Sample records for material test sample

  1. System and method for measuring permeability of materials

    DOEpatents

    Hallman, Jr., Russell Louis; Renner, Michael John

    2013-07-09

    Systems and methods are provided for measuring the permeance of a material. The permeability of the material may also be derived. Systems typically provide a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  2. Material permeance measurement system and method

    DOEpatents

    Hallman, Jr., Russell Louis; Renner, Michael John [Oak Ridge, TN

    2012-05-08

    A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  3. Method and apparatus for testing surface characteristics of a material

    NASA Technical Reports Server (NTRS)

    Johnson, David L. (Inventor); Kersker, Karl D. (Inventor); Stratton, Troy C. (Inventor); Richardson, David E. (Inventor)

    2006-01-01

    A method, apparatus and system for testing characteristics of a material sample is provided. The system includes an apparatus configured to house the material test sample while defining a sealed volume against a surface of the material test sample. A source of pressurized fluid is in communication with, and configured to pressurize, the sealed volume. A load applying apparatus is configured to apply a defined load to the material sample while the sealed volume is monitored for leakage of the pressurized fluid. Thus, the inducement of surface defects such as microcracking and crazing may be detected and their effects analyzed for a given material. The material test samples may include laminar structures formed of, for example, carbon cloth phenolic, glass cloth phenolic, silica cloth phenolic materials or carbon-carbon materials. In one embodiment the system may be configured to analyze the material test sample while an across-ply loading is applied thereto.

  4. Fluid permeability measurement system and method

    DOEpatents

    Hallman, Jr., Russell Louis; Renner, Michael John [Oak Ridge, TN

    2008-02-05

    A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  5. Coaxial test fixture

    DOEpatents

    Praeg, W.F.

    1984-03-30

    This invention pertains to arrangements for performing electrical tests on contact material samples, and in particular for testing contact material test samples in an evacuated environment under high current loads. Frequently, it is desirable in developing high-current separable contact material, to have at least a preliminary analysis of selected candidate conductor materials. Testing of material samples will hopefully identify materials unsuitable for high current electrical contact without requiring incorporation of the materials into a completed and oftentimes complex structure.

  6. Electrofracturing test system and method of determining material characteristics of electrofractured material samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Stephen J.; Glover, Steven F.; Pfeifle, Tom

    A device for electrofracturing a material sample and analyzing the material sample is disclosed. The device simulates an in situ electrofracturing environment so as to obtain electrofractured material characteristics representative of field applications while allowing permeability testing of the fractured sample under in situ conditions.

  7. 21 CFR 211.110 - Sampling and testing of in-process materials and drug products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Sampling and testing of in-process materials and... PHARMACEUTICALS Production and Process Controls § 211.110 Sampling and testing of in-process materials and drug... testing. (b) Valid in-process specifications for such characteristics shall be consistent with drug...

  8. 21 CFR 211.110 - Sampling and testing of in-process materials and drug products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Sampling and testing of in-process materials and... PHARMACEUTICALS Production and Process Controls § 211.110 Sampling and testing of in-process materials and drug... testing. (b) Valid in-process specifications for such characteristics shall be consistent with drug...

  9. 21 CFR 211.110 - Sampling and testing of in-process materials and drug products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Sampling and testing of in-process materials and... PHARMACEUTICALS Production and Process Controls § 211.110 Sampling and testing of in-process materials and drug... testing. (b) Valid in-process specifications for such characteristics shall be consistent with drug...

  10. 21 CFR 211.110 - Sampling and testing of in-process materials and drug products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Sampling and testing of in-process materials and... PHARMACEUTICALS Production and Process Controls § 211.110 Sampling and testing of in-process materials and drug... testing. (b) Valid in-process specifications for such characteristics shall be consistent with drug...

  11. 21 CFR 211.110 - Sampling and testing of in-process materials and drug products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Sampling and testing of in-process materials and... PHARMACEUTICALS Production and Process Controls § 211.110 Sampling and testing of in-process materials and drug... testing. (b) Valid in-process specifications for such characteristics shall be consistent with drug...

  12. NASA-STD-6001B Test 1 Upward Flame Propagation; Sample Length Impact on MOC Investigation

    NASA Technical Reports Server (NTRS)

    Harper, Susana Tapia; Juarez, Alfredo; Woods, Brenton L.; Beeson, Harold D.

    2017-01-01

    Understanding the combustion behavior of materials in the elevated oxygen environments of habitable spacecraft is of utmost importance to crew safety and mission success. Currently, certification for unrestricted flight usage of a material with respect to flammability involves passing the Upward Flame Propagation Test of NASA-STD-6001B (Test 1). This test evaluates materials in a standardized test configuration for two failure criteria: self-extinguishment within 15 cm (6 in.) and the propensity of flame propagation by means of flaming material transfer. By the NASA standard, full-length samples are 30 cm (12 in.) in length; however, factors independent of the test method such as limited material availability or various nonstandard test configurations limit the full pretest sample lengths available for test. This paper characterizes the dependence, if any, of pretest sample length on NASA-STD-6001B Test 1 results. Testing was performed using the Maximum Oxygen Concentration (MOC) Threshold Method to obtain a data set for each sample length tested. In addition, various material types, including cloth (Nomex), foam (TA-301) and solids (Ultem), were tested to investigate potential effects of test specimen types. Though additional data needs to be generated to provide statistical confidence, preliminary findings are that use of variable sample lengths has minimal impact on NASA-STD-6001B flammability performance and MOC determination.

  13. An Experimental Study of Launch Vehicle Propellant Tank Fragmentation

    NASA Technical Reports Server (NTRS)

    Richardson, Erin; Jackson, Austin; Hays, Michael; Bangham, Mike; Blackwood, James; Skinner, Troy; Richman, Ben

    2014-01-01

    In order to better understand launch vehicle abort environments, Bangham Engineering Inc. (BEi) built a test assembly that fails sample materials (steel and aluminum plates of various alloys and thicknesses) under quasi-realistic vehicle failure conditions. Samples are exposed to pressures similar to those expected in vehicle failure scenarios and filmed at high speed to increase understanding of complex fracture mechanics. After failure, the fragments of each test sample are collected, catalogued and reconstructed for further study. Post-test analysis shows that aluminum samples consistently produce fewer fragments than steel samples of similar thickness and at similar failure pressures. Video analysis shows that there are several failure 'patterns' that can be observed for all test samples based on configuration. Fragment velocities are also measured from high speed video data. Sample thickness and material are analyzed for trends in failure pressure. Testing is also done with cryogenic and noncryogenic liquid loading on the samples. It is determined that liquid loading and cryogenic temperatures can decrease material fragmentation for sub-flight thicknesses. A method is developed for capture and collection of fragments that is greater than 97 percent effective in recovering sample mass, addressing the generation of tiny fragments. Currently, samples tested do not match actual launch vehicle propellant tank material thicknesses because of size constraints on test assembly, but test findings are used to inform the design and build of another, larger test assembly with the purpose of testing actual vehicle flight materials that include structural components such as iso-grid and friction stir welds.

  14. Arc Jet Testing of Carbon Phenolic for Mars Sample Return and Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Laub, Bernard; Chen, Yih-Kanq; Skokova, Kristina; Delano, Chad

    2004-01-01

    The objective of the Mars Sample Return (MSR) Mission is to return a sample of MArtian soil to Earth. The Earth Entry Vehicle (EEV) brings te samples through the atmosphere to the ground.The program aims to: Model aerothermal environment during EEV flight; On the basis of results, select potential TPS materials for EEV forebody; Fabricate TPS materials; Test the materials in the arc jet environment representative of predicted flight environment;Evaluate material performance; Compare results of modeling predictions with test results.

  15. Materials samples face rigors of space.

    PubMed

    Flinn, Edward D

    2002-07-01

    The Materials International Space Station Experiment (MISSE) is described. This project is designed to conduct long duration materials tests on samples attached to the ISS. A batch of 750 material samples were delivered on STS-105 and attached to the ISS airlock. They will be exposed to the space environment for 18 months and are slated to return on STS-114. A second batch of 750 samples is being prepared. The experiment containers were used originally for the Mir Environmental Effects Payload, which tested a variety of substances, including some slated for use on the ISS. Researchers are particularly interested in the effects of atomic oxygen on the samples. Some samples are being tested to determine their use in radiation protection. As part of the MISSE project, ultrathin tether materials are being tested for use on the Propulsive Small Expendable Depoloyer System (ProSEDS), which will use a tether system to change a satellite's orbital altitude.

  16. Safer Aviation Materials Tested

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    2001-01-01

    A series of thermally stable polymer samples were tested. These materials are called low heat release materials and are designed for aircraft interior decorative materials. The materials are designed to give off a minimum amount of noxious gases when heated, which increases the possibility that people can escape from a burning aircraft. New cabin materials have suitably low heat release so that fire does not spread, toxic chemicals are not given off, and the fire-emergency escape time for crew and passengers is lengthened. These low heat-release materials have a variety of advantages and applications: interiors for ground-based facilities, interiors of space vehicles, and many commercial fire-protection environments. A microscale combustion calorimeter at the Federal Aviation Administration's (FAA) Technical Center tested NASA Langley Research Center materials samples. The calorimeter is shown. A sharp, quantitative, and reproducible heat-release-rate peak is obtained in the microscale heat-release-rate test. The newly tested NASA materials significantly reduced the heat release capacity and total heat release. The thermal stability and flammability behavior of the samples was very good. The new materials demonstrated a factor of 4 reduction in total heat release over ULTEM (a currently used material). This information is provided in the following barchart. In other tests, the materials showed greater than a factor 9 reduction in heat-release capacity over ULTEM. The newly tested materials were developed for low dielectric constant, low color, and good solubility. A scale up of the material samples is needed to determine the repeatability of the performance in larger samples. Larger panels composed of the best candidate materials will be tested in a larger scale FAA Technical Center fire facility. The NASA Glenn Research Center, Langley (Jeff Hinkley), and the FAA Technical Center (Richard Lyon) cooperatively tested these materials for the Accident Mitigation aspects of Fire Prevention under NASA's Aviation Safety Program.

  17. 43 CFR 3601.30 - Pre-application activities-how and when may I sample and test mineral materials?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Sampling and Testing § 3601.30 Pre-application activities—how and when may I sample and test mineral... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Pre-application activities-how and when may I sample and test mineral materials? 3601.30 Section 3601.30 Public Lands: Interior Regulations...

  18. 43 CFR 3601.30 - Pre-application activities-how and when may I sample and test mineral materials?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Sampling and Testing § 3601.30 Pre-application activities—how and when may I sample and test mineral... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Pre-application activities-how and when may I sample and test mineral materials? 3601.30 Section 3601.30 Public Lands: Interior Regulations...

  19. 43 CFR 3601.30 - Pre-application activities-how and when may I sample and test mineral materials?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Sampling and Testing § 3601.30 Pre-application activities—how and when may I sample and test mineral... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Pre-application activities-how and when may I sample and test mineral materials? 3601.30 Section 3601.30 Public Lands: Interior Regulations...

  20. 43 CFR 3601.30 - Pre-application activities-how and when may I sample and test mineral materials?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Sampling and Testing § 3601.30 Pre-application activities—how and when may I sample and test mineral... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Pre-application activities-how and when may I sample and test mineral materials? 3601.30 Section 3601.30 Public Lands: Interior Regulations...

  1. Experimental Design for a Sponge-Wipe Study to Relate the Recovery Efficiency and False Negative Rate to the Concentration of a Bacillus anthracis Surrogate for Six Surface Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Gregory F.; Amidan, Brett G.; Krauter, Paula

    2011-05-01

    Two concerns were raised by the Government Accountability Office following the 2001 building contaminations via letters containing Bacillus anthracis (BA). These included the: 1) lack of validated sampling methods, and 2) need to use statistical sampling to quantify the confidence of no contamination when all samples have negative results. Critical to addressing these concerns is quantifying the false negative rate (FNR). The FNR may depend on the 1) method of contaminant deposition, 2) surface concentration of the contaminant, 3) surface material being sampled, 4) sample collection method, 5) sample storage/transportation conditions, 6) sample processing method, and 7) sample analytical method.more » A review of the literature found 17 laboratory studies that focused on swab, wipe, or vacuum samples collected from a variety of surface materials contaminated by BA or a surrogate, and used culture methods to determine the surface contaminant concentration. These studies quantified performance of the sampling and analysis methods in terms of recovery efficiency (RE) and not FNR (which left a major gap in available information). Quantifying the FNR under a variety of conditions is a key aspect of validating sample and analysis methods, and also for calculating the confidence in characterization or clearance decisions based on a statistical sampling plan. A laboratory study was planned to partially fill the gap in FNR results. This report documents the experimental design developed by Pacific Northwest National Laboratory and Sandia National Laboratories (SNL) for a sponge-wipe method. The testing was performed by SNL and is now completed. The study investigated the effects on key response variables from six surface materials contaminated with eight surface concentrations of a BA surrogate (Bacillus atrophaeus). The key response variables include measures of the contamination on test coupons of surface materials tested, contamination recovered from coupons by sponge-wipe samples, RE, and FNR. The experimental design involves 16 test runs, performed in two blocks of eight runs. Three surface materials (stainless steel, vinyl tile, and ceramic tile) were tested in the first block, while three other surface materials (plastic, painted wood paneling, and faux leather) were tested in the second block. The eight surface concentrations of the surrogate were randomly assigned to test runs within each block. Some of the concentrations were very low and presented challenges for deposition, sampling, and analysis. However, such tests are needed to investigate RE and FNR over the full range of concentrations of interest. In each run, there were 10 test coupons of each of the three surface materials. A positive control sample was generated at the same time as each test sample. The positive control results will be used to 1) calculate RE values for the wipe sampling and analysis method, and 2) fit RE- and FNR-concentration equations, for each of the six surface materials. Data analyses will support 1) estimating the FNR for each combination of contaminant concentration and surface material, 2) estimating the surface concentrations and their uncertainties of the contaminant for each combination of concentration and surface material, 3) estimating RE (%) and their uncertainties for each combination of contaminant concentration and surface material, 4) fitting FNR-concentration and RE-concentration equations for each of the six surface materials, 5) assessing goodness-of-fit of the equations, and 6) quantifying the uncertainty in FNR and RE predictions made with the fitted equations.« less

  2. Test Report: Direct and Indirect Lightning Effects on Composite Materials

    NASA Technical Reports Server (NTRS)

    Evans, R. W.

    1997-01-01

    Lightning tests were performed on composite materials as a part of an investigation of electromagnetic effects on the materials. Samples were subjected to direct and remote simulated lightning strikes. Samples included various thicknesses of graphite filament reinforced plastic (GFRP), material enhanced by expanded aluminum foil layers, and material with an aluminum honeycomb core. Shielding properties of the material and damage to the sample surfaces and joints were investigated. Adding expanded aluminum foil layers and increasing the thickness of GFRP improves the shielding effectiveness against lightning induced fields and the ability to withstand lightning strikes. A report describing the lightning strike tests performed by the U.S. Army Redstone Technical Test Center, Redstone Arsenal, AL, STERT-TE-E-EM, is included as an appendix.

  3. Installation Restoration General Environmental Technology Development. Task 6. Materials Handling of Explosive Contaminated Soil and Sediment.

    DTIC Science & Technology

    1985-06-01

    of chemical analysis and sensitivity testing on material samples . At this 4 time, these samples must be packaged and...preparation at a rate of three samples per hour. One analyst doing both sample preparation and the HPLC analysis can run 16 samples in an 8-hour day. II... study , sensitivity testing was reviewed to enable recommendations for complete analysis of contaminated soils. Materials handling techniques,

  4. Experimental Design for a Sponge-Wipe Study to Relate the Recovery Efficiency and False Negative Rate to the Concentration of a Bacillus anthracis Surrogate for Six Surface Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Gregory F.; Amidan, Brett G.; Krauter, Paula

    2010-12-16

    Two concerns were raised by the Government Accountability Office following the 2001 building contaminations via letters containing Bacillus anthracis (BA). These included the: 1) lack of validated sampling methods, and 2) need to use statistical sampling to quantify the confidence of no contamination when all samples have negative results. Critical to addressing these concerns is quantifying the probability of correct detection (PCD) (or equivalently the false negative rate FNR = 1 - PCD). The PCD/FNR may depend on the 1) method of contaminant deposition, 2) surface concentration of the contaminant, 3) surface material being sampled, 4) sample collection method, 5)more » sample storage/transportation conditions, 6) sample processing method, and 7) sample analytical method. A review of the literature found 17 laboratory studies that focused on swab, wipe, or vacuum samples collected from a variety of surface materials contaminated by BA or a surrogate, and used culture methods to determine the surface contaminant concentration. These studies quantified performance of the sampling and analysis methods in terms of recovery efficiency (RE) and not PCD/FNR (which left a major gap in available information). Quantifying the PCD/FNR under a variety of conditions is a key aspect of validating sample and analysis methods, and also for calculating the confidence in characterization or clearance decisions based on a statistical sampling plan. A laboratory study was planned to partially fill the gap in PCD/FNR results. This report documents the experimental design developed by Pacific Northwest National Laboratory and Sandia National Laboratories (SNL) for a sponge-wipe method. The study will investigate the effects on key response variables from six surface materials contaminated with eight surface concentrations of a BA surrogate (Bacillus atrophaeus). The key response variables include measures of the contamination on test coupons of surface materials tested, contamination recovered from coupons by sponge-wipe samples, RE, and PCD/FNR. The experimental design involves 16 test runs, to be performed in two blocks of eight runs. Three surface materials (stainless steel, vinyl tile, and ceramic tile) were tested in the first block, while three other surface materials (plastic, painted wood paneling, and faux leather) will be tested in the second block. The eight surface concentrations of the surrogate were randomly assigned to test runs within each block. Some of the concentrations will be very low and may present challenges for deposition, sampling, and analysis. However, such tests are needed to investigate RE and PCD/FNR over the full range of concentrations of interest. In each run, there will be 10 test coupons of each of the three surface materials. A positive control sample will be generated prior to each test sample. The positive control results will be used to 1) calculate RE values for the wipe sampling and analysis method, and 2) fit RE- and PCD-concentration equations, for each of the six surface materials. Data analyses will support 1) estimating the PCD for each combination of contaminant concentration and surface material, 2) estimating the surface concentrations and their uncertainties of the contaminant for each combination of concentration and surface material, 3) estimating RE (%) and their uncertainties for each combination of contaminant concentration and surface material, 4) fitting PCD-concentration and RE-concentration equations for each of the six surface materials, 5) assessing goodness-of-fit of the equations, and 6) quantifying the uncertainty in PCD and RE predictions made with the fitted equations.« less

  5. Stainless Steel to Titanium Bimetallic Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaluzny, J. A.; Grimm, C.; Passarelli, D.

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels andmore » is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.« less

  6. Long-term pavement performance project laboratory materials testing and handling guide

    DOT National Transportation Integrated Search

    2007-09-01

    The Long Term Pavement Performance (LTPP) Laboratory Material Testing Guide was originally prepared for laboratory material handling and testing of material specimens and samples of asphalt materials, portland cement concrete, aggregates, and soils u...

  7. Predictive Service Life Tests for Roofing Membranes: Phase II Investigation of Accelerated Aging Tests for Tracking Degradation of Roofing Membrane Materials

    DTIC Science & Technology

    2002-09-01

    bitumens, EPDM , and PVC. Most heat-driven aging tests for building materials use a temperature of 70 °C. Ultraviolet radiation exposure in the...of 0.85 mm/sec. These samples generated three types of load-strain curves. A relatively straight line was generated by each EPDM rubber sample...Mathey 1974) at -18 °C. Except for the EPDM rubber membranes and Sample H, all samples tested comply with this suggested requirement. Sample H is an

  8. Results from Mechanical Testing of Silicon Carbide for Space Applications: Non-Destructive Evalution Samples and MISSE-6 Experiment Samples

    DTIC Science & Technology

    2010-06-07

    the materials properties of silicon carbide plates”, S. Kenderian et al., 2009 SPIE Proceedings, vol. 7425 • Materials – 10” x 16” SiC plates...CONFERENCE PROCEEDING 3. DATES COVERED (From - To) 2008-2010 4. TITLE AND SUBTITLE Results from Mechanical Testing of Silicon Carbide for Space...for silicon carbide optical systems that covers material verification through system development. Recent laboratory results for testing of materials

  9. 40 CFR 63.997 - Performance test and compliance assessment requirements for control devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... regulated materials are loaded, and samples shall be collected using integrated sampling or grab samples... material concentration and percent reduction may be measured as either total organic regulated material or... regulated material or TOC, sampling sites shall be located as specified in paragraphs (e)(2)(i)(A)(1) and (e...

  10. 40 CFR 63.997 - Performance test and compliance assessment requirements for control devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... regulated materials are loaded, and samples shall be collected using integrated sampling or grab samples... material concentration and percent reduction may be measured as either total organic regulated material or... regulated material or TOC, sampling sites shall be located as specified in paragraphs (e)(2)(i)(A)(1) and (e...

  11. 40 CFR 63.997 - Performance test and compliance assessment requirements for control devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... regulated materials are loaded, and samples shall be collected using integrated sampling or grab samples... material concentration and percent reduction may be measured as either total organic regulated material or... regulated material or TOC, sampling sites shall be located as specified in paragraphs (e)(2)(i)(A)(1) and (e...

  12. Asbestos in Colorado schools.

    PubMed

    Baldwin, C A; Beaulieu, H J; Buchan, R M; Johnson, H H

    1982-01-01

    Forty-one public schools in Colorado were drawn at random and surveyed for asbestos-containing materials. After bulk samples of possible asbestos materials from the schools were collected and analyzed, the K2 asbestos screening test was used to eliminate samples that did not contain asbestos. Samples with positive results on the K2 test were analyzed by an outside laboratory by polarized light microscopy. The risk of potential exposure presented by these materials was then assessed for each site from which a sample was taken. Of 113 samples collected, results were negative for asbestos for only 10.6 percent by the K2 test. Of the 101 samples for which results were positive, 56 actually contained 1 or more forms of asbestos. Twelve of these 56 samples were from sprayed material; the remaining 44 were from other materials containing asbestos. Of the 41 schools sampled, 31 had asbestos materials in one of more locations. The potential exposure values for these materials ranged from very low to very high, but the majority had high-exposure potentials. Estimates based on the survey of the 41 schools indicated that 63 to 89 percent of the public schools in Colorado have asbestos materials that present potentially serious hazards, not only to the children, teachers, and staff, but also to members of the community who use the school buildings after regular school hours.

  13. A field test of point relascope sampling of down coarse woody material in managed stands in the Acadian Forest

    Treesearch

    John C. Brissette; Mark J. Ducey; Jeffrey H. Gove

    2003-01-01

    We field tested a new method for sampling down coarse woody material (CWM) using an angle gauge and compared it with the more traditional line intersect sampling (LIS) method. Permanent sample locations in stands managed with different silvicultural treatments within the Penobscot Experimental Forest (Maine, USA) were used as the sampling locations. Point relascope...

  14. Determination of Pass/Fail Criteria for Promoted Combustion Testing

    NASA Technical Reports Server (NTRS)

    Sparks, Kyle M.; Stoltzfus, Joel M.; Steinberg, Theodore A.; Lynn, David

    2009-01-01

    Promoted ignition testing is used to determine the relative flammability of metal rods in oxygen-enriched atmospheres. In these tests, a promoter is used to ignite each metal rod to start the sample burning. Experiments were performed to better understand the promoted ignition test by obtaining insight into the effect a burning promoter has on the preheating of a test sample. Test samples of several metallic materials were prepared and coupled to fast-responding thermocouples along their length. Various ignition promoters were used to ignite the test samples. The thermocouple measurements and test video was synchronized to determine temperature increase with respect to time and length along each test sample. A recommended length of test sample that must be consumed to be considered a flammable material was determined based on the preheated zone measured from these tests. This length was determined to be 30 mm (1.18 in.). Validation of this length and its rationale are presented.

  15. Technical note: Headspace analysis of explosive compounds using a novel sampling chamber.

    PubMed

    DeGreeff, Lauryn; Rogers, Duane A; Katilie, Christopher; Johnson, Kevin; Rose-Pehrsson, Susan

    2015-03-01

    The development of instruments and methods for explosive vapor detection is a continually evolving field of interest. A thorough understanding of the characteristic vapor signatures of explosive material is imperative for the development and testing of new and current detectors. In this research a headspace sampling chamber was designed to contain explosive materials for the controlled, reproducible sampling and characterization of vapors associated with these materials. In a detonation test, the chamber was shown to contain an explosion equivalent to three grams of trinitrotoluene (TNT) without damage to the chamber. The efficacy of the chamber in controlled headspace sampling was evaluated in laboratory tests with bulk explosive materials. Small quantities of TNT, triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) were separately placed in the sampling chamber, and the headspace of each material was analyzed by gas chromatography/mass spectrometry (GC/MS) with online cryogenic trapping to yield characteristic vapor signatures for each explosive compound. Chamber sampling conditions, temperature and sampling time, were varied to demonstrate suitability for precise headspace analysis. Published by Elsevier Ireland Ltd.

  16. Evaluation of Two Surface Sampling Methods for Detection of Erwinia herbicola on a Variety of Materials by Culture and Quantitative PCR▿

    PubMed Central

    Buttner, Mark P.; Cruz, Patricia; Stetzenbach, Linda D.; Cronin, Tracy

    2007-01-01

    This research was designed to evaluate surface sampling protocols for use with culture and quantitative PCR (QPCR) amplification assay for detection of the gram-negative bacterial biothreat simulant Erwinia herbicola on a variety of surface materials. Surfaces selected for evaluation were wood laminate, glass and computer monitor screens, metal file cabinets, plastic arena seats, nylon seat cushions, finished concrete flooring, and vinyl tile flooring. Laboratory and test chamber studies were performed to evaluate two sampling methods, a sponge and a macrofoam swab, for detection of E. herbicola on surface materials. In laboratory trials, seven materials were inoculated with a known concentration of E. herbicola cells and samples were collected from the surfaces of the materials to determine sampling efficiencies. Culture analysis was ineffective for assessing E. herbicola collection efficiency because very few culturable cells were obtained from surface samples. QPCR demonstrated that E. herbicola DNA was present in high concentrations on all of the surface samples, and sampling efficiencies ranged from 0.7 to 52.2%, depending on the sampling method and the surface material. The swab was generally more efficient than the sponge for collection of E. herbicola from surfaces. Test chamber trials were also performed in which E. herbicola was aerosolized into the chamber and allowed to settle onto test materials. Surface sampling results supported those obtained in laboratory trials. The results of this study demonstrate the capabilities of QPCR to enhance the detection and enumeration of biocontaminants on surface materials and provide information on the comparability of sampling methods. PMID:17416685

  17. Evaluation of two surface sampling methods for detection of Erwinia herbicola on a variety of materials by culture and quantitative PCR.

    PubMed

    Buttner, Mark P; Cruz, Patricia; Stetzenbach, Linda D; Cronin, Tracy

    2007-06-01

    This research was designed to evaluate surface sampling protocols for use with culture and quantitative PCR (QPCR) amplification assay for detection of the gram-negative bacterial biothreat simulant Erwinia herbicola on a variety of surface materials. Surfaces selected for evaluation were wood laminate, glass and computer monitor screens, metal file cabinets, plastic arena seats, nylon seat cushions, finished concrete flooring, and vinyl tile flooring. Laboratory and test chamber studies were performed to evaluate two sampling methods, a sponge and a macrofoam swab, for detection of E. herbicola on surface materials. In laboratory trials, seven materials were inoculated with a known concentration of E. herbicola cells and samples were collected from the surfaces of the materials to determine sampling efficiencies. Culture analysis was ineffective for assessing E. herbicola collection efficiency because very few culturable cells were obtained from surface samples. QPCR demonstrated that E. herbicola DNA was present in high concentrations on all of the surface samples, and sampling efficiencies ranged from 0.7 to 52.2%, depending on the sampling method and the surface material. The swab was generally more efficient than the sponge for collection of E. herbicola from surfaces. Test chamber trials were also performed in which E. herbicola was aerosolized into the chamber and allowed to settle onto test materials. Surface sampling results supported those obtained in laboratory trials. The results of this study demonstrate the capabilities of QPCR to enhance the detection and enumeration of biocontaminants on surface materials and provide information on the comparability of sampling methods.

  18. Simulation-based Extraction of Key Material Parameters from Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Alsafi, Huseen; Peninngton, Gray

    Models for the atomic force microscopy (AFM) tip and sample interaction contain numerous material parameters that are often poorly known. This is especially true when dealing with novel material systems or when imaging samples that are exposed to complicated interactions with the local environment. In this work we use Monte Carlo methods to extract sample material parameters from the experimental AFM analysis of a test sample. The parameterized theoretical model that we use is based on the Virtual Environment for Dynamic AFM (VEDA) [1]. The extracted material parameters are then compared with the accepted values for our test sample. Using this procedure, we suggest a method that can be used to successfully determine unknown material properties in novel and complicated material systems. We acknowledge Fisher Endowment Grant support from the Jess and Mildred Fisher College of Science and Mathematics,Towson University.

  19. Outgassing tests on iras solar panel samples

    NASA Technical Reports Server (NTRS)

    Premat, G.; Zwaal, A.; Pennings, N. H.

    1980-01-01

    Several outgassing tests were carried out on representative solar panel samples in order to determine the extent of contamination that could be expected from this source. The materials for the construction of the solar panels were selected as a result of contamination obtained in micro volatile condensable materials tests.

  20. Real-time and accelerated outdoor endurance testing of solar cells

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Anagnostou, E.

    1977-01-01

    Real-time and accelerated outdoor endurance testing was performed on a variety of samples of interest to the National Photovoltaic Conversion Program. The real-time tests were performed at seven different sites and the accelerated tests were performed at one of those sites in the southwestern United States. The purpose of the tests were to help evaluate the lifetime of photovoltaic systems. Three types of samples were tested; transmission samples of possible cover materials, sub-modules constructed using these materials attached to solar cells, and solar cell modules produced by the manufacturers for the ERDA program. Results indicate that suitable cover materials are glass, FEP-A and PFA. Dirt accumulation and cleanability are important factors in the selection of solar cell module covers and encapsulants.

  1. Direct comparison of nanoindentation and tensile test results on reactor-irradiated materials

    NASA Astrophysics Data System (ADS)

    Krumwiede, D. L.; Yamamoto, T.; Saleh, T. A.; Maloy, S. A.; Odette, G. R.; Hosemann, P.

    2018-06-01

    Nanoindentation testing has been used for decades to assess materials on a local scale and to obtain fundamental mechanical property parameters. Nuclear materials research often faces the challenge of testing rather small samples due to the hazardous nature, limited space in reactors, and shallow ion-irradiated zones, fostering the need for small-scale mechanical testing (SSMT). As such, correlating the results from SSMT to bulk properties is particularly of interest. This study compares macroscopic tensile test data (yield and flow stresses) to nanoindentation data (hardness) obtained on a number of different neutron-irradiated materials in order to understand the scaling behavior on radiation-damaged samples.

  2. Numerical analysis and experimental verification of elastomer bending process with different material models

    NASA Astrophysics Data System (ADS)

    Kut, Stanislaw; Ryzinska, Grazyna; Niedzialek, Bernadetta

    2016-01-01

    The article presents the results of tests in order to verifying the effectiveness of the nine selected elastomeric material models (Neo-Hookean, Mooney with two and three constants, Signorini, Yeoh, Ogden, Arruda-Boyce, Gent and Marlow), which the material constants were determined in one material test - the uniaxial tension testing. The convergence assessment of nine analyzed models were made on the basis of their performance from an experimental bending test of the elastomer samples from the results of numerical calculations FEM for each material models. To calculate the material constants for the analyzed materials, a model has been generated by the stressstrain characteristics created as a result of experimental uniaxial tensile test with elastomeric dumbbell samples, taking into account the parameters received in its 18th cycle. Using such a calculated material constants numerical simulation of the bending process of a elastomeric, parallelepipedic sampleswere carried out using MARC / Mentat program.

  3. Resilient modulus testing of materials from MN/Road : phase 1

    DOT National Transportation Integrated Search

    1996-09-01

    The U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) conducted resilient modulus tests on materials from the MN/ROAD test site for the Minnesota Department of Transportation. Materials tested included samples of the lean clay subgra...

  4. 7 CFR 58.243 - Checking quality.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Periodically samples of product and environmental material shall be tested for salmonella. Test results shall be negative when samples are tested for salmonella. Line samples should be taken periodically as an...

  5. 7 CFR 58.243 - Checking quality.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... Periodically samples of product and environmental material shall be tested for salmonella. Test results shall be negative when samples are tested for salmonella. Line samples should be taken periodically as an...

  6. 7 CFR 58.243 - Checking quality.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... Periodically samples of product and environmental material shall be tested for salmonella. Test results shall be negative when samples are tested for salmonella. Line samples should be taken periodically as an...

  7. 7 CFR 58.243 - Checking quality.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Periodically samples of product and environmental material shall be tested for salmonella. Test results shall be negative when samples are tested for salmonella. Line samples should be taken periodically as an...

  8. Heat Effects of Promoters and Determination of Burn Criterion in Promoted Combustion Testing

    NASA Technical Reports Server (NTRS)

    Sparks, Kyle M.; Stoltzfus, Joel M.; Steinberg, Theodore A.; Lynn, David

    2010-01-01

    Promoted ignition testing (NASA Test 17) [1] is used to determine the relative flammability of metal rods in oxygen-enriched atmospheres. A promoter is used to ignite a metal sample rod, initiating sample burning. If a predetermined length of the sample burns, beyond the promoter, the material is considered flammable at the condition tested. Historically, this burn length has been somewhat arbitrary. Experiments were performed to better understand this test by obtaining insight into the effect a burning promoter has on the preheating of a test sample. Test samples of several metallic materials were prepared and coupled to fast-responding thermocouples along their length. Thermocouple measurements and test video were synchronized to determine temperature increase with respect to time and length along each test sample. A recommended flammability burn length, based on a sample preheat of 500 F, was determined based on the preheated zone measured from these tests. This length was determined to be 30 mm (1.18 in.). Validation of this length and its rationale are presented.

  9. Concurrent Ultrasonic Tomography and Acoustic Emission in Solid Materials

    NASA Astrophysics Data System (ADS)

    Chow, Thomas M.

    A series of experiments were performed to detect stress induced changes in the elastic properties of various solid materials. A technique was developed where these changes were monitored concurrently by two methods, ultrasonic tomography and acoustic emission monitoring. This thesis discusses some experiments in which acoustic emission (AE) and ultrasonic tomography were performed on various samples of solid materials including rocks, concrete, metals, and fibre reinforced composites. Three separate techniques were used to induce stress in these samples. Disk shaped samples were subject to stress via diametral loading using an indirect tensile test geometry. Cylindrical samples of rocks and concrete were subject to hydraulic fracture tests, and rectangular samples of fibre reinforced composite were subject to direct tensile loading. The majority of the samples were elastically anisotropic. Full waveform acoustic emission and tomographic data were collected while these samples were under load to give information concerning changes in the structure of the material as it was undergoing stress change and/or failure. Analysis of this data indicates that AE and tomographic techniques mutually compliment each other to give a view of the stress induced elastic changes in the tested samples.

  10. Ultrasonic nondestructive testing of composite materials using disturbed coincidence conditions

    NASA Astrophysics Data System (ADS)

    Bause, F.; Olfert, S.; Schröder, A.; Rautenberg, J.; Henning, B.; Moritzer, E.

    2012-05-01

    In this contribution we present a new method detecting changes in the composite material's acoustic behavior by analyzing disturbed coincidence conditions on plate-like test samples. The coincidence condition for an undamaged GFRP test sample has been experimentally identified using Schlieren measurements. Disturbances of this condition follow from a disturbed acoustic behavior of the test sample which is an indicator for local damages in the region inspected. An experimental probe has been realized consisting of two piezoceramic elements adhered to the nonparallel sides of an isosceles trapezoidal body made of silicone. The base angles of the trapezoidal body have been chosen such that the incident wave meets pre-measured condition of coincidence. The receiving element receives the geometric reflection of the acoustic wave scattered at the test sample's surface which corresponds to the non-coupled part of the incident wave as send by the sending element. Analyzing the transfer function or impulse response of the electro-acoustic system (transmitter, scattering at test sample, receiver), it is possible to detect local disturbances with respect to Cramer's coincidence rule. Thus, it is possible to realize a very simple probe for local ultrasonic nondestructive testing of composite materials (as well as non-composite material) which can be integrated in a small practical device and is good for small size inspection areas.

  11. Direct comparison of nanoindentation and tensile test results on reactor-irradiated materials

    DOE PAGES

    Krumweide, David L; Yamamoto, Takuya; Saleh, Tarik A.; ...

    2018-03-13

    Nanoindentation testing has been used for decades to assess materials on a local scale and to obtain fundamental mechanical property parameters. Nuclear materials research often faces the challenge of testing rather small samples due to the hazardous nature, limited space in reactors, and shallow ion-irradiated zones, fostering the need for small-scale mechanical testing (SSMT). As such, correlating the results from SSMT to bulk properties is particularly of interest. Here, this study compares macroscopic tensile test data (yield and flow stresses) to nanoindentation data (hardness) obtained on a number of different neutron-irradiated materials in order to understand the scaling behavior onmore » radiation-damaged samples.« less

  12. Direct comparison of nanoindentation and tensile test results on reactor-irradiated materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krumweide, David L; Yamamoto, Takuya; Saleh, Tarik A.

    Nanoindentation testing has been used for decades to assess materials on a local scale and to obtain fundamental mechanical property parameters. Nuclear materials research often faces the challenge of testing rather small samples due to the hazardous nature, limited space in reactors, and shallow ion-irradiated zones, fostering the need for small-scale mechanical testing (SSMT). As such, correlating the results from SSMT to bulk properties is particularly of interest. Here, this study compares macroscopic tensile test data (yield and flow stresses) to nanoindentation data (hardness) obtained on a number of different neutron-irradiated materials in order to understand the scaling behavior onmore » radiation-damaged samples.« less

  13. Measuring Permeability of Composite Cryotank Laminants

    NASA Technical Reports Server (NTRS)

    Oliver, Stanley T.; Selvidge, Shawn; Watwood, Michael C.

    2004-01-01

    This paper describes a test method developed to identify whether certain materials and material systems are suitable candidates for large pressurized reusable cryogenic tanks intended for use in current and future manned launch systems. It provides a quick way to screen numerous candidate materials for permeability under anticipated loading environments consistent with flight conditions, as well as addressing reusability issues. cryogenic tank, where the major design issue was hydrogen permeability. It was successfully used to evaluate samples subjected to biaxial loading while maintaining test temperatures near liquid hydrogen. After each sample was thermally preconditioned, a cyclic pressure load was applied to simulate the in-plane strain. First permeability was measured while a sample was under load. Then the sample was unloaded and allowed to return to ambient temperature. The test was repeated to simulate reusability, in order to evaluate its effects on material permeability.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D. H.; Reigel, M. M.

    A full-scale formed core sampler was designed and functionally tested for use in the Saltstone Disposal Facility (SDF). Savannah River National Laboratory (SRNL) was requested to compare properties of the formed core samples and core drilled samples taken from adjacent areas in the full-scale sampler. While several physical properties were evaluated, the primary property of interest was hydraulic conductivity. Differences in hydraulic conductivity between the samples from the formed core sampler and those representing the bulk material were noted with respect to the initial handling and storage of the samples. Due to testing conditions, the site port samples were exposedmore » to uncontrolled temperature and humidity conditions prior to testing whereas the formed core samples were kept in sealed containers with minimal exposure to an uncontrolled environment prior to testing. Based on the results of the testing, no significant differences in porosity or density were found between the formed core samples and those representing the bulk material in the test stand.« less

  15. Testing fireproof materials in a combustion chamber

    NASA Astrophysics Data System (ADS)

    Kulhavy, Petr; Martinec, Tomas; Novak, Ondrej; Petru, Michal; Srb, Pavel

    This article deals with a prototype concept, real experiment and numerical simulation of a combustion chamber, designed for testing fire resistance some new insulating composite materials. This concept of a device used for testing various materials, providing possibility of monitoring temperatures during controlled gas combustion. As a fuel for the combustion process propane butane mixture has been used and also several kinds of burners with various conditions of inlet air (forced, free) and fuel flows were tested. The tested samples were layered sandwich materials based on various materials or foams, used as fillers in fire shutters. The temperature distribution was measured by using thermocouples. A simulation of whole concept of experimental chamber has been carried out as the non-premixed combustion process in the commercial final volume sw Pyrosim. The result was to design chamber with a construction suitable, according to the international standards, achieve the required values (temperature in time). Model of the combustion based on a stoichiometric defined mixture of gas and the tested layered samples showed good conformity with experimental results - i.e. thermal distribution inside and heat release rate that has gone through the sample.

  16. Relative toxicity of pyrolysis products of some synthetic polymers

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Slattengren, C. L.; Furst, A.; Kourtides, D. A.; Parker, J. A.

    1976-01-01

    Nineteen samples of synthetic polymers were evaluated for relative toxicity in the course of characterizing materials intended for aircraft interior applications. The generic polymers included ABS, chlorinated PVC, polycarbonate, polyphenylene oxide, polyphenylene sulfide, polysulfone, polyaryl sulfone, polyether sulfone, polybismaleimide, and polyvinyl fluoride. Test results are presented, and compared in relative rankings with similar results on cellulosic materials and other synthetic polymers. Under these test conditions, the samples of synthetic polymers were either comparable to or significantly less toxic than the samples of commercial cellulosic materials.

  17. Static Corrosion Test of Porous Iron Material with Polymer Coating

    NASA Astrophysics Data System (ADS)

    Markušová-Bučková, Lucia; Oriňaková, Renáta; Oriňak, Andrej; Gorejová, Radka; Kupková, Miriam; Hrubovčáková, Monika; Baláž, Matej; Kováľ, Karol

    2016-12-01

    At present biodegradable implants received increased attention due to their use in various fields of medicine. This work is dedicated to testing of biodegradable materials which could be used as bone implants. The samples were prepared from the carbonyl iron powder by replication method and surface polymer film was produced through sol-gel process. Corrosion testing was carried out under static conditions during 12 weeks in Hank's solution. The quantity of corrosion products increased with prolonging time of static test as it can be concluded from the results of EDX analysis. The degradation of open cell materials with polyethylene glycol coating layer was faster compared to uncoated Fe sample. Also the mass losses were higher for samples with PEG coating. The polymer coating brought about the desired increase in degradation rate of porous iron material.

  18. Arcjet Testing of Micro-Meteoroid Impacted Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Munk, Michelle M.; Glaab, Louis J.

    2013-01-01

    There are several harsh space environments that could affect thermal protection systems and in turn pose risks to the atmospheric entry vehicles. These environments include micrometeoroid impact, extreme cold temperatures, and ionizing radiation during deep space cruise, all followed by atmospheric entry heating. To mitigate these risks, different thermal protection material samples were subjected to multiple tests, including hyper velocity impact, cold soak, irradiation, and arcjet testing, at various NASA facilities that simulated these environments. The materials included a variety of honeycomb packed ablative materials as well as carbon-based non-ablative thermal protection systems. The present paper describes the results of the multiple test campaign with a focus on arcjet testing of thermal protection materials. The tests showed promising results for ablative materials. However, the carbon-based non-ablative system presented some concerns regarding the potential risks to an entry vehicle. This study provides valuable information regarding the capability of various thermal protection materials to withstand harsh space environments, which is critical to sample return and planetary entry missions.

  19. Corrosion testing using isotopes

    DOEpatents

    Hohorst, Frederick A.

    1995-12-05

    A method for determining the corrosion behavior of a material with respect to a medium in contact with the material by: implanting a substantially chemically inert gas in a matrix so that corrosion experienced by the material causes the inert gas to enter the medium; placing the medium in contact with the material; and measuring the amount of inert gas which enters the medium. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a body of the material, which body has a surface to be contacted by the medium; and a substantially chemically inert gas implanted into the body to a depth below the surface. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a substrate of material which is easily corroded by the medium, the substrate having a surface; a substantially chemically inert gas implanted into the substrate; and a sheet of the material whose resistance to corrosion is to be tested, the sheet being disposed against the surface of the substrate and having a defined thickness.

  20. Ultra-accelerated natural sunlight exposure testing

    DOEpatents

    Jorgensen, Gary J.; Bingham, Carl; Goggin, Rita; Lewandowski, Allan A.; Netter, Judy C.

    2000-06-13

    Process and apparatus for providing ultra accelerated natural sunlight exposure testing of samples under controlled weathering without introducing unrealistic failure mechanisms in exposed materials and without breaking reciprocity relationships between flux exposure levels and cumulative dose that includes multiple concurrent levels of temperature and relative humidity at high levels of natural sunlight comprising: a) concentrating solar flux uniformly; b) directing the controlled uniform sunlight onto sample materials in a chamber enclosing multiple concurrent levels of temperature and relative humidity to allow the sample materials to be subjected to accelerated irradiance exposure factors for a sufficient period of time in days to provide a corresponding time of about at least a years worth of representative weathering of the sample materials.

  1. Evaluating Composite Sampling Methods of Bacillus spores at Low Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Becky M.; Amidan, Brett G.; Anderson, Kevin K.

    Restoring facility operations after the 2001 Amerithrax attacks took over three months to complete, highlighting the need to reduce remediation time. The most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite: a single cellulose sponge samples multiple coupons; 2) single medium multi-pass composite: a single cellulose sponge is used to sample multiple coupons; and 3) multi-medium post-samplemore » composite: a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155CFU/cm2, respectively). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p-value < 0.0001) and coupon material (p-value = 0.0008). Recovery efficiency (RE) was higher overall using the post-sample composite (PSC) method compared to single medium composite from both clean and grime coated materials. RE with the PSC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, painted wall board, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but significantly lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces.« less

  2. Test and Analysis of Solid Rocket Motor Nozzle Ablative Materials

    NASA Technical Reports Server (NTRS)

    Clayton, J. Louie

    2017-01-01

    Asbestos free solid motor internal insulation samples were tested at the MSFC Hyperthermal Facility. Objectives of the test were to gather data for analog characterization of ablative and in-depth thermal performance of rubber materials subject to high enthalpy/pressure flow conditions. Tests were conducted over a range of convective heat fluxes for both inert and chemically reactive sub-sonic free stream gas flow. Instrumentation included use of total calorimeters, thermocouples, and a surface pyrometer for surface temperature measurement. Post-test sample forensics involved measurement of eroded depth, charred depth, total sample weight loss, and documentation of the general condition of the eroded profile. A complete Charring Material Ablator (CMA) style aero-thermal analysis was conducted for the test matrix and results compared to the measured data. In general, comparisons were possible for a number of the cases and the results show a limited predictive ability to model accurately both the ablative response and the in-depth temperature profiles. Lessons learned and modeling recommendations are made regarding future testing and modeling improvements that will increase understanding of the basic chemistry/physics associated with the complicated material ablation process of rubber materials.

  3. Characterization of Friction Joints Subjected to High Levels of Random Vibration

    NASA Technical Reports Server (NTRS)

    deSantos, Omar; MacNeal, Paul

    2012-01-01

    This paper describes the test program in detail including test sample description, test procedures, and vibration test results of multiple test samples. The material pairs used in the experiment were Aluminum-Aluminum, Aluminum- Dicronite coated Aluminum, and Aluminum-Plasmadize coated Aluminum. Levels of vibration for each set of twelve samples of each material pairing were gradually increased until all samples experienced substantial displacement. Data was collected on 1) acceleration in all three axes, 2) relative static displacement between vibration runs utilizing photogrammetry techniques, and 3) surface galling and contaminant generation. This data was used to estimate the values of static friction during random vibratory motion when "stick-slip" occurs and compare these to static friction coefficients measured before and after vibration testing.

  4. Infrared Database for Process Support Materials

    NASA Technical Reports Server (NTRS)

    Bennett, K. E.; Boothe, R. E.; Burns, H. D.

    2003-01-01

    Process support materials' compatibility with cleaning processes is critical to ensure final hardware cleanliness and that performance requirements are met. Previous discovery of potential contaminants in process materials shows the need for incoming materials testing and establishment of a process materials database. The Contamination Control Team of the Materials, Processes, and Manufacturing (MP&M) Department at Marshall Space Flight Center (MSFC) has initiated the development of such an infrared (IR) database, called the MSFC Process Materials IR database, of the common process support materials used at MSFC. These process support materials include solvents, wiper cloths, gloves, bagging materials, etc. Testing includes evaluation of the potential of gloves, wiper cloths, and other items to transfer contamination to handled articles in the absence of solvent exposure, and the potential for solvent exposure to induce material degradation. This Technical Memorandum (TM) summarizes the initial testing completed through December 2002. It is anticipated that additional testing will be conducted with updates provided in future TMs.Materials were analyzed using two different IR techniques: (1) Dry transference and (2) liquid extraction testing. The first of these techniques utilized the Nicolet Magna 750 IR spectrometer outfitted with a horizontal attenuated total reflectance (HATR) crystal accessory. The region from 650 to 4,000 wave numbers was analyzed, and 50 scans were performed per IR spectrum. A dry transference test was conducted by applying each sample with hand pressure to the HATR crystal to first obtain a spectrum of the parent material. The material was then removed from the HATR crystal and analyzed to determine the presence of any residues. If volatile, liquid samples were examined both prior to and following evaporation.The second technique was to perform an extraction test with each sample in five different solvents.Once the scans were complete for both the dry transference and the extraction tests, the residue from each scan was interpreted.

  5. Cyclic arc plasma tests of RSI materials using a preheater

    NASA Technical Reports Server (NTRS)

    Stewart, D. A.

    1973-01-01

    The results of a test program are reported in which a preheater was used with an arc plasma stream to study the thermal response of samples of candidate reusable surface insulation materials for the space shuttle. The preheater simulated the shuttle temperature history during the first and last portions of the test cycle, which could not be simulated by the air arc plasma flow. Pre- and post-test data taken for each of the materials included magnified views, optical properties, and chemical analyses. The test results indicate that the mullite base samples experience higher surface temperatures than the other materials at heating rates greater than 225 kw/sq m. The ceramic fibrous mullite and silica coatings show noncatalytic wall behavior. Internal temperature response data for the materials are compared and correlated with analytical predictions.

  6. Sample Containerization and Sealing Techniques for Contamination Prevention and Preservation of Science Value for Mars Sample Return

    NASA Astrophysics Data System (ADS)

    Younse, Paulo

    Four sealing methods for encapsulating samples in 1 cm diameter thin-walled sample tubes were designed, along with a set of tests for characterization and evaluation of contamination prevention and sample preservation capability for the proposed Mars Sample Return (MSR) campaign. The sealing methods include a finned shape memory alloy (SMA) plug, expanding torque plug, contracting SMA ring cap, and expanding SMA ring plug. Mechanical strength and hermeticity of the seal were measured using a helium leak detector. Robustness of the seal to Mars simulant dust, surface abrasion, and pressure differentials were tested. Survivability tests were run to simulate thermal cycles on Mars, vibration from a Mars Ascent Vehicle (MAV), and shock from Earth Entry Vehicle (EEV) landing. Material compatibility with potential sample minerals and organic molecules were studied to select proper tube and seal materials that would not lead to adverse reactions nor contaminate the sample. Cleaning and sterilization techniques were executed on coupons made from the seal materials to assess compliance with planetary protection and contamination control. Finally, a method to cut a sealed tube for sample removal was designed and tested.

  7. Projects procedure guide : sampling frequencies for materials testing and inspection

    DOT National Transportation Integrated Search

    2002-02-01

    The Bureau of Materials and Physical Research's Project Procedures Guide (PPG) is used as a resource for determining reasonable inspection procedures and sampling frequencies for materials used in highway construction. This Manual seeks to establish ...

  8. The flexural properties of endodontic post materials.

    PubMed

    Stewardson, Dominic A; Shortall, Adrian C; Marquis, Peter M; Lumley, Philip J

    2010-08-01

    To measure the flexural strengths and moduli of endodontic post materials and to assess the effect on the calculated flexural properties of varying the diameter/length (D/L) ratio of three-point bend test samples. Three-point bend testing of samples of 2mm diameter metal and fiber-reinforced composite (FRC) rods was carried out and the mechanical properties calculated at support widths of 16 mm, 32 mm and 64 mm. Weibull analysis was performed on the strength data. The flexural strengths of all the FRC post materials exceeded the yield strengths of the gold and stainless steel samples; the flexural strengths of two FRC materials were comparable with the yield strength of titanium. Stainless steel recorded the highest flexural modulus while the titanium and the two carbon fiber materials exhibited similar values just exceeding that of gold. The remaining glass fiber materials were of lower modulus within the range of 41-57 GPa. Weibull modulus values for the FRC materials ranged from 16.77 to 30.09. Decreasing the L/D ratio produced a marked decrease in flexural modulus for all materials. The flexural strengths of FRC endodontic post materials as new generally exceed the yield strengths of metals from which endodontic posts are made. The high Weibull modulus values suggest good clinical reliability of FRC posts. The flexural modulus values of the tested posts were from 2-6 times (FRC) to 4-10 times (metal) that of dentin. Valid measurement of flexural properties of endodontic post materials requires that test samples have appropriate L/D ratios. Copyright 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Use of reinforced inorganic cement materials for spark wire and drift chamber wire frames

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The results of a survey, materials test, and analysis study directed toward the development of an inorganic glass-fiber reinforced cement material for use in the construction of space qualified spark wire frames and drift chamber frames are presented. The purpose for this research was to evaluate the feasibility of using glass fiber reinforced cement (GFRC) for large dimensioned structural frames for supporting a number of precisely located spark wires in multiple planes. A survey of the current state of the art in fiber reinforced cement materials was made; material sample mixes were made and tested to determine their laboratory performances. Tests conducted on sample materials showed that compressive and flexural strengths of this material could approach values which would enable fabrication of structural spark wire frames.

  10. Verification of three-microphone impedance tube method for measurement of transmission loss in aerogels

    NASA Astrophysics Data System (ADS)

    Connick, Robert J.

    Accurate measurement of normal incident transmission loss is essential for the acoustic characterization of building materials. In this research, a method of measuring normal incidence sound transmission loss proposed by Salissou et al. as a complement to standard E2611-09 of the American Society for Testing and Materials [Standard Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method (American Society for Testing and Materials, New York, 2009)] is verified. Two sam- ples from the original literature are used to verify the method as well as a Filtros RTM sample. Following the verification, several nano-material Aerogel samples are measured.

  11. Polymers in solar energy utilization

    NASA Technical Reports Server (NTRS)

    Liang, R. H.; Coulter, D. R.; Dao, C.; Gupta, A.

    1983-01-01

    A laser photoacoustic technique (LPAT) has been verified for performing accelerated life testing of outdoor photooxidation of polymeric materials used in solar energy applications. Samples of the material under test are placed in a chamber with a sensitive microphone, then exposed to chopped laser radiation. The sample absorbs the light and converts it to heat by a nonradiative deexcitation process, thereby reducing pressure fluctuations within the cell. The acoustic signal detected by the microphone is directly proportional to the amount of light absorbed by the specimen. Tests were performed with samples of ethylene/methylacrylate copolymer (EMA) reprecipitated from hot cyclohexane, compressed, and molded into thin (25-50 microns) films. The films were exposed outdoors and sampled by LPAT weekly. The linearity of the light absorbed with respect to the acoustic signal was verified.Correlations were established between the photoacoustic behavior of the materials aged outdoors and the same kinds of samples cooled and heated in a controlled environment reactor. The reactor tests were validated for predicting outdoor exosures up to 55 days.

  12. Hot Hydrogen Testing of Tungsten-Uranium Dioxide (W-UO2) CERMET Fuel Materials for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Broadway, Jeramie

    2014-01-01

    CERMET fuel materials are being developed at the NASA Marshall Space Flight Center for a Nuclear Cryogenic Propulsion Stage. Recent work has resulted in the development and demonstration of a Compact Fuel Element Environmental Test (CFEET) System that is capable of subjecting depleted uranium fuel material samples to hot hydrogen. A critical obstacle to the development of an NCPS engine is the high-cost and safety concerns associated with developmental testing in nuclear environments. The purpose of this testing capability is to enable low-cost screening of candidate materials, fabrication processes, and further validation of concepts. The CERMET samples consist of depleted uranium dioxide (UO2) fuel particles in a tungsten metal matrix, which has been demonstrated on previous programs to provide improved performance and retention of fission products1. Numerous past programs have utilized hot hydrogen furnace testing to develop and evaluate fuel materials. The testing provides a reasonable simulation of temperature and thermal stress effects in a flowing hydrogen environment. Though no information is gained about radiation damage, the furnace testing is extremely valuable for development and verification of fuel element materials and processes. The current work includes testing of subscale W-UO2 slugs to evaluate fuel loss and stability. The materials are then fabricated into samples with seven cooling channels to test a more representative section of a fuel element. Several iterations of testing are being performed to evaluate fuel mass loss impacts from density, microstructure, fuel particle size and shape, chemistry, claddings, particle coatings, and stabilizers. The fuel materials and forms being evaluated on this effort have all been demonstrated to control fuel migration and loss. The objective is to verify performance improvements of the various materials and process options prior to expensive full scale fabrication and testing. Post test analysis will include weight percent fuel loss, microscopy, dimensional tolerance, and fuel stability.

  13. A test and instrumentation system for the investigation of degradation of electrical insulating materials

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The basic test methods of aging and deterioration mechanisms of electrical insulating materials are discussed. A comprehensive test system developed to study the degradation process is described. This system is completely checked, and calibrated with a few insulating material samples.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Mohit Jain; Dr. Ganesh Skandan; Dr. Gordon E. Khose

    Generation IV Very High Temperature power generating nuclear reactors will operate at temperatures greater than 900 oC. At these temperatures, the components operating in these reactors need to be fabricated from materials with excellent thermo-mechanical properties. Conventional pure or composite materials have fallen short in delivering the desired performance. New materials, or conventional materials with new microstructures, and associated processing technologies are needed to meet these materials challenges. Using the concept of functionally graded materials, we have fabricated a composite material which has taken advantages of the mechanical and thermal properties of ceramic and metals. Functionally-graded composite samples with variousmore » microstructures were fabricated. It was demonstrated that the composition and spatial variation in the composition of the composite can be controlled. Some of the samples were tested for irradiation resistance to neutrons. The samples did not degrade during initial neutron irradiation testing.« less

  15. Corrosion testing using isotopes

    DOEpatents

    Hohorst, F.A.

    1995-12-05

    A method is described for determining the corrosion behavior of a material with respect to a medium in contact with the material by: implanting a substantially chemically inert gas in a matrix so that corrosion experienced by the material causes the inert gas to enter the medium; placing the medium in contact with the material; and measuring the amount of inert gas which enters the medium. A test sample of a material whose resistance to corrosion by a medium is to be tested is described composed of: a body of the material, which body has a surface to be contacted by the medium; and a substantially chemically inert gas implanted into the body to a depth below the surface. A test sample of a material whose resistance to corrosion by a medium is to be tested is described composed of: a substrate of material which is easily corroded by the medium, the substrate having a surface; a substantially chemically inert gas implanted into the substrate; and a sheet of the material whose resistance to corrosion is to be tested, the sheet being disposed against the surface of the substrate and having a defined thickness. 3 figs.

  16. Cyclical tests of selected space shuttle TPS metallic materials in a plasma arc tunnel Volume 1: Description of tests and program summary

    NASA Technical Reports Server (NTRS)

    Rinehart, W. A.; Land, D. W.; Painter, J. H.; Williamson, R. A.

    1972-01-01

    Work, concerned with cyclical thermal evaluation of selected space shuttle thermal protection system (TPS) metallic materials in a hypervelocity oxidizing atmosphere that approximated an actual entry environment, is presented. A total of 325 sample test hours were conducted on 21 super-alloy metallic samples at temperatures from 1800 to 2200 F (1256 to 1478 K) without any failures. The 4 x 4 in. (10.2 x 10.2 cm) samples were fabricated from five nickel base alloys and one cobalt base alloy. Eighteen of the samples were cycled 100 times each and the other three samples 50 times each in a test stream emanating from an 8 in. (20.3 cm) diam exit, Mach 4.6, conical nozzle. The test cycle consisted of a 10 min heat pulse to a controlled temperature followed by a 10 min cooldown period. The TD-NiCrAl and TD-NiAlY materials showed the least change in weight, thickness, and physical appearance even though they were subjected to the highest temperature environment.

  17. Requirements for the Development of Bacillus Anthracis Spore Reference Materials Used to Test Detection Systems

    PubMed Central

    Almeida, Jamie L.; Wang, Lili; Morrow, Jayne B.; Cole, Kenneth D.

    2006-01-01

    Bacillus anthracis spores have been used as biological weapons and the possibility of their further use requires surveillance systems that can accurately and reliably detect their presence in the environment. These systems must collect samples from a variety of matrices, process the samples, and detect the spores. The processing of the sample may include removal of inhibitors, concentration of the target, and extraction of the target in a form suitable for detection. Suitable reference materials will allow the testing of each of these steps to determine the sensitivity and specificity of the detection systems. The development of uniform and well-characterized reference materials will allow the comparison of different devices and technologies as well as assure the continued performance of detection systems. This paper discusses the special requirements of reference materials for Bacillus anthracis spores that could be used for testing detection systems. The detection of Bacillus anthracis spores is based on recognition of specific characteristics (markers) on either the spore surface or in the nucleic acids (DNA). We have reviewed the specific markers and their relevance to characterization of reference materials. We have also included the approach for the characterization of candidate reference materials that we are developing at the NIST laboratories. Additional applications of spore reference materials would include testing sporicidal treatments, techniques for sampling the environment, and remediation of spore-contaminated environments. PMID:27274929

  18. Processing and performance of self-healing materials

    NASA Astrophysics Data System (ADS)

    Tan, P. S.; Zhang, M. Q.; Bhattacharyya, D.

    2009-08-01

    Two self-healing methods were implemented into composite materials with self-healing capabilities, using hollow glass fibres (HGF) and microencapsulated epoxy resin with mercaptan as the hardener. For the HGF approach, two perpendicular layers of HGF were put into an E-glass/epoxy composite, and were filled with coloured epoxy resin and hardener. The HGF samples had a novel ball indentation test method done on them. The samples were analysed using micro-CT scanning, confocal microscopy and penetrant dye. Micro-CT and confocal microscopy produced limited success, but their viability was established. Penetrant dye images showed resin obstructing flow of dye through damage regions, suggesting infiltration of resin into cracks. Three-point bend tests showed that overall performance could be affected by the flaws arising from embedding HGF in the material. For the microcapsule approach, samples were prepared for novel double-torsion tests used to generate large cracks. The samples were compared with pure resin samples by analysing them using photoelastic imaging and scanning electron microscope (SEM) on crack surfaces. Photoelastic imaging established the consolidation of cracks while SEM showed a wide spread of microcapsules with their distribution being affected by gravity. Further double-torsion testing showed that healing recovered approximately 24% of material strength.

  19. Groundwater Remediation and Alternate Energy at White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Fischer, Holger

    2008-01-01

    White Sands Test Facility Core Capabilities: a) Remote Hazardous Testing of Reactive, Explosive, and Toxic Materials and Fluids; b) Hypergolic Fluids Materials and Systems Testing; c) Oxygen Materials and System Testing; d) Hypervelocity Impact Testing; e)Flight Hardware Processing; and e) Propulsion Testing. There is no impact to any drinking water well. Includes public wells and the NASA supply well. There is no public exposure. Groundwater is several hundred feet below ground. No air or surface water exposure. Plume is moving very slowly to the west. Plume Front Treatment system will stop this westward movement. NASA performs on-going monitoring. More than 200 wells and zones are routinely sampled. Approx. 850 samples are obtained monthly and analyzed for over 300 different hazardous chemicals.

  20. Development of a testing method for asbestos fibers in treated materials of asbestos containing wastes by transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Takashi, E-mail: tyama@nies.go.jp; Kida, Akiko; Noma, Yukio

    Highlights: • A high sensitive and selective testing method for asbestos in treated materials of asbestos containing wastes was developed. • Asbestos can be determined at a limits are a few million fibers per gram and a few μg g{sup −1}. • High temperature melting treatment samples were determined by this method. Asbestos fiber concentration were below the quantitation limit in all samples, and total fiber concentrations were determined as 47–170 × 10{sup 6} g{sup −1}. - Abstract: Appropriate treatment of asbestos-containing wastes is a significant problem. In Japan, the inertization of asbestos-containing wastes based on new treatment processes approvedmore » by the Minister of the Environment is promoted. A highly sensitive method for testing asbestos fibers in inertized materials is required so that these processes can be approved. We developed a method in which fibers from milled treated materials are extracted in water by shaking, and are counted and identified by transmission electron microscopy. Evaluation of this method by using asbestos standards and simulated slag samples confirmed that the quantitation limits are a few million fibers per gram and a few μg/g in a sample of 50 mg per filter. We used this method to assay asbestos fibers in slag samples produced by high-temperature melting of asbestos-containing wastes. Fiber concentrations were below the quantitation limit in all samples, and total fiber concentrations were determined as 47–170 × 10{sup −6} f/g. Because the evaluation of treated materials by TEM is difficult owing to the limited amount of sample observable, this testing method should be used in conjunction with bulk analytical methods for sure evaluation of treated materials.« less

  1. Method and apparatus for processing a test sample to concentrate an analyte in the sample from a solvent in the sample

    DOEpatents

    Turner, Terry D.; Beller, Laurence S.; Clark, Michael L.; Klingler, Kerry M.

    1997-01-01

    A method of processing a test sample to concentrate an analyte in the sample from a solvent in the sample includes: a) boiling the test sample containing the analyte and solvent in a boiling chamber to a temperature greater than or equal to the solvent boiling temperature and less than the analyte boiling temperature to form a rising sample vapor mixture; b) passing the sample vapor mixture from the boiling chamber to an elongated primary separation tube, the separation tube having internal sidewalls and a longitudinal axis, the longitudinal axis being angled between vertical and horizontal and thus having an upper region and a lower region; c) collecting the physically transported liquid analyte on the internal sidewalls of the separation tube; and d) flowing the collected analyte along the angled internal sidewalls of the separation tube to and pass the separation tube lower region. The invention also includes passing a turbulence inducing wave through a vapor mixture to separate physically transported liquid second material from vaporized first material. Apparatus are also disclosed for effecting separations. Further disclosed is a fluidically powered liquid test sample withdrawal apparatus for withdrawing a liquid test sample from a test sample container and for cleaning the test sample container.

  2. Method and apparatus for processing a test sample to concentrate an analyte in the sample from a solvent in the sample

    DOEpatents

    Turner, T.D.; Beller, L.S.; Clark, M.L.; Klingler, K.M.

    1997-10-14

    A method of processing a test sample to concentrate an analyte in the sample from a solvent in the sample includes: (a) boiling the test sample containing the analyte and solvent in a boiling chamber to a temperature greater than or equal to the solvent boiling temperature and less than the analyte boiling temperature to form a rising sample vapor mixture; (b) passing the sample vapor mixture from the boiling chamber to an elongated primary separation tube, the separation tube having internal sidewalls and a longitudinal axis, the longitudinal axis being angled between vertical and horizontal and thus having an upper region and a lower region; (c) collecting the physically transported liquid analyte on the internal sidewalls of the separation tube; and (d) flowing the collected analyte along the angled internal sidewalls of the separation tube to and pass the separation tube lower region. The invention also includes passing a turbulence inducing wave through a vapor mixture to separate physically transported liquid second material from vaporized first material. Apparatus is also disclosed for effecting separations. Further disclosed is a fluidically powered liquid test sample withdrawal apparatus for withdrawing a liquid test sample from a test sample container and for cleaning the test sample container. 8 figs.

  3. Arc Jet Test and Analysis of Asbestos Free Solid Rocket Motor Nozzle Dome Ablative Materials

    NASA Technical Reports Server (NTRS)

    Clayton, J. Louie

    2017-01-01

    Asbestos free solid motor internal insulation samples were recently tested at the MSFC Hyperthermal Arc Jet Facility. Objectives of the test were to gather data for solid rocket motor analog characterization of ablative and in-depth thermal performance of rubber materials subject to high enthalpy/pressure flow conditions. Tests were conducted over a range of convective heat fluxes for both inert and chemically reactive sub-sonic free stream gas flow. Active instrumentation included use of total calorimeters, in-depth thermocouples, and a surface pyrometer for in-situ surface temperature measurement. Post-test sample forensics involved determination of eroded depth, charred depth, total sample weight loss, and documentation of the general condition of the eroded profile. A complete Charring Material Ablator (CMA) style aero thermal analysis was conducted for the test matrix and results compared to the measured data. In general, comparisons were possible for a number of the cases and the results show a limited predictive ability to model accurately both the ablative response and the in-depth temperature profiles. Lessons learned and modeling recommendations are made regarding future testing and modeling improvements that will increase understanding of the basic chemistry/physics associated with the complicated material ablation process of rubber materials.

  4. West Magnesia Canyon Channel, City of Rancho Mirage, Riverside County, California. Detailed Project Report. Rancho Mirage Flood Control. Technical Appendixes.

    DTIC Science & Technology

    1983-12-01

    Maximum Site site length Earthquake Accelerations Fault (miles) (miles) (Magnitude) in Bedrock (g)* Agua Caliente 32 50 7.25 0.13 Calico-Newberry 56 50...disturbed samples of representative materials were - obtained for laboratory testing. Seventeen inr- situ density tests were * conducted in the excavated...disturbed samples of representative materials were obtained for - --.-- laboratory testing. Four in- situ density tests were conducted in the trenches by the

  5. Comparison of High-Performance Fiber Materials Properties in Simulated and Actual Space Environments

    NASA Technical Reports Server (NTRS)

    Finckernor, M. M.

    2017-01-01

    A variety of high-performance fibers, including Kevlar, Nomex, Vectran, and Spectra, have been tested for durability in the space environment, mostly the low Earth orbital environment. These materials have been tested in yarn, tether/cable, and fabric forms. Some material samples were tested in a simulated space environment, such as the Atomic Oxygen Beam Facility and solar simulators in the laboratory. Other samples were flown on the International Space Station as part of the Materials on International Space Station Experiment. Mass loss due to atomic oxygen erosion and optical property changes due to ultraviolet radiation degradation are given. Tensile test results are also presented, including where moisture loss in a vacuum had an impact on tensile strength.

  6. Teaching materials of algebraic equation

    NASA Astrophysics Data System (ADS)

    Widodo, S. A.; Prahmana, R. C. I.; Purnami, A. S.; Turmudi

    2017-12-01

    The purpose of this paper is to know the effectiveness of teaching materials algebraic equation. This type of research used experimental method. The population in this study is all students of mathematics education who take numerical method in sarjanawiyata tamansiswa of university; the sample is taken using cluster random sampling. Instrument used in this research is test and questionnaire. The test is used to know the problem solving ability and achievement, while the questionnaire is used to know the student's response on the teaching materials. Data Analysis technique of quantitative used Wilcoxon test, while the qualitative data used grounded theory. Based on the results of the test can be concluded that the development of teaching materials can improve the ability to solve problems and achievement.

  7. Evaluating Composite Sampling Methods of Bacillus Spores at Low Concentrations

    PubMed Central

    Hess, Becky M.; Amidan, Brett G.; Anderson, Kevin K.; Hutchison, Janine R.

    2016-01-01

    Restoring all facility operations after the 2001 Amerithrax attacks took years to complete, highlighting the need to reduce remediation time. Some of the most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite (SM-SPC): a single cellulose sponge samples multiple coupons with a single pass across each coupon; 2) single medium multi-pass composite: a single cellulose sponge samples multiple coupons with multiple passes across each coupon (SM-MPC); and 3) multi-medium post-sample composite (MM-MPC): a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155 CFU/cm2). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted dry wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p< 0.0001) and coupon material (p = 0.0006). Recovery efficiency (RE) was higher overall using the MM-MPC method compared to the SM-SPC and SM-MPC methods. RE with the MM-MPC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, dry wall, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces. PMID:27736999

  8. Evaluating Composite Sampling Methods of Bacillus Spores at Low Concentrations.

    PubMed

    Hess, Becky M; Amidan, Brett G; Anderson, Kevin K; Hutchison, Janine R

    2016-01-01

    Restoring all facility operations after the 2001 Amerithrax attacks took years to complete, highlighting the need to reduce remediation time. Some of the most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite (SM-SPC): a single cellulose sponge samples multiple coupons with a single pass across each coupon; 2) single medium multi-pass composite: a single cellulose sponge samples multiple coupons with multiple passes across each coupon (SM-MPC); and 3) multi-medium post-sample composite (MM-MPC): a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155 CFU/cm2). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted dry wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p< 0.0001) and coupon material (p = 0.0006). Recovery efficiency (RE) was higher overall using the MM-MPC method compared to the SM-SPC and SM-MPC methods. RE with the MM-MPC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, dry wall, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces.

  9. A Draft Protocol for Detecting Possible Biohazards in Martian Samples Returned to Earth

    NASA Technical Reports Server (NTRS)

    Viso, M.; DeVincenzi, D. L.; Race, M. S.; Schad, P. J.; Stabekis, P. D.; Acevedo, S. E.; Rummel, J. D.

    2002-01-01

    In preparation for missions to Mars that will involve the return of samples, it is necessary to prepare for the safe receiving, handling, testing, distributing, and archiving of martian materials here on Earth. Previous groups and committees have studied selected aspects of sample return activities, but a specific protocol for handling and testing of returned -=1 samples from Mars remained to be developed. To refine the requirements for Mars sample hazard testing and to develop criteria for the subsequent release of sample materials from precautionary containment, NASA Planetary Protection Officer, working in collaboration with CNES, convened a series of workshops to produce a Protocol by which returned martian sample materials could be assessed for biological hazards and examined for evidence of life (extant or extinct), while safeguarding the samples from possible terrestrial contamination. The Draft Protocol was then reviewed by an Oversight and Review Committee formed specifically for that purpose and composed of senior scientists. In order to preserve the scientific value of returned martian samples under safe conditions, while avoiding false indications of life within the samples, the Sample Receiving Facility (SRF) is required to allow handling and processing of the Mars samples to prevent their terrestrial contamination while maintaining strict biological containment. It is anticipated that samples will be able to be shipped among appropriate containment facilities wherever necessary, under procedures developed in cooperation with international appropriate institutions. The SRF will need to provide different types of laboratory environments for carrying out, beyond sample description and curation, the various aspects of the protocol: Physical/Chemical analysis, Life Detection testing, and Biohazard testing. The main principle of these tests will be described and the criteria for release will be discussed, as well as the requirements for the SRF and its personnel.

  10. Micro-tensile testing system

    DOEpatents

    Wenski, Edward G [Lenexa, KS

    2007-08-21

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  11. Micro-tensile testing system

    DOEpatents

    Wenski, Edward G.

    2006-01-10

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  12. Micro-tensile testing system

    DOEpatents

    Wenski, Edward G [Lenexa, KS

    2007-07-17

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  13. Nondestructive Evaluation of Airport Pavements. Volume I. Program References,

    DTIC Science & Technology

    1979-09-01

    greater than its original capacity (see test 13 on Fig. 2.5). During the material tests by Majidzadeh, the dynamic E-value of frozen subgrade soil was...Sample the base and subbase material by conventional spoon and identify the material by standard soil -aggregate classification and penetration...such as shaker table. The new testing specification is designed for all paving materials including subgrade soils . The specifications of material

  14. The effects of gas mixtures on ion engine erosion and performance

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Brophy, John R.; Aston, Graeme

    1987-01-01

    Erosion measurements were performed on a modified J-series 30 cm ion engine operating on xenon propellant. Erosion data was obtained by measuring the trench depth etched into masked polished metal samples for test durations of up to 24 hours. The data indicates that erosion is greatest at the cathode side of the baffle, with tantalum being the material with the least erosion of all materials tested. There is a clear indication of a significant reduction in erosion of all materials tested when nitrogen is added to the propellant. The technique used in these experiments requires test samples which are extremely smooth and flat.

  15. A Passive Earth-Entry Capsule for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Mitcheltree, Robert A.; Kellas, Sotiris

    1999-01-01

    A combination of aerodynamic analysis and testing, aerothermodynamic analysis, structural analysis and testing, impact analysis and testing, thermal analysis, ground characterization tests, configuration packaging, and trajectory simulation are employed to determine the feasibility of an entirely passive Earth entry capsule for the Mars Sample Return mission. The design circumvents the potential failure modes of a parachute terminal descent system by replacing that system with passive energy absorbing material to cushion the Mars samples during ground impact. The suggested design utilizes a spherically blunted 45-degree half-angle cone forebody with an ablative heat shield. The primary structure is a hemispherical, composite sandwich enclosing carbon foam energy absorbing material. Though no demonstration test of the entire system is included, results of the tests and analysis presented indicate that the design is a viable option for the Mars Sample Return Mission.

  16. CRISPR/Cas9 Technology-Based Xenograft Tumors as Candidate Reference Materials for Multiple EML4-ALK Rearrangements Testing.

    PubMed

    Peng, Rongxue; Zhang, Rui; Lin, Guigao; Yang, Xin; Li, Ziyang; Zhang, Kuo; Zhang, Jiawei; Li, Jinming

    2017-09-01

    The echinoderm microtubule-associated protein-like 4 and anaplastic lymphoma kinase (ALK) receptor tyrosine kinase (EML4-ALK) rearrangement is an important biomarker that plays a pivotal role in therapeutic decision making for non-small-cell lung cancer (NSCLC) patients. Ensuring accuracy and reproducibility of EML4-ALK testing by fluorescence in situ hybridization, immunohistochemistry, RT-PCR, and next-generation sequencing requires reliable reference materials for monitoring assay sensitivity and specificity. Herein, we developed novel reference materials for various kinds of EML4-ALK testing. CRISPR/Cas9 was used to edit various NSCLC cell lines containing EML4-ALK rearrangement variants 1, 2, and 3a/b. After s.c. inoculation, the formalin-fixed, paraffin-embedded (FFPE) samples from xenografts were prepared and tested for suitability as candidate reference materials by fluorescence in situ hybridization, immunohistochemistry, RT-PCR, and next-generation sequencing. Sample validation and commutability assessments showed that all types of FFPE samples derived from xenograft tumors have typical histological structures, and EML4-ALK testing results were similar to the clinical ALK-positive NSCLC specimens. Among the four methods for EML4-ALK detection, the validation test showed 100% concordance. Furthermore, these novel FFPE reference materials showed good stability and homogeneity. Without limitations on variant types and production, our novel FFPE samples based on CRISPR/Cas9 editing and xenografts are suitable as candidate reference materials for the validation, verification, internal quality control, and proficiency testing of EML4-ALK detection. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  17. Development of a Genomic DNA Reference Material Panel for Myotonic Dystrophy Type 1 (DM1) Genetic Testing

    PubMed Central

    Kalman, Lisa; Tarleton, Jack; Hitch, Monica; Hegde, Madhuri; Hjelm, Nick; Berry-Kravis, Elizabeth; Zhou, Lili; Hilbert, James E.; Luebbe, Elizabeth A.; Moxley, Richard T.; Toji, Lorraine

    2014-01-01

    Myotonic dystrophy type 1 (DM1) is caused by expansion of a CTG triplet repeat in the 3′ untranslated region of the DMPK gene that encodes a serine-threonine kinase. Patients with larger repeats tend to have a more severe phenotype. Clinical laboratories require reference and quality control materials for DM1 diagnostic and carrier genetic testing. Well-characterized reference materials are not available. To address this need, the Centers for Disease Control and Prevention-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the genetic testing community, the National Registry of Myotonic Dystrophy and Facioscapulohumeral Muscular Dystrophy Patients and Family Members, and the Coriell Cell Repositories, has established and characterized cell lines from patients with DM1 to create a reference material panel. The CTG repeats in genomic DNA samples from 10 DM1 cell lines were characterized in three clinical genetic testing laboratories using PCR and Southern blot analysis. DMPK alleles in the samples cover four of five DM1 clinical categories: normal (5 to 34 repeats), mild (50 to 100 repeats), classical (101 to 1000 repeats), and congenital (>1000 repeats). We did not identify or establish Coriell cell lines in the premutation range (35 to 49 repeats). These samples are publicly available for quality control, proficiency testing, test development, and research and should help improve the accuracy of DM1 testing. PMID:23680132

  18. Ultra-accelerated natural sunlight exposure testing facilities

    DOEpatents

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2003-08-12

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS to deliver a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in chamber means that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  19. Liquid Oxygen Rotating Friction Ignition Testing of Aluminum and Titanium with Monel and Inconel for Rocket Engine Propulsion System Contamination Investigation

    NASA Technical Reports Server (NTRS)

    Peralta, S.; Rosales, Keisa R.; Stoltzfus, Joel M.

    2009-01-01

    Metallic contaminant was found in the liquid oxygen (LOX) pre-valve screen of the shuttle main engine propulsion system on two orbiter vehicles. To investigate the potential for an ignition, NASA Johnson Space Center White Sands Test Facility performed (modified) rotating friction ignition testing in LOX. This testing simulated a contaminant particle in the low-pressure oxygen turbo pump (LPOTP) and the high-pressure oxygen turbo pump (HPOTP) of the shuttle main propulsion system. Monel(R) K-500 and Inconel(R) 718 samples represented the LPOTP and HPOTP materials. Aluminum foil tape and titanium foil represented the contaminant particles. In both the Monel(R) and Inconel(R) material configurations, the aluminum foil tape samples did not ignite after 30 s of rubbing. In contrast, all of the titanium foil samples ignited regardless of the rubbing duration or material configuration. However, the titanium foil ignitions did not propagate to the Monel and Inconel materials.

  20. Test Report - Fault Current Through Graphite Filament Reinforced Plastic

    NASA Technical Reports Server (NTRS)

    Evans, R. W.

    1997-01-01

    Tests were performed to determine the damage to samples of composite material when a current carrying wire is shorted to the surface of the composite material, and to determine whether enough current can flow through the material to blow a fuse before damage can occur. Fault current tests were performed on samples of graphite epoxy materials. Samples consisted of six layers of IM7 graphite fiber mat in Hercules 8552 epoxy resin. A variable power supply provided up to 35 amps of current. The high voltage side of the power supply was attached to a wire at the end of a hinged arm, and the low side was attached to the edge of the sample. To test joints, the return was connected to the edge of one sample, and the high side was shorted to the top of the other sample. Tests show that when current exceeds approximately 5 amps, the graphite glows, and the epoxy melts out at the shorted contact. At higher current levels the epoxy burns. At voltages above 15 volts the epoxy outer coat is easily broken, and fire, flame, and a rise in current occur suddenly. When joints are introduced, resistance is increased, and the maximum current resulting from a short circuit to the graphite epoxy is reduced. This condition can easily result in fault current lower than the circuit breaker limit and higher than the 5 amp ignition level. The shorting contact and the joint become hot spots with melting epoxy, smoke, and fire.

  1. Study of materials used for the thermal protection of the intake system for internal combustion engines

    NASA Astrophysics Data System (ADS)

    Birtok-Băneasă, C.; Raţiu, S.; Puţan, V.; Josan, A.

    2018-01-01

    The present paper focuses on calculation of thermal conductivity for a new materials developed by the authors, using the heat flux plate method. This experimental method consists in placing the sample of the new material in a calorimetric chamber and heating from underside. As the heat flux which passes through the sample material is constant and knowing the values of the temperatures for the both sides of sample, the sample material thermal conductivity is determined. Six types of different materials were tested. Based on the experimental data, the values of the thermal conductivity according to the material and the average temperature were calculated and plotted.

  2. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR THE TRANSMITTAL OF SAMPLING MATERIALS FROM BATTELLE (BCO-G-1.0)

    EPA Science Inventory

    The purpose of this SOP is to describe the steps to be taken when materials, such as field sampling materials, are shipped from Battelle. A transmittal form accompanies every shipment of such materials or other test articles, substances, paper data, or any other item directly re...

  3. Adaptable Holders for Arc-Jet Screening Candidate Thermal Protection System Repair Materials

    NASA Technical Reports Server (NTRS)

    Riccio, Joe; Milhoan, Jim D.

    2010-01-01

    Reusable holders have been devised for evaluating high-temperature, plasma-resistant re-entry materials, especially fabrics. Typical material samples tested support thermal-protection-system damage repair requiring evaluation prior to re-entry into terrestrial atmosphere. These tests allow evaluation of each material to withstand the most severe predicted re-entry conditions.

  4. High mobility high efficiency organic films based on pure organic materials

    DOEpatents

    Salzman, Rhonda F [Ann Arbor, MI; Forrest, Stephen R [Ann Arbor, MI

    2009-01-27

    A method of purifying small molecule organic material, performed as a series of operations beginning with a first sample of the organic small molecule material. The first step is to purify the organic small molecule material by thermal gradient sublimation. The second step is to test the purity of at least one sample from the purified organic small molecule material by spectroscopy. The third step is to repeat the first through third steps on the purified small molecule material if the spectroscopic testing reveals any peaks exceeding a threshold percentage of a magnitude of a characteristic peak of a target organic small molecule. The steps are performed at least twice. The threshold percentage is at most 10%. Preferably the threshold percentage is 5% and more preferably 2%. The threshold percentage may be selected based on the spectra of past samples that achieved target performance characteristics in finished devices.

  5. Influence of Electrification of Droplet on Hydrophobicity Reduction of Polymer Material during a Dynamic Drop Test

    NASA Astrophysics Data System (ADS)

    Haji, Kenichi; Shiibara, Daiki; Arata, Yoshihiro; Sakoda, Tatsuya; Otsubo, Masahisa

    The dynamic drop test was proposed as a method to evaluate hydrophobicity reduction of polymer materials. In this test, the formation change of a water channel was confirmed, and thereafter, the remained droplets and the dropped droplets on the sampled surface were repulsed each other. The distributions of electrification on the droplet and the sample surface were measured. The influence of the electrified droplet on the hydrophobicity reduction was examined. The results showed that the polarity on the sample surface changed by the dropped droplet, leading to the hydrophobicity loss.

  6. A comparison of impact force reduction by polymer materials used for mouthguard fabrication.

    PubMed

    Gawlak, Dominika; Mańka-Malara, Katarzyna; Mierzwińska-Nastalska, Elżbieta; Gieleta, Roman; Kamiński, Tomasz; Łuniewska, Magdalena

    2017-01-01

    The essential function of mouthguards is protection against the effects of injuries sustained during sports activities. This purpose will be successfully achieved if appropriate materials ensuring sufficient reduction of the injury force are used for mouthguard fabrication. The objective of the study was to investigate the force reduction capability of selected materials as well as to identify which material reduces the impact force to the highest degree. The material for the study were samples of polymers (6 samples in total), obtained during the process of deep pressing (2 samples), flasking (3 samples) and thermal injection (1 sample), which were tested for impact force damping using an impact device - Charpy impact hammer. The control group comprised of the ceramic material samples subjected to the hammer impact. The statistical analysis applied in this study were one-way Welch ANOVA with post-hoc Games-Howell pairwise comparisons. The test materials reduced the impact force of the impact hammer to varying degrees. The greatest damping capability was demonstrated for the following materials: Impak with 1:1 powder-to-liquid weight ratio polymerized with the conventional flasking technique, and Corflex Orthodontic used in the thermal injection technique of mouthguard fabrication. Impak with 1:1 weight ratio and Corflex Orthodontic should be recommended for the fabrication of mouthguards since they demonstrated the most advantageous damping properties.

  7. Asbestos in Colorado Schools.

    ERIC Educational Resources Information Center

    Baldwin, Cynthia A.

    This study determined, by means of a random sample, how many of Colorado's public schools have asbestos materials and estimated the potential risk of exposure presented by these materials. Forty-one schools were surveyed. Bulk samples of possible asbestos materials were collected and analyzed using the K-squared Asbestos Screening Test to…

  8. Comet sample acquisition for ROSETTA lander mission

    NASA Astrophysics Data System (ADS)

    Marchesi, M.; Campaci, R.; Magnani, P.; Mugnuolo, R.; Nista, A.; Olivier, A.; Re, E.

    2001-09-01

    ROSETTA/Lander is being developed with a combined effort of European countries, coordinated by German institutes. The commitment for such a challenging probe will provide a unique opportunity for in-situ analysis of a comet nucleus. The payload for coring, sampling and investigations of comet materials is called SD2 (Sampling Drilling and Distribution). The paper presents the drill/sampler tool and the sample transfer trough modeling, design and testing phases. Expected drilling parameters are then compared with experimental data; limited torque consumption and axial thrust on the tool constraint the operation and determine the success of tests. Qualification campaign involved the structural part and related vibration test, the auger/bit parts and drilling test, and the coring mechanism with related sampling test. Mechanical check of specimen volume is also reported, with emphasis on the measurement procedure and on the mechanical unit. The drill tool and all parts of the transfer chain were tested in the hypothetical comet environment, charcterized by frozen material at extreme low temperature and high vacuum (-160°C, 10-3 Pa).

  9. Performance of asphalt mixture incorporating recycled waste

    NASA Astrophysics Data System (ADS)

    Hamid, Nor Baizura; Abdullah, Mohd Ezree; Sanik, Mohd Erwan; Mokhtar, Mardiha; Kaamin, Masiri; Raduan, Rasyidah; Ramli, Mohd Zakwan

    2017-12-01

    Nowadays, the amount of premix waste was increased every year, especially at the batching plants. Normally, the waste materials will be discarded without doing any innovative and effective research about those materials. This situation has become one of the global concerns due to the increasing number of premix waste produced every year. Therefore, the aim of this study is to evaluate the performance of hot mix asphalt (HMA) using premix waste on improving asphalt mixture fatigue behaviour. The method used in this study was Superpave mix design method. The sample conducted in this study were 0%, 10%, 20%, 30%, and 100% of premix waste respectively. For a binder test, the laboratory test conducted were penetration test, softening test and thin film oven test while for the performance test were resilient modulus test and indirect tensile fatigue test. From the laboratory test, the resilient modulus test was conducted with two different temperature which was 25°C and 40°C. The result from that test was 20% of premix waste had higher resilient modulus at that two different temperatures compared to another samples. From that test also shown that the sample at the lower temperature which was 25°C has higher resilient modulus compared to the temperature of 40°C. Indirect tensile fatigue test showed that the 30% of premix waste sample was suitable for the modified asphalt mixture with referring to the maximum deformation and strain for comparison control, 10%,20%, and 100% of premix waste samples. So, it can be concluded that premix waste inhibits great potential as road construction material and suitable for repeated traffic loading.

  10. Viscoelastic characterization of soft biological materials

    NASA Astrophysics Data System (ADS)

    Nayar, Vinod Timothy

    Progressive and irreversible retinal diseases are among the primary causes of blindness in the United States, attacking the cells in the eye that transform environmental light into neural signals for the optic pathway. Medical implants designed to restore visual function to afflicted patients can cause mechanical stress and ultimately damage to the host tissues. Research shows that an accurate understanding of the mechanical properties of the biological tissues can reduce damage and lead to designs with improved safety and efficacy. Prior studies on the mechanical properties of biological tissues show characterization of these materials can be affected by environmental, length-scale, time, mounting, stiffness, size, viscoelastic, and methodological conditions. Using porcine sclera tissue, the effects of environmental, time, and mounting conditions are evaluated when using nanoindentation. Quasi-static tests are used to measure reduced modulus during extended exposure to phosphate-buffered saline (PBS), as well as the chemical and mechanical analysis of mounting the sample to a solid substrate using cyanoacrylate. The less destructive nature of nanoindentation tests allows for variance of tests within a single sample to be compared to the variance between samples. The results indicate that the environmental, time, and mounting conditions can be controlled for using modified nanoindentation procedures for biological samples and are in line with averages modulus values from previous studies but with increased precision. By using the quasi-static and dynamic characterization capabilities of the nanoindentation setup, the additional stiffness and viscoelastic variables are measured. Different quasi-static control methods were evaluated along with maximum load parameters and produced no significant difference in reported reduced modulus values. Dynamic characterization tests varied frequency and quasi-static load, showing that the agar could be modeled as a linearly elastic material. The effects of sample stiffness were evaluated by testing both the quasi-static and dynamic mechanical properties of different concentration agar samples, ranging from 0.5% to 5.0%. The dynamic nanoindentation protocol showed some sensitivity to sample stiffness, but characterization remained consistently applicable to soft biological materials. Comparative experiments were performed on both 0.5% and 5.0% agar as well as porcine eye tissue samples using published dynamic macrocompression standards. By comparing these new tests to those obtained with nanoindentation, the effects due to length-scale, stiffness, size, viscoelastic, and methodological conditions are evaluated. Both testing methodologies can be adapted for the environmental and mounting conditions, but the limitations of standardized macro-scale tests are explored. The factors affecting mechanical characterization of soft and thin viscoelastic biological materials are researched and a comprehensive protocol is presented. This work produces material mechanical properties for use in improving future medical implant designs on a wide variety of biological tissue and materials.

  11. The effect of low dose rate irradiation on the tensile properties and microstructure of austenitic stainless steel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, T. R.; Tsai, H.; Cole, J. I.

    2002-09-17

    To assess the effects of long-term, low-dose-rate neutron exposure on mechanical strength and ductility, tensile properties were measured on 12% and 20% cold-worked Type 316 stainless steel. Samples were prepared from reactor core components retrieved from the EBR-II reactor following final shutdown. Sample locations were chosen to cover a dose range of 1-56 dpa at temperatures from 371-440 C and dose rates from 0.5-5.8 x10{sup -7} dpa/s. These dose rates are approximately an order of magnitude lower than those of typical EBR-II test sample locations. The tensile tests for the 12% CW material were performed at 380 C and 430more » C while those for the 20% CW samples were performed at 370 C. In each case, the tensile test temperature approximately matched the irradiation temperature. To help understand the tensile properties, microstructural samples with similar irradiation history were also examined. The strength and loss of work hardening increase the fastest as a function of irradiation dose for the 12% CW material irradiated at lower temperature. The decrease in ductility with increasing dose occurs more rapidly for the 12% CW material irradiated at lower temperature and the 20% cold-worked material. Post-tensile test fractography indicates that at higher dose, the 20% CW samples begin a shift in fracture mode from purely ductile to mainly small facets and slip bands, suggesting a transition toward channel fracture. The fracture for all of the 12% cold-worked samples was ductile. For both the 12% and 20% CW materials, the yield strength increases correlate with changes in void and loop density and size.« less

  12. Study of the formation of duricrusts on the martian surface and their effect on sampling equipment

    NASA Astrophysics Data System (ADS)

    Kömle, Norbert; Pitcher, Craig; Gao, Yang; Richter, Lutz

    2017-01-01

    The Powdered Sample Dosing and Distribution System (PSDDS) of the ExoMars rover will be required to handle and contain samples of Mars regolith for long periods of time. Cementation of the regolith, caused by water and salts in the soil, results in clumpy material and a duricrust layer forming on the surface. It is therefore possible that material residing in the sampling system may cement, and could potentially hinder its operation. There has yet to be an investigation into the formation of duricrusts under simulated Martian conditions, or how this may affect the performance of sample handling mechanisms. Therefore experiments have been performed to create a duricrust and to explore the cementation of Mars analogues, before performing a series of tests on a qualification model of the PSDDS under simulated Martian conditions. It was possible to create a consolidated crust of cemented material several millimetres deep, with the material below remaining powder-like. It was seen that due to the very low permeability of the Montmorillonite component material, diffusion of water through the material was quickly blocked, resulting in a sample with an inhomogeneous water content. Additionally, samples with a water mass content of 10% or higher would cement into a single solid piece. Finally, tests with the PSDDS revealed that samples with a water mass content of just 5% created small clumps with significant internal cohesion, blocking the sample funnels and preventing transportation of the material. These experiments have highlighted that the cementation of regolith in Martian conditions must be taken into consideration in the design of sample handling instruments.

  13. Summary of results of frictional sliding studies, at confining pressures up to 6.98 kb, in selected rock materials

    USGS Publications Warehouse

    Summers, R.; Byerlee, J.

    1977-01-01

    This report is a collection of stress-strain charts which were produced by deforming selected simuiated fault gouge materials. Several sets of samples consisted of intact cylinders, 1.000 inch in diameter and 2.500 inches long. The majority of the samples consisted of thin layers of the selected sample material, inserted within a diagonal sawcut in a 1.000-inch by 2.500-inch Westerly Granite cylinder. Two sorts of inserts were used. The first consisted of thin wafers cut from 1.000-inch-diameter cores of the rock being tested. The other consisted of thin layers of crushed material packed onto the sawcut surface. In several groups of tests using various thicknesses (0.010 inch to 0.160 inch) of a given type material there were variations in the stress level and/or stability of sliding as a function of the fault zone width. Because of this we elected to use a standard 0.025-inch width fault zone to compare the frictional properties of many of the different types of rock materials. This 0.025-inch thickness was chosen partially because this thickness of crushed granite behaves approximately the same as a fractured sample of initially intact granite, and also because this is near the lower limit at which we could cut intact wafers for those samples that were prepared from thin slices of rock. One series of tests was done with saw cut granite cylinders without fault gouge inserts. All of these tests were done in a hydraulically operated triaxial testing machine. The confining pressure (δ1, least principal stress) was applied by pumping petroleum ether into a pressure vessel. The differential stress (δ3-δ1) was applied by a hydraulically operated ram that could be advanced into the pressure vessel at any of several strain rates (10-4sec-1, 10-5sec-1, 10-6sec-1, 10-7sec-1, or 10-8sec-1). All samples were jacketed in polyurethane tubing to exclude the confining pressure medium from the samples. The majority of the samples, with the exception of some of the initially intact rocks, also had thin copper jackets. These served to hold the saw cut parts of the granite sample holders in alignment while the samples were handled and pushed into the polyurethane jackets.

  14. Ultra-Accelerated Natural Sunlight Exposure Testing Facilities

    DOEpatents

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2004-11-23

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS onto a secondary reflector that delivers a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in a chamber that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  15. Emergency Optically Stimulated Luminescence Dosimetry Using Different Materials

    PubMed Central

    Sholom, S; DeWitt, R; Simon, SL; Bouville, A; McKeever, SWS

    2011-01-01

    Several materials were tested as possible individual emergency dosimeters using Optically Stimulated Luminescence (OSL) as means to assess the exposure. Materials investigated included human nails, business cards and plastic buttons. The OSL properties of these materials were studied in comparison with those of teeth. Most samples revealed OSL signals only after exposure to ionizing radiation; some samples of business cards, however, displayed a strong initial “native” signal (i.e. existing in the samples prior to irradiation). The sensitivity (minimum measurable dose) of the samples was found to vary significantly from sample to sample of the same material and was in the range from several tens of mGy to a few dozens of Gy. The dose response curves were linear for doses below 10 Gy. Fading of the OSL signals was estimated for different lenghts of times and found to be ~95%, 45%, 30% and 15% for samples of teeth, business cards, buttons and nails, respectively, following storage at room temperature in the dark for a period of 3 weeks after exposure. For samples stored under routine laboratory light, fading was much faster and the radiation-induced signals almost disappeared after a few hours of such illumination. It was concluded that the tested materials could be used in triage situations to detect and estimate the possible overexposure of individuals if the measurements can be performed soon enough after exposure. PMID:22125409

  16. Emergency Optically Stimulated Luminescence Dosimetry Using Different Materials.

    PubMed

    Sholom, S; Dewitt, R; Simon, Sl; Bouville, A; McKeever, Sws

    2011-12-01

    Several materials were tested as possible individual emergency dosimeters using Optically Stimulated Luminescence (OSL) as means to assess the exposure. Materials investigated included human nails, business cards and plastic buttons. The OSL properties of these materials were studied in comparison with those of teeth. Most samples revealed OSL signals only after exposure to ionizing radiation; some samples of business cards, however, displayed a strong initial "native" signal (i.e. existing in the samples prior to irradiation). The sensitivity (minimum measurable dose) of the samples was found to vary significantly from sample to sample of the same material and was in the range from several tens of mGy to a few dozens of Gy. The dose response curves were linear for doses below 10 Gy. Fading of the OSL signals was estimated for different lenghts of times and found to be ~95%, 45%, 30% and 15% for samples of teeth, business cards, buttons and nails, respectively, following storage at room temperature in the dark for a period of 3 weeks after exposure. For samples stored under routine laboratory light, fading was much faster and the radiation-induced signals almost disappeared after a few hours of such illumination. It was concluded that the tested materials could be used in triage situations to detect and estimate the possible overexposure of individuals if the measurements can be performed soon enough after exposure.

  17. Experimental breakdown of selected anodized aluminum samples in dilute plasmas

    NASA Technical Reports Server (NTRS)

    Grier, Norman T.; Domitz, Stanley

    1992-01-01

    Anodized aluminum samples representative of Space Station Freedom structural material were tested for electrical breakdown under space plasma conditions. In space, this potential arises across the insulating anodized coating when the spacecraft structure is driven to a negative bias relative to the external plasma potential due to plasma-surface interaction phenomena. For anodized materials used in the tests, it was found that breakdown voltage varied from 100 to 2000 volts depending on the sample. The current in the arcs depended on the sample, the capacitor, and the voltage. The level of the arc currents varied from 60 to 1000 amperes. The plasma number density varied from 3 x 10 exp 6 to 10 exp 3 ions per cc. The time between arcs increased as the number density was lowered. Corona testing of anodized samples revealed that samples with higher corona inception voltage had higher arcing inception voltages. From this it is concluded that corona testing may provide a method of screening the samples.

  18. Development of a genomic DNA reference material panel for myotonic dystrophy type 1 (DM1) genetic testing.

    PubMed

    Kalman, Lisa; Tarleton, Jack; Hitch, Monica; Hegde, Madhuri; Hjelm, Nick; Berry-Kravis, Elizabeth; Zhou, Lili; Hilbert, James E; Luebbe, Elizabeth A; Moxley, Richard T; Toji, Lorraine

    2013-07-01

    Myotonic dystrophy type 1 (DM1) is caused by expansion of a CTG triplet repeat in the 3' untranslated region of the DMPK gene that encodes a serine-threonine kinase. Patients with larger repeats tend to have a more severe phenotype. Clinical laboratories require reference and quality control materials for DM1 diagnostic and carrier genetic testing. Well-characterized reference materials are not available. To address this need, the Centers for Disease Control and Prevention-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the genetic testing community, the National Registry of Myotonic Dystrophy and Facioscapulohumeral Muscular Dystrophy Patients and Family Members, and the Coriell Cell Repositories, has established and characterized cell lines from patients with DM1 to create a reference material panel. The CTG repeats in genomic DNA samples from 10 DM1 cell lines were characterized in three clinical genetic testing laboratories using PCR and Southern blot analysis. DMPK alleles in the samples cover four of five DM1 clinical categories: normal (5 to 34 repeats), mild (50 to 100 repeats), classical (101 to 1000 repeats), and congenital (>1000 repeats). We did not identify or establish Coriell cell lines in the premutation range (35 to 49 repeats). These samples are publicly available for quality control, proficiency testing, test development, and research and should help improve the accuracy of DM1 testing. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR THE TRANSMITTAL OF SAMPLING MATERIALS FROM BATTELLE (BCO-G-1.0)

    EPA Science Inventory

    The purpose of this SOP is to describe the steps to be taken when materials, such as field sampling materials, are shipped from Battelle. A transmittal form accompanies every shipment of such materials or other test articles, substances, paper data, or any other item directly re...

  20. Influence of powder/liquid ratio on the radiodensity and diametral tensile strength of glass ionomer cements

    PubMed Central

    FONSECA, Rodrigo Borges; BRANCO, Carolina Assaf; QUAGLIATTO, Paulo Sérgio; GONÇALVES, Luciano de Souza; SOARES, Carlos José; CARLO, Hugo Lemes; CORRER-SOBRINHO, Lourenço

    2010-01-01

    Objective To determine the influence of P/L ratio on the radiodensity and diametral tensile strength (DTS) of glass ionomer cements. Material and Methods There were 2 factors under study: P/L ratio (manufacturer's recommended P/L ratio and a 50% reduced P/L ratio), and materials (Vitro Molar, Vitro Fil, Vitro Cem conventional GICs and Vitro Fil LC, Ortho Glass LC RMGICs). Five 1-mm-thick samples of each material-P/L ratio were produced for radiodensity evaluation. Samples were x-ray exposed onto Digora phosphor plate and radiodensity was obtained using the software Digora for Windows 2.5 Rev 0. For DTS, five (4.0x8.0 mm) cylinder samples of each material were tested (0.5 mm/min). Data were subjected to one- and two-way ANOVA (5x2) followed by Tukey's HSD test, or Kruskal-Wallis and Dunn's method. For paired comparisons, t-test or Mann-Whitney test were used (a=0.05). Results There was a significant interaction (P=0.001) for the studied factors (materials vs. P/L ratio). Reduced P/L ratio resulted in significantly lower DTS for the RMGICs, but radiodensity was affected for all materials (P<0.05). Conclusions Reduced P/L ratio affected properties of the tested glass ionomer cements. RMGICs were more susceptible to lower values of DTS, but radiodensity decreased for all materials following P/L ratio reduction. PMID:21308288

  1. The Usability of Rock-Like Materials for Numerical Studies on Rocks

    NASA Astrophysics Data System (ADS)

    Zengin, Enes; Abiddin Erguler, Zeynal

    2017-04-01

    The approaches of synthetic rock material and mass are widely used by many researchers for understanding the failure behavior of different rocks. In order to model the failure behavior of rock material, researchers take advantageous of different techniques and software. But, the majority of all these instruments are based on distinct element method (DEM). For modeling the failure behavior of rocks, and so to create a fundamental synthetic rock material model, it is required to perform related laboratory experiments for providing strength parameters. In modelling studies, model calibration processes are performed by using parameters of intact rocks such as porosity, grain size, modulus of elasticity and Poisson ratio. In some cases, it can be difficult or even impossible to acquire representative rock samples for laboratory experiments from heavily jointed rock masses and vuggy rocks. Considering this limitation, in this study, it was aimed to investigate the applicability of rock-like material (e.g. concrete) to understand and model the failure behavior of rock materials having complex inherent structures. For this purpose, concrete samples having a mixture of %65 cement dust and %35 water were utilized. Accordingly, intact concrete samples representing rocks were prepared in laboratory conditions and their physical properties such as porosity, pore size and density etc. were determined. In addition, to acquire the mechanical parameters of concrete samples, uniaxial compressive strength (UCS) tests were also performed by simultaneously measuring strain during testing. The measured physical and mechanical properties of these extracted concrete samples were used to create synthetic material and then uniaxial compressive tests were modeled and performed by using two dimensional discontinuum program known as Particle Flow Code (PFC2D). After modeling studies in PFC2D, approximately similar failure mechanism and testing results were achieved from both experimental and artificial simulations. The results obtained from these laboratory tests and modelling studies were compared with the other researcher's studies in respect to failure mechanism of different type of rocks. It can be concluded that there is similar failure mechanism between concrete and rock materials. Therefore, the results obtained from concrete samples that would be prepared at different porosity and pore sizes can be used in future studies in selection micro-mechanical and physical properties to constitute synthetic rock materials for understanding failure mechanism of rocks having complex inherent structures such as vuggy rocks or heavily jointed rock masses.

  2. In Vitro Evaluation and Mechanism Analysis of the Fiber Shedding Property of Textile Pile Debridement Materials

    PubMed Central

    Fu, Yijun; Xie, Qixue; Lao, Jihong; Wang, Lu

    2016-01-01

    Fiber shedding is a critical problem in biomedical textile debridement materials, which leads to infection and impairs wound healing. In this work, single fiber pull-out test was proposed as an in vitro evaluation for the fiber shedding property of a textile pile debridement material. Samples with different structural design (pile densities, numbers of ground yarns and coating times) were prepared and estimated under this testing method. Results show that single fiber pull-out test offers an appropriate in vitro evaluation for the fiber shedding property of textile pile debridement materials. Pull-out force for samples without back-coating exhibited a slight escalating trend with the supplement in pile density and number of ground yarn plies, while back-coating process significantly raised the single fiber pull-out force. For fiber shedding mechanism analysis, typical pull-out behavior and failure modes of the single fiber pull-out test were analyzed in detail. Three failure modes were found in this study, i.e., fiber slippage, coating point rupture and fiber breakage. In summary, to obtain samples with desirable fiber shedding property, fabric structural design, preparation process and raw materials selection should be taken into full consideration. PMID:28773428

  3. A method for evaluating the fatigue crack growth in spiral notch torsion fracture toughness test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy -An John; Tan, Ting

    The spiral notch torsion test (SNTT) has been a recent breakthrough in measuring fracture toughness for different materials, including metals, ceramics, concrete, and polymers composites. Due to its high geometry constraint and unique loading condition, SNTT can be used to measure the fracture toughness with smaller specimens without concern of size effects. The application of SNTT to brittle materials has been proved to be successful. The micro-cracks induced by original notches in brittle materials could ensure crack growth in SNTT samples. Therefore, no fatigue pre-cracks are needed. The application of SNTT to the ductile material to generate valid toughness datamore » will require a test sample with sufficient crack length. Fatigue pre-crack growth techniques are employed to introduce sharp crack front into the sample. Previously, only rough calculations were applied to estimate the compliance evolution in the SNTT crack growth process, while accurate quantitative descriptions have never been attempted. This generates an urgent need to understand the crack evolution during the SNTT fracture testing process of ductile materials. Here, the newly developed governing equations for SNTT crack growth estimate are discussed in the paper.« less

  4. A method for evaluating the fatigue crack growth in spiral notch torsion fracture toughness test

    DOE PAGES

    Wang, Jy -An John; Tan, Ting

    2018-05-21

    The spiral notch torsion test (SNTT) has been a recent breakthrough in measuring fracture toughness for different materials, including metals, ceramics, concrete, and polymers composites. Due to its high geometry constraint and unique loading condition, SNTT can be used to measure the fracture toughness with smaller specimens without concern of size effects. The application of SNTT to brittle materials has been proved to be successful. The micro-cracks induced by original notches in brittle materials could ensure crack growth in SNTT samples. Therefore, no fatigue pre-cracks are needed. The application of SNTT to the ductile material to generate valid toughness datamore » will require a test sample with sufficient crack length. Fatigue pre-crack growth techniques are employed to introduce sharp crack front into the sample. Previously, only rough calculations were applied to estimate the compliance evolution in the SNTT crack growth process, while accurate quantitative descriptions have never been attempted. This generates an urgent need to understand the crack evolution during the SNTT fracture testing process of ductile materials. Here, the newly developed governing equations for SNTT crack growth estimate are discussed in the paper.« less

  5. Rolling contact fatigue of low hardness steel for slewing ring application

    NASA Astrophysics Data System (ADS)

    Knuth, Jason A.

    This thesis discusses the rolling contact fatigue of steel utilized in anti-friction bearings, also referred to as slewing bearings. These slewing bearings are utilized in cranes, excavators, wind turbines and other similar applications. Five materials composed of two different material types were tested. The two material types were high carbon steel and medium carbon alloy steel. The test specimens were processed from forged rolled rings. Two machines were evaluated a ZF-RCF and 3-Ball test machine. The evaluation was to determine which machine can best simulate the application in which the slewing bearing is utilized. Initially, each specimen will be pretested to determine the appropriate testing direction from within the forged rolled rings. Pretesting is needed in order to establish consistent failure modes between samples. The primary goal of the test is to understand the life differences and failure modes between high carbon steel and medium carbon alloy steel. The high carbon steel ring was cut into two sections, one of which was stress relieved and the other was quenched and tempered. The medium carbon alloy steel was cut into three sections, all of which were quenched and tempered to different hardness levels. The test program was dynamically adjusted based upon the previous sample's life and load. An S-N curve was then established from the 5 materials tested at two target loads. The samples were run until the first sign of a crack was detected by an eddy current. At the completion of the rolling contact test, select sample's microstructure was evaluated for crack initiation location. The selected samples were divided into four groups which represent different maximum shear stress levels. These samples displayed indications of material deformation in which the high carbon steel experienced an increased amount of cold work when compared to medium carbon alloy steel. The life of the high carbon steel was nearly equivalent to the expected life of the medium carbon alloy. The work hardening of the high carbon steel increased the surface hardness that exceeded the medium carbon alloy steel surface hardness.

  6. Application of headspace for research volatile organic compounds emitted from building materials

    NASA Astrophysics Data System (ADS)

    Kultys, Beata; Waląg, Karolina

    2018-01-01

    Headspace technique and gas chromatography method with mas detector has been used for the determination of volatile organic compounds (VOC) emitted from various building and finishing materials, such as sealing foams, mounting strips, paints, varnishes, floor coverings. The tests were carried out for different temperatures (in the temperature range of 60 to 180 °C) and the time of heated vials with tested materials inside. These tests were conducted to verify the possibility of use this method of determination the VOC emission. Interpretation of chromatograms and mass spectra allowed to identify the type of compounds emitted from the tested materials and the optimum time and temperature for each type of material was determined. The increase in heating temperature of the samples resulted in increase the type and number of identified compounds: for four materials the increase was in the whole temperature range, for others it was from 90 °C. On the other hand, emission from mineral wool was low in whole temperature range. 30-minutes heating of the samples was sufficient to identify emitted compounds for most of tested materials. Applying a longer time, i.e. 24 hours, significantly increased the sensitivity of the method.

  7. Study for fabrication, evaluation, and testing of monolayer woven type materials for space suit insulation

    NASA Technical Reports Server (NTRS)

    Merrick, E. B.

    1979-01-01

    An alternative space suit insulation concept using a monolayer woven pile material is discussed. The material reduces cost and improves the durability of the overgarment, while providing protection similar to that provided by multilayer insulation (MLI). Twelve samples of different configurations were fabricated and tested for compressibility and thermal conductivity as a function of compression loading. Two samples which showed good results in the initial tests were further tested for thermal conductivity with respect to ambient pressure and temperature. Results of these tests were similar to results of the MLI tests, indicating the potential of the monolayer fabric to replace the present MLI. A seaming study illustrated that the fabric can be sewn in a structurally sound seam with minimal heat loss. It is recommended that a prototype thermal meteroid garment be fabricated.

  8. 40 CFR 65.158 - Performance test procedures for control devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... regulated material or as TOC (minus methane and ethane) according to the procedures specified. (1) Method 1... material or TOC, sampling sites shall be located at the inlet of the control device as specified in the... sampling sites shall ensure the measurement of total regulated material or TOC (minus methane and ethane...

  9. Light microscopy with differential staining techniques for the characterisation and discrimination of insects versus marine arthropods processed animal proteins.

    PubMed

    Ottoboni, Matteo; Tretola, Marco; Cheli, Federica; Marchis, Daniela; Veys, Pascal; Baeten, Vincent; Pinotti, Luciano

    2017-08-01

    The aim of this study was to evaluate the use of light microscopy with differential staining techniques for the discrimination of insect material from marine arthropods - classified as fishmeal. Specifically, three samples of single-species insect material, Hermetia illucens (HI), Bombyx mori (BM) and Tenebrio molitor (TM), and two samples of marine arthropods, shrimp material and krill, were analysed and compared after staining by two reagents to enhance fragment identification. Alizarin Red (AR) and Chlorazol Black (CB), which react respectively with calcium salts and chitin, were tested for their potential efficacy in distinguishing between insect and marine materials. Results indicated that AR failed to stain HI, BM and TM materials. By contrast, the three insect species materials tested were stained by CB. When shrimp fragments and krill were considered, AR and CB stained marine materials reddish-pink and light blue to black, respectively. By combining these results, it can be suggested that CB staining may efficiently be used to mark insect materials; AR does stain shrimp fragments but does not stain the tested insect material, indicating a possible approach for discriminating between insects and marine arthropods. However, since the present study was performed on pure materials and a small set of samples, possible implementation of this technique still needs to be confirmed in complex matrices such as compound feed.

  10. Locking Nut with Stress-Distributing Insert

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher C.

    2010-01-01

    Reusable holders have been devised for evaluating high-temperature, plasma-resistant re-entry materials, especially fabrics. Typical material samples tested support thermal-protection-system damage repair requiring evaluation prior to re-entry into terrestrial atmosphere. These tests allow evaluation of each material to withstand the most severe predicted re-entry conditions.

  11. Development of a Failure Theory for Concrete

    DOT National Transportation Integrated Search

    2012-07-31

    The failure behavior of concrete materials is not completely understood because conventional test methods fail to assess the : material response independent of the sample size and shape. : To study the influence of strength affecting test conditions,...

  12. Sample Results From The Extraction, Scrub, And Strip Test For The Blended NGS Solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington, A. L. II; Peters, T. B.

    This report summarizes the results of the extraction, scrub, and strip testing for the September 2013 sampling of the Next Generation Solvent (NGS) Blended solvent from the Modular Caustic Side-Solvent Extraction Unit (MCU) Solvent Hold Tank. MCU is in the process of transitioning from the BOBCalixC6 solvent to the NGS Blend solvent. As part of that transition, MCU has intentionally created a blended solvent to be processed using the Salt Batch program. This sample represents the first sample received from that blended solvent. There were two ESS tests performed where NGS blended solvent performance was assessed using either the Tankmore » 21 material utilized in the Salt Batch 7 analyses or a simulant waste material used in the V-5/V-10 contactor testing. This report tabulates the temperature corrected cesium distribution, or D Cs values, step recovery percentage, and actual temperatures recorded during the experiment. This report also identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. The calculated extraction D Cs values using the Tank 21H material and simulant are 59.4 and 53.8, respectively. The DCs values for two scrub and three strip processes for the Tank 21 material are 4.58, 2.91, 0.00184, 0.0252, and 0.00575, respectively. The D-values for two scrub and three strip processes for the simulant are 3.47, 2.18, 0.00468, 0.00057, and 0.00572, respectively. These values are similar to previous measurements of Salt Batch 7 feed with lab-prepared blended solvent. These numbers are considered compatible to allow simulant testing to be completed in place of actual waste due to the limited availability of feed material.« less

  13. A quarantine protocol for analysis of returned extraterrestrial samples

    NASA Technical Reports Server (NTRS)

    Bagby, J. R.; Sweet, H. C.; Devincenzi, D. L.

    1983-01-01

    A protocol is presented for the analysis at an earth-orbiting quarantine facility of return samples of extraterrestrial material that might contain (nonterrestrial) life forms. The protocol consists of a series of tests designed to determine whether the sample, conceptualized as a 1-kg sample of Martian soil, is free from nonterrestrial biologically active agents and so may safely be sent to a terrestrial containment facility, or it exhibits biological activity requiring further (second-order) testing outside the biosphere. The first-order testing procedure seeks to detect the presence of any replicating organisms or toxic substances through a series of experiments including gas sampling, analysis of radioactivity, stereomicroscopic inspection, chemical analysis, microscopic examination, the search for metabolic products under growth conditions, microbiologicl assays, and the challenge of cultured cells with any agents found or with the extraterrestrial material as is. Detailed plans for the second-order testing would be developed in response to the actual data received from primary testing.

  14. The development of radioactive sample surrogates for training and exercises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martha Finck; Bevin Brush; Dick Jansen

    2012-03-01

    The development of radioactive sample surrogates for training and exercises Source term information is required for to reconstruct a device used in a dispersed radiological dispersal device. Simulating a radioactive environment to train and exercise sampling and sample characterization methods with suitable sample materials is a continued challenge. The Idaho National Laboratory has developed and permitted a Radioactive Response Training Range (RRTR), an 800 acre test range that is approved for open air dispersal of activated KBr, for training first responders in the entry and exit from radioactively contaminated areas, and testing protocols for environmental sampling and field characterization. Membersmore » from the Department of Defense, Law Enforcement, and the Department of Energy participated in the first contamination exercise that was conducted at the RRTR in the July 2011. The range was contaminated using a short lived radioactive Br-82 isotope (activated KBr). Soil samples contaminated with KBr (dispersed as a solution) and glass particles containing activated potassium bromide that emulated dispersed radioactive materials (such as ceramic-based sealed source materials) were collected to assess environmental sampling and characterization techniques. This presentation summarizes the performance of a radioactive materials surrogate for use as a training aide for nuclear forensics.« less

  15. Effect of intermediate layers on atomic layer deposition-aluminum oxide protected silver mirrors

    NASA Astrophysics Data System (ADS)

    Fryauf, David M.; Diaz Leon, Juan J.; Phillips, Andrew C.; Kobayashi, Nobuhiko P.

    2017-07-01

    This work investigates intermediate materials deposited between silver (Ag) thin-film mirrors and an aluminum oxide (AlOx) barrier overlayer and compares the effects on mirror durability to environmental stresses. Physical vapor deposition of various fluorides, oxides, and nitrides in combination with AlOx by atomic layer deposition (ALD) is used to develop several coating recipes. Ag-AlOx samples with different intermediate materials undergo aggressive high-temperature (80°C), high-humidity (80%) (HTHH) testing for 10 days. Reflectivity of mirror samples is measured before and after HTHH testing, and image processing techniques are used to analyze the specular surface of the samples after HTHH testing. Among the seven intermediate materials used in this work, TiN, MgAl2O4, NiO, and Al2O3 intermediate layers offer more robust protection against chemical corrosion and moisture when compared with samples with no intermediate layer. In addition, results show that the performance of the ALD-AlOx barrier overlayer depends significantly on the ALD-growth process temperature. Because higher durability is observed in samples with less transparent TiN and NiO layers, we propose a figure of merit based on post-HTHH testing reflectivity change and specular reflective mirror surface area remaining after HTHH testing to judge overall barrier performance.

  16. Linear Thermal Expansion Measurements of Lead Magnesium Niobate (PMN) Electroceramic Material for the Terrestrial Planet Finder Coronagraph

    NASA Technical Reports Server (NTRS)

    Karlmann, Paul B.; Halverson, Peter G.; Peters, Robert D.; Levine, Marie B.; VanBuren, David; Dudik, Matthew J.

    2005-01-01

    Linear thermal expansion measurements of nine samples of Lead Magnesium Niobate (PMN) electroceramic material were recently performed in support of NASA's Terrestrial Planet Finder Coronagraph (TPF-C) mission. The TPF-C mission is a visible light coronagraph designed to look at roughly 50 stars pre- selected as good candidates for possessing earth-like planets. Upon detection of an earth-like planet, TPF-C will analyze the visible-light signature of the planet's atmosphere for specific spectroscopic indicators that life may exist there. With this focus, the project's primary interest in PMN material is for use as a solid-state actuator for deformable mirrors or compensating optics. The nine test samples were machined from three distinct boules of PMN ceramic manufactured by Xinetics Inc. Thermal expansion measurements were performed in 2005 at NASA Jet Propulsion Laboratory (JPL) in their Cryogenic Dilatometer Facility. All measurements were performed in vacuum with sample temperature actively controlled over the range of 270K to 3 10K. Expansion and contraction of the test samples with temperature was measured using a JPL developed interferometric system capable of sub-nanometer accuracy. Presented in this paper is a discussion of the sample configuration, test facilities, test method, data analysis, test results, and future plans.

  17. Mechanical and optical characterization of bio-nanocomposite from pineapple leaf fiber material for food packaging

    NASA Astrophysics Data System (ADS)

    Nikmatin, Siti; Rudwiyanti, Jerry R.; Prasetyo, Kurnia W.; Yedi, Dwi A.

    2015-01-01

    The utilization of Bio-nanocomposite material that was derived from pineapple leaf fiber as filler and tapioca starch with plasticizer glycerol as a matrix for food packaging can reduce the use of plastic that usually was made from petroleum materials. It is important to develop and producethis environmental friendly plastic because of limited availability of petroleum nowadays. The process of synthesize and characterization tapioca starch with the plasticizer glycerol bionanocomposites using print method had been conducted. There were 3 samples with different filler concentration variation; 3%, 4% and 5%.The results of mechanical test from each sample showed that bio-nanocomposite with 5% filler concentration was the optimum sample with 4.6320 MPa for tensile strength test and 24.87% for the elongation test. Based on the result of optical test for each sample was gained that along with the increasing of concentration filler would make the absorbance value of the sample became decreased, bio-nanocomposite with 5% filler concentration had several peaks with low absorbance values. The first peak was in 253 nm of wavelength regionwith absorbance of 0.131%, and the second peak was in 343 nmwavelength region and absorbance was 0.087%.

  18. Electrical Arc Ignition Testing of Spacesuit Materials

    NASA Technical Reports Server (NTRS)

    Smith, Sarah; Gallus, Tim; Tapia, Susana; Ball, Elizabeth; Beeson, Harold

    2006-01-01

    A viewgraph presentation on electrical arc ignition testing of spacesuit materials is shown. The topics include: 1) Background; 2) Test Objectives; 3) Test Sample Materials; 4) Test Methods; 5) Scratch Test Objectives; 6) Cotton Scratch Test Video; 7) Scratch Test Results; 8) Entire Date Plot; 9) Closeup Data Plot; 10) Scratch Test Problems; 11) Poke Test Objectives; 12) Poke Test Results; 13) Poke Test Problems; 14) Wire-break Test Objectives; 15) Cotton Wire-Break Test Video; 16) High Speed Cotton Wire-break Test Video; 17) Typical Data Plot; 18) Closeup Data Plot; 19) Wire-break Test Results; 20) Wire-break Tests vs. Scratch Tests; 21) Urethane-coated Nylon; and 22) Moleskin.

  19. 16 CFR § 1611.4 - Flammability test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... wrinkles. Five specimens from each direction (machine and transverse) of a given material shall be tested... D618, Tentative Methods of Conditioning Plastics and Electrical Insulating Materials for Testing. (c... flame. The sample shall be free from wrinkles or distortion when the holder is closed. The specimen...

  20. Interlaboratory study of a method for determining nonvolatile organic carbon in aquifer materials

    USGS Publications Warehouse

    Caughey, M.E.; Barcelona, M.J.; Powell, R.M.; Cahill, R.A.; Gron, C.; Lawrenz, D.; Meschi, P.L.

    1995-01-01

    The organic carbon fraction in aquifer materials exerts a major influence on the subsurface mobilities of organic and organic-associated contaminants. The spatial distribution of total organic carbon (TOC) in aquifer materials must be determined before the transport of hydrophobic organic pollutants in aquifers can be modeled accurately. Previous interlaboratory studies showed that it is difficult to measure TOC concentrations 1%. We have tested a new analytical method designed to improve the accuracy and precision of nonvolatile TOC quantitation in geologic materials that also contain carbonate minerals. Four authentic aquifer materials and one NIST standard reference material were selected as test materials for a blind collaborative study. Nonvolatile TOC in these materials ranged from 0.05 to 1.4%, while TIC ranged from 0.46 to 12.6%. Sample replicates were digested with sulfurous acid, dried at 40??C, and then combusted at 950??C using LECO or UIC instruments. For the three test materials that contained >2% TIC, incomplete acidification resulted in a systematic positive bias of TOC values reported by five of the six laboratories that used the test method. Participants did not have enough time to become proficient with the new method before they analyzed the test materials. A seventh laboratory successfully used an alternative method that analyzed separate liquid and solid fractions of the acidified sample residues. ?? 1995 Springer-Verlag.

  1. Small-scale dynamic confinement gap test

    NASA Astrophysics Data System (ADS)

    Cook, Malcolm

    2011-06-01

    Gap tests are routinely used to ascertain the shock sensitiveness of new explosive formulations. The tests are popular since that are easy and relatively cheap to perform. However, with modern insensitive formulations with big critical diameters, large test samples are required. This can make testing and screening of new formulations expensive since large quantities of test material are required. Thus a new test that uses significantly smaller sample quantities would be very beneficial. In this paper we describe a new small-scale test that has been designed using our CHARM ignition and growth routine in the DYNA2D hydrocode. The new test is a modified gap test and uses detonating nitromethane to provide dynamic confinement (instead of a thick metal case) whilst exposing the sample to a long duration shock wave. The long duration shock wave allows less reactive materials that are below their critical diameter, more time to react. We present details on the modelling of the test together with some preliminary experiments to demonstrate the potential of the new test method.

  2. Manufactured Porous Ambient Surface Simulants

    NASA Technical Reports Server (NTRS)

    Carey, Elizabeth M.; Peters, Gregory H.; Chu, Lauren; Zhou, Yu Meng; Cohen, Brooklin; Panossian, Lara; Green, Jacklyn R.; Moreland, Scott; Backes, Paul

    2016-01-01

    The planetary science decadal survey for 2013-2022 (Vision and Voyages, NRC 2011) has promoted mission concepts for sample acquisition from small solar system bodies. Numerous comet-sampling tools are in development to meet this standard. Manufactured Porous Ambient Surface Simulants (MPASS) materials provide an opportunity to simulate variable features at ambient temperatures and pressures to appropriately test potential sample acquisition systems for comets, asteroids, and planetary surfaces. The original "flavor" of MPASS materials is known as Manufactured Porous Ambient Comet Simulants (MPACS), which was developed in parallel with the development of the Biblade Comet Sampling System (Backes et al., in review). The current suite of MPACS materials was developed through research of the physical and mechanical properties of comets from past comet missions results and modeling efforts, coordination with the science community at the Jet Propulsion Laboratory and testing of a wide range of materials and formulations. These simulants were required to represent the physical and mechanical properties of cometary nuclei, based on the current understanding of the science community. Working with cryogenic simulants can be tedious and costly; thus MPACS is a suite of ambient simulants that yields a brittle failure mode similar to that of cryogenic icy materials. Here we describe our suite of comet simulants known as MPACS that will be used to test and validate the Biblade Comet Sampling System (Backes et al., in review).

  3. Ecological evaluation of proposed dredged material from St. Andrew Bay, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhew, H.L.; Word, J.Q.; Kohn, N.P.

    1993-10-01

    The US Army Corps of Engineers (USACE), Mobile District, requested that the Battelle/Marine Sciences Laboratory (MSL) conduct field sampling and chemical and biological testing to determine the suitability of potential dredged material for open ocean disposal. Sediment from St. Andrew Bay was chemically characterized and evaluated for biological toxicity and bioaccumulation of contaminants. The Tier III guidance for ocean disposal testing requires tests of water column effects (following dredged material disposal), deposited sediment toxicity, and bioaccumulation of contaminants from deposited sediment (dredged material). To meet these requirements, the MSL conducted suspended-particulate-phase (SPP) toxicity tests, solid-phase toxicity tests, and bioaccumulation testingmore » on sediment representing potential dredged material from Panama City Harbor. Physical and chemical characterization of sediment to support toxicity and bioaccumulation results was also conducted on both the test and reference sediments. The MSL collected sediment samples from five sites in St. Andrew Bay and one reference site near Lands End Peninsula. The five test sediments and the reference sediment were analyzed for physical and chemical sediment characteristics, SPP chemical contaminants, solid-phase toxicity, SPP toxicity, and bioaccumulation of contaminants.« less

  4. Lessons learned in preparing method 29 filters for compliance testing audits.

    PubMed

    Martz, R F; McCartney, J E; Bursey, J T; Riley, C E

    2000-01-01

    Companies conducting compliance testing are required to analyze audit samples at the time they collect and analyze the stack samples if audit samples are available. Eastern Research Group (ERG) provides technical support to the EPA's Emission Measurements Center's Stationary Source Audit Program (SSAP) for developing, preparing, and distributing performance evaluation samples and audit materials. These audit samples are requested via the regulatory Agency and include spiked audit materials for EPA Method 29-Metals Emissions from Stationary Sources, as well as other methods. To provide appropriate audit materials to federal, state, tribal, and local governments, as well as agencies performing environmental activities and conducting emission compliance tests, ERG has recently performed testing of blank filter materials and preparation of spiked filters for EPA Method 29. For sampling stationary sources using an EPA Method 29 sampling train, the use of filters without organic binders containing less than 1.3 microg/in.2 of each of the metals to be measured is required. Risk Assessment testing imposes even stricter requirements for clean filter background levels. Three vendor sources of quartz fiber filters were evaluated for background contamination to ensure that audit samples would be prepared using filters with the lowest metal background levels. A procedure was developed to test new filters, and a cleaning procedure was evaluated to see if a greater level of cleanliness could be achieved using an acid rinse with new filters. Background levels for filters supplied by different vendors and within lots of filters from the same vendor showed a wide variation, confirmed through contact with several analytical laboratories that frequently perform EPA Method 29 analyses. It has been necessary to repeat more than one compliance test because of suspect metals background contamination levels. An acid cleaning step produced improvement in contamination level, but the difference was not significant for most of the Method 29 target metals. As a result of our studies, we conclude: Filters for Method 29 testing should be purchased in lots as large as possible. Testing firms should pre-screen new boxes and/or new lots of filters used for Method 29 testing. Random analysis of three filters (top, middle, bottom of the box) from a new box of vendor filters before allowing them to be used in field tests is a prudent approach. A box of filters from a given vendor should be screened, and filters from this screened box should be used both for testing and as field blanks in each test scenario to provide the level of quality assurance required for stationary source testing.

  5. A pulse-shaping technique to investigate the behaviour of brittle materials subjected to plate-impact tests.

    PubMed

    Forquin, Pascal; Zinszner, Jean-Luc

    2017-01-28

    Owing to their significant hardness and compressive strengths, ceramic materials are widely employed for use with protective systems subjected to high-velocity impact loadings. Therefore, their mechanical behaviour along with damage mechanisms need to be significantly investigated as a function of loading rates. However, the classical plate-impact testing procedures produce shock loadings in the brittle sample material which cause unrealistic levels of loading rates. Additionally, high-pulsed power techniques and/or functionally graded materials used as flyer plates to smooth the loading pulse remain costly, and are generally difficult to implement. In this study, a shockless plate-impact technique based on the use of either a wavy-machined flyer plate or buffer plate that can be produced by chip-forming is proposed. A series of numerical simulations using an explicit transient dynamic finite-element code have been performed to design and validate the experimental testing configuration. The calculations, conducted in two-dimensional (2D) plane-strain or in 2D axisymmetric modes, prove that the 'wavy' contact surface will produce a pulse-shaping effect, whereas the buffer plate will produce a homogenizing effect of the stress field along the transverse direction of the sample. In addition, 'wavy-shape' geometries of different sizes provide an easy way to change the level of loading rate and rise time in an experimentally tested ceramic specimen. Finally, when a shockless compression loading method is applied to the sample, a Lagrangian analysis of data is made possible by considering an assemblage of ceramic plates of different thicknesses in the target, so the axial stress-strain response of the brittle sample material can be provided.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).

  6. A pulse-shaping technique to investigate the behaviour of brittle materials subjected to plate-impact tests

    NASA Astrophysics Data System (ADS)

    Forquin, Pascal; Zinszner, Jean-Luc

    2017-01-01

    Owing to their significant hardness and compressive strengths, ceramic materials are widely employed for use with protective systems subjected to high-velocity impact loadings. Therefore, their mechanical behaviour along with damage mechanisms need to be significantly investigated as a function of loading rates. However, the classical plate-impact testing procedures produce shock loadings in the brittle sample material which cause unrealistic levels of loading rates. Additionally, high-pulsed power techniques and/or functionally graded materials used as flyer plates to smooth the loading pulse remain costly, and are generally difficult to implement. In this study, a shockless plate-impact technique based on the use of either a wavy-machined flyer plate or buffer plate that can be produced by chip-forming is proposed. A series of numerical simulations using an explicit transient dynamic finite-element code have been performed to design and validate the experimental testing configuration. The calculations, conducted in two-dimensional (2D) plane-strain or in 2D axisymmetric modes, prove that the `wavy' contact surface will produce a pulse-shaping effect, whereas the buffer plate will produce a homogenizing effect of the stress field along the transverse direction of the sample. In addition, `wavy-shape' geometries of different sizes provide an easy way to change the level of loading rate and rise time in an experimentally tested ceramic specimen. Finally, when a shockless compression loading method is applied to the sample, a Lagrangian analysis of data is made possible by considering an assemblage of ceramic plates of different thicknesses in the target, so the axial stress-strain response of the brittle sample material can be provided. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  7. Preliminary Evaluation of the Field and Laboratory Emission Cell (FLEC) for Sampling Attribution Signatures from Building Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Scott D.; He, Lijian; Wahl, Jon H.

    2012-08-30

    This study provides a preliminary evaluation of the Field and Laboratory Emission Cell (FLEC) for its suitability for sampling building materials for toxic compounds and their associated impurities and residues that might remain after a terrorist chemical attack. Chemical warfare (CW) agents and toxic industrial chemicals were represented by a range of test probes that included CW surrogates. The test probes encompassed the acid-base properties, volatilities, and polarities of the expected chemical agents and residual compounds. Results indicated that dissipation of the test probes depended heavily on the underlying material. Near complete dissipation of almost all test probes occurred frommore » galvanized stainless steel within 3.0 hrs, whereas far stronger retention with concomitant slower release was observed for vinyl composition floor tiles. The test probes displayed immediated permanence on Teflon. FLEC sampling was further evaluated by profiling residues remaining after the evaporation of 2-chloroethyl ethyl sulfide, a sulfur mustard simulant. This study lays the groundwork for the eventual goal of applying this sampling approach for collection of forensic attribution signatures that remain after a terrorist chemical attack.« less

  8. Embankment Criteria and Performance Report: Adobe Dam Gila River Basin, New River and Phoenix City Streams, Arizona.

    DTIC Science & Technology

    1983-06-01

    Field Control Results 18 - Record Test Results 18 GRAVEL DRAIN MATERIAL, 19 FILTER MATERIAL, 20 ABUTMET INFILL MATERIAL- 20 X. EMBANKMENT ANALYSIS 21 XI...Thirty-three in-situ density tests were conducted in the near surface embankment foundation materials by the sand displacement method . An additional...seven densities were obtained from undisturbed samples by the bulk density method . The results of density tests in the foundation are shown on plate

  9. Permeability-porosity relationship for compaction of a low-permeability creeping material : Experimental evaluation using a single transient test

    NASA Astrophysics Data System (ADS)

    Ghabezloo, S.; Sulem, J.; Saint-Marc, J.

    2009-04-01

    It is well-known that there is no unique permeability-porosity relationship that can be applied to all porous materials. For a given evolution process that changes both permeability and porosity of a porous material, for example elastic or plastic compaction, microcracking or chemical alteration, it is usually assumed that there is an empirical relationship in the form of a power-law or exponential relationship between these parameters. The coefficients of these empirical relationships depend strongly on the properties of the material and of the evolution process. For the case of the power-law permeability-porosity relationship, a review of the literature shows that the exponent of this relation may be integer or non-integer, constant or variable, and the reported values of exponent vary between 1.1 and 25.4 for different materials and evolution processes, but no clear correlation between the exponenet and the petrophysical properties could be found. This wide variability of the permeability-porosity relationship highlights the necessity of experimental evaluation of this relationship for each material and evolution process. An experimental method is presented for the evaluation of a permeability-porosity relationship in a low-permeability porous material using the results of a single transient test. This method accounts for both elastic and non-elastic deformations of the sample during the test and is applied to a hardened class G oil well cement paste. An initial hydrostatic undrained loading is applied to the sample which generates an excess pore pressure, related to the applied hydrostatic stress by the Skempton coefficient of the material. The generated excess pore pressure is then released at one end of the sample while monitoring the pore pressure at the other end and the radial strain in the middle of the sample during the dissipation of the pore pressure. These measurements are back analysed using a finite-difference numerical scheme to evaluate the permeability and its evolution with porosity change. The stress-dependent character of the poroelastic parameters of the hardened cement paste (Ghabezloo et al., 2008) and also the creep of the material during the test add some particular aspects to the back-analysis, which makes this problem different from the classical solutions of transient permeability evaluation tests. The effect of creep of the sample during the test on the measured pore pressure and volume change is taken into account in the analysis. This approach permits to calibrate a power law permeability-porosity relationship for the tested hardened cement paste and also two parameters of a viscoelastic model for the creep of the material. The porosity sensitivity exponent of the power-law is evaluated equal to 11 and is shown to be mostly independent of the stress level and of the creep strains. The proposed method can be applied to different low permeability porous materials and for the case of non-creeping materials, the same type of analysis can be used to calibrate either a permeability-porosity or a permeability-effective stress relationship for the compaction of the tested material using a single transient test. References: 1.Ghabezloo S., Sulem J., Saint-Marc, J. (2008) Evaluation of a permeability-porosity relationship in a low permeability creeping material using a single transient test. Int J Rock Mech Min Sci, in press, DOI 10.1016/j.ijrmms.2008.10.003. 2.Ghabezloo, S., Sulem, J., Guédon, S., Martineau, F., Saint-Marc, J. (2008) Poromechanical behaviour of hardened cement paste under isotropic loading. Cement and Concrete Research, 38(12), 1424-1437.

  10. Quantification Of Fire Signatures For Practical Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.; Ruff, Gary A.; Tomasek, Aaron J.

    2003-01-01

    The overall objective of this project is to measure the fire signatures of typical spacecraft materials in 1-g and determine how these signatures may be altered in a microgravity environment. During this project, we will also develop a test technique to obtain representative low-gravity signatures. The specific tasks that will be accomplished to achieve these objectives are to: (1) measure the time history of various fire signatures of typical spacecraft materials in 1-g at varying heating rates, temperatures, convective velocities, and oxygen concentrations, (2) conduct tests in the Zero-Gravity Facility at NASA John H. Glenn Research Center to investigate the manner that a microgravity environment alters the fire signature,(3) compare 0-g and 1-g time histories and determine if 0-g data exhibits the same dependence on the test parameters as experienced in 1-g (4) develop a 1-g test technique by which 0-g fire signatures can be measured. The proposed study seeks to investigate the differences in the identities and relative concentrations of the volatiles produced by pyrolyzing and/or smoldering materials between normal gravity and microgravity environments. Test materials will be representative of typical spacecraft materials and, where possible, will be tested in appropriate geometries. Wire insulation materials of Teflon, polyimide, silicone, and PVC will be evaluated using either cylindrical samples or actual wire insulation. Other materials such as polyurethane, polyimide, melamine, and silicone-based foams will be tested using cylindrical samples, in addition to fabric materials, such as Nomex. Electrical components, such as resistors, capacitors, circuit board will also be tested.

  11. Report on Status of Shipment of High Fluence Austenitic Steel Samples for Characterization and Stress Corrosion Crack Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Scarlett R.; Leonard, Keith J.

    The goal of the Mechanisms of Irradiation Assisted Stress Corrosion Cracking (IASCC) task in the LWRS Program is to conduct experimental research into understanding how multiple variables influence the crack initiation and crack growth in materials subjected to stress under corrosive conditions. This includes understanding the influences of alloy composition, radiation condition, water chemistry and metallurgical starting condition (i.e., previous cold work or heat treatments and the resulting microstructure) has on the behavior of materials. Testing involves crack initiation and growth testing on irradiated specimens of single-variable alloys in simulated Light Water Reactor (LWR) environments, tensile testing, hardness testing, microstructuralmore » and microchemical analysis, and detailed efforts to characterize localized deformation. Combined, these single-variable experiments will provide mechanistic understanding that can be used to identify key operational variables to mitigate or control IASCC, optimize inspection and maintenance schedules to the most susceptible materials/locations, and, in the long-term, design IASCC-resistant materials. In support of this research, efforts are currently underway to arrange shipment of “free” high fluence austenitic alloys available through Électricité de France (EDF) for post irradiation testing at the Oak Ridge National Laboratory (ORNL) and IASCC testing at the University of Michigan. These high fluence materials range in damage values from 45 to 125 displacements per atom (dpa). The samples identified for transport to the United States, which include nine, no-cost, 304, 308 and 316 tensile bars, were relocated from the Research Institute of Atomic Reactors (RIAR) in Dimitrovgrad, Ulyanovsk Oblast, Russia, and received at the Halden Reactor in Halden, Norway, on August 23, 2016. ORNL has been notified that a significant amount of work is required to prepare the samples for further shipment to Oak Ridge, Tennessee. The preliminary work for sample shipment between Halden and Oak Ridge includes fabrication of an inner cask sample container, decontamination and preparation of a Type A container, preparation of new activity calculations, all necessary paperwork, and handling. ORNL will continue to work to track progress of sample preparation and shipment status, and to work toward an agreement that covers material shipping costs between the Halden Reactor and the Oak Ridge National Laboratory.« less

  12. Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps

    DOE PAGES

    Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; ...

    2015-07-31

    The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m 2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holdersmore » compatible with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-ε turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.« less

  13. 27 CFR 19.453 - Testing of denaturants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Denaturation § 19.453 Testing of denaturants. (a) Testing. Proprietors shall ensure that the materials they... shall be taken in such manner as to represent a true composite of the total lot being sampled. When... part 21, the proprietor shall not use the material unless he treats or manipulates the denaturant to...

  14. Effect of γ-irradiation on the optical and electrical properties of fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Anwar, Ahmad; Elfiky, Dalia; Ramadan, Ahmed M.; Hassan, G. M.

    2017-05-01

    The effect of gamma irradiation on the optical and electrical properties of the reinforced fiber polymeric based materials became an important issue. Fiberglass/epoxy and Kevlar fiber/epoxy were selected as investigated samples manufactured with hand lay-up without autoclave curing technique. The selected technique is simple and low cost while being rarely used in space materials production. The electric conductivity and dielectric constant for those samples were measured with increasing the gamma radiation dose. Moreover, the absorptivity, band gap and color change were determined. Fourier transform infrared (FTIR) was performed to each of the material's constituent to evaluate the change in the investigated materials due to radiation exposure dose. In this study, the change of electrical properties for both investigated materials showed a slight variation of the test parameters with respect to the gamma dose increase; this variation is placed in the insulators rang. The tested samples showed an insulator stable behavior during the test period. The change of optical properties for both composite specimens showed the maximum absorptivity at the gamma dose 750 kGy. These materials are suitable for structure materials and thermal control for orbital life less than 7 years. In addition, the transparency of epoxy matrix was degraded. However, there is no color change for either Kevlar fiber or fiberglass.

  15. Standardized Sample Preparation Using a Drop-on-Demand Printing Platform

    DTIC Science & Technology

    2013-05-07

    successful and robust methodology for energetic sample preparation. Keywords: drop-on-demand; inkjet printing; sample preparation OPEN ACCESS...on a similar length scale. Recently, drop-on-demand inkjet printing technology has emerged as an effective approach to produce test materials to...which most of the material is concentrated along the edges, samples prepared using drop-on-demand inkjet technology demonstrate excellent uniform

  16. Low cycle fatigue life of two nickel-base casting alloys in a hydrogen environment. [for high-pressure oxidizer turbopump turbine nozzles

    NASA Technical Reports Server (NTRS)

    Cooper, R. A.

    1976-01-01

    Samples of two nickel-base casting alloys, Mar-M-246 (a Martin Company alloy) and 713LC (a low-carbon modification of the alloy 713C developed by International Nickel Company) were tested as candidate materials for the high-pressure fuel and high-pressure oxidizer turbopump turbine nozzles. The samples were subjected to tensile tests and to low cycle fatigue tests in high-pressure hydrogen to study the influence of the hydrogen environment. The Mar-M-246 material was found to have a three times higher cyclic life in hydrogen than the 713LC alloy, and was selected as the nozzle material.

  17. Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacold, J. I.; Lukens, W. W.; Booth, C. H.

    Nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. We find significant variationsmore » among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. The resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.« less

  18. Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacold, J. I.; Lukens, W. W.; Booth, C. H.

    We report that nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. Wemore » find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. Lastly, the resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.« less

  19. Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing

    DOE PAGES

    Pacold, J. I.; Lukens, W. W.; Booth, C. H.; ...

    2016-05-18

    We report that nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. Wemore » find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. Lastly, the resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.« less

  20. Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing

    NASA Astrophysics Data System (ADS)

    Pacold, J. I.; Lukens, W. W.; Booth, C. H.; Shuh, D. K.; Knight, K. B.; Eppich, G. R.; Holliday, K. S.

    2016-05-01

    Nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. We find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. The resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.

  1. Commutability of food microbiology proficiency testing samples.

    PubMed

    Abdelmassih, M; Polet, M; Goffaux, M-J; Planchon, V; Dierick, K; Mahillon, J

    2014-03-01

    Food microbiology proficiency testing (PT) is a useful tool to assess the analytical performances among laboratories. PT items should be close to routine samples to accurately evaluate the acceptability of the methods. However, most PT providers distribute exclusively artificial samples such as reference materials or irradiated foods. This raises the issue of the suitability of these samples because the equivalence-or 'commutability'-between results obtained on artificial vs. authentic food samples has not been demonstrated. In the clinical field, the use of noncommutable PT samples has led to erroneous evaluation of the performances when different analytical methods were used. This study aimed to provide a first assessment of the commutability of samples distributed in food microbiology PT. REQUASUD and IPH organized 13 food microbiology PTs including 10-28 participants. Three types of PT items were used: genuine food samples, sterile food samples and reference materials. The commutability of the artificial samples (reference material or sterile samples) was assessed by plotting the distribution of the results on natural and artificial PT samples. This comparison highlighted matrix-correlated issues when nonfood matrices, such as reference materials, were used. Artificially inoculated food samples, on the other hand, raised only isolated commutability issues. In the organization of a PT-scheme, authentic or artificially inoculated food samples are necessary to accurately evaluate the analytical performances. Reference materials, used as PT items because of their convenience, may present commutability issues leading to inaccurate penalizing conclusions for methods that would have provided accurate results on food samples. For the first time, the commutability of food microbiology PT samples was investigated. The nature of the samples provided by the organizer turned out to be an important factor because matrix effects can impact on the analytical results. © 2013 The Society for Applied Microbiology.

  2. Characterization of Shear Properties for APO/MBI Syntactic Foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reser, Patrick M.; Lewis, Matthew W.; Clark, Jarod

    Triaxial compression testing is a means for mechanical characterization of a material. A unique feature of the triaxial compression test is the application of two different magnitudes of compressive pressures on the material simultaneously. The material behavior under these different compressive pressures can be monitored over time. Several important characteristics of the material, such as stress yield values and the shear failure envelope may then be determined. Also mechanical properties such as Poisson’s ratio, Young’s modulus and bulk modulus can be determined from the triaxial compression test. The triaxial compression test was employed in this investigation to characterize the shearmore » behavior, shear failure envelope, and mechanical properties of a syntactic foam. Los Alamos National Laboratory (LANL) supplied a total of 36 samples of APO-BMI syntactic foam to the University of New Mexico, Department of Civil Engineering for testing between December 2003 and May 2004. Each sample had a diameter of 1.395±0.005 in. (3.543±0.013cm.) and a length of 2.796±0.004 in. (7.102±0.010 cm.). The samples had an average density of 0.295 g/cm3. Additional information about the material tested in this investigation can be found in the “Specimen Description” section contained in Chapter 1. The nomenclatures used in this study is presented in Chapter 1. In addition to designing and implementing triaxial compression tests capable of up to 2,000 psi. confining pressure (minor principal stress) and roughly 13,000 psi. in axial pressure (major principal stress), a pure tension test was designed and conducted on the foam material. The purpose of this pure tension test was to obtain maximum tensile stress values to enhance the characterization of the shear envelope in the stress space. The sampling procedure and specimen preparation for a standard test can be found in the American Society for Testing Materials (ASTM) D 5379/ D 5379 – 93. The above tests mentioned and their procedures are discussed in Chapter 2. Chapter 2 contains the types of tests performed and the apparatus used for testing the material. Chapter 2 also has a brief explanation of the equipment and the procedures used for conducting the tests. In Chapter 3, the material characteristics and mechanical properties obtained from the tests are described; composite plots of deviatoric vs. mean stress and deviatoric stress vs. longitudinal strain are also included. The plots of deviatoric stress vs. mean stress clearly identify the shear envelope for the material. Chapter 4 summarizes the vital information obtained from the tests and the conclusions made. All the necessary plots and the data generated during the testing have been included in the Appendix. The information in the appendix includes plots of: Strain vs. Time, Stress vs. Time, Stress vs. Strain, Mean Stress vs. Volumetric Strain, Lateral Strain vs. Longitudinal Strain, and q vs. p. Bulk modulus, Poisson’s ratio, and Young’s modulus are displayed in the appropriate plots in each appendix.« less

  3. Fire safety in space - beyond flammability testing of small samples

    NASA Astrophysics Data System (ADS)

    Jomaas, Grunde; Torero, Jose L.; Eigenbrod, Christian; Niehaus, Justin; Olson, Sandra L.; Ferkul, Paul V.; Legros, Guillaume; Fernandez-Pello, A. Carlos; Cowlard, Adam J.; Rouvreau, Sebastien; Smirnov, Nickolay; Fujita, Osamu; T`ien, James S.; Ruff, Gary A.; Urban, David L.

    2015-04-01

    An international research team has been assembled to reduce the uncertainty and risk in the design of spacecraft fire safety systems by testing material samples in a series of flight experiments (Saffire 1, 2, and -3) to be conducted in an Orbital Science Corporation Cygnus vehicle after it has undocked from the International Space Station (ISS). The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle re-enters the atmosphere. The unmanned, pressurized environment in the Saffire experiments allows for the largest sample sizes ever to be tested for material flammability in microgravity, which will be based on the characteristics of flame spread over the surface of the combustible material. Furthermore, the experiments will have a duration that is unmatched in scale compared to earth based microgravity research facilities such as drop towers (about 5 s) and parabolic flights (about 20 s). In contrast to sounding rockets, the experiments offer a much larger volume, and the reduction in the oxygen concentration during the Saffire experiments will be minimal. The selection of the experimental settings for the first three Saffire experiments has been based on existing knowledge of scenarios that are relevant, yet challenging, for a spacecraft environment. Given that there is always airflow in the space station, all the experiments are conducted with flame spread in either concurrent or opposed flow, though with the flow being stopped in some tests, to simulate the alarm mode environment in the ISS and thereby also to study extinguishment. The materials have been selected based on their known performance in NASA STD-6001Test-1, and with different materials being classified as charring, thermally thin, and thermally thick. Furthermore, materials with non-uniform surfaces will be investigated.

  4. 46 CFR 164.009-15 - Test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... material, is less than 47 mm, the specimens prepared consist of layers of the sample. (3) If the sample is a composite material and has a height that is not 50 ±3mm, the layers of the specimen prepared are proportional in thickness to the layers of the sample. (4) The top and bottom faces of each specimen prepared...

  5. Characterization of 107 Genomic DNA Reference Materials for CYP2D6, CYP2C19, CYP2C9, VKORC1, and UGT1A1

    PubMed Central

    Pratt, Victoria M.; Zehnbauer, Barbara; Wilson, Jean Amos; Baak, Ruth; Babic, Nikolina; Bettinotti, Maria; Buller, Arlene; Butz, Ken; Campbell, Matthew; Civalier, Chris; El-Badry, Abdalla; Farkas, Daniel H.; Lyon, Elaine; Mandal, Saptarshi; McKinney, Jason; Muralidharan, Kasinathan; Noll, LeAnne; Sander, Tara; Shabbeer, Junaid; Smith, Chingying; Telatar, Milhan; Toji, Lorraine; Vairavan, Anand; Vance, Carlos; Weck, Karen E.; Wu, Alan H.B.; Yeo, Kiang-Teck J.; Zeller, Markus; Kalman, Lisa

    2010-01-01

    Pharmacogenetic testing is becoming more common; however, very few quality control and other reference materials that cover alleles commonly included in such assays are currently available. To address these needs, the Centers for Disease Control and Prevention's Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing community and the Coriell Cell Repositories, have characterized a panel of 107 genomic DNA reference materials for five loci (CYP2D6, CYP2C19, CYP2C9, VKORC1, and UGT1A1) that are commonly included in pharmacogenetic testing panels and proficiency testing surveys. Genomic DNA from publicly available cell lines was sent to volunteer laboratories for genotyping. Each sample was tested in three to six laboratories using a variety of commercially available or laboratory-developed platforms. The results were consistent among laboratories, with differences in allele assignments largely related to the manufacturer's assay design and variable nomenclature, especially for CYP2D6. The alleles included in the assay platforms varied, but most were identified in the set of 107 DNA samples. Nine additional pharmacogenetic loci (CYP4F2, EPHX1, ABCB1, HLAB, KIF6, CYP3A4, CYP3A5, TPMT, and DPD) were also tested. These samples are publicly available from Coriell and will be useful for quality assurance, proficiency testing, test development, and research. PMID:20889555

  6. Contribution a la caracterisation des betons endommages par des methodes de l'acoustique non lineaire. Application a la reaction alcalis-silice

    NASA Astrophysics Data System (ADS)

    Kodjo, Apedovi

    The aim of this thesis is to contribute to the non-destructive characterization of concrete materials damaged by alkali-silica reaction (ASR). For this purpose, some nonlinear characterization techniques have been developed, as well as a nonlinear resonance test device. In order to optimize the sensitivity of the test device, the excitation module and signal processing have been improved. The nonlinear tests were conducted on seven samples of concrete damaged by ASR, three samples of concrete damaged by heat, three concrete samples damaged mechanically and three sound concrete samples. Since, nonlinear behaviour of the material is often attribute to its micro-defects hysteretic behaviour, it was shown at first that concrete damaged by ASR exhibits an hysteresis behaviour. To conduct this study, an acoustoelastic test was set, and then nonlinear resonance test device was used for characterizing sound concrete and concrete damaged by ASR. It was shown that the nonlinear technique can be used for characterizing the material without knowing its initial state, and also for detecting early damage in the reactive material. Studies were also carried out on the effect of moisture regarding the nonlinear parameters; they allowed understanding the low values of nonlinear parameters measured on concrete samples that were kept in high moisture conditions. In order to find a specific characteristic of damage caused by ASR, the viscosity of ASR gel was used. An approach, based on static creep analysis, performed on the material, while applying the nonlinear resonance technique. The spring-damping model of Maxwell was used for the interpretation of the results. Then, the creep time was analysed on samples damaged by ASR. It appears that the ASR gel increases the creep time. Finally, the limitations of the nonlinear resonance technique for in situ application have been explained and a new applicable nonlinear technique was initiated. This technique use an external source such as a mass for making non-linearity behaviour in the material, while an ultrasound wave is investigating the medium. Keywords. Concrete, Alkali-silica reaction, Nonlinear acoustics, Nonlinearity, Hysteresis, Damage diagnostics.

  7. Perchlorate in Fertilizers

    DTIC Science & Technology

    1999-09-01

    Harrington , showed that with respect to mixed water analysis containing TDS at greater 1,000 ppm, the performance of the AS-5 column is not as robust...to note, these raw test materials were heterogeneous. Regardless of mixing time and mesh quality, dividing the raw test materials for laboratory...raw test material was prepared and shipped to seven laboratories for blind analysis. The suspension was prepared by 4 mixing the solid sample with

  8. Effectiveness of the training material in drug-dose calculation skills.

    PubMed

    Basak, Tulay; Aslan, Ozlem; Unver, Vesile; Yildiz, Dilek

    2016-07-01

    The aim of study was to evaluate the effectiveness of the training material based on low-level environmental fidelity simulation in drug-dose calculation skills in senior nursing students. A quasi-experimental design with one group. The sample included senior nursing students attending a nursing school in Turkey in the period December 2012-January 2013. Eighty-two senior nursing students were included in the sample. Data were obtained using a data collection form which was developed by the researchers. A paired-sample t-test was used to compare the pretest and post-test scores. The difference between the mean pretest score and the mean post-test score was statistically significant (P < 0.05). This study revealed that the training material based on low-level environmental fidelity simulation positively impacted accurate drug-dose calculation skills in senior nursing students. © 2016 Japan Academy of Nursing Science.

  9. Fractographic study of epoxy fractured under mode I loading and mixed mode I/III loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Fei; Wang, Jy-An John; Bertelsen, Williams D.

    2011-01-01

    Fiber reinforced polymeric composite materials are widely used in structural components such as wind turbine blades, which are typically subject to complicated loading conditions. Thus, material response under mixed mode loading is of great significance to the reliability of these structures. Epoxy is a thermosetting polymer that is currently used in manufacturing wind turbine blades. The fracture behavior of epoxy is relevant to the mechanical integrity of the wind turbine composite materials. In this study, a novel fracture testing methodology, the spiral notch torsion test (SNTT), was applied to study the fracture behavior of an epoxy material. SNTT samples weremore » tested using either monotonic loading or cyclic loading, while both mode I and mixed mode I/III loading conditions were used. Fractographic examination indicated the epoxy samples included in this study were prone to mode I failure even when the samples were subject to mixed mode loading. Different fatigue precracks were observed on mode I and mixed mode samples, i.e. precracks appeared as a uniform band under mode I loading, and a semi-ellipse under mixed mode loading. Fracture toughness was also estimated using quantitative fractography.« less

  10. Baseline tests for arc melter vitrification of INEL buried wastes. Volume II: Baseline test data appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oden, L.L.; O`Conner, W.K.; Turner, P.C.

    1993-11-19

    This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc meltingmore » furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.« less

  11. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    DOE PAGES

    Garrison, L. M.; Zenobia, Samuel J.; Egle, Brian J.; ...

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000°C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ionmore » gun can irradiate the samples with ion currents of 20 μA–500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10 14 ions/(cm 2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. In conclusion, the MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.« less

  12. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions.

    PubMed

    Garrison, L M; Zenobia, S J; Egle, B J; Kulcinski, G L; Santarius, J F

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10(14) ions/(cm(2) s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

  13. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    NASA Astrophysics Data System (ADS)

    Garrison, L. M.; Zenobia, S. J.; Egle, B. J.; Kulcinski, G. L.; Santarius, J. F.

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 1014 ions/(cm2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

  14. Carbon Nanofiber Cement Sensors to Detect Strain and Damage of Concrete Specimens Under Compression.

    PubMed

    Galao, Oscar; Baeza, F Javier; Zornoza, Emilio; Garcés, Pedro

    2017-11-24

    Cement composites with nano-additions have been vastly studied for their functional applications, such as strain and damage sensing. The capacity of a carbon nanofiber (CNF) cement paste has already been tested. However, this study is focused on the use of CNF cement composites as sensors in regular concrete samples. Different measuring techniques and humidity conditions of CNF samples were tested to optimize the strain and damage sensing of this material. In the strain sensing tests (for compressive stresses up to 10 MPa), the response depends on the maximum stress applied. The material was more sensitive at higher loads. Furthermore, the actual load time history did not influence the electrical response, and similar curves were obtained for different test configurations. On the other hand, damage sensing tests proved the capability of CNF cement composites to measure the strain level of concrete samples, even for loads close to the material's strength. Some problems were detected in the strain transmission between sensor and concrete specimens, which will require specific calibration of each sensor one attached to the structure.

  15. Investigation of Comfort Properties of Knitted Denim

    NASA Astrophysics Data System (ADS)

    Akbar, Abdul R.; Su, Siwei; Khalid, Junaid; Cai, Yingjie; Lin, Lina

    2017-12-01

    Knitted denim was designed by using cross terry structure on circular knitting machine. Knitted denim looks like a denim fabric which has visual appearance like woven denim. Two type of cross terry structure 2/1 and 3/1 were used which gives twill effect with 2 and 3 floats respectively. Four types of materials, cotton, polyester, flax and polypropylene were used. With four materials and two structural combinations 8 samples were produced. Comfort properties of knitted denim including moisture management, air permeability, thermal, and bursting strength were tested. For checking the inherent anti-microbial property of materials anti-microbial test was also applied. Samples containing flax and polyester were found with best results and not even a single sample was found anti-microbial.

  16. Adhesives: Test Method, Group Assignment, and Categorization Guide for High-Loading-Rate Applications Preparation and Testing of Single Lap Joints (Ver. 2.2, Unlimited)

    DTIC Science & Technology

    2016-04-01

    Gerard Chaney, and Charles Pergantis Weapons and Materials Research Directorate, ARL Coatings, Corrosion, and Engineered Polymers Branch (CCEPB...SUBJECT TERMS single lap joint, adhesive, sample preparation, testing, database, metadata, material pedigree, ISO 16. SECURITY CLASSIFICATION OF: 17...temperature/water immersion conditioning test for lap-joint test specimens using the test tubes and convection oven method

  17. Progress toward the determination of correct classification rates in fire debris analysis.

    PubMed

    Waddell, Erin E; Song, Emma T; Rinke, Caitlin N; Williams, Mary R; Sigman, Michael E

    2013-07-01

    Principal components analysis (PCA), linear discriminant analysis (LDA), and quadratic discriminant analysis (QDA) were used to develop a multistep classification procedure for determining the presence of ignitable liquid residue in fire debris and assigning any ignitable liquid residue present into the classes defined under the American Society for Testing and Materials (ASTM) E 1618-10 standard method. A multistep classification procedure was tested by cross-validation based on model data sets comprised of the time-averaged mass spectra (also referred to as total ion spectra) of commercial ignitable liquids and pyrolysis products from common building materials and household furnishings (referred to simply as substrates). Fire debris samples from laboratory-scale and field test burns were also used to test the model. The optimal model's true-positive rate was 81.3% for cross-validation samples and 70.9% for fire debris samples. The false-positive rate was 9.9% for cross-validation samples and 8.9% for fire debris samples. © 2013 American Academy of Forensic Sciences.

  18. Evaluation of dredged material proposed for ocean disposal from Hackensack River Project Area, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruendell, B.D.; Barrows, E.S.; Borde, A.B.

    1997-01-01

    The objective of the bioassay reevaluation of the Hackensack River Federal Project was to reperform toxicity testing on proposed dredged material with current ammonia reduction protocols. Hackensack River was one of four waterways sampled and evaluated for dredging and disposal in April 1993. Sediment samples were re-collected from the Hackensack River Project area in August 1995. Tests and analyses were conducted according to the manual developed by the USACE and the U.S. Environmental Protection Agency (EPA), Evaluation of Dredged Material Proposed for Ocean Disposal (Testing Manual), commonly referred to as the {open_quotes}Green Book,{close_quotes} and the regional manual developed by themore » USACE-NYD and EPA Region II, Guidance for Performing Tests on Dredged Material to be Disposed of in Ocean Waters. The reevaluation of proposed dredged material from the Hackensack River project area consisted of benthic acute toxicity tests. Thirty-three individual sediment core samples were collected from the Hackensack River project area. Three composite sediments, representing each reach of the area proposed for dredging, were used in benthic acute toxicity testing. Benthic acute toxicity tests were performed with the amphipod Ampelisca abdita and the mysid Mysidopsis bahia. The amphipod and mysid benthic toxicity test procedures followed EPA guidance for reduction of total ammonia concentrations in test systems prior to test initiation. Statistically significant acute toxicity was found in all three Hackensack River composites in the static renewal tests with A. abdita, but not in the static tests with M. bahia. Statistically significant acute toxicity and a greater than 20% increase in mortality over the reference sediment was found in the static renewal tests with A. abdita. Statistically significant mortality 10% over reference sediment was observed in the M. bahia static tests. 5 refs., 2 figs., 2 tabs.« less

  19. Evaluation of dredged material proposed for ocean disposal from Arthur Kill Project Area, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruendell, B.D.; Barrows, E.S.; Borde, A.B.

    1997-01-01

    The objective of the bioassay reevaluation of Arthur Kill Federal Project was to reperform toxicity testing on proposed dredged material following current ammonia reduction protocols. Arthur Kill was one of four waterways sampled and evaluated for dredging and disposal in April 1993. Sediment samples were recollected from the Arthur Kill Project areas in August 1995. Tests and analyses were conducted according to the manual developed by the USACE and the U.S. Environmental Protection Agency (EPA), Evaluation of Dredged Material Proposed for Ocean Disposal (Testing Manual), commonly referred to as the {open_quotes}Green Book,{close_quotes} and the regional manual developed by the USACE-NYDmore » and EPA Region II, Guidance for Performing Tests on Dredged Material to be Disposed of in Ocean Waters. The reevaluation of proposed dredged material from the Arthur Kill project areas consisted of benthic acute toxicity tests. Thirty-three individual sediment core samples were collected from the Arthur Kill project area. Three composite sediments, representing each reach of the area proposed for dredging, was used in benthic acute toxicity testing. Benthic acute toxicity tests were performed with the amphipod Ampelisca abdita and the mysid Mysidopsis bahia. The amphipod and mysid benthic toxicity test procedures followed EPA guidance for reduction of total ammonia concentrations in test systems prior to test initiation. Statistically significant acute toxicity was found in all Arthur Kill composites in the static renewal tests with A. abdita, but not in the static tests with M. bahia. Statistically significant acute toxicity and a greater than 20% increase in mortality over the reference sediment was found in the static renewal tests with A. abdita. M. bahia did not show statistically significant acute toxicity or a greater than 10% increase in mortality over reference sediment in static tests. 5 refs., 2 figs., 2 tabs.« less

  20. 46 CFR 162.050-15 - Designation of facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... This is the mean and standard deviation, respectively, of the differences between the known sample... sample analysis, and the materials necessary to perform the tests; (2) Each facility test rig must be of... facilities. (a) Each request for designation as a facility authorized to perform approval tests must be...

  1. 75 FR 51020 - Third Party Testing for Certain Children's Products; Mattresses, Mattress Pads, and/or Mattress...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... product, or samples that are identical in all material respects to the product. The Commission also..., but only if the prototype is the same as the production unit with respect to materials, components... of materials such as ticking. The ticking substitution test must also be conducted by a CPSC-accepted...

  2. Statistical characterization of carbon phenolic prepreg materials, volume 1

    NASA Technical Reports Server (NTRS)

    Beckley, Don A.; Stites, John, Jr.

    1988-01-01

    The objective was to characterize several lots of materials used for carbon/carbon and carbon/phenol product manufacture. Volume one is organized into testing categories based on raw material of product form. Each category contains a discussion of the sampling plan, comments and observations on each test method utilized, and a summary of the results obtained each category.

  3. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    NASA Technical Reports Server (NTRS)

    Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  4. Compact Fuel Element Environment Test

    NASA Technical Reports Server (NTRS)

    Bradley, D. E.; Mireles, O. R.; Hickman, R. R.; Broadway, J. W.

    2012-01-01

    Deep space missions with large payloads require high specific impulse (I(sub sp)) and relatively high thrust to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average I(sub sp). Nuclear thermal rockets (NTRs) capable of high I(sub sp) thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3,000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements that employ high melting point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high-temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via noncontact radio frequency heating and expose samples to hydrogen for typical mission durations has been developed to assist in optimal material and manufacturing process selection without employing fissile material. This Technical Memorandum details the test bed design and results of testing conducted to date.

  5. The Method of Manufacturing Nonmetallic Test-Blocks on Different Sensitivity Classes

    NASA Astrophysics Data System (ADS)

    Kalinichenko, N. P.; Kalinichenko, A. N.; Lobanova, I. S.; Zaitseva, A. A.; Loboda, E. L.

    2016-01-01

    Nowadays in our modern world there is a vital question of quality control of details made from nonmetallic materials due to their wide spreading. Nondestructive penetrant testing is effective, and in some cases it is the only possible method of accidents prevention at high- risk sites. A brief review of check sample necessary for quality evaluation of penetrant materials is considered. There was offered a way of making agents for quality of penetrant materials testing according to different liquid penetrant testing sensibility classes.

  6. Baseline tests for arc melter vitrification of INEL buried wastes. Volume 1: Facility description and summary data report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oden, L.L.; O`Connor, W.K.; Turner, P.C.

    1993-11-19

    This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc meltingmore » furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.« less

  7. Compilation of data on the uranium and equivalent uranium content of samples analyzed by U.S. Geological Survey during a program of sampling mine, mill, and smelter products

    USGS Publications Warehouse

    Hall, Marlene Louise; Butler, Arthur Pierce

    1952-01-01

    In 1942 the Geological Survey began to collect, in response to a request made by the War Production Board, samples of mine, mill, and smelter products. About 1,400 such samples were collected and analyzed spectrographically for about 20 elements that were of strategic importance, in order to determine whether any of the products analyzed might be possible sources of some of the needed elements. When attention was directed to radioactive elements in 1943, most of the samples were scanned for radioactivity. Part of the work was done on behalf of the Division of Raw Materials of the Atomic Energy Commission. The sources, mine mill, smelter, or prospect, from which these samples were collected, the kind of material sampled, i.e. ores, concentrates, middlings, tailings, flue dusts, and so forth, and the radioactivity of the samples are listed in this report. Samples of the materials collected in the course of the Geological Survey’s investigations for uranium are excluded, but about 500 such samples were analyzed spectrographically for some or all of the same 20 elements sought in the samples that are the subject of this report. Most of the samples were tested only for their radioactivity, but a few were analyzed chemically for uranium. The radioactivity of many of the samples tested in the early screening was determined only qualitatively. Several samples were tested at one time, and if the count obtained did not exceed a predetermined minimum above background, the samples were not tested individually. If the count was more than this minimum, the samples were tested individually to identify the radioactive sample or samples and to obtain a quantitative value for the radioactivity. In general, the rough screening served as a basis for separating samples in which the radioactivity amount to less than 0.003 percent equivalent uranium from those in which it exceeded that amount. Some aspects of various phases of the investigation of radioactivity in these samples have been reported in various other reports, as follows.

  8. Comparison of the retention of 5 core materials supported by a dental post.

    PubMed

    Gu, Steven; Isidro, Mario; Deutsch, Allan S; Musikant, Barry L

    2006-01-01

    This study evaluated the retention of dental post heads (No. 2 Flexi-Post) embedded in 5 core materials (1 automix resin composite, 2 hand-mixed resin composites, and 2 glass ionomers). Samples were prepared by embedding post heads in 4.5-mm-thick disks of core material. The resin composite materials provided significantly more retention than the glass-ionomer-based materials. The post head retention of the automix resin composite was comparable to that of the hand-mixed resin composites. Unlike the resin composite samples, all the glass-ionomer samples fractured during testing. This is an unacceptable condition for a clinically successful restoration.

  9. Sinabung Volcanic Ash Utilization As The Additive for Paving Block Quality A and B

    NASA Astrophysics Data System (ADS)

    Sembiring, I. S.; Hastuty, I. P.

    2017-03-01

    Paving block is one of the building materials used as the top layer of the road structure besides asphalt and concrete. Paving block is made of mixed materials such as portland cement or other adhesive materials, water and aggregate. In this research, the material used as the additive of cement and concrete is volcanic ash from Mount Sinabung, it is based on the results of the material testing, Sinabung ash contains 74.3% silica (SiO2). The purpose of this research aims to analyze the behavior of the paving blocks quality A and B with and without a mixture of Sinabung ash, to analyze the workability of fresh concrete using Sinabung ash as an additive in concrete, and to compare the test results of paving blocks with and without using Sinabung ash. The samples that we made consist of four variations of the concrete mix to experiment a mixture of normal sample without additive, samples which are mixed with the addition of Sinabung ash 5%, 10%, 15%, 20% and 25% of the volume of concrete/m3. Each variation consists of 10 samples of the concrete with 28 days curing time period. We will do the compressive strength and water absorption test to the samples to determine whether the samples are in accordance with the type needed. According to the test result, paving blocks with Sinabung ash and curing time reach quality A at 0%, 5% and 10% mixture with the compressive strength of each 50.14 MPa, 46.20 MPa and 1.49Mpa, and reach quality B at 15%, 20 %,25% mixture with curing time and 0%, 5%, 10%, 15%, 20% and 25% mixture without curing time. According to the absorption values we got from the test which are 6.66%, 6.73%, 6.88%, 7.03%, 7.09% and 7.16%, the entire sample have average absorption exceeding SNI standardization which is above 6% and reach quality C. Based on compressive strength and absorption data obtained Sinabung ash can’t fully replace cement as the binder because of the low CaO content.

  10. Development of a Cavitation Erosion Resistant Advanced Material System

    DTIC Science & Technology

    2005-11-01

    Sheet EPD M results .............................................................................. 47 Figure 5.11 - EPDM rubber samples, sheet (left...Testing The long test times of EPDM rubber and other durable elastomer samples created a need for overnight testing capability. In the original test setup...seals, adhesives and molded flexible parts. Common examples of elastomers include natural and synthetic rubber , silicone, neoprene, EPDM , polyurethane

  11. Results of a Saxitoxin Proficiency Test Including Characterization of Reference Material and Stability Studies

    PubMed Central

    Harju, Kirsi; Rapinoja, Marja-Leena; Avondet, Marc-André; Arnold, Werner; Schär, Martin; Luginbühl, Werner; Kremp, Anke; Suikkanen, Sanna; Kankaanpää, Harri; Burrell, Stephen; Söderström, Martin; Vanninen, Paula

    2015-01-01

    A saxitoxin (STX) proficiency test (PT) was organized as part of the Establishment of Quality Assurance for the Detection of Biological Toxins of Potential Bioterrorism Risk (EQuATox) project. The aim of this PT was to provide an evaluation of existing methods and the European laboratories’ capabilities for the analysis of STX and some of its analogues in real samples. Homogenized mussel material and algal cell materials containing paralytic shellfish poisoning (PSP) toxins were produced as reference sample matrices. The reference material was characterized using various analytical methods. Acidified algal extract samples at two concentration levels were prepared from a bulk culture of PSP toxins producing dinoflagellate Alexandrium ostenfeldii. The homogeneity and stability of the prepared PT samples were studied and found to be fit-for-purpose. Thereafter, eight STX PT samples were sent to ten participating laboratories from eight countries. The PT offered the participating laboratories the possibility to assess their performance regarding the qualitative and quantitative detection of PSP toxins. Various techniques such as official Association of Official Analytical Chemists (AOAC) methods, immunoassays, and liquid chromatography-mass spectrometry were used for sample analyses. PMID:26602927

  12. Validation of a Thermo-Ablative Model of Elastomeric Internal Insulation Materials

    NASA Technical Reports Server (NTRS)

    Martin, Heath T.

    2017-01-01

    In thermo-ablative material modeling, as in many fields of analysis, the quality of the existing models significantly exceeds that of the experimental data required for their validation. In an effort to narrow this gap, a laboratory-scale internal insulation test bed was developed that exposes insulation samples to realistic solid rocket motor (SRM) internal environments while being instrumented to record real-time rates of both model inputs (i.e., chamber pressure, total surface heat flux, and radiative heat flux) as well as model outputs (i.e., material decomposition depths (MDDs) and in-depth material temperatures). In this work, the measured SRM internal environment parameters were used in conjunction with equilibrium thermochemistry codes as inputs to one-dimensional thermo-ablative models of the PBINBR and CFEPDM insulation samples used in the lab-scale test firings. The computed MDD histories were then compared with those deduced from real-time X-ray radiography of the insulation samples, and the calculated in-depth temperatures were compared with those measured by embedded thermocouples. The results of this exercise emphasize the challenges of modeling and testing elastomeric materials in SRM environments while illuminating the path forward to improved fidelity.

  13. Evaluation of outgassing, tear strength, and detail reproduction in alginate substitute materials.

    PubMed

    Baxter, R T; Lawson, N C; Cakir, D; Beck, P; Ramp, L C; Burgess, J O

    2012-01-01

    To compare three alginate substitute materials to an alginate impression material for cast surface porosity (outgassing), tear strength, and detail reproduction. Detail reproduction tests were performed following American National Standards Institute/American Dental Association (ANSI/ADA) Specification No. 19. To measure tear strength, 12 samples of each material were made using a split mold, placed in a water bath until testing, and loaded in tension until failure at a rate of 500 mm/min using a universal testing machine. For cast surface porosity testing, five impressions of a Teflon mold with each material were placed in a water bath (37.8°C) for the in-mouth setting time and poured with vacuum-mixed Silky Rock die stone at 5, 10, 30, and 60 minutes from the start of mixing. The gypsum samples were analyzed with a digital microscope for surface porosity indicative of hydrogen gas release by comparing the surface obtained at each interval with four casts representing no, little, some, and significant porosity. Data analysis was performed using parametric and Kruskal-Wallis analysis of variance (ANOVA), Tukey/Kramer post-hoc tests (α=0.05), and individual Mann-Whitney U tests (α=0.0167). All alginate substitute materials passed the detail reproduction test. Tear strength of the alginate substitute materials was significantly better than alginate and formed three statistically different groups: AlgiNot had the lowest tear strength, Algin-X Ultra had the highest tear strength, and Position Penta Quick had intermediate tear strength. Significant variation in outgassing existed between materials and pouring times (p<0.05). All alginate substitute materials exhibited the least outgassing and cast porosity 60 minutes after mixing. Detail reproduction and tear strength of alginate substitute materials were superior to traditional alginate. The outgassing effect was minimal for most materials tested. Alginate substitute materials are superior replacements for irreversible hydrocolloid.

  14. Integrated Data Collection Analysis (IDCA) Program - RDX Type II Class 5 Standard, Data Set 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandstrom, Mary M.; Brown, Geoffrey W.; Preston, Daniel N.

    This document describes the results of the first reference sample material—RDX Type II Class 5—examined in the proficiency study for small-scale safety and thermal (SSST) testing of explosive materials for the Integrated Data Collection Analysis (IDCA) Program. The IDCA program is conducting proficiency testing on homemade explosives (HMEs). The reference sample materials are being studied to establish the accuracy of traditional explosives safety testing for each performing laboratory. These results will be used for comparison to results from testing HMEs. This effort, funded by the Department of Homeland Security (DHS), ultimately will put the issues of safe handling of thesemore » materials in perspective with standard military explosives. The results of the study will add SSST testing results for a broad suite of different HMEs to the literature, potentially suggest new guidelines and methods for HME testing, and possibly establish what are the needed accuracies in SSST testing to develop safe handling practices. Described here are the results for impact, friction, electrostatic discharge, and scanning calorimetry analysis of a reference sample of RDX Type II Class 5. The results from each participating testing laboratory are compared using identical test material and preparation methods wherever possible. Note, however, the test procedures differ among the laboratories. These results are then compared to historical data from various sources. The performers involved are Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Air Force Research Laboratory/ RXQL (AFRL), Indian Head Division, Naval Surface Warfare Center, (IHD-NSWC), and Sandia National Laboratories (SNL). These tests are conducted as a proficiency study in order to establish some consistency in test protocols, procedures, and experiments and to understand how to compare results when test protocols are not identical.« less

  15. White blood cell counting system

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design, fabrication, and tests of a prototype white blood cell counting system for use in the Skylab IMSS are presented. The counting system consists of a sample collection subsystem, sample dilution and fluid containment subsystem, and a cell counter. Preliminary test results show the sample collection and the dilution subsystems are functional and fulfill design goals. Results for the fluid containment subsystem show the handling bags cause counting errors due to: (1) adsorption of cells to the walls of the container, and (2) inadequate cleaning of the plastic bag material before fabrication. It was recommended that another bag material be selected.

  16. Collecting cometary soil samples? Development of the ROSETTA sample acquisition system

    NASA Technical Reports Server (NTRS)

    Coste, P. A.; Fenzi, M.; Eiden, Michael

    1993-01-01

    In the reference scenario of the ROSETTA CNRS mission, the Sample Acquisition System is mounted on the Comet Lander. Its tasks are to acquire three kinds of cometary samples and to transfer them to the Earth Return Capsule. Operations are to be performed in vacuum and microgravity, on a probably rough and dusty surface, in a largely unknown material, at temperatures in the order of 100 K. The concept and operation of the Sample Acquisition System are presented. The design of the prototype corer and surface sampling tool, and of the equipment for testing them at cryogenic temperatures in ambient conditions and in vacuum in various materials representing cometary soil, are described. Results of recent preliminary tests performed in low temperature thermal vacuum in a cometary analog ice-dust mixture are provided.

  17. Material Ignition and Suppression Test (MIST) in Space Exploration Atmospheres, Summary of Research

    NASA Technical Reports Server (NTRS)

    Fernandez-Pello, Carlos

    2013-01-01

    The Material Ignition and Suppression Test (MIST) project has had the objective of evaluating the ease of ignition and the fire suppression of materials used in spacecraft under environmental condition expected in a spacecraft. For this purpose, an experimental and theoretical research program is being conducted on the effect of space exploration atmospheres (SEA) on the piloted ignition of representative combustible materials, and on their fire suppression characteristics. The experimental apparatus and test methodology is derived from the Forced Ignition and Flame Spread Test (FIST), a well-developed bench scale test designed to extract material properties relevant to prediction of material flammability. In the FIST test, materials are exposed to an external radiant flux and the ignition delay and critical mass flux at ignition are determined as a function of the type of material and environmental conditions. In the original MIST design, a small-scale cylindrical flow duct with fuel samples attached to its inside wall was heated by a cylindrical heater located at the central axis of the cylinder. However, as the project evolved it was decided by NASA that it would be better to produce an experimental design that could accommodate other experiments with different experimental concepts. Based on those instructions and input from the requirements of other researchers that may share the hardware in an ISS/CIR experiment, a cylindrical design based on placing the sample at the center of an optically transparent tube with heaters equally spaced along the exterior of the cylinder was developed. Piloted ignition is attained by a hot wire igniter downstream of the fuel sample. Environment variables that can be studied via this experimental apparatus include: external radiant flux, oxidizer oxygen concentration, flow velocity, ambient pressure, and gravity level (if flown in the ISS/CIR). This constitutes the current experimental design, which maintains fairly good consistency with Dr Tien's and Dr Olson's project approaches. A further goal of the project has been to develop a combined solid/gas phase numerical model based on the MIST test methodology to predict the flammability behavior of practical materials in spacecraft.

  18. Research on Antiphonic Characteristic of AlMg10-SiC Ultralight Composite Materials

    NASA Astrophysics Data System (ADS)

    Rusu, O.; Rusu, I.

    2018-06-01

    The paper presents the results on the absorption sound testing of an ultralight cellular composite material AlMg10-SiC, obtained by sputtering method. We have chosen this type of material because its microstructure generally comprises open cells (and relatively few semi-open cells), evenly distributed in the material, a structure that, at least theoretically, has a favorable behavior in relation to sound damping. The tests were performed on three types of samples, namely P11 – AlMg10 – 5%SiC, P12 – AlMg10 – 10%SiC şi P13 – AlMg10 – 15%SiC. The 15% SiC (P13) cellular material sample has the best sound-absorbing characteristics and the highest practical absorption degree.

  19. Embrittlement of MISSE 5 Polymers After 13 Months of Space Exposure

    NASA Technical Reports Server (NTRS)

    Guo, Aobo; Yi, Grace T.; Ashmead, Claire C.; Mitchell, Gianna G.; deGroh, Kim K.

    2012-01-01

    Understanding space environment induced degradation of spacecraft materials is essential when designing durable and stable spacecraft components. As a result of space radiation, debris impacts, atomic oxygen interaction, and thermal cycling, the outer surfaces of space materials degrade when exposed to low Earth orbit (LEO). The objective of this study was to measure the embrittlement of 37 thin film polymers after LEO space exposure. The polymers were flown aboard the International Space Station and exposed to the LEO space environment as part of the Materials International Space Station Experiment 5 (MISSE 5). The samples were flown in a nadir-facing position for 13 months and were exposed to thermal cycling along with low doses of atomic oxygen, direct solar radiation and omnidirectional charged particle radiation. The samples were analyzed for space-induced embrittlement using a bend-test procedure in which the strain necessary to induce surface cracking was determined. Bend-testing was conducted using successively smaller mandrels to apply a surface strain to samples placed on a semi-suspended pliable platform. A pristine sample was also tested for each flight sample. Eighteen of the 37 flight samples experienced some degree of surface cracking during bend-testing, while none of the pristine samples experienced any degree of cracking. The results indicate that 49 percent of the MISSE 5 thin film polymers became embrittled in the space environment even though they were exposed to low doses (approx.2.75 krad (Si) dose through 127 mm Kapton) of ionizing radiation.

  20. [Evaluation of mechanical properties of four kinds of composite resins for inlay].

    PubMed

    Jiang, Ling-ling; Liu, Hong; Wang, Jin-rui

    2011-04-01

    To evaluate the compressive strength, wear resistance, hardness, and soaking fatigue of four composite resins for inlay, which were Ceramage, Surefil, Solitaire 2, and Filtek(TM) Z350. Scanning electron microscope (SEM) was used to analyze the microstructures of the wear surface of the samples. The samples for the compression test, hardness test and wear were prepared. The samples were respectively immersed in the artificial saliva for 2 months for immersed test. The electronic universal testing machine was used to test the compression strength. Hardness was quantified by micro-Vickers hardness test. The wear tester was used for the wear test. SEM was used to analyze the microstructures of the wear surface of samples. All the data was analyzed by using SPSS17.0 software package. The compressive strength of Surefil was the biggest which was significantly higher than the other three resins before soaking (P<0.05). After soaking, there was no significant difference between the composite resins (P>0.05). The hardness of Surefil was the best, and significant difference was found between the hardness of the materials before soaking (P<0.05). After soaking, no significant difference was obtained between the hardness of Surefil and Filtek(TM) Z350 (P>0.05).The compressive strength and hardness of 4 materials decreased after soaking in artificial saliva. But only the compressive strength of Filtek(TM) Z350 had no significant change after immersion (P>0.05). Except Filtek(TM) Z350, there was significant difference between the other three materials (P<0.05). Significant relationship was observed between wear and hardness of three materials (P<0.05). According to SEM observation, abrasive wear occurred in four materials. In addition to Ceramage, other composite resins had adhesive wear. The mechanical property of Surefil is the best, and it is suitable for fabrication of posterior inlay. Filtek(TM) Z350's ability to resist fatigue is the best.

  1. Membrane materials for storing biological samples intended for comparative nanotoxicological testing

    NASA Astrophysics Data System (ADS)

    Metelkin, A.; Kuznetsov, D.; Kolesnikov, E.; Chuprunov, K.; Kondakov, S.; Osipov, A.; Samsonova, J.

    2015-11-01

    The study is aimed at identifying the samples of most promising membrane materials for storing dry specimens of biological fluids (Dried Blood Spots, DBS technology). Existing sampling systems using cellulose fiber filter paper have a number of drawbacks such as uneven distribution of the sample spot, dependence of the spot spreading area on the individual biosample properties, incomplete washing-off of the sample due to partially inconvertible sorption of blood components on cellulose fibers, etc. Samples of membrane materials based on cellulose, polymers and glass fiber with applied biosamples were studied using methods of scanning electron microscopy, FT-IR spectroscopy and surface-wetting measurement. It was discovered that cellulose-based membrane materials sorb components of biological fluids inside their structure, while membranes based on glass fiber display almost no interaction with the samples and biological fluid components dry to films in the membrane pores between the structural fibers. This characteristic, together with the fact that membrane materials based on glass fiber possess sufficient strength, high wetting properties and good storage capacity, attests them as promising material for dry samples of biological fluids storage systems.

  2. The impact of shape memory test on degradation profile of a bioresorbable polymer.

    PubMed

    Musioł, Marta; Jurczyk, Sebastian; Kwiecień, Michał; Smola-Dmochowska, Anna; Domański, Marian; Janeczek, Henryk; Włodarczyk, Jakub; Klim, Magdalena; Rydz, Joanna; Kawalec, Michał; Sobota, Michał

    2018-05-01

    The semicrystalline poly(L-lactide) (PLLA) belongs to the materials with shape memory effect (SME) and as a bioresorbable and biocompatible polymer it have found many applications in medical and pharmaceutical field. Assessment of the SME impact on the polymer degradation profile plays crucial role in applications such as drug release systems or in regenerative medicine. Herein, the results of in vitro degradation studies of PLLA samples after SME full test cycle are presented. The samples were loaded and deformed in two manners: progressive and non-progressive. The performed experiments illustrate also influence of the material mechanical damages, caused e.g. during incorrect implantation of PLLA product, on hydrolytic degradation profile. Apparently, degradation profiles are significantly different for the material which was not subjected to the deformation and the deformed ones. The materials after deformation of 50% (in SME cycle) was characterized by non-reversible morphology changes. The effect was observed in deformed samples during the SME test which were carried out ten times. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Advanced Materials Laboratory User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Orndoff, Evelyne

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the Advanced Materials Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  4. Statistical Analysis Techniques for Small Sample Sizes

    NASA Technical Reports Server (NTRS)

    Navard, S. E.

    1984-01-01

    The small sample sizes problem which is encountered when dealing with analysis of space-flight data is examined. Because of such a amount of data available, careful analyses are essential to extract the maximum amount of information with acceptable accuracy. Statistical analysis of small samples is described. The background material necessary for understanding statistical hypothesis testing is outlined and the various tests which can be done on small samples are explained. Emphasis is on the underlying assumptions of each test and on considerations needed to choose the most appropriate test for a given type of analysis.

  5. Technique development for conducting mechanical tests to study the pore formation process in case of material fracture

    NASA Astrophysics Data System (ADS)

    Magomedova, D. K.; Efimov, M. A.; Murashkin, M. Yu.

    2018-05-01

    The main purpose of this work was the development of an experimental technique for search and analysis of pore formation in the presented material. Geometry of the samples, the procedure of experiment and processing the samples for investigation were developed.

  6. 19 CFR 151.51 - Sampling requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Metal-Bearing Ores and Other Metal... section, when metal-bearing ores and other metal-bearing materials which are classifiable under Chapter 26... metal-bearing ores or materials at any place other than the port of entry shall be at the expense of the...

  7. 19 CFR 151.51 - Sampling requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Metal-Bearing Ores and Other Metal... section, when metal-bearing ores and other metal-bearing materials which are classifiable under Chapter 26... metal-bearing ores or materials at any place other than the port of entry shall be at the expense of the...

  8. Rapid bacteriological screening of cosmetic raw materials by using bioluminescence.

    PubMed

    Nielsen, P; Van Dellen, E

    1989-01-01

    Incoming cosmetic raw materials are routinely tested for microbial content. Standard plate count methods require up to 72 h. A rapid, sensitive, and inexpensive raw material screening method was developed that detects the presence of bacteria by means of ATP (bioluminescence). With a 24-h broth enrichment, the minimum bacterial ATP detection threshold of 1 cfu/g sample can be achieved using purified firefly luciferin-luciferase and an ATP releasing reagent. By using this rapid screen, microbiologically free material may be released for production within 24 h, while contaminated material undergoes further quantitative and identification testing. In order for a raw material to be validated for this method it must be evaluated for (1) a potential nonmicrobial light-contributing reaction resulting in a false positive or, (2) degradation of the ATP giving a false negative, and (3) confirmation that the raw material has not overwhelmed the buffering capacity of the enrichment broth. The key criteria for a rapid screen was the sensitivity to detect less than one colony forming unit per g product, the speed to do this within 24 h, and cost efficiency. Bioluminescence meets these criteria. With an enrichment step, it can detect less than one cfu/g sample. After the enrichment step, analysis time per sample is approximately 2 min and the cost for material and reagents is less than one dollar per sample.

  9. Thermal Performance of Aged and Weathered Spray-On Foam Insulation (SOFI) Materials Under Cryogenic Vacuum Conditions (Cryostat-4)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The NASA Cryogenics Test Laboratory at Kennedy Space Center conducted long-term testing of SOFI materials under actual-use cryogenic conditions with Cryostat-4. The materials included in the testing were NCFI 24-124 (acreage foam), BX-265 (close-out foam, including intertank flange and bipod areas), and a potential alternate material, NCFI 27-68, (acreage foam with the flame retardant removed). Specimens of these materials were placed at two locations: a site that simulated aging (the Vehicle Assembly Building [VAB]) and a site that simulated weathering (the Atmospheric Exposure Test Site [beach site]). After aging/weathering intervals of 3, 6, and 12 months, the samples were retrieved and tested for their thermal performance under cryogenic vacuum conditions with test apparatus Cryostat-4.

  10. Frictional Ignition Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Peralta, Steve; Rosales, Keisa; Robinson, Michael J.; Stoltzfus, Joel

    2006-01-01

    The space flight community has been investigating lightweight composite materials for use in propellant tanks for both liquid and gaseous oxygen for space flight vehicles. The use of these materials presents some risks pertaining to ignition and burning hazards in the presence of oxygen. Through hazard analysis process, some ignition mechanisms have been identified as being potentially credible. One of the ignition mechanisms was reciprocal friction; however, test data do not exist that could be used to clear or fail these types of materials as "oxygen compatible" for the reciprocal friction ignition mechanism. Therefore, testing was performed at White Sands Test Facility (WSTF) to provide data to evaluate this ignition mechanism. This paper presents the test system, approach, data results, and findings of the reciprocal friction testing performed on composite sample materials being considered for propellant tanks.

  11. Toxicity of the pyrolysis products of spacecraft materials

    NASA Technical Reports Server (NTRS)

    Lawrence, W. H.

    1974-01-01

    A number of spacecraft construction materials are evaluated for the toxic effects of their thermodegradation products on rats. Pyrolysis toxicity testing of pyrolysate fumes establish carbon monoxide, carbon dioxide and hydrogen cyanide as the most common intoxicating agents. Generally, COHb levels of animals expiring in the test chamber suggest higher concentrations of CO are produced with larger samples of most materials.

  12. Trends in Materials' Outgassing Technology

    NASA Technical Reports Server (NTRS)

    Colony, J. A.

    1979-01-01

    Test sample acquisition and chemical analysis techniques for outgassing products from spacecraft, experiment modules, and support equipment is described. The reduction of test data to a computer compatible format to implement materials selection policies is described. A list of the most troublesome outgassing species is given and several materials correlations are discussed. Outgassing from solar panels, thermal blankets, and wire insulation are examined individually.

  13. 46 CFR 164.009-15 - Test procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... submitted for approval, except fiberglass and other materials that melt at 750° ±10 °C. Paragraph (l) of this section contains test procedures for fiberglass and other materials that melt at 750° ±10 °C. (b... properties of the sample submitted for testing. The dimensions of each specimen are as follows: diameter: 45...

  14. 46 CFR 164.009-15 - Test procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... submitted for approval, except fiberglass and other materials that melt at 750° ±10 °C. Paragraph (l) of this section contains test procedures for fiberglass and other materials that melt at 750° ±10 °C. (b... properties of the sample submitted for testing. The dimensions of each specimen are as follows: diameter: 45...

  15. 40 CFR 63.5719 - How do I conduct a performance test?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... appendix A to 40 CFR part 60, as appropriate, to select the sampling sites. (2) Use Method 2, 2A, 2C, 2D... emissions. (4) You may use American Society for Testing and Materials (ASTM) D6420-99 (available for... parts being made and material application methods. The production conditions during the test must also...

  16. Evaluation of gloss changes of two denture acrylic resin materials in four different beverages.

    PubMed

    Keyf, Filiz; Etikan, Ilker

    2004-03-01

    The primary disadvantages of the materials which are used in construction of complete and removable partial dentures is that their esthetic, physical and mechanical properties change rapidly with time in the oral environment. For esthetics, color stability is one of the criteria that needs careful attention. Color may provide important information on the serviceability of these materials. Color change affects the gloss of these materials. The objective of the present study was to determine the gloss changes resulting from the testing process in four different beverages in one heat-polymerized denture base resin and one cold-polymerized denture base repair resin. Thirty-six samples were fabricated for each material. Each sample had a smooth polished and a rough unpolished surface. The gloss measurements were made with a glossmeter before testing. Four different beverages (tea, coffee, cola and cherry juice) were used for testing. Two angles of illumination (20 and 60 degrees) were used for the gloss measurements. The samples were immersed in water, tea, coffee, cola and cherry juice solutions. The gloss of the samples was measured again with the glossmeter at the end of the 45th day and 135th day of testing. The arithmetic mean and standard deviation of each of the samples were calculated and compared with each other statistically by using the Wilcoxon test (within times) (p < or = 0.05 significant), the Kruskal-Wallis analysis of variance (p < or = 0.05 significant) and the Mann-Whitney U-test with Bonforoni correction (when the difference between the samples was significant) (p < or = 0.05 significant). The results of this study revealed that gloss changes occurred after testing in heat-polymerized denture base resin and cold-polymerized denture base repair resin. The significance of the gloss changes exhibited by each sample, kept for different lengths of time in the same solution, were compared using the Wilcoxon test. The results were statistically significant (p < or = 0.05). According to the Kruskal-Wallis analysis of variance, the difference between measurements for angles of illumination was statistically significant (p < or = 0.05). Also according to the Mann-Whitney U-test, the difference between two polished surfaces or two unpolished surfaces was statistically insignificant (p > 0.05), but the difference between smooth polished and rough unpolished surfaces was statistically significant (p < or = 0.05). It was found that either the gloss of heat-polymerized denture base resin or the gloss of cold-polymerized denture base repair resin was affected by tested agents, and the four beverages demonstrated noticeable gloss changes. Cherry juice demonstrated the least change, while tea exhibited the greatest change.

  17. 30 CFR 7.48 - Acid resistance test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Test procedures. (1) Prepare one sample each of the insulated surfaces of the battery box and of the... for the battery box and cover, only one sample need be prepared and tested. (2) Prepare a 30 percent... insulation plus the battery cover or box material. The insulation thickness shall be representative of that...

  18. 30 CFR 7.48 - Acid resistance test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Test procedures. (1) Prepare one sample each of the insulated surfaces of the battery box and of the... for the battery box and cover, only one sample need be prepared and tested. (2) Prepare a 30 percent... insulation plus the battery cover or box material. The insulation thickness shall be representative of that...

  19. 30 CFR 7.48 - Acid resistance test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Test procedures. (1) Prepare one sample each of the insulated surfaces of the battery box and of the... for the battery box and cover, only one sample need be prepared and tested. (2) Prepare a 30 percent... insulation plus the battery cover or box material. The insulation thickness shall be representative of that...

  20. 40 CFR 53.58 - Operational field precision and blank test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... samplers are also subject to a test for possible deposition of particulate matter on inactive filters... deposition is defined as the mass of material inadvertently deposited on a sample filter that is stored in a... electrical power to accommodate three test samplers are required. (2) Teflon sample filters, as specified in...

  1. Mechanical properties of ion-beam-textured surgical implant alloys

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.

    1977-01-01

    An electron-bombardment Hg ion thruster was used as an ion source to texture surfaces of materials used to make orthopedic and/or dental prostheses or implants. The materials textured include 316 stainless steel, titanium-6% aluminum, 4% vanadium, and cobalt-20% chromium, 15% tungsten. To determine the effect of ion texturing on the ultimate strength and yield strength, stainless steel and Co-Cr-W alloy samples were tensile tested to failure. Three types of samples of both materials were tested. One type was ion-textured (the process also heats each sample to 300 C), another type was simply heated to 300 C in an oven, and the third type was untreated. Stress-strain diagrams, 0.2% offset yield strength data, total elongation data, and area reduction data are presented. Fatigue specimens of ion textured and untextured 316 stainless steel and Ti-6% Al-4% V were tested. Included as an ion textured sample is a Ti-6% Al-4% V sample which was ion machined by means of Ni screen mask so as to produce an array of 140 mu m x 140 mu m x 60 mu m deep pits. Scanning electron microscopy was used to characterize the ion textured surfaces.

  2. Design of single piece sabot for a single stage gas gun

    NASA Astrophysics Data System (ADS)

    Vemparala, Vignesh; Mathew, Arun Tom; Rao Koka, Tirumala

    2017-11-01

    Single piece sabot is a vital part in single stage gas guns for impact testing in aerospace industries. Depending on the type of projectile used the design of sabot varies to accommodate the testing equipment. The velocity of the projectile exiting the barrel is dependent on the material and shape of the sabot used. The material selected for the design of sabot is rigid polyurethane foam, due to their low elastic modulus and low density. Two samples of rigid PU foam is taken and tests are performed to get their exact material properties. These properties are incorporated in numerical simulation to determine the best fit for practical use. Since the PU foams has a wide range of porosity which plays a prominent role in deciding the exit velocity and accuracy of the projectile coming out of the barrel. By optimisation, to the best suitable material sample can be determined.

  3. Phoenix Test Sample Site

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image, acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on Sol 7, the seventh day of the mission (June 1, 2008), shows the so-called 'Knave of Hearts' first-dig test area to the north of the lander. The Robotic Arm's scraping blade left a small horizontal depression above where the sample was taken.

    Scientists speculate that white material in the depression left by the dig could represent ice or salts that precipitated into the soil. This material is likely the same white material observed in the sample in the Robotic Arm's scoop.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. Phoenix Test Sample Site in Color

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This color image, acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on Sol 7, the seventh day of the mission (June 1, 2008), shows the so-called 'Knave of Hearts' first-dig test area to the north of the lander. The Robotic Arm's scraping blade left a small horizontal depression above where the sample was taken.

    Scientists speculate that white material in the depression left by the dig could represent ice or salts that precipitated into the soil. This material is likely the same white material observed in the sample in the Robotic Arm's scoop.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrison, L. M., E-mail: garrisonlm@ornl.gov; Egle, B. J.; Fusion Technology Institute, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706

    2016-08-15

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ionmore » gun can irradiate the samples with ion currents of 20 μA–500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10{sup 14} ions/(cm{sup 2} s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.« less

  6. Evaluation of Low Earth Orbit Environmental Effects on International Space Station Thermal Control Materials

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Rutledge, Sharon K.; Hasegawa, Mark M.; Reed, Charles K.

    1998-01-01

    Samples of International Space Station (ISS) thermal control coatings were exposed to simulated low Earth orbit (LEO) environmental conditions to determine effects on optical properties. In one test, samples of the white paint coating Z-93P were coated with outgassed products from Tefzel(R) (ethylene tetrafluoroethylene copolymer) power cable insulation as-may occur on ISS. These samples were then exposed, along with an uncontaminated Z-93P witness sample, to vacuum ultraviolet (VUV) radiation to determine solar absorptance degradation. The Z-93P samples coated with Tefzel(R) outgassing products experienced greater increases in solar absorptance than witness samples not coated with Tefzel(R) outgassing products. In another test, samples of second surface silvered Teflon(R) FEP (fluorinated ethylene propylene), SiO. (where x=2)-coated silvered Teflon(R) FEP, and Z-93P witness samples were exposed to the combined environments of atomic oxygen and VLTV radiation to determine optical properties changes due to these simulated ISS environmental effects. This test verified the durability of these materials in the absence of contaminants.

  7. Test results for electron beam charging of flexible insulators and composites. [solar array substrates, honeycomb panels, and thin dielectric films

    NASA Technical Reports Server (NTRS)

    Staskus, J. V.; Berkopec, F. D.

    1979-01-01

    Flexible solar-array substrates, graphite-fiber/epoxy - aluminum honeycomb panels, and thin dielectric films were exposed to monoenergetic electron beams ranging in energy from 2 to 20 keV in the Lewis Research Center's geomagnetic-substorm-environment simulation facility to determine surface potentials, dc currents, and surface discharges. The four solar-array substrate samples consisted of Kapton sheet reinforced with fabrics of woven glass or carbon fibers. They represented different construction techniques that might be used to reduce the charge accumulation on the array back surface. Five honeycomb-panel samples were tested, two of which were representative of Voyager antenna materials and had either conductive or nonconductive painted surfaces. A third sample was of Navstar solar-array substrate material. The other two samples were of materials proposed for use on Intelsat V. All the honeycomb-panel samples had graphite-fiber/epoxy composite face sheets. The thin dielectric films were 2.54-micrometer-thick Mylar and 7.62-micrometer-thick Kapton.

  8. Effect of mixing techniques on bacterial attachment and disinfection time of polyether impression material

    PubMed Central

    Guler, Umut; Budak, Yasemin; Ruh, Emrah; Ocal, Yesim; Canay, Senay; Akyon, Yakut

    2013-01-01

    Objective: The aim of this study was 2-fold. The first aim was to evaluate the effects of mixing technique (hand-mixing or auto-mixing) on bacterial attachment to polyether impression materials. The second aim was to determine whether bacterial attachment to these materials was affected by length of exposure to disinfection solutions. Materials and Methods: Polyether impression material samples (n = 144) were prepared by hand-mixing or auto-mixing. Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa were used in testing. After incubation, the bacterial colonies were counted and then disinfectant solution was applied. The effect of disinfection solution was evaluated just after the polymerization of impression material and 30 min after polymerization. Differences in adherence of bacteria to the samples prepared by hand-mixing and to those prepared by auto-mixing were assessed by Kruskal-Wallis and Mann-Whitney U-tests. For evaluating the efficiency of the disinfectant, Kruskal-Wallis multiple comparisons test was used. Results: E. coli counts were higher in hand-mixed materials (P < 0.05); no other statistically significant differences were found between hand- and auto-mixed materials. According to the Kruskal-Wallis test, significant differences were found between the disinfection procedures (Z > 2.394). Conclusion: The methods used for mixing polyether impression material did not affect bacterial attachment to impression surfaces. In contrast, the disinfection procedure greatly affects decontamination of the impression surface. PMID:24966729

  9. Bisphenol A polycarbonate as a reference material

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.; Williams, J. B.

    1977-01-01

    Test methods require reference materials to standardize and maintain quality control. Various materials have been evaluated as possible reference materials, including a sample of bisphenol A polycarbonate without additives. Screening tests for relative toxicity under various experimental conditions were performed using male mice exposed to pyrolysis effluents over a 200-800 C temperature range. It was found that the bisphenol A polycarbonate served as a suitable reference material as it is available in large quantities, and does not significantly change with time.

  10. Evaluation of waveguide coating materials

    NASA Technical Reports Server (NTRS)

    Chen, W. C. J.; Baker, B. W.

    1982-01-01

    Waveguide coating materials were tested at 8470 MHz for insertion loss. Samples of these coatings on waveguide pieces without flanges were tested in an environmental chamber to simulate the effects of high power microwave heating. Test results indicated that three types of coating materials are acceptable with regard to insertion loss. However, simulated microwave heating caused debonding of Metcot 7 and BD-991 coatings, resulting in peelings in the waveguide. The higher cost Chemglaze R104 does not exhibit this problem.

  11. Development of Standardized Material Testing Protocols for Prosthetic Liners

    PubMed Central

    Cagle, John C.; Reinhall, Per G.; Hafner, Brian J.; Sanders, Joan E.

    2017-01-01

    A set of protocols was created to characterize prosthetic liners across six clinically relevant material properties. Properties included compressive elasticity, shear elasticity, tensile elasticity, volumetric elasticity, coefficient of friction (CoF), and thermal conductivity. Eighteen prosthetic liners representing the diverse range of commercial products were evaluated to create test procedures that maximized repeatability, minimized error, and provided clinically meaningful results. Shear and tensile elasticity test designs were augmented with finite element analysis (FEA) to optimize specimen geometries. Results showed that because of the wide range of available liner products, the compressive elasticity and tensile elasticity tests required two test maxima; samples were tested until they met either a strain-based or a stress-based maximum, whichever was reached first. The shear and tensile elasticity tests required that no cyclic conditioning be conducted because of limited endurance of the mounting adhesive with some liner materials. The coefficient of friction test was based on dynamic coefficient of friction, as it proved to be a more reliable measurement than static coefficient of friction. The volumetric elasticity test required that air be released beneath samples in the test chamber before testing. The thermal conductivity test best reflected the clinical environment when thermal grease was omitted and when liner samples were placed under pressure consistent with load bearing conditions. The developed procedures provide a standardized approach for evaluating liner products in the prosthetics industry. Test results can be used to improve clinical selection of liners for individual patients and guide development of new liner products. PMID:28233885

  12. Compressive and Flexural Tests on Adobe Samples Reinforced with Wire Mesh

    NASA Astrophysics Data System (ADS)

    Jokhio, G. A.; Al-Tawil, Y. M. Y.; Syed Mohsin, S. M.; Gul, Y.; Ramli, N. I.

    2018-03-01

    Adobe is an economical, naturally available, and environment friendly construction material that offers excellent thermal and sound insulations as well as indoor air quality. It is important to understand and enhance the mechanical properties of this material, where a high degree of variation is reported in the literature owing to lack of research and standardization in this field. The present paper focuses first on the understanding of mechanical behaviour of adobe subjected to compressive stresses as well as flexure and then on enhancing the same with the help of steel wire mesh as reinforcement. A total of 22 samples were tested out of which, 12 cube samples were tested for compressive strength, whereas 10 beams samples were tested for modulus of rupture. Half of the samples in each category were control samples i.e. without wire mesh reinforcement, whereas the remaining half were reinforced with a single layer of wire mesh per sample. It has been found that the compressive strength of adobe increases by about 43% after adding a single layer of wire mesh reinforcement. The flexural response of adobe has also shown improvement with the addition of wire mesh reinforcement.

  13. Mo-Si-B Alloys and Diboride Systems for High Enthalpy Environments: Design and Evaluation

    DTIC Science & Technology

    2016-01-15

    candidate material species production over a range of test gas enthalpies and pressures for UWM and ISU samples. Year 3: 3.1 Begin FTIR...emission measurements on CO2-laser heated samples at SRI. 3.2 Continue experiments to optimize Si-, B-, and C-species LIF detection schemes in hot gas ...material tests to identify data that can be used to benchmark development of physics-based models of gas -surface interactions. • Employ the

  14. Corrosion of 316 stainless steel in high temperature molten Li2BeF4 (FLiBe) salt

    NASA Astrophysics Data System (ADS)

    Zheng, Guiqiu; Kelleher, Brian; Cao, Guoping; Anderson, Mark; Allen, Todd; Sridharan, Kumar

    2015-06-01

    In support of structural material development for the fluoride-salt-cooled high-temperature reactor (FHR), corrosion tests of 316 stainless steel were performed in the potential primary coolant, molten Li2BeF4 (FLiBe) at 700 °C for an exposure duration up to 3000 h. Tests were performed in both 316 stainless steel and graphite capsules. Corrosion in both capsule materials occurred by the dissolution of chromium from the stainless steel into the salt which led to the depletion of chromium predominantly along the grain boundaries of the test samples. The samples tested in graphite capsules showed a factor of two greater depth of corrosion attack as measured in terms of chromium depletion, compared to those tested in 316 stainless steel capsules. The samples tested in graphite capsules showed the formation of Cr7C3 particulate phases throughout the depth of the corrosion layer. Samples tested in both types of capsule materials showed the formation of MoSi2 phase due to increased activity of Mo and Si as a result of Cr depletion, and furthermore corrosion promoted the formation of a α-ferrite phase in the near-surface regions of the 316 stainless steel. Based on the corrosion tests, the corrosion attack depth in FLiBe salt was predicted as 17.1 μm/year and 31.2 μm/year for 316 stainless steel tested in 316 stainless steel and in graphite capsules respectively. It is in an acceptable range compared to the Hastelloy-N corrosion in the Molten Salt Reactor Experiment (MSRE) fuel salt.

  15. 19 CFR 151.52 - Sampling procedures.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Metal-Bearing Ores and Other Metal-Bearing... represented, (3) Kind of ore or material, (4) Date and place where sampling occurred, and (5) The name and...

  16. 19 CFR 151.52 - Sampling procedures.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Metal-Bearing Ores and Other Metal-Bearing... represented, (3) Kind of ore or material, (4) Date and place where sampling occurred, and (5) The name and...

  17. Plasma of argon enhances the adhesion of murine osteoblasts on different graft materials.

    PubMed

    Canullo, Luigi; Genova, Tullio; Naenni, Nadja; Nakajima, Yasushi; Masuda, Katsuhiko; Mussano, Federico

    2018-04-25

    plasma of argon treatment was demonstrated to increase material surface energy leading to stronger and faster interaction with cells. The aim of the present in vitro study was to test the effect of plasma treatment on different graft materials. synthetic hydroxyapatite (Mg-HA), biphasic calcium phosphate (BCP), cancellous and cortical xenogeneic bone matrices (CaBM, CoBM) were used representing commonly used classes of bone substitute materials. Fifty serially numbered disks with a 10mm-diameter from each graft material were randomly divided into two groups: Test group (argon plasma treatment) and Control group (absence of treatment). Cell morphology (using pre-osteoblastic murine cells) and protein adsorption were analyzed at all samples from both the test and control group. Differences between groups were analyzed using the Mann-Whitney test setting the level of significance at p<0.05. plasma treatment significantly increased the protein adsorption at all samples. Similarly, plasma treatment significantly increased cell adhesion in all groups. data confirmed that non-atmospheric plasma of argon treatment led to an increase of protein adsorption and cell adhesion in all groups of graft material to a similar extent. plasma of argon is able to improve the surface conditions of graft materials. Copyright © 2018 Elsevier GmbH. All rights reserved.

  18. Nonlinear Inelastic Mechanical Behavior Of Epoxy Resin Polymeric Materials

    NASA Astrophysics Data System (ADS)

    Yekani Fard, Masoud

    Polymer and polymer matrix composites (PMCs) materials are being used extensively in different civil and mechanical engineering applications. The behavior of the epoxy resin polymers under different types of loading conditions has to be understood before the mechanical behavior of Polymer Matrix Composites (PMCs) can be accurately predicted. In many structural applications, PMC structures are subjected to large flexural loadings, examples include repair of structures against earthquake and engine fan cases. Therefore it is important to characterize and model the flexural mechanical behavior of epoxy resin materials. In this thesis, a comprehensive research effort was undertaken combining experiments and theoretical modeling to investigate the mechanical behavior of epoxy resins subject to different loading conditions. Epoxy resin E 863 was tested at different strain rates. Samples with dog-bone geometry were used in the tension tests. Small sized cubic, prismatic, and cylindrical samples were used in compression tests. Flexural tests were conducted on samples with different sizes and loading conditions. Strains were measured using the digital image correlation (DIC) technique, extensometers, strain gauges, and actuators. Effects of triaxiality state of stress were studied. Cubic, prismatic, and cylindrical compression samples undergo stress drop at yield, but it was found that only cubic samples experience strain hardening before failure. Characteristic points of tensile and compressive stress strain relation and load deflection curve in flexure were measured and their variations with strain rate studied. Two different stress strain models were used to investigate the effect of out-of-plane loading on the uniaxial stress strain response of the epoxy resin material. The first model is a strain softening with plastic flow for tension and compression. The influence of softening localization on material behavior was investigated using the DIC system. It was found that compression plastic flow has negligible influence on flexural behavior in epoxy resins, which are stronger in pre-peak and post-peak softening in compression than in tension. The second model was a piecewise-linear stress strain curve simplified in the post-peak response. Beams and plates with different boundary conditions were tested and analytically studied. The flexural over-strength factor for epoxy resin polymeric materials were also evaluated.

  19. A Study on the Mechanical Properties and Impact-Induced Initiation Characteristics of Brittle PTFE/Al/W Reactive Materials.

    PubMed

    Ge, Chao; Maimaitituersun, Wubuliaisan; Dong, Yongxiang; Tian, Chao

    2017-04-26

    Polytetrafluoroethylene/aluminum/tungsten (PTFE/Al/W) reactive materials of three different component mass ratios (73.5/26.5/0, 68.8/24.2/7 and 63.6/22.4/14) were studied in this research. Different from the PTFE/Al/W composites published elsewhere, the materials in our research were fabricated under a much lower sintering temperature and for a much shorter duration to achieve a brittle property, which aims to provide more sufficient energy release upon impact. Quasi-static compression tests, dynamic compression tests at room and elevated temperatures, and drop weight tests were conducted to evaluate the mechanical and impact-induced initiation characteristics of the materials. The materials before and after compression tests were observed by a scanning electron microscope to relate the mesoscale structural characteristics to their macro properties. All the three types of materials fail at very low strains during both quasi-static and dynamic compression. The stress-strain curves for quasi-static tests show obvious deviations while that for the dynamic tests consist of only linear-elastic and failure stages typically. The materials were also found to exhibit thermal softening at elevated temperatures and were strain-rate sensitive during dynamic tests, which were compared using dynamic increase factors (DIFs). Drop-weight test results show that the impact-initiation sensitivity increases with the increase of W content due to the brittle mechanical property. The high-speed video sequences and recovered sample residues of the drop-weight tests show that the reaction is initiated at two opposite positions near the edges of the samples, where the shear force concentrates the most intensively, indicating a shear-induced initiation mechanism.

  20. A Study on the Mechanical Properties and Impact-Induced Initiation Characteristics of Brittle PTFE/Al/W Reactive Materials

    PubMed Central

    Ge, Chao; Maimaitituersun, Wubuliaisan; Dong, Yongxiang; Tian, Chao

    2017-01-01

    Polytetrafluoroethylene/aluminum/tungsten (PTFE/Al/W) reactive materials of three different component mass ratios (73.5/26.5/0, 68.8/24.2/7 and 63.6/22.4/14) were studied in this research. Different from the PTFE/Al/W composites published elsewhere, the materials in our research were fabricated under a much lower sintering temperature and for a much shorter duration to achieve a brittle property, which aims to provide more sufficient energy release upon impact. Quasi-static compression tests, dynamic compression tests at room and elevated temperatures, and drop weight tests were conducted to evaluate the mechanical and impact-induced initiation characteristics of the materials. The materials before and after compression tests were observed by a scanning electron microscope to relate the mesoscale structural characteristics to their macro properties. All the three types of materials fail at very low strains during both quasi-static and dynamic compression. The stress-strain curves for quasi-static tests show obvious deviations while that for the dynamic tests consist of only linear-elastic and failure stages typically. The materials were also found to exhibit thermal softening at elevated temperatures and were strain-rate sensitive during dynamic tests, which were compared using dynamic increase factors (DIFs). Drop-weight test results show that the impact-initiation sensitivity increases with the increase of W content due to the brittle mechanical property. The high-speed video sequences and recovered sample residues of the drop-weight tests show that the reaction is initiated at two opposite positions near the edges of the samples, where the shear force concentrates the most intensively, indicating a shear-induced initiation mechanism. PMID:28772812

  1. Fire Signatures of Materials Used in Spacecraft Construction

    NASA Technical Reports Server (NTRS)

    Taylor, Christina

    2003-01-01

    The focus of my work this summer was fire safety, specifically determining fire signatures from the combustion of materials commonly found in the construction of spacecraft. This project was undertaken with the aim of addressing concerns for health and safety onboard spacecraft. Under certain conditions, burning electronics produce surprisingly large amounts of acrid smoke, release fine airborne particles and expel condensable aerosols. Similarly, some wire insulation and packing material evolves smoke when in contact with a hot surface. In the limited, enclosed space available on spacecraft, these combustion products may pose a nuisance at the very least - at worst, a hazard to health or equipment. There is also a concern for fire safety in early detection on spacecraft. Our goal for the summer was to determine the most effective methods to test the materials, develop a protocol for sampling, and generate samples for analysis. We restricted our testing to electronic components, packaging and insulation materials, and wire insulation materials.

  2. Improved ASTM G72 Test Method for Ensuring Adequate Fuel-to-Oxidizer Ratios

    NASA Technical Reports Server (NTRS)

    Juarez, Alfredo; Harper, Susana A.

    2016-01-01

    The ASTM G72/G72M-15 Standard Test Method for Autogenous Ignition Temperature of Liquids and Solids in a High-Pressure Oxygen-Enriched Environment is currently used to evaluate materials for the ignition susceptibility driven by exposure to external heat in an enriched oxygen environment. Testing performed on highly volatile liquids such as cleaning solvents has proven problematic due to inconsistent test results (non-ignitions). Non-ignition results can be misinterpreted as favorable oxygen compatibility, although they are more likely associated with inadequate fuel-to-oxidizer ratios. Forced evaporation during purging and inadequate sample size were identified as two potential causes for inadequate available sample material during testing. In an effort to maintain adequate fuel-to-oxidizer ratios within the reaction vessel during test, several parameters were considered, including sample size, pretest sample chilling, pretest purging, and test pressure. Tests on a variety of solvents exhibiting a range of volatilities are presented in this paper. A proposed improvement to the standard test protocol as a result of this evaluation is also presented. Execution of the final proposed improved test protocol outlines an incremental step method of determining optimal conditions using increased sample sizes while considering test system safety limits. The proposed improved test method increases confidence in results obtained by utilizing the ASTM G72 autogenous ignition temperature test method and can aid in the oxygen compatibility assessment of highly volatile liquids and other conditions that may lead to false non-ignition results.

  3. NDIA 2018 IM and EM Technology Symposium: Innovative Insensitive Munition Solutions for Enhanced Warfighter Effectiveness

    DTIC Science & Technology

    2018-04-26

    decomposition of explosives, test materials and their mixtures. A DSC for each individual explosive, test material and mixture shall be run in duplicate... run in duplicate • Explosives and test materials are mixed in a 1:1 (w/w) ratio • Samples are heated at a rate of 5°C/min from room temperature to...warrants it. If a reaction occurs in ten trials, the load is reduced until there are no reactions observed in ten trials. The ESD test was run per a

  4. Non-Wovens as Sound Reducers

    NASA Astrophysics Data System (ADS)

    Belakova, D.; Seile, A.; Kukle, S.; Plamus, T.

    2018-04-01

    Within the present study, the effect of hemp (40 wt%) and polyactide (60 wt%), non-woven surface density, thickness and number of fibre web layers on the sound absorption coefficient and the sound transmission loss in the frequency range from 50 to 5000 Hz is analysed. The sound insulation properties of the experimental samples have been determined, compared to the ones in practical use, and the possible use of material has been defined. Non-woven materials are ideally suited for use in acoustic insulation products because the arrangement of fibres produces a porous material structure, which leads to a greater interaction between sound waves and fibre structure. Of all the tested samples (A, B and D), the non-woven variant B exceeded the surface density of sample A by 1.22 times and 1.15 times that of sample D. By placing non-wovens one above the other in 2 layers, it is possible to increase the absorption coefficient of the material, which depending on the frequency corresponds to C, D, and E sound absorption classes. Sample A demonstrates the best sound absorption of all the three samples in the frequency range from 250 to 2000 Hz. In the test frequency range from 50 to 5000 Hz, the sound transmission loss varies from 0.76 (Sample D at 63 Hz) to 3.90 (Sample B at 5000 Hz).

  5. Amplitude sorting of oscillatory burst signals by sampling

    DOEpatents

    Davis, Thomas J.

    1977-01-01

    A method and apparatus for amplitude sorting of oscillatory burst signals is described in which the burst signal is detected to produce a burst envelope signal and an intermediate or midportion of such envelope signal is sampled to provide a sample pulse output. The height of the sample pulse is proportional to the amplitude of the envelope signal and to the maximum burst signal amplitude. The sample pulses are fed to a pulse height analyzer for sorting. The present invention is used in an acoustic emission testing system to convert the amplitude of the acoustic emission burst signals into sample pulse heights which are measured by a pulse height analyzer for sorting the pulses in groups according to their height in order to identify the material anomalies in the test material which emit the acoustic signals.

  6. Interpretation of standard leaching test BS EN 12457-2: is your sample hazardous or inert?

    PubMed

    Zandi, Mohammad; Russell, Nigel V; Edyvean, Robert G J; Hand, Russell J; Ward, Philip

    2007-12-01

    A slag sample from a lead refiner has been obtained and given to two analytical laboratories to determine the release of trace elements from the sample according to BS EN 12457-2. Samples analysed by one laboratory passed waste acceptance criteria, leading it to be classified as an inert material; samples of the same material analysed by the other laboratory failed waste acceptance criteria and were classified as hazardous. It was found that the sample preparation procedure is the critical step in the leaching analysis and that the effects of particle size on leachability should be taken into account when using this standard. The purpose of this paper is to open a debate on designing a better defined standard leaching test and making current waste acceptance criteria more flexible.

  7. Rock-Magnetic Method for Post Nuclear Detonation Diagnostics

    NASA Astrophysics Data System (ADS)

    Englert, J.; Petrosky, J.; Bailey, W.; Watts, D. R.; Tauxe, L.; Heger, A. S.

    2011-12-01

    A magnetic signature characteristic of a Nuclear Electromagnetic Pulse (NEMP) may still be detectable near the sites of atmospheric nuclear tests conducted at what is now the Nevada National Security Site. This signature is due to a secondary magnetization component of the natural remanent magnetization of material containing traces of ferromagnetic particles that have been exposed to a strong pulse of magnetic field. We apply a rock-magnetic method introduced by Verrier et al. (2002), and tested on samples exposed to artificial lightning, to samples of rock and building materials (e.g. bricks, concrete) retrieved from several above ground nuclear test sites. The results of magnetization measurements are compared to NEMP simulations and historic test measurements.

  8. Analysis of the NASA White Sands Test Facility (WSTF) Test System for Friction-Ignition of Metallic Materials

    NASA Technical Reports Server (NTRS)

    Shoffstall, Michael S.; Wilson, D. Bruce; Stoltzfus, Joel M.

    2000-01-01

    Friction is a known ignition source for metals in oxygen-enriched atmospheres. The test system developed by the NASA White Sands Test Facility in response to ASTM G-94 has been used successfully to determine the relative ignition from friction of numerous metallic materials and metallic materials pairs. These results have been ranked in terms of a pressure-velocity product (PV) as measured under the prescribed test conditions. A high value of 4.1(exp 8) watts per square meter for Inconel MA 754 is used to imply resistance to friction ignition, whereas a low value of 1.04(exp 8) watts per square meter for stainless steel 304 is taken as indicating material susceptible to friction ignition. No attempt has been made to relate PV values to other material properties. This work reports the analysis of the WSTF friction-ignition test system for producing fundamental properties of metallic materials relating to ignition through friction. Three materials, aluminum, titanium, and nickel were tested in the WSTF frictional ignition instrument system under atmospheres of oxygen or nitrogen. Test conditions were modified to reach a steady state of operation, that is applied, the force was reduced and the rotational speed was reduced. Additional temperature measurements were made on the stator sample. The aluminum immediately galled on contact (reproducible) and the test was stopped. Titanium immediately ignited as a result of non-uniform contact of the stator and rotor. This was reproducible. A portion of the stator sampled burned, but the test continued. Temperature measurements on the stator were used to validate the mathematical model used for estimating the interface (stator/rotor) temperature. These interface temperature measurements and the associate thermal flux into the stator were used to distinguish material-phase transitions, chemical reaction, and mechanical work. The mechanical work was used to analyze surface asperities in the materials and to estimate a coefficient of fiction. The coefficient of fiction was analyzed in terms of material properties that is, hardness, Young's modulus and elasticity/plasticity of the material.

  9. Hybrid composite laminates reinforced with Kevlar/carbon/glass woven fabrics for ballistic impact testing.

    PubMed

    Randjbaran, Elias; Zahari, Rizal; Jalil, Nawal Aswan Abdul; Majid, Dayang Laila Abang Abdul

    2014-01-01

    Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers.

  10. Chorionic villus sampling - slideshow

    MedlinePlus

    ... the embryonic sac. Surgeons sample these projections for genetic testing because they contain the same genetic material as a fetus. If you are at ... 12 weeks gestation to find out a fetus' genetic makeup. Review Date 10/4/2016 ... Prenatal Testing A.D.A.M., Inc. is accredited by ...

  11. Real-time and accelerated outdoor endurance testing of solar cells

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Anagnostou, E.

    1978-01-01

    Materials for solar-cell module construction have been studied on the basis of limited real-time outdoor exposure evaluations. The materials tested included transmission samples, sub-modules, and actual solar cells. The results suggest that glass, fluorinated ethylene propylene, and perfluoroalkoxy are good materials for the covering or encapsulation of solar-cell modules. In all cases, dirt accumulation and cleanability are important factors.

  12. Large strain cruciform biaxial testing for FLC detection

    NASA Astrophysics Data System (ADS)

    Güler, Baran; Efe, Mert

    2017-10-01

    Selection of proper test method, specimen design and analysis method are key issues for studying formability of sheet metals and detection of their forming limit curves (FLC). Materials with complex microstructures may need an additional micro-mechanical investigation and accurate modelling. Cruciform biaxial test stands as an alternative to standard tests as it achieves frictionless, in-plane, multi-axial stress states with a single sample geometry. In this study, we introduce a small-scale (less than 10 cm) cruciform sample allowing micro-mechanical investigation at stress states ranging from plane strain to equibiaxial. With successful specimen design and surface finish, large forming limit strains are obtained at the test region of the sample. The large forming limit strains obtained by experiments are compared to the values obtained from Marciniak-Kuczynski (M-K) local necking model and Cockroft-Latham damage model. This comparison shows that the experimental limiting strains are beyond the theoretical values, approaching to the fracture strain of the two test materials: Al-6061-T6 aluminum alloy and DC-04 high formability steel.

  13. Development of NASA's Sample Cartridge Assembly: Design, Thermal Analysis, and Testing

    NASA Technical Reports Server (NTRS)

    O'Connor, Brian; Hernandez, Deborah; Duffy, James

    2015-01-01

    NASA's Sample Cartridge Assembly (SCA) project is responsible for designing and validating a payload that contains a materials research sample in a sealed environment. The SCA will be heated in the European Space Agency's (ESA) Low Gradient Furnace (LGF) that is housed inside the Material Science Research Rack (MSRR) located in the International Space Station (ISS). Sintered metals and crystal growth experiments in microgravity are examples of some of the types of materials research that may be performed with a SCA. The project's approach has been to use thermal models to guide the SCA through several design iterations. Various layouts of the SCA components were explored to meet the science and engineering requirements, and testing has been done to help prove the design. This paper will give an overview of the SCA design. It will show how thermal analysis is used to support the project. Also some testing that has been completed will also be discussed, including changes that were made to the thermal profile used during brazing.

  14. Development of NASA's Sample Cartridge Assembly: Summary of GEDS Design, Development Testing, and Thermal Analyses

    NASA Technical Reports Server (NTRS)

    O'Connor, Brian; Hernandez, Deborah; Hornsby, Linda; Brown, Maria; Horton-Mullins, Kathryn

    2017-01-01

    Outline: Background of ISS (International Space Station) Material Science Research Rack; NASA SCA (Sample Cartridge Assembly) Design; GEDS (Gravitational Effects in Distortion in Sintering) Experiment Ampoule Design; Development Testing Summary; Thermal Modeling and Analysis. Summary: GEDS design development challenging (GEDS Ampoule design developed through MUGS (Microgravity) testing; Short duration transient sample processing; Unable to measure sample temperatures); MUGS Development testing used to gather data (Actual LGF (Low Gradient Furnace)-like furnace response; Provided sample for sintering evaluation); Transient thermal model integral to successful GEDS experiment (Development testing provided furnace response; PI (Performance Indicator) evaluation of sintering anchored model evaluation of processing durations; Thermal transient model used to determine flight SCA sample processing profiles).

  15. 40 CFR 63.997 - Performance test and compliance assessment requirements for control devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... as TOC minus methane and ethane according to the procedures specified. (i) Selection of sampling... regulated material or TOC, sampling sites shall be located as specified in paragraphs (e)(2)(i)(A)(1) and (e... shall ensure the measurement of total organic regulated material or TOC (minus methane and ethane...

  16. An Approach to the Flammability Testing of Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2012-01-01

    Presentation reviews: (1) Current approach to evaluation of spacecraft materials flammability (2) The need for and the approach to alternative routes (3) Examples of applications of the approach recommended a) Crew Module splash down b) Crew Module depressurization c) Applicability of NASA's flammability test data to other sample configurations d) Applicability of NASA's ground flammability test data to spacecraft environments

  17. Nitinol: Tubing versus sputtered film - microcleanliness and corrosion behavior.

    PubMed

    Wohlschlögel, Markus; Lima de Miranda, Rodrigo; Schüßler, Andreas; Quandt, Eckhard

    2016-08-01

    Corrosion behavior and microcleanliness of medical-device grade Nitinol tubing (Nix Ti1- x , x = 0.51; outer diameter 7 mm, wall thickness 0.5 mm), drawn from various ingot qualities, are compared to the characteristics of sputtered Nitinol film material (Nix Ti1- x , x = 0.51; thickness 50 µm). Electropolished tubing half-shell samples are tested versus as-received sputtered film samples. Inclusion size distributions are assessed using quantitative metallography and corrosion behavior is investigated by potentiodynamic polarization testing in phosphate-buffered saline at body temperature. For the sputtered film samples, the surface chemistry is additionally analyzed employing Auger Electron Spectroscopy (AES) composition-depth profiling. Results show that the fraction of breakdowns in the potentiodynamic polarization test correlates with number and size of the inclusions in the material. For the sputtered Nitinol film material no inclusions were detectable by light microscopy on the one hand and no breakdowns were found in the potentiodynamic polarization test on the other hand. As for electropolished Nitinol, the sputtered Nitinol film material reveals Nickel depletion and an Oxygen-to-Titanium intensity ratio of ∼2:1 in the surface oxide layer, as measured by AES. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1176-1181, 2016. © 2015 Wiley Periodicals, Inc.

  18. Cytocompatibility testing of cell culture modules fabricated from specific candidate biomaterials using injection molding.

    PubMed

    Hiebl, Bernhard; Lützow, Karola; Lange, Maik; Jung, Friedrich; Seifert, Barbara; Klein, Frank; Weigel, Thomas; Kratz, Karl; Lendlein, Andreas

    2010-07-01

    Most polymers used in clinical applications today are materials that have been developed originally for application areas other than biomedicine. Testing the cell- and tissue-compatibility of novel materials in vitro and in vivo is of key importance for the approval of medical devices and is regulated according to the Council Directive 93/42/EEC of the European communities concerning medical devices. In the standardized testing methods the testing sample is placed in commercially available cell culture plates, which are often made from polystyrene. Thus not only the testing sample itself influences cell behavior but also the culture vessel material. In order to exclude this influence, a new system for cell testing will be presented allowing a more precise and systematic investigation by preparing tailored inserts which are made of the testing material. Inserts prepared from polystyrene, polycarbonate and poly(ether imide) were tested for their cytotoxity and cell adherence. Furthermore a proof of principle concerning the preparation of inserts with a membrane-like surface structure and its surface modification was established. Physicochemical investigations revealed a similar morphology and showed to be very similar to the findings to analogous preparations and modifications of flat-sheet membranes. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckley, D.A.; Stites, J. Jr.

    The objective was to characterize several lots of materials used for carbon/carbon and carbon/phenol product manufacture. Volume one is organized into testing categories based on raw material of product form. Each category contains a discussion of the sampling plan, comments and observations on each test method utilized, and a summary of the results obtained each category.

  20. Flame spread over thick polymethylmethacrylate samples in a simulated and actual microgravity environment

    NASA Astrophysics Data System (ADS)

    Shah, Tirthesh Jayesh

    The NASA Burning and Suppression of Solids-II (BASS II) experiment examines the combustion of different solid materials and material geometries in microgravity. While flames in microgravity are driven by diffusion and weak advection due to crew movements and ventilation, the current NASA spacecraft material selection test method (NASA-STD- 6001 Test 1) is driven by buoyant forces as gravity is present. The overall goal of this project is to understand the burning of intermediate and thick fuels in microgravity, and devise a normal gravity test to apply to future materials. Clear cast polymethylmethacrylate (PMMA) samples 10 cm long by 1 or 2 cm wide with thicknesses ranging from 1-5 mm were investigated. PMMA is the ideal choice since it is widely used and we know its stoichiometric chemistry. Tests included both one sided and two sided burns. Samples are ignited by heating a wire behind the sample. The samples are burned in a flow duct within the Microgravity Science Glovebox (MSG) on the International Space Station (ISS) to ensure true microgravity conditions. The experiment takes place in opposed flow with varying Oxygen concentrations and flow velocities. Flames are recorded on two cameras and later tracked to determine spread rate. Currently we are modeling combustion of PMMA using Fire Dynamics Simulator (FDS 5.5.3) and Smokeview. The entire modelling for BASS-II is done in DNS mode because of the laminar conditions and small domain. In DNS mode the Navier Stokes equations are solved without the Turbulence model. The model employs the same test sample and MSG geometry as the experiment; but in 2D. The experimental data gave upstream velocity at several points using an anemometer. A flow profile for the inlet velocity is obtained using Matlab and input into the model. The flame spread rates obtained after tracking are then compared with the experimental data and the results follow the trends but the spread rates are higher.

  1. Home Economics. Sample Test Items. Levels I and II.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Elementary and Secondary Educational Testing.

    A sample of behavioral objectives and related test items that could be developed for content modules in Home Economics levels I and II, this book is intended to enable teachers to construct more valid and reliable test materials. Forty-eight one-page modules are presented, and opposite each module are listed two to seven specific behavioral…

  2. Testing for characterization of the materials from radiological point of view

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bercea, Sorin; Iliescu, Elena; Dudu, Dorin

    2013-12-16

    The nuclear techniques and materials are now used in a large number of applications, both in medicine and industry. Due to this fact, new materials are needed in order to assure the radiological protection of the personnel involved in these activities. But, finally, all these materials have to be tested for some specific parameters, in order to prove that they are adequate for the purposed for which they were created. One of the important parameters of the materials used for the radiological protection is the attenuation coefficient. The attenuation coefficient of the ionizing radiation composed by particles without electrical chargemore » (X,γ-ray and neutron) is the most important parameter for the materials used for the shielding of these ionizing radiation. This paper deals with the experimental methods developed for the determination of the attenuation of fast and thermal neutrons. These experimental methods, involved the use of Am-Be source and U-120 Cyclotron of IFIN-HH. For the tests which were done at the U-120 Cyclotron, a number of experiments had to be performed, in order to establish the irradiation geometry and the dose equivalent rates in front of and behind the material samples. The experimental results obtained for samples of several materials, confirmed the methods as adequate for the aim of the test.« less

  3. Effect of mixing techniques on bacterial attachment and disinfection time of polyether impression material.

    PubMed

    Guler, Umut; Budak, Yasemin; Ruh, Emrah; Ocal, Yesim; Canay, Senay; Akyon, Yakut

    2013-09-01

    The aim of this study was 2-fold. The first aim was to evaluate the effects of mixing technique (hand-mixing or auto-mixing) on bacterial attachment to polyether impression materials. The second aim was to determine whether bacterial attachment to these materials was affected by length of exposure to disinfection solutions. Polyether impression material samples (n = 144) were prepared by hand-mixing or auto-mixing. Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa were used in testing. After incubation, the bacterial colonies were counted and then disinfectant solution was applied. The effect of disinfection solution was evaluated just after the polymerization of impression material and 30 min after polymerization. Differences in adherence of bacteria to the samples prepared by hand-mixing and to those prepared by auto-mixing were assessed by Kruskal-Wallis and Mann-Whitney U-tests. For evaluating the efficiency of the disinfectant, Kruskal-Wallis multiple comparisons test was used. E. coli counts were higher in hand-mixed materials (P < 0.05); no other statistically significant differences were found between hand- and auto-mixed materials. According to the Kruskal-Wallis test, significant differences were found between the disinfection procedures (Z > 2.394). The methods used for mixing polyether impression material did not affect bacterial attachment to impression surfaces. In contrast, the disinfection procedure greatly affects decontamination of the impression surface.

  4. 19 CFR 151.52 - Sampling procedures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Sampling procedures. 151.52 Section 151.52 Customs... (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Metal-Bearing Ores and Other Metal-Bearing Materials § 151.52 Sampling procedures. (a) Commercial samples taken under Customs supervision...

  5. 19 CFR 151.52 - Sampling procedures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Sampling procedures. 151.52 Section 151.52 Customs... (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Metal-Bearing Ores and Other Metal-Bearing Materials § 151.52 Sampling procedures. (a) Commercial samples taken under Customs supervision...

  6. Evaluation of dredged material proposed for ocean disposal from Hudson River, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardiner, W.W.; Barrows, E.S.; Antrim, L.D.

    1996-09-01

    The Hudson River (Federal Project No. 41) was one of seven waterways that the U.S. Army Corps of Engineers-New York District (USACE-NYD) requested the Battelle Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in March 1994. Sediment samples were collected from the Hudson River. Tests and analyses were conducted on Hudson River sediment core samples. The evaluation of proposed dredged material from the Hudson River included bulk sediment chemical analyses, chemical analyses of site water and elutriate, water-column and benthic acute toxicity tests, and bioaccumulation studies. Individual sediment core samples collected from Hudson River were analyzedmore » for grain size, moisture content, and total organic carbon (TOC). A composite sediment sample, representing the entire area proposed for dredging, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4-dichlorobenzene. Site water and elutriate water, prepared from the suspended-particulate phase (SPP) of Hudson River sediment, were analyzed for metals, pesticides, and PCBS. Water-column or SPP toxicity tests were performed with three species. Benthic acute toxicity tests were performed. Bioaccumulation tests were also conducted.« less

  7. Measuring Electrostatic Discharge

    NASA Technical Reports Server (NTRS)

    Smith, William C.

    1987-01-01

    Apparatus measures electrostatic-discharge properties of several materials at once. Allows samples charged either by friction or by exposure to corona. By testing several samples simultaneously, apparatus eliminates errors introduced by variations among test conditions. Samples spaced so they pass at intervals under either of two retractable arms. Samples are 2 inches wide along circular path. Arm tips and voltmeter probe are 6 inches from turntable center. Servocontrolled turntable speed constant within 0.1 percent.

  8. Construct validity of functional capacity tests in healthy workers

    PubMed Central

    2013-01-01

    Background Functional Capacity (FC) is a multidimensional construct within the activity domain of the International Classification of Functioning, Disability and Health framework (ICF). Functional capacity evaluations (FCEs) are assessments of work-related FC. The extent to which these work-related FC tests are associated to bio-, psycho-, or social factors is unknown. The aims of this study were to test relationships between FC tests and other ICF factors in a sample of healthy workers, and to determine the amount of statistical variance in FC tests that can be explained by these factors. Methods A cross sectional study. The sample was comprised of 403 healthy workers who completed material handling FC tests (lifting low, overhead lifting, and carrying) and static work FC tests (overhead working and standing forward bend). The explainable variables were; six muscle strength tests; aerobic capacity test; and questionnaires regarding personal factors (age, gender, body height, body weight, and education), psychological factors (mental health, vitality, and general health perceptions), and social factors (perception of work, physical workloads, sport-, leisure time-, and work-index). A priori construct validity hypotheses were formulated and analyzed by means of correlation coefficients and regression analyses. Results Moderate correlations were detected between material handling FC tests and muscle strength, gender, body weight, and body height. As for static work FC tests; overhead working correlated fair with aerobic capacity and handgrip strength, and low with the sport-index and perception of work. For standing forward bend FC test, all hypotheses were rejected. The regression model revealed that 61% to 62% of material handling FC tests were explained by physical factors. Five to 15% of static work FC tests were explained by physical and social factors. Conclusions The current study revealed that, in a sample of healthy workers, material handling FC tests were related to physical factors but not to the psychosocial factors measured in this study. The construct of static work FC tests remained largely unexplained. PMID:23758870

  9. Apparatus for testing skin samples or the like

    DOEpatents

    Holland, J.M.

    1982-08-31

    An apparatus for testing the permeability of living skin samples has a flat base with a plurality of sample-holding cavities formed in its upper surface, the samples being placed in counterbores in the cavities with the epidermis uppermost. O-rings of Teflon washers are respectively placed on the samples and a flat cover is connected to the base to press the rings against the upper surfaces of the samples. Media to maintain tissue viability and recovery of metabolites is introduced into the lower portion of the sample-holding cavities through passages in the base. Test materials are introduced through holes in the cover plate after assembly of the chamber.

  10. Evaluation of ELISA screening test for detecting aflatoxin in biogenic dust samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durant, J.T.

    Aflatoxin is a carcinogenic chemical that is sometimes produced when agricultural commodities are infested by the fungi Aspergillus flavus and A. Parasiticus. Aflatoxin has been found to be present in air samples taken around persons handling materials likely to be contaminated. The purpose of this investigation was to demonstrate the feasibility of using an Enzyme Linked Immunosorbent Assay (ELISA) test kit that was developed to screen for aflatoxin in bulk agricultural commodities, to an air sample. Samples were taken from two environments likely to be contaminated with aflatoxin, a dairy farm feed mixing operation and a peanut bagging operation. Themore » dust collected from these environments was considered to be biogenic, in that it originated primarily from biological materials.« less

  11. Molding of strength testing samples using modern PDCPD material for purpose of automotive industry

    NASA Astrophysics Data System (ADS)

    Grabowski, L.; Baier, A.; Sobek, M.

    2017-08-01

    The casting of metal materials is widely known but the molding of composite polymer materials is not well-known method still. The initial choice of method for producing composite bodies was the method of casting of PDCPD material. For purpose of performing casting of polymer composite material, a special mold was made. Firstly, the 3D printed, using PLA material, mold was used. After several attempts of casting PDCPD many problems were encountered. The second step was to use mold milled from a firm and dense isocyanate foam. After several attempts research shown that this solution is more resistant to high-temperature peak, but this material is too fragile to use it several times. This solution also prevents mold from using external heating, which can be necessary for performing correct molding process. The last process was to use the aluminum mold, which is dedicated to PDCPD polymer composite, because of low adhesiveness. This solution leads to perform correct PDCPD polymer composite material injection. After performing casting operation every PDCPD testing samples were tested. These results were compared together. The result of performed work was to archive correct properties of injection of composite material. Research and results were described in detail in this paper.

  12. Flow Chamber System for the Statistical Evaluation of Bacterial Colonization on Materials

    PubMed Central

    Menzel, Friederike; Conradi, Bianca; Rodenacker, Karsten; Gorbushina, Anna A.; Schwibbert, Karin

    2016-01-01

    Biofilm formation on materials leads to high costs in industrial processes, as well as in medical applications. This fact has stimulated interest in the development of new materials with improved surfaces to reduce bacterial colonization. Standardized tests relying on statistical evidence are indispensable to evaluate the quality and safety of these new materials. We describe here a flow chamber system for biofilm cultivation under controlled conditions with a total capacity for testing up to 32 samples in parallel. In order to quantify the surface colonization, bacterial cells were DAPI (4`,6-diamidino-2-phenylindole)-stained and examined with epifluorescence microscopy. More than 100 images of each sample were automatically taken and the surface coverage was estimated using the free open source software g’mic, followed by a precise statistical evaluation. Overview images of all gathered pictures were generated to dissect the colonization characteristics of the selected model organism Escherichia coli W3310 on different materials (glass and implant steel). With our approach, differences in bacterial colonization on different materials can be quantified in a statistically validated manner. This reliable test procedure will support the design of improved materials for medical, industrial, and environmental (subaquatic or subaerial) applications. PMID:28773891

  13. Hydraulic Fatigue-Testing Machine

    NASA Technical Reports Server (NTRS)

    Hodo, James D.; Moore, Dennis R.; Morris, Thomas F.; Tiller, Newton G.

    1987-01-01

    Fatigue-testing machine applies fluctuating tension to number of specimens at same time. When sample breaks, machine continues to test remaining specimens. Series of tensile tests needed to determine fatigue properties of materials performed more rapidly than in conventional fatigue-testing machine.

  14. Stereo View of Phoenix Test Sample Site

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This anaglyph image, acquired by NASA's Phoenix Lander's Surface Stereo Imager on Sol 7, the seventh day of the mission (June 1, 2008), shows a stereoscopic 3D view of the so-called 'Knave of Hearts' first-dig test area to the north of the lander. The Robotic Arm's scraping blade left a small horizontal depression above where the sample was taken.

    Scientists speculate that white material in the depression left by the dig could represent ice or salts that precipitated into the soil. This material is likely the same white material observed in the sample in the Robotic Arm's scoop.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. The effectiveness of learning material with Edmodo to enhance the level of student's probabilistic thinking

    NASA Astrophysics Data System (ADS)

    Sujadi, Imam; Kurniasih, Rini; Subanti, Sri

    2017-05-01

    In the era of 21st century learning, it needs to use technology as a learning media. Using Edmodo as a learning media is one of the options as the complement in learning process. However, this research focuses on the effectiveness of learning material using Edmodo. The aim of this research to determine whether the level of student's probabilistic thinking that use learning material with Edmodo is better than the existing learning materials (books) implemented to teach the subject of students grade 8th. This is quasi-experimental research using control group pretest and posttest. The population of this study was students grade 8 of SMPN 12 Surakarta and the sampling technique used random sampling. The analysis technique used to examine two independent sample using Kolmogorov-Smirnov test. The obtained value of test statistic is M=0.38, since 0.38 is the largest tabled critical one-tailed value M0.05=0.011. The result of the research is the learning materials with Edmodo more effectively to enhance the level of probabilistic thinking learners than the learning that use the existing learning materials (books). Therefore, learning material using Edmodo can be used in learning process. It can also be developed into another learning material through Edmodo.

  16. A sampling device with a capped body and detachable handle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jezek, Gerd-Rainer

    1997-12-01

    The present invention relates to a device for sampling radioactive waste and more particularly to a device for sampling radioactive waste which prevents contamination of a sampled material and the environment surrounding the sampled material. During vitrification of nuclear wastes, it is necessary to remove contamination from the surfaces of canisters filled with radioactive glass. After removal of contamination, a sampling device is used to test the surface of the canister. The one piece sampling device currently in use creates a potential for spreading contamination during vitrification operations. During operations, the one piece sampling device is transferred into and outmore » of the vitrification cell through a transfer drawer. Inside the cell, a remote control device handles the sampling device to wipe the surface of the canister. A one piece sampling device can be contaminated by the remote control device prior to use. Further, the sample device can also contaminate the transfer drawer producing false readings for radioactive material. The present invention overcomes this problem by enclosing the sampling pad in a cap. The removable handle is reused which reduces the amount of waste material.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amidan, Brett G.; Hutchison, Janine R.

    There are many sources of variability that exist in the sample collection and analysis process. This paper addresses many, but not all, sources of variability. The main focus of this paper was to better understand and estimate variability due to differences between samplers. Variability between days was also studied, as well as random variability within each sampler. Experiments were performed using multiple surface materials (ceramic and stainless steel), multiple contaminant concentrations (10 spores and 100 spores), and with and without the presence of interfering material. All testing was done with sponge sticks using 10-inch by 10-inch coupons. Bacillus atrophaeus wasmore » used as the BA surrogate. Spores were deposited using wet deposition. Grime was coated on the coupons which were planned to include the interfering material (Section 3.3). Samples were prepared and analyzed at PNNL using CDC protocol (Section 3.4) and then cultured and counted. Five samplers were trained so that samples were taken using the same protocol. Each sampler randomly sampled eight coupons each day, four coupons with 10 spores deposited and four coupons with 100 spores deposited. Each day consisted of one material being tested. The clean samples (no interfering materials) were run first, followed by the dirty samples (coated with interfering material). There was a significant difference in recovery efficiency between the coupons with 10 spores deposited (mean of 48.9%) and those with 100 spores deposited (mean of 59.8%). There was no general significant difference between the clean and dirty (containing interfering material) coupons or between the two surface materials; however, there was a significant interaction between concentration amount and presence of interfering material. The recovery efficiency was close to the same for coupons with 10 spores deposited, but for the coupons with 100 spores deposited, the recovery efficiency for the dirty samples was significantly larger (65.9% - dirty vs. 53.6% - clean) (see Figure 4.1). Variance component analysis was used to estimate the amount of variability for each source of variability. There wasn’t much difference in variability for dirty and clean samples, as well as between materials, so these results were pooled together. There was a significant difference in amount of concentration deposited, so results were separated for the 10 spore and 100 spore deposited tests. In each case the within sampler variability was the largest with variances of 426.2 for 10 spores and 173.1 for 100 spores. The within sampler variability constitutes the variability between the four samples of similar material, interfering material, and concentration taken by each sampler. The between sampler variance was estimated to be 0 for 10 spores and 1.2 for 100 spores. The between day variance was estimated to be 42.1 for 10 spores and 78.9 for 100 spores. Standard deviations can be calculated in each case by taking the square root of the variance.« less

  18. Testing of Candidate Rigid Heatshield Materials at LHMEL for the Entry, Descent, and Landing Technology Development Project

    NASA Technical Reports Server (NTRS)

    Sepka, Steven; Gasch, Matthew; Beck, Robin A.; White, Susan

    2012-01-01

    The material testing results described in this paper were part of a material development program of vendor-supplied, proposed heat shield materials. The goal of this program was to develop low density, rigid material systems with an appreciable weight savings over phenolic-impregnated carbon ablator (PICA) while improving material response performance. New technologies, such as PICA-like materials in honeycomb or materials with variable density through-the-thickness were tested. The material testing took place at the Wright-Patterson Air Force Base Laser Hardened Materials Laboratory (LHMEL) using a 10.6 micron CO2 laser operating with the test articles immersed in a nitrogen-gas environment at 1 atmosphere pressure. Test measurements included thermocouple readings of in-depth temperatures, pyrometer readings of surface temperatures, weight scale readings of mass loss, and sectioned-sample readings of char depth. Two laser exposures were applied. The first exposure was at an irradiance of 450 W/cm2 for 50 or 60 seconds to simulate an aerocapture maneuver. The second laser exposure was at an irradiance of 115 W/cm2 for 100 seconds to simulate a planetary entry. Results from Rounds 1 and 2 of these screening tests are summarized.

  19. Wettability changes in polyether impression materials subjected to immersion disinfection

    PubMed Central

    Shetty, Shweta; Kamat, Giridhar; Shetty, Rajesh

    2013-01-01

    Background: Disinfection of impression materials prevents cross-contamination; however, the disinfectants may alter the wettability property. The purpose of this investigation was to evaluate the wettability changes of polyether impression material after immersing in four different chemical disinfectant solutions for a period of 10 min and 30 min, respectively. Materials and Methods: A total of 45 samples of polyether dental impression material (Impregum soft, 3MESPE, St. Paul, MN, USA) were randomly divided into nine groups with five specimens each. Each specimen was disc shaped, flat of 32 mm diameter and 3 mm thickness. The samples were immersed in four disinfectant solutions: 2% Glutaraldehyde, 5% sodium hypochlorite, 0.05% iodophor, and 5.25% phenol for 10 min and 30 min, respectively. The control was without disinfection. Wettability of the samples was assessed by measuring the contact angle by using the Telescopic Goniometer. Data were subjected to analysis of variance (Fisher's test) and Tukey's post hoc test for multiple comparisons at 5% level of significance. Results: The contact angle of 20.21° ± 0.22° were recorded in the control samples. After 10 min, the samples that were immersed in 5% sodium hypochlorite and 5.25% phenol showed significant statistical increase in the contact angle as compared to the control (P < 0.001). After 30 min of disinfection, only the samples immersed in 0.05% iodophor showed there were no significant changes in the contact angle, whereas the other disinfectants significantly increased the contact angle and decreased the wettability of the polyether material. Conclusion: Within the limitations of the study, 2% glutaraldehyde proved safe for 10 min of immersion disinfection while 0.05% iodophor holds promise as an effective disinfectant without affecting the wettability of the material. PMID:24130593

  20. Lunar Samples: Apollo Collection Tools, Curation Handling, Surveyor III and Soviet Luna Samples

    NASA Technical Reports Server (NTRS)

    Allton, J.H.

    2009-01-01

    The 6 Apollo missions that landed on the lunar surface returned 2196 samples comprised of 382 kg. The 58 samples weighing 21.5 kg collected on Apollo 11 expanded to 741 samples weighing 110.5 kg by the time of Apollo 17. The main goal on Apollo 11 was to obtain some material and return it safely to Earth. As we gained experience, the sampling tools and a more specific sampling strategy evolved. A summary of the sample types returned is shown in Table 1. By year 1989, some statistics on allocation by sample type were compiled [2]. The "scientific interest index" is based on the assumption that the more allocations per gram of sample, the higher the scientific interest. It is basically a reflection of the amount of diversity within a given sample type. Samples were also set aside for biohazard testing. The samples set aside and used for biohazard testing were represen-tative, as opposed to diverse. They tended to be larger and be comprised of less scientifically valuable mate-rial, such as dust and debris in the bottom of sample containers.

  1. Development of a Water Soluble Foam Packaging Material

    DTIC Science & Technology

    1975-01-01

    Material, Expanded Polystyrene , Looae-Fill Bulk and standard properties were established. Additional investigations conducted on the loose-fill samples...mechanical properties when tested as described in Federal Specification PPP-O-1683; Cushioning Material, Expanded Polystyrene , Loose-Fill Bulk. The following

  2. Optimising a modified free-space permittivity characterisation method for civil engineering applications

    NASA Astrophysics Data System (ADS)

    Muller, Wayne; Scheuermann, Alexander

    2016-04-01

    Measuring the electrical permittivity of civil engineering materials is important for a range of ground penetrating radar (GPR) and pavement moisture measurement applications. Compacted unbound granular (UBG) pavement materials present a number of preparation and measurement challenges using conventional characterisation techniques. As an alternative to these methods, a modified free-space (MFS) characterisation approach has previously been investigated. This paper describes recent work to optimise and validate the MFS technique. The research included finite difference time domain (FDTD) modelling to better understand the nature of wave propagation within material samples and the test apparatus. This research led to improvements in the test approach and optimisation of sample sizes. The influence of antenna spacing and sample thickness on the permittivity results was investigated by a series of experiments separating antennas and measuring samples of nylon and water. Permittivity measurements of samples of nylon and water approximately 100 mm and 170 mm thick were also compared, showing consistent results. These measurements also agreed well with surface probe measurements of the nylon sample and literature values for water. The results indicate permittivity estimates of acceptable accuracy can be obtained using the proposed approach, apparatus and sample sizes.

  3. False-Negative Rate and Recovery Efficiency Performance of a Validated Sponge Wipe Sampling Method

    PubMed Central

    Piepel, Greg F.; Boucher, Raymond; Tezak, Matt; Amidan, Brett G.; Einfeld, Wayne

    2012-01-01

    Recovery of spores from environmental surfaces varies due to sampling and analysis methods, spore size and characteristics, surface materials, and environmental conditions. Tests were performed to evaluate a new, validated sponge wipe method using Bacillus atrophaeus spores. Testing evaluated the effects of spore concentration and surface material on recovery efficiency (RE), false-negative rate (FNR), limit of detection (LOD), and their uncertainties. Ceramic tile and stainless steel had the highest mean RE values (48.9 and 48.1%, respectively). Faux leather, vinyl tile, and painted wood had mean RE values of 30.3, 25.6, and 25.5, respectively, while plastic had the lowest mean RE (9.8%). Results show roughly linear dependences of RE and FNR on surface roughness, with smoother surfaces resulting in higher mean REs and lower FNRs. REs were not influenced by the low spore concentrations tested (3.10 × 10−3 to 1.86 CFU/cm2). Stainless steel had the lowest mean FNR (0.123), and plastic had the highest mean FNR (0.479). The LOD90 (≥1 CFU detected 90% of the time) varied with surface material, from 0.015 CFU/cm2 on stainless steel up to 0.039 on plastic. It may be possible to improve sampling results by considering surface roughness in selecting sampling locations and interpreting spore recovery data. Further, FNR values (calculated as a function of concentration and surface material) can be used presampling to calculate the numbers of samples for statistical sampling plans with desired performance and postsampling to calculate the confidence in characterization and clearance decisions. PMID:22138998

  4. FIFTH STATUS REPORT: TESTING OF AGED SOFTWOOD FIBERBOARD MATERIAL FOR THE 9975 SHIPPING PACKAGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugherty, W.; Skidmore, E.; Dunn, K.

    Samples have been prepared from a 9975 lower fiberboard subassembly fabricated from softwood fiberboard. Physical, mechanical and thermal properties have been measured following varying periods of conditioning in each of several environments. These tests have been conducted in the same manner as previous testing on cane fiberboard samples. Overall, similar aging trends are observed for softwood and cane fiberboard samples, with a few differences. Some softwood fiberboard properties tend to degrade faster in elevated humidity environments, while some cane fiberboard properties degrade faster in the hotter dry environments. As a result, it is premature to assume both materials will agemore » at the same rates, and the preliminary aging models developed for cane fiberboard might not apply to softwood fiberboard. However, it is expected that both cane and softwood fiberboard assemblies will perform satisfactorily in conforming packages stored in a typical KAC storage environment for up to 15 years. Aging and testing of softwood fiberboard will continue and additional data will be collected. Additional samples will be added to each aging environment, to support development of an aging model specific to softwood fiberboard. Post-conditioning data have been measured on samples from a single softwood fiberboard assembly, and baseline data are also available from a limited number of vendor-provided samples. This provides minimal information on the possible sample-to-sample variation exhibited by softwood fiberboard. Data to date are generally consistent with the range seen in cane fiberboard, but some portions of the data trends are skewed toward the lower end of that range. Two additional softwood fiberboard source packages have been obtained and will begin to provide data on the range of variability of this material.« less

  5. Color stability of CAD/CAM Zirconia ceramics following exposure to acidic and staining drinks

    PubMed Central

    Colombo, Marco; Cavallo, Marco; Miegge, Matteo; Dagna, Alberto; Beltrami, Riccardo; Chiesa, Marco

    2017-01-01

    Background The aim of this in vitro study was to evaluate the color stability of CAD/CAM Zirconia ceramics following exposure to acidic drink (Coca Cola) and after exposure to staining solution (coffee). Material and Methods All the samples were immersed in different staining solutions over a 28-day test period. A colorimetric evaluation according to the CIE L*a*b* system was performed by a blind trained operator at 7, 14, 21, 28 days of the staining process. Shapiro Wilk test and Kruskal-Wallis ANOVA were applied to assess significant differences among restorative materials. Paired t-test was applied to test which CIE L*a*b* parameters significantly changed after immersion in staining solutions. Results One week immersion in acidic drink did not cause a perceivable discoloration for all restorative materials (ΔE < 3.3). Subsequent immersion in coffee affected color stability of all Zirconia samples, even if Kruskal-Wallis ANOVA found significant differences among the various restorative materials. Conclusions The ∆Es of CAD/CAM Zirconia ceramics after immersion in coffee varied among the products, but color integrity is not affected by contact with acidic drinks. Key words:CAD/CAM restorative materials, CIE Lab, Zirconia ceramics. PMID:29302281

  6. A New Test Method for Determining the Strength and Fracture Toughness of Cement Mortar and Concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John; Liu, Ken C; Naus, Dan J

    2010-01-01

    The Spiral Notch Torsion Fracture Toughness Test (SNTT) was developed recently to determine the intrinsic fracture toughness (KIC) of structural materials. The SNTT system operates by applying pure torsion to uniform cylindrical specimens with a notch line that spirals around the specimen at a 45 a pitch. KIC values are obtained with the aid of a three-dimensional finite-element computer code, TOR3D-KIC. The SNTT method is uniquely suitable for testing a wide variety of materials used extensively in pressure vessel and piping structural components and weldments. Application of the method to metallic, ceramic, and graphite materials has been demonstrated. One importantmore » characteristic of SNTT is that neither a fatigue precrack or a deep notch are required for the evaluation of brittle materials, which significantly reduces the sample size requirement. In this paper we report results for a Portland cement-based mortar to demonstrate applicability of the SNTT method to cementitious materials. The estimated KIC of the tested mortar samples with compressive strength of 34.45 MPa was found to be 0.19 MPa m^(1/2).« less

  7. Mudflow utilization for construction materials of tertiary irrigation canal lining

    NASA Astrophysics Data System (ADS)

    Azis, Subandiyah; Kustamar

    2017-11-01

    Mudflow in Siring Village, Sidoarjo Regency, Indonesia, has been in eruption since May 29, 2006. It still shows irregular large bursts which loaded in a sludge reservoir with capacity of 59 million m3. From 2007 until 2015, there were more than 20 studies which concluded that the mudflow could be used as a mixture of building materials. However, the studies were not detailed and needed further research. This research aims to investigate the use of mudflow as tertiary irrigation canal lining material. This research comes with several laboratory tests to obtain a mixture that is solid and water-resistant. The methods that were used are descriptive methods as follows: 1). Sampling of mudflow, to be analyzed in Material Testing Laboratory. 2). Sampling of soil at research site, to be analyzed in Soil Mechanics Laboratory 3). Mixing of materials which are consist of mudflow and other materials and doing strength test in the laboratory. 4). Installation of tertiary irrigation canal lining using materials that have been tested. 5). Observation of lining's strength inactive soil pressure-bearing and its impermeability. It is expected that the results of this research will be applied extensively throughout the tertiary irrigation canals, so mudflow can be utilized as raw materials that are environmentally friendly, which are able to help preserving the environment, also to reduce the removal of sand / rock in the river, which has been used for lining materials, that benefits in preventing damage to the river ecosystem.

  8. Influence of Scanning Strategies on Processing of Aluminum Alloy EN AW 2618 Using Selective Laser Melting

    PubMed Central

    Palousek, David; Pantelejev, Libor; Hoeller, Christian; Pichler, Rudolf; Tesicky, Lukas; Kaiser, Jozef

    2018-01-01

    This paper deals with various selective laser melting (SLM) processing strategies for aluminum 2618 powder in order to get material densities and properties close to conventionally-produced, high-strength 2618 alloy. To evaluate the influence of laser scanning strategies on the resulting porosity and mechanical properties a row of experiments was done. Three types of samples were used: single-track welds, bulk samples and samples for tensile testing. Single-track welds were used to find the appropriate processing parameters for achieving continuous and well-shaped welds. The bulk samples were built with different scanning strategies with the aim of reaching a low relative porosity of the material. The combination of the chessboard strategy with a 2 × 2 mm field size fabricated with an out-in spiral order was found to eliminate a major lack of fusion defects. However, small cracks in the material structure were found over the complete range of tested parameters. The decisive criteria was the elimination of small cracks that drastically reduced mechanical properties. Reduction of the thermal gradient using support structures or fabrication under elevated temperatures shows a promising approach to eliminating the cracks. Mechanical properties of samples produced by SLM were compared with the properties of extruded material. The results showed that the SLM-processed 2618 alloy could only reach one half of the yield strength and tensile strength of extruded material. This is mainly due to the occurrence of small cracks in the structure of the built material. PMID:29443912

  9. Caracterisation des proprietes dielectriques de materiaux composites a base de polyethylene terephtalate recycle

    NASA Astrophysics Data System (ADS)

    Mebarki, Fouzia

    The aim of this study is to examine the possibility of using thermoplastic composite materials for electrical applications such as supports of automotive engine ignition systems. We are particularly interested in composites based on recycled polyethylene terephtalate (PET). Conventional isolations like PET cannot meet the new prescriptive requirements. The introduction of reinforcement materials, such as glass fibers and mica can improve the mechanical characteristics of these materials. However, this enhancement may also reduce electrical properties especially since these composites have to be used under severe thermal and electric stresses. In order to estimate PET composite insulation lifetimes, accelerated aging tests were carried out at temperatures ranging from room temperature to 140°C and at a frequency of 300Hz. Studies at high temperature will help to identify the service temperature of candidate materials. Dielectric breakdown tests have been made on a large number of samples according to the standard of dielectric strength tests of solid insulating ASTM D-149. These tests have to identify the problematic samples and to check solid insulation quality. The different knowledge gained from this analysis was used to predict material performance. This will give the company the possibility to improve existing formulations and subsequently develop a material having electrical and thermal properties suitable for this application.

  10. Characterization of 137 Genomic DNA Reference Materials for 28 Pharmacogenetic Genes

    PubMed Central

    Pratt, Victoria M.; Everts, Robin E.; Aggarwal, Praful; Beyer, Brittany N.; Broeckel, Ulrich; Epstein-Baak, Ruth; Hujsak, Paul; Kornreich, Ruth; Liao, Jun; Lorier, Rachel; Scott, Stuart A.; Smith, Chingying Huang; Toji, Lorraine H.; Turner, Amy; Kalman, Lisa V.

    2017-01-01

    Pharmacogenetic testing is increasingly available from clinical laboratories. However, only a limited number of quality control and other reference materials are currently available to support clinical testing. To address this need, the Centers for Disease Control and Prevention–based Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing community and the Coriell Cell Repositories, has characterized 137 genomic DNA samples for 28 genes commonly genotyped by pharmacogenetic testing assays (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, CYP4F2, DPYD, GSTM1, GSTP1, GSTT1, NAT1, NAT2, SLC15A2, SLC22A2, SLCO1B1, SLCO2B1, TPMT, UGT1A1, UGT2B7, UGT2B15, UGT2B17, and VKORC1). One hundred thirty-seven Coriell cell lines were selected based on ethnic diversity and partial genotype characterization from earlier testing. DNA samples were coded and distributed to volunteer testing laboratories for targeted genotyping using a number of commercially available and laboratory developed tests. Through consensus verification, we confirmed the presence of at least 108 variant pharmacogenetic alleles. These samples are also being characterized by other pharmacogenetic assays, including next-generation sequencing, which will be reported separately. Genotyping results were consistent among laboratories, with most differences in allele assignments attributed to assay design and variability in reported allele nomenclature, particularly for CYP2D6, UGT1A1, and VKORC1. These publicly available samples will help ensure the accuracy of pharmacogenetic testing. PMID:26621101

  11. Statistical validation of reagent lot change in the clinical chemistry laboratory can confer insights on good clinical laboratory practice.

    PubMed

    Cho, Min-Chul; Kim, So Young; Jeong, Tae-Dong; Lee, Woochang; Chun, Sail; Min, Won-Ki

    2014-11-01

    Verification of new lot reagent's suitability is necessary to ensure that results for patients' samples are consistent before and after reagent lot changes. A typical procedure is to measure results of some patients' samples along with quality control (QC) materials. In this study, the results of patients' samples and QC materials in reagent lot changes were analysed. In addition, the opinion regarding QC target range adjustment along with reagent lot changes was proposed. Patients' sample and QC material results of 360 reagent lot change events involving 61 analytes and eight instrument platforms were analysed. The between-lot differences for the patients' samples (ΔP) and the QC materials (ΔQC) were tested by Mann-Whitney U tests. The size of the between-lot differences in the QC data was calculated as multiples of standard deviation (SD). The ΔP and ΔQC values only differed significantly in 7.8% of the reagent lot change events. This frequency was not affected by the assay principle or the QC material source. One SD was proposed for the cutoff for maintaining pre-existing target range after reagent lot change. While non-commutable QC material results were infrequent in the present study, our data confirmed that QC materials have limited usefulness when assessing new reagent lots. Also a 1 SD standard for establishing a new QC target range after reagent lot change event was proposed. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. The vector homology problem in diagnostic nucleic acid hybridization of clinical specimens.

    PubMed Central

    Ambinder, R F; Charache, P; Staal, S; Wright, P; Forman, M; Hayward, S D; Hayward, G S

    1986-01-01

    Nucleic acid hybridization techniques using cloned probes are finding application in assays of clinical specimens in research and diagnostic laboratories. The probes that we and others have used are recombinant plasmids composed of viral inserts and bacterial plasmid vectors such as pBR322. We suspected that there was material homologous to pBR322 present in many clinical samples. because hybridization occurred in samples which lacked evidence of virus by other techniques. If the presence of this vector-homologous material was unrecognized, hybridization in the test sample might erroneously be interpreted as indicating the presence of viral sequences. In this paper we demonstrate specific hybridization of labeled pBR322 DNA with DNA from various clinical samples. Evidence is presented that nonspecific probe trapping could not account for this phenomenon. In mixing experiments, it is shown that contamination of clinical samples with bacteria would explain such a result. Approaches tested to circumvent this problem included the use of isolated insert probes, alternate cloning vectors, and cold competitor pBR322 DNA in prehybridization and hybridization mixes. None proved entirely satisfactory. We therefore emphasize that it is essential that all hybridization detection systems use a control probe of the vector alone in order to demonstrate the absence of material with vector homology in the specimen tested. Images PMID:3013928

  13. Remote Recession Sensing of Ablative Heat Shield Materials

    NASA Technical Reports Server (NTRS)

    Winter, Michael W.; Stackpoole, Margaret; Nawaz, Anuscheh; Gonzales, Gregory Lewis; Ho, Thanh

    2014-01-01

    Material recession and charring are two major processes determining the performance of ablative heat shield materials. Even in ground testing, the characterization of these two mechanisms relies on measurements of material thickness before and after testing, thus providing only information integrated over the test time. For recession measurements, optical methods such as imaging the sample surface during testing are under investigation but require high alignment and instrument effort, therefore being not established as a standard measurement method. For char depth measurements, the most common method so far consists in investigation of sectioned samples after testing or in the case of Stardust where core extractions were performed to determine char information. In flight, no reliable recession measurements are available, except total recession after recovering the heat shield on ground. Developments of mechanical recession sensors have been started but require substantial on board instrumentation adding mass and complexity. In this work, preliminary experiments to evaluate the feasibility of remote sensing of material recession and possibly char depth through optically observing the emission signatures of seeding materials in the post shock plasma is investigated. It is shown that this method can provide time resolved recession measurements without the necessity of accurate alignment procedures of the optical set-up and without any instrumentation on board of a spacecraft. Furthermore, recession data can be obtained without recovering flight hardware which would be a huge benefit for inexpensive heat shield material testing on board of small re-entry probes, e.g. on new micro-satellite re-entry probes as a possible future application of Cubesats or RBR

  14. 77 FR 72205 - Testing and Labeling Pertaining to Product Certification Regarding Representative Samples for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    ... testing periodically and when there has been a material change in the product's design or manufacturing... control data during product manufacture; and using manufacturing techniques with intrinsic manufacturing... sample in the production population an equal probability of being selected (75 FR at 28349 through 28350...

  15. 76 FR 62044 - Alternative Testing Requirements for Small Batch Manufacturers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... every manufacturer of a children's product that is subject to a children's product safety rule shall submit sufficient samples of the children's product, or samples that are identical in all material... compliance with such children's product safety rule. Further, section 14(i)(2) requires continued testing of...

  16. The effect of sunshine testing on terrestrial solar cell system components

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Anagnostou, E.

    1975-01-01

    Samples of FEP encapsulated silicon solar cells and various potential encapsulation or cover materials were subjected to accelerated and real time testing. By measuring changes in solar cell output or optical transmission as a function of exposure the durability of the samples was evaluated. Results are presented.

  17. HiRadMat at CERN SPS - A test facility with high intensity beam pulses to material samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charitonidis, N.; Fabich, A.; Efthymiopoulos, I.

    2015-07-01

    HiRadMat (High Irradiation to Materials) is a facility at CERN designed to provide high-intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, shock tests on high power targets, collimators) can be tested. The beam parameters (SPS 440 GeV protons with a pulse energy of up to 3.4 MJ, or alternatively lead/argon ions at the proton equivalent energy) can be tuned to match the needs of each experiment. It is a test area designed to perform single pulse experiments to evaluate the effect of high-intensity pulsed beams on materials in amore » dedicated environment, excluding long-time irradiation studies. The facility is designed for a 10{sup 16} maximum number of protons per year, in order to limit the activation to acceptable levels for human intervention. This paper will demonstrate the possibilities for research using this facility and showing examples of upcoming experiments scheduled in the beam period 2014/2015. (authors)« less

  18. Status and Planned Experiments of the Hiradmat Pulsed Beam Material Test Facility at CERN SPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charitonidis, Nikolaos; Efthymiopoulos, Ilias; Fabich, Adrian

    2015-06-01

    HiRadMat (High Irradiation to Materials) is a facility at CERN designed to provide high-intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, shock tests on high power targets, collimators) can be tested. The beam parameters (SPS 440 GeV protons with a pulse energy of up to 3.4 MJ, or alternatively lead/argon ions at the proton equivalent energy) can be tuned to match the needs of each experiment. It is a test area designed to perform single pulse experiments to evaluate the effect of high-intensity pulsed beams on materials in amore » dedicated environment, excluding long-time irradiation studies. The facility is designed for a maximum number of 1016 protons per year, in order to limit the activation of the irradiated samples to acceptable levels for human intervention. This paper will demonstrate the possibilities for research using this facility and go through examples of upcoming experiments scheduled in the beam period 2015/2016.« less

  19. Evaluation of Surlyn 8920 as PHE Visor Material and Evaluations of New Adhesives for Improving Bonding Between Teflon and Stainless Steel at Cryogenic Temperature

    NASA Technical Reports Server (NTRS)

    Ray, Asit K.

    1991-01-01

    Two studies are presented, and in the first study, Surlyn 8920 (an ionic and amorphous low density polyethylene made by Dupont) was evaluated as a possible replacement of Plexyglass G as PHE visor material. Four formulations of the polymer were made by adding different amounts of UV stabilizer, energy quencher, and antioxident in a Brabender Plasticorder. The formulated polymers were molded in the form of sheets in a compression molder. Cut samples from the molded sheets were exposed in a weatherometer and tested on Instron Tensile Tester for strength and elongation. Specially molded samples of the formulated polymers were subjected to Charpy Impact Tests. In the second study, preliminary evaluations of adhesives for improvement of bonding between Teflon and stainless steel (SS) were performed. Kapton, a high temperature polyimide made by Dupont, and a rubber based adhesive made by Potter Paint Co., were evaluated against industrial quality epoxy, the current material used to bond Teflon and SS. The degreased surfaces of the SS discs were etched mechanically, with a few of these etched chemically. The surfaces of the SS discs were etched mechanically, with a few of these etched chemically. Bonding strengths were evaluated using lap shear tests on the Instron Tensile Tester for the samples bonded by Kapton and industrial quality epoxy. Bond strengths were also evaluated using a pull test on the Instron for the samples bonded by Potter adhesive (CWL-152) and industrial quality epoxy. Based on limited lap shear data, Kapton gave bond strength favorable compared to that of industrial epoxy. Based on limited pull test data, Kapton bonded and CWL-152 bonded samples showed poor strength compared to epoxy bonded sample.

  20. Filtration stability of living brush mattresses at navigable waterways

    NASA Astrophysics Data System (ADS)

    Sokopp, Manuel

    2017-04-01

    According to the guidelines of the Federal Waterways Engineering and Research Institute in Germany, waterway construction buildings, which include soil bioengineering structures, must be stable against soil displacements. Therefore, willow brush mattresses were tested for their filtration stability in a specially developed process which is based on the testing of geotextiles and armourstones used for navigable waterway constructions. In March 2016 willow brush mattresses made of white (Salix alba L.) or basket willows (Salix viminalis L.) were planted in 16 sample boxes, each with a cross-section area of 30x30 cm. For the tests on filtration stability, the upper 20 cm of the box were separated and placed upside down into a device in which the sample box could be flowed through from below. When a water column of 50 cm above the sample was reached, the water outlet was opened so the water flowed through the sample in the opposite direction, thus simulating drawdown. By the measurements of the pressure sensors above and below the sample, the coefficient of permeability k of the rooted soil during drawdown could be calculated. After this hydropeaking cycle, the soil material that was rinsed out through the willow branches was collected, weighed after drying until weight constancy, and compared with the dry mass of the retained soil material to calculate the share of the total mass. These filtration stability tests were carried out directly after planting the sample boxes, as well as one, three and six months afterwards, each test series with four reruns per willow species. Over time, the increasing root penetration resulted in a significant reduction in the permeability and in more retained soil material.

  1. Ultraviolet Radiation Round-Robin Testing of Various Backsheets for Photovoltaic Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koehl, Michael; Ballion, Amal; Lee, Yu-Hsien

    2015-06-14

    Durability testing of materials exposed to natural weathering requires testing of the ultraviolet (UV) stability, especially for polymeric materials. The type approval testing of photovoltaic (PV) modules according to standards IEC 61215 and IEC 61646, which includes a so-called UV preconditioning test with a total UV dose of 15 kWh/m2, does not correspond to the real loads during lifetime. Between 3%-10% of the UV radiation has to be in the spectral range between 280 and 320 nm (UV-B) in the recent editions of the standards. However, the spectral distribution of the radiation source is very important because different samples showmore » very individual spectral sensitivity for the radiation offered. Less than 6% of the intensity of solar radiation exists in the UV range. In the case of an increase of the intensity of the light source for accelerating the UV test, overheating of the samples would have to be prevented more rigorously and the temperature of the samples have to be measured to avoid misinterpretation of the test results.« less

  2. Well installation, single-well testing, and particle-size analysis for selected sites in and near the Lost Creek Designated Ground Water Basin, north-central Colorado, 2003-2004

    USGS Publications Warehouse

    Beck, Jennifer A.; Paschke, Suzanne S.; Arnold, L. Rick

    2011-01-01

    This report describes results from a groundwater data-collection program completed in 2003-2004 by the U.S. Geological Survey in support of the South Platte Decision Support System and in cooperation with the Colorado Water Conservation Board. Two monitoring wells were installed adjacent to existing water-table monitoring wells. These wells were installed as well pairs with existing wells to characterize the hydraulic properties of the alluvial aquifer and shallow Denver Formation sandstone aquifer in and near the Lost Creek Designated Ground Water Basin. Single-well tests were performed in the 2 newly installed wells and 12 selected existing monitoring wells. Sediment particle size was analyzed for samples collected from the screened interval depths of each of the 14 wells. Hydraulic-conductivity and transmissivity values were calculated after the completion of single-well tests on each of the selected wells. Recovering water-level data from the single-well tests were analyzed using the Bouwer and Rice method because test data most closely resembled those obtained from traditional slug tests. Results from the single-well test analyses for the alluvial aquifer indicate a median hydraulic-conductivity value of 3.8 x 10-5 feet per second and geometric mean hydraulic-conductivity value of 3.4 x 10-5 feet per second. Median and geometric mean transmissivity values in the alluvial aquifer were 8.6 x 10-4 feet squared per second and 4.9 x 10-4 feet squared per second, respectively. Single-well test results for the shallow Denver Formation sandstone aquifer indicate a median hydraulic-conductivity value of 5.4 x 10-6 feet per second and geometric mean value of 4.9 x 10-6 feet per second. Median and geometric mean transmissivity values for the shallow Denver Formation sandstone aquifer were 4.0 x 10-5 feet squared per second and 5.9 x 10-5 feet squared per second, respectively. Hydraulic-conductivity values for the alluvial aquifer in and near the Lost Creek Designated Ground Water Basin generally were greater than hydraulic-conductivity values for the Denver Formation sandstone aquifer and less than hydraulic-conductivity values for the alluvial aquifer along the main stem of the South Platte River Basin reported by previous studies. Particle sizes were analyzed for a total of 14 samples of material representative of the screened interval in each of the 14 wells tested in this study. Of the 14 samples collected, 8 samples represent the alluvial aquifer and 6 samples represent the Denver Formation sandstone aquifer in and near the Lost Creek Designated Ground Water Basin. The sampled alluvial aquifer material generally contained a greater percentage of large particles (larger than 0.5 mm) than the sampled sandstone aquifer material. Alternatively, the sampled sandstone aquifer material generally contained a greater percentage of fine particles (smaller than 0.5 mm) than the sampled alluvial aquifer material consistent with the finding that the alluvial aquifer is more conductive than the sandstone aquifer in the vicinity of the Lost Creek Designated Ground Water Basin.

  3. SRB Materials and Processes Assessment from Laboratory and Ocean Environmental Tests

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Materials and Processes Laboratory evaluation of Solid Rocket Boosters (SRB) and Solid Rocket Motors (SRM) candidate material, both in-house and with ocean exposure tests at Panama City and Kennedy Space Center (KSC), Florida is presented. Early sample tests showed excellent seawater corrosion resistance for inconel 718 and titanium 6A1-4V alloys. Considerable corrosion and biofouling occurred with bare 2219-T87 aluminum. Subsequent tests conclusively demonstrated that epoxy coatings prevented corrosion of 2219-T87 aluminum as long as the coatings stays intact. The results and assessment of the series of ocean environmental tests that were conducted are also presented.

  4. Devices for SRF material characterization

    DOE PAGES

    Goudket, Philippe; Xiao, B.; Junginger, T.

    2016-10-07

    The surface resistance Rs of superconducting materials can be obtained by measuring the quality factor of an elliptical cavity excited in a transverse magnetic mode (TM010). The value obtained has however to be taken as averaged over the whole surface. A more convenient way to obtain Rs, especially of materials which are not yet technologically ready for cavity production, is to measure small samples instead. These can be easily man ufactured at low cost, duplicated and placed in film deposition and surface analytical tools. A commonly used design for a device to measure Rs consists of a cylindrical cavity excitedmore » in a transverse electric (TE110) mode with the sample under test serving as one replaceable endplate. Such a cavity has two drawbacks. For reasonably small samples the resonant frequency will be larger than frequencies of interest concerning SRF application and it requires a reference sample of known Rs. In this article we review several devices which have been designed to overcome these limitations, reaching sub - nΩ resolution in some cases. Some of these devices also comprise a parameter space in frequency and temperature which is inaccessible to standard cavity tests, making them ideal tools to test theoretical surface resistance models.« less

  5. Devices for SRF material characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goudket, Philippe; Xiao, B.; Junginger, T.

    The surface resistance Rs of superconducting materials can be obtained by measuring the quality factor of an elliptical cavity excited in a transverse magnetic mode (TM010). The value obtained has however to be taken as averaged over the whole surface. A more convenient way to obtain Rs, especially of materials which are not yet technologically ready for cavity production, is to measure small samples instead. These can be easily man ufactured at low cost, duplicated and placed in film deposition and surface analytical tools. A commonly used design for a device to measure Rs consists of a cylindrical cavity excitedmore » in a transverse electric (TE110) mode with the sample under test serving as one replaceable endplate. Such a cavity has two drawbacks. For reasonably small samples the resonant frequency will be larger than frequencies of interest concerning SRF application and it requires a reference sample of known Rs. In this article we review several devices which have been designed to overcome these limitations, reaching sub - nΩ resolution in some cases. Some of these devices also comprise a parameter space in frequency and temperature which is inaccessible to standard cavity tests, making them ideal tools to test theoretical surface resistance models.« less

  6. Fading test using the SAAD-POSL method for retrospective accidental dosimetry of building materials

    NASA Astrophysics Data System (ADS)

    Kim, M. J.; Lee, Y. J.; Lee, J. I.; Kim, J. L.; Hong, D. G.

    2015-11-01

    Fading test using the single aliquot additive dose method with pulsed optically stimulated luminescence (SAAD-POSL method) was applied to core-disc samples extracted from heated red brick, tile, roof-tile, and toilet porcelain after X-ray and beta irradiation. From thermoluminescence measurements of each material, the optimal preheat condition of the SAAD-POSL method was first determined as 170 °C for 10 s. Fading characteristics of core-disc samples of heated red brick obtained using the SAAD-POSL method were similar to those of quartz grains (90-250 μm) obtained using the SAR-OSL method, regardless of the differences in the sample and radiation type. Fading evaluations of the core-disc samples of these building materials two weeks after irradiation showed that the equivalent dose (ED) decreased between 5% and 42%. The results indicate that the fading characteristics will be able to contribute to a more accurate estimation of the ED value using the SAAD-POSL method.

  7. Ballistic Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Revilock, Duane M.; Ruggeri, Charles R.; Emmerling, William C.; Altobelli, Donald J.

    2012-01-01

    An experimental program is underway to develop a consistent set of material property and impact test data, and failure analysis, for a variety of materials that can be used to develop improved impact failure and deformation models. Unique features of this set of data are that all material property information and impact test results are obtained using identical materials, the test methods and procedures are extensively documented and all of the raw data is available. This report describes ballistic impact testing which has been conducted on aluminum (Al) 2024 and titanium (Ti) 6Al-4vanadium (V) sheet and plate samples of different thicknesses and with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a jet engine fan blade.

  8. A Historical Review of Cermet Fuel Development and the Engine Performance Implications

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E.

    2015-01-01

    To better understand Cermet engine performance, examined historical material development reports two issues: High vaporization rate of UO2, High temperature chemical stability of UO2. Cladding and chemical stabilizers each result in large, order of magnitude improvements in high temperature performance. Few samples were tested above 2770 K. Results above 2770 K are ambiguous. Contemporary testing may clarify performance. Cermet sample testing during the NERVA Rover era. Important properties, melting temperature, vaporization rate, strength, Brittle-to-Ductile Transition, cermet sample test results, engine performance, location, peak temperature.

  9. An investigation of industrial molding compounds for use in 3D ultrasound, MRI, and CT imaging phantoms.

    PubMed

    Yunker, Bryan E; Cordes, Dietmar; Scherzinger, Ann L; Dodd, Gerald D; Shandas, Robin; Feng, Yusheng; Hunter, Kendall S

    2013-05-01

    This study investigated the ultrasound, MRI, and CT imaging characteristics of several industrial casting and molding compounds as a precursor to the future development of durable and anatomically correct flow phantoms. A set of usability and performance criteria was established for a proposed phantom design capable of supporting liquid flow during imaging. A literature search was conducted to identify the materials and methods previously used in phantom fabrication. A database of human tissue and casting material properties was compiled to facilitate the selection of appropriate materials for testing. Several industrial casting materials were selected, procured, and used to fabricate test samples that were imaged with ultrasound, MRI, and CT. Five silicones and one polyurethane were selected for testing. Samples of all materials were successfully fabricated. All imaging modalities were able to discriminate between the materials tested. Ultrasound testing showed that three of the silicones could be imaged to a depth of at least 2.5 cm (1 in.). The RP-6400 polyurethane exhibited excellent contrast and edge detail for MRI phantoms and appears to be an excellent water reference for CT applications. The 10T and 27T silicones appear to be usable water references for MRI imaging. Based on study data and the stated selection criteria, the P-4 silicone provided sufficient material contrast to water and edge detail for use across all imaging modalities with the benefits of availability, low cost, dimensional stability, nontoxic, nonflammable, durable, cleanable, and optical clarity. The physical and imaging differences of the materials documented in this study may be useful for other applications.

  10. International Test Program for Synergistic Atomic Oxygen and Vacuum Ultraviolet Radiation Exposure of Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K.

    2001-01-01

    The components and materials of spacecraft in low Earth orbit can degrade in thermal and optical performance through interaction with atomic oxygen and vacuum ultraviolet (VUV) radiation, which are predominant in low Earth orbit. Because of the importance of low Earth orbit durability and performance to manufacturers and users, an international test program for assessing the durability of spacecraft materials and components was initiated. Initial tests at the NASA Glenn Research Center consisted of exposure of samples representing a variety of thermal control paints, multilayer insulation materials, and Sun sensors that have been used in space. Materials donated from various international sources were tested alongside materials whose performance is well known, such as Teflon FEP, Kapton H, or Z-93-P white paint. The optical, thermal, or mass loss data generated during the tests were then provided to the participating material suppliers. Data were not published unless the participant donating the material consented to publication. The test program is intended to give spacecraft builders and users a better understanding of degradation processes and effects so that they can improve their predictions of spacecraft performance.

  11. The influence of the lining material on the repair of the infected dentin in young permanent molars after restoration: A randomized clinical trial

    PubMed Central

    Kuhn, Eunice; Reis, Alessandra; Chibinski, Ana Claudia Rodrigues; Wambier, Denise Stadler

    2016-01-01

    Aim: This study evaluated the impact of liner material on the fluorescence, morphological and mineral characteristics of permanent carious dentin after cavity sealing. Methods: Thirty children (11.0 ± 2.7 years old) presenting at least one active deep carious lesion in permanent molars were selected. Fragments of carious dentin were removed from teeth before lining the cavity (baseline samples) with high-viscosity glass ionomer cement (G1) or an inert material (wax - G2). Cavities were restored with composite resin and reopened 60 days later, and other fragments were removed (60-day sample). The laser fluorescence (LF) readings and morphological and mineral changes of both groups were compared. Results: After 60 days, forty teeth were available for evaluation. Lower LF means were obtained (Wilcoxon signed-rank test; P < 0.05), and enhanced calcium and phosphorus levels were detected for both groups (t-test, P < 0.05). An uptake of fluorine was observed only in G1 (t-test; P < 0.05). Regardless of the group, baseline samples exhibited clear signs of bacterial invasion, and the collagen fibers were exposed; the 60-day samples showed a better-organized tissue with a more compact intertubular dentin. Conclusion: Caries arrestment with dentin reorganization occurs regardless of the lining material placed in contact with the infected dentin. PMID:27994311

  12. In vitro Fracture strength and hardness of different computer-aided design/computer-aided manufacturing inlays.

    PubMed

    Sagsoz, O; Yildiz, M; Hojjat Ghahramanzadeh, A S L; Alsaran, A

    2018-03-01

    The purpose of this study was to examine the fracture strength and surface microhardness of computer-aided design/computer-aided manufacturing (CAD/CAM) materials in vitro. Mesial-occlusal-distal inlays were made from five different CAD/CAM materials (feldspathic ceramic, CEREC blocs; leucite-reinforced ceramic, IPS Empress CAD; resin nano ceramic, 3M ESPE Lava Ultimate; hybrid ceramic, VITA Enamic; and lithium disilicate ceramic, IPS e.max CAD) using CEREC 4 CAD/CAM system. Samples were adhesively cemented to metal analogs with a resin cement (3M ESPE, U200). The fracture tests were carried out with a universal testing machine. Furthermore, five samples were prepared from each CAD/CAM material for micro-Vickers hardness test. Data were analyzed with statistics software SPSS 20 (IBM Corp., New York, USA). Fracture strength of lithium disilicate inlays (3949 N) was found to be higher than other ceramic inlays (P < 0.05). There was no difference between other inlays statistically (P > 0.05). The highest micro-Vickers hardness was measured in lithium disilicate samples, and the lowest was in resin nano ceramic samples. Fracture strength results demonstrate that inlays can withstand the forces in the mouth. Statistical results showed that fracture strength and micro-Vickers hardness of feldspathic ceramic, leucite-reinforced ceramic, and lithium disilicate ceramic materials had a positive correlation.

  13. Synthesized Li4Ti5O12 from Technical Grade Raw Material by Excess LiOH.H2O as Anode Lithium Ion Battery

    NASA Astrophysics Data System (ADS)

    Priyono, S.; Primasari, R. D.; Saptari, S. A.; Prihandoko, B.

    2017-07-01

    Li4Ti5O12 powder as anode lithium ion battery was synthesized via solid state reaction with excess LiOH.H2O. Technical grades raw materials like LiOH.H2O and TiO2 were used as starting materials. LiOH.H2O excess was varied from 0; 2.5; 5 and 7.5% to get higher optimum phases and capacity of Li4Ti5O12. All raw materials were mixed stoichiometry then followed by calcination and sintering process to get final products. The obtained products were characterized by XRD, SEM, and PSA to get properties of active materials and the electrochemical properties were done by cyclic voltametry and charge-discharge test. The XRD test showed that 5% excess have highest Li4Ti5O12 phases. All samples have same in morphology, agglomerate and same in particle size distribution. Sample with 5% excess showed good reversible process and chargedischarge test showed that increasing Li4Ti5O12 phase can improve specific capacity.

  14. Apparatus for gas sorption measurement with integrated gas composition measurement device and gas mixing

    DOEpatents

    Micklash. II, Kenneth James; Dutton, Justin James; Kaye, Steven

    2014-06-03

    An apparatus for testing of multiple material samples includes a gas delivery control system operatively connectable to the multiple material samples and configured to provide gas to the multiple material samples. Both a gas composition measurement device and pressure measurement devices are included in the apparatus. The apparatus includes multiple selectively openable and closable valves and a series of conduits configured to selectively connect the multiple material samples individually to the gas composition device and the pressure measurement devices by operation of the valves. A mixing system is selectively connectable to the series of conduits and is operable to cause forced mixing of the gas within the series of conduits to achieve a predetermined uniformity of gas composition within the series of conduits and passages.

  15. Performance of a Light-Weight Ablative Thermal Protection Material for the Stardust Mission Sample Return Capsule

    NASA Technical Reports Server (NTRS)

    Covington, M. A.

    2005-01-01

    New tests and analyses are reported that were carried out to resolve testing uncertainties in the original development and qualification of a lightweight ablative material used for the Stardust spacecraft forebody heat shield. These additional arcjet tests and analyses confirmed the ablative and thermal performance of low density Phenolic Impregnated Carbon Ablator (PICA) material used for the Stardust design. Testing was done under conditions that simulate the peak convective heating conditions (1200 W/cm2 and 0.5 atm) expected during Earth entry of the Stardust Sample Return Capsule. Test data and predictions from an ablative material response computer code for the in-depth temperatures were compared to guide iterative adjustment of material thermophysical properties used in the code so that the measured and predicted temperatures agreed. The PICA recession rates and maximum internal temperatures were satisfactorily predicted by the computer code with the revised properties. Predicted recession rates were also in acceptable agreement with measured rates for heating conditions 37% greater than the nominal peak heating rate of 1200 W/sq cm. The measured in-depth temperature response data show consistent temperature rise deviations that may be caused by an undocumented endothermic process within the PICA material that is not accurately modeled by the computer code. Predictions of the Stardust heat shield performance based on the present evaluation provide evidence that the maximum adhesive bondline temperature will be much lower than the maximum allowable of 250 C and an earlier design prediction. The re-evaluation also suggests that even with a 25 percent increase in peak heating rates, the total recession of the heat shield would be a small fraction of the as-designed thickness. These results give confidence in the Stardust heat shield design and confirm the potential of PICA material for use in new planetary probe and sample return applications.

  16. Relative toxicity of pyrolysis products of some materials used in home furnishings

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Furst, A.

    1976-01-01

    Seventy samples of cushioning and upholstery materials used in home furnishings were evaluated for relative toxicity by means of the USF/NASA toxicity screening test. The materials were variably toxic under pyrolysis conditions, and this test appeared suitable for discriminating among them on the bases of time to incapacitation and time to death. The addition of fire retardants to these materials to comply with flammability regulations either had no significant effect on toxicity, or resulted in a reduction in relative toxicity. The modification of materials to comply with California upholstered furniture flammability regulations appears to have resulted in desirable limitations on toxicity. Fifty percent of the 70 materials tested caused incapacitation earlier than did the materials in compliance, and 30 percent caused death earlier.

  17. Micro energy-dispersive X-ray fluoresence mapping of enamel and dental materials after chemical erosion.

    PubMed

    Soares, Luís Eduardo Silva; de Oliveira, Rodrigo; Nahórny, Sídnei; Santo, Ana Maria do Espírito; Martin, Airton Abrahão

    2012-10-01

    Energy-dispersive X-ray fluorescence was employed to test the hypothesis that beverage consumption or mouthwash utilization will change the chemical properties of dental materials and enamel mineral content. Bovine enamel samples (n = 45) each received two cavity preparations (n = 90), each pair filled with one of three dental materials (R: nanofilled composite resin; GIC: glass-ionomer cement; RMGIC: resin-modified GIC). Furthermore, they were treated with three different solutions (S: saliva; E: erosion/Pepsi Twist®; or EM: erosion+mouthwash/Colgate Plax®). It was found that mineral loss in enamel was greater in GICE samples than in RE > RMGICE > RMGICEM > REM > GICEM. An increased percentage of Zr was found in REM indicating organic matrix degradation. Dental materials tested (R, GIC, and RMGIC) were not able to protect adjacent enamel from acid erosion by the soft drink tested. The use of mouthwash promoted protection of enamel after erosion by the soft drink. To avoid chemical dissolution by mouthwashes, protection by resin composites with surface sealants is recommended.

  18. Effectiveness of Cool Roof Coatings with Ceramic Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brehob, Ellen G; Desjarlais, Andre Omer; Atchley, Jerald Allen

    2011-01-01

    Liquid applied coatings promoted as cool roof coatings, including several with ceramic particles, were tested at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tenn., for the purpose of quantifying their thermal performances. Solar reflectance measurements were made for new samples and aged samples using a portable reflectometer (ASTM C1549, Standard Test Method for Determination of Solar Reflectance Near Ambient Temperature Using a Portable Solar Reflectometer) and for new samples using the integrating spheres method (ASTM E903, Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres). Thermal emittance was measured for the new samples using amore » portable emissometer (ASTM C1371, Standard Test Method for Determination of Emittance of Materials Near Room 1 Proceedings of the 2011 International Roofing Symposium Temperature Using Portable Emissometers). Thermal conductivity of the coatings was measured using a FOX 304 heat flow meter (ASTM C518, Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus). The surface properties of the cool roof coatings had higher solar reflectance than the reference black and white material, but there were no significant differences among coatings with and without ceramics. The coatings were applied to EPDM (ethylene propylene diene monomer) membranes and installed on the Roof Thermal Research Apparatus (RTRA), an instrumented facility at ORNL for testing roofs. Roof temperatures and heat flux through the roof were obtained for a year of exposure in east Tennessee. The field tests showed significant reduction in cooling required compared with the black reference roof (~80 percent) and a modest reduction in cooling compared with the white reference roof (~33 percent). The coating material with the highest solar reflectivity (no ceramic particles) demonstrated the best overall thermal performance (combination of reducing the cooling load cost and not incurring a large heating penalty cost) and suggests solar reflectivity is the significant characteristic for selecting cool roof coatings.« less

  19. Can extended photoactivation time of resin-based fissure sealer materials improve ultimate tensile strength and decrease water sorption/solubility?

    PubMed

    Borges, Boniek Castillo Dutra; Souza-Júnior, Eduardo José; Catelan, Anderson; Paulillo, Luís Alexandre Maffei Sartini; Aguiar, Flávio Henrique Baggio

    2012-10-01

    This study aimed to evaluate the impact of extended photoactivation time on ultimate tensile strength (UTS), water sorption (WS) and solubility (WSB) of resin-based materials used as fissure-sealants. A fissure-sealant (Fluroshield) and a flowable composite (Permaflo) polymerized for 20 and 60 seconds were tested. For UTS, 20 hourglass shaped samples were prepared representing two materials and two photoactivation time (n=5). After 24-h dry-storage, samples were tested in tension using a universal testing machine at a cross-head speed of 0.5 mm/min (UTS was calculated in MPa). For WS and WSB, 20 disks with 5 mm diameter and 1 mm height (n=5) were prepared and volumes were calculated (mm(3)). They were transferred to desiccators until a constant mass was obtained (m1) and were subsequently immersed in distilled water until no alteration in mass was detected (m2). Samples were reconditioned to constant mass in desiccators (m3). WS and WSB were determined using the equations m2-m3/V and m1-m3/V, respectively. Data were subjected to two-way ANOVA and Tukey's HSD test (P<.05). There was no significant difference between materials or photoactivation times for the UTS and WS. Permaflo presented lower but negative WSB compared to Fluroshield. Extended photoactivation time did not improve the physical properties tested. Fluroshield presented physical properties that were similar to or better than Permaflo.

  20. Low cycle fatigue behavior of polycrystalline NiAl at 300 and 1000 K

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Noebe, Ronald D.

    1993-01-01

    The low cycle fatigue behavior of polycrystalline NiAl was determined at 300 and 1000 K - temperatures below and above the brittle- to-ductile transition temperature (BDTT). Fully reversed, plastic strain-controlled fatigue tests were conducted on two differently fabricated alloy samples: hot isostatically pressed (HIP'ed) prealloyed powder and hot extruded castings. HIP'ed powder (HP) samples were tested only at 1000 K, whereas the more ductile cast-and-extruded (C+E) NiAl samples were tested at both 1000 and 300 K. Plastic strain ranges of 0.06 to 0.2 percent were used. The C+E NiAl cyclically hardened until fracture, reaching stress levels approximately 60 percent greater than the ultimate tensile strength of the alloy. Compared on a strain basis, NiAl had a much longer fatigue life than other B2 ordered compounds in which fracture initiated at processing-related defects. These defects controlled fatigue life at 300 K, with fracture occurring rapidly once a critical stress level was reached. At 1000 K, above the BDTT, both the C+E and HP samples cyclically softened during most of the fatigue tests in air and were insensitive to processing defects. The processing method did not have a major effect on fatigue life; the lives of the HP samples were about a factor of three shorter than the C+E NiAl, but this was attributed to the lower stress response of the C+E material. The C+E NiAl underwent dynamic grain growth, whereas the HP material maintained a constant grain size during testing. In both materials, fatigue life was controlled by intergranular cavitation and creep processes, which led to fatigue crack growth that was primarily intergranular in nature. Final fracture by overload was transgranular in nature. Also, HP samples tested in vacuum had a life three times longer than their counterparts tested in air and, in contrast to those tested in air, hardened continuously over half of the sample life, thereby indicating an environmentally assisted fatigue damage mechanism. The C+E samples were tested only in air. At 1000 K, NiAl exhibited a superior fatigue life when compared to most superalloys on a plastic strain basis, but was inferior to most superalloys on a stress basis.

  1. Development of NASA's Sample Cartridge Assembly: Summary of GEDS Design, Development Testing, and Thermal Analyses

    NASA Technical Reports Server (NTRS)

    O'Connor, Brian; Hernandez, Deborah; Hornsby, Linda; Brown, Maria; Horton-Mullins, Kathryn

    2017-01-01

    NASA's Sample Cartridge Assembly (SCA) project is responsible for designing and validating a payload that contains materials research samples in a sealed environment. The SCA will be heated in the European Space Agency's (ESA) Low Gradient Furnace (LGF) that is housed inside the Material Science Research Rack (MSRR) located on the International Space Station (ISS). The first Principle Investigator (PI) to utilize the SCA will focus on Gravitational Effects on Distortion in Sintering (GEDS) research. This paper will give a summary of the design and development test effort for the GEDS SCA and will discuss the role of thermal analysis in developing test profiles to meet the science and engineering requirements. Lessons learned will be reviewed and salient design features that may differ for each PI will be discussed.

  2. Laser Beam Failure Mode Effects and Analysis (FMEA) of the Solid State Heat Capacity Laser (SSHCL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J.

    2015-09-07

    A laser beam related FMEA of the SSHCL was performed to determine potential personnel and equipment safety issues. As part of the FMEA, a request was made to test a sample of the drywall material used for walls in the room for burn-through. This material was tested with a full power beam for five seconds. The surface paper material burned off and the inner calcium carbonate turned from white to brown. The result of the test is shown in the photo below.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, Douglas F., E-mail: souzadf@outlook.com; Nunes, Eduardo H.M., E-mail: eduardohmn@gmail.com; Pimenta, Daiana S.

    In this work we fabricated alumina samples by the freeze-casting technique using tert-butanol as the solvent. The prepared materials were examined by scanning electron microscopy and X-ray microtomography. Next, they were coated with sol–gel silica films by dip-coating. Permeability tests were carried out in order to assess the permeation behavior of the materials processed in this study. We observed that the sintering time and alumina loading showed a remarkable effect on both the structural properties and flexural strength of the freeze-cast samples. Nitrogen adsorption tests revealed that the silica prepared in this study exhibited a microporous structure. It was observedmore » that the presence of silica coatings on the alumina surface decreased the CO{sub 2} permeance by about one order of magnitude. Because of the similar kinetic diameters of nitrogen and carbon dioxide, the CO{sub 2}/N{sub 2} system showed a separation efficiency that was lower than that observed for the He/CO{sub 2} and He/N{sub 2} systems. We noticed that increasing the feed pressure improved the separation capacity of the obtained materials. - Highlights: • Porous alumina samples obtained by the freeze-casting technique • Microporous silica coating prepared by a simple sol–gel dip-coating methodology • Samples examined by SEM, μ-CT, and nitrogen sorption tests • Mechanical tests were carried out in the freeze-cast samples. • The presence of silica coatings on the alumina surface decreased the CO{sub 2} permeance.« less

  4. The mechanical and physical properties of concrete containing polystyrene beads as aggregate and palm oil fuel ash as cement replacement material

    NASA Astrophysics Data System (ADS)

    Adnan, Suraya Hani; Abadalla, Musab Alfatih Salim; Jamellodin, Zalipah

    2017-10-01

    One of the disadvantages of normal concrete is the high self-weight of the concrete. Density of the normal concrete is in the range of 2200 kg/m3 to 2600 kg/ m3. This heavy self-weight make it as an uneconomical structural material. Advantages of expended polystyrene beads in lightweight concrete is its low in density which can reduce the dead load (self-weight) Improper disposal of the large quantity of palm oil fuel ash which has been produced may contribute to environmental problem in future. In this study, an alternative of using palm oil fuel ash as a cement replacement material is to improve the properties of lightweight concrete. The tests conducted in this study were slump test, compression strength, splitting tensile and water absorption test. These samples were cured under water curing condition for 7, 28 and 56 days before testing. Eight types of mixtures were cast based on percentage (25%, 50%) of polystyrene beads replacement for control samples and (25%, 50%) of polystyrene beads by different ratio 10%, 15%, and 20% replacement of palm oil fuel ash, respectively. Samples with 25% polystyrene beads and 10% palm oil fuel ash obtained the highest compressive strength which is 16.8 MPa, and the splitting tensile strength is 1.57 MPa. The water absorption for samples 25%, 50% polystyrene and 20% palm oil fuel ash is 3.89% and 4.67%, respectively which is lower compared to control samples.

  5. Prevailing Torque Locking Feature in Threaded Fasteners Using Anaerobic Adhesive

    NASA Technical Reports Server (NTRS)

    Hernandez, Alan; Hess, Daniel P.

    2016-01-01

    This paper presents results from tests to assess the use of anaerobic adhesive for providing a prevailing torque locking feature in threaded fasteners. Test procedures are developed and tests are performed on three fastener materials, four anaerobic adhesives, and both unseated assembly conditions. Five to ten samples are tested for each combination. Tests for initial use, reuse without additional adhesive, and reuse with additional adhesive are performed for all samples. A 48-hour cure time was used for all initial use and reuse tests. Test data are presented as removal torque versus removal angle with the specification required prevailing torque range added for performance assessment. Percent specification pass rates for the all combinations of fastener material, adhesive, and assembly condition are tabulated and reveal use of anaerobic adhesive as a prevailing torque locking feature is viable. Although not every possible fastener material and anaerobic adhesive combination provides prevailing torque values within specification, any combination can be assessed using the test procedures presented. Reuse without additional anaerobic adhesive generally provides some prevailing torque, and in some cases within specification. Reuse with additional adhesive often provides comparable removal torque data as in initial use.

  6. Development of fracture mechanics data for two hydrazine APU turbine wheel materials

    NASA Technical Reports Server (NTRS)

    Curbishley, G.

    1975-01-01

    The effects of high temperature, high pressure ammonia were measured on the fracture mechanics and fatigue properties of Astroloy and Rene' 41 turbine wheel materials. Also, the influence of protective coatings on these properties was investigated. Specimens of forged bar stock were subjected to LCF and HCF tests at 950 K (1250 F) and 3.4 MN/sq m (500 psig) pressure, in ammonia containing about 1.5 percent H2O. Aluminized samples (Chromizing Company's Al-870) and gold plated test bars were compared with uncoated specimens. Comparison tests were also run in air at 950 K (1250 F), but at ambient pressures. K sub IE and K sub TH were determined on surface flawed specimens in both the air and ammonia in both uncoated and gold plated conditions. Gold plated specimens exhibited better properties than uncoated samples, and aluminized test bars generally had lower properties. The fatigue properties of specimens tested in ammonia were higher than those tested in air, yet the K sub TH values of ammonia tested samples were lower than those tested in air. However, insufficient specimens were tested to develop significant design data.

  7. Material Compatability with Threshold Limit Value Levels of Monomethyl Hydrazine

    DTIC Science & Technology

    1988-10-26

    supply was house- compressed air conditioned by passing through a series of demisters, a hot Hopcalite catalyst bed, a reciprocating dual-tower...recorded. At the end of a test, the tubing was rinsed with methanol and dried with compressed breathing air . Cleaning the tubing material between tests had...niecessary and identify by block wbr -’Materials were evaluated for potential use as ambient air sample lines for hydrazines. Fluorinated poly- mers

  8. The liquid wood heat flow and material properties as a function of temperature

    NASA Astrophysics Data System (ADS)

    Mazurchevici, Simona; Quadrini, Fabrizio; Nedelcu, Dumitru

    2018-03-01

    There are three types of ‘liquid wood’, Arbofill, Arboblend and Arboform and will replace plastics materials in the near future taking into account the biodegradability and higher properties versus common used plastics materials. In order to get more information about the materials properties of ‘liquid wood’ the granules and samples obtained by injection molding were studied using Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) for Arboform L,V3 Nature-‘liquid wood’ (A-LW) and Arboform L, V3 Nature reinforced with Aramid Fibers (A-LWAF).In case of A-LW granule studied, the DSC analysis presents that at 97 °C appears an endoderm peak which represents the crystallization of the material, at 175 °C the exoderm peak which means the melting point of the material. After the tested granule cooling period of time this one was tested again and the endoderm peak disappears, which means that crystallization of material disappeared. The melting point of the second test decreases slightly at 174.6 °C. Also, the new test shows that at 61.7 °C the glass transition temperature appears and the melting point slightly decreases. In case of A-LW samples the DSC analyses shows that the melting point increased by 2.77 °C compared to the melting point of Arboform granule. The material behavior is more or less the same without the crystallization area.

  9. Thermal Design, Analysis, and Testing of the Quench Module Insert Bread Board

    NASA Technical Reports Server (NTRS)

    Breeding Shawn; Khodabandeh, Julia; Turner, Larry D. (Technical Monitor)

    2001-01-01

    The science requirements for materials processing is to provide the desired PI requirements of thermal gradient, solid/liquid interface front velocity for a given processing temperature desired by the PI. Processing is performed by translating the furnace with the sample in a stationary position to minimize any disturbances to the solid/liquid interface front during steady state processing. Typical sample materials for this metals and alloys furnace are lead-tin alloys, lead-antimony alloys, and aluminum alloys. Samples must be safe to process and therefore typically are contained with hermetically sealed cartridge tubes (gas tight) with inner ceramic liners (liquid tight) to prevent contamination and/or reaction of the sample material with the cartridge tube.

  10. Neutron-Irradiated Samples as Test Materials for MPEX

    DOE PAGES

    Ellis, Ronald James; Rapp, Juergen

    2015-10-09

    Plasma Material Interaction (PMI) is a major concern in fusion reactor design and analysis. The Material-Plasma Exposure eXperiment (MPEX) will explore PMI under fusion reactor plasma conditions. Samples with accumulated displacements per atom (DPA) damage produced by fast neutron irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) will be studied in the MPEX facility. This paper presents assessments of the calculated induced radioactivity and resulting radiation dose rates of a variety of potential fusion reactor plasma-facing materials (such as tungsten). The scientific code packages MCNP and SCALE were used to simulate irradiation of themore » samples in HFIR including the generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. A challenge of the MPEX project is to minimize the radioactive inventory in the preparation of the samples and the sample dose rates for inclusion in the MPEX facility.« less

  11. Methodology, Technical Approach and Measurement Techniques for Testing of TPM Thermal Protection Materials in IPM Plasmatrons

    DTIC Science & Technology

    2000-04-01

    system, 8 - experiments on a study of boundary layer spectrum infrared window). before boiling of glass- silicide coating. This simple 3. SAMPLES AND...dependencies of surface temperature of tested materials and make conclusions concerned joint gllass- silicide coating and anode power of generator...obtained using test stagnation point configuration. glass- silicide coating vs anode power of HF-generator. Temperature peak at constant power

  12. 19 CFR 151.51 - Sampling requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Sampling requirements. 151.51 Section 151.51... TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Metal-Bearing Ores and Other Metal-Bearing Materials § 151.51 Sampling requirements. (a) General. Except as provided in paragraph (b) of this...

  13. 19 CFR 151.51 - Sampling requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Sampling requirements. 151.51 Section 151.51... TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Metal-Bearing Ores and Other Metal-Bearing Materials § 151.51 Sampling requirements. (a) General. Except as provided in paragraph (b) of this...

  14. High-temperature strain cell for tomographic imaging

    DOEpatents

    MacDowell, Alastair A.; Nasiatka, James; Haboub, Abdel; Ritchie, Robert O.; Bale, Hrishikesh A.

    2015-06-16

    This disclosure provides systems, methods, and apparatus related to the high temperature mechanical testing of materials. In one aspect, a method includes providing an apparatus. The apparatus may include a chamber. The chamber may comprise a top portion and a bottom portion, with the top portion and the bottom portion each joined to a window material. A first cooled fixture and a second cooled fixture may be mounted to the chamber and configured to hold the sample in the chamber. A plurality of heating lamps may be mounted to the chamber and positioned to heat the sample. The sample may be placed in the first and the second cooled fixtures. The sample may be heated to a specific temperature using the heating lamps. Radiation may be directed though the window material, the radiation thereafter interacting with the sample and exiting the chamber through the window material.

  15. Environmentally-controlled Microtensile Testing of Mechanically-adaptive Polymer Nanocomposites for ex vivo Characterization

    PubMed Central

    Hess, Allison E.; Potter, Kelsey A.; Tyler, Dustin J.; Zorman, Christian A.; Capadona, Jeffrey R.

    2013-01-01

    Implantable microdevices are gaining significant attention for several biomedical applications1-4. Such devices have been made from a range of materials, each offering its own advantages and shortcomings5,6. Most prominently, due to the microscale device dimensions, a high modulus is required to facilitate implantation into living tissue. Conversely, the stiffness of the device should match the surrounding tissue to minimize induced local strain7-9. Therefore, we recently developed a new class of bio-inspired materials to meet these requirements by responding to environmental stimuli with a change in mechanical properties10-14. Specifically, our poly(vinyl acetate)-based nanocomposite (PVAc-NC) displays a reduction in stiffness when exposed to water and elevated temperatures (e.g. body temperature). Unfortunately, few methods exist to quantify the stiffness of materials in vivo15, and mechanical testing outside of the physiological environment often requires large samples inappropriate for implantation. Further, stimuli-responsive materials may quickly recover their initial stiffness after explantation. Therefore, we have developed a method by which the mechanical properties of implanted microsamples can be measured ex vivo, with simulated physiological conditions maintained using moisture and temperature control13,16,17. To this end, a custom microtensile tester was designed to accommodate microscale samples13,17 with widely-varying Young's moduli (range of 10 MPa to 5 GPa). As our interests are in the application of PVAc-NC as a biologically-adaptable neural probe substrate, a tool capable of mechanical characterization of samples at the microscale was necessary. This tool was adapted to provide humidity and temperature control, which minimized sample drying and cooling17. As a result, the mechanical characteristics of the explanted sample closely reflect those of the sample just prior to explantation. The overall goal of this method is to quantitatively assess the in vivo mechanical properties, specifically the Young's modulus, of stimuli-responsive, mechanically-adaptive polymer-based materials. This is accomplished by first establishing the environmental conditions that will minimize a change in sample mechanical properties after explantation without contributing to a reduction in stiffness independent of that resulting from implantation. Samples are then prepared for implantation, handling, and testing (Figure 1A). Each sample is implanted into the cerebral cortex of rats, which is represented here as an explanted rat brain, for a specified duration (Figure 1B). At this point, the sample is explanted and immediately loaded into the microtensile tester, and then subjected to tensile testing (Figure 1C). Subsequent data analysis provides insight into the mechanical behavior of these innovative materials in the environment of the cerebral cortex. PMID:23995288

  16. Compression Strength of Sulfur Concrete Subjected to Extreme Cold

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.

    2008-01-01

    Sulfur concrete cubes were cycled between liquid nitrogen and room temperature to simulate extreme exposure conditions. Subsequent compression testing showed the strength of cycled samples to be roughly five times less than those non-cycled. Fracture surface examination showed de-bonding of the sulfur from the aggregate material in the cycled samples but not in those non-cycled. The large discrepancy found, between the samples is attributed to the relative thermal properties of the materials constituting the concrete.

  17. Analyses of sweep-up, ejecta, and fallback material from the 4250 metric ton high explosive test ''MISTY PICTURE'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wohletz, K.H.; Raymond, R. Jr.; Rawson, G.

    1988-01-01

    The MISTY PICTURE surface burst was detonated at the White Sands Missle range in May of 1987. The Los Alamos National Laboratory dust characterization program was expanded to help correlate and interrelate aspects of the overall MISTY PICTURE dust and ejecta characterization program. Pre-shot sampling of the test bed included composite samples from 15 to 75 m distance from Surface Ground Zero (SGZ) representing depths down to 2.5 m, interval samples from 15 to 25 m from SGZ representing depths down to 3m, and samples of surface material (top 0.5 cm) out to distances of 190 m from SGZ. Sweep-upmore » samples were collected in GREG/SNOB gages located within the DPR. All samples were dry-sieved between 8.0 mm and 0.045 mm (16 size fractures); selected samples were analyzed for fines by a contrifugal settling technique. The size distributions were analyzed using spectral decomposition based upon a sequential fragmentation model. Results suggest that the same particle size subpopulations are present in the ejecta, fallout, and sweep-up samples as are present in the pre-shot test bed. The particle size distribution in post-shot environments apparently can be modelled taking into account heterogeneities in the pre-shot test bed and dominant wind direction during and following the shot. 13 refs., 12 figs., 2 tabs.« less

  18. A review of an attempt to create shatter cones with magnetic flyer plate technology

    NASA Technical Reports Server (NTRS)

    Linnerud, H. J.

    1981-01-01

    The feasibility of creating shatter cones in a controlled laboratory environment is discussed. Magnetic flyer plate technology, which generates high amplitude shock waves in test materials is discribed. Considerable sample shear and break up was observed, however, no shatter cones are found in the tested samples.

  19. Steady-State Vacuum Ultraviolet Exposure Facility With Automated Lamp Calibration and Sample Positioning Fabricated

    NASA Technical Reports Server (NTRS)

    Sechkar, Edward A.; Steuber, Thomas J.; Banks, Bruce A.; Dever, Joyce A.

    2000-01-01

    The Next Generation Space Telescope (NGST) will be placed in an orbit that will subject it to constant solar radiation during its planned 10-year mission. A sunshield will be necessary to passively cool the telescope, protecting it from the Sun s energy and assuring proper operating temperatures for the telescope s instruments. This sunshield will be composed of metalized polymer multilayer insulation with an outer polymer membrane (12 to 25 mm in thickness) that will be metalized on the back to assure maximum reflectance of sunlight. The sunshield must maintain mechanical integrity and optical properties for the full 10 years. This durability requirement is most challenging for the outermost, constantly solar-facing polymer membrane of the sunshield. One of the potential threats to the membrane material s durability is from vacuum ultraviolet (VUV) radiation in wavelengths below 200 nm. Such radiation can be absorbed in the bulk of these thin polymer membrane materials and degrade the polymer s optical and mechanical properties. So that a suitable membrane material can be selected that demonstrates durability to solar VUV radiation, ground-based testing of candidate materials must be conducted to simulate the total 10- year VUV exposure expected during the Next Generation Space Telescope mission. The Steady State Vacuum Ultraviolet exposure facility was designed and fabricated at the NASA Glenn Research Center at Lewis Field to provide unattended 24-hr exposure of candidate materials to VUV radiation of 3 to 5 times the Sun s intensity in the wavelength range of 115 to 200 nm. The facility s chamber, which maintains a pressure of approximately 5 10(exp -6) torr, is divided into three individual exposure cells, each with a separate VUV source and sample-positioning mechanism. The three test cells are separated by a water-cooled copper shield plate assembly to minimize thermal effects from adjacent test cells. Part of the interior sample positioning mechanism of one test cell is shown in the illustration. Of primary concern in VUV exposure is the maintenance of constant measured radiation intensity so that the sample s total exposure can be determined in equivalent Sun hours. This is complicated by the fact that a VUV lamp s intensity degrades over time, necessitating a decrease in the distance between the test samples and the lamp. The facility overcomes this challenge by periodically measuring the lamp s intensity with a cesium-iodide phototube and adjusting the sample distance as required to maintain constant exposure intensity. Sample positioning and periodic phototube location under the lamp are both achieved by a single lead-screw assembly. The lamps can be isolated from the main vacuum chamber for cleaning or replacement so that samples are not exposed to the atmosphere during a test.

  20. Accelerated Thermal Cycling Test of Microencapsulated Paraffin Wax/Polyaniline Made by Simple Preparation Method for Solar Thermal Energy Storage.

    PubMed

    Silakhori, Mahyar; Naghavi, Mohammad Sajad; Metselaar, Hendrik Simon Cornelis; Mahlia, Teuku Meurah Indra; Fauzi, Hadi; Mehrali, Mohammad

    2013-04-29

    Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ polymerization technique, and its performance characteristics were investigated. Weight losses of samples were determined by Thermal Gravimetry Analysis (TGA). The microencapsulated samples with 23% and 49% paraffin showed less decomposition after 330 °C than with higher percentage of paraffin. These samples were then subjected to a thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated by Differential Scanning Calorimeter (DSC). Structure stability and compatibility of core and coating materials were also tested by Fourier transform infrared spectrophotometer (FTIR), and the surface morphology of the samples are shown by Field Emission Scanning Electron Microscopy (FESEM). It has been found that the microencapsulated paraffin waxes show little change in the latent heat of fusion and melting temperature after one thousand thermal recycles. Besides, the chemical characteristics and structural profile remained constant after one thousand thermal cycling tests. Therefore, microencapsulated paraffin wax/polyaniline is a stable material that can be used for thermal energy storage systems.

  1. Testing an Impedance Non-destructive Method to Evaluate Steel-Fiber Concrete Samples

    NASA Astrophysics Data System (ADS)

    Komarkova, Tereza; Fiala, Pavel; Steinbauer, Miloslav; Roubal, Zdenek

    2018-02-01

    Steel-fiber reinforced concrete is a composite material characterized by outstanding tensile properties and resistance to the development of cracks. The concrete, however, exhibits such characteristics only on the condition that the steel fibers in the final, hardened composite have been distributed evenly. The current methods to evaluate the distribution and concentration of a fiber composite are either destructive or exhibit a limited capability of evaluating the concentration and orientation of the fibers. In this context, the paper discusses tests related to the evaluation of the density and orientation of fibers in a composite material. Compared to the approaches used to date, the proposed technique is based on the evaluation of the electrical impedance Z in the band close to the resonance of the sensor-sample configuration. Using analytically expressed equations, we can evaluate the monitored part of the composite and its density at various depths of the tested sample. The method employs test blocks of composites, utilizing the resonance of the measuring device and the measured sample set; the desired state occurs within the interval of between f=3 kHz and 400 kHz.

  2. Accelerated Thermal Cycling Test of Microencapsulated Paraffin Wax/Polyaniline Made by Simple Preparation Method for Solar Thermal Energy Storage

    PubMed Central

    Silakhori, Mahyar; Naghavi, Mohammad Sajad; Metselaar, Hendrik Simon Cornelis; Mahlia, Teuku Meurah Indra; Fauzi, Hadi; Mehrali, Mohammad

    2013-01-01

    Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ polymerization technique, and its performance characteristics were investigated. Weight losses of samples were determined by Thermal Gravimetry Analysis (TGA). The microencapsulated samples with 23% and 49% paraffin showed less decomposition after 330 °C than with higher percentage of paraffin. These samples were then subjected to a thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated by Differential Scanning Calorimeter (DSC). Structure stability and compatibility of core and coating materials were also tested by Fourier transform infrared spectrophotometer (FTIR), and the surface morphology of the samples are shown by Field Emission Scanning Electron Microscopy (FESEM). It has been found that the microencapsulated paraffin waxes show little change in the latent heat of fusion and melting temperature after one thousand thermal recycles. Besides, the chemical characteristics and structural profile remained constant after one thousand thermal cycling tests. Therefore, microencapsulated paraffin wax/polyaniline is a stable material that can be used for thermal energy storage systems. PMID:28809232

  3. Development of a Rapid Point-of-Use DNA Test for the Screening of Genuity® Roundup Ready 2 Yield® Soybean in Seed Samples.

    PubMed

    Chandu, Dilip; Paul, Sudakshina; Parker, Mathew; Dudin, Yelena; King-Sitzes, Jennifer; Perez, Tim; Mittanck, Don W; Shah, Manali; Glenn, Kevin C; Piepenburg, Olaf

    2016-01-01

    Testing for the presence of genetically modified material in seed samples is of critical importance for all stakeholders in the agricultural industry, including growers, seed manufacturers, and regulatory bodies. While rapid antibody-based testing for the transgenic protein has fulfilled this need in the past, the introduction of new variants of a given transgene demands new diagnostic regimen that allows distinguishing different traits at the nucleic acid level. Although such molecular tests can be performed by PCR in the laboratory, their requirement for expensive equipment and sophisticated operation have prevented its uptake in point-of-use applications. A recently developed isothermal DNA amplification technique, recombinase polymerase amplification (RPA), combines simple sample preparation and amplification work-flow procedures with the use of minimal detection equipment in real time. Here, we report the development of a highly sensitive and specific RPA-based detection system for Genuity Roundup Ready 2 Yield (RR2Y) material in soybean (Glycine max) seed samples and present the results of studies applying the method in both laboratory and field-type settings.

  4. Asbestos penetration test system for clothing materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, O.D.; Stampfer, J.F.; Sandoval, A.N.

    1997-04-01

    For hazardous work such as asbestos abatement, there is a need to assess protective clothing fabrics and seam constructions to assure an adequate barrier against hazardous material. The penetration of aerosols through fabrics usually is measured by challenging fabric samples with an aerosol stream at a constant specified airflow. To produce the specified airflow, pressure differentials across the samples often are higher than exist in a work environment. This higher airflow results in higher aerosol velocities through the fabric and, possibly, measured penetration values not representative of those actually experienced in the field. The objective of the reported work wasmore » to develop a test method that does not require these higher airflows. The authors have designed and fabricated a new system that tests fabric samples under a low, constant, specified pressure differential across the samples. This differential is adjustable from tenths of a mm Water Gauge (hundredths of an in WG) to over 25-mm WG (1-in WG). The system operates at a pressure slightly lower than its surroundings. Although designed primarily for asbestos, the system is equally applicable to the testing of other aerosols by changing the aerosol generator and detector. Through simple modification of the sample holders, the test apparatus would be capable of evaluating seam and closure constructions.« less

  5. Eddy Current Method for Fatigue Testing

    NASA Technical Reports Server (NTRS)

    Simpson, John W. (Inventor); Fulton, James P. (Inventor); Wincheski, Russell A. (Inventor); Todhunter, Ronald G. (Inventor); Namkung, Min (Inventor); Nath, Shridhar C. (Inventor)

    1997-01-01

    Flux-focusing electromagnetic sensor using a ferromagnetic flux-focusing lens simplifies inspections and increases detectability of fatigue cracks and material loss in high conductivity material. A ferrous shield isolates a high-turn pick-up coil from an excitation coil. Use of the magnetic shield produces a null voltage output across the receiving coil in presence of an unflawed sample. Redistribution of the current flow in the sample caused by the presence of flaws. eliminates the shielding condition and a large output voltage is produced, yielding a clear unambiguous flaw signal. Maximum sensor output is obtained when positioned symmetrically above the crack. By obtaining position of maximum sensor output, it is possible to track the fault and locate the area surrounding its tip. Accuracy of tip location is enhanced by two unique features of the sensor; a very high signal-to-noise ratio of the probe's output resulting in an extremely smooth signal peak across the fault, and a rapidly decaying sensor output outside a small area surrounding the crack tip enabling the search region to be clearly defined. Under low frequency operation, material thinning due to corrosion causes incomplete shielding of the pick-up coil. Low frequency output voltage of the probe is therefore a direct indicator of thickness of the test sample. Fatigue testing a conductive material is accomplished by applying load to the material, applying current to the sensor, scanning the material with the sensor, monitoring the sensor output signal, adjusting material load based on the sensor output signal of the sensor, and adjusting position of the sensor based on its output signal.

  6. Introduction to Mars Sampling Handling Workshop Series. Workshop on Life Detection: Issues and Topics

    NASA Technical Reports Server (NTRS)

    Rummel, John D.

    2001-01-01

    Before martian soil and rock samples can be distributed to the research community, the returned materials will initially be quarantined and examined in a proposed BSL-4 containment facility to assure that no putative martian microorganisms or attendant potential biohazards exist. During the initial quarantine, state-of-the-art life detection and biohazard testing of the returned martian samples will be conducted. Life detection, as defined here in regard to Mars sample return missions, is the detection of living organisms and/or materials that have been derived from living organisms that may be present in the sample.

  7. Effects of delayed finishing/polishing on surface roughness, hardness and gloss of tooth-coloured restorative materials.

    PubMed

    Yazici, A Ruya; Tuncer, Duygu; Antonson, Sibel; Onen, Alev; Kilinc, Evren

    2010-01-01

    The aim of this study was to investigate the effect of delayed finishing/polishing on the surface roughness, hardness and gloss of tooth-coloured restorative materials. Four different tooth-coloured restoratives: a flowable resin composite- Tetric Flow, a hybrid resin composite- Venus, a nanohybrid resin composite- Grandio, and a polyacid modified resin composite- Dyract Extra were used. 30 specimens were made for each material and randomly assigned into three groups. The first group was finished/polished immediately and the second group was finished/polished after 24 hours. The remaining 10 specimens served as control. The surface roughness of each sample was recorded using a laser profilometer. Gloss measurements were performed using a small-area glossmeter. Vickers microhardness measurements were performed from three locations on each specimen surface under 100g load and 10s dwell time. Data for surface roughness and hardness were analyzed by Kruskal Wallis test and data for gloss were subjected to one-way ANOVA and Tukey test (P <.05). The smoothest surfaces were obtained under Mylar strip for all materials. While there were no significant differences in surface roughness of immediate and delayed finished/polished Dyract Extra samples, immediately finished/polished Venus and Grandio samples showed significantly higher roughness than the delayed polished samples (P <.05). In Tetric Flow samples, immediately finishing/polishing provided smoother surface than delayed finishing/polishing (P <.05). The highest gloss values were recorded under Mylar strip for all materials. While delayed finishing/polishing resulted in a significantly higher gloss compared to immediate finishing/polishing in Venus samples (P <.05), no differences were observed between delayed or immediate finishing/polishing for the other materials (P>.05). The lowest hardness values were found under Mylar strip. Delayed finishing/polishing significantly increased the hardness of all materials. The effect of delayed finishing/polishing on surface roughness, gloss and hardness appears to be material dependent.

  8. Wear rate optimization of Al/SiCnp/e-glass fibre hybrid metal matrix composites using Taguchi method and genetic algorithm and development of wear model using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Bongale, Arunkumar M.; Kumar, Satish; Sachit, T. S.; Jadhav, Priya

    2018-03-01

    Studies on wear properties of Aluminium based hybrid nano composite materials, processed through powder metallurgy technique, are reported in the present study. Silicon Carbide nano particles and E-glass fibre are reinforced in pure aluminium matrix to fabricate hybrid nano composite material samples. Pin-on-Disc wear testing equipment is used to evaluate dry sliding wear properties of the composite samples. The tests were conducted following the Taguchi’s Design of Experiments method. Signal-to-Noise ratio analysis and Analysis of Variance are carried out on the test data to find out the influence of test parameters on the wear rate. Scanning Electron Microscopic analysis and Energy Dispersive x-ray analysis are conducted on the worn surfaces to find out the wear mechanisms responsible for wear of the composites. Multiple linear regression analysis and Genetic Algorithm techniques are employed for optimization of wear test parameters to yield minimum wear of the composite samples. Finally, a wear model is built by the application of Artificial Neural Networks to predict the wear rate of the composite material, under different testing conditions. The predicted values of wear rate are found to be very close to the experimental values with a deviation in the range of 0.15% to 8.09%.

  9. Detection of Endotoxin Contamination of Graphene Based Materials Using the TNF-α Expression Test and Guidelines for Endotoxin-Free Graphene Oxide Production

    PubMed Central

    Del Rio-Castillo, Antonio E.; Newman, Leon; Vázquez, Ester; Kostarelos, Kostas; Wick, Peter; Fadeel, Bengt

    2016-01-01

    Nanomaterials may be contaminated with bacterial endotoxin during production and handling, which may confound toxicological testing of these materials, not least when assessing for immunotoxicity. In the present study, we evaluated the conventional Limulus amebocyte lysate (LAL) assay for endotoxin detection in graphene based material (GBM) samples, including graphene oxide (GO) and few-layered graphene (FLG). Our results showed that some GO samples interfered with various formats of the LAL assay. To overcome this problem, we developed a TNF-α expression test (TET) using primary human monocyte-derived macrophages incubated in the presence or absence of the endotoxin inhibitor, polymyxin B sulfate, and found that this assay, performed with non-cytotoxic doses of the GBM samples, enabled unequivocal detection of endotoxin with a sensitivity that is comparable to the LAL assay. FLG also triggered TNF-α production in the presence of the LPS inhibitor, pointing to an intrinsic pro-inflammatory effect. Finally, we present guidelines for the preparation of endotoxin-free GO, validated by using the TET. PMID:27880838

  10. Detection of Endotoxin Contamination of Graphene Based Materials Using the TNF-α Expression Test and Guidelines for Endotoxin-Free Graphene Oxide Production.

    PubMed

    Mukherjee, Sourav P; Lozano, Neus; Kucki, Melanie; Del Rio-Castillo, Antonio E; Newman, Leon; Vázquez, Ester; Kostarelos, Kostas; Wick, Peter; Fadeel, Bengt

    2016-01-01

    Nanomaterials may be contaminated with bacterial endotoxin during production and handling, which may confound toxicological testing of these materials, not least when assessing for immunotoxicity. In the present study, we evaluated the conventional Limulus amebocyte lysate (LAL) assay for endotoxin detection in graphene based material (GBM) samples, including graphene oxide (GO) and few-layered graphene (FLG). Our results showed that some GO samples interfered with various formats of the LAL assay. To overcome this problem, we developed a TNF-α expression test (TET) using primary human monocyte-derived macrophages incubated in the presence or absence of the endotoxin inhibitor, polymyxin B sulfate, and found that this assay, performed with non-cytotoxic doses of the GBM samples, enabled unequivocal detection of endotoxin with a sensitivity that is comparable to the LAL assay. FLG also triggered TNF-α production in the presence of the LPS inhibitor, pointing to an intrinsic pro-inflammatory effect. Finally, we present guidelines for the preparation of endotoxin-free GO, validated by using the TET.

  11. Application of the digital image correlation method in the study of cohesive coarse soil deformations

    NASA Astrophysics Data System (ADS)

    Kogut, Janusz P.; Tekieli, Marcin

    2018-04-01

    Non-contact video measurement methods are used to extend the capabilities of standard measurement systems, based on strain gauges or accelerometers. In most cases, they are able to provide more accurate information about the material or construction being tested than traditional sensors, while maintaining a high resolution and measurement stability. With the use of optical methods, it is possible to generate a full field of displacement on the surface of the test sample. The displacement value is the basic (primary) value determined using optical methods, and it is possible to determine the size of the derivative in the form of a sample deformation. This paper presents the application of a non-contact optical method to investigate the deformation of coarse soil material. For this type of soil, it is particularly difficult to obtain basic strength parameters. The use of a non-contact optical method, followed by a digital image correlation (DIC) study of the sample obtained during the tests, effectively completes the description of the behaviour of this type of material.

  12. Support Services for Ceramic Fiber-Ceramic Matrix Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurley, JP

    2001-08-16

    To increase national energy self-sufficiency for the near future, power systems will be required to fire low-grade fuels more efficiently than is currently possible. The typical coal-fired steam cycle used at present is limited to a maximum steam temperature of 540 C and a conversion efficiency of 35%. Higher working-fluid temperatures are required to boost efficiency, exposing subsystems to very damaging conditions. Issues of special concern to materials developers are corrosion and warping of hot-gas particulate filters and corrosion and erosion of high-temperature heat exchangers. The University of North Dakota Energy and Environmental Research Center (EERC) is working with themore » National Energy Technology Laboratory in conjunction with NCC Engineering, Inc., to provide technical assistance and coal by-products to the Fossil Energy Materials Advanced Research and Technology Development Materials Program investigating materials failure in fossil energy systems. The main activities of the EERC are to assemble coal slag and hot-gas filter ash samples for use by materials researchers, to assist in providing opportunities for realistic tests of advanced materials in pilot-scale fossil energy systems, and to provide analytical support in determining corrosion mechanisms of the exposed materials. In this final report for the project year of September 2000 through August 2001, the facilities at the EERC that can be used by researchers for realistic testing of materials are described. Researchers can include sample coupons in each of these facilities at no cost since they are being operated under separate funding. In addition, two pilot-scale coal combustion tests are described in which material sample coupons were included from researchers involved in the development of fossil energy materials. The results of scanning electron microscopy (SEM) energy dispersive x-ray analyses of the corrosion products and interactions between the surface scales of the coupons and the products of coal combustion found on the coupons exposed during those tests are reported. Finally, a relative comparison of ceramic and alloy material performance based on the SEM results is presented.« less

  13. Analysis of CFRP Joints by Means of T-Pull Mechanical Test and Ultrasonic Defects Detection.

    PubMed

    Casavola, Caterina; Palano, Fania; De Cillis, Francesco; Tati, Angelo; Terzi, Roberto; Luprano, Vincenza

    2018-04-18

    Defects detection within a composite component, with the aim of understanding and predicting its mechanical behavior, is of great importance in the aeronautical field because the irregularities of the composite material could compromise functionality. The aim of this paper is to detect defects by means of non-destructive testing (NDT) on T-pull samples made by carbon fiber reinforced polymers (CFRP) and to evaluate their effect on the mechanical response of the material. Samples, obtained from an industrial stringer having an inclined web and realized with a polymeric filler between cap and web, were subjected to ultrasonic monitoring and then to T-pull mechanical tests. All samples were tested with the same load mode and the same test configuration. An experimental set-up consisting of a semiautomatic C-scan ultrasonic mapping system with a phased array probe was designed and developed, optimizing control parameters and implementing image processing software. The present work is carried out on real composites parts that are characterized by having their intrinsic defectiveness, as opposed to the previous similar results in the literature mainly obtained on composite parts with artificially produced defects. In fact, although samples under study were realized free from defects, ultrasonic mapping found defectiveness inside the material. Moreover, the ultrasonic inspection could be useful in detecting both the location and size of defects. Experimental data were critically analyzed and qualitatively correlated with results of T-pull mechanical tests in order to better understand and explain mechanical behavior in terms of fracture mode.

  14. Analysis of CFRP Joints by Means of T-Pull Mechanical Test and Ultrasonic Defects Detection

    PubMed Central

    Casavola, Caterina; Palano, Fania; De Cillis, Francesco; Tati, Angelo; Terzi, Roberto; Luprano, Vincenza

    2018-01-01

    Defects detection within a composite component, with the aim of understanding and predicting its mechanical behavior, is of great importance in the aeronautical field because the irregularities of the composite material could compromise functionality. The aim of this paper is to detect defects by means of non-destructive testing (NDT) on T-pull samples made by carbon fiber reinforced polymers (CFRP) and to evaluate their effect on the mechanical response of the material. Samples, obtained from an industrial stringer having an inclined web and realized with a polymeric filler between cap and web, were subjected to ultrasonic monitoring and then to T-pull mechanical tests. All samples were tested with the same load mode and the same test configuration. An experimental set-up consisting of a semiautomatic C-scan ultrasonic mapping system with a phased array probe was designed and developed, optimizing control parameters and implementing image processing software. The present work is carried out on real composites parts that are characterized by having their intrinsic defectiveness, as opposed to the previous similar results in the literature mainly obtained on composite parts with artificially produced defects. In fact, although samples under study were realized free from defects, ultrasonic mapping found defectiveness inside the material. Moreover, the ultrasonic inspection could be useful in detecting both the location and size of defects. Experimental data were critically analyzed and qualitatively correlated with results of T-pull mechanical tests in order to better understand and explain mechanical behavior in terms of fracture mode. PMID:29669992

  15. Wettability changes in polyether impression materials subjected to immersion disinfection.

    PubMed

    Shetty, Shweta; Kamat, Giridhar; Shetty, Rajesh

    2013-07-01

    Disinfection of impression materials prevents cross-contamination; however, the disinfectants may alter the wettability property. The purpose of this investigation was to evaluate the wettability changes of polyether impression material after immersing in four different chemical disinfectant solutions for a period of 10 min and 30 min, respectively. A total of 45 samples of polyether dental impression material (Impregum soft, 3MESPE, St. Paul, MN, USA) were randomly divided into nine groups with five specimens each. Each specimen was disc shaped, flat of 32 mm diameter and 3 mm thickness. The samples were immersed in four disinfectant solutions: 2% Glutaraldehyde, 5% sodium hypochlorite, 0.05% iodophor, and 5.25% phenol for 10 min and 30 min, respectively. The control was without disinfection. Wettability of the samples was assessed by measuring the contact angle by using the Telescopic Goniometer. Data were subjected to analysis of variance (Fisher's test) and Tukey's post hoc test for multiple comparisons at 5% level of significance. The contact angle of 20.21° ± 0.22° were recorded in the control samples. After 10 min, the samples that were immersed in 5% sodium hypochlorite and 5.25% phenol showed significant statistical increase in the contact angle as compared to the control (P < 0.001). After 30 min of disinfection, only the samples immersed in 0.05% iodophor showed there were no significant changes in the contact angle, whereas the other disinfectants significantly increased the contact angle and decreased the wettability of the polyether material. Within the limitations of the study, 2% glutaraldehyde proved safe for 10 min of immersion disinfection while 0.05% iodophor holds promise as an effective disinfectant without affecting the wettability of the material.

  16. Presence and leaching of bisphenol a (BPA) from dental materials.

    PubMed

    Becher, Rune; Wellendorf, Hanne; Sakhi, Amrit Kaur; Samuelsen, Jan Tore; Thomsen, Cathrine; Bølling, Anette Kocbach; Kopperud, Hilde Molvig

    2018-01-01

    BPA has been reported to leach from some resin based dental restorative materials and materials used for orthodontic treatment. To confirm and update previous findings, especially in light of the new temporary lower threshold value for tolerable daily BPA intake, we have investigated the leaching of BPA from 4 composite filling materials, 3 sealants and 2 orthodontic bonding materials. The materials were either uncured and dissolved in methanol or cured. The cured materials were kept in deionized water for 24 hours or 2 weeks. Samples were subsequently analyzed by ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS-MS). The composite filling material Tetric EvoFlow ® and the fissure sealant DELTON ® showed significantly higher levels of BPA leaching compared to control samples for all test conditions (uncured, 24 h leaching and 2 weeks leaching). There were no significant differences in amount of leached BPA for any of the tested materials after 24 hours compared to 2 weeks. These results show that BPA is still released from some dental materials despite the general concern about potential adverse effects of BPA. However, the amounts of BPA were relatively low and most likely represent a very small contribution to the total BPA exposure.

  17. Hybrid Composite Laminates Reinforced with Kevlar/Carbon/Glass Woven Fabrics for Ballistic Impact Testing

    PubMed Central

    Randjbaran, Elias; Zahari, Rizal; Abdul Jalil, Nawal Aswan; Abang Abdul Majid, Dayang Laila

    2014-01-01

    Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers. PMID:24955400

  18. Direct metal laser deposition of titanium powder Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Bykovskiy, D. P.; Petrovskiy, V. N.; Sergeev, K. L.; Osintsev, A. V.; Dzhumaev, P. S.; Polskiy, V. I.

    2017-12-01

    The paper presents the results of mechanical properties study of the material produced by direct metal laser deposition of VT6 titanium powder. The properties were determined by the results of stretching at tensile testing machine, as well as compared with the properties of the same rolled material. These results show that obtained samples have properties on the level or even higher than that ones of the samples obtained from the rolled material in a certain range of technological regimes.

  19. Charcoal as a capture material for silver nanoparticles in the aquatic environment

    NASA Astrophysics Data System (ADS)

    McGillicuddy, Eoin; Morrison, Liam; Cormican, Martin; Morris, Dearbháile

    2017-04-01

    Background: The reported antibacterial activity of silver nanoparticles (AgNPs) has led to their incorporation into numerous consumer products including; textiles, domestic appliances, food containers, cosmetics, paints, medical and medicinal products. The AgNPs incorporated into these products can be released into the environment and aquatic system during their production, use and end of life disposal. In the aquatic environment, uncertainties surround the concentration, fate and effects of AgNPs. The aim of this project is to examine charcoal as a potential material for capture of silver nanoparticles from the aquatic environment. Material/methods: Activated charcoal is a commonly used filter material and was selected for this project to determine its suitability as a capture material for AgNPs in water samples. Activated charcoal (Norit® CA1 (Sigma-Aldrich)) was exposed to 100 ppb, 25 nm PVP coated AgNPs (nanoComposix) prepared in Milli-Q water. These solutions were exposed to unaltered charcoal granules for 20 hours after which the decrease of silver in the solution was measured using ICP-MS. In order to improve the removal, the surface area of the charcoal was increased firstly by grinding with a pestle and mortar and secondly by milling the charcoal. The milled charcoal was prepared using an agate ball mill running at 500 rpm for 5 minutes. The activated charcoal was then exposed to samples containing 10 ppb AgNPs. Results: In the initial tests, approximately 10% of the silver was removed from the water samples using the unaltered activated charcoal granules. Further experiments were carried out to compare the unaltered granules with the ground and milled charcoal. These tests were carried out similarly to the previous test however lower concentration of 10 ppb was used. After 20 hours of exposure the granule samples, as previously, showed approximately a 10% reduction in silver content with the ground charcoal giving approximately 30% reduction in silver concentration and in the sample exposed to milled charcoal, approximately 60% reduction in silver concentration was observed. These tests found that increasing the surface area of the charcoal increased the silver reduction in the solution. Conclusions: Data suggest that charcoal may be a suitable material for use in the capture of AgNPs from water samples

  20. Low Earth Orbit Environmental Effects on Space Tether Materials

    NASA Technical Reports Server (NTRS)

    Finckernor, Miria M.; Gitlemeier, Keith A.; Hawk, Clark W.; Watts, Ed

    2005-01-01

    Atomic oxygen (AO) and ultraviolet (UV) radiation erode and embrittle most polymeric materials. This research was designed to test several different materials and coatings under consideration for their application to space tethers, for resistance to these effects. The samples were vacuum dehydrated, weighed and then exposed to various levels of AO or UV radiation at the NASA Marshall Space Flight Center. They were then re-weighed to determine mass loss due to atomic oxygen erosion, inspected for damage and tensile tested to determine strength loss. The experiments determined that the Photosil coating process, while affording some protection, damaged the tether materials worse than the AO exposure. TOR-LM also failed to fully protect the materials, especially from UV radiation. The POSS and nickel coatings did provide some protection to the tethers, which survived the entire test regime. M5 was tested, uncoated, and survived AO exposure, though its brittleness prevented any tensile testing.

  1. High Temperature Steam Corrosion of Cladding for Nuclear Applications: Experimental

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHugh, Kevin M; Garnier, John E; Sergey Rashkeev

    2013-01-01

    Stability of cladding materials under off-normal conditions is an important issue for the safe operation of light water nuclear reactors. Metals, ceramics, and metal/ceramic composites are being investigated as substitutes for traditional zirconium-based cladding. To support down-selection of these advanced materials and designs, a test apparatus was constructed to study the onset and evolution of cladding oxidation, and deformation behavior of cladding materials, under loss-of-coolant accident scenarios. Preliminary oxidation tests were conducted in dry oxygen and in saturated steam/air environments at 1000OC. Tube samples of Zr-702, Zr-702 reinforced with 1 ply of a ß-SiC CMC overbraid, and sintered a-SiC weremore » tested. Samples were induction heated by coupling to a molybdenum susceptor inside the tubes. The deformation behavior of He-pressurized tubes of Zr-702 and SiC CMC-reinforced Zr-702, heated to rupture, was also examined.« less

  2. Physicochemical properties and cytotoxicity of an experimental resin-based pulp capping material containing the quaternary ammonium salt and Portland cement.

    PubMed

    Yang, Y W; Yu, F; Zhang, H C; Dong, Y; Qiu, Y N; Jiao, Y; Xing, X D; Tian, M; Huang, L; Chen, J H

    2018-01-01

    To evaluate in vitro the physicochemical properties, cytotoxicity and calcium phosphate nucleation of an experimental light-curable pulp capping material composed of a resin with antibacterial monomer (MAE-DB) and Portland cement (PC). The experimental material was prepared by mixing PC with a resin containing MAE-DB at a 2 : 1 ratio. Cured pure resin containing MAE-DB served as control resin. ProRoot MTA and Dycal served as commercial controls. The depth of cure, degree of monomer conversion, water absorption and solubility of dry samples, calcium release, alkalinizing activity, calcium phosphate nucleation and the cytotoxicity of materials were evaluated. Statistical analysis was carried out using anova followed by Tukey's HSD test (equal variance assumed) or Tamhane test (equal variance not assumed) and independent-samples t-tests. The experimental material had a cure depth of 1.19 mm, and the mean degree of monomer conversion was 70.93% immediately post-cure and 88.75% at 24 h post-cure. The water absorption of the experimental material was between those of MTA and Dycal, and its solubility was significantly less (P < 0.05) than that of Dycal and higher than that of MTA. The experimental material exhibited continuous calcium release and an alkalinizing power between those of MTA and Dycal throughout the test period. Freshly set experimental material, control resin and all 24-h set materials had acceptable cytotoxicity. The experimental material, MTA and Dycal all exhibited the formation of apatite precipitates after immersion in phosphate-buffered saline. The experimental material possessed adequate physicochemical properties, low cytotoxicity and good calcium phosphate nucleation. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  3. 40 CFR 65.158 - Performance test procedures for control devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... loading period during which regulated materials are loaded, and samples shall be collected using... applicable. The regulated material concentration and percent reduction may be measured as either total regulated material or as TOC (minus methane and ethane) according to the procedures specified. (1) Method 1...

  4. 40 CFR 65.158 - Performance test procedures for control devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... loading period during which regulated materials are loaded, and samples shall be collected using... applicable. The regulated material concentration and percent reduction may be measured as either total regulated material or as TOC (minus methane and ethane) according to the procedures specified. (1) Method 1...

  5. 40 CFR 65.158 - Performance test procedures for control devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... loading period during which regulated materials are loaded, and samples shall be collected using... applicable. The regulated material concentration and percent reduction may be measured as either total regulated material or as TOC (minus methane and ethane) according to the procedures specified. (1) Method 1...

  6. Novel Materials for Prosthetic Liners

    NASA Technical Reports Server (NTRS)

    Ragolta, Carolina I.; Morford, Megan

    2011-01-01

    Existing materials for prosthetic liners tend to be thick and airtight, causing perspiration to accumulate inside the liner and potentially causing infection and injury that reduce quality of life. The purpose of this project was to examine the suitability of aerogel for prosthetic liner applications. Three tests were performed on several types of aerogel to assess the properties of each material. Moisture vapor permeability was tested by incubating four aerogel varieties with an artificial sweat solution at 37.0 C and less than 20% relative humidity for 24 hours. Two aerogel varieties were eliminated from the study due to difficulties in handling the material, and further testing proceeded with Pyrogel in 2.0 and 6.0 mm thicknesses. Force distribution was tested by compressing samples under a load of 4448 N at a rate of 2.5 mm/min. Biofilm formation was tested in a high-shear CDC Biofilm Reactor. Results showed that 2.0 mm Pyrogel blanket allowed 55.7 plus or minus 28.7% of an artificial sweat solution to transpire, and 35.5 plus or minus 27.8% transpired through 6.0 mm Pyrogel blanket. Samples also outperformed the load-bearing capabilities of existing liner materials. No statistically significant difference was found between the two Pyrogel thicknesses for either moisture vapor permeability or force distribution. In addition, biofilm formation results showed no change between the two Pyrogel thicknesses. The breathability and load bearing properties of aerogel make it a suitable material for application to prosthetic liners.

  7. THz QCL-based active imaging dedicated to non-destructive testing of composite materials used in aeronautics

    NASA Astrophysics Data System (ADS)

    Destic, F.; Petitjean, Y.; Massenot, S.; Mollier, J.-C.; Barbieri, S.

    2010-08-01

    This paper presents a CW raster-scanning THz imaging setup, used to perform Non-Destructive Testing of KevlarTMand carbon fibre samples. The setup uses a 2.5 THz Quantum Cascade Laser as a source. Delamination defect in a Kevlar sample was detected showing a sensitivity to laser polarization orientation. Detection of a break in a carbon/epoxy sample was also performed.

  8. Mechanical Impact Testing: A Statistical Measurement

    NASA Technical Reports Server (NTRS)

    Engel, Carl D.; Herald, Stephen D.; Davis, S. Eddie

    2005-01-01

    In the decades since the 1950s, when NASA first developed mechanical impact testing of materials, researchers have continued efforts to gain a better understanding of the chemical, mechanical, and thermodynamic nature of the phenomenon. The impact mechanism is a real combustion ignition mechanism that needs understanding in the design of an oxygen system. The use of test data from this test method has been questioned due to lack of a clear method of application of the data and variability found between tests, material batches, and facilities. This effort explores a large database that has accumulated over a number of years and explores its overall nature. Moreover, testing was performed to determine the statistical nature of the test procedure to help establish sample size guidelines for material characterization. The current method of determining a pass/fail criterion based on either light emission or sound report or material charring is questioned.

  9. MISSE Results Used for RF Plasma Ground Testing-To-Space-Exposure Correlation for Coated Kapton

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K. R.; Banks, Bruce A.; Tollis, Greg

    2008-01-01

    The ability to predict the durability of materials in the low Earth orbit (LEO) environment by exposing them in ground-based facilities is important because one can achieve test results sooner, expose more types of materials, and do it much more cost effectively than to test them in flight. However, flight experiments to determine the durability of groups or classes of materials that behave similarly are needed in order to provide correlations of how much time in ground-based facilities represents certain durations in LEO for the material type of interest. An experiment was designed and flown on the Materials International Space Station Experiment (MISSE) 2 (3.95 yr in LEO) and MISSE 4 (1.04 yr in LEO) in order to develop this type of correlation between ground-based RF plasma exposure and LEO exposure for coated Kapton. The experiment consisted of a sample of Kapton H (DuPont) polyimide coated with 1300 of silicon dioxide by Sheldahl, Inc. The samples were exposed to atomic oxygen in a radio frequency (RF) generated atomic oxygen plasma. Mass change was measured for the samples and then the same samples were exposed in flight on MISSE and the mass change was again recorded post-flight. After documentation, the samples were exposed again in the ground-based RF plasma in order to determine if the erosion would be the same as it had been in the same facility pre-flight which would indicate whether or not the sample had been damaged during flight and if the defects on the surface were those that were there preflight. The slopes of the mass change versus fluence plots were then used to develop a correlation factor that can be used to help predict the durability of coated Kapton in ground-based isotropic atomic oxygen plasma systems. This paper describes the experiment and presents the correlation factor results.

  10. FIRST STATUS REPORT: TESTING OF AGED SOFTWOOD FIBERBOARD MATERIAL FOR THE 9975 SHIPPING PACKAGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugherty, W.

    2010-01-08

    Samples have been prepared from a softwood fiberboard lower subassembly. Physical, mechanical and thermal properties have been measured following varying periods of conditioning in each of several environments. These tests have been conducted in the same manner as previous testing on cane fiberboard samples. Overall, similar aging trends are observed for softwood and cane fiberboard samples. Some of the observed differences result from the limited exposure periods of the softwood fiberboard samples, and the impact of seasonal humidity levels. Testing following additional conditioning will continue and should eliminate this bias. Post-conditioning data have been measured on a single softwood fiberboardmore » assembly, and baseline data are also available from a limited number of vendor-provided samples. This provides minimal information on the possible sample-to-sample variation exhibited by softwood fiberboard. Data to date are generally consistent with the range seen in cane fiberboard, but much of the compression strength data tends toward the lower end of that range. Further understanding of the variability of softwood fiberboard properties will require testing of additional material. Cane fiberboard wall sheathing is specified for thermal insulation and impact resistance in 9975 shipping packages. Softwood fiberboard manufactured by Knight-Celotex was approved as an acceptable substitute for transportation in 2008. Data in the literature [1] show a consistent trend in thermal properties of fiberboard as a function of temperature, density and/or moisture content regardless of material source. Thermal and mechanical properties were measured for un-aged softwood fiberboard samples, and found to be sufficiently similar to those of un-aged cane fiberboard to support the acceptance of 9975 packages with softwood fiberboard overpack into KAMS for storage. The continued acceptability of aged softwood fiberboard to meet KAMS storage requirements was the subject of subsequent activities. This is an interim status report for experiments carried out per Task Technical Plan WSRC-TR-2008-00024 [2], which is part of the comprehensive 9975 package surveillance program [3]. The primary goal of this task is to validate the preliminary assessment that Knight-Celotex softwood fiberboard is an acceptable substitute for cane fiberboard in the 9975 shipping package overpack, and that the long-term performance of these two materials in a storage environment is comparable.« less

  11. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    NASA Technical Reports Server (NTRS)

    Bradley, D. E.; Mireles, O. R.; Hickman, R. R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames.1,2 Conventional storable propellants produce average specific impulse. Nuclear thermal rockets capable of producing high specific impulse are proposed. Nuclear thermal rockets employ heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K), and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited.3 The primary concern is the mechanical failure of fuel elements that employ high-melting-point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. The purpose of the testing is to obtain data to assess the properties of the non-nuclear support materials, as-fabricated, and determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures. The fission process of the planned fissile material and the resulting heating performance is well known and does not therefore require that active fissile material be integrated in this testing. A small-scale test bed designed to heat fuel element samples via non-contact radio frequency heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  12. Compositional and Microtextural Analysis of Basaltic Feedstock Materials Used for the 2010 ISRU Field Tests, Mauna Kea, Hawaii

    NASA Astrophysics Data System (ADS)

    Marin, N.; Farmer, J. D.; Zacny, K.; Sellar, R. G.; Nunez, J.

    2011-12-01

    This study seeks to understand variations in composition and texture of basaltic pyroclastic materials used in the 2010 International Lunar Surface Operation-In-Situ Resource Utilization Analogue Test (ILSO-ISRU) held on the slopes of Mauna Kea Volcano, Hawaii (1). The quantity and quality of resources delivered by ISRU depends upon the nature of the materials processed (2). We obtained a one-meter deep auger cuttings sample of a basaltic regolith at the primary site for feed stock materials being mined for the ISRU field test. The auger sample was subdivided into six, ~16 cm depth increments and each interval was sampled and characterized in the field using the Multispectral Microscopic Imager (MMI; 3) and a portable X-ray Diffractometer (Terra, InXitu Instruments, Inc.). Splits from each sampled interval were returned to the lab and analyzed using more definitive methods, including high resolution Powder X-ray Diffraction and Thermal Infrared (TIR) spectroscopy. The mineralogy and microtexture (grain size, sorting, roundness and sphericity) of the auger samples were determined using petrographic point count measurements obtained from grain-mount thin sections. NIH Image J (http://rsb.info.nih.gov/ij/) was applied to digital images of thin sections to document changes in particle size with depth. Results from TIR showed a general predominance of volcanic glass, along with plagioclase, olivine, and clinopyroxene. In addition, thin section and XRPD analyses showed a down core increase in the abundance of hydrated iron oxides (as in situ weathering products). Quantitative point count analyses confirmed the abundance of volcanic glass in samples, but also revealed olivine and pyroxene to be minor components, that decreased in abundance with depth. Furthermore, point count and XRD analyses showed a decrease in magnetite and ilmenite with depth, accompanied by an increase in Fe3+phases, including hematite and ferrihydrite. Image J particle analysis showed that the average grain size decreased down the depth profile. This decrease in average grain size and increase in hydrated iron oxides down hole suggests that the most favorable ISRU feedstock materials were sampled in the lower half-meter of the mine section sampled.

  13. It's Time to Develop a New "Draft Test Protocol" for a Mars Sample Return Mission (or Two…).

    PubMed

    Rummel, John D; Kminek, Gerhard

    2018-04-01

    The last time NASA envisioned a sample return mission from Mars, the development of a protocol to support the analysis of the samples in a containment facility resulted in a "Draft Test Protocol" that outlined required preparations "for the safe receiving, handling, testing, distributing, and archiving of martian materials here on Earth" (Rummel et al., 2002 ). This document comprised a specific protocol to be used to conduct a biohazard test for a returned martian sample, following the recommendations of the Space Studies Board of the US National Academy of Sciences. Given the planned launch of a sample-collecting and sample-caching rover (Mars 2020) in 2 years' time, and with a sample return planned for the end of the next decade, it is time to revisit the Draft Test Protocol to develop a sample analysis and biohazard test plan to meet the needs of these future missions. Key Words: Biohazard detection-Mars sample analysis-Sample receiving facility-Protocol-New analytical techniques-Robotic sample handling. Astrobiology 18, 377-380.

  14. Development of techniques and associated instrumentation for high temperature emissivity measurements

    NASA Technical Reports Server (NTRS)

    Cunnington, G. R.; Funai, A. I.

    1972-01-01

    The progress during the sixth quarterly period is reported on construction and assembly of a test facility to determine the high temperature emittance properties of candidate thermal protection system materials for the space shuttle. This facility will provide simulation of such reentry environment parameters as temperature, pressure, and gas flow rate to permit studies of the effects of these parameters on the emittance stability of the materials. Also reported are the completed results for emittance tests on a set of eight Rene 41 samples and one anodized titanium alloy sample which were tested at temperatures up to 1600 F in vacuum. The data includes calorimetric determinations of total hemispherical emittance, radiometric determinations of total and spectral normal emittance, and pre- and post-test room temperature reflectance measurements.

  15. Biphasic Finite Element Modeling Reconciles Mechanical Properties of Tissue-Engineered Cartilage Constructs Across Testing Platforms.

    PubMed

    Meloni, Gregory R; Fisher, Matthew B; Stoeckl, Brendan D; Dodge, George R; Mauck, Robert L

    2017-07-01

    Cartilage tissue engineering is emerging as a promising treatment for osteoarthritis, and the field has progressed toward utilizing large animal models for proof of concept and preclinical studies. Mechanical testing of the regenerative tissue is an essential outcome for functional evaluation. However, testing modalities and constitutive frameworks used to evaluate in vitro grown samples differ substantially from those used to evaluate in vivo derived samples. To address this, we developed finite element (FE) models (using FEBio) of unconfined compression and indentation testing, modalities commonly used for such samples. We determined the model sensitivity to tissue radius and subchondral bone modulus, as well as its ability to estimate material parameters using the built-in parameter optimization tool in FEBio. We then sequentially tested agarose gels of 4%, 6%, 8%, and 10% weight/weight using a custom indentation platform, followed by unconfined compression. Similarly, we evaluated the ability of the model to generate material parameters for living constructs by evaluating engineered cartilage. Juvenile bovine mesenchymal stem cells were seeded (2 × 10 7 cells/mL) in 1% weight/volume hyaluronic acid hydrogels and cultured in a chondrogenic medium for 3, 6, and 9 weeks. Samples were planed and tested sequentially in indentation and unconfined compression. The model successfully completed parameter optimization routines for each testing modality for both acellular and cell-based constructs. Traditional outcome measures and the FE-derived outcomes showed significant changes in material properties during the maturation of engineered cartilage tissue, capturing dynamic changes in functional tissue mechanics. These outcomes were significantly correlated with one another, establishing this FE modeling approach as a singular method for the evaluation of functional engineered and native tissue regeneration, both in vitro and in vivo.

  16. PSU/WES Interlaboratory Comparative Methodology Study of an Experimental Cementitious Repository Seal Material. Report 2. Final Results.

    DTIC Science & Technology

    1982-03-01

    meter 25 11.0 Microstructure by SEM 11.1 Introduction In order to correlate observed physical and mechanical properties in cured grout samples, a...studied at the two laboratories has proper physical properties , phase composi- tions, and microstructures for the materials used and ages covered...Scanning Electron Microscope Resolution Test Specimen ( Al -W) D. B. Ballard Research Material 100 SEM Resolution Test Specimen (AI-W)., is an alloy of

  17. General and crevice corrosion study of the in-wall shielding materials for ITER vacuum vessel

    NASA Astrophysics Data System (ADS)

    Joshi, K. S.; Pathak, H. A.; Dayal, R. K.; Bafna, V. K.; Kimihiro, Ioki; Barabash, V.

    2012-11-01

    Vacuum vessel In-Wall Shield (IWS) will be inserted between the inner and outer shells of the ITER vacuum vessel. The behaviour of IWS in the vacuum vessel especially concerning the susceptibility to crevice of shielding block assemblies could cause rapid and extensive corrosion attacks. Even galvanic corrosion may be due to different metals in same electrolyte. IWS blocks are not accessible until life of the machine after closing of vacuum vessel. Hence, it is necessary to study the susceptibility of IWS materials to general corrosion and crevice corrosion under operations of ITER vacuum vessel. Corrosion properties of IWS materials were studied by using (i) Immersion technique and (ii) Electro-chemical Polarization techniques. All the sample materials were subjected to a series of examinations before and after immersion test, like Loss/Gain weight measurement, SEM analysis, and Optical stereo microscopy, measurement of surface profile and hardness of materials. After immersion test, SS 304B4 and SS 304B7 showed slight weight gain which indicate oxide layer formation on the surface of coupons. The SS 430 material showed negligible weight loss which indicates mild general corrosion effect. On visual observation with SEM and Metallography, all material showed pitting corrosion attack. All sample materials were subjected to series of measurements like Open Circuit potential, Cyclic polarization, Pitting potential, protection potential, Critical anodic current and SEM examination. All materials show pitting loop in OC2 operating condition. However, its absence in OC1 operating condition clearly indicates the activity of chloride ion to penetrate oxide layer on the sample surface, at higher temperature. The critical pitting temperature of all samples remains between 100° and 200°C.

  18. Materials Characterization of Electron Beam Melted Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Draper, Susan L.; Lerch, Bradley A.; Telesman, Jack; Martin, Richard E.; Locci, Ivan E.; Garg, Anita; Ring, Andrew J.

    2016-01-01

    An in-depth material characterization of Electron Beam Melted (EBM) Ti-6Al-4V material has been completed on samples fabricated on an ARCAM A2X EBM machine. The specimens were fabricated under eight separate builds with the material divided into two lots for material testing purposes. Hot Isostatic Pressing (HIP) was utilized to close porosity from fabrication and also served as a material heat treatment to obtain the desired microstructure. The changes in the microstructure and chemistry from the powder to pre-HIP and post-HIP material have been analyzed. Several nondestructive evaluation (NDE) techniques were utilized to characterize the samples both before and after HIP. The test matrix included tensile, high cycle fatigue, low cycle fatigue, fracture toughness, and fatigue crack growth at cryogenic, room, and elevated temperatures. The mechanical properties of the EBM Ti-6Al-4V are compared to conventional Ti-6Al-4V in the annealed condition. Fractography was performed to determine failure initiation site. The EBM Ti-6Al-4V had similar or superior mechanical properties compared to conventionally manufactured Ti-6Al-4V.

  19. Effects of sulfur-based hemostatic agents and gingival retraction cords handled with latex gloves on the polymerization of polyvinyl siloxane impression materials

    PubMed Central

    MACHADO, Carlos Eduardo Palhares; GUEDES, Carlos Gramani

    2011-01-01

    Objectives This study investigated the possible interactions between three addition silicone materials (Express®, Aquasil Ultra® and Adsil®), three hemostatic agents (ferric sulfate, StatGel FS®; aluminum sulfate, GelCord®; and aluminum chloride, Hemostop®) and gingival retraction cords previously handled with latex gloves to determine whether direct contact with medicaments or indirect contamination by latex in conditions similar to those found in clinical practice inhibit or affect the setting of the impression materials. Material and Methods A portable device for the simultaneous test of several specimens was specifically developed for this study. Polymerization inhibition was analyzed by examination of the impressions and the molded surface. Ten trials were performed for each addition silicone material used in the study, at a total of 240 study samples. Results All the samples tested (N=240) were nonreactive regardless of the type of combination used. Conclusions Aluminum sulfate, ferric sulfate and aluminum chloride hemostatic solutions did not show any inhibitory potential on the addition silicone samples under study, and there were no changes in polymerization as a result of contact between addition silicone and retraction cords handled with latex gloves. PMID:22230998

  20. Sampling, Testing, and Test Interpretation of Dredged Material Proposed for Unconfined, Open-Water Disposal in Central Puget Sound. Volume 5. Evaluation Procedures Technical Appendix. Phase 1

    DTIC Science & Technology

    1988-06-01

    petroleum and combustion products. Consequently, the PSDDA list of chemicals of concern includes 16 polynuclear aromatic hydrocarbons (PAHs). Measurement...This material usually includes slurry water. Hydrocarbon . An organic compound composed of carbon and hydrogen. Petroleum and its derived compounds... Hydrocarbons Phthalates Pesticides Miscellaneous Compounds Biological Testing --Amphipod Bioassay Microtox Bioassay Macoma Bioaccumulation Costs for

  1. Part-to-itself model inversion in process compensated resonance testing

    NASA Astrophysics Data System (ADS)

    Mayes, Alexander; Jauriqui, Leanne; Biedermann, Eric; Heffernan, Julieanne; Livings, Richard; Aldrin, John C.; Goodlet, Brent; Mazdiyasni, Siamack

    2018-04-01

    Process Compensated Resonance Testing (PCRT) is a non-destructive evaluation (NDE) method involving the collection and analysis of a part's resonance spectrum to characterize its material or damage state. Prior work used the finite element method (FEM) to develop forward modeling and model inversion techniques. In many cases, the inversion problem can become confounded by multiple parameters having similar effects on a part's resonance frequencies. To reduce the influence of confounding parameters and isolate the change in a part (e.g., creep), a part-to-itself (PTI) approach can be taken. A PTI approach involves inverting only the change in resonance frequencies from the before and after states of a part. This approach reduces the possible inversion parameters to only those that change in response to in-service loads and damage mechanisms. To evaluate the effectiveness of using a PTI inversion approach, creep strain and material properties were estimated in virtual and real samples using FEM inversion. Virtual and real dog bone samples composed of nickel-based superalloy Mar-M-247 were examined. Virtual samples were modeled with typically observed variations in material properties and dimensions. Creep modeling was verified with the collected resonance spectra from an incrementally crept physical sample. All samples were inverted against a model space that allowed for change in the creep damage state and the material properties but was blind to initial part dimensions. Results quantified the capabilities of PTI inversion in evaluating creep strain and material properties, as well as its sensitivity to confounding initial dimensions.

  2. An investigation of industrial molding compounds for use in 3D ultrasound, MRI, and CT imaging phantoms

    PubMed Central

    Yunker, Bryan E.; Cordes, Dietmar; Scherzinger, Ann L.; Dodd, Gerald D.; Shandas, Robin; Feng, Yusheng; Hunter, Kendall S.

    2013-01-01

    Purpose: This study investigated the ultrasound, MRI, and CT imaging characteristics of several industrial casting and molding compounds as a precursor to the future development of durable and anatomically correct flow phantoms. Methods: A set of usability and performance criteria was established for a proposed phantom design capable of supporting liquid flow during imaging. A literature search was conducted to identify the materials and methods previously used in phantom fabrication. A database of human tissue and casting material properties was compiled to facilitate the selection of appropriate materials for testing. Several industrial casting materials were selected, procured, and used to fabricate test samples that were imaged with ultrasound, MRI, and CT. Results: Five silicones and one polyurethane were selected for testing. Samples of all materials were successfully fabricated. All imaging modalities were able to discriminate between the materials tested. Ultrasound testing showed that three of the silicones could be imaged to a depth of at least 2.5 cm (1 in.). The RP-6400 polyurethane exhibited excellent contrast and edge detail for MRI phantoms and appears to be an excellent water reference for CT applications. The 10T and 27T silicones appear to be usable water references for MRI imaging. Conclusions: Based on study data and the stated selection criteria, the P-4 silicone provided sufficient material contrast to water and edge detail for use across all imaging modalities with the benefits of availability, low cost, dimensional stability, nontoxic, nonflammable, durable, cleanable, and optical clarity. The physical and imaging differences of the materials documented in this study may be useful for other applications. PMID:23635298

  3. Dynamic Acquisition and Retrieval Tool (DART) for Comet Sample Return : Session: 2.06.Robotic Mobility and Sample Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Bonitz, Robert; Kulczycki, Erick; Aisen, Norman; Dandino, Charles M.; Cantrell, Brett S.; Gallagher, William; Shevin, Jesse; Ganino, Anthony; Haddad, Nicolas; hide

    2013-01-01

    The 2011 Decadal Survey for planetary science released by the National Research Council of the National Academies identified Comet Surface Sample Return (CSSR) as one of five high priority potential New Frontiers-class missions in the next decade. The main objectives of the research described in this publication are: develop a concept for an end-to-end system for collecting and storing a comet sample to be returned to Earth; design, fabricate and test a prototype Dynamic Acquisition and Retrieval Tool (DART) capable of collecting 500 cc sample in a canister and eject the canister with a predetermined speed; identify a set of simulants with physical properties at room temperature that suitably match the physical properties of the comet surface as it would be sampled. We propose the use of a dart that would be launched from the spacecraft to impact and penetrate the comet surface. After collecting the sample, the sample canister would be ejected at a speed greater than the comet's escape velocity and captured by the spacecraft, packaged into a return capsule and returned to Earth. The dart would be composed of an inner tube or sample canister, an outer tube, a decelerator, a means of capturing and retaining the sample, and a mechanism to eject the canister with the sample for later rendezvous with the spacecraft. One of the significant unknowns is the physical properties of the comet surface. Based on new findings from the recent Deep Impact comet encounter mission, we have limited our search of solutions for sampling materials to materials with 10 to 100 kPa shear strength in loose or consolidated form. As the possible range of values for the comet surface temperature is also significantly different than room temperature and testing at conditions other than the room temperature can become resource intensive, we sought sample simulants with physical properties at room temperature similar to the expected physical properties of the comet surface material. The chosen DART configuration, the efforts to identify a test simulant and the properties of these simulants, and the results of the preliminary testing will be described in this paper.

  4. Experimental investigation on IXV TPS interface effects in Plasmatron

    NASA Astrophysics Data System (ADS)

    Ceglia, Giuseppe; Trifoni, Eduardo; Gouriet, Jean-Baptiste; Chazot, Olivier; Mareschi, Vincenzo; Rufolo, Giuseppe; Tumino, Giorgio

    2016-06-01

    An experimental investigation related to the thermal protection system (TPS) interfaces of the intermediate experimental vehicle has been carried out in the Plasmatron facility at the von Karman Institute for fluid dynamics. The objective of this test campaign is to qualify the thermal behaviours of two different TPS interfaces under flight representative conditions in terms of heat flux and integral heat load ( 180 kW/m2 for 700 s). Three test samples are tested in off-stagnation configuration installed on an available flat plate holder under the same test conditions. The first junction is composed of an upstream ceramic matrix composite (CMC) plate and an ablative P50 cork composite block separated by a gap of 2 mm. The second one is made of an upstream P50 block and a downstream ablative SV2A silicon elastomer block with silicon-based filler in between. A sample composed of P50 material is tested in order to obtain reference results without TPS interface effect. The overheating at the CMC-P50 interface due to the jump of the catalytic properties of the materials, and the recession/swelling behaviour of the P50-SV2A interface are under investigation. All the test samples withstand relatively well the imposed heat flux for the test duration. As expected, both the ablative materials undergo a thermal degradation. The P50 exhibits the formation of a porous char layer and its recession; on the other hand, the SV2A swells and forms a fragile char layer.

  5. Polarization Signals of Common Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Gravseth, Ian; Culp, Robert D.; King, Nicole

    1996-01-01

    This is the final report documenting the results of the polarization testing of near-planar objects with various reflectance properties. The purpose of this investigation was to determine the portion of the reflected signal which is polarized for materials commonly used in space applications. Tests were conducted on several samples, with surface characteristics ranging from highly reflective to relatively dark. The measurements were obtained by suspending the test object in a beam of collimated light. The amount of light falling on the sample was controlled by a circular aperture placed in the light field. The polarized reflectance at various phase angles was then measured. A nonlinear least squares fitting program was used for analysis. For the specular test objects, the reflected signals were measured in one degree increments near the specular point. Otherwise, measurements were taken every five degrees in phase angle. Generally, the more diffuse surfaces had lower polarized reflectances than their more specular counterparts. The reflected signals for the more diffuse surfaces were spread over a larger phase angle range, while the signals from the more specular samples were reflected almost entirely within five degrees of angular deviation from the specular point. The method used to test all the surfaces is presented. The results of this study will be used to support the NASA Orbital Debris Optical Signature Tests. These tests are intended to help better understand the reflectance properties of materials often used in space applications. This data will then be used to improve the capabilities for identification and tracking of space debris.

  6. TK Modeler version 1.0, a Microsoft® Excel®-based modeling software for the prediction of diurnal blood/plasma concentration for toxicokinetic use.

    PubMed

    McCoy, Alene T; Bartels, Michael J; Rick, David L; Saghir, Shakil A

    2012-07-01

    TK Modeler 1.0 is a Microsoft® Excel®-based pharmacokinetic (PK) modeling program created to aid in the design of toxicokinetic (TK) studies. TK Modeler 1.0 predicts the diurnal blood/plasma concentrations of a test material after single, multiple bolus or dietary dosing using known PK information. Fluctuations in blood/plasma concentrations based on test material kinetics are calculated using one- or two-compartment PK model equations and the principle of superposition. This information can be utilized for the determination of appropriate dosing regimens based on reaching a specific desired C(max), maintaining steady-state blood/plasma concentrations, or other exposure target. This program can also aid in the selection of sampling times for accurate calculation of AUC(24h) (diurnal area under the blood concentration time curve) using sparse-sampling methodologies (one, two or three samples). This paper describes the construction, use and validation of TK Modeler. TK Modeler accurately predicted blood/plasma concentrations of test materials and provided optimal sampling times for the calculation of AUC(24h) with improved accuracy using sparse-sampling methods. TK Modeler is therefore a validated, unique and simple modeling program that can aid in the design of toxicokinetic studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Pressure Flammability Thresholds of Selected Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.; Williams, James H.; Harper, Susana A.; Beeson, Harold D.; Ruff, Gary A.; Pedley, Michael D.

    2010-01-01

    A test program was performed to determine the highest pressure in oxygen where materials used in the planned NASA Constellation Program Orion Crew Exploration Vehicle (CEV) Crew Module (CM) would not propagate a flame if an ignition source was present. The test methodology used was similar to that previously used to determine the maximum oxygen concentration (MOC) at which self-extinguishment occurs under constant total pressure conditions. An upward limiting pressure index (ULPI) was determined, where approximately 50 percent of the materials self-extinguish in a given environment. Following this, the maximum total pressure (MTP) was identified; where all samples tested (at least five) self-extinguished following the NASA-STD-6001.A Test 1 burn length criteria. The results obtained on seven materials indicate that the non-metallic materials become flammable in oxygen between 0.4 and 0.9 psia.

  8. Some Remarks on Practical Aspects of Laboratory Testing of Deep Soil Mixing Composites Achieved in Organic Soils

    NASA Astrophysics Data System (ADS)

    Kanty, Piotr; Rybak, Jarosław; Stefaniuk, Damian

    2017-10-01

    This paper presents the results of laboratory testing of organic soil-cement samples are presented in the paper. The research program continues previously reported the authors’ experiences with cement-fly ash-soil sample testing. Over 100 of compression and a dozen of tension tests have been carried out altogether. Several samples were waiting for failure test for over one year after they were formed. Several factors, like: the large amount of the tested samples, a long observation time, carrying out the tests in complex cycles of loading and the possibility of registering the loads and deformation in the axial and lateral direction - have made it possible to take into consideration numerous interdependencies, three of which have been presented in this work: the increments of compression strength, the stiffness of soil-cement in relation to strength and the tensile strength. Compressive strength, elastic modulus and tensile resistance of cubic samples were examined. Samples were mixed and stored in the laboratory conditions. Further numerical analysis in the Finite Element Method numerical code Z_Soil, were performed on the basis of laboratory test results. Computations prove that cement-based stabilization of organic soil brings serious risks (in terms of material capacity and stiffness) and Deep Soil Mixing technology should not be recommended for achieving it. The numerical analysis presented in the study below includes only one type of organic and sandy soil and several possible geometric combinations. Despite that, it clearly points to the fact that designing the DSM columns in the organic soil may be linked with a considerable risk and the settlement may reach too high values. During in situ mixing, the organic material surrounded by sand layers surely mixes with one another in certain areas. However, it has not been examined and it is difficult to assume such mixing already at the designing stage. In case of designing the DSM columns which goes through a thin layer of organic soil it is recommended to carry out each time the core drilling which checks the degree of material mixing and their strength.

  9. Microtomography evaluation of dental tissue wear surface induced by in vitro simulated chewing cycles on human and composite teeth.

    PubMed

    Bedini, Rossella; Pecci, Raffaella; Notarangelo, Gianluca; Zuppante, Francesca; Persico, Salvatore; Di Carlo, Fabio

    2012-01-01

    In this study a 3D microtomography display of tooth surfaces after in vitro dental wear tests has been obtained. Natural teeth have been compared with prosthetic teeth, manufactured by three different polyceramic composite materials. The prosthetic dental element samples, similar to molars, have been placed in opposition to human teeth extracted by paradontology diseases. After microtomography analysis, samples have been subjected to in vitro fatigue test cycles by servo-hydraulic mechanical testing machine. After the fatigue test, each sample has been subjected again to microtomography analysis to obtain volumetric value changes and dental wear surface images. Wear surface images were obtained by 3D reconstruction software and volumetric value changes were measured by CT analyser software. The aim of this work has been to show the potential of microtomography technique to display very clear and reliable wear surface images. Microtomography analysis methods to evaluate volumetric value changes have been used to quantify dental tissue and composite material wear.

  10. Tuning the reactivity of Al/Fe{sub 2}O{sub 3} nanoenergetic materials via an approach combining soft template self-assembly with sol–gel process process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Tianfu; Wang, Zhen; Li, Guoping

    2015-10-15

    A bottom-up approach combining soft template self-assembly with sol–gel process, was adopted to prepare the assembled Al/Fe{sub 2}O{sub 3} nanoenergetic materials, assembly-Al/Fe{sub 2}O{sub 3} sample. The other two unassembled Al/Fe{sub 2}O{sub 3}a nanoenergetic materials, sol–gel–Al/Fe{sub 2}O{sub 3} sample and mixing-Al/Fe{sub 2}O{sub 3} sample, were prepared by sol–gel method and physical mixing method respectively. The assembly process within the preparation of the assembly-Al/Fe{sub 2}O{sub 3} sample was analyzed through the changes in the average hydrodynamic diameters of the particles and the micelles in solution. SEM, EDS and TEM tests were performed to demonstrate a significant improvement regarding to dispersity and arrangementsmore » of the Al and Fe{sub 2}O{sub 3} particles in the assembled samples, compared to that of the unassembled Al/Fe{sub 2}O{sub 3} samples. DSC test was employed to characterize the reactivity of the samples. The heat release of the assembled Al/Fe{sub 2}O{sub 3} sample was 2088 J/g, about 400 and 990 J/g more than that of the sol–gel–Al/Fe{sub 2}O{sub 3} sample and mixing-Al/Fe{sub 2}O{sub 3} sample, respectively. - Graphical abstract: Modified aluminum (Al) nanoparticles with hydrophobic surface assembled into the Brij S10 micelle in Fe(III) sol, then the well dispersed system was transformed into Al/Fe{sub 2}O{sub 3} nanoenergetic materials with high reactivity. - Highlights: • An approach combining soft template self-assembly with sol–gel process was adopted. • The aggregation of Al nanoparticles in the final product was reduced significantly. • The reactivity of Al/Fe{sub 2}O{sub 3} nanoenergetic materials was improved to a large extent.« less

  11. Metals combustion in normal gravity and microgravity

    NASA Technical Reports Server (NTRS)

    Steinberg, Theodore A.; Wilson, D. Bruce; Benz, Frank J.

    1993-01-01

    The study of the combustion characteristics of metallic materials has been an ongoing area of research at the NASA White Sands Test Facility (WSTF). This research has been in support of both government and industrial operations and deals not only with the combustion of specific metallic materials but also with the relative flammabilities of these materials under similar conditions. Since many of the metallic materials that are characterized at WSTF for aerospace applications are to be used in microgravity environments, it was apparent that the testing of these materials needed to proceed in a microgravity environment. It was believed that burning metallic materials in a microgravity environment would allow the evaluation of the validity of applying normal gravity combustion tests to characterize metallic materials to be used in microgravity environments. It was also anticipated that microgravity testing would provide insight into the general combustion process of metallic materials. The availability of the NASA Lewis Research Center's (LeRC) 2.2-second drop tower provided the necessary facility to accomplish the microgravity portion of the testing while the normal gravity testing was conducted at NASA WSTF. The tests, both at LeRC and WSTF, were conducted in the same instrumented system and utilized the standard metal flammability test of upward propagation burning of cylindrical rod samples.

  12. International Test Program for Synergistic Atomic Oxygen and VUV Exposure of Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon; Banks, Bruce; Dever, Joyce; Savage, William

    2000-01-01

    Spacecraft in low Earth orbit (LEO) are subject to degradation in thermal and optical performance of components and materials through interaction with atomic oxygen and vacuum ultraviolet radiation which are predominant in LEO. Due to the importance of LEO durability and performance to manufacturers and users, an international test program for assessing the durability of spacecraft materials and components was initiated. Initial tests consisted of exposure of samples representing a variety of thermal control paints and multilayer insulation materials that have been used in space. Materials donated from various international sources were tested alongside a material whose performance is well known such as Teflon FEP or Kapton H for multilayer insulation, or Z-93-P for white thermal control paints. The optical, thermal or mass loss data generated during the test was then provided to the participating material supplier. Data was not published unless the participant donating the material consented to publication. This paper presents a description of the types of tests and facilities that have been used for the test program as well as some examples of data that have been generated. The test program is intended to give spacecraft builders and users a better understanding of degradation processes and effects to enable improved prediction of spacecraft performance.

  13. Spinning angle optical calibration apparatus

    DOEpatents

    Beer, Stephen K.; Pratt, II, Harold R.

    1991-01-01

    An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning "magic angles" in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the "magic angle" of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning "magic angle" of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position.

  14. A Discussion of Procedures and Equipment for the Comprehensive Test Ban Treaty On-Site Inspection Environmental Sampling and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wogman, Ned A.; Milbrath, Brian D.; Payne, Rosara F.

    This paper is intended to serve as a scientific basis to start discussions of the available environmental sampling techniques and equipment that have been used in the past that could be considered for use within the context of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) on-site inspections (OSI). This work contains information on the techniques, equipment, costs, and some operational procedures associated with environmental sampling that have actually been used in the past by the United States for the detection of nuclear explosions. This paper also includes a discussion of issues, recommendations, and questions needing further study within the context of themore » sampling and analysis of aquatic materials, atmospheric gases, atmospheric particulates, vegetation, sediments and soils, fauna, and drill-back materials.« less

  15. Towards the effect of acoustic emission (AE) sensor positioning within AE signal parameters in sliding on bulk ultrafine-grained materials

    NASA Astrophysics Data System (ADS)

    Filippov, A. V.; Tarasov, S. Yu.; Podgornykh, O. A.; Chazov, P. A.; Shamarin, N. N.; Filippova, E. O.

    2017-12-01

    The effect of AE sensor positioning on the bulk ultrafine-grained materials used for sliding against steel ball has been investigated. Two versions of AE sensor positioning have been tested and showed the different attenuation levels. The experimentally obtained AE signal waveforms have been analyzed under the AE signal parameters such as a median frequency and AE energy. It was established that the AE sensor positioned on the sample supporting plate in the vicinity of the sample tested allowed redistribution of the signal energy from a low-frequency to high-frequency range as well as extending the median frequency range as compared to those obtained by mounting the sensor on the immobile sample holder.

  16. Reusable Material for Drop Tower

    DTIC Science & Technology

    2011-08-01

    R3 Buna-N Rubber ............................................................................................... 32 B-3. R5 EPDM Rubber ...Butyl Rubber . Figure B-2. R3 Buna-N Rubber . Figure B-3. R5 EPDM Rubber . Figure B-4. R6 Gel Rubber . UNCLASSIFIED 33...11 Current Drop Tower Material & Setup .......................................................... 11 Bowling Ball Rubber Material Sample Test

  17. Baseline Assessment of 25-Hydroxyvitamin D Reference Material and Proficiency Testing/External Quality Assurance Material Commutability: A Vitamin D Standardization Program Study.

    PubMed

    Phinney, Karen W; Sempos, Christopher T; Tai, Susan S-C; Camara, Johanna E; Wise, Stephen A; Eckfeldt, John H; Hoofnagle, Andrew N; Carter, Graham D; Jones, Julia; Myers, Gary L; Durazo-Arvizu, Ramon; Miller, W Greg; Bachmann, Lorin M; Young, Ian S; Pettit, Juanita; Caldwell, Grahame; Liu, Andrew; Brooks, Stephen P J; Sarafin, Kurtis; Thamm, Michael; Mensink, Gert B M; Busch, Markus; Rabenberg, Martina; Cashman, Kevin D; Kiely, Mairead; Galvin, Karen; Zhang, Joy Y; Kinsella, Michael; Oh, Kyungwon; Lee, Sun-Wha; Jung, Chae L; Cox, Lorna; Goldberg, Gail; Guberg, Kate; Meadows, Sarah; Prentice, Ann; Tian, Lu; Brannon, Patsy M; Lucas, Robyn M; Crump, Peter M; Cavalier, Etienne; Merkel, Joyce; Betz, Joseph M

    2017-09-01

    The Vitamin D Standardization Program (VDSP) coordinated a study in 2012 to assess the commutability of reference materials and proficiency testing/external quality assurance materials for total 25-hydroxyvitamin D [25(OH)D] in human serum, the primary indicator of vitamin D status. A set of 50 single-donor serum samples as well as 17 reference and proficiency testing/external quality assessment materials were analyzed by participating laboratories that used either immunoassay or LC-MS methods for total 25(OH)D. The commutability test materials included National Institute of Standards and Technology Standard Reference Material 972a Vitamin D Metabolites in Human Serum as well as materials from the College of American Pathologists and the Vitamin D External Quality Assessment Scheme. Study protocols and data analysis procedures were in accordance with Clinical and Laboratory Standards Institute guidelines. The majority of the test materials were found to be commutable with the methods used in this commutability study. These results provide guidance for laboratories needing to choose appropriate reference materials and select proficiency or external quality assessment programs and will serve as a foundation for additional VDSP studies.

  18. SQUIDs: microscopes and nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Mück, Michael

    2005-03-01

    SQUIDs (Superconducting Quantum Interference Devices) are magnetic field sensores with unsurpassed sensitivity. They are amazingly versatile, being able to measure all physical quantities which can be converted to magnetic flux. They are routinely fabricated in thin film technology from two classes of superconducting materials: high-temperature superconductors (HTS) which are usually cooled to 77 K, and low-temperature superconductors (LTS), which have to be cooled to 4.2 K. SQUIDs have many applications, two of which shall be discussed in this paper. In SQUID microscopy, a SQUID scans a sample, which preferrably is at room temperature, and measures the two-dimensional magnetic field distribution at the surface of the sample. In order to achieve a relatively high spatial resolution, the stand-off distance between the sample and the SQUID is made as small as possible. SQUIDs show also promising results in the field of nondestructive testing of various materials. For example, ferromagnetic impurities in stainless steel formed by aging processes in the material can be detected with high probability, and cracks in conducting materials, for example aircraft parts, can be located using eddy current methods. Especially for the case of thick, highly conductive, or ferromagnetic materials, as well as sintered materials, it can be shown that a SQUID-based NDE system exhibits a much higher sensitivity compared to conventional eddy current NDE and ultrasonic testing.

  19. A rapid and repeatable method to deposit bioaerosols on material surfaces.

    PubMed

    Calfee, M Worth; Lee, Sang Don; Ryan, Shawn P

    2013-03-01

    A simple method for repeatably inoculating surfaces with a precise quantity of aerosolized spores was developed. Laboratory studies were conducted to evaluate the variability of the method within and between experiments, the spatial distribution of spore deposition, the applicability of the method to complex surface types, and the relationship between material surface roughness and spore recoveries. Surface concentrations, as estimated by recoveries from wetted-wipe sampling, were between 5×10(3) and 1.5×10(4)CFUcm(-2) across the entire area (930cm(2)) inoculated. Between-test variability (Cv) in spore recoveries was 40%, 81%, 66%, and 20% for stainless steel, concrete, wood, and drywall, respectively. Within-test variability was lower, and did not exceed 33%, 47%, 52%, and 20% for these materials. The data demonstrate that this method is repeatable, is effective at depositing spores across a target surface area, and can be used to dose complex materials such as concrete, wood, and drywall. In addition, the data demonstrate that surface sampling recoveries vary by material type, and this variability can partially be explained by the material surface roughness index. This deposition method was developed for use in biological agent detection, sampling, and decontamination studies, however, is potentially beneficial to any scientific discipline that investigates surfaces containing aerosol-borne particles. Published by Elsevier B.V.

  20. Nuclear forensic analysis of a non-traditional actinide sample

    DOE PAGES

    Doyle, Jamie L.; Kuhn, Kevin John; Byerly, Benjamin; ...

    2016-06-15

    Nuclear forensic publications, performance tests, and research and development efforts typically target the bulk global inventory of intentionally safeguarded materials, such as plutonium (Pu) and uranium (U). Other materials, such as neptunium (Np), pose a nuclear security risk as well. Trafficking leading to recovery of an interdicted Np sample is a realistic concern especially for materials originating in countries that reprocesses fuel. Using complementary forensic methods, potential signatures for an unknown Np oxide sample were investigated. Measurement results were assessed against published Np processes to present hypotheses as to the original intended use, method of production, and origin for thismore » Np oxide.« less

  1. Nuclear forensic analysis of a non-traditional actinide sample.

    PubMed

    Doyle, Jamie L; Kuhn, Kevin; Byerly, Benjamin; Colletti, Lisa; Fulwyler, James; Garduno, Katherine; Keller, Russell; Lujan, Elmer; Martinez, Alexander; Myers, Steve; Porterfield, Donivan; Spencer, Khalil; Stanley, Floyd; Townsend, Lisa; Thomas, Mariam; Walker, Laurie; Xu, Ning; Tandon, Lav

    2016-10-01

    Nuclear forensic publications, performance tests, and research and development efforts typically target the bulk global inventory of intentionally safeguarded materials, such as plutonium (Pu) and uranium (U). Other materials, such as neptunium (Np), pose a nuclear security risk as well. Trafficking leading to recovery of an interdicted Np sample is a realistic concern especially for materials originating in countries that reprocesses fuel. Using complementary forensic methods, potential signatures for an unknown Np oxide sample were investigated. Measurement results were assessed against published Np processes to present hypotheses as to the original intended use, method of production, and origin for this Np oxide. Published by Elsevier B.V.

  2. Stress relaxation properties of four orthodontic aligner materials: A 24-hour in vitro study.

    PubMed

    Lombardo, Luca; Martines, Elisa; Mazzanti, Valentina; Arreghini, Angela; Mollica, Francesco; Siciliani, Giuseppe

    2017-01-01

    To investigate the stress release properties of four thermoplastic materials used to make orthodontic aligners when subjected to 24 consecutive hours of deflection. Four types of aligner materials (two single and two double layered) were selected. After initial yield strength testing to characterize the materials, each sample was subjected to a constant load for 24 hours in a moist, temperature-regulated environment, and the stress release over time was measured. The test was performed three times on each type of material. All polymers analyzed released a significant amount of stress during the 24-hour period. Stress release was greater during the first 8 hours, reaching a plateau that generally remained constant. The single-layer materials, F22 Aligner polyurethane (Sweden & Martina, Due Carrare, Padova, Italy) and Duran polyethylene terephthalate glycol-modified (SCHEU, Iserlohn, Germany), exhibited the greatest values for both absolute stress and stress decay speed. The double-layer materials, Erkoloc-Pro (Erkodent, Pfalzgrafenweiler, Germany) and Durasoft (SCHEU), exhibited very constant stress release, but at absolute values up to four times lower than the single-layer samples tested. Orthodontic aligner performance is strongly influenced by the material of their construction. Stress release, which may exceed 50% of the initial stress value in the early hours of wear, may cause significant changes in the behavior of the polymers at 24 hours from the application of orthodontic loads, which may influence programmed tooth movement.

  3. Characterization of Estrogen and Androgen Activity of Food Contact Materials by Different In Vitro Bioassays (YES, YAS, ERα and AR CALUX) and Chromatographic Analysis (GC-MS, HPLC-MS)

    PubMed Central

    Osorio, Veronica; Grininger, Angelika; Richter, Alexander; Bergmair, Johannes; Pyerin, Michael; Washüttl, Michael; Tacker, Manfred

    2014-01-01

    Endocrine active substances (EAS) show structural similarities to natural hormones and are suspected to affect the human endocrine system by inducing hormone dependent effects. Recent studies with in vitro tests suggest that EAS can leach from packaging into food and may therefore pose a risk to human health. Sample migrates from food contact materials were tested for estrogen and androgen agonists and antagonists with different commonly used in vitro tests. Additionally, chemical trace analysis by GC-MS and HPLC-MS was used to identify potential hormone active substances in sample migrates. A GC-MS method to screen migrates for 29 known or potential endocrine active substances was established and validated. Samples were migrated according to EC 10/2011, concentrated by solid phase extraction and tested with estrogen and androgen responsive reporter gene assays based on yeast cells (YES and YAS) or human osteoblast cells (ERα and AR CALUX). A high level of agreement between the different bioassays could be observed by screening for estrogen agonists. Four out of 18 samples tested showed an estrogen activity in a similar range in both, YES and ERα CALUX. Two more samples tested positive in ERα CALUX due to the lower limits of detection in this assay. Androgen agonists could not be detected in any of the tested samples, neither with YAS nor with AR CALUX. When testing for antagonists, significant differences between yeast and human cell-based bioassays were noticed. Using YES and YAS many samples showed a strong antagonistic activity which was not observed using human cell-based CALUX assays. By GC-MS, some known or supposed EAS were identified in sample migrates that showed a biological activity in the in vitro tests. However, no firm conclusions about the sources of the observed hormone activity could be obtained from the chemical results. PMID:25000404

  4. Statistical and sampling issues when using multiple particle tracking

    NASA Astrophysics Data System (ADS)

    Savin, Thierry; Doyle, Patrick S.

    2007-08-01

    Video microscopy can be used to simultaneously track several microparticles embedded in a complex material. The trajectories are used to extract a sample of displacements at random locations in the material. From this sample, averaged quantities characterizing the dynamics of the probes are calculated to evaluate structural and/or mechanical properties of the assessed material. However, the sampling of measured displacements in heterogeneous systems is singular because the volume of observation with video microscopy is finite. By carefully characterizing the sampling design in the experimental output of the multiple particle tracking technique, we derive estimators for the mean and variance of the probes’ dynamics that are independent of the peculiar statistical characteristics. We expose stringent tests of these estimators using simulated and experimental complex systems with a known heterogeneous structure. Up to a certain fundamental limitation, which we characterize through a material degree of sampling by the embedded probe tracking, these estimators can be applied to quantify the heterogeneity of a material, providing an original and intelligible kind of information on complex fluid properties. More generally, we show that the precise assessment of the statistics in the multiple particle tracking output sample of observations is essential in order to provide accurate unbiased measurements.

  5. Mars Sample Handling Protocol Workshop Series: Workshop 4

    NASA Technical Reports Server (NTRS)

    Race Margaret S. (Editor); DeVincenzi, Donald L. (Editor); Rummel, John D. (Editor); Acevedo, Sara E. (Editor)

    2001-01-01

    In preparation for missions to Mars that will involve the return of samples to Earth, it will be necessary to prepare for the receiving, handling, testing, distributing, and archiving of martian materials here on Earth. Previous groups and committees have studied selected aspects of sample return activities, but specific detailed protocols for the handling and testing of returned samples must still be developed. To further refine the requirements for sample hazard testing and to develop the criteria for subsequent release of sample materials from quarantine, the NASA Planetary Protection Officer convened a series of workshops in 2000-2001. The overall objective of the Workshop Series was to produce a Draft Protocol by which returned martian sample materials can be assessed for biological hazards and examined for evidence of life (extant or extinct) while safeguarding the purity of the samples from possible terrestrial contamination. This report also provides a record of the proceedings of Workshop 4, the final Workshop of the Series, which was held in Arlington, Virginia, June 5-7, 2001. During Workshop 4, the sub-groups were provided with a draft of the protocol compiled in May 2001 from the work done at prior Workshops in the Series. Then eight sub-groups were formed to discuss the following assigned topics: Review and Assess the Draft Protocol for Physical/Chemical Testing Review and Assess the Draft Protocol for Life Detection Testing Review and Assess the Draft Protocol for Biohazard Testing Environmental and Health/Monitoring and Safety Issues Requirements of the Draft Protocol for Facilities and Equipment Contingency Planning for Different Outcomes of the Draft Protocol Personnel Management Considerations in Implementation of the Draft Protocol Draft Protocol Implementation Process and Update Concepts This report provides the first complete presentation of the Draft Protocol for Mars Sample Handling to meet planetary protection needs. This Draft Protocol, which was compiled from deliberations and recommendations from earlier Workshops in the Series, represents a consensus that emerged from the discussions of all the sub-groups assembled over the course of the five Workshops of the Series. These discussions converged on a conceptual approach to sample handling, as well as on specific analytical requirements. Discussions also identified important issues requiring attention, as well as research and development needed for protocol implementation.

  6. 40 CFR 63.5719 - How do I conduct a performance test?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sampling sites. (2) Use Method 2, 2A, 2C, 2D, 2F or 2G of appendix A to 40 CFR part 60, as appropriate, to... organic HAP emissions. (4) You may use American Society for Testing and Materials (ASTM) D6420-99... respect to the types of parts being made and material application methods. The production conditions...

  7. 40 CFR 63.5719 - How do I conduct a performance test?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sampling sites. (2) Use Method 2, 2A, 2C, 2D, 2F or 2G of appendix A to 40 CFR part 60, as appropriate, to... organic HAP emissions. (4) You may use American Society for Testing and Materials (ASTM) D6420-99... respect to the types of parts being made and material application methods. The production conditions...

  8. 40 CFR 63.5719 - How do I conduct a performance test?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sampling sites. (2) Use Method 2, 2A, 2C, 2D, 2F or 2G of appendix A to 40 CFR part 60, as appropriate, to... organic HAP emissions. (4) You may use American Society for Testing and Materials (ASTM) D6420-99... respect to the types of parts being made and material application methods. The production conditions...

  9. Radiopacity Evaluation of Gutta-Percha Points in Thinner Samples than the ANSI/ADA Recommendation.

    PubMed

    Petry, Bruna Lucian; Bodanezi, Augusto; Baldasso, Flávia Emi Razera; Delai, Débora; Larentis, Naiara Leites; Fontanella, Vania Regina Camargo; Kopper, Patrícia Maria Poli

    2017-01-01

    The aim of this study was to evaluate the radiopacity of different gutta-percha points (Endo Points®, Dentsply®, Tanari®, Meta®, Roeko® and Odous®) in samples of 1 mm thick as established by ANSI/ADA Specification #57 and ISO 6876/2001, in comparison with thinner samples. Twelve test specimens for each material, four for each thickness (0.3, 0.6, and 1 mm and diameter of 8 mm), were laminated and compressed between two polished glass plates until the desirable thickness. Digital radiographs were obtained along with a graduated aluminum stepwedge varying from 1 to 10 mm in thickness. The X-ray unit was set at 70 kVp, 10 mA and 0.4 s exposure time, at a focal distance of 36 cm. One calibrated observer quantified the average values of pixels with Adobe Photoshop® software. Data were analyzed using ANOVA and Tukey tests, at 5% significance level. At 0.6 and 1 mm thickness, all the tested materials showed radiopacity higher than 3 mm of aluminum (reference value). At 0.3 mm thickness, Odous and Tanari presented significantly less radiopacity than the reference, and the other materials showed similar radiopacity to the reference. The study concluded that the materials demonstrated different radiopacities and all had values above the minimum recommended by ANSI/ADA specification #57, being Odous and Tanari less radiopaque than the reference value in thinner samples (0.3mm).

  10. Ion exchange membranes as novel passive sampling material for organic ions: application for the determination of freely dissolved concentrations.

    PubMed

    Oemisch, Luise; Goss, Kai-Uwe; Endo, Satoshi

    2014-11-28

    Many studies in pharmacology, toxicology and environmental science require a method for determining the freely dissolved concentration of a target substance. A recently developed tool for this purpose is equilibrium passive sampling with polymeric materials. However, this method has rarely been applied to ionic organic substances, primarily due to limited availability of convenient sorption materials. This study introduces ion exchange membranes (IEMs) as a novel passive sampling material for organic ions. The partitioning of 4-ethylbenzene-1-sulfonate, 2,4-dichlorophenoxyacetic acid and pentachlorophenol to one anion exchange membrane (FAS) and of difenzoquat, nicotine and verapamil to one cation exchange membrane (FKS) was investigated. All test substances exhibited a sufficiently high affinity for the respective IEM with logarithmic IEM-water partition coefficients >2.3. Sorption equilibrium was established quickly, within several hours for the FAS membrane and within 1-3 days for the FKS membrane. For permanently charged substances the partitioning to the IEMs was independent of pH, but was influenced by the salt composition of the test solution. For all test substances sorption to IEM was dependent on the substance concentration. Bovine serum albumin-water partition coefficients determined by passive sampling with IEMs agree well with those determined by the conventional dialysis method. The results of this study indicate that IEMs exhibit the potential to measure freely dissolved concentrations of organic ions in a simple and time-saving manner. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Measurement of Creep Properties of Ultra-High-Temperature Materials by a Novel Non-Contact Technique

    NASA Technical Reports Server (NTRS)

    Hyers, Robert W.; Lee, Jonghyun; Rogers, Jan R.; Liaw, Peter K.

    2007-01-01

    A non-contact technique for measuring the creep properties of materials has been developed and validated as part of a collaboration among the University of Massachusetts, NASA Marshall Space Flight Center Electrostatic Levitation Facility (ESL), and the University of Tennessee. This novel method has several advantages over conventional creep testing. The sample is deformed by the centripetal acceleration from the rapid rotation, and the deformed shapes are analyzed to determine the strain. Since there is no contact with grips, there is no theoretical maximum temperature and no concern about chemical compatibility. Materials may be tested at the service temperature even for extreme environments such as rocket nozzles, or above the service temperature for accelerated testing of materials for applications such as jet engines or turbopumps for liquid-fueled engines. The creep measurements have been demonstrated to 2400 C with niobium, while the test facility, the NASA MSFC ESL, has processed materials up to 3400 C. Furthermore, the ESL creep method employs a distribution of stress to determine the stress exponent from a single test, versus the many tests required by conventional methods. Determination of the stress exponent from the ESL creep tests requires very precise measurement of the surface shape of the deformed sample for comparison to deformations predicted by finite element models for different stress exponents. An error analysis shows that the stress exponent can be determined to about 1% accuracy with the current methods and apparatus. The creep properties of single-crystal niobium at 1985 C showed excellent agreement with conventional tests performed according to ASTM Standard E-139. Tests on other metals, ceramics, and composites relevant to rocket propulsion and turbine engines are underway.

  12. Color stability of CAD/CAM Zirconia ceramics following exposure to acidic and staining drinks.

    PubMed

    Colombo, Marco; Cavallo, Marco; Miegge, Matteo; Dagna, Alberto; Beltrami, Riccardo; Chiesa, Marco; Poggio, Claudio

    2017-11-01

    The aim of this in vitro study was to evaluate the color stability of CAD/CAM Zirconia ceramics following exposure to acidic drink (Coca Cola) and after exposure to staining solution (coffee). All the samples were immersed in different staining solutions over a 28-day test period. A colorimetric evaluation according to the CIE L*a*b* system was performed by a blind trained operator at 7, 14, 21, 28 days of the staining process. Shapiro Wilk test and Kruskal-Wallis ANOVA were applied to assess significant differences among restorative materials. Paired t-test was applied to test which CIE L*a*b* parameters significantly changed after immersion in staining solutions. One week immersion in acidic drink did not cause a perceivable discoloration for all restorative materials (ΔE < 3.3). Subsequent immersion in coffee affected color stability of all Zirconia samples, even if Kruskal-Wallis ANOVA found significant differences among the various restorative materials. The ∆Es of CAD/CAM Zirconia ceramics after immersion in coffee varied among the products, but color integrity is not affected by contact with acidic drinks. Key words: CAD/CAM restorative materials, CIE Lab, Zirconia ceramics.

  13. Study of materials for space processing

    NASA Technical Reports Server (NTRS)

    Lal, R. B.

    1975-01-01

    Materials were selected for device applications and their commercial use. Experimental arrangements were also made for electrical characterization of single crystals using electrical resistivity and Hall effect measurements. The experimental set-up was tested with some standard samples.

  14. Biodetection grinder

    NASA Technical Reports Server (NTRS)

    Beyerle, F. J.

    1973-01-01

    A biodetection grinder for sampling aerospace materials for microorganisms without killing them was constructed. The device employs a shearing action to generate controllable sized particles with a minimum of energy input. Tests were conducted on materials ranging from soft plastics to hard rocks.

  15. Acoustic radiation stress measurement

    NASA Technical Reports Server (NTRS)

    Cantrell, John H., Jr.; Yost, William T.

    1987-01-01

    Ultrasonic radio frequency tone-bursts are launched into a sample of material tested. The amplitude of the tone-bursts and the slope of the resulting static displacement pulses are measured. These measurements are used to calculate the nonlinearities of the materials.

  16. Large strain dynamic compression for soft materials using a direct impact experiment

    NASA Astrophysics Data System (ADS)

    Meenken, T.; Hiermaier, S.

    2006-08-01

    Measurement of strain rate dependent material data of low density low strength materials like polymeric foams and rubbers still poses challenges of a different kind to the experimental set up. For instance, in conventional Split Hopkinson Pressure Bar tests the impedance mismatch between the bars and the specimen makes strain measurement almost impossible. Application of viscoelastic bars poses new problems with wave dispersion. Also, maximum achievable strains and strain rates depend directly on the bar lengths, resulting in large experimental set ups in order to measure relevant data for automobile crash applications. In this paper a modified SHPB will be presented for testing low impedance materials. High strains can be achieved with nearly constant strain rate. A thin film stress measurement has been applied to the specimen/bar interfaces to investigate the initial sample ring up process. The process of stress homogeneity within the sample was investigated on EPDM and PU rubber.

  17. Characterization of magnetic material in the mound-building termite Macrotermes gilvus in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Esa, Mohammad Faris Mohammad; Rahim, Faszly; Hassan, Ibrahim Haji; Hanifah, Sharina Abu

    2015-09-01

    Magnetic material such as magnetite are known as particles that respond to external magnetic field with their ferromagnetic properties as they are believed contribute to in responding to the geomagnetic field. These particles are used by terrestrial animals such as termites for navigation and orientation. Since our earth react as giant magnetic bar, the magnitude of this magnetic field present by intensity and direction (inclination and direction). The magnetic properties and presence of magnetite in termites Macrotermes gilvus, common mound-building termite were tested. M. gilvus termites was tested with a Vibrating Sample Magnetometer VSM to determine the magnetic properties of specimen. The crushed body sample was characterized with X-Ray Diffraction XRD to show the existent of magnetic material (magnetite) in the specimens. Results from VSM indicate that M. gilvus has diamagnetism properties. The characterization by XRD shows the existent of magnetic material in our specimen in low concentration.

  18. The behavior of delaminations in composite materials - experimental results

    NASA Astrophysics Data System (ADS)

    Chermoshentseva, A. S.; Pokrovskiy, A. M.; Bokhoeva, L. A.

    2016-02-01

    Delamination is one of the most common failure modes of composite materials. It may occur as a consequence of imperfections in the production process or the effects of external factors during the operational life of the composite laminates, such as the impact by foreign objects. This paper presents the results of mechanical tests and the optimum degrees of filling the composite materials (CM) with hydrophobic powder (Tarkosil T-20) depending on the latter mass concentration. The results present test samples of the CM with the underlying interlayer defects. The samples were fabricated of twenty-ply pre-preg (fiberglass or carbon fiber). The industrial grade glass is T-25 (VM) specification 6-11-380-76. The composite materials have nanosized additives in structure. The volume concentration of nanopowders is varying from 0.1% to 0.5%. This kind of research has been done for the first time.

  19. Real time outdoor exposure testing of solar cell modules and component materials

    NASA Technical Reports Server (NTRS)

    Anagnostou, E.; Forestieri, A. F.

    1977-01-01

    Plastic samples, solar cell modules, and sub-modules were exposed at test sites in Florida, Arizona, Puerto Rico, and Cleveland, Ohio, in order to determine materials suitable for use in solar cell modules with a proposed 20-year lifetime. Various environments were encountered including subtropical, subtropical with a sea air atmosphere, desert, rain forest, normal urban, and urban-polluted. The samples were exposed for periods up to six months. Materials found not suitable were polyurethane, polyester, Kapton, Mylar, and UV-stabilized Lexan. Suitable materials were acrylic, FEP-A, and glass. The results of exposure of polyvinylidene fluoride were dependent on the specific formulation, but several types appear suitable. RTV silicone rubber (clear) appears to pick up and hold dirt both as a free film and as a potting medium for modules. The results indicate that dirt accumulation and cleanability are important factors in the selection of solar cell module covers and encapsulants.

  20. Sample characterization of automobile and forklift diesel exhaust particles and comparative pulmonary toxicity in mice.

    PubMed

    Singh, Pramila; DeMarini, David M; Dick, Colin A J; Tabor, Dennis G; Ryan, Jeff V; Linak, William P; Kobayashi, Takahiro; Gilmour, M Ian

    2004-06-01

    Two samples of diesel exhaust particles (DEPs) predominate in health effects research: an automobile-derived DEP (A-DEP) sample and the National Institute of Standards Technology standard reference material (SRM 2975) generated from a forklift engine. A-DEPs have been tested extensively for their effects on pulmonary inflammation and exacerbation of allergic asthmalike responses. In contrast, SRM 2975 has been tested thoroughly for its genotoxicity. In the present study, we combined physical and chemical analyses of both DEP samples with pulmonary toxicity testing in CD-1 mice to compare the two materials and to make associations between their physicochemical properties and their biologic effects. A-DEPs had more than 10 times the amount of extractable organic material and less than one-sixth the amount of elemental carbon compared with SRM 2975. Aspiration of 100 micro g of either DEP sample in saline produced mild acute lung injury; however, A-DEPs induced macrophage influx and activation, whereas SRM 2975 enhanced polymorphonuclear cell inflammation. A-DEPs stimulated an increase in interleukin-6 (IL-6), tumor necrosis factor alpha, macrophage inhibitory protein-2, and the TH2 cytokine IL-5, whereas SRM 2975 only induced significant levels of IL-6. Fractionated organic extracts of the same quantity of DEPs (100 micro g) did not have a discernable effect on lung responses and will require further study. The disparate results obtained highlight the need for chemical, physical, and source characterization of particle samples under investigation. Multidisciplinary toxicity testing of diesel emissions derived from a variety of generation and collection conditions is required to meaningfully assess the health hazards associated with exposures to DEPs. Key words: automobile, diesel exhaust particles, forklift, mice, pulmonary toxicity, SRM 2975.

  1. Sample characterization of automobile and forklift diesel exhaust particles and comparative pulmonary toxicity in mice.

    PubMed Central

    Singh, Pramila; DeMarini, David M; Dick, Colin A J; Tabor, Dennis G; Ryan, Jeff V; Linak, William P; Kobayashi, Takahiro; Gilmour, M Ian

    2004-01-01

    Two samples of diesel exhaust particles (DEPs) predominate in health effects research: an automobile-derived DEP (A-DEP) sample and the National Institute of Standards Technology standard reference material (SRM 2975) generated from a forklift engine. A-DEPs have been tested extensively for their effects on pulmonary inflammation and exacerbation of allergic asthmalike responses. In contrast, SRM 2975 has been tested thoroughly for its genotoxicity. In the present study, we combined physical and chemical analyses of both DEP samples with pulmonary toxicity testing in CD-1 mice to compare the two materials and to make associations between their physicochemical properties and their biologic effects. A-DEPs had more than 10 times the amount of extractable organic material and less than one-sixth the amount of elemental carbon compared with SRM 2975. Aspiration of 100 micro g of either DEP sample in saline produced mild acute lung injury; however, A-DEPs induced macrophage influx and activation, whereas SRM 2975 enhanced polymorphonuclear cell inflammation. A-DEPs stimulated an increase in interleukin-6 (IL-6), tumor necrosis factor alpha, macrophage inhibitory protein-2, and the TH2 cytokine IL-5, whereas SRM 2975 only induced significant levels of IL-6. Fractionated organic extracts of the same quantity of DEPs (100 micro g) did not have a discernable effect on lung responses and will require further study. The disparate results obtained highlight the need for chemical, physical, and source characterization of particle samples under investigation. Multidisciplinary toxicity testing of diesel emissions derived from a variety of generation and collection conditions is required to meaningfully assess the health hazards associated with exposures to DEPs. Key words: automobile, diesel exhaust particles, forklift, mice, pulmonary toxicity, SRM 2975. PMID:15175167

  2. Nanorobotic System iTRo for Controllable 1D Micro/nano Material Twisting Test.

    PubMed

    Lu, Haojian; Shang, Wanfeng; Wei, Xueyong; Yang, Zhan; Fukuda, Toshio; Shen, Yajing

    2017-06-08

    In-situ micro/nano characterization is an indispensable methodology for material research. However, the precise in-situ SEM twisting of 1D material with large range is still challenge for current techniques, mainly due to the testing device's large size and the misalignment between specimen and the rotation axis. Herein, we propose an in-situ twist test robot (iTRo) to address the above challenges and realize the precise in-situ SEM twisting test for the first time. Firstly, we developed the iTRo and designed a series of control strategies, including assembly error initialization, triple-image alignment (TIA) method for rotation axis alignment, deformation-based contact detection (DCD) method for sample assembly, and switch control for robots cooperation. After that, we chose three typical 1D material, i.e., magnetic microwire Fe 74 B 13 Si 11 C 2 , glass fiber, and human hair, for twisting test and characterized their properties. The results showed that our approach is able to align the sample to the twisting axis accurately, and it can provide large twisting range, heavy load and high controllability. This work fills the blank of current in-situ mechanical characterization methodologies, which is expected to give significant impact in the fundamental nanomaterial research and practical micro/nano characterization.

  3. Sequential extraction procedure for determination of uranium, thorium, radium, lead and polonium radionuclides by alpha spectrometry in environmental samples

    NASA Astrophysics Data System (ADS)

    Oliveira, J. M.; Carvalho, F. P.

    2006-01-01

    A sequential extraction technique was developed and tested for common naturally-occurring radionuclides. This technique allows the extraction and purification of uranium, thorium, radium, lead, and polonium radionuclides from the same sample. Environmental materials such as water, soil, and biological samples can be analyzed for those radionuclides without matrix interferences in the quality of radioelement purification and in the radiochemical yield. The use of isotopic tracers (232U, 229Th, 224Ra, 209Po, and stable lead carrier) added to the sample in the beginning of the chemical procedure, enables an accurate control of the radiochemical yield for each radioelement. The ion extraction procedure, applied after either complete dissolution of the solid sample with mineral acids or co-precipitation of dissolved radionuclide with MnO2 for aqueous samples, includes the use of commercially available pre-packed columns from Eichrom® and ion exchange columns packed with Bio-Rad resins, in altogether three chromatography columns. All radioactive elements but one are purified and electroplated on stainless steel discs. Polonium is spontaneously plated on a silver disc. The discs are measured using high resolution silicon surface barrier detectors. 210Pb, a beta emitter, can be measured either through the beta emission of 210Bi, or stored for a few months and determined by alpha spectrometry through the in-growth of 210Po. This sequential extraction chromatography technique was tested and validated with the analysis of certified reference materials from the IAEA. Reproducibility was tested through repeated analysis of the same homogeneous material (water sample).

  4. Serum samples can be substituted by plasma samples for the diagnosis of paratuberculosis.

    PubMed

    Goodridge, Amador; Correa, Ricardo; Castro, Paul; Escobar, Cecilia; de Waard, Jacobus H

    2013-10-01

    Employing plasma samples rather than serum samples for serological paratuberculosis diagnosis is practical, especially when bovine TB is assessed in the same cattle herd with the gamma interferon bovine avian (IFN-γ BA) test. We demonstrate that antibody titers in serum and plasma samples, utilizing the PARACHECK(®) ELISA kit, are highly comparable (Cohen's kappa test, k=0.955). We conclude that serum can be replaced with plasma in this commercially available antibody detection assay resulting in working hour savings for sampling and blood sample work-up and cost reductions for materials and sample storage. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Towards 3D printed multifunctional immobilization for proton therapy: Initial materials characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michiels, Steven, E-mail: michiels.steven@kuleuven

    Purpose: 3D printing technology is investigated for the purpose of patient immobilization during proton therapy. It potentially enables a merge of patient immobilization, bolus range shifting, and other functions into one single patient-specific structure. In this first step, a set of 3D printed materials is characterized in detail, in terms of structural and radiological properties, elemental composition, directional dependence, and structural changes induced by radiation damage. These data will serve as inputs for the design of 3D printed immobilization structure prototypes. Methods: Using four different 3D printing techniques, in total eight materials were subjected to testing. Samples with a nominalmore » dimension of 20 × 20 × 80 mm{sup 3} were 3D printed. The geometrical printing accuracy of each test sample was measured with a dial gage. To assess the mechanical response of the samples, standardized compression tests were performed to determine the Young’s modulus. To investigate the effect of radiation on the mechanical response, the mechanical tests were performed both prior and after the administration of clinically relevant dose levels (70 Gy), multiplied with a safety factor of 1.4. Dual energy computed tomography (DECT) methods were used to calculate the relative electron density to water ρ{sub e}, the effective atomic number Z{sub eff}, and the proton stopping power ratio (SPR) to water SPR. In order to validate the DECT based calculation of radiological properties, beam measurements were performed on the 3D printed samples as well. Photon irradiations were performed to measure the photon linear attenuation coefficients, while proton irradiations were performed to measure the proton range shift of the samples. The directional dependence of these properties was investigated by performing the irradiations for different orientations of the samples. Results: The printed test objects showed reduced geometric printing accuracy for 2 materials (deviation > 0.25 mm). Compression tests yielded Young’s moduli ranging from 0.6 to 2940 MPa. No deterioration in the mechanical response was observed after exposure of the samples to 100 Gy in a therapeutic MV photon beam. The DECT-based characterization yielded Z{sub eff} ranging from 5.91 to 10.43. The SPR and ρ{sub e} both ranged from 0.6 to 1.22. The measured photon attenuation coefficients at clinical energies scaled linearly with ρ{sub e}. Good agreement was seen between the DECT estimated SPR and the measured range shift, except for the higher Z{sub eff}. As opposed to the photon attenuation, the proton range shifting appeared to be printing orientation dependent for certain materials. Conclusions: In this study, the first step toward 3D printed, multifunctional immobilization was performed, by going through a candidate clinical workflow for the first time: from the material printing to DECT characterization with a verification through beam measurements. Besides a proof of concept for beam modification, the mechanical response of printed materials was also investigated to assess their capabilities for positioning functionality. For the studied set of printing techniques and materials, a wide variety of mechanical and radiological properties can be selected from for the intended purpose. Moreover the elaborated hybrid DECT methods aid in performing in-house quality assurance of 3D printed components, as these methods enable the estimation of the radiological properties relevant for use in radiation therapy.« less

  6. Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash.

    PubMed

    Rendek, Eva; Ducom, Gaëlle; Germain, Patrick

    2006-01-16

    During bottom ash weathering, carbonation under atmospheric conditions induces physico-chemical evolutions leading to the pacification of the material. Fresh bottom ash samples were subjected to an accelerated carbonation using pure CO2. The aim of this work was to quantify the volume of CO2 that could be sequestrated with a view to reduce greenhouse gas emissions and investigate the possibility of upgrading some specific properties of the material with accelerated carbonation. Carbonation was performed by putting 4mm-sieved samples in a CO2 chamber. The CO2 pressure and the humidity of the samples were varied to optimize the reaction parameters. Unsieved material was also tested. Calcite formation resulting from accelerated carbonation was investigated by thermogravimetry and differential scanning calorimetry (TG/DSC) and metal leaching tests were performed. The volume of sequestrated CO2 was on average 12.5L/kg dry matter (DM) for unsieved material and 24 L/kg DM for 4mm-sieved samples. An ash humidity of 15% appeared to give the best results. The reaction was drastically accelerated at high pressure but it did not increase the volume of sequestrated CO2. Accelerated carbonation, like the natural phenomenon, reduces the dangerous nature of the material. It decreases the pH from 11.8 to 8.2 and causes Pb, Cr and Cd leaching to decrease. This process could reduce incinerator CO2 emissions by 0.5-1%.

  7. Evaluation of the effect of a home-bleaching agent on the surface characteristics of indirect esthetic restorative materials: part I--roughness.

    PubMed

    Torabi, Kianoosh; Rasaeipour, Sasan; Khaledi, Amir Alireza; Vojdani, Mahroo; Ghodsi, Safoura

    2014-05-01

    Pressing esthetic demands of good looking make people undergo bleaching procedures. However, the effect of bleaching agents on esthetic restorative materials with different surface preparations has been poorly studied. The aim of this study was to examine the effect of a homebleaching agent (carbamide peroxide: CP 38%) on the surface roughness of the polished fiber reinforced composite (FRC), overglazed, autoglazed, or polished ceramic samples. Twenty standardized cylindrical specimens were made of each of the following groups: over-glazed, autoglazed, polished porcelain and also FRC. The test specimens exposed to the CP 38%, 15 minutes, twice a day for 2 weeks according to the manufacturer's recommendation. Six samples from each group were selected randomly to form negative controls. Surface roughness measurements (Ra, micrometer) for baseline, test and control specimens were performed by use of a profilometer. Paired t-test, Mann-Whitney test, and Kruskal-Wallis test were used for statistical analyses. The data showed that bleaching with CP 38% significantly increased the surface roughness of all the test samples (p < 0.05). The type of surface preparation caused significant differences between the susceptibility of porcelain subgroups to bleaching (p < 0.05). The polished porcelain specimens showed the highest changes after bleaching. CP 38% significantly increases the surface roughness of the porcelains and FRC. The type of surface condition affects the amenability of the porcelain surface to the bleaching agent. Glazed porcelains were more resistant to roughness than the polished porcelains and also the composite. Roughening of porcelain and FRC occur following bleaching procedure. No special surface preparation of indirect esthetic restorative materials can completely preserve these materials from adverse effects of bleaching agents.

  8. Carbon Nanofiber Cement Sensors to Detect Strain and Damage of Concrete Specimens Under Compression

    PubMed Central

    Baeza, F. Javier; Garcés, Pedro

    2017-01-01

    Cement composites with nano-additions have been vastly studied for their functional applications, such as strain and damage sensing. The capacity of a carbon nanofiber (CNF) cement paste has already been tested. However, this study is focused on the use of CNF cement composites as sensors in regular concrete samples. Different measuring techniques and humidity conditions of CNF samples were tested to optimize the strain and damage sensing of this material. In the strain sensing tests (for compressive stresses up to 10 MPa), the response depends on the maximum stress applied. The material was more sensitive at higher loads. Furthermore, the actual load time history did not influence the electrical response, and similar curves were obtained for different test configurations. On the other hand, damage sensing tests proved the capability of CNF cement composites to measure the strain level of concrete samples, even for loads close to the material’s strength. Some problems were detected in the strain transmission between sensor and concrete specimens, which will require specific calibration of each sensor one attached to the structure. PMID:29186797

  9. Variations in Cathodoluminescent Intensity of Spacecraft Materials Exposed to Energetic Electron Bombardment

    NASA Technical Reports Server (NTRS)

    Dekany, Justin; Christensen, Justin; Dennison, J. R.; Jensen, Amberly Evans; Wilson, Gregory; Schneider, Todd; Bowers, Charles W.; Meloy, Robert

    2015-01-01

    Many contemporary spacecraft materials exhibit cathodoluminescence when exposed to electron flux from the space plasma environment. A quantitative, physics-based model has been developed to predict the intensity of the total glow as a function of incident electron current density and energy, temperature, and intrinsic material properties. We present a comparative study of the absolute spectral radiance for more than 20 types of dielectric and composite materials based on this model which spans more than three orders of magnitude. Variations in intensity are contrasted for different electron environments, different sizes of samples and sample sets, different testing and analysis methods, and data acquired at different test facilities. Together, these results allow us to estimate the accuracy and precision to which laboratory studies may be able to determine the response of spacecraft materials in the actual space environment. It also provides guidance as to the distribution of emissions that may be expected for sets of similar flight hardware under similar environmental conditions.

  10. Variations in Cathodoluminescent Intensity of Spacecraft Materials Exposed to Energetic Electron Bombardment

    NASA Technical Reports Server (NTRS)

    Dekany, Justin; Christensen, Justin; Dennison, J. R.; Jensen, Amberly Evans; Wilson, Gregory; Schneider, Todd A.; Bowers, Charles W.; Meloy, Robert

    2014-01-01

    Many contemporary spacecraft materials exhibit cathodoluminescence when exposed to electron flux from the space plasma environment. A quantitative, physics-based model has been developed to predict the intensity of the glow as a function of incident electron current density and energy, temperature, and intrinsic material properties. We present a comparative study of the absolute spectral radiance for several types of dielectric and composite materials based on this model which spans three orders of magnitude. Variations in intensity are contrasted for different electron environments, different sizes of samples and sample sets, different testing and analysis methods, and data acquired at different test facilities. Together, these results allow us to estimate the accuracy and precision to which laboratory studies may be able to determine the response of spacecraft materials in the actual space environment. It also provides guidance as to the distribution of emissions that may be expected for sets of similar flight hardware under similar environmental conditions.

  11. Influence of nano-material on the expansive and shrinkage soil behavior

    NASA Astrophysics Data System (ADS)

    Taha, Mohd Raihan; Taha, Omer Muhie Eldeen

    2012-10-01

    This paper presents an experimental study performed on four types of soils mixed with three types of nano-material of different percentages. The expansion and shrinkage tests were conducted to investigate the effect of three type of nano-materials (nano-clay, nano-alumina, and nano-copper) additive on repressing strains in compacted residual soil mixed with different ratios of bentonite (S1 = 0 % bentonite, S2 = 5 % bentonite, S3 = 10 % bentonite, and S4 = 20 % bentonite). The soil specimens were compacted under the condition of maximum dry unit weight and optimum water content ( w opt) using standard compaction test. The physical and mechanical results of the treated samples were determined. The untreated soil values were used as control points for comparison purposes. It was found that with the addition of optimum percentage of nano-material, both the swell strain and shrinkage strain reduced. The results show that nano-material decreases the development of desiccation cracks on the surface of compacted samples without decrease in the hydraulic conductivity.

  12. Experimental Determination of Frost Resistance of Autoclaved Aerated Concrete at Different Levels of Moisture Saturation

    NASA Astrophysics Data System (ADS)

    Kočí, Václav; Maděra, Jiří; Jerman, Miloš; Černý, Robert

    2018-06-01

    The ability of porous building materials to stand up to moisture phase changes induced by alternating environment is described mostly by means of their frost resistance. However, the test conditions defined by relevant standards might not capture the real situation on building site in various locations. In particular, the prescribed full water saturation of analyzed specimens during the whole time of a freeze/thaw experiment presents an ultimate case only but certainly not an everyday reality. Even the materials of surface layers are mostly exposed to such severe conditions just for a limited period of time. In this paper, the experimental analysis of frost resistance of three different types of autoclaved aerated concrete (AAC) is performed in an extended way, including not only the standard testing but also the investigation of dry- and partially saturated samples. A complementary computational analysis of an AAC building envelope in Central European climate is presented as well, in order to illustrate the likely hygric conditions in the wall. Experimental results show that according to the standard test the loss of compressive strength, as well as the loss of mass after 25 cycles, is acceptable for all studied samples but after 50 cycles only the material with the compressive strength of 4 MPa performs satisfactorily. On the other hand, the tests with initially dried or partially saturated samples indicate a good frost resistance of all studied materials for both 25 and 50 cycles.

  13. The Southwest Research Institute ultraviolet reflectance chamber (SwURC): a far ultraviolet reflectometer

    NASA Astrophysics Data System (ADS)

    Winters, Gregory S.; Retherford, Kurt D.; Davis, Michael W.; Escobedo, Stephen M.; Bassett, Eric C.; Patrick, Edward L.; Nagengast, Maggie E.; Fairbanks, Matthew H.; Miles, Paul F.; Parker, Joel W.; Gladstone, G. Randall; Slater, David C.; Stern, S. Alan

    2012-10-01

    We designed and assembled a highly capable UV reflectometer chamber and data acquisition system to provide bidirectional scattering data of various surfaces and materials. This chamber was initially conceived to create laboratory-based UV reflectance measurements of water frost on lunar soil/regolith simulants, to support interpretation of UV reflectance data from the Lyman Alpha Mapping Project ("LAMP") instrument on-board the NASA Lunar Reconnaissance Orbiter spacecraft. A deuterium lamp illuminates surfaces and materials at a fixed 45° incident beam angle over the 115 to 200 nm range via a monochromator, while a photomultiplier tube detector is scanned to cover emission angles -85° to +85° (with a gap from -60° to -30°, due to the detector blocking the incident beam). Liquid nitrogen cools the material/sample mount when desired. The chamber can be configured to test a wide range of samples and materials using sample trays and holders. Test surfaces to date include aluminum mirrors, water ice, reflectance standards, and frozen mixtures of water and lunar soil/regolith stimulant. Future UV measurements planned include Apollo lunar samples, meteorite samples, other ices, minerals, and optical surfaces. Since this chamber may well be able to provide useful research data for groups outside Southwest Research Institute, we plan to take requests from and collaborate with others in the UV and surface reflection research community.

  14. Fragmentation of Solid Materials Using Shock Tubes. Part 2: First Test Series in a Large Diameter Shock Tube

    DTIC Science & Technology

    2017-12-01

    description in Figure 9 below 2 Full or partial loss of test data due to instrumentation/triggering failures 3 Gages not included in these tests 4...Table 2. Sample properties. Test Description Dimensions Weight (lbs.) Strength (psi) Notes 17 Fully Tempered Glass Window 4-ft x 6-ft x...an estimate of prism strength for medium weight CMU. The reinforced concrete sample was a 5.5-in thick solid panel. To evaluate its strength

  15. Department of Physics' Involvement of the Impact Testing Project of the High Speed Civil Transport Program (HSCT)

    NASA Technical Reports Server (NTRS)

    VonMeerwall, Ernst D.

    1994-01-01

    The project involved the impact testing of a kevlar-like woven polymer material, PBO. The purpose was to determine whether this material showed any promise as a lightweight replacement material for jet engine fan containment. The currently used metal fan containment designs carry a high drag penalty due to their weight. Projectiles were fired at samples of PBO by means of a 0.5 inch diameter Helium powered gun. The Initial plan was to encase the samples inside a purpose-built steel "hot box" for heating and ricochet containment. The research associate's responsibility was to develop the data acquisition programs and techniques necessary to determine accurately the impacting projectile's velocity. Beyond this, the Research Associate's duties include any physical computations, experimental design, and data analysis necessary.

  16. Study on optimum length of raw material in stainless steel high-lock nuts forging

    NASA Astrophysics Data System (ADS)

    Cheng, Meiwen; Liu, Fenglei; Zhao, Qingyun; Wang, Lidong

    2018-04-01

    Taking 302 stainless steel (1Cr18Ni9) high-lock nuts for research objects, adjusting the length of raw material, then using DEFORM software to simulate the isothermal forging process of each station and conducting the corresponding field tests to study the effects of raw material size on the stainless steel high-lock nuts forming performance. The tests show that the samples of each raw material length is basically the same as the results of the DEFORM software. When the length of the raw material is 10mm, the appearance size of the parts can meet the design requirements.

  17. Solidification of arsenic and heavy metal containing tailings using cement and blast furnace slag.

    PubMed

    Kim, Jung-Wook; Jung, Myung Chae

    2011-01-01

    The objective of this study is to examine the solidification of toxic elements in tailings by the use of cement and blast furnace slag. Tailings samples were taken at an Au-Ag mine in Korea. To examine the best mixing ratio of tailings and the mixture of ordinary Portland cement (OPC) and blast furnace slag (SG) of 5:5, 6:6, 7:3, and 8:2, the 7:3 ratio of tailings and OPC+SG was adapted. In addition, the mixing ratios of water and OPC + SG were applied to 10, 20, and 30 wt%. After 7, 14, and 28 days' curing, the UCS test was undertaken. A relatively high strength of solidified material (137.2 kg cm⁻² in average of 3 samples) at 28 days' curing was found in 20 wt% of water content (WC). This study also examined the leachability of arsenic and heavy metals (Cd, Cu, Pb, and Zn) under the Korean Standard Leaching Test, and it showed that the reductions in leachabilities of As and heavy metals of solidified samples were ranged from 76 to 99%. Thus, all the solidified samples were within the guidelines for special and hazardous waste materials by the Waste Management Act in Korea. In addition, the result of freeze-thaw cycle test of the materials indicated that the durability of the materials was sufficient. In conclusion, solidification using a 7:3 mixing ratio of tailings and a 1:1 mixture of OPC + SG with 20% of WC is one of the best methods for the remediation of arsenic and heavy metals in tailings and other contaminated materials.

  18. A comparative study to check fracture strength of provisional fixed partial dentures made of autopolymerizing polymethylmethacrylate resin reinforced with different materials: An in vitro study.

    PubMed

    Gupt, Parikshit; Nagpal, Archana; Samra, Rupandeep Kaur; Verma, Ramit; Kaur, Jasjeet; Abrol, Surbhi

    2017-01-01

    The purpose of the study was to evaluate the fracture strength of provisional fixed partial dentures made of autopolymerizing polymethylmethacrylate (PMMA) resin using different types of reinforcement materials to determine the best among them. Fifty samples were made (10 samples for each group) with autopolymerizing PMMA resin using reinforcement materials (stainless steel wire: looped and unlooped and glass fiber: loose and unidirectional) as 3-unit posterior bridge. The test specimens were divided into five groups depending on the reinforcing material as Group I, II, III, IV, and V; Group I: PMMA unreinforced (control group), Group II: PMMA reinforced with stainless steel wire (straight ends), Group III: PMMA reinforced with stainless steel wire (looped ends), Group IV: PMMA reinforced with unidirectional glass fibers, and Group V: PMMA reinforced with randomly distributed glass fibers. Universal testing machine was used to evaluate and compare the fracture strength of samples. Comparison of mean ultimate force and ultimate stress was done employing one-way analysis of variance and Tukey's post hoc tests. The highest and lowest mean ultimate force and mean ultimate stress were of Group IV and I, respectively. Tukey's post hoc honestly significant difference multiple comparison for mean ultimate force and stress shows the increase in strength to be statistically significant ( P < 0.05) except for the samples reinforced with randomly distributed glass fibers ( P > 0.05). Unidirectional glass fibers showed the maximum strength, which was comparable to mean values of both stainless steel wire groups. Low cost and easy technique of using stainless steel wire make it the material of choice over the unidirectional glass fiber for reinforcement in nonesthetic areas where high strength is required.

  19. Characterization of 137 Genomic DNA Reference Materials for 28 Pharmacogenetic Genes: A GeT-RM Collaborative Project.

    PubMed

    Pratt, Victoria M; Everts, Robin E; Aggarwal, Praful; Beyer, Brittany N; Broeckel, Ulrich; Epstein-Baak, Ruth; Hujsak, Paul; Kornreich, Ruth; Liao, Jun; Lorier, Rachel; Scott, Stuart A; Smith, Chingying Huang; Toji, Lorraine H; Turner, Amy; Kalman, Lisa V

    2016-01-01

    Pharmacogenetic testing is increasingly available from clinical laboratories. However, only a limited number of quality control and other reference materials are currently available to support clinical testing. To address this need, the Centers for Disease Control and Prevention-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing community and the Coriell Cell Repositories, has characterized 137 genomic DNA samples for 28 genes commonly genotyped by pharmacogenetic testing assays (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, CYP4F2, DPYD, GSTM1, GSTP1, GSTT1, NAT1, NAT2, SLC15A2, SLC22A2, SLCO1B1, SLCO2B1, TPMT, UGT1A1, UGT2B7, UGT2B15, UGT2B17, and VKORC1). One hundred thirty-seven Coriell cell lines were selected based on ethnic diversity and partial genotype characterization from earlier testing. DNA samples were coded and distributed to volunteer testing laboratories for targeted genotyping using a number of commercially available and laboratory developed tests. Through consensus verification, we confirmed the presence of at least 108 variant pharmacogenetic alleles. These samples are also being characterized by other pharmacogenetic assays, including next-generation sequencing, which will be reported separately. Genotyping results were consistent among laboratories, with most differences in allele assignments attributed to assay design and variability in reported allele nomenclature, particularly for CYP2D6, UGT1A1, and VKORC1. These publicly available samples will help ensure the accuracy of pharmacogenetic testing. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  20. Cryogenic Moisture Analysis of Spray-On Foam Insulation (SOFI)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The NASA Cryogenics Test Laboratory at Kennedy Space Center conducted long-term testing of SOFI materials under actual-use cryogenic conditions. The lab tested NCFI 24-124 (acreage foam), BX-265 (close-out foam, including intertank flange and bipod areas), and a potential alternate material, NCFI 27-68 (acreage foam with the flame retardant removed). Specimens of all three materials were placed at a site that simulated aging (the Vehicle Assembly Building [VAB]) and a site that simulated weathering (Atmospheric Exposure Test Site [beach site]). After aging/ weathering intervals of 3, 6, and 12 months, the samples were retrieved and tested for their ability to absorb moisture under conditions similar to those experienced by the Space Shuttle External Tank (ET) during the loading of cryogenic propellants.

  1. Thermally-Conductive Metallic Coatings and Applications for Heat Removal on In-Space Cryogenic Vehicles

    NASA Technical Reports Server (NTRS)

    Ameen, Lauren; Hervol, David; Waters, Deborah

    2017-01-01

    For large in-space cryogenic upper stages, substantial axial heat removal from a forward skirt by vapor-based heat interception may not be achieved by simple attachment methods unless sufficient thermal conductance from the skirt to the cooling fluid can be achieved. Preferable methods would allow for the addition of the cooling system to existing structure with minimal impact on the structure. Otherwise, significant modification to the basic structural design andor novel and complex attachment mechanisms with high effective thermal conductance are likely to be required. The approach being pursued by evolvable Cryogenics (eCryo) is to increase the thermal performance of a relatively simple attachment system by applying metallic or other thermally conductive material coatings to the mating surface area of the fluid channel where it is attached the skirt wall. The expectation of candidate materials is that the dramatic increase in conductivity of pure metals at temperatures close to liquid hydrogen vapor temperature will compensate for the reduced actual contact area typical of mechanical joints. Basic contact conductance data at low temperatures for candidate interface materials is required to enable the test approach. A test rig was designed at NASA Glenn Research Center to provide thermal contact resistance testing between small sample coupons coated with conductive material via electron beam evaporation, a low-temperature option that will not affect physical properties of base materials. Average coating thicknesses were 10 k. The test fixture was designed to mount directly to a cryocooler cold head within a vacuum test chamber. The purpose of this test was to determine qualitative contact conductance between various test samples. Results from this effort will be implemented in a sub-scale vapor-based heat interception test, where the applicability for increased heat removal on large structural skirts will be considered.

  2. Determination of Parachute Joint Factors using Seam and Joint Testing

    NASA Technical Reports Server (NTRS)

    Mollmann, Catherine

    2015-01-01

    This paper details the methodology for determining the joint factor for all parachute components. This method has been successfully implemented on the Capsule Parachute Assembly System (CPAS) for the NASA Orion crew module for use in determining the margin of safety for each component under peak loads. Also discussed are concepts behind the joint factor and what drives the loss of material strength at joints. The joint factor is defined as a "loss in joint strength...relative to the basic material strength" that occurs when "textiles are connected to each other or to metals." During the CPAS engineering development phase, a conservative joint factor of 0.80 was assumed for each parachute component. In order to refine this factor and eliminate excess conservatism, a seam and joint testing program was implemented as part of the structural validation. This method split each of the parachute structural joints into discrete tensile tests designed to duplicate the loading of each joint. Breaking strength data collected from destructive pull testing was then used to calculate the joint factor in the form of an efficiency. Joint efficiency is the percentage of the base material strength that remains after degradation due to sewing or interaction with other components; it is used interchangeably with joint factor in this paper. Parachute materials vary in type-mainly cord, tape, webbing, and cloth -which require different test fixtures and joint sample construction methods. This paper defines guidelines for designing and testing samples based on materials and test goals. Using the test methodology and analysis approach detailed in this paper, the minimum joint factor for each parachute component can be formulated. The joint factors can then be used to calculate the design factor and margin of safety for that component, a critical part of the design verification process.

  3. Surface Sampling of Spores in Dry-Deposition Aerosols▿

    PubMed Central

    Edmonds, Jason M.; Collett, Patricia J.; Valdes, Erica R.; Skowronski, Evan W.; Pellar, Gregory J.; Emanuel, Peter A.

    2009-01-01

    The ability to reliably and reproducibly sample surfaces contaminated with a biological agent is a critical step in measuring the extent of contamination and determining if decontamination steps have been successful. The recovery operations following the 2001 attacks with Bacillus anthracis spores were complicated by the fact that no standard sample collection format or decontamination procedures were established. Recovery efficiencies traditionally have been calculated based upon biological agents which were applied to test surfaces in a liquid format and then allowed to dry prior to sampling tests, which may not be best suited for a real-world event with aerosolized biological agents. In order to ascertain if differences existed between air-dried liquid deposition and biological spores which were allowed to settle on a surface in a dried format, a study was undertaken to determine if differences existed in surface sampling recovery efficiencies for four representative surfaces. Studies were then undertaken to compare sampling efficiencies between liquid spore deposition and aerosolized spores which were allowed to gradually settle under gravity on four different test coupon types. Tests with both types of deposition compared efficiencies of four unique swabbing materials applied to four surfaces with various surface properties. Our studies demonstrate that recovery of liquid-deposited spores differs significantly from recovery of dry aerosol-deposited spores in most instances. Whether the recovery of liquid-deposited spores is overexaggerated or underrepresented with respect to that of aerosol-deposited spores depends upon the surface material being tested. PMID:18997021

  4. Curriculum-Based Measurement of Oral Reading: Passage Equivalence and Probe-Set Development

    ERIC Educational Resources Information Center

    Christ, Theodore J.; Ardoin, Scott P.

    2009-01-01

    Curriculum-based measurement of reading (CBM-R) is used to estimate oral reading fluency. Unlike many traditional published tests, CBM-R materials are often comprised of 20 to 30 alternate forms/passages. Historically, CBM-R assessment materials were sampled from curricular materials. Recent research has documented the potentially deleterious…

  5. 46 CFR 164.007-9 - Procedure for approval.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... each component. (4) A sample of the material at least 1 foot square in the thickness and density proposed by the manufacturer to be tested. When more than one thickness of a material of the same density... and densities in which it is proposed to manufacture or use the material together with any information...

  6. Fabrication of a Low Density Carbon Fiber Foam and Its Characterization as a Strain Gauge

    PubMed Central

    Luhrs, Claudia C.; Daskam, Chris D.; Gonzalez, Edwin; Phillips, Jonathan

    2014-01-01

    Samples of carbon nano-fiber foam (CFF), essentially a 3D solid mat of intertwined nanofibers of pure carbon, were grown using the Constrained Formation of Fibrous Nanostructures (CoFFiN) process in a steel mold at 550 °C from a palladium particle catalysts exposed to fuel rich mixtures of ethylene and oxygen. The resulting material was studied using Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX), Surface area analysis (BET), and Thermogravimetric Analysis (TGA). Transient and dynamic mechanical tests clearly demonstrated that the material is viscoelastic. Concomitant mechanical and electrical testing of samples revealed the material to have electrical properties appropriate for application as the sensing element of a strain gauge. The sample resistance versus strain values stabilize after a few compression cycles to show a perfectly linear relationship. Study of microstructure, mechanical and electrical properties of the low density samples confirm the uniqueness of the material: It is formed entirely of independent fibers of diverse diameters that interlock forming a tridimensional body that can be grown into different shapes and sizes at moderate temperatures. It regains its shape after loads are removed, is light weight, presents viscoelastic behavior, thermal stability up to 550 °C, hydrophobicity, and is electrically conductive. PMID:28788644

  7. Small-Chamber Measurements of Chemical-Specific Emission Factors for Drywall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddalena, Randy; Russell, Marion; Apte, Michael G.

    2010-06-01

    Imported drywall installed in U.S. homes is suspected of being a source of odorous and potentially corrosive indoor pollutants. To support an investigation of those building materials by the Consumer Products Safety Commission (CPSC), Lawrence Berkeley National Laboratory (LBNL) measured chemical-specific emission factors for 30 samples of drywall materials. Emission factors are reported for 75 chemicals and 30 different drywall samples encompassing both domestic and imported stock and incorporating natural, synthetic, or mixed gypsum core material. CPSC supplied all drywall materials. First the drywall samples were isolated and conditioned in dedicated chambers, then they were transferred to small chambers wheremore » emission testing was performed. Four sampling and analysis methods were utilized to assess (1) volatile organic compounds, (2) low molecular weight carbonyls, (3) volatile sulfur compounds, and (4) reactive sulfur gases. LBNL developed a new method that combines the use of solid phase microextraction (SPME) with small emission chambers to measure the reactive sulfur gases, then extended that technique to measure the full suite of volatile sulfur compounds. The testing procedure and analysis methods are described in detail herein. Emission factors were measured under a single set of controlled environmental conditions. The results are compared graphically for each method and in detailed tables for use in estimating indoor exposure concentrations.« less

  8. Thermal control surfaces on the MSFC LDEF experiments

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Whitaker, Ann F.; Zwiener, James M.; Linton, Roger C.; Shular, David; Peters, Palmer N.; Gregory, John C.

    1992-01-01

    There were five Marshall Space Flight Center (MSFC) experiments on the LDEF. Each of those experiments carried thermal control surfaces either as test samples or as operational surfaces. These materials experienced varying degrees of mechanical and optical damage. Some materials were virtually unchanged by the extended exposure while others suffered extensive degradation. The synergistic effects due to the constituents of the space environment are evident in the diversity of these material changes. The sample complement for the MSFC experiments is described along with results of the continuing analyses efforts.

  9. An instrument for spatial conductivity measurements of high Tc superconducting (HTSC) materials

    NASA Technical Reports Server (NTRS)

    Vansant, T.

    1991-01-01

    High T(sub c) Superconducting (HTSC) thin films are suggested for use in a number of aerospace applications such as an IR bolometer and as electromagnetic shielding. As part of its flight assurance role, the Materials Branch of the Goddard Space Flight Center has initiated development of an instrument capable of measuring variations in conductivity for flat samples using an eddy current testing device and an X-Y positioning table. This instrument was used to examine bulk HTSC samples. System changes that would enable characterization of thin film materials are discussed.

  10. Formability analysis of sheet metals by cruciform testing

    NASA Astrophysics Data System (ADS)

    Güler, B.; Alkan, K.; Efe, M.

    2017-09-01

    Cruciform biaxial tests are increasingly becoming popular for testing the formability of sheet metals as they achieve frictionless, in-plane, multi-axial stress states with a single sample geometry. However, premature fracture of the samples during testing prevents large strain deformation necessary for the formability analysis. In this work, we introduce a miniature cruciform sample design (few mm test region) and a test setup to achieve centre fracture and large uniform strains. With its excellent surface finish and optimized geometry, the sample deforms with diagonal strain bands intersecting at the test region. These bands prevent local necking and concentrate the strains at the sample centre. Imaging and strain analysis during testing confirm the uniform strain distributions and the centre fracture are possible for various strain paths ranging from plane-strain to equibiaxial tension. Moreover, the sample deforms without deviating from the predetermined strain ratio at all test conditions, allowing formability analysis under large strains. We demonstrate these features of the cruciform test for three sample materials: Aluminium 6061-T6 alloy, DC-04 steel and Magnesium AZ31 alloy, and investigate their formability at both the millimetre scale and the microstructure scale.

  11. Presence and leaching of bisphenol a (BPA) from dental materials

    PubMed Central

    Becher, Rune; Wellendorf, Hanne; Sakhi, Amrit Kaur; Samuelsen, Jan Tore; Thomsen, Cathrine; Bølling, Anette Kocbach; Kopperud, Hilde Molvig

    2018-01-01

    Abstract BPA has been reported to leach from some resin based dental restorative materials and materials used for orthodontic treatment. To confirm and update previous findings, especially in light of the new temporary lower threshold value for tolerable daily BPA intake, we have investigated the leaching of BPA from 4 composite filling materials, 3 sealants and 2 orthodontic bonding materials. The materials were either uncured and dissolved in methanol or cured. The cured materials were kept in deionized water for 24 hours or 2 weeks. Samples were subsequently analyzed by ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS-MS). The composite filling material Tetric EvoFlow® and the fissure sealant DELTON® showed significantly higher levels of BPA leaching compared to control samples for all test conditions (uncured, 24 h leaching and 2 weeks leaching). There were no significant differences in amount of leached BPA for any of the tested materials after 24 hours compared to 2 weeks. These results show that BPA is still released from some dental materials despite the general concern about potential adverse effects of BPA. However, the amounts of BPA were relatively low and most likely represent a very small contribution to the total BPA exposure. PMID:29868625

  12. Resistance of gloves and protective clothing materials to permeation of cytostatic solutions.

    PubMed

    Krzemińska, Sylwia; Pośniak, Małgorzata; Szewczyńska, Małgorzata

    2018-01-15

    The objective of the work was to determine the resistance of selected protective clothing and glove materials to permeation of cytostatics such as docetaxel, fluorouracil, and doxorubicin. The following glove materials were used: natural rubber latex (code A), acrylonitrile-butadiene rubber (code B) and chloroprene rubber (code C). In addition, we tested a layered material composed of a non-woven polyester (PES), a polypropylene (PP) film, and a non-woven PP used for protective coats (code D). The cytostatics were analyzed by liquid chromatography with diode array detection. The tested samples were placed in a purpose-built permeation cell modified to be different from that specified in the standard EN 6529:2001. The tested materials were characterized by good resistance to solutions containing 2 out of the 3 selected cytostatics: doxorubicin and 5-fluorouracil, as indicated by a breakthrough time of over 480 min. Equally high resistance to permeation of the third cytostatic (docetaxel) was exhibited by natural rubber latex, acrylonitrile-butadiene rubber, and chloroprene rubber. However, docetaxel permeated much more readily through the clothing layered material, compromising its barrier properties. It was found that the presence of additional components in cytostatic preparations accelerated permeation through material samples, thus deteriorating their barrier properties. Int J Occup Med Environ Health 2018;31(3):341-350. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  13. MYCOLOGICAL ANALYSIS AND AFLATOXIN B1 CONTAMINANT ESTIMATION OF HERBAL DRUG RAW MATERIALS

    PubMed Central

    Rajeshwari, Puttaswamy; Raveesha, KoteshwarAnandrao

    2016-01-01

    Background: The present study explores the fungal contamination of important herbal drug raw materials (HDRM), which are widely used in the preparation of many herbal drugs. Understanding of the microbial contamination status of HDRM is one of the important steps to ensure the safety and efficacy of herbal drugs. Materials and Methods: Eighteen samples of six herbal drug raw materials (HDRM) viz., Acorus calamus Linn., Cassia angustifolia Vahl., Centella asiatica (Linn.) Urban, Myristica fragrans Houtt., Tinospora cardifolia (Wild) Miers and Withania somnifera (Linn.) Dunal, were screened for fungal contamination, by employing serial dilution method. All the isolates of Aspergillus flavus were screened for their ability to produce aflatoxin B1 (AB1) and highly contaminated samples were subjected to AB1 estimation by using Thin Layer Chromatography (TLC), spectrophotometric method and occurrence of Aflatoxin B1 was confirmed by Liquid Chromatography-Mass Spectrometry analysis (LCMS). Results: A total of 302 isolates of 42 fungal species belonging to 17 genera were found in association with test the samples. More than 61% of A. flavus isolates tested positive for production of AB1 and highest yield recorded was 5008.20 ppb from the isolates of T. cordifolia. Amongthesix highly contaminated samples three samples tested positive for AB1. Highest AB1 was recorded from T. cordifolia (104.19 μg/kg), followed by A. calamus (13.73 μg/kg) and M. fragrans (12.02 μg/kg). Conclusion: Assessment of fungal and mycotoxin contamination should be a part of the quality check while selecting HDRM for manufacture of herbal products. Safe processing and storage practices are necessary. PMID:28487902

  14. A Combined Hazard Index Fire Test Methodology for Aircraft Cabin Materials. Volume II.

    DTIC Science & Technology

    1982-04-01

    Technical Center. The report was divided into two parts: Part I described the improved technology investigated to upgrade existin methods for testing...proper implementation of the computerized data acquisition and reduction programs will improve materials hazards measurement precision. Thus, other...the hold chamber before and after injection of a sample, will improve precision and repeatability of measurement. The listed data acquisition and

  15. High Cycle Fatigue Properties Of Electron Beam Melted TI-6AL-4V Samples Without And With Integrated Defects ("Effects Of Defects")

    NASA Astrophysics Data System (ADS)

    Brandl, Erhard; Greitemeier, Daniel; Maier, Hans Jurgen; Syassen, Freerk

    2012-07-01

    The understanding of additive manufactured material properties is still at an early stage and mostly not profound. Nowadays, there is only little experience in predicting the effect of defects (e.g. porosity, unmelted spots, insufficient bonding between the layers) on the fatigue behaviour. In this paper, some of these questions are adressed. An electron beam melting process is used to manufacture Ti-6Al-4V high cycle fatigue samples without and with intentionally integrated defects inside of the samples. The samples were annealed or hot isostatically pressed. The defects were analysed by non- destructive methods before and by light/electron microscopy after the tests. In order to predict the high cycle fatigue properties, the crack propagation properties of the material (da/dN - ΔK curve) were tested and AFGROW simulation was used.

  16. Spinning angle optical calibration apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, S.K.; Pratt, H.R. II.

    1989-09-12

    An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting and accurate reproducing of spinning magic angles in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the magic angle of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation ormore » graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning magic angle of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position. 2 figs.« less

  17. Development of a Rapid Point-of-Use DNA Test for the Screening of Genuity® Roundup Ready 2 Yield® Soybean in Seed Samples

    PubMed Central

    Chandu, Dilip; Paul, Sudakshina; Parker, Mathew; Dudin, Yelena; King-Sitzes, Jennifer; Perez, Tim; Mittanck, Don W.; Shah, Manali; Glenn, Kevin C.; Piepenburg, Olaf

    2016-01-01

    Testing for the presence of genetically modified material in seed samples is of critical importance for all stakeholders in the agricultural industry, including growers, seed manufacturers, and regulatory bodies. While rapid antibody-based testing for the transgenic protein has fulfilled this need in the past, the introduction of new variants of a given transgene demands new diagnostic regimen that allows distinguishing different traits at the nucleic acid level. Although such molecular tests can be performed by PCR in the laboratory, their requirement for expensive equipment and sophisticated operation have prevented its uptake in point-of-use applications. A recently developed isothermal DNA amplification technique, recombinase polymerase amplification (RPA), combines simple sample preparation and amplification work-flow procedures with the use of minimal detection equipment in real time. Here, we report the development of a highly sensitive and specific RPA-based detection system for Genuity Roundup Ready 2 Yield (RR2Y) material in soybean (Glycine max) seed samples and present the results of studies applying the method in both laboratory and field-type settings. PMID:27314015

  18. Student Assessment System. Domain Referenced Tests. Allied Health Occupations/Practical Nursing. Volume 1: Skills.

    ERIC Educational Resources Information Center

    Simpson, Bruce; And Others

    These performance tests for the area of allied health occupations/practical nursing consist of a sampling technique (domain referenced tests) which covers all the possible performance situations. When used in total, they may also serve as a comprehensive test. Introductory materials discuss domain referenced testing, determining the domains, and…

  19. Student Assessment System. Domain Referenced Tests. Cosmetology. Volume I: Skills. Georgia Vocational Education Program Articulation.

    ERIC Educational Resources Information Center

    Rice, Linda Maxwell; And Others

    These performance tests for the area of cosmetology consist of a sampling technique (domain referenced tests) which covers all the possible performance situations. When used in total, they may also serve as a comprehensive test. Introductory materials discuss domain referenced testing, determining the domains, and developing performance testing…

  20. Evaluation of composite materials providing improved acoustic transmission loss for UAVs

    NASA Astrophysics Data System (ADS)

    Callicoat, Jeffrey R.

    With the proliferation of Unmanned Aerial Vehicles (UAVs) in civilian airspace in the near future, community noise will be a major issue of concern. Numerous studies have shown a direct link between community noise pollution (i.e., road traffic noise and airport noise) and serious health problems. There exists, therefore, a pressing need to create quiet UAVs, and this drives the need for noise-attenuating materials and structures suitable for UAV airframe fabrication. By shrouding predominant noise sources such as the engine, exhaust, and even the propeller (in the case of a ducted fan) with the airframe structure, the airframe can serve as a noise transmission barrier and substantially reduce UAV noise profiles. The present research effort is an experimental investigation of light-weight fiber-reinforced composite materials to provide high acoustic transmission loss (TL) for use in fabricating UAV airframes. A transmission loss tube acoustic test system was designed, fabricated, and validated, and extensive testing was done on numerous composite layups of interest for UAV fabrication. Composites under study included carbon fiber, fiberglass, and Kevlar fabrics as skin materials along with vinyl foam, Nomex honeycomb, and balsawood as core materials. Results from testing small 3"x3" samples in the TL tube led to the selection of four composite sandwich panels of interest for further study. Larger 36"x36" test samples of these selected layups were then fabricated and tested using a 2-room methodology. Whereas the TL tube yielded results in the stiffness-controlled region of acoustic behavior, the 2-room tests produced results in the mass-controlled region for these materials, enabling relative performance comparisons over both acoustic regimes. Recognizing that a good material for airframe fabrication should possess not only high TL, but also low weight and high stiffness, load-deflection tests were conducted and overall material performance was compared in terms of the parameter [(TL * stiffness) / surface density]. A sandwich panel layup of 5.7 oz carbon fiber skins with a vinyl foam core emerged as the preferable material choice, and a UAV fuselage of this construction was evaluated in the OSU anechoic chamber and shown to substantially reduce sound propagation from enclosed noise sources.

  1. Monitoring the integrity of massive aluminum structures using PZT transducers and the technique of impedance

    NASA Astrophysics Data System (ADS)

    da Costa, Rosalba; Maia, Joaquim M.; Assef, Amauri A.; Pichorim, Sergio F.; Costa, Eduardo T.; L. S. N. Button, Vera

    2015-04-01

    Safety, performance, economy and durability are essential items to qualify materials for the manufacturing of structures used in different areas. Generally, the materials used for this purpose are formed by composites and sometimes they can present failure during the manufacturing process. Such failures can also occur during use due to fatigue and wear, causing damage often difficult to be visually detected. In these cases, the use of non destructive testing (NDT) has proven to be a good choice for assessing the materials quality. The objective of this work was the electromechanical impedance evaluation of massive aluminum structures using ultrasonic transducers to detect discontinuities in the material. The tests have been done using an impedance analyzer (Agilent 4294A), an ultrasound transducer (1.6 MHz of central frequency), two types of PZT ceramics (0.267 mm and 1 mm thickness) and four aluminum samples (250 x 50 x 50 mm) with the transducer placed at three different regions. One sample was kept intact (reference) and the others were drilled in three positions with different sizes of holes (5 mm. 8 mm and 11 mm). The electromechanical impedance was recorded for each sample. The root mean square deviation index (RMSD) between the impedance magnitude of the reference and damaged samples was calculated and it was observed an increase in the RMSD due to the increase of the diameter of the holes (failures) in the samples completely drilled. The results show that the proposed methodology is suitable for monitoring the integrity of aluminum samples. The technique may be evaluated in characterizing other materials to be used in the construction of prostheses and orthoses.

  2. 45 CFR 304.20 - Availability and rate of Federal financial participation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... development of evidence including the use of the polygraph and genetic tests; (C) Pre-trial discovery; (ii... regulations having the effect of law; (iii) Identifying competent laboratories that perform genetic tests as... transporting blood and other samples of genetic material, repeated testing when necessary, analysis of test...

  3. 45 CFR 304.20 - Availability and rate of Federal financial participation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... development of evidence including the use of the polygraph and genetic tests; (C) Pre-trial discovery; (ii... regulations having the effect of law; (iii) Identifying competent laboratories that perform genetic tests as... transporting blood and other samples of genetic material, repeated testing when necessary, analysis of test...

  4. 45 CFR 304.20 - Availability and rate of Federal financial participation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... development of evidence including the use of the polygraph and genetic tests; (C) Pre-trial discovery; (ii... regulations having the effect of law; (iii) Identifying competent laboratories that perform genetic tests as... transporting blood and other samples of genetic material, repeated testing when necessary, analysis of test...

  5. 30 CFR 7.48 - Acid resistance test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.48 Acid resistance test. (a) Test procedures. (1) Prepare one sample each of the insulated surfaces of the battery box and of the... insulation plus the battery cover or box material. The insulation thickness shall be representative of that...

  6. 30 CFR 7.48 - Acid resistance test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.48 Acid resistance test. (a) Test procedures. (1) Prepare one sample each of the insulated surfaces of the battery box and of the... insulation plus the battery cover or box material. The insulation thickness shall be representative of that...

  7. 19 CFR 151.54 - Testing by Customs laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Testing by Customs laboratory. 151.54 Section 151... Other Metal-Bearing Materials § 151.54 Testing by Customs laboratory. Samples taken in accordance with § 151.52 shall be promptly forwarded to the appropriate Customs laboratory for testing in accordance...

  8. Method for detecting pollutants. [through chemical reactions and heat treatment

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Richards, R. R.; Conway, E. J. (Inventor)

    1976-01-01

    A method is described for detecting and measuring trace amounts of pollutants of the group consisting of ozone, nitrogen dioxide, and carbon monoxide in a gaseous environment. A sample organic solid material that will undergo a chemical reaction with the test pollutant is exposed to the test environment and thereafter, when heated in the temperature range of 100-200 C., undergoes chemiluminescence that is measured and recorded as a function of concentration of the test pollutant. The chemiluminescence of the solid organic material is specific to the pollutant being tested.

  9. Multiple testing of food contact materials: a predictive algorithm for assessing the global migration from silicone moulds.

    PubMed

    Elskens, Marc; Vloeberghs, Daniel; Van Elsen, Liesbeth; Baeyens, Willy; Goeyens, Leo

    2012-09-15

    For reasons of food safety, packaging and food contact materials must be submitted to migration tests. Testing of silicone moulds is often very laborious, since three replicate tests are required to decide about their compliancy. This paper presents a general modelling framework to predict the sample's compliance or non-compliance using results of the first two migration tests. It compares the outcomes of models with multiple continuous predictors with a class of models involving latent and dummy variables. The model's prediction ability was tested using cross and external validations, i.e. model revalidation each time a new measurement set became available. At the overall migration limit of 10 mg dm(-2), the relative uncertainty on a prediction was estimated to be ~10%. Taking the default values for α and β equal to 0.05, the maximum value that can be predicted for sample compliance was therefore 7 mg dm(-2). Beyond this limit the risk for false compliant results increases significantly, and a third migration test should be performed. The result of this latter test defines the sample's compliance or non-compliance. Propositions for compliancy control inspired by the current dioxin control strategy are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Measuring of electrical changes induced by in situ combustion through flow-through electrodes in a laboratory sample of core material

    DOEpatents

    Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

    1986-12-09

    Method and apparatus are provided for obtaining accurate dynamic measurements for passage of phase fronts through a core sample in a test fixture. Flow-through grid structures are provided for electrodes to permit data to be obtained before, during and after passage of a front there through. Such electrodes are incorporated in a test apparatus for obtaining electrical characteristics of the core sample. With the inventive structure a method is provided for measurement of instabilities in a phase front progressing through the medium. Availability of accurate dynamic data representing parameters descriptive of material characteristics before, during and after passage of a front provides a more efficient method for enhanced recovery of oil using a fire flood technique. 12 figs.

  11. Measuring of electrical changes induced by in situ combustion through flow-through electrodes in a laboratory sample of core material

    DOEpatents

    Lee, David O.; Montoya, Paul C.; Wayland, Jr., James R.

    1986-01-01

    Method and apparatus are provided for obtaining accurate dynamic measurements for passage of phase fronts through a core sample in a test fixture. Flow-through grid structures are provided for electrodes to permit data to be obtained before, during and after passage of a front therethrough. Such electrodes are incorporated in a test apparatus for obtaining electrical characteristics of the core sample. With the inventive structure a method is provided for measurement of instabilities in a phase front progressing through the medium. Availability of accurate dynamic data representing parameters descriptive of material characteristics before, during and after passage of a front provides a more efficient method for enhanced recovery of oil using a fire flood technique.

  12. High-throughput diagnosis of potato cyst nematodes in soil samples.

    PubMed

    Reid, Alex; Evans, Fiona; Mulholland, Vincent; Cole, Yvonne; Pickup, Jon

    2015-01-01

    Potato cyst nematode (PCN) is a damaging soilborne pest of potatoes which can cause major crop losses. In 2010, a new European Union directive (2007/33/EC) on the control of PCN came into force. Under the new directive, seed potatoes can only be planted on land which has been found to be free from PCN infestation following an official soil test. A major consequence of the new directive was the introduction of a new harmonized soil sampling rate resulting in a threefold increase in the number of samples requiring testing. To manage this increase with the same staffing resources, we have replaced the traditional diagnostic methods. A system has been developed for the processing of soil samples, extraction of DNA from float material, and detection of PCN by high-throughput real-time PCR. Approximately 17,000 samples are analyzed each year using this method. This chapter describes the high-throughput processes for the production of float material from soil samples, DNA extraction from the entire float, and subsequent detection and identification of PCN within these samples.

  13. Failure evolution in granular material retained by rigid wall in active mode

    NASA Astrophysics Data System (ADS)

    Pietrzak, Magdalena; Leśniewska, Danuta

    2012-10-01

    This paper presents a detailed study of a selected small scale model test, performed on a sample of surrogate granular material, retained by a rigid wall (typical geotechnical problem of earth thrust on a retaining wall). The experimental data presented in this paper show that the deformation of granular sample behind retaining wall can undergo some cyclic changes. The nature of these cycles is not clear - it is probably related to some micromechanical features of granular materials, which are recently extensively studied in many research centers in the world. Employing very precise DIC (PIV) method can help to relate micro and macro-scale behavior of granular materials.

  14. Thermal Analysis and Testing of Candidate Materials for PAIDAE Inflatable Aeroshell

    NASA Technical Reports Server (NTRS)

    DelCorso, Joseph A.; Bruce, Walter E., III; Liles, Kaitlin A.; Hughes, Stephen J.

    2009-01-01

    The Program to Advance Inflatable-Decelerators for Atmospheric Entry (PAIDAE) is a NASA project tasked with developing and evaluating viable inflatable-decelerator aeroshell geometries and materials. Thermal analysis of material layups supporting an inflatable aeroshell was completed in order to identify expected material response, failure times, and to establish an experimental test matrix to keep barrier layer materials from reaching critical temperature limits during thermal soak. Material layups were then tested in the 8- foot High Temperature Tunnel (8'HTT), where they were subjected to hypersonic aerothermal heating conditions, similar to those expected for a Mars entry. This paper presents a broad overview of the thermal analysis supporting multiple materials, and layup configurations tested in the 8'HTT at flight conditions similar to those that would be experienced during Mars entry trajectories. Direct comparison of TPS samples tested in the 8'HTT verify that the thermal model accurately predicted temperature profiles when there are up to four materials in the test layup. As the number of material layers in each test layup increase (greater than 4), the accuracy of the prediction decreases significantly. The inaccuracy of the model predictions for layups with more than four material layers is believed to be a result of the contact resistance values used throughout the model being inaccurate. In addition, the harsh environment of the 8'HTT, including hot gas penetrating through the material layers, could also be a contributing factor.

  15. Preparation of improved catalytic materials for water purification

    NASA Astrophysics Data System (ADS)

    Cherkezova-Zheleva, Z.; Paneva, D.; Tsvetkov, M.; Kunev, B.; Milanova, M.; Petrov, N.; Mitov, I.

    2014-04-01

    The aim of presented paper was to study preparation of catalytic materials for water purification. Iron oxide (Fe3O4) samples supported on activated carbon were prepared by wet impregnation method and low temperature heating in an inert atmosphere. The as-prepared, activated and samples after catalytic test were characterized by Mössbauer spectroscopy and X-ray diffraction. The obtained X-ray diffraction patterns of prepared samples show broad and low-intensity peaks of magnetite phase and the characteristic peaks of the activated carbon. The average crystallite size of magnetite particles was calculated below 20 nm. The registered Mössbauer spectra of prepared materials show a superposition of doublet lines or doublet and sextet components. The calculated hyperfine parameters after spectra evaluation reveal the presence of magnetite phase with nanosize particles. Relaxation phenomena were registered in both cases, i.e. superparamagnetism or collective magnetic excitation behavior, respectively. Low temperature Mössbauer spectra confirm this observation. Application of materials as photo-Fenton catalysts for organic pollutions degradation was studied. It was obtained high adsorption degree of dye, extremely high reaction rate and fast dye degradation. Photocatalytic behaviour of a more active sample was enhanced using mechanochemical activation (MCA). The nanometric size and high dispersion of photocatalyst particles influence both the adsorption and degradation mechanism of reaction. The results showed that all studied photocatalysts effectively decompose the organic pollutants under UV light irradiation. Partial oxidation of samples after catalytic tests was registered. Combination of magnetic particles with high photocatalytic activity meets both the requirements of photocatalytic degradation of water contaminants and that of recovery for cyclic utilization of material.

  16. Decontaminating materials used in ground water sampling devices: Organic contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, L.V.; Ranney, T.A.

    2000-12-31

    In these studies, the efficiency of various decontamination protocols was tested on small pieces of materials commonly used in ground water sampling devices. Three materials, which ranged in ability to sorb organic solutes, were tested: stainless steel (SS), rigid polyvinyl chloride (PVC), and polytetrafluoroethylene (PTFE). The test pieces were exposed to two aqueous test solutions: One contained three volatile organic compounds (VOCs) and one nitroaromatic compound, and the other contained four pesticides. Also, three types of polymetic tubing were exposed to pesticide solutions. Generally, the contact times were 10 minutes and 24 hours for sorption and desorption. The contaminants weremore » removed from the nonpermeable SS and the less-sorptive rigid PVC test pieces simply by washing with a hot detergent solution and rinsing with hot water. Additional treatment was required for the PTFE test pieces exposed to the VOCs and for the low-density polyethylene (LDPE) tubing exposed to the pesticide test solution. Solvent rinsing did not improve removal of the three VOCs form the PTFE and only marginally improved removal of the residual pesticides from the LDPE. However, a hot water and detergent wash and rinse followed by oven drying at approximately 105 C was effective for removing the VOCs from the PTFE and substantially reduced pesticide contamination from the LDPE.« less

  17. Polymers Advance Heat Management Materials for Vehicles

    NASA Technical Reports Server (NTRS)

    2013-01-01

    For 6 years prior to the retirement of the Space Shuttle Program, the shuttles carried an onboard repair kit with a tool for emergency use: two tubes of NOAX, or "good goo," as some people called it. NOAX flew on all 22 flights following the Columbia accident, and was designed to repair damage that occurred on the exterior of the shuttle. Bill McMahon, a structural materials engineer at Marshall Space Flight Center says NASA needed a solution for the widest range of possible damage to the shuttle s exterior thermal protection system. "NASA looked at several options in early 2004 and decided on a sealant. Ultimately, NOAX performed the best and was selected," he says. To prove NOAX would work effectively required hundreds of samples manufactured at Marshall and Johnson, and a concerted effort from various NASA field centers. Johnson Space Center provided programmatic leadership, testing, tools, and crew training; Glenn Research Center provided materials analysis; Langley Research Center provided test support and led an effort to perform large patch repairs; Ames Research Center provided additional testing; and Marshall provided further testing and the site of NOAX manufacturing. Although the sealant never had to be used in an emergency situation, it was tested by astronauts on samples of reinforced carbon-carbon (RCC) during two shuttle missions. (RCC is the thermal material on areas of the shuttle that experience the most heat, such as the nose cone and wing leading edges.) The material handled well on orbit, and tests showed the NOAX patch held up well on RCC.

  18. Active earth pressure model tests versus finite element analysis

    NASA Astrophysics Data System (ADS)

    Pietrzak, Magdalena

    2017-06-01

    The purpose of the paper is to compare failure mechanisms observed in small scale model tests on granular sample in active state, and simulated by finite element method (FEM) using Plaxis 2D software. Small scale model tests were performed on rectangular granular sample retained by a rigid wall. Deformation of the sample resulted from simple wall translation in the direction `from the soil" (active earth pressure state. Simple Coulomb-Mohr model for soil can be helpful in interpreting experimental findings in case of granular materials. It was found that the general alignment of strain localization pattern (failure mechanism) may belong to macro scale features and be dominated by a test boundary conditions rather than the nature of the granular sample.

  19. Binary Colloidal Alloy Test-5: Compete

    NASA Technical Reports Server (NTRS)

    Frisken, Barbara J.; Bailey, Arthur E.; Weitz, David A.

    2008-01-01

    The Binary Colloidal Alloy Test - 5: Compete (BCAT-5-Compete) investigation will photograph andomized colloidal samples onboard the International Space Station (ISS) to determine their resulting structure over time. The use of EarthKAM software and hardware will allow the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-Compete will utilize samples 6 - 8 in the BCAT-5 hardware to study the competition between phase separation and crystallization, which is important in the manufacture of plastics and other materials.

  20. Analytical test results for archived core composite samples from tanks 241-TY-101 and 241-TY-103

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, M.A.

    1993-07-16

    This report describes the analytical tests performed on archived core composite samples form a 1.085 sampling of the 241-TY-101 (101-TY) and 241-TY-103 (103-TY) single shell waste tanks. Both tanks are suspected of containing quantities of ferrocyanide compounds, as a result of process activities in the late 1950`s. Although limited quantities of the composite samples remained, attempts were made to obtain as much analytical information as possible, especially regarding the chemical and thermal properties of the material.

  1. Development of fire test methods for airplane interior materials

    NASA Technical Reports Server (NTRS)

    Tustin, E. A.

    1978-01-01

    Fire tests were conducted in a 737 airplane fuselage at NASA-JSC to characterize jet fuel fires in open steel pans (simulating post-crash fire sources and a ruptured airplane fuselage) and to characterize fires in some common combustibles (simulating in-flight fire sources). Design post-crash and in-flight fire source selections were based on these data. Large panels of airplane interior materials were exposed to closely-controlled large scale heating simulations of the two design fire sources in a Boeing fire test facility utilizing a surplused 707 fuselage section. Small samples of the same airplane materials were tested by several laboratory fire test methods. Large scale and laboratory scale data were examined for correlative factors. Published data for dangerous hazard levels in a fire environment were used as the basis for developing a method to select the most desirable material where trade-offs in heat, smoke and gaseous toxicant evolution must be considered.

  2. Measurement of Cohesion in Asteroid Regolith Materials

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie E.; Gaier, James R.; Waters, Deborah L.; Harvey, Ralph; Zeszut, Zoe; Carreno, Brandon; Shober, Patrick

    2017-01-01

    A study has been initiated to examine cohesive forces in asteroid materials to contribute to a better understanding of low density bodies such as asteroids and Phobos, and assist in exploration missions involving interaction with their surface material. The test specimen used in this study was a lightly weathered CM2 meteorite which is spectroscopically similar to Type C (carbonaceous) asteroids, and thought to have representative surface chemistry. To account for sample heterogeneity, adhesion forces were measured between the CM2 sample and its five primary mineral phase components. These adhesive forces bound the range of cohesive force that can be expected for the bulk material. All materials were characterized using a variety of optical and spectroscopic methods. Adhesive forces on the order of 50 to 400 µN were measured using a torsion balance in an ultrahigh vacuum chamber. The mineral samples exhibited clearly different adhesive strengths in the following hierarchy: Serpentine > Siderite > Bronzite > Olivine ˜ Fe-Ni.

  3. An innovative approach to sampling complex industrial emissions for use in animal toxicity tests: application to iron casting operations.

    PubMed

    Palmer, W G; Scholz, R C; Moorman, W J

    1983-03-01

    Sampling of complex mixtures of airborne contaminants for chronic animal toxicity tests often involves numerous sampling devices, requires extensive sampling time, and yields forms of collected materials unsuitable for administration to animals. A method is described which used a high volume, wet venturi scrubber for collection of respirable fractions of emissions from iron foundry casting operations. The construction and operation of the sampler are presented along with collection efficiency data and its application to the preparation of large quantities of samples to be administered to animals by intratracheal instillation.

  4. The effect of CO2 laser beam welded AISI 316L austenitic stainless steel on the viability of fibroblast cells, in vitro.

    PubMed

    Köse, Ceyhun; Kaçar, Ramazan; Zorba, Aslı Pınar; Bağırova, Melahat; Allahverdiyev, Adil M

    2016-03-01

    It has been determined by the literature research that there is no clinical study on the in vivo and in vitro interaction of the cells with the laser beam welded joints of AISI 316L biomaterial. It is used as a prosthesis and implant material and that has adequate mechanical properties and corrosion resistance characteristics. Therefore, the interaction of the CO2 laser beam welded samples and samples of the base metal of AISI 316L austenitic stainless steel with L929 fibroblast cells as an element of connective tissue under in vitro conditions has been studied. To study the effect of the base metal and the laser welded test specimens on the viability of the fibroblast cells that act as an element of connective tissues in the body, they were kept in DMEMF-12 medium for 7, 14, 28 days and 18 months. The viability study was experimentally studied using the MTT method for 7, 14, 28 days. In addition, the direct interaction of the fibroblast cells seeded on 6 different plates with the samples was examined with an inverted microscope. The MTT cell viability experiment was repeated on the cells that were in contact with the samples. The statistical relationship was analyzed using a Tukey test for the variance with the GraphPad statistics software. The data regarding metallic ion release were identified with the ICP-MS method after the laser welded and main material samples were kept in cell culture medium for 18 months. The cell viability of the laser welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. However, the laser welded sample's viability of the fibroblast cells has diminished by time during the test period of 14 and 28 days and base metal shows better viability when compared to the laser welded samples. On the other hand, the base metal and the laser welded sample show better cell viability effect when compared to the control group. According to the ICP-MS results of the main material and laser welded samples which were kept in the cell culture medium for 18 months, it was determined that the Fe, Ni and Cr ion concentration released to the cell culture medium from the laser welded test sample was less than that of the main material. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Dynamic Finite Element Predictions for Mars Sample Return Cellular Impact Test #4

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Billings, Marcus D.

    2001-01-01

    The nonlinear finite element program MSC.Dytran was used to predict the impact pulse for (he drop test of an energy absorbing cellular structure. This pre-test simulation was performed to aid in the design of an energy absorbing concept for a highly reliable passive Earth Entry Vehicle (EEV) that will directly impact the Earth without a parachute. In addition, a goal of the simulation was to bound the acceleration pulse produced and delivered to the simulated space cargo container. EEV's are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite-epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the enter of the EEV's cellular structure. The material models and failure criteria were varied to determine their effect on the resulting acceleration pulse. Pre-test analytical predictions using MSC.Dytran were compared with the test results obtained from impact test #4 using bungee accelerator located at the NASA Langley Research Center Impact Dynamics Research Facility. The material model used to represent the foam and the proper failure criteria for the cell walls were critical in predicting the impact loads of the cellular structure. It was determined that a FOAMI model for the foam and a 20% failure strain criteria for the cell walls gave an accurate prediction of the acceleration pulse for drop test #4.

  6. The sensitivity of relative toxicity rankings by the USF/NASA test method to some test variables

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Labossiere, L. A.; Leon, H. A.; Kourtides, D. A.; Parker, J. A.; Hsu, M.-T. S.

    1976-01-01

    Pyrolysis temperature and the distance between the source and sensor of effluents are two important variables in tests for relative toxicity. Modifications of the USF/NASA toxicity screening test method to increase the upper temperature limit of pyrolysis, reduce the distance between the sample and the test animals, and increase the chamber volume available for animal occupancy, did not significantly alter rankings of relative toxicity of four representative materials. The changes rendered some differences no longer significant, but did not reverse any rankings. The materials studied were cotton, wool, aromatic polyamide, and polybenzimidazole.

  7. Development and Design Application of Rigidized Surface Insulation Thermal Protection Systems, Volume 1. [for the space shuttle

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Materials and design technology of the all-silica LI-900 rigid surface insulation (RSI) thermal protection system (TPS) concept for the shuttle spacecraft is presented. All results of contract development efforts are documented. Engineering design and analysis of RSI strain arrestor plate material selections, sizing, and weight studies are reported. A shuttle prototype test panel was designed, analyzed, fabricated, and delivered. Thermophysical and mechanical properties of LI-900 were experimentally established and reported. Environmental tests, including simulations of shuttle loads represented by thermal response, turbulent duct, convective cycling, and chemical tolerance tests are described and results reported. Descriptions of material test samples and panels fabricated for testing are included. Descriptions of analytical sizing and design procedures are presented in a manner formulated to allow competent engineering organizations to perform rational design studies. Results of parametric studies involving material and system variables are reported. Material performance and design data are also delineated.

  8. Comparative evaluation of bonding strength of computer aided machined ceramic, pressable ceramic, and milled metal implant abutment copings and effect of surface conditioning on bonding strength: An in vitro study

    PubMed Central

    Rani, Sapna; Verma, Mahesh; Gill, Shubhra; Gupta, Rekha

    2016-01-01

    Background/Purpose: The aim of this study was to compare the shear bond strength of computer aided design/computer aided machined ceramic (CAD/CAM), pressable ceramic, and milled metal implant copings on abutment and the effect of surface conditioning on bonding strength. Materials and Methods: A total of 90 test samples were fabricated on three titanium abutments. Among 90 test samples, 30 copings were fabricated by CAD/CAM, 30 by pressable, and 30 by milling of titanium metal. These 30 test samples in each group were further subdivided equally for surface treatment. Fifteen out of 30 test samples in each group were surface conditioned with airborne particle abrasion. All the 90 test samples were luted on abutment with glass ionomer cement. Bonding strength was evaluated for all the samples using universal testing machine at a crosshead speed of 5 mm/min. The results obtained were compared and evaluated using one-way ANOVA with post-hoc and unpaired t-test at a significance level of 0.05. Results: The mean difference for CAD/CAM surface conditioned subgroup was 1.28 ± 0.12, for nonconditioned subgroup was 1.20 ± 0.11. The mean difference for pressable surface conditioned subgroup was 1.18 ± 0.04, and for nonconditioned subgroup was 0.75 ± 0.28. The mean difference for milled metal surface conditioned subgroup was 2.57 ± 0.58, and for nonconditioned subgroup was 1.49 ± 0.15. Conclusions: On comparison of bonding strength, milled metal copings had an edge over the other two materials, and surface conditioning increased the bond strength. PMID:27141163

  9. Kevlar 49/Epoxy COPV Aging Evaluation

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Salem, Jonathan L.; Thesken, John C.; Russell, Richard W.; Littell, Justin; Ruggeri, Charles; Leifeste, Mark R.

    2008-01-01

    NASA initiated an effort to determine if the aging of Kevlar 49/Epoxy composite overwrapped pressure vessels (COPV) affected their performance. This study briefly reviews the history and certification of composite pressure vessels employed on NASA Orbiters. Tests to evaluate overwrap tensile strength changes compared 30 year old samples from Orbiter vessels to new Kevlar/Epoxy pressure vessel materials. Other tests include transverse compression and thermal analyses (glass transition and moduli). Results from these tests do not indicate a noticeable effect due to aging of the overwrap materials.

  10. A broadband variable-temperature test system for complex permittivity measurements of solid and powder materials

    NASA Astrophysics Data System (ADS)

    Zhang, Yunpeng; Li, En; Zhang, Jing; Yu, Chengyong; Zheng, Hu; Guo, Gaofeng

    2018-02-01

    A microwave test system to measure the complex permittivity of solid and powder materials as a function of temperature has been developed. The system is based on a TM0n0 multi-mode cylindrical cavity with a slotting structure, which provides purer test modes compared to a traditional cavity. To ensure the safety, effectiveness, and longevity, heating and testing are carried out separately and the sample can move between two functional areas through an Alundum tube. Induction heating and a pneumatic platform are employed to, respectively, shorten the heating and cooling time of the sample. The single trigger function of the vector network analyzer is added to test software to suppress the drift of the resonance peak during testing. Complex permittivity is calculated by the rigorous field theoretical solution considering multilayer media loading. The variation of the cavity equivalent radius caused by the sample insertion holes is discussed in detail, and its influence to the test result is analyzed. The calibration method for the complex permittivity of the Alundum tube and quartz vial (for loading powder sample), which vary with the temperature, is given. The feasibility of the system has been verified by measuring different samples in a wide range of relative permittivity and loss tangent, and variable-temperature test results of fused quartz and SiO2 powder up to 1500 °C are compared with published data. The results indicate that the presented system is reliable and accurate. The stability of the system is verified by repeated and long-term tests, and error analysis is presented to estimate the error incurred due to the uncertainties in different error sources.

  11. Cost Analysis of Various Low Pathogenic Avian Influenza Surveillance Systems in the Dutch Egg Layer Sector

    PubMed Central

    Rutten, Niels; Gonzales, José L.; Elbers, Armin R. W.; Velthuis, Annet G. J.

    2012-01-01

    Background As low pathogenic avian influenza viruses can mutate into high pathogenic viruses the Dutch poultry sector implemented a surveillance system for low pathogenic avian influenza (LPAI) based on blood samples. It has been suggested that egg yolk samples could be sampled instead of blood samples to survey egg layer farms. To support future decision making about AI surveillance economic criteria are important. Therefore a cost analysis is performed on systems that use either blood or eggs as sampled material. Methodology/Principal Findings The effectiveness of surveillance using egg or blood samples was evaluated using scenario tree models. Then an economic model was developed that calculates the total costs for eight surveillance systems that have equal effectiveness. The model considers costs for sampling, sample preparation, sample transport, testing, communication of test results and for the confirmation test on false positive results. The surveillance systems varied in sampled material (eggs or blood), sampling location (farm or packing station) and location of sample preparation (laboratory or packing station). It is shown that a hypothetical system in which eggs are sampled at the packing station and samples prepared in a laboratory had the lowest total costs (i.e. € 273,393) a year. Compared to this a hypothetical system in which eggs are sampled at the farm and samples prepared at a laboratory, and the currently implemented system in which blood is sampled at the farm and samples prepared at a laboratory have 6% and 39% higher costs respectively. Conclusions/Significance This study shows that surveillance for avian influenza on egg yolk samples can be done at lower costs than surveillance based on blood samples. The model can be used in future comparison of surveillance systems for different pathogens and hazards. PMID:22523543

  12. Assessment of tbe Performance of Ablative Insulators Under Realistic Solid Rocket Motor Operating Conditions (a Doctoral Dissertation)

    NASA Technical Reports Server (NTRS)

    Martin, Heath Thomas

    2013-01-01

    Ablative insulators are used in the interior surfaces of solid rocket motors to prevent the mechanical structure of the rocket from failing due to intense heating by the high-temperature solid-propellant combustion products. The complexity of the ablation process underscores the need for ablative material response data procured from a realistic solid rocket motor environment, where all of the potential contributions to material degradation are present and in their appropriate proportions. For this purpose, the present study examines ablative material behavior in a laboratory-scale solid rocket motor. The test apparatus includes a planar, two-dimensional flow channel in which flat ablative material samples are installed downstream of an aluminized solid propellant grain and imaged via real-time X-ray radiography. In this way, the in-situ transient thermal response of an ablator to all of the thermal, chemical, and mechanical erosion mechanisms present in a solid rocket environment can be observed and recorded. The ablative material is instrumented with multiple micro-thermocouples, so that in-depth temperature histories are known. Both total heat flux and thermal radiation flux gauges have been designed, fabricated, and tested to characterize the thermal environment to which the ablative material samples are exposed. These tests not only allow different ablative materials to be compared in a realistic solid rocket motor environment but also improve the understanding of the mechanisms that influence the erosion behavior of a given ablative material.

  13. Commutability of the First World Health Organization International Standard for Human Cytomegalovirus

    PubMed Central

    Preiksaitis, J.; Tong, Y.; Pang, X.; Sun, Y.; Tang, L.; Cook, L.; Pounds, S.; Fryer, J.; Caliendo, A. M.

    2015-01-01

    Quantitative detection of cytomegalovirus (CMV) DNA has become a standard part of care for many groups of immunocompromised patients; recent development of the first WHO international standard for human CMV DNA has raised hopes of reducing interlaboratory variability of results. Commutability of reference material has been shown to be necessary if such material is to reduce variability among laboratories. Here we evaluated the commutability of the WHO standard using 10 different real-time quantitative CMV PCR assays run by eight different laboratories. Test panels, including aliquots of 50 patient samples (40 positive samples and 10 negative samples) and lyophilized CMV standard, were run, with each testing center using its own quantitative calibrators, reagents, and nucleic acid extraction methods. Commutability was assessed both on a pairwise basis and over the entire group of assays, using linear regression and correspondence analyses. Commutability of the WHO material differed among the tests that were evaluated, and these differences appeared to vary depending on the method of statistical analysis used and the cohort of assays included in the analysis. Depending on the methodology used, the WHO material showed poor or absent commutability with up to 50% of assays. Determination of commutability may require a multifaceted approach; the lack of commutability seen when using the WHO standard with several of the assays here suggests that further work is needed to bring us toward true consensus. PMID:26269622

  14. Use of intumescent compounds in fire curtains

    NASA Astrophysics Data System (ADS)

    Nedryshkin, Oleg; Gravit, Marina; Mukhamedzhanova, Olga

    2017-10-01

    Automatic fire curtains are designed to divide sections of premises and structures into fire compartments for the purpose of localizing a fire, as well as filling openings in fire barriers. If a fire occurs due to a signal from a fire alarm sensor or a signal from a fire station, the blind automatically falls and locates the source of ignition. The paper presents the results of testing nine samples of fire curtains with an applied intumescent composition. Tests were conducted for 60 minutes before loss of sample integrity. The average temperature from the heated side of the sample reached 800 ∼ 1000 ° C. Depending on the sample, the temperature from the unheated side ranged from 70 ° C to 294 ° C. The best result was shown by a sample from a layer of needle-punched heat-insulating material with a thermal conductivity of 0.036 W/(m×K) placed between layers of foil and treated with water-based intumescent composition of silica material.

  15. Micromechanical and in situ shear testing of Al–SiC nanolaminate composites in a transmission electron microscope (TEM)

    DOE PAGES

    Mayer, Carl; Li, Nan; Mara, Nathan Allan; ...

    2014-11-07

    Nanolaminate composites show promise as high strength and toughness materials. Still, due to the limited volume of these materials, micron scale mechanical testing methods must be used to determine the properties of these films. To this end, a novel approach combining a double notch shear testing geometry and compression with a flat punch in a nanoindenter was developed to determine the mechanical properties of these films under shear loading. To further elucidate the failure mechanisms under shear loading, in situ TEM experiments were performed using a double notch geometry cut into the TEM foil. Aluminum layer thicknesses of 50nm andmore » 100nm were used to show the effect of constraint on the deformation. Higher shear strength was observed in the 50 nm sample (690±54 MPa) compared to the 100 nm sample (423±28.7 MPa). Additionally, failure occurred along the Al-SiC interface in the 50 nm sample as opposed to failure within the Al layer in the 100 nm sample.« less

  16. Concrete Durability in Harsh Environmental Conditions Exposed to Freeze Thaw Cycles

    NASA Astrophysics Data System (ADS)

    Hamze, Youssef

    Under line Pathology of Materials; one of the environmental causes of damage effects on concrete is freeze thaw cycles, which deteriorate the concrete exposed to water in cold weather. An example of old concrete is a dam project that was built in Canada, in the early 1909-1913. This project was reconstructed in 1932, 1934 and 1972, and required renovation due to the ice abrasion with the freeze/thaw cycles. Before completing any renovation, it is required to analyze the structural stability and the concrete failures of this dam. An investigation was conducted to determine the quality of the concrete in the Piers and in the Bridge Deck Slab. It was also required to determine the basic materials' properties that constitute this project. This will improve the analysis of its stability [10]. Core samples were examined and used as test samples, for the Alkali-Silica reactivity test samples, as well as the compressive strength test, the Chloride Ion test, and the freeze thaw testing which was performed on two sets of 12 concrete core samples that were taken from different locations in the project. These locations are the representations of the age of the concrete. Thus, the age difference between the samples' two sets is four decades. Testing was performed on prisms cut from cores. ASTM C-666 procedure (A) was applied using an automatic test system [6]. It was suggested that a plan for renovation of this project should be performed after the analysis is undertaken to assess the conditions estimating the remaining life of the concrete in this project [15].

  17. The Effect of Pile-Up and Contact Area on Hardness Test by Nanoindentation

    NASA Astrophysics Data System (ADS)

    Miyake, Koji; Fujisawa, Satoru; Korenaga, Atsushi; Ishida, Takao; Sasaki, Shinya

    2004-07-01

    We used atomic force microscopy (AFM) for the indentation test evaluating the indentation hardness of materials in the nanometer range. BK7, fused silica, and single-crystal silicon were used as test sample materials. The data analysis processes used to determine the contact area were important in evaluating the indentation hardness of the materials. The direct measurement of the size of the residual hardness impression was useful in evaluating the contact area even in the nanometer region. The results led us to conclude that AFM indentation using a sharp indenter is a powerful method for estimating the indentation hardness in the nanometer range.

  18. 1000541

    NASA Image and Video Library

    2010-04-13

    TATHAN COFFEE (EM10 MATERIALS TEST ENGINEER, JACOBS ESTS GROUP/JTI) ADJUSTS A UNIQUE MECHANICAL TEST SETUP THAT MEASURES STRAIN ON A SINGLE SAMPLE, USING TWO DIFFERENT TECHNIQUES AT THE SAME TIME. THE TEST FIXTURE HOLDS A SPECIMEN THAT REPRESENTS A LIQUID OXYGEN (LOX) BEARING FROM THE J2-X ENGINE

  19. Evaluation of moisture barrier coatings on carbon-phenolic SRM nozzle materials

    NASA Technical Reports Server (NTRS)

    Mcnutt, Ronald C.

    1986-01-01

    The carbon-phenolic composite ablative material used on the Solid Rocket Motor (SRM) nozzle is known to absorb moisture from the atmosphere. This could cause problems such as pocketing during firing. Several moisture barrier coatings were tested on the SRM nozzle material. Data are presented for six of the 12 coatings to be tested. The data were obtained from immersion of coated samples in an environmental chamber at 100 F and 100% relative humidity and by using a modified TGA (thermal gravimetric analysis) technique. The TGA technique involved allowing wet nitrogen (25 C, 80% relative humidity) to flow across a small sample at about 65 cu cm per minute while continually monitoring the weight increase. These preliminary results show Kel-F-800, a material supplied by 3M Corporation to be the better moisture barrier. A second task was to collect data on the relative absorption of water and kerosene into the carbon-phenolic SRM nozzle material. These data indicate that water absorbs into the nozzle material to a much greater extent than kerosene. Thus kerosene is the more likely solvent in which to make specific gravity measurements on the SRM nozzle material.

  20. 40 CFR 60.74 - Test methods and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... select the sampling site, and the sampling point shall be the centroid of the stack or duct or at a point... the production rate (P) of 100 percent nitric acid for each run. Material balance over the production...

Top