in the field of nanotechnology open exciting opportunities to control macroscopic wetting behaviour. Yet, the benchmark theories used to describe the wettability of macroscopically rough surfaces fail to fully describe the wetting behaviour of systems with topographical features at the nanoscale. To shed light on the events occurring at the nanoscale we have utilised model gradient substrata where surface nanotopography was tailored in a controlled and robust manner. The intrinsic wettability of the coatings was varied from hydrophilic to hydrophobic. The measured water contact angle could not be described by the classical theories. We developed an empirical model that effectively captures the experimental data, and further enables us to predict the wetting of surfaces with nanoscale roughness by considering the physical and chemical properties of the material. The fundamental insights presented here are important for the rational design of advanced materials having tailored surface nanotopography with predictable wettability.The wetting of a material can be tuned by changing the roughness on its surface. Recent advances in the field of nanotechnology open exciting opportunities to control macroscopic wetting behaviour. Yet, the benchmark theories used to describe the wettability of macroscopically rough surfaces fail to fully describe the wetting behaviour of systems with topographical features at the nanoscale. To shed light on the events occurring at the nanoscale we have utilised model gradient substrata where surface nanotopography was tailored in a controlled and robust manner. The intrinsic wettability of the coatings was varied from hydrophilic to hydrophobic. The measured water contact angle could not be described by the classical theories. We developed an empirical model that effectively captures the experimental data, and further enables us to predict the wetting of surfaces with nanoscale roughness by considering the physical and chemical properties of the material. The fundamental insights presented here are important for the rational design of advanced materials having tailored surface nanotopography with predictable wettability. Electronic supplementary information (ESI) available: Detailed characterization of the nanorough substrates and model derivation. See DOI: 10.1039/c5nr08329j
Computational Exploration of the Surface Properties of Cs2Te5 Photoemissive Material
NASA Astrophysics Data System (ADS)
Ruth, Anthony; Nemeth, Karoly; Harkay, Katherine; Spentzouris, Linda; Terry, Jeff
2013-03-01
Cs2Te is a broadly used photoemissive material due to its exceptionally high quantum efficiency (~ 20%). Our group has recently predicted that the acetylation of this material (Cs2TeC2) would lower its workfunction down to about 2.4 eV from ~ 3 eV, and preserve its high quantum efficiency. Such a modification is advantageous because visible light can be used in the operation of such a photoemissive device instead of ultraviolet light. To explore other variants of Cs2Te, we conducted DFT-based computational analysis of the photoemissive properties of Cs2Te5 which is a known phase of Cs and Te. Cs2Te5 attracted our attention for its rod-like 1D Te substructures embedded in a Cs matrix. This structure is similar to Cs2TeC2 as Cs2TeC2 contains TeC2 polymeric rods in a Cs matrix. In addition to that, exploration of various Cesium Telluride phases is necessary to better understand the working of Cs2Te photocathodes. We have calculated surface energies, workfunctions, and optical absorption spectra of several different surfaces of Cs2Te5. A comparison of the properties of various Cs2Te5 surfaces and their utilization in photoemissive devices will be presented.
Polydimethyl siloxane based nanocomposites with antibiofilm properties for biomedical applications.
Sankar, G Gomathi; Murthy, P Sriyutha; Das, Arindam; Sathya, S; Nankar, Rakesh; Venugopalan, V P; Doble, Mukesh
2017-07-01
Polydimethyl siloxane (PDMS) is an excellent implant material for biomedical applications, but often fails as it is prone to microbial colonization which forms biofilms. In the present study CuO, CTAB capped CuO, and ZnO nanoparticles were tested as nanofillers to enhance the antibiofilm property of PDMS against Staphylococcus aureus and Escherichia coli. In general S. aurues (Gram positive and more hydrophobic) favor PDMS surface than glass while E. coli (Gram negative and more hydrophilic) behaves in a reverse way. Incorporation of nanofillers renders the PDMS surface antibacterial and reduces the attachment of both bacteria. These surfaces are also not cytotoxic nor show any cell damage. Contact angle of the material and the cell surface hydrophobicity influenced the extent of bacterial attachment. Cell viability in biofilms was dependent on the antimicrobial property of the nanoparticles incorporated in the PDMS matrix. Simple regression relationships were able to predict the bacterial attachment and number of dead cells on these nanocomposites. Among the nanocomposites tested, PDMS incorporated with CTAB (cetyl trimethylammonium bromide)-capped CuO appears to be the best antibacterial material with good cyto-compatibility. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1075-1082, 2017. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zada, Imran; Zhang, Wang; Sun, Peng; Imtiaz, Muhammad; Abbas, Waseem; Zhang, Di
2017-10-01
Inspired by the multifunctional properties of cicada wings, we have precisely replicated biomorphic SiO2 with antireflective structures (ARSs) using a simple, inexpensive, and highly effective sol-gel ultrasonic method. The biomorphic replica of SiO2 was directly achieved from a cicada template at high calcination. The biomorphic SiO2 not only inherited the ARS effectively but also exhibited the excellent angle dependent antireflective properties over a wide range of incident angles (10°-60°). The change in reflectance spectra (visible wavelength) of biomorphic SiO2 was observed from 0.3% to 3.3% with the increasing incident angles. The smooth surface of the SiO2 crystal without nanostructures showed a high reflection of 9.2% compared to the biomorphic SiO2 with ARS. These excellent antireflective properties of biomorphic SiO2 can be attributed to the nanoscale structures which introduce a gradient in the refractive index between air and the material surface via ARS. In the meantime, biomorphic SiO2 demonstrates high hydrophilic properties due to the existence of nanostructures on its surface. These multifunctional properties of biomorphic SiO2, angle dependent antireflective properties, and hydrophilicity with high thermal stability may have potential applications in solar cells and antifogging optical materials.
Uniform refraction in negative refractive index materials.
Gutiérrez, Cristian E; Stachura, Eric
2015-11-01
We study the problem of constructing an optical surface separating two homogeneous, isotropic media, one of which has a negative refractive index. In doing so, we develop a vector form of Snell's law, which is used to study surfaces possessing a certain uniform refraction property, in both the near- and far-field cases. In the near-field problem, unlike the case when both materials have positive refractive indices, we show that the resulting surfaces can be neither convex nor concave.
Magnetic and electrical properties of Martian particles
NASA Technical Reports Server (NTRS)
Olhoeft, G. R.
1991-01-01
The only determinations of the magnetic properties of Martian materials come from experiments on the two Viking Landers. The results suggest Martian soil containing 1 to 10 percent of a highly magnetic phase. Though the magnetic phase mineral was not conclusively identified, the predominate interpretation is that the magnetic phase is probably maghemite. The electrical properties of the surface of Mars were only measured remotely by observations with Earth based radar, microwave radiometry, and inference from radio-occultation of Mars orbiting spacecraft. No direct measurements of electrical properties on Martian materials have been performed.
NASA Astrophysics Data System (ADS)
Emre, Seker; Mehmet, Ali Kilicarslan; Serdar, Polat; Emre, Ozkir; Suat, Pat
2016-04-01
This study aimed to evaluate the surface roughness and wetting properties of various dental prosthetic materials after different durations of non-thermal atmospheric plasma (NTAP) treatment. One hundred and sixty discs of titanium (Ti) (n:40), cobalt chromium (Co-Cr) (n:40), yttrium stabilized tetragonal zirconia polycrystals (Y-TZP) (n:40) and polymethylmethacrylate (PMMA) (n:40) materials were machined and smoothed with silicon carbide papers. The surface roughness was evaluated in a control group and in groups with different plasma exposure times [1-3-5 s]. The average surface roughness (Ra) and contact angle (CA) measurements were recorded via an atomic force microscope (AFM) and tensiometer, respectively. Surface changes were examined with a scanning electron microscope (SEM). Data were analyzed with two-way analysis of variance (ANOVA) and the Tukey HSD test α=0.05). According to the results, the NTAP surface treatment significantly affected the roughness and wettability properties (P < 0.05). SEM images reveal that more grooves were present in the NTAP groups. With an increase in the NTAP application time, an apparent increment was observed for Ra, except in the PMMA group, and a remarkable reduction in CA was observed in all groups. It is concluded that the NTAP technology could enhance the roughening and wetting performance of various dental materials. supported by the Department of Scientific Research, Eskisehir Osmangazi University, Turkey (No. 201441045)
Effect of surface moisture on dielectric behavior of ultrafine BaTiO3 particulates.
NASA Technical Reports Server (NTRS)
Mountvala, A. J.
1971-01-01
The effects of adsorbed H2O on the dielectric properties of ultrafine BaTiO3 particulates of varying particle size and environmental history were determined. The dielectric behavior depends strongly on surface hydration. No particle size dependence of dielectric constant was found for dehydroxylated surfaces in ultrafine particulate (unsintered) BaTiO3 materials. For equivalent particle sizes, the ac conductivity is sensitive to surface morphology. Reactions with H2O vapor appear to account for the variations in dielectric properties. Surface dehydration was effectively accomplished by washing as-received powders in isopropanol.
Tribological properties of surfaces
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1978-01-01
The real area of contact between two solid surfaces is only a small portion of the apparent area. Deformation of these areas can result in solid state contact through surface films. For clean solid to solid contact strong adhesive bonding occurs across the interface. Under these conditions many properties of the solid such as the metallurgical and chemical nature of metals can influence adhesion, friction, and wear behavior. The presence of gases, liquids, and solid films on the surface of solids alter markedly tribological characteristics. These surface films can also considerably change the mechanical effects of solid state contact on bulk material behavior.
Ion-plasma protective coatings for gas-turbine engine blades
NASA Astrophysics Data System (ADS)
Kablov, E. N.; Muboyadzhyan, S. A.; Budinovskii, S. A.; Lutsenko, A. N.
2007-10-01
Evaporated, diffusion, and evaporation—diffusion protective and hardening multicomponent ionplasma coatings for turbine and compressor blades and other gas-turbine engine parts are considered. The processes of ion surface treatment (ion etching and ion saturation of a surface in the metallic plasma of a vacuum arc) and commercial equipment for the deposition of coatings and ion surface treatment are analyzed. The specific features of the ion-plasma coatings deposited from the metallic plasma of a vacuum arc are described, and the effect of the ion energy on the phase composition of the coatings and the processes occurring in the surface layer of an article to be treated are discussed. Some properties of ion-plasma coatings designed for various purposes are presented. The ion surface saturation of articles made from structural materials is shown to change the structural and phase states of their surfaces and, correspondingly, the related properties of these materials (i.e., their heat resistance, corrosion resistance, fatigue strength, and so on).
Shrink-Induced Superhydrophobic and Antibacterial Surfaces in Consumer Plastics
Freschauf, Lauren R.; McLane, Jolie; Sharma, Himanshu; Khine, Michelle
2012-01-01
Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this study, we present a rapid fabrication method for creating such superhydrophobic surfaces in consumer hard plastic materials with resulting antibacterial effects. To replace complex fabrication materials and techniques, the initial mold is made with commodity shrink-wrap film and is compatible with large plastic roll-to-roll manufacturing and scale-up techniques. This method involves a purely structural modification free of chemical additives leading to its inherent consistency over time and successive recasting from the same molds. Finally, antibacterial properties are demonstrated in polystyrene (PS), polycarbonate (PC), and polyethylene (PE) by demonstrating the prevention of gram-negative Escherichia coli (E. coli) bacteria growth on our structured plastic surfaces. PMID:22916100
Investigation of Oxidation Profile in PMR-15 Polyimide using Atomic Microscope (AFM)
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Johnson, Lili L.; Eby, R. K.
2002-01-01
Nanoindentation measurements are made on thermosetting materials using cantiever deflection vs. piezoelectric scanner position behavior determined by AFM. The spring model is used to determine mechanical properties of materials. The generalized Sneddon's equation is utilized to calculate Young's moduli for thermosetting materials at ambient conditions. Our investigations show that the force-penetration depth curves during unloading in these materials can be described accurately by a power law relationship. The results show that the accuracy of the measurements can be controlled within 7%. The above method is used to study oxidation profiles in Pl\\1R-15 polyimide. The thermo-mechanical profiles ofPNIR-15 indicate that the elastic modulus at the surface portion of the specimen is different from that at the interior of the material. It is also shown that there are two zones within the oxidized portion of the samples. Results confirm that the surface layer and the core material have substantially different properties.
Development of Tailorable Electrically Conductive Thermal Control Material Systems
NASA Technical Reports Server (NTRS)
Deshpande, M. S.; Harada, Y.
1997-01-01
The optical characteristics of surfaces on spacecraft are fundamental parameters in controlling its temperature. Passive thermal control coatings with designed solar absorptance and infrared emittance properties have been developed and have been in use for some time. In this total space environment, the coating must be stable and maintain its desired optical properties as well as mechanical properties for the course of the mission lifetime. The mission lifetimes are increasing and in our quest to save weight, newer substrates are being integrated which limit electrical grounding schemes. All of this has added to already existing concerns about spacecraft charging and related spacecraft failures or operational failures. The concern is even greater for thermal control surfaces that are very large. One way of alleviating such concerns is to design new thermal control material systems (TCMS) that can help to mitigate charging via providing charge leakage paths. The objective of this program was to develop two types of passive electrically conductive TCMS. The first was a highly absorbing/emitting black surface and the second was a low (alpha(sub s)/epsilon(sub N)) type white surface. The surface resistance goals for the black absorber was 10(exp 4) to 10(exp 9) Omega/square, and for the white surfaces it was 10(exp 6) to 10(exp 10) Omega/square. Several material system concepts were suggested and evaluated for space environment stability and electrical performance characterization. Our efforts in designing and evaluating these material systems have resulted in several developments. New concepts, pigments and binders have been developed to provide new engineering quality TCMS. Some of these have already found application on space hardware, some are waiting to be recognized by thermal designers, and some require further detailed studies to become state-of-the-art for future space hardware and space structures. Our studies on baseline state-of-the-art materials and conductive concepts have resulted in several important findings that are of interest to all thermal designers and systems integrators.
The energetics of adhesion in composite materials
NASA Astrophysics Data System (ADS)
Harding, Philip Hiram
Composite materials are used throughout modern society, and often the most important parameter in determining their properties is the adhesion at material interfaces within the composite. A broad investigation is completed, the global objective of which is to develop understanding of the role of adhesion in composite materials. The scope of this study ranges from macroscopic effects of adhesion on filled polymer composites to microscopic adhesion measurements with engineered interfaces. The surface of a filler material is systematically modified and surface characterization techniques are used to quantify the influence of the surface treatments on surface energetics and wetting properties. Filled polymer composites are prepared and composite mechanical properties determined with beam deflection tests. Filler surface treatments significantly alter the composite yield stress for composites which fail interfacially and are observed to increase or decrease mechanical strength, depending on the chemical nature of the modification. Thermodynamic adhesion mechanisms active at the filler-matrix interfaces are then explored by making direct interfacial strength measurements whereby a single spherical particle is introduced into the polymeric matrix. Interfacial strength is determined by submitting the single-particle composite (SPC) to uni-axial tension and relating the macroscopic stress at interfacial failure to that experienced at the interface. The technique provides a measurement of interfacial strength between two elastic materials, one unaffected by frictional forces, viscoelasticity, and thermal stresses. The SPC measurements are used to verify proposed adhesion mechanisms at the various filler-polymer interfaces and establish the role of adhesion in the filled polymer composites. The SPC technique is then used to investigate the adhesion promotion mechanism of organofunctional silanes, which are shown to be controlled by the compatibility and penetration of the silane organofunctional group. The effects of thermal residual stresses on interfacial strength are also investigated using the SPC technique. Processing conditions, i.e., time-temperature profiles, are used to systematically vary the thermal residual stresses within the polymeric matrix. The interfaces studied are deleteriously affected by increases in thermal residual stresses.
Brzeska, Joanna; Morawska, Magda; Heimowska, Aleksandra; Sikorska, Wanda; Wałach, Wojciech; Hercog, Anna; Kowalczuk, Marek; Rutkowska, Maria
2018-01-01
The surface morphology and thermal properties of polyurethanes can be correlated to their chemical composition. The hydrophilicity, surface morphology, and thermal properties of polyurethanes (differed in soft segments and in linear/cross-linked structure) were investigated. The influence of poly([ R , S ]-3-hydroxybutyrate) presence in soft segments and blending of polyurethane with polylactide on surface topography were also estimated. The linear polyurethanes (partially crystalline) had the granular surface, whereas the surface of cross-linked polyurethanes (almost amorphous) was smooth. Round aggregates of polylactide un-uniformly distributed in matrix of polyurethane were clearly visible. It was concluded that some modification of soft segment (by mixing of poly([ R , S ]-3-hydroxybutyrate) with different polydiols and polytriol) and blending of polyurethanes with small amount of polylactide influence on crystallinity and surface topography of obtained polyurethanes.
Surface modification induced by UV nanosecond Nd:YVO4 laser structuring on biometals
NASA Astrophysics Data System (ADS)
Fiorucci, M. Paula; López, Ana J.; Ramil, Alberto
2014-08-01
Laser surface texturing is a promising tool for improving metallic biomaterials performance in dental and orthopedic bone-replacing applications. Laser ablation modifies the topography of bulk material and might alter surface properties that govern the interactions with the surrounding tissue. This paper presents a preliminary evaluation of surface modifications in two biometals, stainless steel 316L and titanium alloy Ti6Al4V by UV nanosecond Nd:YVO4. Scanning electron microscopy of the surface textured by parallel micro-grooves reveals a thin layer of remelted material along the grooves topography. Furthermore, X-ray diffraction allowed us to appreciate a grain refinement of original crystal structure and consequently induced residual strain. Changes in the surface chemistry were determined by means of X-ray photoelectron spectroscopy; in this sense, generalized surface oxidation was observed and characterization of the oxides and other compounds such hydroxyl groups was reported. In case of titanium alloy, oxide layer mainly composed by TiO2 which is a highly biocompatible compound was identified. Furthermore, laser treatment produces an increase in oxide thickness that could improve the corrosion behavior of the metal. Otherwise, laser treatment led to the formation of secondary phases which might be detrimental to physical and biocompatibility properties of the material.
Polylactide-based bionanocomposites: a promising class of hybrid materials.
Sinha Ray, Suprakas
2012-10-16
Polylactide (PLA) is the oldest and potentially one of the most interesting and useful biodegradable man-made polymers because of its renewable origin, controlled synthesis, good mechanical properties, and inherent biocompatibility. The blending of PLA with functional nanoparticles can yield a new class of hybrid materials, commonly known as bionanocomposites, where 1-5% nanoparticles by volume are molecularly dispersed within the PLA matrix. The dispersed nanoparticles with their large surface areas and low percolation thresholds both can improve the properties significantly in comparison with neat PLA and can introduce new value-added properties. Recently, researchers have made extraordinary progress in the practical processing and development of products from PLA bionanocomposites. The variation of the nanofillers with different functionalities can lead to many bionanocomposite applications including environmentally friendly packaging, materials for construction, automobiles, and tissue regeneration, and load-bearing scaffolds for bone reconstruction. This Account focuses on these recent research efforts, processing techniques, and key research challenges in the development of PLA-based bionanocomposites for use in applications from green plastics to biomedical applications. Growing concerns over environmental issues and high demand for advanced polymeric materials with balanced properties have led to the development of bionanocomposites of PLA and natural origin fillers, such as nanoclays. The combination of nanoclays with the PLA matrix allows us to develop green nanocomposites that possess several superior properties. For example, adding ∼5 vol % clay to PLA improved the storage modulus, tensile strength, break elongation, crystallization rate, and other mechanical properties. More importantly, the addition of clay decreases the gas and water vapor permeation, increases the heat distortion temperature and scratch resistance, and controls the biodegradation of the PLA matrix. In biomedicine, researchers have employed the design rules found in nature to fabricate PLA-based bionanocomposites. The incorporation of functional nanoparticles in the PLA matrix has improved the physical properties and changed the surface characteristics of the matrix that are important for tissue engineering and artificial bone reconstruction, such as its thermal and electrical conductivity, surface roughness, and wettability. Finally, of the introduction of bionanocomposite biocompatible surfaces on drugs, such as antibiotics, could produce delivery systems that act locally.
Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications
NASA Astrophysics Data System (ADS)
Heinz, Hendrik; Pramanik, Chandrani; Heinz, Ozge; Ding, Yifu; Mishra, Ratan K.; Marchon, Delphine; Flatt, Robert J.; Estrela-Lopis, Irina; Llop, Jordi; Moya, Sergio; Ziolo, Ronald F.
2017-02-01
Nanostructures of diverse chemical nature are used as biomarkers, therapeutics, catalysts, and structural reinforcements. The decoration with surfactants has a long history and is essential to introduce specific functions. The definition of surfactants in this review is very broad, following its lexical meaning ;surface active agents;, and therefore includes traditional alkyl modifiers, biological ligands, polymers, and other surface active molecules. The review systematically covers covalent and non-covalent interactions of such surfactants with various types of nanomaterials, including metals, oxides, layered materials, and polymers as well as their applications. The major themes are (i) molecular recognition and noncovalent assembly mechanisms of surfactants on the nanoparticle and nanocrystal surfaces, (ii) covalent grafting techniques and multi-step surface modification, (iii) dispersion properties and surface reactions, (iv) the use of surfactants to influence crystal growth, as well as (v) the incorporation of biorecognition and other material-targeting functionality. For the diverse materials classes, similarities and differences in surfactant assembly, function, as well as materials performance in specific applications are described in a comparative way. Major factors that lead to differentiation are the surface energy, surface chemistry and pH sensitivity, as well as the degree of surface regularity and defects in the nanoparticle cores and in the surfactant shell. The review covers a broad range of surface modifications and applications in biological recognition and therapeutics, sensors, nanomaterials for catalysis, energy conversion and storage, the dispersion properties of nanoparticles in structural composites and cement, as well as purification systems and classical detergents. Design principles for surfactants to optimize the performance of specific nanostructures are discussed. The review concludes with challenges and opportunities.
Yu, Hao; Zhang, Chang-Yuan; Wang, Yi-Ning; Cheng, Hui
2018-03-01
The purpose of this study was to evaluate the influence of study protocols on the effects of bleaching on the surface roughness, substance loss, flexural strength (FS), flexural modulus (FM), Weibull parameters, and color of 7 restorative materials. The test materials included 4 composite resins, 1 glass-ionomer cement, 1 dental ceramic, and 1 polyacid-modified composite. The specimens were randomly divided into 4 groups (n = 20) according to different study protocols: a bleaching group at 25°C (group 25B), a bleaching group at 37°C (group 37B), a control group at 25°C (group 25C), and a control group at 37°C (group 37C). The specimens in the bleaching group were treated with 40% hydrogen peroxide for 80 min at the respective environmental temperatures. The surface roughness, substance loss, FS, FM, and color of the specimens were measured before and after treatment. FS data were also subjected to Weibull analysis, which was used to estimate of the Weibull modulus (m) and the characteristic strength (σ 0 ). Surface roughness increased and significant color changes were observed for all tested specimens after bleaching treatment, except for the ceramic. After bleaching at 37°C, the polyacid-modified composite showed significantly reduced FS, FM, m, and σ 0 values in comparison to the control specimens stored at 37°C in whole saliva. Significant differences were also found between the 37B and 25B polyacid-modified composite groups in terms of surface roughness, FS, m, σ 0 , and color changes. Varying effects of bleaching on the physical properties of dental restorative materials were observed, and the influences of the study protocols on bleaching effects were found to be material-dependent. The influence of study protocols on the effects of bleaching on the surface roughness, flexural properties, and color of dental restorative materials are material-dependent and should be considered when evaluating the effects of bleaching on dental restorative materials. © 2017 Wiley Periodicals, Inc.
Thermophysical Properties of Martian Duricrust Analogs
NASA Astrophysics Data System (ADS)
Murphy, N. W.; Jakosky, B. M.; Mellon, M. T.; Budd, D. A.
2009-03-01
We measured thermophysical properties of samples of terrestrial duricrust from a gypsum deposit in New Mexico and Lunar Lake Playa. Our results suggest that well-indurated materials may cover a significant portion of the Mars surface.
Stable biomimetic super-hydrophobic engineering materials.
Guo, Zhiguang; Zhou, Feng; Hao, Jingcheng; Liu, Weimin
2005-11-16
We describe a simple and inexpensive method to produce super-hydrophobic surfaces on aluminum and its alloy by oxidation and chemical modification. Water or aqueous solutions (pH = 1-14) have contact angles of 168 +/- 2 and 161 +/- 2 degrees on the treated surfaces of Al and Al alloy, respectively. The super-hydrophobic surfaces are produced by the cooperation of binary structures at micro- and nanometer scales, thus reducing the energies of the surfaces. Such super-hydrophobic properties will greatly extend the applications of aluminum and its alloy as lubricating materials.
Surface physics-materials science research possibilities on a lunar base
NASA Astrophysics Data System (ADS)
Ignatiev, A.
1990-03-01
The benefits of experimental investigations are discussed in terms of the vacuum environment and low-gravity conditions which can be made possible by a lunar base. The proposed experiments address the interaction of UV and cosmic radiation with the atomic surfaces and bulk properties of materials, the study of microclusters, and the development of epitaxial films in a lunar environment. The interaction of low- and high-energy charged particles and radiation with materials can potentially be studied to analyze the use of the materials in space.
Corrigan, Damion K; Piletsky, Sergey; McCrossen, Sean
2009-01-01
This article compares the technical performances of several different commercially available swabbing materials for the purpose of cleaning verification. A steel surface was soiled with solutions of acetaminophen, nicotinic acid, diclofenac, and benzamidine and wiped with each swabbing material. The compounds were extracted with water or ethanol (depending on polarity of analyte) and their concentration in extract was quantified spectrophotometrically. The study also investigated swab debris on the wiped surface. The swab performances were compared and the best swab material was identified.
Preparation, characterization and properties of ZnO nanomaterials
NASA Astrophysics Data System (ADS)
Luo, Jiaolian; Zhang, Xiaoming; Chen, Ruxue; Wang, Xiaohui; Zhu, Ji; Wang, Xiaomin
2017-06-01
In this paper, using the hydrothermal synthesis method, NaOH, Zn(NO3)2, anhydrous ethanol, deionized water as raw material to prepare ZnO nanomaterial, and by X ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL) on the synthesis of nano materials, surface morphology and phase luminescence characterization. The results show that the nano materials synthesized for single-phase ZnO, belonging to the six wurtzite structure; material surface shaped, arranged evenly distributed, and were the top six party structure; ZnO nano materials synthesized with strong emission spectra, emission peak is located at 394nm.
Acoustic wave device using plate modes with surface-parallel displacement
Martin, Stephen J.; Ricco, Antonio J.
1992-01-01
Solid-state acoustic sensors for monitoring conditions at a surface immersed in a liquid and for monitoring concentrations of species in a liquid and for monitoring electrical properties of a liquid are formed by placing interdigital input and output transducers on a piezoelectric substrate and propagating acoustic plate modes therebetween. The deposition or removal of material on or from, respectively, a thin film in contact with the surface, or changes in the mechanical properties of a thin film in contact with the surface, or changes in the electrical characteristics of the solution, create perturbations in the velocity and attenuation of the acoustic plate modes as a function of these properties or changes in them.
Acoustic wave device using plate modes with surface-parallel displacement
Martin, S.J.; Ricco, A.J.
1992-05-26
Solid-state acoustic sensors for monitoring conditions at a surface immersed in a liquid and for monitoring concentrations of species in a liquid and for monitoring electrical properties of a liquid are formed by placing interdigital input and output transducers on a piezoelectric substrate and propagating acoustic plate modes there between. The deposition or removal of material on or from, respectively, a thin film in contact with the surface, or changes in the mechanical properties of a thin film in contact with the surface, or changes in the electrical characteristics of the solution, create perturbations in the velocity and attenuation of the acoustic plate modes as a function of these properties or changes in them. 6 figs.
Acoustic wave device using plate modes with surface-parallel displacement
Martin, S.J.; Ricco, A.J.
1988-04-29
Solid-state acoustic sensors for monitoring conditions at a surface immersed in a liquid and for monitoring concentrations of species in a liquid and for monitoring electrical properties of a liquid are formed by placing interdigital input and output transducers on a piezoelectric substrate and propagating acoustic plate modes therebetween. The deposition or removal of material on or from, respectively, a thin film in contact with the surface, or changes in the mechanical properties of a thin film in contact with the surface, or changes in the electrical characteristics of the solution, create perturbations in the velocity and attenuation of the acoustic plate modes as a function of these properties or changes in them. 6 figs.
Synthesis of Foam-Shaped Nanoporous Zeolite Material: A Simple Template-Based Method
ERIC Educational Resources Information Center
Saini, Vipin K.; Pires, Joao
2012-01-01
Nanoporous zeolite foam is an interesting crystalline material with an open-cell microcellular structure, similar to polyurethane foam (PUF). The aluminosilicate structure of this material has a large surface area, extended porosity, and mechanical strength. Owing to these properties, this material is suitable for industrial applications such as…
NASA Technical Reports Server (NTRS)
Gudimenko, Y.; Ng, R.; Iskanderova, Z.; Kleiman, J.; Grigorevsky, A.; Kiseleva, L.; Finckenor, M.; Edwards, D.
2005-01-01
Research has been continued to further improve the space durability of conductive and non-conductive polymer-based paints and of conductive thermal control paints for space applications. Efforts have been made to enhance the space durability and stability of functional Characteristics in ground-based space environment imitating conditions, using specially developed surface modification treatment. The results of surface modification of new conductive paints, including the ground-based testing in aggressive oxidative environments, such as atomic oxygen/UV and oxygen plasma, and performance evaluation are presented. Functional properties and performance characteristics, such as thermal optical properties (differential solar absorptance and thermal emittance representing the thermal optical performance of thermal control paints) and surface resistivity characteristics of pristine, surface modified, and tested materials were verified. Extensive surface analysis studies have been performed using complementary surface analyses including SEM/EDS and XPS. Test results revealed that the successfully treated materials exhibit reduced mass loss and no surface morphology change, thus indicating good protection from the severe oxidative environment. It was demonstrated that the developed surface modification treatment could be applied successfully to charge dissipative and conductive paints.
NASA Astrophysics Data System (ADS)
Sarswat, Prashant K.; Deka, Nipon; Jagan Mohan Rao, S.; Free, Michael L.; Kumar, Gagan
2017-08-01
The objective of this work is to understand and improve the photocatalytic activity of Cu2ZnSnS4 (CZTS) through postgrowth modification techniques to create surface textures. This objective can be achieved using a combination of solvents, etching agents, and anodization techniques. One of the most effective surface treatments for enhancing the surface properties of photovoltaic materials is formation of nanoscale flakes, although other surface modifications were also evaluated. The superior performance of textured films can be attributed to enhanced surface area of absorber material exposed to electrolyte, ZnS deficiency, and high catalytic activity due to reduced charge-transfer resistance. Fine-tuning of ion flux and electrolyte stoichiometry can be used to create a controlled growth algorithm for CZTS thin films. The resulting information can be utilized to optimize film properties. The utility of nanostructured or engineered surfaces was evaluated using photoelectrochemical measurements. Finite-difference time-domain (FDTD)-assisted simulations were conducted for selected texturing, revealing enhanced surface area of absorbing medium that ultimately resulted in greater power loss of light in the medium.
Behavior of Bubble Interfaces Stabilized by Particles of Different Densities.
Bournival, Ghislain; Ata, Seher; Wanless, Erica J
2016-06-28
Stability of bubbles laden with particles of different densities was investigated. Capillary-held bubbles were produced and coated with particles across the density range of 1.2-3.6 g·cm(-3). The materials used were poly(methyl methacrylate) (PMMA), glass, and anatase. The interaction of the bubbles, once brought into contact, was monitored using high-speed video recording. Visual inspection indicated that denser particles were more easily displaced during the contact of the bubbles and therefore the PMMA particles provided a particle barrier more resistant to coalescence. The coalescence events yielded information on the surface properties of the bubble and the detachment of particles. The attached particles commonly dampen the oscillation of the coalesced bubbles through viscous drag and change in the surface properties (e.g., area-exclusion principle). The dampening of the oscillation generally leads to a reduced mass of particles detaching from the bubble surface. It was found that the different materials investigated did not offer clear evidence of the effect of particle detachment on the bubble surface properties in the present systems. On the other hand, the detachment of different particle materials seemed to be consistent with one another when comparing the attachment and detachment forces exerted on the particles based on their density, size, and hydrophobicity. It was concluded that particles of lower density are more effective in stabilizing interfaces, and thus particle density is an important parameter in the selection of materials for the handling of dispersions.
Effect of polar surfaces on organic molecular crystals
NASA Astrophysics Data System (ADS)
Sharia, Onise; Tsyshevskiy, Roman; Kuklja, Maija; University of Maryland College Park Team
Polar oxide materials reveal intriguing opportunities in the field of electronics, superconductivity and nanotechnology. While behavior of polar surfaces has been widely studied on oxide materials and oxide-oxide interfaces, manifestations and properties of polar surfaces in molecular crystals are still poorly understood. Here we discover that the polar catastrophe phenomenon, known on oxides, also takes place in molecular materials as illustrated with an example of cyclotetramethylene tetranitramine (HMX) crystals. We show that the surface charge separation is a feasible compensation mechanism to counterbalance the macroscopic dipole moment and remove the electrostatic instability. We discuss the role of surface charge on degradation of polar surfaces, electrical conductivity, optical band-gap closure and surface metallization. Research is supported by the US ONR (Grants N00014-16-1-2069 and N00014-16-1-2346) and NSF. We used NERSC, XSEDE and MARCC computational resources.
Virus-based surface patterning of biological molecules, probes, and inorganic materials.
Ahn, Suji; Jeon, Seongho; Kwak, Eun-A; Kim, Jong-Man; Jaworski, Justyn
2014-10-01
An essential requirement for continued technological advancement in many areas of biology, physics, chemistry, and materials science is the growing need to generate custom patterned materials. Building from recent achievements in the site-specific modification of virus for covalent surface tethering, we show in this work that stable 2D virus patterns can be generated in custom geometries over large area glass surfaces to yield templates of biological, biochemical, and inorganic materials in high density. As a nanomaterial building block, filamentous viruses have been extensively used in recent years to produce materials with interesting properties, owing to their ease of genetic and chemical modification. By utilizing un-natural amino acids generated at specific locations on the filamentous fd bacteriophage protein coat, surface immobilization is carried out on APTES patterned glass resulting in precise geometries of covalently linked virus material. This technique facilitated the surface display of a high density of virus that were labeled with biomolecules, fluorescent probes, and gold nanoparticles, thereby opening the possibility of integrating virus as functional components for surface engineering. Copyright © 2014 Elsevier B.V. All rights reserved.
Zollfrank, Cordt; Gutbrod, Kai; Wechsler, Peter; Guggenbichler, Josef Peter
2012-01-01
Serious infectious complications of patients in healthcare settings are often transmitted by materials and devices colonised by microorganisms (nosocomial infections). Current strategies to generate material surfaces with an antimicrobial activity suffer from the consumption of the antimicrobial agent and emerging multidrug-resistant pathogens amongst others. Consequently, materials surfaces exhibiting a permanent antimicrobial activity without the risk of generating resistant microorganisms are desirable. This publication reports on the extraordinary efficient antimicrobial properties of transition metal acids such as molybdic acid (H(2)MoO(4)), which is based on molybdenum trioxide (MoO(3)). The modification of various materials (e.g. polymers, metals) with MoO(3) particles or sol-gel derived coatings showed that the modified materials surfaces were practically free of microorganisms six hours after contamination with infectious agents. The antimicrobial activity is based on the formation of an acidic surface deteriorating cell growth and proliferation. The application of transition metal acids as antimicrobial surface agents is an innovative approach to prevent the dissemination of microorganisms in healthcare units and public environments. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Avduyevskiy, V. S.; Anfimov, N. A.; Marov, M. Y.; Treskin, Y. A.; Shalayev, S. P.; Ekonomov, A. P.
1974-01-01
Density, specific heat capacity, and coefficient of thermal conductivity were studied on a sample of lunar surface material returned by the Luna 16 automatic station. The study was carried out in a helium-filled chamber. The density of the surface material when freely heaped was 1.2 g/cu cm, and when shaken down -- 1.7 g/cu cm. The specific heat capacity was 0.177 + or - 0.010 cal x g/1 x deg/1. The coefficient of thermal conductivity in the material was 4.8 x 10/6 + or - 1.2 x 10/6 cal x cm/1 x sec/1 x deg/1.
Mesoscopic modeling of structural and thermodynamic properties of fluids confined by rough surfaces.
Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Gama Goicochea, Armando
2015-10-21
The interfacial and structural properties of fluids confined by surfaces of different geometries are studied at the mesoscopic scale using dissipative particle dynamics simulations in the grand canonical ensemble. The structure of the surfaces is modeled by a simple function, which allows us to simulate readily different types of surfaces through the choice of three parameters only. The fluids we have modeled are confined either by two smooth surfaces or by symmetrically and asymmetrically structured walls. We calculate structural and thermodynamic properties such as the density, temperature and pressure profiles, as well as the interfacial tension profiles for each case and find that a structural order-disorder phase transition occurs as the degree of surface roughness increases. However, the magnitude of the interfacial tension is insensitive to the structuring of the surfaces and depends solely on the magnitude of the solid-fluid interaction. These results are important for modern nanotechnology applications, such as in the enhanced recovery of oil, and in the design of porous materials with specifically tailored properties.
NASA Astrophysics Data System (ADS)
Nasalapure, Anand V.; Chalannavar, Raju K.; Malabadi, Ravindra B.
2018-05-01
Biopolymers are abundantly available from its natural sources of extraction. Chitosan(CH) is one of the widely used natural polymer which is perspective natural polysaccharide. Natural polymer blend with synthetic polymer enhances property of the material such as polyvinyl alcohol (PVA). PVA is nontoxic degradable synthetic polymer and very good film forming polymer. In this study prepared hybrid based film by adding starch into Chitosan/PVA which slighlty increased the surface and thermal property of ternary blend film.
Ice sintering timescales at the surface of Europa and implications for surface properties
NASA Astrophysics Data System (ADS)
Phillips, C. B.; Molaro, J.; Meirion-Griffith, G.
2017-12-01
The planned exploration of Europa by NASA's Europa Clipper Mission and the possibility of a future Europa lander have driven the need to characterize its surface strength, roughness, porosity, thermal conductivity, and regolith depth in order to accurately interpret remote sensing data and develop appropriate spacecraft landing systems. Many processes contribute to Europa's landscape evolution, such as sputtering, mass wasting, thermal segregation, and impact gardening, driving the creation and distribution of icy regolith across the surface. While the efficacy of these processes are not well constrained, any amount of regolith emplaced at the surface will undergo subsequent processing due to sintering. Ice sintering is a form of frost metamorphism whereby contacting ice grains experience the diffusion of material into their contact region, forming a "neck" between them and densifying over time. Over long enough timescales, ice aggregates will sinter into solid material, which may contribute to the incorporation of non-ice material into Europa's subsurface and help to drive subsurface chemistry. Sintering also interacts with other processes, adding to the complexity of icy surface evolution. For example, sputtering preferentially removes larger grains and may enhance sintering rates, and changes in ice porosity may affect the response of the surface to micrometeorite impacts. Quantifying the effects of ice sintering will allow us to predict the microstructural properties of Europa's surface at spacecraft scales. To this end, we have modeled pressure-less (no overburden) sintering of spherical water-ice grains and validated the results with a laboratory experiment. We also modeled ice at the surface of Europa to obtain a first-order approximation of the sintering timescale and surface properties. Preliminary results indicate that ice grains will experience neck growth but not significant densification over Europa's surface age, suggesting that loose surface ice forms a weak and porous crust. Furthermore, our results suggest that existing models do not accurately quantify all stages of the sintering process for ice, emphasizing the need for more laboratory studies on this topic.
Study of the Effects of Photometric Geometry on Spectral Reflectance Measurements
NASA Technical Reports Server (NTRS)
Helfenstein, Paul
1998-01-01
The objective of this research is to investigate how the spectrophotometric properties of planetary surface materials depend on photometric geometry by refining and applying radiative transfer theory to data obtained from spacecraft and telescope observations of planetary surfaces, studies of laboratory analogs, and computer simulations. The goal is to perfect the physical interpretation of photometric parameters in the context of planetary surface geological properties and processes. The purpose of this report is to document the research achievements associated with this study.
Viking Landers and remote sensing
NASA Technical Reports Server (NTRS)
Moore, H. J.; Jakosky, B. M.; Christensen, P. R.
1987-01-01
Thermal and radar remote sensing signatures of the materials in the lander sample fields can be crudely estimated from evaluations of their physical-mechanical properties, laboratory data on thermal conductivities and dielectric constants, and theory. The estimated thermal inertias and dielectric constants of some of the materials in the sample field are close to modal values estimated from orbital and earth-based observations. This suggests that the mechanical properties of the surface materials of much of Mars will not be significantly different that those of the landing sites.
Quantifying yield behaviour in metals by X-ray nanotomography
Mostafavi, M.; Bradley, R.; Armstrong, D. E. J.; Marrow, T. J.
2016-01-01
Nanoindentation of engineering materials is commonly used to study, at small length scales, the continuum mechanical properties of elastic modulus and yield strength. However, it is difficult to measure strain hardening via nanoindentation. Strain hardening, which describes the increase in strength with plastic deformation, affects fracture toughness and ductility, and is an important engineering material property. The problem is that the load-displacement data of a single nanoindentation do not provide a unique solution for the material’s plastic properties, which can be described by its stress-strain behaviour. Three-dimensional mapping of the displacement field beneath the indentation provides additional information that can overcome this difficulty. We have applied digital volume correlation of X-ray nano-tomographs of a nanoindentation to measure the sub-surface displacement field and so obtain the plastic properties of a nano-structured oxide dispersion strengthened steel. This steel has potential applications in advanced nuclear energy systems, and this novel method could characterise samples where proton irradiation of the surface simulates the effects of fast neutron damage, since facilities do not yet exist that can replicate this damage in bulk materials. PMID:27698472
Surface/subsurface observation and removal mechanisms of ground reaction bonded silicon carbide
NASA Astrophysics Data System (ADS)
Yao, Wang; Zhang, Yu-Min; Han, Jie-cai; Zhang, Yun-long; Zhang, Jian-han; Zhou, Yu-feng; Han, Yuan-yuan
2006-01-01
Reaction Bonded Silicon Carbide (RBSiC) has long been recognized as a promising material for optical applications because of its unique combination of favorable properties and low-cost fabrication. Grinding of silicon carbide is difficult because of its high hardness and brittleness. Grinding often induces surface and subsurface damage, residual stress and other types of damage, which have great influence on the ceramic components for optical application. In this paper, surface integrity, subsurface damage and material removal mechanisms of RBSiC ground using diamond grinding wheel on creep-feed surface grinding machine are investigated. The surface and subsurface are studied with scanning electron microscopy (SEM) and optical microscopy. The effects of grinding conditions on surface and subsurface damage are discussed. This research links the surface roughness, surface and subsurface cracks to grinding parameters and provides valuable insights into the material removal mechanism and the dependence of grind induced damage on grinding conditions.
NASA Astrophysics Data System (ADS)
Fu, Qiang; Schaaf, Peter
2018-07-01
This special issue of the high impact international peer reviewed journal Applied Surface Science represents the proceedings of the 2nd International Conference on Applied Surface Science ICASS held 12-16 June 2017 in Dalian China. The conference provided a forum for researchers in all areas of applied surface science to present their work. The main topics of the conference are in line with the most popular areas of research reported in Applied Surface Science. Thus, this issue includes current research on the role and use of surfaces in chemical and physical processes, related to catalysis, electrochemistry, surface engineering and functionalization, biointerfaces, semiconductors, 2D-layered materials, surface nanotechnology, energy, new/functional materials and nanotechnology. Also the various techniques and characterization methods will be discussed. Hence, scientific research on the atomic and molecular level of material properties investigated with specific surface analytical techniques and/or computational methods is essential for any further progress in these fields.
Inducing electric polarization in ultrathin insulating layers
NASA Astrophysics Data System (ADS)
Martinez-Castro, Jose; Piantek, Marten; Persson, Mats; Serrate, David; Hirjibehedin, Cyrus F.
Studies of ultrathin polar oxide films have attracted the interest of researchers for a long time due to their different properties compared to bulk materials. However they present several challenges such as the difficulty in the stabilization of the polar surfaces and the limited success in tailoring their properties. Moreover, recently developed Van der Waals materials have shown that the stacking of 2D-layers trigger new collective states thanks to the interaction between layers. Similarly, interface phenomena emerge in polar oxides, like induced ferroelectricity. This represents a promising way for the creation of new materials with customized properties that differ from those of the isolated layers. Here we present a new approach for the fabrication and study of atomically thin insulating films. We show that the properties of insulating polar layers of sodium chloride (NaCl) can be engineered when they are placed on top of a charge modulated template of copper nitride (Cu2N). STM studies carried out in ultra-high vacuum and at low temperatures over NaCl/Cu2N/Cu(001) show that we are able to build up and stabilize interfaces of polar surface at the limit of one atomic layer showing new properties not present before at the atomic scale.
Growth and quantum transport properties of vertical Bi2Se3 nanoplate films on Si substrates.
Li, Mingze; Wang, Zhenhua; Yang, Liang; Pan, Desheng; Li, Da; Gao, Xuan P A; Zhang, Zhidong
2018-08-03
Controlling the growth direction (planar versus vertical) and surface-to-bulk ratio can lead to lots of unique properties for two-dimensional layered materials. We report a simple method to fabricate continuous films of vertical Bi 2 Se 3 nanoplates on Si substrate and investigate the quantum transport properties of such films. In contrast to (001) oriented planar Bi 2 Se 3 nanoplate film, vertical Bi 2 Se 3 nanoplate films are enclosed by (015) facets, which possess high surface-to-bulk ratio that can enhance the quantum transport property of topological surface states. And by controlling the compactness of vertical Bi 2 Se 3 nanoplates, we realized an effective tuning of the weak antilocalization effect from topological surface states in Bi 2 Se 3 films. Our work paves a way for exploring the unique transport properties of this unconventional structure topological insulator film.
Nonequilibrium Casimir-Polder plasmonic interactions
NASA Astrophysics Data System (ADS)
Bartolo, Nicola; Messina, Riccardo; Dalvit, Diego A. R.; Intravaia, Francesco
2016-04-01
We investigate how the combination of nonequilibrium effects and material properties impacts on the Casimir-Polder interaction between an atom and a surface. By addressing systems with temperature inhomogeneities and laser interactions, we show that nonmonotonous energetic landscapes can be produced where barriers and minima appear. Our treatment provides a self-consistent quantum theoretical framework for investigating the properties of a class of nonequilibrium atom-surface interactions.
Nonequilibrium Casimir-Polder plasmonic interactions
Bartolo, Nicola; Messina, Riccardo; Dalvit, Diego Alejandro Roberto; ...
2016-04-18
Here we investigate how the combination of nonequilibrium effects and material properties impacts on the Casimir-Polder interaction between an atom and a surface. By addressing systems with temperature inhomogeneities and laser interactions, we show that nonmonotonous energetic landscapes can be produced where barriers and minima appear. Lastly, our treatment provides a self-consistent quantum theoretical framework for investigating the properties of a class of nonequilibrium atom-surface interactions.
Electrowetting of Weak Polyelectrolyte-Coated Surfaces.
Sénéchal, Vincent; Saadaoui, Hassan; Rodriguez-Hernandez, Juan; Drummond, Carlos
2017-05-23
Polymer coatings are commonly used to modify interfacial properties like wettability, lubrication, or biocompatibility. These properties are determined by the conformation of polymer molecules at the interface. Polyelectrolytes are convenient elementary bricks to build smart materials, given that polyion chain conformation is very sensitive to different environmental variables. Here we discuss the effect of an applied electric field on the properties of surfaces coated with poly(acrylic acid) brushes. By combining atomic force microscopy, quartz crystal microbalance, and contact angle experiments, we show that it is possible to precisely tune polyion chain conformation, surface adhesion, and surface wettability using very low applied voltages if the polymer grafting density and environmental conditions (pH and ionic strength) are properly formulated. Our results indicate that the effective ionization degree of the grafted weak polyacid can be finely controlled with the externally applied field, with important consequences for the macroscopic surface properties.
Bowen, Jennifer C; Clark, Catherine D; Keller, Jason K; De Bruyn, Warren J
2017-01-15
Chromophoric dissolved organic matter (CDOM) optical properties were measured in surface and pore waters as a function of depth and distance from an oil well in a southern California salt marsh. Higher fluorescence and absorbances in pore vs. surface waters suggest soil pore water is a reservoir of CDOM in the marsh. Protein-like fluorophores in pore waters at distinct depths corresponded to variations in sulfate depletion and Fe(II) concentrations from anaerobic microbial activity. These variations were supported by fluorescence indexes and are consistent with differences in optical molecular weight and aromaticity indicators. Fluorescence indices were consistent with autochthonous material of aquatic origin in surface waters, with more terrestrial, humified allochthonous material in deeper pore waters. CDOM optical properties were consistent with significantly enhanced microbial activity in regions closest to the oil well, along with a three-dimensional excitation/emission matrix fluorescence spectrum peak attributable to oil, suggesting anaerobic microbial degradation of oil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Study of sporadical properties of crosslinked polyelectrolyte multilayers
NASA Astrophysics Data System (ADS)
Balu, Deebika
Polyelectrolyte multilayers (PEM) have become a highly studied class of materials due to the range of their applicability in many areas of research, including biology, chemistry and materials science. Recent advances in surface coatings have enabled modification of PEM surfaces to provide desirable properties such as controlled release, super-hydrophobicity, biocompatibility, antifouling and antibacterial properties. In the past decade, antimicrobial PEM coatings have been investigated as a safer alternative to the traditional disinfection methods that usually involve application of hazardous chemicals onto the surface to be cleaned. These antimicrobial coatings could be applied to common surfaces prone to colonization of bacteria (such as bench tops, faucet handles, etc) to supplement routine sanitization protocols by providing sustained antimicrobial activity. Vegetative bacteria (such as Escherichia coli) are more susceptible to antimicrobial agents than bacterial species that form spores. Hence, the antimicrobial activity of PEM coatings fabricated using Layer by Layer (LbL) technique were assayed using Bacillus anthracis spores (Sterne strain). In this thesis, the sporicidal effect of various polyelectrolyte multilayer coatings containing cross-linked polymers immersed in bleach have been evaluated as potential augmentation to existing disinfection methods.
The Effect of Aggressive Corrosion Mediums on the Microstructure and Properties of Mild Steel
NASA Astrophysics Data System (ADS)
Araoyinbo, A. O.; Salleh, M. A. A. Mohd; Rahmat, A.; Azmi, A. I.; Rahim, W. M. F. Wan Abd; Achitei, D. C.; Jin, T. S.
2018-06-01
Mild steel is known to be one of the major construction materials and have been extensively used in most chemical and material industries due to its interesting properties which can be easily altered to suit various application areas. In this research, mild steel is exposed to different aggressive mediums in order to observe the effect of these interactions on its surface morphology and properties. The mild steel used was cut into dimensions of 7 cm length and width of 3 cm. The aggressive mediums used are 100 mls of aqueous solution of hydrochloric acid, sodium hydroxide (40 g/L), and sodium chloride (35 g/L) at room temperature. The characterizations performed are the hardness test with the Rockwell hardness tester, the surface morphology by optical microscope, surface roughness and the weight loss from the immersion test. It was observed that the hardness value and the weight loss for the different cut samples of mild steel immersed in the different aggressive mediums reduces with prolong exposure and severe pitting form of corrosion was present on its surface.
NASA Technical Reports Server (NTRS)
Badescu, Mircea; Bonitz, Robert; Kulczycki, Erick; Aisen, Norman; Dandino, Charles M.; Cantrell, Brett S.; Gallagher, William; Shevin, Jesse; Ganino, Anthony; Haddad, Nicolas;
2013-01-01
The 2011 Decadal Survey for planetary science released by the National Research Council of the National Academies identified Comet Surface Sample Return (CSSR) as one of five high priority potential New Frontiers-class missions in the next decade. The main objectives of the research described in this publication are: develop a concept for an end-to-end system for collecting and storing a comet sample to be returned to Earth; design, fabricate and test a prototype Dynamic Acquisition and Retrieval Tool (DART) capable of collecting 500 cc sample in a canister and eject the canister with a predetermined speed; identify a set of simulants with physical properties at room temperature that suitably match the physical properties of the comet surface as it would be sampled. We propose the use of a dart that would be launched from the spacecraft to impact and penetrate the comet surface. After collecting the sample, the sample canister would be ejected at a speed greater than the comet's escape velocity and captured by the spacecraft, packaged into a return capsule and returned to Earth. The dart would be composed of an inner tube or sample canister, an outer tube, a decelerator, a means of capturing and retaining the sample, and a mechanism to eject the canister with the sample for later rendezvous with the spacecraft. One of the significant unknowns is the physical properties of the comet surface. Based on new findings from the recent Deep Impact comet encounter mission, we have limited our search of solutions for sampling materials to materials with 10 to 100 kPa shear strength in loose or consolidated form. As the possible range of values for the comet surface temperature is also significantly different than room temperature and testing at conditions other than the room temperature can become resource intensive, we sought sample simulants with physical properties at room temperature similar to the expected physical properties of the comet surface material. The chosen DART configuration, the efforts to identify a test simulant and the properties of these simulants, and the results of the preliminary testing will be described in this paper.
Effect of anti-biofilm glass-ionomer cement on Streptococcus mutans biofilms.
Wang, Su-Ping; Ge, Yang; Zhou, Xue-Dong; Xu, Hockin Hk; Weir, Michael D; Zhang, Ke-Ke; Wang, Hao-Hao; Hannig, Matthias; Rupf, Stefan; Li, Qian; Cheng, Lei
2016-06-30
Dental restorative materials with antimicrobial properties can inhibit bacterial colonization, which may result in a reduction of caries at tooth-filling interaction zones. This study aimed to develop antibacterial glass-ionomer cements (GIC) containing a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM), and to investigate their effect on material performance and antibacterial properties. Different mass fractions (0, 1.1% and 2.2%) of DMADDM were incorporated into the GIC. The flexure strength, surface charge density, surface roughness and fluoride release were tested. A Streptococcus mutans biofilm model was used. Exopolysaccharides (EPS) staining was used to analyze the inhibitory effect of DMADDM on the biofilm matrix. In addition, biofilm metabolic activity, lactic acid metabolism and the expression of glucosyltransferase genes gtfB, gtfC and gtfD were measured. GIC containing 1.1% and 2.2% DMADDM had flexural strengths matching those of the commercial control (P>0.1). DMADDM was able to increase the surface charge density but reduced surface roughness (P<0.05). The incorporation of 1.1% and 2.2% DMADDM elevated the release of fluoride by the GIC in the first 2 days (P<0.05). The novel DMADDM-modified GIC significantly reduced biofilm metabolic activity (P<0.05) and decreased lactic acid production (P<0.05). The quantitative polymerase chain reaction (qPCR) results showed that the expression of gtfB, gtfC and gtfD decreased when mass fractions of DMADDM increased (P<0.05). EPS staining showed that both the bacteria and EPS in biofilm decreased in the DMADDM groups. The incorporation of DMADDM could modify the properties of GIC to influence the development of S. mutans biofilms. In this study, we investigated the interface properties of antibacterial materials for the first time. GIC containing DMADDM can improve material performance and antibacterial properties and may contribute to the better management of secondary caries.
NASA Astrophysics Data System (ADS)
Chyasnavichyus, Marius; Young, Seth L.; Tsukruk, Vladimir V.
2015-08-01
Probing of micro- and nanoscale mechanical properties of soft materials with atomic force microscopy (AFM) gives essential information about the performance of the nanostructured polymer systems, natural nanocomposites, ultrathin coatings, and cell functioning. AFM provides efficient and is some cases the exclusive way to study these properties nondestructively in controlled environment. Precise force control in AFM methods allows its application to variety of soft materials and can be used to go beyond elastic properties and examine temperature and rate dependent materials response. In this review, we discuss experimental AFM methods currently used in the field of soft nanostructured composites and biomaterials. We discuss advantages and disadvantages of common AFM probing techniques, which allow for both qualitative and quantitative mappings of the elastic modulus of soft materials with nanosacle resolution. We also discuss several advanced techniques for more elaborate measurements of viscoelastic properties of soft materials and experiments on single cells.
The Influence of Yttrium on High Temperature Oxidation of Valve Steels
NASA Astrophysics Data System (ADS)
Grzesik, Z.; Migdalska, M.; Mrowec, S.
2015-04-01
The influence of small amounts of yttrium, electrochemically deposited on the surface of four steels utilized in the production of valves in car engines, on the protective properties of the oxide scale and its adherence to the surface of the oxidized materials has been studied under isothermal and thermal cycle conditions. Oxidation measurements have been carried out at 1173 K. It has been found that yttrium addition improves considerably the scale adherence to the substrate surface, increasing thereby corrosion resistance of the studied materials.
Portable spotter for fluorescent contaminants on surfaces
Schuresko, Daniel D.
1980-01-01
A portable fluorescence-based spotter for polynuclear aromatic hydrocarbon contamination on personnel and work area surfaces under ambient lighting conditions is provided. This instrument employs beam modulation and phase sensitive detection for discriminating between fluorescence from organic materials from reflected background light and inorganic fluorescent material. The device uses excitation and emission filters to provide differentiation between classes of aromatic organic compounds. Certain inorganic fluorescent materials, including heavy metal compounds, may also be distinguished from the organic compounds, despite both having similar optical properties.
Finite indentation of highly curved elastic shells
NASA Astrophysics Data System (ADS)
Pearce, S. P.; King, J. R.; Steinbrecher, T.; Leubner-Metzger, G.; Everitt, N. M.; Holdsworth, M. J.
2018-01-01
Experimentally measuring the elastic properties of thin biological surfaces is non-trivial, particularly when they are curved. One technique that may be used is the indentation of a thin sheet of material by a rigid indenter, while measuring the applied force and displacement. This gives immediate information on the fracture strength of the material (from the force required to puncture), but it is also theoretically possible to determine the elastic properties by comparing the resulting force-displacement curves with a mathematical model. Existing mathematical studies generally assume that the elastic surface is initially flat, which is often not the case for biological membranes. We previously outlined a theory for the indentation of curved isotropic, incompressible, hyperelastic membranes (with no bending stiffness) which breaks down for highly curved surfaces, as the entire membrane becomes wrinkled. Here, we introduce the effect of bending stiffness, ensuring that energy is required to change the shell shape without stretching, and find that commonly neglected terms in the shell equilibrium equation must be included. The theory presented here allows for the estimation of shape- and size-independent elastic properties of highly curved surfaces via indentation experiments, and is particularly relevant for biological surfaces.
Finite indentation of highly curved elastic shells
2018-01-01
Experimentally measuring the elastic properties of thin biological surfaces is non-trivial, particularly when they are curved. One technique that may be used is the indentation of a thin sheet of material by a rigid indenter, while measuring the applied force and displacement. This gives immediate information on the fracture strength of the material (from the force required to puncture), but it is also theoretically possible to determine the elastic properties by comparing the resulting force–displacement curves with a mathematical model. Existing mathematical studies generally assume that the elastic surface is initially flat, which is often not the case for biological membranes. We previously outlined a theory for the indentation of curved isotropic, incompressible, hyperelastic membranes (with no bending stiffness) which breaks down for highly curved surfaces, as the entire membrane becomes wrinkled. Here, we introduce the effect of bending stiffness, ensuring that energy is required to change the shell shape without stretching, and find that commonly neglected terms in the shell equilibrium equation must be included. The theory presented here allows for the estimation of shape- and size-independent elastic properties of highly curved surfaces via indentation experiments, and is particularly relevant for biological surfaces. PMID:29434505
Thermophysical Property Measurements in the MSFC ESL
NASA Technical Reports Server (NTRS)
Hyers, R. W.; Rogers, J. R.; Robinson, M. B.; Rathz, T. J.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Electrostatic Levitation (ESL) is an advanced technique for containerless processing of metals, ceramics, and semiconductors. Because no container is required, there is no contamination from reaction with a crucible, allowing processing of high temperature, highly reactive melts. The high vacuum processing environment further reduces possible contamination of the samples. Finally, there is no container to provide heterogeneous nucleation sites, so the undercooled range is also accessible for many materials. For these reasons, ESL provides a unique environment for measuring thermophysical properties of liquid materials. The properties that can be measured in ESL include density, surface tension, viscosity, electrical and thermal conductivity, specific heat, phase diagram, TTT- and CCT- curves, and other thermodynamic properties. In this paper, we present data on surface tension and viscosity, measured by the oscillating drop technique, and density, measured by an automated photographic technique, measured in the ESL at NASA Marshall Space Flight Center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, Donald R.
ISO Technical Report (TR) 14187 provides an introduction to (and examples of) the information that can be obtained about nanostructured materials using surface-analysis tools. In addition, both general issues and challenges associated with characterising nanostructured materials and the specific opportunities and challenges associated with individual analytical methods are identified. As the size of objects or components of materials approaches a few nanometres, the distinctions among 'bulk', 'surface' and 'particle' analysis blur. This Technical Report focuses on issues specifically relevant to surface chemical analysis of nanostructured materials. The report considers a variety of analysis methods but focuses on techniques that aremore » in the domain of ISO/TC 201 including Auger electron spectroscopy, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and scanning probe microscopy. Measurements of nanoparticle surface properties such as surface potential that are often made in a solution are not discussed.« less
Consideration of Materials for Aircraft Brakes
NASA Technical Reports Server (NTRS)
Peterson, M. B.; Ho, T.
1972-01-01
An exploratory investigation was conducted concerning materials and their properties for use in aircraft brakes. Primary consideration was given to the heat dissipation and the frictional behavior of materials. Used brake pads and rotors were analyzed as part of the investigation. A simple analysis was conducted in order to determine the most significant factors which affect surface temperatures. It was found that where size and weight restrictions are necessary, the specific heat of the material, and maintaining uniform contact area are the most important factors. A criterion was suggested for optimum sizing of the brake disks. Bench friction tests were run with brake materials. It was found that there is considerable friction variation due to the formation and removal of surface oxide films. Other causes of friction variations are surface softening and melting. The friction behavior at high temperature was found to be more characteristic of the steel surface rather than the copper brake material. It is concluded that improved brake materials are feasible.
Abban, Stephen; Jakobsen, Mogens; Jespersen, Lene
2012-09-01
The role of cargo container lining materials aluminium, a fibre reinforced plastic (FRP) and stainless steel in bacterial cross contamination during transport was assessed. For this, attachment and detachment of Escherichia coli K12 and Salmonella Typhimurium P6 on the three surfaces in the absence or presence of residues were evaluated. Observations were correlated with water contact angles of the materials (hydrophobicity) and roughness profile (R(a)). Attachment of the organisms was negatively correlated to the hydrophobicity of the three materials with r = -0.869 and -0.861 for E. coli K12 and S. Typhimurium P6 respectively. Correlation with roughness average was poor; r = -0.425 and -0.413 respectively for E. coli K12 and S. Typhimurium P6. Presence of residue caused significant reduction (p < 0.05) in the levels of bacteria attached to all materials, but made attached bacteria significantly more difficult to detach by either of two rinsing systems from all three surfaces. Explanation for these observations could be made in part from scanning electron micrographs which showed significantly more bacteria sitting on patches of residue when it was introduced to the surfaces, compared to the bare material sections of the same surfaces. We report these observations for the first time for aluminium and the FRP material and in part for stainless steel. The S. Typhimurium P6 strain also had significantly higher level of attachment than the E. coli K12 strain. Our findings show that food residue and soils affect the extent and amount of bacteria attaching to abiotic surfaces by altering the surface contact properties for the bacteria. Physicochemical properties like hydrophobicity appear to be a better basis for material selection for hygienic design of containers, than the traditional use of R(a). Copyright © 2012 Elsevier Ltd. All rights reserved.
Surface magnetism in a chiral d -wave superconductor with hexagonal symmetry
NASA Astrophysics Data System (ADS)
Goryo, Jun; Imai, Yoshiki; Rui, W. B.; Sigrist, Manfred; Schnyder, Andreas P.
2017-10-01
Surface properties are examined in a chiral d -wave superconductor with hexagonal symmetry, whose one-body Hamiltonian possesses intrinsic spin-orbit coupling identical to the one characterizing the topological nature of the Kane-Mele honeycomb insulator. In the normal state, spin-orbit coupling gives rise to spontaneous surface spin currents, whereas in the superconducting state, besides the spin currents, there exist also charge surface currents, due to chiral pairing symmetry. Interestingly, the combination of these two currents results in a surface spin polarization, whose spatial dependence is markedly different on the zigzag and armchair surfaces. We discuss various potential candidate materials, such as SrPtAs, which may exhibit these surface properties.
Mechanical and chemical effects of ion-texturing biomedical polymers
NASA Technical Reports Server (NTRS)
Weigand, A. J.; Cenkus, M. A.
1979-01-01
To determine whether sputter etching may provide substantial polymer surface texturing with insignificant changes in chemical and mechanical properties, an 8 cm beam diameter, electron bombardment, argon ion source was used to sputter etch (ion-texture process) nine biomedical polymers. The materials included silicone rubber, 32% carbon impregnated polyolefin, polyoxymethylene, polytetrafluoroethylene, ultrahigh molecular weight (UHMW) polyethylene, UHMW polyethylene with carbon fibers (10%), and several polyurethanes (bioelectric, segmented, and cross linked). Ion textured microtensile specimens of each material except UHMW polyethylene and UHMW polyethylene with 10% carbon fibers were used to determine the effect of ion texturing on tensile properties. Scanning electron microscopy was used to determine surface morphology changes, and electron spectroscopy for chemical analysis was used to analyze the near surface chemical changes that result from ion texturing. Ion energies of 500 eV with beam current densities ranging from 0.08 to 0.19 mA/sq cm were used to ion texture the various materials. Standard microtensile specimens of seven polymers were exposed to a saline environment for 24 hours prior to and during the tensile testing. The surface chemical changes resulting from sputter etching are minimal in spite of the often significant changes in the surface morphology.