Tolle, Charles R [Idaho Falls, ID; Clark, Denis E [Idaho Falls, ID; Smartt, Herschel B [Idaho Falls, ID; Miller, Karen S [Idaho Falls, ID
2009-10-06
A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.
Rare earth-doped materials with enhanced thermoelectric figure of merit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkatasubramanian, Rama; Cook, Bruce Allen; Levin, Evgenii M.
A thermoelectric material and a thermoelectric converter using this material. The thermoelectric material has a first component including a semiconductor material and a second component including a rare earth material included in the first component to thereby increase a figure of merit of a composite of the semiconductor material and the rare earth material relative to a figure of merit of the semiconductor material. The thermoelectric converter has a p-type thermoelectric material and a n-type thermoelectric material. At least one of the p-type thermoelectric material and the n-type thermoelectric material includes a rare earth material in at least one ofmore » the p-type thermoelectric material or the n-type thermoelectric material.« less
Microwave impregnation of porous materials with thermal energy storage materials
Benson, David K.; Burrows, Richard W.
1993-01-01
A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.
Microwave impregnation of porous materials with thermal energy storage materials
Benson, D.K.; Burrows, R.W.
1993-04-13
A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.
Method and apparatus for biological material separation
Robinson, Donna L.
2005-05-10
There has been invented an apparatus comprising a separation barrier for excluding denser cell materials from less dense cell materials after centrifuging of the cells so that selected materials can be withdrawn from the less dense cell materials without inclusion of the denser cell materials or clogging of sampling equipment with denser cell materials. Cells from which selected material is to be withdrawn are centrifuged, either as cells or cells in media. Once the denser cell materials are isolated in a layer by centrifugal force, an invention screen or seive is submerged in the less dense cell material to a level above the layer of denser cell materials to isolate the denser cell materials from the less dense cell materials, preventing mixing of the denser cell materials back into the less dense cell materials when the cells or the cells in media are no longer being centrifuged and to prevent clogging of sampling equipment with denser cell materials. In a particularly useful application of the invention method and apparatus, plasmid DNA can be withdrawn from less dense cell materials without contamination or interference with denser cell materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tooker, Angela C.; Felix, Sarah H.; Pannu, Satinderpall S.
A neural interface includes a first dielectric material having at least one first opening for a first electrical conducting material, a first electrical conducting material in the first opening, and at least one first interconnection trace electrical conducting material connected to the first electrical conducting material. A stiffening shank material is located adjacent the first dielectric material, the first electrical conducting material, and the first interconnection trace electrical conducting material.
Space Materials Handbook. 3rd; ed.
NASA Technical Reports Server (NTRS)
Rittenhouse, John B.; Singletary, John B.
1969-01-01
This edition is the result of an extensive revision and reworking of the second edition of the Space Materials Handbook along with the incorporation of entirely new subject matter coverage and new materials data. All of the most significant material, phenomena, properties, and principles covered in the original Handbook are presented and expanded in this revised and updated version. However, treatment of theoretical aspects has been condensed in order that more emphasis could be placed on the extensive new materials knowledge and data obtained from the design and successful launching of a wide variety of space systems. The handbook is organized into four parts, namely: space environment, effect of space environment on materials, materials in space, and biological interaction with spacecraft materials. Information on mechanical, physical, and chemical properties and characteristics is given for a wide variety of metallic and nonmetallic materials. The effects of natural and induced environments on materials are appraised. Materials categories include coverage of thermal control materials, optical materials, adhesives, organic structural materials, inorganic structural materials, electronic components and materials, materials for sealing applications, and lubrication materials. In addition, a comprehensive multiple citation index is incorporated which gives ready access to information on specific subject areas with regard to their locations within the Handbook.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toth, James J.; Wall, Donald; Wittman, Richard S.
Target assemblies are provided that can include a uranium-comprising annulus. The assemblies can include target material consisting essentially of non-uranium material within the volume of the annulus. Reactors are disclosed that can include one or more discrete zones configured to receive target material. At least one uranium-comprising annulus can be within one or more of the zones. Methods for producing isotopes within target material are also disclosed, with the methods including providing neutrons to target material within a uranium-comprising annulus. Methods for modifying materials within target material are disclosed as well as are methods for characterizing material within a targetmore » material.« less
NASA Astrophysics Data System (ADS)
Lynch, Christopher
2009-10-01
The rapid development of the field of Smart Materials, Adaptive Structures, and Materials Systems led the Aerospace Division ASMS TC to launch the new annual SMASIS conference in 2008. The conference focuses on the multi-disciplinary challenges of developing new multifunctional materials and implementing them in advanced systems. The research spans length scales from nano-structured materials to civil, air, and space structures. The first conference consisted of six symposia, each focusing on a different research area. This special issue of Smart Materials and Structures summarizes some of the top research presented at the 2008 SMASIS conference in the materials-focused symposia. These symposia focused on the behavior and mechanics of active materials, on multifunctional materials, and on bio-inspired materials. The behavior and mechanics of active materials is an approach that combines observed material behavior with mechanism-based models that not only give insight into the observed behavior, but guide the development of new materials. This approach has been applied to shape memory metals and polymers, ferroelectrics, ferromagnetics, and recently to multiferroic materials, and has led to considerable improvements in our understanding of multi-field phenomena. Multifunctional materials are the next generation of active materials. These materials include structural, sensing, and actuation components integrated into a material system. A natural extension of multifunctional materials is a new class of bio-inspired materials. Bio-inspired materials range from detailed bio-mimicry of sensing and self healing materials to nano and microstructures that take advantage of features observed in biological systems. The Editors would like to express their sincere thanks to all of the authors for their contributions to this special issue on 'Adaptive and Active Materials' for Smart Materials and Structures. We convey our gratitude to all of the reviewers for their time and dedication. We thank IOP Publishing for their support and encouragement of this special issue and the staff for their special attention and timely response.
Processing of insulators and semiconductors
Quick, Nathaniel R.; Joshi, Pooran C.; Duty, Chad Edward; Jellison, Jr., Gerald Earle; Angelini, Joseph Attilio
2015-06-16
A method is disclosed for processing an insulator material or a semiconductor material. The method includes pulsing a plasma lamp onto the material to diffuse a doping substance into the material, to activate the doping substance in the material or to metallize a large area region of the material. The method may further include pulsing a laser onto a selected region of the material to diffuse a doping substance into the material, to activate the doping substance in the material or to metallize a selected region of the material.
Methods and system for controlled laser-driven explosive bonding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubenchik, Alexander M.; Farmer, Joseph C.; Hackel, Lloyd
A technique for bonding two dissimilar materials includes positioning a second material over a first material at an oblique angle and applying a tamping layer over the second martial. A laser beam is directed at the second material that generates a plasma at the location of impact on the second material. The plasma generates pressure that accelerates a portion of the second material to a very high velocity and towards the first material. The second material impacts the first material causing bonding of the two materials.
Modeling of materials supply, demand and prices
NASA Technical Reports Server (NTRS)
1982-01-01
The societal, economic, and policy tradeoffs associated with materials processing and utilization, are discussed. The materials system provides the materials engineer with the system analysis required for formulate sound materials processing, utilization, and resource development policies and strategies. Materials system simulation and modeling research program including assessments of materials substitution dynamics, public policy implications, and materials process economics was expanded. This effort includes several collaborative programs with materials engineers, economists, and policy analysts. The technical and socioeconomic issues of materials recycling, input-output analysis, and technological change and productivity are examined. The major thrust areas in materials systems research are outlined.
Transporting particulate material
Aldred, Derek Leslie [North Hollywood, CA; Rader, Jeffrey A [North Hollywood, CA; Saunders, Timothy W [North Hollywood, CA
2011-08-30
A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.
Screening combinatorial arrays of inorganic materials with spectroscopy or microscopy
Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy
2004-02-03
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
Combinatorial synthesis of novel materials
Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy
1999-01-01
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
Combinatorial sythesis of organometallic materials
Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy
2002-07-16
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
Polymer arrays from the combinatorial synthesis of novel materials
Schultz, Peter G.; Xiang, Xiao-Dong; Goldwasser, Isy; Briceno, Gabriel; Sun, Xiao-Dong
2004-09-21
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
Combinatorial synthesis of novel materials
Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy
2002-02-12
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
Preparation and screening of crystalline inorganic materials
Schultz, Peter G [La Jolla, CA; Xiang, Xiaodong [Danville, CA; Goldwasser, Isy [Palo Alto, CA; Brice{hacek over }o, Gabriel; Sun, Xiao-Dong [Fremont, CA; Wang, Kai-An [Cupertino, CA
2008-10-28
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
Combinatorial synthesis of novel materials
Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy
1999-12-21
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
Combinatorial synthesis of novel materials
Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy
2001-01-01
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
Combinatorial screening of inorganic and organometallic materials
Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy
2002-01-01
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
Preparation and screening of crystalline zeolite and hydrothermally-synthesized materials
Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy; Briceno, Gabriel; Sun, Xiao-Dong; Wang, Kai-An
2005-03-08
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
Combinatorial synthesis of inorganic or composite materials
Goldwasser, Isy; Ross, Debra A.; Schultz, Peter G.; Xiang, Xiao-Dong; Briceno, Gabriel; Sun, Xian-Dong; Wang, Kai-An
2010-08-03
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials or, alternatively, allowing the components to interact to form at least two different materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, nonbiological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
Holcomb, Matthew J.
1999-01-01
A composite superconducting material made of coated particles of ceramic superconducting material and a metal matrix material. The metal matrix material fills the regions between the coated particles. The coating material is a material that is chemically nonreactive with the ceramic. Preferably, it is silver. The coating serves to chemically insulate the ceramic from the metal matrix material. The metal matrix material is a metal that is susceptible to the superconducting proximity effect. Preferably, it is a NbTi alloy. The metal matrix material is induced to become superconducting by the superconducting proximity effect when the temperature of the material goes below the critical temperature of the ceramic. The material has the improved mechanical properties of the metal matrix material. Preferably, the material consists of approximately 10% NbTi, 90% coated ceramic particles (by volume). Certain aspects of the material and method will depend upon the particular ceramic superconductor employed. An alternative embodiment of the invention utilizes A15 compound superconducting particles in a metal matrix material which is preferably a NbTi alloy.
Flexible neural interfaces with integrated stiffening shank
Tooker, Angela C.; Felix, Sarah H.; Pannu, Satinderpall S.; Shah, Kedar G.; Sheth, Heeral; Tolosa, Vanessa
2016-07-26
A neural interface includes a first dielectric material having at least one first opening for a first electrical conducting material, a first electrical conducting material in the first opening, and at least one first interconnection trace electrical conducting material connected to the first electrical conducting material. A stiffening shank material is located adjacent the first dielectric material, the first electrical conducting material, and the first interconnection trace electrical conducting material.
Phase-change materials handbook
NASA Technical Reports Server (NTRS)
Hale, D. V.; Hoover, M. J.; Oneill, M. J.
1972-01-01
Handbook describes relationship between phase-change materials and more conventional thermal control techniques and discusses materials' space and terrestrial applications. Material properties of most promising phase-change materials and purposes and uses of metallic filler materials in phase-change material composites are provided.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Mixing of fissile material packages with non... (Radioactive) Materials § 173.459 Mixing of fissile material packages with non-fissile or fissile-excepted material packages. Mixing of fissile material packages with other types of Class 7 (radioactive) materials...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Mixing of fissile material packages with non... (Radioactive) Materials § 173.459 Mixing of fissile material packages with non-fissile or fissile-excepted material packages. Mixing of fissile material packages with other types of Class 7 (radioactive) materials...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Mixing of fissile material packages with non... (Radioactive) Materials § 173.459 Mixing of fissile material packages with non-fissile or fissile-excepted material packages. Mixing of fissile material packages with other types of Class 7 (radioactive) materials...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Mixing of fissile material packages with non... (Radioactive) Materials § 173.459 Mixing of fissile material packages with non-fissile or fissile-excepted material packages. Mixing of fissile material packages with other types of Class 7 (radioactive) materials...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Mixing of fissile material packages with non... (Radioactive) Materials § 173.459 Mixing of fissile material packages with non-fissile or fissile-excepted material packages. Mixing of fissile material packages with other types of Class 7 (radioactive) materials...
10 CFR 35.1000 - Other medical uses of byproduct material or radiation from byproduct material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Other medical uses of byproduct material or radiation from... MATERIAL Other Medical Uses of Byproduct Material or Radiation From Byproduct Material § 35.1000 Other medical uses of byproduct material or radiation from byproduct material. A licensee may use byproduct...
10 CFR 35.1000 - Other medical uses of byproduct material or radiation from byproduct material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Other medical uses of byproduct material or radiation from... MATERIAL Other Medical Uses of Byproduct Material or Radiation From Byproduct Material § 35.1000 Other medical uses of byproduct material or radiation from byproduct material. A licensee may use byproduct...
10 CFR 35.1000 - Other medical uses of byproduct material or radiation from byproduct material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Other medical uses of byproduct material or radiation from... MATERIAL Other Medical Uses of Byproduct Material or Radiation From Byproduct Material § 35.1000 Other medical uses of byproduct material or radiation from byproduct material. A licensee may use byproduct...
10 CFR 35.1000 - Other medical uses of byproduct material or radiation from byproduct material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Other medical uses of byproduct material or radiation from... MATERIAL Other Medical Uses of Byproduct Material or Radiation From Byproduct Material § 35.1000 Other medical uses of byproduct material or radiation from byproduct material. A licensee may use byproduct...
10 CFR 35.1000 - Other medical uses of byproduct material or radiation from byproduct material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Other medical uses of byproduct material or radiation from... MATERIAL Other Medical Uses of Byproduct Material or Radiation From Byproduct Material § 35.1000 Other medical uses of byproduct material or radiation from byproduct material. A licensee may use byproduct...
Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
NASA Astrophysics Data System (ADS)
Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy; Chen, Wei; Richards, William Davidson; Dacek, Stephen; Cholia, Shreyas; Gunter, Dan; Skinner, David; Ceder, Gerbrand; Persson, Kristin A.
2013-07-01
Accelerating the discovery of advanced materials is essential for human welfare and sustainable, clean energy. In this paper, we introduce the Materials Project (www.materialsproject.org), a core program of the Materials Genome Initiative that uses high-throughput computing to uncover the properties of all known inorganic materials. This open dataset can be accessed through multiple channels for both interactive exploration and data mining. The Materials Project also seeks to create open-source platforms for developing robust, sophisticated materials analyses. Future efforts will enable users to perform ``rapid-prototyping'' of new materials in silico, and provide researchers with new avenues for cost-effective, data-driven materials design.
Materials @ LANL: Solutions for National Security Challenges
NASA Astrophysics Data System (ADS)
Teter, David
2012-10-01
Materials science activities impact many programmatic missions at LANL including nuclear weapons, nuclear energy, renewable energy, global security and nonproliferation. An overview of the LANL materials science strategy and examples of materials science programs will be presented. Major materials leadership areas are in materials dynamics, actinides and correlated electron materials, materials in radiation extremes, energetic materials, integrated nanomaterials and complex functional materials. Los Alamos is also planning a large-scale, signature science facility called MaRIE (Matter Radiation Interactions in Extremes) to address in-situ characterization of materials in dynamic and radiation environments using multiple high energy probes. An overview of this facility will also be presented.
Advanced Materials for Exploration Task Research Results
NASA Technical Reports Server (NTRS)
Cook, M. B. (Compiler); Murphy, K. L.; Schneider, T.
2008-01-01
The Advanced Materials for Exploration (AME) Activity in Marshall Space Flight Center s (MSFC s) Exploration Science and Technology Directorate coordinated activities from 2001 to 2006 to support in-space propulsion technologies for future missions. Working together, materials scientists and mission planners identified materials shortfalls that are limiting the performance of long-term missions. The goal of the AME project was to deliver improved materials in targeted areas to meet technology development milestones of NASA s exploration-dedicated activities. Materials research tasks were targeted in five areas: (1) Thermal management materials, (2) propulsion materials, (3) materials characterization, (4) vehicle health monitoring materials, and (5) structural materials. Selected tasks were scheduled for completion such that these new materials could be incorporated into customer development plans.
Armor systems including coated core materials
Chu, Henry S [Idaho Falls, ID; Lillo, Thomas M [Idaho Falls, ID; McHugh, Kevin M [Idaho Falls, ID
2012-07-31
An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.
Armor systems including coated core materials
Chu, Henry S; Lillo, Thomas M; McHugh, Kevin M
2013-10-08
An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.
Catalyst material and method of making
Matson, Dean W.; Fulton, John L.; Linehan, John C.; Bean, Roger M.; Brewer, Thomas D.; Werpy, Todd A.; Darab, John G.
1997-01-01
The material of the present invention is a mixture of catalytically active material and carrier materials, which may be catalytically active themselves. Hence, the material of the present invention provides a catalyst particle that has catalytically active material throughout its bulk volume as well as on its surface. The presence of the catalytically active material throughout the bulk volume is achieved by chemical combination of catalytically active materials with carrier materials prior to or simultaneously with crystallite formation.
Catalyst material and method of making
Matson, D.W.; Fulton, J.L.; Linehan, J.C.; Bean, R.M.; Brewer, T.D.; Werpy, T.A.; Darab, J.G.
1997-07-29
The material of the present invention is a mixture of catalytically active material and carrier materials, which may be catalytically active themselves. Hence, the material of the present invention provides a catalyst particle that has catalytically active material throughout its bulk volume as well as on its surface. The presence of the catalytically active material throughout the bulk volume is achieved by chemical combination of catalytically active materials with carrier materials prior to or simultaneously with crystallite formation. 7 figs.
Material efficiency in a multi-material world.
Lifset, Reid; Eckelman, Matthew
2013-03-13
Material efficiency--using less of a material to make a product or supply a service--is gaining attention as a means for accomplishing important environmental goals. The ultimate goal of material efficiency is not to use less physical material but to reduce the impacts associated with its use. This article examines the concept and definition of material efficiency and argues that for it to be an effective strategy it must confront the challenges of operating in a multi-material world, providing guidance when materials are used together and when they compete. A series of conceptions of material efficiency are described, starting with mass-based formulations and expanding to consider multiple resources in the supply chain of a single material, and then to multiple resources in the supply chains of multiple materials used together, and further to multiple environmental impacts. The conception of material efficiency is further broadened by considering material choice, exploring the technical and economic effects both of using less material and of materials competition. Finally, this entire materials-based techno-economic system is considered with respect to the impact of complex policies and political forces. The overall goal here is to show how the concept of material efficiency when faced with more expansive--and yet directly relevant--definitional boundaries is forced to confront analytical challenges that are both familiar and difficult in life cycle assessment and product-based approaches.
Diagnostic system for profiling micro-beams
Elmer, John W.; Palmer, Todd A.; Teruya, Alan T.; Walton, Chris C.
2007-10-30
An apparatus for characterization of a micro beam comprising a micro modified Faraday cup assembly including a first layer of material, a second layer of material operatively connected to the first layer of material, a third layer of material operatively connected to the second layer of material, and a fourth layer of material operatively connected to the third layer of material. The first layer of material comprises an electrical conducting material and has at least one first layer radial slit extending through the first layer. An electrical ground is connected to the first layer. The second layer of material comprises an insulating material and has at least one second layer radial slit corresponding to the first layer radial slit in the first layer of material. The second layer radial slit extends through the second layer. The third layer of material comprises a conducting material and has at least one third layer radial slit corresponding to the second layer radial slit in the second layer of material. The third layer radial slit extends through the third layer. The fourth layer of material comprises an electrical conducting material but does not have slits. An electrical measuring device is connected to the fourth layer. The micro modified Faraday cup assembly is positioned to be swept by the micro beam.
Lightweight Combat Vehicle S and T Campaign
2014-10-06
research in nano-materials, self - healing /diagnosing materials, multi-functional materials, and environmentally acceptable materials. The application...research includes nano-materials, self - healing /diagnosing materials, multi-functional materials, and environmentally acceptable materials.5 The 2003...hubs must be led by a not-for-profit organization, provide 50% cost share match, and are expected to become self -sufficient in 5 years. So far, all
NASA LaRC Hazardous Material Pharmacy
NASA Technical Reports Server (NTRS)
Esquenet, Remy
1995-01-01
In 1993-1994 the Office of Environmental Engineering contracted SAIC to develop NASA Langley's Pollution Prevention (P2) Program. One of the priority projects identified in this contract was the development of a hazardous waste minimization (HAZMIN)/hazardous materials reutilization (HAZMART) program in the form of a Hazardous Materials Pharmacy. A hazardous materials pharmacy is designed to reduce hazardous material procurement costs and hazardous waste disposal costs. This is accomplished through the collection and reissue of excess hazardous material. Currently, a rarely used hazardous material may be stored in a shop area, unused, until it passes its expiration date. The material is then usually disposed of as a hazardous waste, often at a greater expense than the original cost of the material. While this material was on the shelf expiring, other shop areas may have ordered new supplies of the same material. The hazardous material pharmacy would act as a clearinghouse for such materials. Material that is not going to be used would be turned in to the pharmacy. Other users could then be issued this material free of charge, thereby reducing procurement costs. The use of this material by another shop prevents it from expiring, thereby reducing hazardous waste disposal costs.
49 CFR 178.345-2 - Material and material thickness.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Material and material thickness. 178.345-2 Section... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.345-2 Material and material...
48 CFR 52.211-5 - Material Requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Material Requirements. 52....211-5 Material Requirements. As prescribed in 11.304, insert the following clause: Material... components, whether manufactured from virgin material, recovered material in the form of raw material, or...
48 CFR 52.211-5 - Material Requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Material Requirements. 52....211-5 Material Requirements. As prescribed in 11.304, insert the following clause: Material... components, whether manufactured from virgin material, recovered material in the form of raw material, or...
49 CFR 178.345-2 - Material and material thickness.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Material and material thickness. 178.345-2 Section... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.345-2 Material and material...
49 CFR 178.345-2 - Material and material thickness.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Material and material thickness. 178.345-2 Section... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.345-2 Material and material...
49 CFR 178.345-2 - Material and material thickness.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Material and material thickness. 178.345-2 Section... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.345-2 Material and material...
Combinatorial synthesis and screening of non-biological polymers
Schultz, Peter G.; Xiang, Xiao-Dong; Goldwasser, Isy; Briceno, Gabriel; Sun, Xiao-Dong; Wang, Kai-An
2006-04-25
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
Giant magnetoresistive cobalt oxide compounds
Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy
1998-01-01
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
Giant magnetoresistive cobalt oxide compounds
Schultz, P.G.; Xiang, X.; Goldwasser, I.
1998-07-07
Methods and apparatus are disclosed for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties. 58 figs.
Synthesis and screening combinatorial arrays of zeolites
Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy
2003-11-18
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
Combinatorial and high-throughput screening of materials libraries: review of state of the art.
Potyrailo, Radislav; Rajan, Krishna; Stoewe, Klaus; Takeuchi, Ichiro; Chisholm, Bret; Lam, Hubert
2011-11-14
Rational materials design based on prior knowledge is attractive because it promises to avoid time-consuming synthesis and testing of numerous materials candidates. However with the increase of complexity of materials, the scientific ability for the rational materials design becomes progressively limited. As a result of this complexity, combinatorial and high-throughput (CHT) experimentation in materials science has been recognized as a new scientific approach to generate new knowledge. This review demonstrates the broad applicability of CHT experimentation technologies in discovery and optimization of new materials. We discuss general principles of CHT materials screening, followed by the detailed discussion of high-throughput materials characterization approaches, advances in data analysis/mining, and new materials developments facilitated by CHT experimentation. We critically analyze results of materials development in the areas most impacted by the CHT approaches, such as catalysis, electronic and functional materials, polymer-based industrial coatings, sensing materials, and biomaterials.
Systems and methods for treating material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheele, Randall D; McNamara, Bruce K
Systems for treating material are provided that can include a vessel defining a volume, at least one conduit coupled to the vessel and in fluid communication with the vessel, material within the vessel, and NF.sub.3 material within the conduit. Methods for fluorinating material are provided that can include exposing the material to NF.sub.3 to fluorinate at least a portion of the material. Methods for separating components of material are also provided that can include exposing the material to NF.sub.3 to at least partially fluorinate a portion of the material, and separating at least one fluorinated component of the fluorinated portionmore » from the material. The materials exposed to the NF.sub.3 material can include but are not limited to one or more of U, Ru, Rh, Mo, Tc, Np, Pu, Sb, Ag, Am, Sn, Zr, Cs, Th, and/or Rb.« less
Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID
2011-02-01
Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.
Stratigraphy of the Perrine and Nun Sulci quadrangles (Jg-2 and Jg-5), Ganymede
NASA Technical Reports Server (NTRS)
Mcgill, George E.; Squyres, Steven W.
1991-01-01
Dark and light terrain materials in the Perrine and Nun Sulci quadrangles are divided into nine map units, four dark, and five light. These are placed in time-stratigraphic sequence primarily by means of embayment and cross-cutting relationships. Dark terrain is generally more heavily cratered and thus older that light terrain but, at least in these quadrangles, crater densities are not reliable indicators of relative ages among the four dark material units. The four mapped material units within dark terrain are: cratered dark materials (dc), grooved dark materials (dg), transitional dark materials (di), and dark materials, undivided (d). The five mapped units within light terrain are: intermediate light materials (li), grooved light materials (lg), irregularly grooved light materials (lgl), smooth light materials (ls), and light materials, undivided.
Polymeric membrane materials for artificial organs.
Kawakami, Hiroyoshi
2008-01-01
Many polymeric materials have already been used in the field of artificial organs. However, the materials used in artificial organs are not necessarily created with the best material selectivity and materials design; therefore, the development of synthesized polymeric membrane materials for artificial organs based on well-defined designs is required. The approaches to the development of biocompatible polymeric materials fall into three categories: (1) control of physicochemical characteristics on material surfaces, (2) modification of material surfaces using biomolecules, and (3) construction of biomimetic membrane surfaces. This review will describe current issues regarding polymeric membrane materials for use in artificial organs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kikinzon, Evgeny; Kuznetsov, Yuri; Lipnikov, Konstatin
In this study, we describe a new algorithm for solving multi-material diffusion problem when material interfaces are not aligned with the mesh. In this case interface reconstruction methods are used to construct approximate representation of interfaces between materials. They produce so-called multi-material cells, in which materials are represented by material polygons that contain only one material. The reconstructed interface is not continuous between cells. Finally, we suggest the new method for solving multi-material diffusion problems on such meshes and compare its performance with known homogenization methods.
Kikinzon, Evgeny; Kuznetsov, Yuri; Lipnikov, Konstatin; ...
2017-07-08
In this study, we describe a new algorithm for solving multi-material diffusion problem when material interfaces are not aligned with the mesh. In this case interface reconstruction methods are used to construct approximate representation of interfaces between materials. They produce so-called multi-material cells, in which materials are represented by material polygons that contain only one material. The reconstructed interface is not continuous between cells. Finally, we suggest the new method for solving multi-material diffusion problems on such meshes and compare its performance with known homogenization methods.
Space Exploration: Oh, the Materials You'll Need!
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.
2016-01-01
Space exploration has many challenges and materials are critical for many of the systems required to enable robotic or human space exploration. This talk will highlight challenges for materials with an emphasis on thermal protection materials and systems. Solving the materials issues will require thinking about materials in the systems and environments where are they to be used. In many cases the materials must be designed for the application, and the system needs to be designed with the materials in mind. The talk will conclude with some thoughts on the skills needed for materials scientists and engineers working on materials for space.
10 CFR 962.3 - Byproduct material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Byproduct material. 962.3 Section 962.3 Energy DEPARTMENT OF ENERGY BYPRODUCT MATERIAL § 962.3 Byproduct material. (a) For purposes of this part, the term byproduct material means any radioactive material (except special nuclear material) yielded in or made...
10 CFR 962.3 - Byproduct material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Byproduct material. 962.3 Section 962.3 Energy DEPARTMENT OF ENERGY BYPRODUCT MATERIAL § 962.3 Byproduct material. (a) For purposes of this part, the term byproduct material means any radioactive material (except special nuclear material) yielded in or made...
Method of making nanostructured glass-ceramic waste forms
Gao, Huizhen; Wang, Yifeng; Rodriguez, Mark A.; Bencoe, Denise N.
2012-12-18
A method of rendering hazardous materials less dangerous comprising trapping the hazardous material in nanopores of a nanoporous composite material, reacting the trapped hazardous material to render it less volatile/soluble, sealing the trapped hazardous material, and vitrifying the nanoporous material containing the less volatile/soluble hazardous material.
10 CFR 962.3 - Byproduct material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Byproduct material. 962.3 Section 962.3 Energy DEPARTMENT OF ENERGY BYPRODUCT MATERIAL § 962.3 Byproduct material. (a) For purposes of this part, the term byproduct material means any radioactive material (except special nuclear material) yielded in or made...
10 CFR 962.3 - Byproduct material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Byproduct material. 962.3 Section 962.3 Energy DEPARTMENT OF ENERGY BYPRODUCT MATERIAL § 962.3 Byproduct material. (a) For purposes of this part, the term byproduct material means any radioactive material (except special nuclear material) yielded in or made...
29 CFR 1910.1096 - Ionizing radiation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... material, as defined in the Atomic Energy Act of 1954, as amended, under a license issued by the Nuclear... material, byproduct material, or special nuclear material, as defined in the Atomic Energy Act of 1954, as... source material, byproduct material, or special nuclear material, as defined in the Atomic Energy Act of...
29 CFR 1910.1096 - Ionizing radiation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... material, as defined in the Atomic Energy Act of 1954, as amended, under a license issued by the Nuclear... material, byproduct material, or special nuclear material, as defined in the Atomic Energy Act of 1954, as... source material, byproduct material, or special nuclear material, as defined in the Atomic Energy Act of...
29 CFR 1910.1096 - Ionizing radiation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... material, as defined in the Atomic Energy Act of 1954, as amended, under a license issued by the Nuclear... material, byproduct material, or special nuclear material, as defined in the Atomic Energy Act of 1954, as... source material, byproduct material, or special nuclear material, as defined in the Atomic Energy Act of...
The Physics and Chemistry of Materials
NASA Astrophysics Data System (ADS)
Gersten, Joel I.; Smith, Frederick W.
2001-06-01
A comprehensive introduction to the structure, properties, and applications of materials This title provides the first unified treatment for the broad subject of materials. Authors Gersten and Smith use a fundamental approach to define the structure and properties of a wide range of solids on the basis of the local chemical bonding and atomic order present in the material. Emphasizing the physical and chemical origins of material properties, the book focuses on the most technologically important materials being utilized and developed by scientists and engineers. Appropriate for use in advanced materials courses, The Physics and Chemistry of Materials provides the background information necessary to assimilate the current academic and patent literature on materials and their applications. Problem sets, illustrations, and helpful tables complete this well-rounded new treatment. Five sections cover these important topics: * Structure of materials, including crystal structure, bonding in solids, diffraction and the reciprocal lattice, and order and disorder in solids * Physical properties of materials, including electrical, thermal, optical, magnetic, and mechanical properties * Classes of materials, including semiconductors, superconductors, magnetic materials, and optical materials in addition to metals, ceramics, polymers, dielectrics, and ferroelectrics * A section on surfaces, thin films, interfaces, and multilayers discusses the effects of spatial discontinuities in the physical and chemical structure of materials * A section on synthesis and processing examines the effects of synthesis on the structure and properties of various materials This book is enhanced by a Web-based supplement that offers advanced material together with an entire electronic chapter on the characterization of materials. The Physics and Chemistry of Materials is a complete introduction to the structure and properties of materials for students and an excellent reference for scientists and engineers.
NASA Astrophysics Data System (ADS)
Huang, Zhao
2011-12-01
Compared to 'conventional' materials made from metal, glass, or ceramics, protein-based materials have unique mechanical properties. Furthermore, the morphology, mechanical properties, and functionality of protein-based materials may be optimized via sequence engineering for use in a variety of applications, including textile materials, biosensors, and tissue engineering scaffolds. The development of recombinant DNA technology has enabled the production and engineering of protein-based materials ex vivo. However, harsh production conditions can compromise the mechanical properties of protein-based materials and diminish their ability to incorporate functional proteins. Developing a new generation of protein-based materials is crucial to (i) improve materials assembly conditions, (ii) create novel mechanical properties, and (iii) expand the capacity to carry functional protein/peptide sequences. This thesis describes development of novel protein-based materials using Ultrabithorax, a member of the Hox family of proteins that regulate developmental pathways in Drosophila melanogaster. The experiments presented (i) establish the conditions required for the assembly of Ubx-based materials, (ii) generate a wide range of Ubx morphologies, (iii) examine the mechanical properties of Ubx fibers, (iv) incorporate protein functions to Ubx-based materials via gene fusion, (v) pattern protein functions within the Ubx materials, and (vi) examine the biocompatibility of Ubx materials in vitro. Ubx-based materials assemble at mild conditions compatible with protein folding and activity, which enables Ubx chimeric materials to retain the function of appended proteins in spatial patterns determined by materials assembly. Ubx-based materials also display mechanical properties comparable to existing protein-based materials and demonstrate good biocompatibility with living cells in vitro. Taken together, this research demonstrates the unique features and future potential of novel Ubx-based materials.
Non-thermal plasma conversion of hydrocarbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strohm, James J.; Skoptsov, George L.; Musselman, Evan T.
A non-thermal plasma is generated to selectively convert a precursor to a product. More specifically, plasma forming material and a precursor material are provided to a reaction zone of a vessel. The reaction zone is exposed to microwave radiation, including exposing the plasma forming material and the precursor material to the microwave radiation. The exposure of the plasma forming material to the microwave radiation selectively converts the plasma forming material to a non-thermal plasma including formation of one or more streamers. The precursor material is mixed with the plasma forming material and the precursor material is exposed to the non-thermalmore » plasma including exposing the precursor material to the one or more streamers. The exposure of the precursor material to the streamers and the microwave radiation selectively converts the precursor material to a product.« less
Hydrogen gettering packing material, and process for making same
LeMay, James D.; Thompson, Lisa M.; Smith, Henry Michael; Schicker, James R.
2001-01-01
A hydrogen gettering system for a sealed container is disclosed comprising packing material for use within the sealed container, and a coating film containing hydrogen gettering material on at least a portion of the surface of such packing material. The coating film containing the hydrogen gettering material comprises a mixture of one or more organic materials capable of reacting with hydrogen and one or more catalysts capable of catalyzing the reaction of hydrogen with such one or more organic materials. The mixture of one or more organic materials capable of reacting with hydrogen and the one or more catalysts is dispersed in a suitable carrier which preferably is a curable film-forming material. In a preferred embodiment, the packing material comprises a foam material which is compatible with the coating film containing hydrogen gettering material thereon.
Buffer layers for coated conductors
Stan, Liliana [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM
2011-08-23
A composite structure is provided including a base substrate, an IBAD oriented material upon the base substrate, and a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material. Additionally, an article is provided including a base substrate, an IBAD oriented material upon the base substrate, a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material, and a thick film upon the cubic metal oxide material. Finally, a superconducting article is provided including a base substrate, an IBAD oriented material upon the base substrate, a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material, and an yttrium barium copper oxide material upon the cubic metal oxide material.
Composite materials formed with anchored nanostructures
Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei
2015-03-10
A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.
Green materials for sustainable development
NASA Astrophysics Data System (ADS)
Purwasasmita, B. S.
2017-03-01
Sustainable development is an integrity of multidiscipline concept combining ecological, social and economic aspects to construct a liveable human living system. The sustainable development can be support through the development of green materials. Green materials offers a unique characteristic and properties including abundant in nature, less toxic, economically affordable and versatility in term of physical and chemical properties. Green materials can be applied for a numerous field in science and technology applications including for energy, building, construction and infrastructures, materials science and engineering applications and pollution management and technology. For instance, green materials can be developed as a source for energy production. Green materials including biomass-based source can be developed as a source for biodiesel and bioethanol production. Biomass-based materials also can be transformed into advanced functionalized materials for advanced bio-applications such as the transformation of chitin into chitosan which further used for biomedicine, biomaterials and tissue engineering applications. Recently, cellulose-based material and lignocellulose-based materials as a source for the developing functional materials attracted the potential prospect for biomaterials, reinforcing materials and nanotechnology. Furthermore, the development of pigment materials has gaining interest by using the green materials as a source due to their unique properties. Eventually, Indonesia as a large country with a large biodiversity can enhance the development of green material to strengthen our nation competitiveness and develop the materials technology for the future.
Coated armor system and process for making the same
Chu, Henry S.; Lillo, Thomas M.; McHugh, Kevin M.
2010-11-23
An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.
Ryu, Sunmin; Brus, Louis E.; Steigerwald, Michael L.; Liu, Haitao
2012-09-25
Systems and methods are disclosed herein for forming defects on graphitic materials. The methods for forming defects include applying a radiation reactive material on a graphitic material, irradiating the applied radiation reactive material to produce a reactive species, and permitting the reactive species to react with the graphitic material to form defects. Additionally, disclosed are methods for removing defects on graphitic materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mccall, Scott K.; Kuntz, Joshua D.
A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.
Municipal waste processing apparatus
Mayberry, John L.
1988-01-01
Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Pieces of material which become lodged in the openings of the conveyor belt may be removed by cylindrical deraggers or pressurized air. The crushed materials may be fed onto the conveyor belt by a vibrating feed plate which shakes the materials so that they tend to lie flat.
Dopant type and/or concentration selective dry photochemical etching of semiconductor materials
Ashby, Carol I. H.; Dishman, James L.
1987-01-01
A method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method, comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p- type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.
Dopant type and/or concentration selective dry photochemical etching of semiconductor materials
Ashby, C.R.H.; Dishman, J.L.
1985-10-11
Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p-type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Alex
2013-01-09
Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.
King, Alex
2017-12-22
Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.
Miller, Steven D.
1996-01-01
The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.
ERIC Educational Resources Information Center
Aziz, Anealka; Fook, Chan Yuen; Alsree, Zubaida
2010-01-01
Reading materials are considered having high readability if readers are interested to read the materials, understand the content of the materials and able to read the materials fluently. In contrast, reading materials with low readability discourage readers from reading the materials, create difficulties for readers to understand the content of…
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Nuclear material control and accounting for special nuclear material of moderate strategic significance. 74.41 Section 74.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear material control and accounting for special nuclear material of low strategic significance. 74.31 Section 74.31 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material of Low...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Nuclear material control and accounting for special nuclear material of moderate strategic significance. 74.41 Section 74.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear material control and accounting for special nuclear material of moderate strategic significance. 74.41 Section 74.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear material control and accounting for special nuclear material of moderate strategic significance. 74.41 Section 74.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear material control and accounting for special nuclear material of low strategic significance. 74.31 Section 74.31 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material of Low...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for special nuclear material of moderate strategic significance. 74.41 Section 74.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Nuclear material control and accounting for special nuclear material of low strategic significance. 74.31 Section 74.31 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material of Low...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Nuclear material control and accounting for special nuclear material of low strategic significance. 74.31 Section 74.31 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material of Low...
Theoretical backgrounds of non-tempered materials production based on new raw materials
NASA Astrophysics Data System (ADS)
Lesovik, V. S.; Volodchenko, A. A.; Glagolev, E. S.; Chernysheva, N. V.; Lashina, I. V.; Feduk, R. S.
2018-03-01
One of the trends in construction material science is development and implementation of highly effective finish materials which improve architectural exterior of cities. Silicate materials widely-used in the construction today have rather low decorative properties. Different coloring agents are used in order to produce competitive materials, but due to the peculiarities of the production, process very strict specifications are applied to them. The use of industrial wastes or variety of rock materials as coloring agents is of great interest nowadays. The article shows that clay rock can be used as raw material in production of finish materials of non-autoclaved solidification. This raw material due to its material composition actively interacts with cementing component in steam treatment at 90–95 °C with formation of cementing joints that form a firm coagulative-cristalized and crystallization structure of material providing high physic-mechanical properties of silicate goods. It is determined that energy-saving, colored finish materials with compression strength up to 16 MPa can be produced from clay rocks.
Materials science and architecture
NASA Astrophysics Data System (ADS)
Bechthold, Martin; Weaver, James C.
2017-12-01
Materiality — the use of various materials in architecture — has been fundamental to the design and construction of buildings, and materials science has traditionally responded to needs formulated by design, engineering and construction professionals. Material properties and processes are shaping buildings and influencing how they perform. The advent of technologies such as digital fabrication, robotics and 3D printing have not only accelerated the development of new construction solutions, but have also led to a renewed interest in materials as a catalyst for novel architectural design. In parallel, materials science has transformed from a field that explains materials to one that designs materials from the bottom up. The conflation of these two trends is giving rise to materials-based design research in which architects, engineers and materials scientists work as partners in the conception of new materials systems and their applications. This Review surveys this development for different material classes (wood, ceramics, metals, concrete, glass, synthetic composites and polymers), with an emphasis on recent trends and innovations.
Organic hybrid planar-nanocrystalline bulk heterojunctions
Forrest, Stephen R [Ann Arbor, MI; Yang, Fan [Piscataway, NJ
2011-03-01
A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.
Organic hybrid planar-nanocrystalline bulk heterojunctions
Forrest, Stephen R.; Yang, Fan
2013-04-09
A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.
Process for producing dispersed particulate composite materials
Henager, Jr., Charles H.; Hirth, John P.
1995-01-01
This invention is directed to a process for forming noninterwoven dispersed particulate composite products. In one case a composite multi-layer film product comprises a substantially noninterwoven multi-layer film having a plurality of discrete layers. This noninterwoven film comprises at least one discrete layer of a first material and at least one discrete layer of a second material. In another case the first and second materials are blended together with each other. In either case, the first material comprises a metalloid and the second material a metal compound. At least one component of a first material in one discrete layer undergoes a solid state displacement reaction with at least one component of a second material thereby producing the requisite noninterwoven composite film product. Preferably, the first material comprises silicon, the second material comprises Mo.sub.2 C, the third material comprises SiC and the fourth material comprises MoSi.sub.2.
Rolllins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID
2012-07-24
Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.
All 2D, high mobility, flexible, transparent thin film transistor
Das, Saptarshi; Sumant, Anirudha V.; Roelofs, Andreas
2017-01-17
A two-dimensional thin film transistor and a method for manufacturing a two-dimensional thin film transistor includes layering a semiconducting channel material on a substrate, providing a first electrode material on top of the semiconducting channel material, patterning a source metal electrode and a drain metal electrode at opposite ends of the semiconducting channel material from the first electrode material, opening a window between the source metal electrode and the drain metal electrode, removing the first electrode material from the window located above the semiconducting channel material providing a gate dielectric above the semiconducting channel material, and providing a top gate above the gate dielectric, the top gate formed from a second electrode material. The semiconducting channel material is made of tungsten diselenide, the first electrode material and the second electrode material are made of graphene, and the gate dielectric is made of hexagonal boron nitride.
NASA Technical Reports Server (NTRS)
Ho, T. L.; Peterson, M. B.
1974-01-01
The requirements of brake materials were outlined and a survey made to select materials to meet the needs of high temperature brakes. A number of metals and ceramic materials were selected and evaluated in sliding tests which simulated aircraft braking. Nickel, molybdenum tungsten, Zr02, high temperature cements and carbons were tested. Additives were then incorporated into these materials to optimize their wear or strength behavior with particular emphasis on nickel and molybdenum base materials and a high temperature potassium silicate cement. Optimum materials were developed which improved wear behavior over conventional brake materials in the simulated test. The best materials are a nickel, aluminum oxide, lead tungstate composition containing graphite or molybdenum disulphite; a molybdenum base material containing LPA100 (an intermetallic compound of cobalt, molybdenum, and silicon); and a carbon material (P5).
Thermoelectric skutterudite compositions and methods for producing the same
Ren, Zhifeng; Yang, Jian; Yan, Xiao; He, Qinyu; Chen, Gang; Hao, Qing
2014-11-11
Compositions related to skutterudite-based thermoelectric materials are disclosed. Such compositions can result in materials that have enhanced ZT values relative to one or more bulk materials from which the compositions are derived. Thermoelectric materials such as n-type and p-type skutterudites with high thermoelectric figures-of-merit can include materials with filler atoms and/or materials formed by compacting particles (e.g., nanoparticles) into a material with a plurality of grains each having a portion having a skutterudite-based structure. Methods of forming thermoelectric skutterudites, which can include the use of hot press processes to consolidate particles, are also disclosed. The particles to be consolidated can be derived from (e.g., grinded from), skutterudite-based bulk materials, elemental materials, other non-Skutterudite-based materials, or combinations of such materials.
Visible scintillation photodetector device incorporating chalcopyrite semiconductor crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stowe, Ashley C.; Burger, Arnold
2017-04-04
A photodetector device, including: a scintillator material operable for receiving incident radiation and emitting photons in response; a photodetector material coupled to the scintillator material operable for receiving the photons emitted by the scintillator material and generating a current in response, wherein the photodetector material includes a chalcopyrite semiconductor crystal; and a circuit coupled to the photodetector material operable for characterizing the incident radiation based on the current generated by the photodetector material. Optionally, the scintillator material includes a gamma scintillator material and the incident radiation received includes gamma rays. Optionally, the photodetector material is further operable for receiving thermalmore » neutrons and generating a current in response. The circuit is further operable for characterizing the thermal neutrons based on the current generated by the photodetector material.« less
Methods of producing armor systems, and armor systems produced using such methods
Chu, Henry S; Lillo, Thomas M; McHugh, Kevin M
2013-02-19
An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.
Thermoelectric Skutterudite Compositions and Methods for Producing the Same
NASA Technical Reports Server (NTRS)
Yang, Jian (Inventor); Yan, Xiao (Inventor); Ren, Zhifeng (Inventor); Hao, Qing (Inventor); He, Qinyu (Inventor); Chen, Gang (Inventor)
2014-01-01
Compositions related to skutterudite-based thermoelectric materials are disclosed. Such compositions can result in materials that have enhanced ZT values relative to one or more bulk materials from which the compositions are derived. Thermoelectric materials such as n-type and p-type skutterudites with high thermoelectric figures-of-merit can include materials with filler atoms and/or materials formed by compacting particles (e.g., nanoparticles) into a material with a plurality of grains each having a portion having a skutterudite-based structure. Methods of forming thermoelectric skutterudites, which can include the use of hot press processes to consolidate particles, are also disclosed. The particles to be consolidated can be derived from (e.g., grinded from), skutterudite-based bulk materials, elemental materials, other non-Skutterudite-based materials, or combinations of such materials.
Encapsulation of thermal energy storage media
Dhau, Jaspreet; Goswami, Dharendra; Jotshi, Chand K.; Stefanakos, Elias K.
2017-09-19
In one embodiment, a phase change material is encapsulated by forming a phase change material pellet, coating the pellet with flexible material, heating the coated pellet to melt the phase change material, wherein the phase change materials expands and air within the pellet diffuses out through the flexible material, and cooling the coated pellet to solidify the phase change material.
75 FR 30863 - Nixon Presidential Historical Materials: Opening of Materials
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-02
... NATIONAL ARCHIVES AND RECORDS ADMINISTRATION Nixon Presidential Historical Materials: Opening of Materials AGENCY: National Archives and Records Administration. ACTION: Notice of opening of additional materials. SUMMARY: This notice announces the opening of additional Nixon Presidential Historical Materials...
Weyand, J.D.; Woods, R.W.; DeYoung, D.H.; Ray, S.P.
1985-02-19
An inert electrode connection is disclosed wherein a layer of inert electrode material is bonded to a layer of conductive material by providing at least one intermediate layer of material therebetween comprising a predetermined ratio of inert material to conductive material. In a preferred embodiment, the connection is formed by placing in a die a layer of powdered inert material, at least one layer of a mixture of powdered inert material and conductive material, and a layer of powdered conductive material. The connection is then formed by pressing the material at 15,000--20,000 psi to form a powder compact and then densifying the powder compact in an inert or reducing atmosphere at a temperature of 1,200--1,500 C. 5 figs.
NASA Technical Reports Server (NTRS)
Moore, H. J.
1991-01-01
A semiquantitative appreciation for the physical properties of the Mars surface materials and their global variations can be gained from the Viking Lander and remote sensing observations. Analyses of Lander data yields estimates of the mechanical properties of the soil-like surface materials and best guess estimates can be made for the remote sensing signatures of the soil-like materials at the landing sites. Results show that significant thickness of powderlike surface materials with physical properties similar to drift material are present on Mars and probably pervasive in the Tharsis region. It also appears likely that soil-like materials similar to crusty to cloddy material are typical for Mars, and that soil-like material similar to blocky material are common on Mars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Dong-Kyun; Medpelli, Dinesh; Ladd, Danielle
A product formed from a first material including a geopolymer resin material, a geopolymer material, or a combination thereof by contacting the first material with a fluid and removing at least some of the fluid to yield a product. The first material may be formed by heating and/or aging an initial geopolymer resin material to yield the first material before contacting the first material with the fluid. In some cases, contacting the first material with the fluid breaks up or disintegrates the first material (e.g., in response to contact with the fluid and in the absence of external mechanical stress),more » thereby forming particles having an external dimension in a range between 1 nm and 2 cm.« less
Orbital foamed material extruder
NASA Technical Reports Server (NTRS)
Tucker, Dennis S. (Inventor)
2009-01-01
This invention is a process for producing foamed material in space comprising the steps of: rotating the material to simulate the force of gravity; heating the rotating material until it is molten; extruding the rotating, molten material; injecting gas into the extruded, rotating, molten material to produce molten foamed material; allowing the molten foamed material to cool to below melting temperature to produce the foamed material. The surface of the extruded foam may be heated to above melting temperature and allowed to cool to below melting temperature. The extruded foam may also be cut to predetermined length. The starting material may be metal or glass. Heating may be accomplished by electrical heating elements or by solar heating.
Municipal waste processing apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayberry, J L
1987-01-15
Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Pieces of material which become lodged in the openings of the conveyor belt may be removed by cylindrical deraggers or pressurized air. The crushed materials may be fed onto the conveyor belt by a vibrating feedmore » plate which shakes the materials so that they tend to lie flat.« less
Method for manufacturing lightning strike mitigation composites
NASA Technical Reports Server (NTRS)
Vaidyanathan, K. Ranji (Inventor); Campbell, Jeffrey (Inventor)
2012-01-01
A method for manufacturing a composite material utilizes a tooling material having a desired shape. The surface of the tooling material is coated with a composite film that includes a conductive filler material. A composite composition is introduced into contact with the surface of the tooling material to form a desired shape. The composite composition is processed to produce the composite material, and the composite material has a conductive composite surface layer that includes the conductive filler material.
NASA Astrophysics Data System (ADS)
Syahdan; Lusandi, Budi
2018-05-01
Indonesia is a maritime country with the largest islands in the world covering more than seventeen thousands islands. This wealth should be wisely explored for all their advantages. Also, all parties should take responsibility to inherit values embedded in the wealth. This study is a Research and Development focusing at developing English worksheet materials in the theme of Maritime Thematic Expressions. Specifically, it aimed at identifying initial contents of the English worksheet, describing the development of worksheet materials and justifying contents of worksheet materials in facilitating the students’ needs in reading English materials. The flow of this R&D refers to Sugiono’s model that includes analyzing data, collecting data, designing materials, validating material, revising the material, piloting products, revising the material, piloting materials, revising the material and material development. The development of this material adjusted to the needs of syllabus and national strategic issues in maritime that were coined with students of Junior High School Terbuka Pekanbaru. The worsksheet development has been revised and validated by some experts of curriculum and linguistics. This material has also been piloted by the English teacher to determine of the students’ ability in comprehending the materials. Based on the results of this development, it can be concluded that the materials development were relevant with the standard competence and basic competence in syllabus of the students’ reading skill in Junior High School Terbuka Pekanbaru.
Toughened and corrosion- and wear-resistant composite structures and fabrication methods thereof
Seals, Roland D; Ripley, Edward B; Hallman, Russell L
2014-04-08
Composite structures having a reinforced material interjoined with a substrate and methods of creating a composite material interjoined with a substrate. In some embodiments the composite structure may be a line or a spot or formed by reinforced material interjoined with the substrate. The methods typically include disposing a precursor material comprising titanium diboride and/or titanium monoboride on at least a portion of the substrate and heating the precursor material and the at least a portion of the substrate in the presence of an oxidation preventative until at least a portion of the precursor material forms reinforced material interjoined with the substrate. The precursor material may be disposed on the substrate as a sheet or a tape or a slurry or a paste. Localized surface heating may be used to heat the precursor material. The reinforced material typically comprises a titanium boron compound, such as titanium monoboride, and preferably comprises .beta.-titanium. The substrate is typically titanium-bearing, iron-bearing, or aluminum-bearing. A welding rod is provided as an embodiment. The welding rod includes a metal electrode and a precursor material is disposed adjacent at least a portion of the metal electrode. A material for use in forming a composite structure is provided. The material typically includes a precursor material that includes one or more materials selected from the following group: titanium diboride and titanium monoboride. The material also typically includes a flux.
Materials with structural hierarchy
NASA Technical Reports Server (NTRS)
Lakes, Roderic
1993-01-01
The role of structural hierarchy in determining bulk material properties is examined. Dense hierarchical materials are discussed, including composites and polycrystals, polymers, and biological materials. Hierarchical cellular materials are considered, including cellular solids and the prediction of strength and stiffness in hierarchical cellular materials.
42 CFR 423.2260 - Definitions concerning marketing materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 3 2011-10-01 2011-10-01 false Definitions concerning marketing materials. 423... Marketing Requirements § 423.2260 Definitions concerning marketing materials. As used in this subpart— Marketing materials. Marketing Materials include any informational materials targeted to Medicare...
42 CFR 422.2260 - Definitions concerning marketing materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 3 2012-10-01 2012-10-01 false Definitions concerning marketing materials. 422... Marketing Requirements § 422.2260 Definitions concerning marketing materials. As used in this subpart— Marketing materials. Marketing materials include any informational materials targeted to Medicare...
42 CFR 422.2260 - Definitions concerning marketing materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 3 2014-10-01 2014-10-01 false Definitions concerning marketing materials. 422... Marketing Requirements § 422.2260 Definitions concerning marketing materials. As used in this subpart— Marketing materials. Marketing materials include any informational materials targeted to Medicare...
42 CFR 422.2260 - Definitions concerning marketing materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 3 2013-10-01 2013-10-01 false Definitions concerning marketing materials. 422... Marketing Requirements § 422.2260 Definitions concerning marketing materials. As used in this subpart— Marketing materials. Marketing materials include any informational materials targeted to Medicare...
Multifunctional materials and composites
Seo, Dong-Kyun; Jeon, Ki-Wan
2017-08-22
Forming multifunctional materials and composites thereof includes contacting a first material having a plurality of oxygen-containing functional groups with a chalcogenide compound, and initiating a chemical reaction between the first material and the chalcogenide compound, thereby replacing oxygen in some of the oxygen-containing functional groups with chalcogen from the chalcogen-containing compound to yield a second material having chalcogen-containing functional groups and oxygen-containing functional groups. The first material is a carbonaceous material or a macromolecular material. A product including the second material is collected and may be processed further to yield a modified product or a composite.
Substrate Structures For Growth Of Highly Oriented And/Or Epitaxial Layers Thereon
Arendt, Paul N.; Foltyn, Stephen R.; Groves, James R.; Jia, Quanxi
2005-07-26
A composite substrate structure including a substrate, a layer of a crystalline metal oxide or crystalline metal oxynitride material upon the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the crystalline metal oxide or crystalline metal oxynitride material layer is provided together with additional layers such as one or more layers of a buffer material upon the oriented cubic oxide material layer. Jc's of 2.3×106 A/cm2 have been demonstrated with projected Ic's of 320 Amperes across a sample 1 cm wide for a superconducting article including a flexible polycrystalline metallic substrate, an inert oxide material layer upon the surface of the flexible polycrystalline metallic substrate, a layer of a crystalline metal oxide or crystalline metal oxynitride material upon the layer of the inert oxide material, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the crystalline metal oxide or crystalline metal oxynitride material layer, a layer of a buffer material upon the oriented cubic oxide material layer, and, a top-layer of a high temperature superconducting material upon the layer of a buffer material.
Comparative study on stiffness properties of WOODCAST and conventional casting materials.
Pirhonen, Eija; Pärssinen, Antti; Pelto, Mika
2013-08-01
Plaster-of-Paris and synthetic materials (e.g. fibreglass) have been in clinical use as casting materials for decades. An innovative casting material, WOODCAST, brings interesting alternatives to the traditional materials. The aim of this study was to compare the stiffness properties of the WOODCAST material to traditional casting materials. In immobilization by casting, materials with variable stiffness properties are required. Ring stiffness of cylindrical samples correlates well with cast rigidity. For load-bearing structures, the use of the WOODCAST Splint is recommended as equally high stiffness was obtained with the WOODCAST Splint as was with fibreglass. The WOODCAST 2 mm product is optimal for structures where some elasticity is required, and WOODCAST Ribbon can be used in any WOODCAST structure where further reinforcement is needed. The results show that WOODCAST material can be used in replacing traditional casting materials used in extremity immobilization. The mechanical properties of casting material play an important role in safe and effective fracture immobilization. Stiffness properties of the WOODCAST casting material and conventional materials - fibreglass and plaster-of-Paris - were analysed in this study. The WOODCAST Splint appears to compare favorably with traditional materials such as Scotchcast.
Materiomics: biological protein materials, from nano to macro.
Cranford, Steven; Buehler, Markus J
2010-11-12
Materiomics is an emerging field of science that provides a basis for multiscale material system characterization, inspired in part by natural, for example, protein-based materials. Here we outline the scope and explain the motivation of the field of materiomics, as well as demonstrate the benefits of a materiomic approach in the understanding of biological and natural materials as well as in the design of de novo materials. We discuss recent studies that exemplify the impact of materiomics - discovering Nature's complexity through a materials science approach that merges concepts of material and structure throughout all scales and incorporates feedback loops that facilitate sensing and resulting structural changes at multiple scales. The development and application of materiomics is illustrated for the specific case of protein-based materials, which constitute the building blocks of a variety of biological systems such as tendon, bone, skin, spider silk, cells, and tissue, as well as natural composite material systems (a combination of protein-based and inorganic constituents) such as nacre and mollusk shells, and other natural multiscale systems such as cellulose-based plant and wood materials. An important trait of these materials is that they display distinctive hierarchical structures across multiple scales, where molecular details are exhibited in macroscale mechanical responses. Protein materials are intriguing examples of materials that balance multiple tasks, representing some of the most sustainable material solutions that integrate structure and function despite severe limitations in the quality and quantity of material building blocks. However, up until now, our attempts to analyze and replicate Nature's materials have been hindered by our lack of fundamental understanding of these materials' intricate hierarchical structures, scale-bridging mechanisms, and complex material components that bestow protein-based materials their unique properties. Recent advances in analytical tools and experimental methods allow a holistic view of such a hierarchical biological material system. The integration of these approaches and amalgamation of material properties at all scale levels to develop a complete description of a material system falls within the emerging field of materiomics. Materiomics is the result of the convergence of engineering and materials science with experimental and computational biology in the context of natural and synthetic materials. Through materiomics, fundamental advances in our understanding of structure-property-process relations of biological systems contribute to the mechanistic understanding of certain diseases and facilitate the development of novel biological, biologically inspired, and completely synthetic materials for applications in medicine (biomaterials), nanotechnology, and engineering.
Biological materials by design.
Qin, Zhao; Dimas, Leon; Adler, David; Bratzel, Graham; Buehler, Markus J
2014-02-19
In this topical review we discuss recent advances in the use of physical insight into the way biological materials function, to design novel engineered materials 'from scratch', or from the level of fundamental building blocks upwards and by using computational multiscale methods that link chemistry to material function. We present studies that connect advances in multiscale hierarchical material structuring with material synthesis and testing, review case studies of wood and other biological materials, and illustrate how engineered fiber composites and bulk materials are designed, modeled, and then synthesized and tested experimentally. The integration of experiment and simulation in multiscale design opens new avenues to explore the physics of materials from a fundamental perspective, and using complementary strengths from models and empirical techniques. Recent developments in this field illustrate a new paradigm by which complex material functionality is achieved through hierarchical structuring in spite of simple material constituents.
Doped Chiral Polymer Metamaterials
NASA Technical Reports Server (NTRS)
Kang, Jin Ho (Inventor); Gordon, Keith L. (Inventor); Sauti, Godfrey (Inventor); Bryant, Robert G. (Inventor); Park, Cheol (Inventor); Lowther, Sharon E. (Inventor)
2017-01-01
Some implementations provide a composite material that includes a first material and a second material. In some implementations, the composite material is a metamaterial. The first material includes a chiral polymer (e.g., crystalline chiral helical polymer, poly-.gamma.-benzyl-L-glutamate (PBLG), poly-L-lactic acid (PLA), polypeptide, and/or polyacetylene). The second material is within the chiral polymer. The first material and the second material are configured to provide an effective index of refraction value for the composite material of 1 or less. In some implementations, the effective index of refraction value for the composite material is negative. In some implementations, the effective index of refraction value for the composite material of 1 or less is at least in a wavelength of one of at least a visible spectrum, an infrared spectrum, a microwave spectrum, and/or an ultraviolet spectrum.
System and method for producing metallic iron
Englund, David J.; Schlichting, Mark; Meehan, John; Crouch, Jeremiah; Wilson, Logan
2014-07-29
A method of production of metallic iron nodules comprises assembling a hearth furnace having a moveable hearth comprising refractory material and having a conversion zone and a fusion zone, providing a hearth material layer comprising carbonaceous material on the refractory material, providing a layer of reducible material comprising and iron bearing material arranged in discrete portions over at least a portion of the hearth material layer, delivering oxygen gas into the hearth furnace to a ratio of at least 0.8:1 ponds of oxygen to pounds of iron in the reducible material to heat the conversion zone to a temperature sufficient to at least partially reduce the reducible material and to heat the fusion zone to a temperature sufficient to at least partially reduce the reducible material, and heating the reducible material to form one or more metallic iron nodules and slag.
77 FR 60935 - Hazardous Materials: Minor Editorial Corrections and Clarifications (RRR)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-05
... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Parts... Materials: Minor Editorial Corrections and Clarifications (RRR) AGENCY: Pipeline and Hazardous Materials... material. (a) * * * (3) * * * Source and name of material 49 CFR reference * * * * * * * ISO 9809-1: Gas...
42 CFR 423.2260 - Definitions concerning marketing materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 3 2012-10-01 2012-10-01 false Definitions concerning marketing materials. 423... Part D Marketing Requirements § 423.2260 Definitions concerning marketing materials. As used in this subpart— Marketing materials. Marketing Materials include any informational materials targeted to Medicare...
42 CFR 423.2260 - Definitions concerning marketing materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 3 2013-10-01 2013-10-01 false Definitions concerning marketing materials. 423... Part D Marketing Requirements § 423.2260 Definitions concerning marketing materials. As used in this subpart— Marketing materials. Marketing Materials include any informational materials targeted to Medicare...
42 CFR 423.2260 - Definitions concerning marketing materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 3 2014-10-01 2014-10-01 false Definitions concerning marketing materials. 423... Part D Marketing Requirements § 423.2260 Definitions concerning marketing materials. As used in this subpart— Marketing materials. Marketing Materials include any informational materials targeted to Medicare...
Municipal waste processing apparatus
Mayberry, John L.
1989-01-01
Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Consecutive conveyors may be connected by an intermediate vibratory plate. An air knife can be used to further separate materials based on weight.
Damascene fabrication of nonplanar microcoils
Adams, David P.; Vasile, Michael J.
2003-06-17
A process for fabricating coils using a Damascene process uses a curved substrate having a surface extending along and about an axis made of a first material. A groove is formed in the curved surface along and around said axis, and the groove is filled with a second material that is different from the first material to form a coil of second material in said first material. Excess second material is then removed from the surface of the first material, leaving the coil of second material in the groove.
Gas storage materials, including hydrogen storage materials
Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji
2013-02-19
A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.
Gas storage materials, including hydrogen storage materials
Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji
2014-11-25
A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.
Article and process for producing an article
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacy, Benjamin Paul; Jacala, Ariel Caesar Prepena; Kottilingam, Srikanth Chandrudu
An article and a process of producing an article are provided. The article includes a base material, a cooling feature arrangement positioned on the base material, the cooling feature arrangement including an additive-structured material, and a cover material. The cooling feature arrangement is between the base material and the cover material. The process of producing the article includes manufacturing a cooling feature arrangement by an additive manufacturing technique, and then positioning the cooling feature arrangement between a base material and a cover material.
Materials Requirements for Advanced Propulsion Systems
NASA Technical Reports Server (NTRS)
Whitaker, Ann F.; Cook, Mary Beth; Clinton, R. G., Jr.
2005-01-01
NASA's mission to "reach the Moon and Mars" will be obtained only if research begins now to develop materials with expanded capabilities to reduce mass, cost and risk to the program. Current materials cannot function satisfactorily in the deep space environments and do not meet the requirements of long term space propulsion concepts for manned missions. Directed research is needed to better understand materials behavior for optimizing their processing. This research, generating a deeper understanding of material behavior, can lead to enhanced implementation of materials for future exploration vehicles. materials providing new approaches for manufacture and new options for In response to this need for more robust materials, NASA's Exploration Systems Mission Directorate (ESMD) has established a strategic research initiative dedicated to materials development supporting NASA's space propulsion needs. The Advanced Materials for Exploration (AME) element directs basic and applied research to understand material behavior and develop improved materials allowing propulsion systems to operate beyond their current limitations. This paper will discuss the approach used to direct the path of strategic research for advanced materials to ensure that the research is indeed supportive of NASA's future missions to the moon, Mars, and beyond.
Materials Informatics: Statistical Modeling in Material Science.
Yosipof, Abraham; Shimanovich, Klimentiy; Senderowitz, Hanoch
2016-12-01
Material informatics is engaged with the application of informatic principles to materials science in order to assist in the discovery and development of new materials. Central to the field is the application of data mining techniques and in particular machine learning approaches, often referred to as Quantitative Structure Activity Relationship (QSAR) modeling, to derive predictive models for a variety of materials-related "activities". Such models can accelerate the development of new materials with favorable properties and provide insight into the factors governing these properties. Here we provide a comparison between medicinal chemistry/drug design and materials-related QSAR modeling and highlight the importance of developing new, materials-specific descriptors. We survey some of the most recent QSAR models developed in materials science with focus on energetic materials and on solar cells. Finally we present new examples of material-informatic analyses of solar cells libraries produced from metal oxides using combinatorial material synthesis. Different analyses lead to interesting physical insights as well as to the design of new cells with potentially improved photovoltaic parameters. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Magnetorheological materials, method for making, and applications thereof
Shen, Rui; Yang, Hong; Shafrir, Shai N.; Miao, Chunlin; Wang, Mimi; Mici, Joni; Lambropoulos, John C.; Jacobs, Stephen D.
2014-08-19
A magnetorheological material comprises a magnetic particle and a ceramic material, wherein the magnetorheological material is in a dried form and further wherein a portion of the ceramic material is in the form of a nanocrystalline coating over the entire exterior surface of the magnetic particle and another portion of the ceramic material is in the form of a free nanocrystal. A magnetorheological material comprises a magnetic particle having a ceramic material coating over an external surface thereof as a result of a coating process, and a free nanocrystal of the ceramic material in the form of a residual by-product of the coating process. A sol-gel process for making a magnetorheological product comprises providing a sol of a desired ceramic coating material; combining a desired quantity of carbonyl iron (CI) particles with the sol to coat the CI particles with the ceramic coating material; creating a resulting quantity of nanocrystalline ceramic material-coated CI particles and a quantity of free nanocrystals of the ceramic material; and, drying the resulting quantity of coated CI particles and free nanocrystals to a moisture content equal to or less than 2 wt %.
Hazardous Material Packaging and Transportation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hypes, Philip A.
2016-02-04
This is a student training course. Some course objectives are to: recognize and use standard international and US customary units to describe activities and exposure rates associated with radioactive material; determine whether a quantity of a single radionuclide meets the definition of a class 7 (radioactive) material; determine, for a given single radionuclide, the shipping quantity activity limits per 49 Code of Federal Regulations (CFR) 173.435; determine the appropriate radioactive material hazard class proper shipping name for a given material; determine when a single radionuclide meets the DOT definition of a hazardous substance; determine the appropriate packaging required for amore » given radioactive material; identify the markings to be placed on a package of radioactive material; determine the label(s) to apply to a given radioactive material package; identify the entry requirements for radioactive material labels; determine the proper placement for radioactive material label(s); identify the shipping paper entry requirements for radioactive material; select the appropriate placards for a given radioactive material shipment or vehicle load; and identify allowable transport limits and unacceptable transport conditions for radioactive material.« less
Leng, Chuan; Sun, Shuwen; Zhang, Kexin; Jiang, Shaoyi; Chen, Zhan
2016-08-01
Antifouling polymers have wide applications in biomedical engineering and marine industry. Recently, zwitterionic materials have been reported as promising candidates for antifouling applications, while strong hydration is believed to be the key antifouling mechanism. Zwitterionic materials can be designed with various molecular structures, which affect their hydration and antifouling performance. Although strong hydration has been proposed to occur at the material surfaces, probing the solid material/water interfaces is challenging with traditional analytical techniques. Here in this review, we will review our studies on surface hydration of zwitterionic materials and other antifouling materials by using sum frequency generation (SFG) vibrational spectroscopy, which provides molecular understanding of the water structures at various material surfaces. The materials studied include zwitterionic polymer brushes with different molecular structures, amphiphilic polymers with zwitterionic groups, uncharged hydrophilic polymer brushes, amphiphilic polypeptoids, and widely used antifouling material poly(ethylene glycol). We will compare the differences among zwitterionic materials with various molecular structures as well as the differences between antifouling materials and fouling surfaces of control samples. We will also discuss the effects of pH and biological molecules like proteins on the surface hydration of the zwitterionic materials. Using SFG spectroscopy, we have measured the hydration layers of antifouling materials and found that strong hydrogen bonds are key to the formation of strong hydration layers preventing protein fouling at the polymer interfaces. Antifouling polymers have wide applications in biomedical engineering and marine industry. Recently, zwitterionic materials have been reported as promising candidates for antifouling applications, while strong hydration is believed to be the key antifouling mechanism. However, zwitterionic materials can be designed with various molecular structures, which affect their hydration and antifouling performance. Moreover, although strong hydration has been proposed to occur at the material surfaces, probing the solid material/water interfaces is challenging with traditional analytical techniques. Here in this manuscript, we will review our studies on surface hydration of zwitterionic materials and other antifouling materials by using sum frequency generation (SFG) vibrational spectroscopy, which provides molecular understanding of the water structures at various material surfaces. The materials studied include zwitterionic polymer brushes with different molecular structures, amphiphilic polymers with zwitterionic groups, uncharged hydrophilic polymer brushes, amphiphilic polypeptoids, and widely used antifouling material poly(ethylene glycol). We will compare the differences among zwitterionic materials with various molecular structures as well as the differences between antifouling materials and fouling surfaces of control samples. We will also discuss the effects of pH and biological molecules like proteins on the surface hydration of the zwitterionic materials. All the SFG results indicate that strongly hydrogen-bonded water at the materials' surfaces (strong surface hydration) is closely correlated to the good antifouling properties of the materials. This review will be widely interested by readers of Acta Biomaterialia and will impact many different research fields in chemistry, materials, engineering, and beyond. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Cybermaterials: materials by design and accelerated insertion of materials
NASA Astrophysics Data System (ADS)
Xiong, Wei; Olson, Gregory B.
2016-02-01
Cybermaterials innovation entails an integration of Materials by Design and accelerated insertion of materials (AIM), which transfers studio ideation into industrial manufacturing. By assembling a hierarchical architecture of integrated computational materials design (ICMD) based on materials genomic fundamental databases, the ICMD mechanistic design models accelerate innovation. We here review progress in the development of linkage models of the process-structure-property-performance paradigm, as well as related design accelerating tools. Extending the materials development capability based on phase-level structural control requires more fundamental investment at the level of the Materials Genome, with focus on improving applicable parametric design models and constructing high-quality databases. Future opportunities in materials genomic research serving both Materials by Design and AIM are addressed.
2004 research briefs :Materials and Process Sciences Center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cieslak, Michael J.
2004-01-01
This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-sciencemore » base has on the ultimate success of the NW program and the overall DOE technology portfolio.« less
Pressure induced swelling in microporous materials
Vogt, Thomas; Hriljac, Joseph A.; Lee, Yongjae
2006-07-11
A method for capturing specified materials which includes contacting a microporous material with a hydrostatic fluid having at least one specified material carried therein, under pressure which structurally distorts the lattice sufficiently to permit entry of the at least one specified material. The microporous material is capable of undergoing a temporary structural distortion which alters resting lattice dimensions under increased ambient pressure and at least partially returning to rest lattice dimensions when returned to ambient pressure. The pressure of the fluid is then reduced to permit return to at least partial resting lattice dimension while the at least one specified material is therein. By this method, at least one specified material is captured in the microporous material to form a modified microporous material.
Amine, Khalil; Abouimrane, Ali; Belharouak, Ilias
2017-01-31
A process for forming a surface-treatment layer on an electroactive material includes heating the electroactive material and exposing the electroactive material to a reducing gas to form a surface-treatment layer on the electroactive material, where the surface-treatment layer is a layer of partial reduction of the electroactive material.
14 CFR 25.856 - Thermal/Acoustic insulation materials.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Thermal/Acoustic insulation materials. 25....856 Thermal/Acoustic insulation materials. (a) Thermal/acoustic insulation material installed in the.../acoustic insulation materials (including the means of fastening the materials to the fuselage) installed in...
THE EFFECT OF VENTILATION ON EMISSION RATES OF WOOD FINISHING MATERIALS
The rate of emission of organic compounds from building materials varies according to: type of material, material loading (area of material/volume of room), compound emitted, temperature, humidity, and ventilation rate. For some compounds and materials (e.g., formaldehyde from pa...
48 CFR 52.211-5 - Material Requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... materials and by-products generated from, and reused within, an original manufacturing process; provided... readjustments and material replacement. Recovered material means waste materials and by-products recovered or diverted from solid waste, but the term does not include those materials and by-products generated from...
Composite solid-state scintillators for neutron detection
Dai, Sheng; Im, Hee-Jung; Pawel, Michelle D.
2006-09-12
Applicant's present invention is a composite scintillator for neutron detection comprising a matrix material fabricated from an inorganic sol-gel precursor solution homogeneously doped with a liquid scintillating material and a neutron absorbing material. The neutron absorbing material yields at least one of an electron, a proton, a triton, an alpha particle or a fission fragment when the neutron absorbing material absorbs a neutron. The composite scintillator further comprises a liquid scintillating material in a self-assembled micelle formation homogeneously doped in the matrix material through the formation of surfactant-silica composites. The scintillating material is provided to scintillate when traversed by at least one of an electron, a proton, a triton, an alpha particle or a fission fragment. The scintillating material is configured such that the matrix material surrounds the micelle formation of the scintillating material. The composite scintillator is fabricated and applied as a thin film on substrate surfaces, a coating on optical fibers or as a glass material.
Antithrombotic Protein Filter Composed of Hybrid Tissue-Fabric Material has a Long Lifetime.
Inoue, Yusuke; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Kaneko, Akiko; Woo, Taeseong; Kobayashi, Shingo; Shibuya, Tomokazu; Tanaka, Masaru; Kosukegawa, Hiroyuki; Saito, Itsuro; Isoyama, Takashi; Abe, Yusuke; Yambe, Tomoyuki; Someya, Takao; Sekino, Masaki
2017-05-01
There are recent reports of hybrid tissue-fabric materials with good performance-high biocompatibility and high mechanical strength. In this study, we demonstrate the capability of a hybrid material as a long-term filter for blood proteins. Polyester fabrics were implanted into rats to fabricate hybrid tissue-fabric material sheets. The hybrid materials comprised biological tissue grown on the fabric. The materials were extracted from the rat's body, approximately 100 days post-implantation. The tissues were decellularized to prevent immunological rejection. An antithrombogenicity test was performed by dropping blood onto the hybrid material surface. The hybrid material showed lesser blood coagulation than polysulfone and cellulose. Blood plasma was filtered using the hybrid material to evaluate the protein removal percentage and the lifetime of the hybrid material in vitro. The hybrid material showed a comparable performance to conventional filters for protein removal. Moreover, the hybrid material could work as a protein filter for 1 month, which is six times the lifetime of polysulfone.
NASA Astrophysics Data System (ADS)
Tong, Wei
2017-04-01
Combinatorial material research offers fast and efficient solutions to identify promising and advanced materials. It has revolutionized the pharmaceutical industry and now is being applied to accelerate the discovery of other new compounds, e.g. superconductors, luminescent materials, catalysts etc. Differing from the traditional trial-and-error process, this approach allows for the synthesis of a large number of compositionally diverse compounds by varying the combinations of the components and adjusting the ratios. It largely reduces the cost of single-sample synthesis/characterization, along with the turnaround time in the material discovery process, therefore, could dramatically change the existing paradigm for discovering and commercializing new materials. This talk outlines the use of combinatorial materials approach in the material discovery in transportation sector. It covers the general introduction to the combinatorial material concept, state of art for its application in energy-related research. At the end, LBNL capabilities in combinatorial materials synthesis and high throughput characterization that are applicable for material discovery research will be highlighted.
NASA Astrophysics Data System (ADS)
Schiffman, Y. M.; Tahami, J. E.
1982-04-01
The materials-resource and hazardous-materials impacts were determined by examining the type and quantity of materials used in the manufacture, construction, installation, operation and maintenance of solar systems. The materials requirements were compared with US materials supply and demand data to determine if potential problems exist in terms of future availability of domestic supply and increased dependence on foreign sources of supply. Hazardous materials were evaluated in terms of public and occupational health hazards and explosive and fire hazards. It is concluded that: although large amounts of materials would be required, the US had sufficient industrial capacity to produce those materials; (2) postulated growth in solar technology deployment during the period 1995-2000 could cause some production shortfalls in the steel and copper industry; the U.S. could increase its import reliance for certain materials such as silver, iron ore, and copper; however, shifts to other materials such as aluminum and polyvinylchloride could alleviate some of these problems.
Low resistance thin film organic solar cell electrodes
Forrest, Stephen [Princeton, NJ; Xue, Jiangeng [Piscataway, NJ
2008-01-01
A method which lower the series resistance of photosensitive devices includes providing a transparent film of a first electrically conductive material arranged on a transparent substrate; depositing and patterning a mask over the first electrically conductive material, such that openings in the mask have sloping sides which narrow approaching the substrate; depositing a second electrically conductive material directly onto the first electrically conductive material exposed in the openings of the mask, at least partially filling the openings; stripping the mask, leaving behind reentrant structures of the second electrically conductive material which were formed by the deposits in the openings of the mask; after stripping the mask, depositing a first organic material onto the first electrically conductive material in between the reentrant structures; and directionally depositing a third electrically conductive material over the first organic material deposited in between the reentrant structures, edges of the reentrant structures aligning deposition so that the third electrically conductive material does not directly contact the first electrically conductive material, and does not directly contact the second electrically conductive material.
Purification of metal-organic framework materials
Farha, Omar K.; Hupp, Joseph T.
2012-12-04
A method of purification of a solid mixture of a metal-organic framework (MOF) material and an unwanted second material by disposing the solid mixture in a liquid separation medium having a density that lies between those of the wanted MOF material and the unwanted material, whereby the solid mixture separates by density differences into a fraction of wanted MOF material and another fraction of unwanted material.
2010-05-03
Mechanisms for Advanced Properties in Phase Transforming Materials , Materials Science & Technology 2009 Conference, October 25-29, 2009, Pittsburgh, PA...Advanced Properties in Phase Transforming Materials , Materials Science & Technology 2009 Conference, October 25-29, 2009, Pittsburgh, PA, 2009. 11...observed materials behavior. Indeed, measured materials properties were found not to be the exact indication of the materials real response
Purification of metal-organic framework materials
Farha, Omar K.; Hupp, Joseph T.
2015-06-30
A method of purification of a solid mixture of a metal-organic framework (MOF) material and an unwanted second material by disposing the solid mixture in a liquid separation medium having a density that lies between those of the wanted MOF material and the unwanted material, whereby the solid mixture separates by density differences into a fraction of wanted MOF material and another fraction of unwanted material.
Types of architectural structures and the use of smart materials
NASA Astrophysics Data System (ADS)
Tavşan, Cengiz; Sipahi, Serkan
2017-07-01
The developments in technology following the industrial revolution had their share of impact on both construction techniques, and material technologies. The change in the materials used by the construction industry brought along numerous innovations, which, in turn, took on an autonomous trend of development given the rise of nano-tech materials. Today, nano-tech materials are used extensively in numerous construction categories. Nano-tech materials, in general, are characterized by their reactionary nature, with the intent of repeating the reactions again and again under certain conditions. That is why nano-tech materials are often called smart materials. In construction industry, smart materials are categorized under 4 major perspectives: Shape-shifting smart materials, power generating smart materials, self-maintenance smart materials, and smart materials providing a high level of insulation. In architecture, various categories of construction often tend to exhibit their own approaches to design, materials, and construction techniques. This is a direct consequence of the need for different solutions for different functions. In this context, the use of technological materials should lead to the use of a set of smart materials for a given category of structures, while another category utilizes yet another set. In the present study, the smart materials used in specific categories of structures were reviewed with reference to nano-tech practices implemented in Europe, with a view to try and reveal the changes in the use of smart materials with reference to categories of structures. The study entails a discussion to test the hypothesis that nano-tech materials vary with reference to structure categories, on the basis of 18 examples from various structure categories, built by the construction firms with the highest level of potential in terms of doing business in Europe. The study comprises 3 major sections: The first section reiterates what the literature has to say about smart materials; the second discusses the types and characteristics of smart materials over the tables detailing their utilization and functions in the structures included in the set of examples. The final section of the study, on the other hand, elaborates on the findings, discussing them with reference to the types of structures.
Sorting it out: bedding particle size and nesting material processing method affect nest complexity.
Robinson-Junker, Amy; Morin, Amelia; Pritchett-Corning, Kathleen; Gaskill, Brianna N
2017-04-01
As part of routine husbandry, an increasing number of laboratory mice receive nesting material in addition to standard bedding material in their cages. Nesting material improves health outcomes and physiological performance in mice that receive it. Providing usable nesting material uniformly and efficiently to various strains of mice remains a challenge. The aim of this study was to determine how bedding particle size, method of nesting material delivery, and processing of the nesting material before delivery affected nest building in mice of strong (BALB/cAnNCrl) and weak (C3H/HeNCrl) gathering abilities. Our data suggest that processing nesting material through a grinder in conjunction with bedding material, although convenient for provision of bedding with nesting material 'built-in', negatively affects the integrity of the nesting material and subsequent nest-building outcomes. We also found that C3H mice, previously thought to be poor nest builders, built similarly scored nests to those of BALB/c mice when provided with unprocessed nesting material. This was true even when nesting material was mixed into the bedding substrate. We also observed that when nesting material was mixed into the bedding substrate, mice of both strains would sort their bedding by particle size more often than if it were not mixed in. Our findings support the utility of the practice of distributing nesting material mixed in with bedding substrate, but not that of processing the nesting material with the bedding in order to mix them.
Method of making AlInSb by metal-organic chemical vapor deposition
Biefeld, Robert M.; Allerman, Andrew A.; Baucom, Kevin C.
2000-01-01
A method for producing aluminum-indium-antimony materials by metal-organic chemical vapor deposition (MOCVD). This invention provides a method of producing Al.sub.X In.sub.1-x Sb crystalline materials by MOCVD wherein an Al source material, an In source material and an Sb source material are supplied as a gas to a heated substrate in a chamber, said Al source material, In source material, and Sb source material decomposing at least partially below 525.degree. C. to produce Al.sub.x In.sub.1-x Sb crystalline materials wherein x is greater than 0.002 and less than one.
Low-mass materials and vertex detector systems
Cooper, William E.
2014-01-01
Physics requirements set the material budget and the precision and stability necessary in low-mass vertex detector systems. Operational considerations, along with physics requirements, set the operating environment to be provided and determine the heat to be removed. Representative materials for fulfilling those requirements are described and properties of the materials are tabulated. A figure of merit is proposed to aid in material selection. Multi-layer structures are examined as a method to allow material to be used effectively, thereby reducing material contributions. Lastly, comments are made on future directions to be considered in using present materials effectively and in developing newmore » materials.« less
Augmented shock wave fracture/severance of materials
NASA Technical Reports Server (NTRS)
Schimmel, Morry L. (Inventor); Bement, Laurence J. (Inventor)
1995-01-01
The present invention related generally to severing materials, and more particularly to severing or weakening materials through explosively induced, augmented shock waves. Explosive cords are placed in grooves on the upper surface of the material to be severed or weakened. The explosive cords are initiated simultaneously to introduce explosive shock waves into the material. These shock waves progress toward the centerline between the explosive cords and the lower surface of the material. Intersecting and reflected waves produce a rarefaction zone on the centerline to fail the material in tension. A groove may also be cut in the lower surface of the material to aid in severing or weakening the material.
Rheology of Coating Materials and Their Coating Characteristics
NASA Astrophysics Data System (ADS)
Grabsch, C.; Grüner, S.; Otto, F.; Sommer, K.
2008-07-01
Lots of particles used in the pharmaceutical and the food industry are coated to protect the core material. But almost no investigations about the coating material behavior do exist. In this study the focus was on the rheological material properties of fat based coating materials. Rotational shear experiments to determine the viscosity of a material were compared to oscillatory shear tests to get information about the vicoelastic behavior of the coating materials. At the liquid state the viscosity and the viscoelastic properties showed a good analogy. The viscoelastic properties of the solid coating materials yielded differences between materials that have the same properties at the liquid state.
Embedded arrays of vertically aligned carbon nanotube carpets and methods for making them
Kim, Myung Jong; Nicholas, Nolan Walker; Kittrell, W. Carter; Schmidt, Howard K.
2015-06-30
According to some embodiments, the present invention provides a system and method for supporting a carbon nanotube array that involve an entangled carbon nanotube mat integral with the array, where the mat is embedded in an embedding material. The embedding material may be depositable on a carbon nanotube. A depositable material may be metallic or nonmetallic. The embedding material may be an adhesive material. The adhesive material may optionally be mixed with a metal powder. The embedding material may be supported by a substrate or self-supportive. The embedding material may be conductive or nonconductive. The system and method provide superior mechanical and, when applicable, electrical, contact between the carbon nanotubes in the array and the embedding material. The optional use of a conductive material for the embedding material provides a mechanism useful for integration of carbon nanotube arrays into electronic devices.
Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers
Norman, Andrew
2016-08-23
A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a silicon substrate using a compliant buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The compliant buffer material and semiconductor materials may be deposited using coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The coincident site lattice matching epitaxial process, as well as the use of a ductile buffer material, reduce the internal stresses and associated crystal defects within the deposited semiconductor materials fabricated using the disclosed method. As a result, the semiconductor devices provided herein possess enhanced performance characteristics due to a relatively low density of crystal defects.
NASA Astrophysics Data System (ADS)
Puchala, Brian; Tarcea, Glenn; Marquis, Emmanuelle. A.; Hedstrom, Margaret; Jagadish, H. V.; Allison, John E.
2016-08-01
Accelerating the pace of materials discovery and development requires new approaches and means of collaborating and sharing information. To address this need, we are developing the Materials Commons, a collaboration platform and information repository for use by the structural materials community. The Materials Commons has been designed to be a continuous, seamless part of the scientific workflow process. Researchers upload the results of experiments and computations as they are performed, automatically where possible, along with the provenance information describing the experimental and computational processes. The Materials Commons website provides an easy-to-use interface for uploading and downloading data and data provenance, as well as for searching and sharing data. This paper provides an overview of the Materials Commons. Concepts are also outlined for integrating the Materials Commons with the broader Materials Information Infrastructure that is evolving to support the Materials Genome Initiative.
Strain-Detecting Composite Materials
NASA Technical Reports Server (NTRS)
Wallace, Terryl A. (Inventor); Smith, Stephen W. (Inventor); Piascik, Robert S. (Inventor); Horne, Michael R. (Inventor); Messick, Peter L. (Inventor); Alexa, Joel A. (Inventor); Glaessgen, Edward H. (Inventor); Hailer, Benjamin T. (Inventor)
2016-01-01
A composite material includes a structural material and a shape-memory alloy embedded in the structural material. The shape-memory alloy changes crystallographic phase from austenite to martensite in response to a predefined critical macroscopic average strain of the composite material. In a second embodiment, the composite material includes a plurality of particles of a ferromagnetic shape-memory alloy embedded in the structural material. The ferromagnetic shape-memory alloy changes crystallographic phase from austenite to martensite and changes magnetic phase in response to the predefined critical macroscopic average strain of the composite material. A method of forming a composite material for sensing the predefined critical macroscopic average strain includes providing the shape-memory alloy having an austenite crystallographic phase, changing a size and shape of the shape-memory alloy to thereby form a plurality of particles, and combining the structural material and the particles at a temperature of from about 100-700.degree. C. to form the composite material.
Preparation and characterization of phase transition/graphite foam composite materials.
Yu, Jia; Tang, ChenLong; Yu, ZhiChao
2016-07-04
Phase transition/graphite foam (PCM/GF) composite materials are a kind of composite materials that fill graphite foam with phase change materials. In this paper, graphite foam was prepared firstly by the soft template method, the heat conductivity of which at room temperature is 5.44 W/(m∙K). Then, four phase change materials including eicosane, acetamide, xylitol, and erythritol were chosen for filling into the prepared graphite foam to obtain PCM/GF composite materials. Among the four kinds of materials, erythritol composite material has the highest melting point (118.5°C) and the highest enthalpy of fusion (266.3J/g), weight loss ratios of xylitol composite material after ten cycles is the lowest (2.1%), the compressive strength of xylitol composite material is the highest (9.08 MPa) and that of eicosane composite material is the lowest (3.32 MPa).
Local doping of two-dimensional materials
Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.
2016-09-20
This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.
Passive absolute age and temperature history sensor
Robinson, Alex; Vianco, Paul T.
2015-11-10
A passive sensor for historic age and temperature sensing, including a first member formed of a first material, the first material being either a metal or a semiconductor material and a second member formed of a second material, the second material being either a metal or a semiconductor material. A surface of the second member is in contact with a surface of the first member such that, over time, the second material of the second member diffuses into the first material of the first member. The rate of diffusion for the second material to diffuse into the first material depends on a temperature of the passive sensor. One of the electrical conductance, the electrical capacitance, the electrical inductance, the optical transmission, the optical reflectance, or the crystalline structure of the passive sensor depends on the amount of the second material that has diffused into the first member.
Electrochromic projection and writing device
Branz, Howard M.; Benson, David K.
2002-01-01
A display and projection apparatus includes an electrochromic material and a photoconductive material deposited in tandem used in conjunction with a light filtering means for filtering light transmitted through the electrochromic material. When an electric field is applied across the electrochromic material and the photoconductive material, light that is incident onto the photoconductive material through the surface of the projection apparatus causes the photoconductive material to conduct current locally in proportion to the amount of light incident on the photoconductive material. The flow of current causes the underlying portions of the electrochromic material to switch from an opaque state to a clear or transmissive state, thereby allowing back-light to propagate through the electrochromic material to create a visible image on the surface of the projection apparatus. Reversal of the electric field causes the electrochromic material to revert back to its opaque state, thereby blocking the transmission of back-light and effectively erasing the image from the surface of the projection apparatus.
Chang, Liang-Yi; Gershon, Talia S.; Haight, Richard A.; Lee, Yun Seog
2016-12-27
A hybrid vapor phase-solution phase CZT(S,Se) growth technique is provided. In one aspect, a method of forming a kesterite absorber material on a substrate includes the steps of: depositing a layer of a first kesterite material on the substrate using a vapor phase deposition process, wherein the first kesterite material includes Cu, Zn, Sn, and at least one of S and Se; annealing the first kesterite material to crystallize the first kesterite material; and depositing a layer of a second kesterite material on a side of the first kesterite material opposite the substrate using a solution phase deposition process, wherein the second kesterite material includes Cu, Zn, Sn, and at least one of S and Se, wherein the first kesterite material and the second kesterite material form a multi-layer stack of the absorber material on the substrate. A photovoltaic device and method of formation thereof are also provided.
Materials discovery through crystal growth
NASA Astrophysics Data System (ADS)
zur Loye, Hans-Conrad
2016-04-01
The discovery of new materials and associated desirable properties has been a driving force behind chemical innovation for centuries. When we look at some of the many recent technological advances, and how widespread and significant their impact has been, we appreciate how much they have relied on new materials. The increase in hard drive storage capacity due to new giant magneto-resistive materials, the ever-shrinking cell phone due to improved microwave dielectric materials, the enhancement in lithium battery storage capacity due to new intercalation materials, or the improved capacitor due to new ferroelectric materials are all excellent examples. How were these materials discovered? While there is no single answer, in all cases there was a First-Material, the archetype in which the phenomenon was first observed, the one that led to further investigations and the subsequent preparation of improved 2nd or 3rd generation materials. It is this First-Material, the archetype, that was discovered - often via crystal growth.
Electrochemical catalyst recovery method
Silva, L.J.; Bray, L.A.
1995-05-30
A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.
Electrochemical catalyst recovery method
Silva, Laura J.; Bray, Lane A.
1995-01-01
A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.
46 CFR 148.300 - Radioactive materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Radioactive materials. 148.300 Section 148.300 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.300 Radioactive materials. (a) Radioactive materials that may be stowed or transported in bulk are limited to those...
48 CFR 31.205-26 - Material costs.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Material costs. 31.205-26....205-26 Material costs. (a) Material costs include the costs of such items as raw materials, parts... material costs, the contractor shall consider reasonable overruns, spoilage, or defective work (unless...
48 CFR 31.205-26 - Material costs.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Material costs. 31.205-26....205-26 Material costs. (a) Material costs include the costs of such items as raw materials, parts... material costs, the contractor shall consider reasonable overruns, spoilage, or defective work (unless...
48 CFR 52.211-5 - Material Requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... readjustments and material replacement. Recovered material means waste materials and by-products recovered or diverted from solid waste, but the term does not include those materials and by-products generated from... is, or with new technology will become, a source of raw materials. (b) Unless this contract otherwise...
48 CFR 252.223-7001 - Hazard warning labels.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Hazardous Material Identification and Material Safety Data clause of this contract. (b) The Contractor shall label the item package (unit container) of any hazardous material to be delivered under this contract in... which hazardous material listed in the Hazardous Material Identification and Material Safety Data clause...
48 CFR 252.223-7001 - Hazard warning labels.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Hazardous Material Identification and Material Safety Data clause of this contract. (b) The Contractor shall label the item package (unit container) of any hazardous material to be delivered under this contract in... which hazardous material listed in the Hazardous Material Identification and Material Safety Data clause...
48 CFR 252.223-7001 - Hazard warning labels.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Hazardous Material Identification and Material Safety Data clause of this contract. (b) The Contractor shall label the item package (unit container) of any hazardous material to be delivered under this contract in... which hazardous material listed in the Hazardous Material Identification and Material Safety Data clause...
48 CFR 252.223-7001 - Hazard warning labels.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Hazardous Material Identification and Material Safety Data clause of this contract. (b) The Contractor shall label the item package (unit container) of any hazardous material to be delivered under this contract in... which hazardous material listed in the Hazardous Material Identification and Material Safety Data clause...
48 CFR 252.223-7001 - Hazard warning labels.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Hazardous Material Identification and Material Safety Data clause of this contract. (b) The Contractor shall label the item package (unit container) of any hazardous material to be delivered under this contract in... which hazardous material listed in the Hazardous Material Identification and Material Safety Data clause...
Materiomics: biological protein materials, from nano to macro
Cranford, Steven; Buehler, Markus J
2010-01-01
Materiomics is an emerging field of science that provides a basis for multiscale material system characterization, inspired in part by natural, for example, protein-based materials. Here we outline the scope and explain the motivation of the field of materiomics, as well as demonstrate the benefits of a materiomic approach in the understanding of biological and natural materials as well as in the design of de novo materials. We discuss recent studies that exemplify the impact of materiomics – discovering Nature’s complexity through a materials science approach that merges concepts of material and structure throughout all scales and incorporates feedback loops that facilitate sensing and resulting structural changes at multiple scales. The development and application of materiomics is illustrated for the specific case of protein-based materials, which constitute the building blocks of a variety of biological systems such as tendon, bone, skin, spider silk, cells, and tissue, as well as natural composite material systems (a combination of protein-based and inorganic constituents) such as nacre and mollusk shells, and other natural multiscale systems such as cellulose-based plant and wood materials. An important trait of these materials is that they display distinctive hierarchical structures across multiple scales, where molecular details are exhibited in macroscale mechanical responses. Protein materials are intriguing examples of materials that balance multiple tasks, representing some of the most sustainable material solutions that integrate structure and function despite severe limitations in the quality and quantity of material building blocks. However, up until now, our attempts to analyze and replicate Nature’s materials have been hindered by our lack of fundamental understanding of these materials’ intricate hierarchical structures, scale-bridging mechanisms, and complex material components that bestow protein-based materials their unique properties. Recent advances in analytical tools and experimental methods allow a holistic view of such a hierarchical biological material system. The integration of these approaches and amalgamation of material properties at all scale levels to develop a complete description of a material system falls within the emerging field of materiomics. Materiomics is the result of the convergence of engineering and materials science with experimental and computational biology in the context of natural and synthetic materials. Through materiomics, fundamental advances in our understanding of structure–property–process relations of biological systems contribute to the mechanistic understanding of certain diseases and facilitate the development of novel biological, biologically inspired, and completely synthetic materials for applications in medicine (biomaterials), nanotechnology, and engineering. PMID:24198478
The United States of America as represented by the United States Department of Energy
2009-12-15
An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.
Development of advanced high heat flux and plasma-facing materials
NASA Astrophysics Data System (ADS)
Linsmeier, Ch.; Rieth, M.; Aktaa, J.; Chikada, T.; Hoffmann, A.; Hoffmann, J.; Houben, A.; Kurishita, H.; Jin, X.; Li, M.; Litnovsky, A.; Matsuo, S.; von Müller, A.; Nikolic, V.; Palacios, T.; Pippan, R.; Qu, D.; Reiser, J.; Riesch, J.; Shikama, T.; Stieglitz, R.; Weber, T.; Wurster, S.; You, J.-H.; Zhou, Z.
2017-09-01
Plasma-facing materials and components in a fusion reactor are the interface between the plasma and the material part. The operational conditions in this environment are probably the most challenging parameters for any material: high power loads and large particle and neutron fluxes are simultaneously impinging at their surfaces. To realize fusion in a tokamak or stellarator reactor, given the proven geometries and technological solutions, requires an improvement of the thermo-mechanical capabilities of currently available materials. In its first part this article describes the requirements and needs for new, advanced materials for the plasma-facing components. Starting points are capabilities and limitations of tungsten-based alloys and structurally stabilized materials. Furthermore, material requirements from the fusion-specific loading scenarios of a divertor in a water-cooled configuration are described, defining directions for the material development. Finally, safety requirements for a fusion reactor with its specific accident scenarios and their potential environmental impact lead to the definition of inherently passive materials, avoiding release of radioactive material through intrinsic material properties. The second part of this article demonstrates current material development lines answering the fusion-specific requirements for high heat flux materials. New composite materials, in particular fiber-reinforced and laminated structures, as well as mechanically alloyed tungsten materials, allow the extension of the thermo-mechanical operation space towards regions of extreme steady-state and transient loads. Self-passivating tungsten alloys, demonstrating favorable tungsten-like plasma-wall interaction behavior under normal operation conditions, are an intrinsic solution to otherwise catastrophic consequences of loss-of-coolant and air ingress events in a fusion reactor. Permeation barrier layers avoid the escape of tritium into structural and cooling materials, thereby minimizing the release of tritium under normal operation conditions. Finally, solutions for the unique bonding requirements of dissimilar material used in a fusion reactor are demonstrated by describing the current status and prospects of functionally graded materials.
NASA Astrophysics Data System (ADS)
Cheikhrouhou, Abdelwaheb
2010-11-01
The 'Tunisian Materials Research Society: Tu-MRS' organized the International Days on Materials Physics and Applications 'JIPMA 2009' and the National Conference on Materials 'MATERIAUX 2009' in Gafsa (Tunisia) During the period 20-24 December 2009. The first International Days on Materials Physics and Applications 'JIPMA 2007' were organized in Annaba (Algeria) in November 2007 while the first National Conference on Materials 'MATERIAUX 2006' was organized in Douz (Tunisia) in December 2006. The 'JIPMA' conference series together with the 'MATERIAUX' intend to provide an excellent opportunity for international, Maghreb and Tunisian researchers to make their own works on materials known to a wider audience and to have discussions with other participants. This conference will also be an opportunity to exchange experiences, create and consolidate cooperation between different research structures in the Maghreb countries. This conference will equally promote research development, contribute to collaboration between universities and the socio-economical milieu. More than 300 senior researchers, Professors, PhD and Master students attended this conference from Tunisia, Algeria, Morocco, France, and Spain. Several researchers, engineers and managers from industrial firms also attended this scientific meeting. The conference consists of plenary and semi-plenary talks, oral contributions and poster presentations. The topics of the conference are: Nano-materials, nano-systems, thin films, surfaces and interfaces Multifonctional Materials, Magnetic Materials, Dielectric Materials, Superconducting Materials, Applications, ... Materials for Electronics, Informatics and Communications (Semi-conducting Materials, Electronic devices, Spintronic, ... Optoelectronic Materials, Sensors Ceramics, Glasses, Polymers, ... Natural Materials: Phosphates, Clay, ... Metallic Materials, alloys, ... Materials and Environment Materials and Energy Biomaterials Elaborating Methods and Characterization Techniques I want to thank the organizing committee and everyone else who participated in the organization of this meeting for their invaluable efforts to guarantee the full success of this conference. I want also to thank very warmly all the Scientific committee and all other reviewers for their hard work reviewing the submitted papers. Professor Abdelwaheb CHEIKHROUHOU Chairman of the Conference
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-25
...-0004] Hazardous Materials: Improving the Safety of Railroad Transportation of Hazardous Materials... hazardous materials program. DATES: The public meeting will be held on Tuesday, February 22, 2011, starting...--Hazardous Materials, FRA Office of Safety Assurance and Compliance, at least 4 business days before the date...
49 CFR 172.101 - Purpose and use of hazardous materials table.
Code of Federal Regulations, 2010 CFR
2010-10-01
... paragraph (c)(11): For the transportation of samples of self-reactive materials, organic peroxides... hazard class, the material is not a hazardous material. (13) Self-reactive materials and organic peroxides. A generic proper shipping name for a self-reactive material or an organic peroxide, as listed in...
Composites comprising biologically-synthesized nanomaterials
Curran, Seamus; Dias, Sampath; Blau, Werner; Wang, Jun; Oremland, Ronald S; Baesman, Shaun
2013-04-30
The present disclosure describes composite materials containing a polymer material and a nanoscale material dispersed in the polymer material. The nanoscale materials may be biologically synthesized, such as tellurium nanorods synthesized by Bacillus selenitireducens. Composite materials of the present disclosure may have optical limiting properties and find use in optical limiting devices.
A Guide to Selecting Learning Resource Materials and Equipment.
ERIC Educational Resources Information Center
Dequin, Henry C.
The process is discussed and helpful publications are reviewed for the selection of materials in three areas--learning resource materials for library media programs, materials for special education, and equipment. In the first section, such factors as the need for suitable materials, the abundance of materials available, and financial limitations…
46 CFR 151.56-1 - Prohibited materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Prohibited materials. 151.56-1 Section 151.56-1 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Prohibited Materials of Construction § 151.56-1 Prohibited materials. When one of the following paragraphs of this section is referenced in table 151.05, the materials...
46 CFR 151.03-30 - Hazardous material.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Hazardous material. 151.03-30 Section 151.03-30 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-30 Hazardous material. In this part hazardous material means a liquid material or substance that is— (a) Flammable or combustible; (b...
28 CFR 55.19 - Written materials.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Written materials. 55.19 Section 55.19... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.19 Written materials. (a) Types of materials. It is the obligation of the jurisdiction to decide what materials must be...
46 CFR 151.56-1 - Prohibited materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Prohibited materials. 151.56-1 Section 151.56-1 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Prohibited Materials of Construction § 151.56-1 Prohibited materials. When one of the following paragraphs of this section is referenced in table 151.05, the materials...
28 CFR 55.19 - Written materials.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Written materials. 55.19 Section 55.19... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.19 Written materials. (a) Types of materials. It is the obligation of the jurisdiction to decide what materials must be...
46 CFR 151.03-30 - Hazardous material.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Hazardous material. 151.03-30 Section 151.03-30 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-30 Hazardous material. In this part hazardous material means a liquid material or substance that is— (a) Flammable or combustible; (b...
46 CFR 151.56-1 - Prohibited materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Prohibited materials. 151.56-1 Section 151.56-1 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Prohibited Materials of Construction § 151.56-1 Prohibited materials. When one of the following paragraphs of this section is referenced in table 151.05, the materials...
46 CFR 151.03-30 - Hazardous material.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Hazardous material. 151.03-30 Section 151.03-30 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-30 Hazardous material. In this part hazardous material means a liquid material or substance that is— (a) Flammable or combustible; (b...
Aerogel/polymer composite materials
NASA Technical Reports Server (NTRS)
Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)
2010-01-01
The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.
Aerogel / Polymer Composite Materials
NASA Technical Reports Server (NTRS)
Smith, Trent M. (Inventor); Clayton, LaNetra M. (Inventor); Fesmire, James E. (Inventor); Williams, Martha K. (Inventor); Roberson, Luke B. (Inventor)
2017-01-01
The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.
10 CFR 74.51 - Nuclear material control and accounting for strategic special nuclear material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear material control and accounting for strategic special nuclear material. 74.51 Section 74.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear...
10 CFR 74.51 - Nuclear material control and accounting for strategic special nuclear material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for strategic special nuclear material. 74.51 Section 74.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear...
10 CFR 74.51 - Nuclear material control and accounting for strategic special nuclear material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Nuclear material control and accounting for strategic special nuclear material. 74.51 Section 74.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear...
10 CFR 74.51 - Nuclear material control and accounting for strategic special nuclear material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Nuclear material control and accounting for strategic special nuclear material. 74.51 Section 74.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear...
10 CFR 74.51 - Nuclear material control and accounting for strategic special nuclear material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear material control and accounting for strategic special nuclear material. 74.51 Section 74.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear...
Method of making nanostructured glass-ceramic waste forms
Gao, Huizhen; Wang, Yifeng; Rodriguez, Mark A.; Bencoe, Denise N.
2014-07-08
A waste form for and a method of rendering hazardous materials less dangerous is disclosed that includes fixing the hazardous material in nanopores of a nanoporous material, reacting the trapped hazardous material to render it less volatile/soluble, and vitrifying the nanoporous material containing the less volatile/soluble hazardous material.
High Performance High Temperature Thermoelectric Composites with Metallic Inclusions
NASA Technical Reports Server (NTRS)
Firdosy, Samad A. (Inventor); Kaner, Richard B. (Inventor); Ma, James M. (Inventor); Fleurial, Jean-Pierre (Inventor); Star, Kurt (Inventor); Bux, Sabah K. (Inventor); Ravi, Vilupanur A. (Inventor)
2017-01-01
The present invention provides a composite thermoelectric material. The composite thermoelectric material can include a semiconductor material comprising a rare earth metal. The atomic percent of the rare earth metal in the semiconductor material can be at least about 20%. The composite thermoelectric material can further include a metal forming metallic inclusions distributed throughout the semiconductor material. The present invention also provides a method of forming this composite thermoelectric material.
Plastic Recycling Experiments in Materials Education
NASA Technical Reports Server (NTRS)
Liu, Ping; Waskom, Tommy L.
1996-01-01
The objective of this project was to introduce a series of plastic recycling experiments to students in materials-related courses such as materials science, material technology and materials testing. With the plastic recycling experiments, students not only can learn the fundamentals of plastic processing and properties as in conventional materials courses, but also can be exposed to the issue of materials life cycle and the impact on society and environment.
Material Demand Studies: Materials Sorption of Vaporized Hydrogen Peroxide
2010-06-01
SORPTION OF VAPORIZED HYDROGEN PEROXIDE Lawrence R. Procell Zoe A. Hess David G. Gehring Joseph T. Lynn Philip W. Bartram Teri Lalain RESEARCH AND...2010 2. REPORT TYPE Final 3. DATES COVERED (From - To) Nov 2003 - Jul 2005 4. TITLE AND SUBTITLE Material Demand Studies: Materials Sorption of...of office surfaces 33 \\i MATERIAL DEMAND STUDIES: MATERIALS SORPTION OF VAPORIZED HYDROGEN PEROXIDE 1. BACKGROUND The Material Demand effort was
NASA Technical Reports Server (NTRS)
Morton, Thomas L.; Ferguson, Dale C.
1997-01-01
In order to test their reactivity with Atomic Oxygen, twenty five materials were flown on the EOIM-3 (Evaluation of Oxygen Interactions with Materials) portion of the STS-46 Mission. These materials include refractory metals, candidate insulation materials, candidate radiator coatings, and a selection of miscellaneous materials. This report documents the results of the pre- and post-flight analysis of these materials.
Chemical reactor and method for chemically converting a first material into a second material
Kong, Peter C.
2008-04-08
A chemical reactor and method for converting a first material into a second material is disclosed and wherein the chemical reactor is provided with a feed stream of a first material which is to be converted into a second material; and wherein the first material is combusted in the chemical reactor to produce a combustion flame, and a resulting gas; and an electrical arc is provided which is passed through or superimposed upon the combustion flame and the resulting gas to facilitate the production of the second material.
Reclaiming metallic material from an article comprising a non-metallic friable substrate
Bohland, John Raphael; Anisimov, Igor Ivanovich; Dapkus, Todd James; Sasala, Richard Anthony; Smigielski, Ken Alan; Kamm, Kristin Danielle
2000-01-01
A method for reclaiming a metallic material from a article including a non-metallic friable substrate. The method comprising crushing the article into a plurality of pieces. An acidic solution capable of dissolving the metallic material is provided dissolving the metallic material in the acidic material to form an etchant effluent. The etchant effluent is separated from the friable substrate. A precipitation agent, capable of precipitating the metallic material, is added to the etchant effluent to precipitate out the metallic material from the etchant effluent. The metallic material is then recovered.
Free-standing oxide superconducting articles
Wu, X.D.; Muenchausen, R.E.
1993-12-14
A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template layer.
Electroless atomic layer deposition
Robinson, David Bruce; Cappillino, Patrick J.; Sheridan, Leah B.; Stickney, John L.; Benson, David M.
2017-10-31
A method of electroless atomic layer deposition is described. The method electrolessly generates a layer of sacrificial material on a surface of a first material. The method adds doses of a solution of a second material to the substrate. The method performs a galvanic exchange reaction to oxidize away the layer of the sacrificial material and deposit a layer of the second material on the surface of the first material. The method can be repeated for a plurality of iterations in order to deposit a desired thickness of the second material on the surface of the first material.
Chemical reactor for converting a first material into a second material
Kong, Peter C
2012-10-16
A chemical reactor and method for converting a first material into a second material is disclosed and wherein the chemical reactor is provided with a feed stream of a first material which is to be converted into a second material; and wherein the first material is combusted in the chemical reactor to produce a combustion flame, and a resulting gas; and an electrical arc is provided which is passed through or superimposed upon the combustion flame and the resulting gas to facilitate the production of the second material.
Materials, critical materials and clean-energy technologies
NASA Astrophysics Data System (ADS)
Eggert, R.
2017-07-01
Modern engineered materials, components and systems depend on raw materials whose properties provide essential functionality to these technologies. Some of these raw materials are subject to supply-chain risks, and such materials are known as critical materials. This paper reviews corporate, national and world perspectives on material criticality. It then narrows its focus to studies that assess "what is critical" to clean-energy technologies. The focus on supply-chain risks is not meant to be alarmist but rather to encourage attention to monitoring these risks and pursuing technological innovation to mitigate the risks.
Nuclear reactor for breeding U.sup.233
Bohanan, Charles S.; Jones, David H.; Raab, Jr., Harry F.; Radkowsky, Alvin
1976-01-01
A light-water-cooled nuclear reactor capable of breeding U.sup.233 for use in a light-water breeder reactor includes physically separated regions containing U.sup.235 fissile material and U.sup.238 fertile material and Th.sup.232 fertile material and Pu.sup.239 fissile material, if available. Preferably the U.sup.235 fissile material and U.sup.238 fertile material are contained in longitudinally movable seed regions and the Pu.sup.239 fissile material and Th.sup.232 fertile material are contained in blanket regions surrounding the seed regions.
Materials technology assessment for a 1050 K Stirling space engine design
NASA Technical Reports Server (NTRS)
Scheuermann, Coulson M.; Dreshfield, Robert L.; Gaydosh, Darrell J.; Kiser, James D.; Mackay, Rebecca A.; Mcdaniels, David L.; Petrasek, Donald W.; Vannucci, Raymond D.; Bowles, Kenneth J.; Watson, Gordon K.
1988-01-01
An assessment of materials technology and proposed materials selection was made for the 1050 K (superalloy) Stirling Space Engine design. The objectives of this assessment were to evaluate previously proposed materials selections, evaluate the current state-of-the-art materials, propose potential alternate materials selections and identify research and development efforts needed to provide materials that can meet the stringent system requirements. This assessment generally reaffirmed the choices made by the contractor. However, in many cases alternative choices were described and suggestions for needed materials and fabrication research and development were made.
Method for distributing chemicals through a fibrous material using low-headspace dielectric heating
Banerjee, Sujit; Malcolm, Earl
2002-01-01
System and method for diffusing chemicals rapidly and evenly into and through fibrous material, such as wood. Chemicals are introduced into the fibrous material by applying the chemicals to the fibrous material. After treating the fibrous material with the chemicals, the fibrous material is maintained under low-headspace conditions. Thermal energy or dielectric heating, such as microwave or radio frequency energy, is applied to the fibrous material. As a result, the chemicals are able to distribute evenly and quickly throughout the fibrous material.
Fracture/Severance of Materials
NASA Technical Reports Server (NTRS)
Schimmel, Morry L. (Inventor); Bement, Laurence J. (Inventor); DuBrucq, Glenn F., Jr. (Inventor); Klein, Edward A. (Inventor)
1998-01-01
A method for severing or weakening materials is discussed. Explosive cords are placed in grooves on the upper surface of the material to be severed or weakened. The explosive cords are initiated simultaneously to introduce explosive shock waves into the material. These shock waves progress toward the centerline between the explosive cords and the lower surface of the material. Intersecting and reflected waves produce a rarefaction zone on the centerline to fail the material in tension. A groove may also be cut in the lower surface of the material to aid in severing or weakening the material.
NASA Astrophysics Data System (ADS)
Murr, L. E.
2006-07-01
Biological systems and processes have had, and continue to have, important implications and applications in materials extraction, processing, and performance. This paper illustrates some interdisciplinary, biological issues in materials science and engineering. These include metal extraction involving bacterial catalysis, galvanic couples, bacterial-assisted corrosion and degradation of materials, biosorption and bioremediation of toxic and other heavy metals, metal and material implants and prostheses and related dental and medical biomaterials developments and applications, nanomaterials health benefits and toxicity issue, and biomimetics and biologically inspired materials developments. These and other examples provide compelling evidence and arguments for emphasizing biological sicences in materials science and engineering curricula and the implementation of a bio-materials paradigm to facilitate the emergence of innovative interdisciplinarity involving the biological sciences and materials sciences and engineering.
Application of materials database (MAT.DB.) to materials education
NASA Technical Reports Server (NTRS)
Liu, Ping; Waskom, Tommy L.
1994-01-01
Finding the right material for the job is an important aspect of engineering. Sometimes the choice is as fundamental as selecting between steel and aluminum. Other times, the choice may be between different compositions in an alloy. Discovering and compiling materials data is a demanding task, but it leads to accurate models for analysis and successful materials application. Mat. DB. is a database management system designed for maintaining information on the properties and processing of engineered materials, including metals, plastics, composites, and ceramics. It was developed by the Center for Materials Data of American Society for Metals (ASM) International. The ASM Center for Materials Data collects and reviews material property data for publication in books, reports, and electronic database. Mat. DB was developed to aid the data management and material applications.
Materials Frontiers to Empower Quantum Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Antoinette Jane; Sarrao, John Louis; Richardson, Christopher
This is an exciting time at the nexus of quantum computing and materials research. The materials frontiers described in this report represent a significant advance in electronic materials and our understanding of the interactions between the local material and a manufactured quantum state. Simultaneously, directed efforts to solve materials issues related to quantum computing provide an opportunity to control and probe the fundamental arrangement of matter that will impact all electronic materials. An opportunity exists to extend our understanding of materials functionality from electronic-grade to quantum-grade by achieving a predictive understanding of noise and decoherence in qubits and their originsmore » in materials defects and environmental coupling. Realizing this vision systematically and predictively will be transformative for quantum computing and will represent a qualitative step forward in materials prediction and control.« less
NASA Astrophysics Data System (ADS)
Clegg, R. A.; White, D. M.; Hayhurst, C.; Ridel, W.; Harwick, W.; Hiermaier, S.
2003-09-01
The development and validation of an advanced material model for orthotropic materials, such as fibre reinforced composites, is described. The model is specifically designed to facilitate the numerical simulation of impact and shock wave propagation through orthotropic materials and the prediction of subsequent material damage. Initial development of the model concentrated on correctly representing shock wave propagation in composite materials under high and hypervelocity impact conditions [1]. This work has now been extended to further concentrate on the development of improved numerical models and material characterisation techniques for the prediction of damage, including residual strength, in fibre reinforced composite materials. The work is focussed on Kevlar-epoxy however materials such as CFRP are also being considered. The paper describes our most recent activities in relation to the implementation of advanced material modelling options in this area. These enable refined non-liner directional characteristics of composite materials to be modelled, in addition to the correct thermodynamic response under shock wave loading. The numerical work is backed by an extensive experimental programme covering a wide range of static and dynamic tests to facilitate derivation of model input data and to validate the predicted material response. Finally, the capability of the developing composite material model is discussed in relation to a hypervelocity impact problem.
Findikoglu, Alp T [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM; Arendt, Paul N [Los Alamos, NM; Matias, Vladimir [Santa Fe, NM; Choi, Woong [Los Alamos, NM
2009-10-27
A template article including a base substrate including: (i) a base material selected from the group consisting of polycrystalline substrates and amorphous substrates, and (ii) at least one layer of a differing material upon the surface of the base material; and, a buffer material layer upon the base substrate, the buffer material layer characterized by: (a) low chemical reactivity with the base substrate, (b) stability at temperatures up to at least about 800.degree. C. under low vacuum conditions, and (c) a lattice crystal structure adapted for subsequent deposition of a semiconductor material; is provided, together with a semiconductor article including a base substrate including: (i) a base material selected from the group consisting of polycrystalline substrates and amorphous substrates, and (ii) at least one layer of a differing material upon the surface of the base material; and, a buffer material layer upon the base substrate, the buffer material layer characterized by: (a) low chemical reactivity with the base substrate, (b) stability at temperatures up to at least about 800.degree. C. under low vacuum conditions, and (c) a lattice crystal structure adapted for subsequent deposition of a semiconductor material, and, a top-layer of semiconductor material upon the buffer material layer.
3D Viscoelastic Traction Force Microscopy
Toyjanova, Jennet; Hannen, Erin; Bar-Kochba, Eyal; Darling, Eric M.; Henann, David L.; Franck, Christian
2014-01-01
Native cell-material interactions occur on materials differing in their structural composition, chemistry, and physical compliance. While the last two decades have shown the importance of traction forces during cell-material interactions, they have been almost exclusively presented on purely elastic in-vitro materials. Yet, most bodily tissue materials exhibit some level of viscoelasticity, which could play an important role in how cells sense and transduce tractions. To expand the realm of cell traction measurements and to encompass all materials from elastic to viscoelastic, this paper presents a general, and comprehensive approach for quantifying 3D cell tractions in viscoelastic materials. This methodology includes the experimental characterization of the time-dependent material properties for any viscoelastic material with the subsequent mathematical implementation of the determined material model into a 3D traction force microscopy (3D TFM) framework. Utilizing this new 3D viscoelastic TFM (3D VTFM) approach, we quantify the influence of viscosity on the overall material traction calculations and quantify the error associated with omitting time-dependent material effects, as is the case for all other TFM formulations. We anticipate that the 3D VTFM technique will open up new avenues of cell-material investigations on even more physiologically relevant time-dependent materials including collagen and fibrin gels. PMID:25170569
Odegård, M; Mansfeld, J; Dundas, S H
2001-08-01
Calibration materials for microanalysis of Ti minerals have been prepared by direct fusion of synthetic and natural materials by resistance heating in high-purity graphite electrodes. Synthetic materials were FeTiO3 and TiO2 reagents doped with minor and trace elements; CRMs for ilmenite, rutile, and a Ti-rich magnetite were used as natural materials. Problems occurred during fusion of Fe2O3-rich materials, because at atmospheric pressure Fe2O3 decomposes into Fe3O4 and O2 at 1462 degrees C. An alternative fusion technique under pressure was tested, but the resulting materials were characterized by extensive segregation and development of separate phases. Fe2O3-rich materials were therefore fused below this temperature, resulting in a form of sintering, without conversion of the materials into amorphous glasses. The fused materials were studied by optical microscopy and EPMA, and tested as calibration materials by inductively coupled plasma mass spectrometry, equipped with laser ablation for sample introduction (LA-ICP-MS). It was demonstrated that calibration curves based on materials of rutile composition, within normal analytical uncertainty, generally coincide with calibration curves based on materials of ilmenite composition. It is, therefore, concluded that LA-ICP-MS analysis of Ti minerals can with advantage be based exclusively on calibration materials prepared for rutile, thereby avoiding the special fusion problems related to oxide mixtures of ilmenite composition. It is documented that sintered materials were in good overall agreement with homogeneous glass materials, an observation that indicates that in other situations also sintered mineral concentrates might be a useful alternative for instrument calibration, e.g. as alternative to pressed powders.
Compaction of Confining Materials in Pillar Blast Tests
NASA Astrophysics Data System (ADS)
Petropoulos, N.; Wimmer, M.; Johansson, D.; Nordlund, E.
2018-06-01
Two confined pillar tests were conducted at the Kiirunavaara mine to investigate the degree of compaction of three materials, i.e., 0-32-mm backfilled material, a blend of ore and waste material and caved material. Two blastholes were drilled parallel to each pillar wall, and several measurement holes were drilled in between the blastholes through each pillar. Both the measurement holes and backfilled materials, except the caved material, were instrumented. Two types of measurements were taken: dynamic measurements with accelerometers, and static measurements which considered the location of the instrumentation pre- and post-blast. Dynamic measurements involved the burden movement and the confining material behavior, and static measurements contained the final location of sensors inside and the angle of repose of the confining material. The results showed that the size distribution of the confining material affects its behavior under dynamic loading. The backfilled materials showed an apparent cohesion forming an agglomeration on the surface of the blasted burden. The burden moved as one slab due to simultaneous detonation. A gap was formed between the blasted burden and the new face. This gap was partially filled with burden erosion material which was finer fragmented than the blasted burden material.
Permeability analysis of Asbuton material used as core layers of water resistance in the body of dam
NASA Astrophysics Data System (ADS)
Rahim, H.; Tjaronge, M. W.; Thaha, A.; Djamaluddin, R.
2017-11-01
In order to increase consumption of the local materials and national products, large reserves of Asbuton material about 662.960 million tons in the Buton Islands became an alternative as a waterproof core layer in the body of dam. The Asbuton material was used in this research is Lawele Granular Asphalt (LGA). This study was an experimental study conducted in the laboratory by conducting density testing (content weight) and permeability on Asbuton material. Testing of the Asbuton material used Falling Head method to find out the permeability value of Asbuton material. The data of test result to be analyzed are the relation between compaction energy and density value also relation between density value and permeability value of Asbuton material. The result shows that increases the number of blow apply to the Asbuton material at each layer will increase the density of the Asbuton material. The density value of Asbuton material that satisfies the requirements for use as an impermeable core layer in the dam body is 1.53 grams/cm3. The increase the density value (the weight of the contents) of the Asbuton material will reduce its permeability value of the Asbuton material.
Apparatus and Method for Increasing the Diameter of Metal Alloy Wires Within a Molten Metal Pool
Hartman, Alan D.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; King, Paul E.; Turner, Paul C.
2002-01-29
In a dip forming process the core material to be coated is introduced directly into a source block of coating material eliminating the need for a bushing entrance component. The process containment vessel or crucible is heated so that only a portion of the coating material becomes molten, leaving a solid portion of material as the entrance port of, and seal around, the core material. The crucible can contain molten and solid metals and is especially useful when coating core material with reactive metals. The source block of coating material has been machined to include a close tolerance hole of a size and shape to closely fit the core material. The core material moves first through the solid portion of the source block of coating material where the close tolerance hole has been machined, then through a solid/molten interface, and finally through the molten phase where the diameter of the core material is increased. The crucible may or may not require water-cooling depending upon the type of material used in crucible construction. The system may operate under vacuum, partial vacuum, atmospheric pressure, or positive pressure depending upon the type of source material being used.
Wu, Hao Bin; Lou, Xiong Wen David
2017-12-01
In addition to their conventional uses, metal-organic frameworks (MOFs) have recently emerged as an interesting class of functional materials and precursors of inorganic materials for electrochemical energy storage and conversion technologies. This class of MOF-related materials can be broadly categorized into two groups: pristine MOF-based materials and MOF-derived functional materials. Although the diversity in composition and structure leads to diverse and tunable functionalities of MOF-based materials, it appears that much more effort in this emerging field is devoted to synthesizing MOF-derived materials for electrochemical applications. This is in view of two main drawbacks of MOF-based materials: the low conductivity nature and the stability issue. On the contrary, MOF-derived synthesis strategies have substantial advantages in controlling the composition and structure of MOF-derived materials. From this perspective, we review some emerging applications of both groups of MOF-related materials as electrode materials for rechargeable batteries and electrochemical capacitors, efficient electrocatalysts, and even electrolytes for electrochemical devices. By highlighting the advantages and challenges of each class of materials for different applications, we hope to shed some light on the future development of this highly exciting area.
A new classification system for all-ceramic and ceramic-like restorative materials.
Gracis, Stefano; Thompson, Van P; Ferencz, Jonathan L; Silva, Nelson R F A; Bonfante, Estevam A
2015-01-01
Classification systems for all-ceramic materials are useful for communication and educational purposes and warrant continuous revisions and updates to incorporate new materials. This article proposes a classification system for ceramic and ceramic-like restorative materials in an attempt to systematize and include a new class of materials. This new classification system categorizes ceramic restorative materials into three families: (1) glass-matrix ceramics, (2) polycrystalline ceramics, and (3) resin-matrix ceramics. Subfamilies are described in each group along with their composition, allowing for newly developed materials to be placed into the already existing main families. The criteria used to differentiate ceramic materials are based on the phase or phases present in their chemical composition. Thus, an all-ceramic material is classified according to whether a glass-matrix phase is present (glass-matrix ceramics) or absent (polycrystalline ceramics) or whether the material contains an organic matrix highly filled with ceramic particles (resin-matrix ceramics). Also presented are the manufacturers' clinical indications for the different materials and an overview of the different fabrication methods and whether they are used as framework materials or monolithic solutions. Current developments in ceramic materials not yet available to the dental market are discussed.
Wu, Hao Bin; Lou, Xiong Wen (David)
2017-01-01
In addition to their conventional uses, metal-organic frameworks (MOFs) have recently emerged as an interesting class of functional materials and precursors of inorganic materials for electrochemical energy storage and conversion technologies. This class of MOF-related materials can be broadly categorized into two groups: pristine MOF-based materials and MOF-derived functional materials. Although the diversity in composition and structure leads to diverse and tunable functionalities of MOF-based materials, it appears that much more effort in this emerging field is devoted to synthesizing MOF-derived materials for electrochemical applications. This is in view of two main drawbacks of MOF-based materials: the low conductivity nature and the stability issue. On the contrary, MOF-derived synthesis strategies have substantial advantages in controlling the composition and structure of MOF-derived materials. From this perspective, we review some emerging applications of both groups of MOF-related materials as electrode materials for rechargeable batteries and electrochemical capacitors, efficient electrocatalysts, and even electrolytes for electrochemical devices. By highlighting the advantages and challenges of each class of materials for different applications, we hope to shed some light on the future development of this highly exciting area. PMID:29214220
Apparatus and method for increasing the diameter of metal alloy wires within a molten metal pool
Hartman, Alan D.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; King, Paul E.; Turner, Paul C.
2002-01-29
In a dip forming process the core material to be coated is introduced directly into a source block of coating material eliminating the need for a bushing entrance component. The process containment vessel or crucible is heated so that only a portion of the coating material becomes molten, leaving a solid portion of material as the entrance port of, and seal around, the core material. The crucible can contain molten and solid metals and is especially useful when coating core material with reactive metals. The source block of coating material has been machined to include a close tolerance hole of a size and shape to closely fit the core material. The core material moves first through the solid portion of the source block of coating material where the close tolerance hole has been machined, then through a solid/molten interface, and finally through the molten phase where the diameter of the core material is increased. The crucible may or may not require water-cooling depending upon the type of material used in crucible construction. The system may operate under vacuum, partial vacuum, atmospheric pressure, or positive pressure depending upon the type of source material being used.
Behavioural response of Phytoseiulus persimilisin inert materials for technical application.
Wendorf, Dennis; Sermann, Helga; Katz, Peter; Lerche, Sandra; Büttner, Carmen
2009-01-01
A large scale application of the predatory mite Phytoseiulus persimilis Athias-Henriot for use in the biological control of spider mites in the field requires testing the behaviour of Phytoseiulus persimilis in inert materials, like millet pelts and Vermiculite (1-3 mm). In laboratory studies, the distribution of the individuals in such materials, the time of remaining in the material were proved. To examine the abiotic influences on the time of remaining in the material, the dampness of the materials was varied (0%, 5% and 10%). Moreover, the influence of attitude of materials was tested. The time of emigration from the material was noted for each individual. Emigration from all dry materials was completed 15 minutes at the latest after set up of the mites. The increase of dampness had an obvious effect on the time of remaining in the material. In this respect the material millet pelts showed the most favourable effect with 10% dampness. Increasing attitude of material the mobility of predatory mites will be influenced negatively above 75 cm. Up to 50 cm, mites have not a problem to move in the material and the time of remaining can be prolonged considerably.
Computational prediction of new auxetic materials.
Dagdelen, John; Montoya, Joseph; de Jong, Maarten; Persson, Kristin
2017-08-22
Auxetics comprise a rare family of materials that manifest negative Poisson's ratio, which causes an expansion instead of contraction under tension. Most known homogeneously auxetic materials are porous foams or artificial macrostructures and there are few examples of inorganic materials that exhibit this behavior as polycrystalline solids. It is now possible to accelerate the discovery of materials with target properties, such as auxetics, using high-throughput computations, open databases, and efficient search algorithms. Candidates exhibiting features correlating with auxetic behavior were chosen from the set of more than 67 000 materials in the Materials Project database. Poisson's ratios were derived from the calculated elastic tensor of each material in this reduced set of compounds. We report that this strategy results in the prediction of three previously unidentified homogeneously auxetic materials as well as a number of compounds with a near-zero homogeneous Poisson's ratio, which are here denoted "anepirretic materials".There are very few inorganic materials with auxetic homogenous Poisson's ratio in polycrystalline form. Here authors develop an approach to screening materials databases for target properties such as negative Poisson's ratio by using stability and structural motifs to predict new instances of homogenous auxetic behavior as well as a number of materials with near-zero Poisson's ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Dong-Kyun; Medpelli, Dinesh; Ladd, Danielle
A product formed from a first material including a geopolymer resin material, a geopolymer resin, or a combination thereof by contacting the first material with a fluid and removing at least some of the fluid to yield a product. The first material may be formed by heating and/or aging an initial geopolymer resin material to yield the first material before contacting the first material with the fluid. In some cases, contacting the first material with the fluid breaks up or disintegrates the first material (e.g., in response to contact with the fluid and in the absence of external mechanical stress),more » thereby forming particles having an external dimension in a range between 1 nm and 2 cm.« less
NASA Astrophysics Data System (ADS)
Kim, Hyun Chan; Mun, Seongcheol; Ko, Hyun-U.; Zhai, Lindong; Kafy, Abdullahil; Kim, Jaehwan
2016-07-01
The use of renewable materials is essential in future technologies to harmonize with our living environment. Renewable materials can maintain our resources from the environment so as to overcome degradation of natural environmental services and diminished productivity. This paper reviews recent advancement of renewable materials for smart material applications, including wood, cellulose, chitin, lignin, and their sensors, actuators and energy storage applications. To further improve functionality of renewable materials, hybrid composites of inorganic functional materials are introduced by incorporating carbon nanotubes, titanium dioxide and tin oxide conducting polymers and ionic liquids. Since renewable materials have many advantages of biocompatible, sustainable, biodegradable, high mechanical strength and versatile modification behaviors, more research efforts need to be focused on the development of renewable smart materials.
Microfabrication of hierarchical structures for engineered mechanical materials
NASA Astrophysics Data System (ADS)
Vera Canudas, Marc
Materials found in nature present, in some cases, unique properties from their constituents that are of great interest in engineered materials for applications ranging from structural materials for the construction of bridges, canals and buildings to the fabrication of new lightweight composites for airplane and automotive bodies, to protective thin film coatings, amongst other fields. Research in the growing field of biomimetic materials indicates that the micro-architectures present in natural materials are critical to their macroscopic mechanical properties. A better understanding of the effect that structure and hierarchy across scales have on the material properties will enable engineered materials with enhanced properties. At the moment, very few theoretical models predict mechanical properties of simple materials based on their microstructures. Moreover these models are based on observations from complex biological systems. One way to overcome this challenge is through the use of microfabrication techniques to design and fabricate simple materials, more appropriate for the study of hierarchical organizations and microstructured materials. Arrays of structures with controlled geometry and dimension can be designed and fabricated at different length scales, ranging from a few hundred nanometers to centimeters, in order to mimic similar systems found in nature. In this thesis, materials have been fabricated in order to gain fundamental insight into the complex hierarchical materials found in nature and to engineer novel materials with enhanced mechanical properties. The materials fabricated here were mechanically characterized and compared to simple mechanics models to describe their behavior with the goal of applying the knowledge acquired to the design and synthesis of future engineered materials with novel properties.
Comparison of wear between occlusal splint materials and resin composite materials.
Reyes-Sevilla, M; Kuijs, R H; Werner, A; Kleverlaan, C J; Lobbezoo, F
2018-07-01
Tooth wear in bruxing patients often results in a need for treatment with composite restorations. In some cases, bruxing patients receive an occlusal splint as a protective means as well. However, the wear between these opposing materials has not been investigated yet. The aim of this in vitro study was to assess the wear of different splint materials against resin composite materials. A two-body wear test was conducted using the ACTA wear machine. The materials selected for this study were three composites used for direct restorations (Filtek Z250, CLEARFIL AP-X, and Filtek Supreme XT) and four occlusal splints materials, viz. a polyamide resin (ThermoSens) an conventional (hand-processed), milled and printed polymethylmethacrylate (PMMA). As antagonistic materials, stainless steel, Filtek Supreme XT and CLEARFIL AP-X were used. The wear rate of the seven materials was determined after 200 000 cycles, using a profilometry. The rates were analysed using two-way ANOVA and post hoc Tukey's tests. The wear rates were significantly higher for the conventional and milled PMMA materials than for all other materials (P < .001). The wear rates of printed PMMA and the polyamide resin were comparable to composite wear rates. The antagonist materials have minor or no influence on the amount of wear of the various splint materials (P < .001). In conclusion, different splint materials yielded different wear rates for all antagonist materials tested. Keeping in mind that this study is an experimental in vitro study, this finding enables practitioners to choose the splint material necessary according to their patients' needs. © 2018 John Wiley & Sons Ltd.
Materials in the economy; material flows, scarcity, and the environment
Wagner, Lorie A.
2002-01-01
The importance of materials to the economy of the United States is described, including the levels of consumption and uses of materials. The paths (or flows) that materials take from extraction, through processing, to consumer products, and then final disposition are illustrated. Scarcity and environmental issues as they relate to the flow of materials are discussed. Examples for the three main themes of the report (material flows, scarcity, and the environment) are presented.
Low transient thermal stress turbine engine components
Shi, Jun [Glastonbury, CT; Schmidt, Wayde R [Pomfret Center, CT
2011-06-28
A turbine vane includes a platform; and at least one airfoil mounted to the platform and having a trailing edge and a leading edge, wherein the vane is composed of a functionally graded material having a first material and a second material, wherein the trailing edge includes a greater amount of the first material than the second material, and the leading edge includes a greater amount of the second material than the first material.
Praeg, W.F.
1984-03-30
This invention pertains to arrangements for performing electrical tests on contact material samples, and in particular for testing contact material test samples in an evacuated environment under high current loads. Frequently, it is desirable in developing high-current separable contact material, to have at least a preliminary analysis of selected candidate conductor materials. Testing of material samples will hopefully identify materials unsuitable for high current electrical contact without requiring incorporation of the materials into a completed and oftentimes complex structure.
Thermoelectric materials and methods for synthesis thereof
Ren, Zhifeng; Zhang, Qinyong; Zhang, Qian; Chen, Gang
2015-08-04
Materials having improved thermoelectric properties are disclosed. In some embodiments, lead telluride/selenide based materials with improved figure of merit and mechanical properties are disclosed. In some embodiments, the lead telluride/selenide based materials of the present disclosure are p-type thermoelectric materials formed by adding sodium (Na), silicon (Si) or both to thallium doped lead telluride materials. In some embodiments, the lead telluride/selenide based materials are formed by doping lead telluride/selenides with potassium.
Nanocrystalline ceramic materials
Siegel, Richard W.; Nieman, G. William; Weertman, Julia R.
1994-01-01
A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.
46 CFR 151.58-1 - Required materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Required materials. 151.58-1 Section 151.58-1 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Required Materials of Construction § 151.58-1 Required materials... materials listed in that paragraph may be used in components that contact the cargo or its vapor: (a...
46 CFR 151.58-1 - Required materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Required materials. 151.58-1 Section 151.58-1 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Required Materials of Construction § 151.58-1 Required materials... materials listed in that paragraph may be used in components that contact the cargo or its vapor: (a...
46 CFR 151.58-1 - Required materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Required materials. 151.58-1 Section 151.58-1 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Required Materials of Construction § 151.58-1 Required materials... materials listed in that paragraph may be used in components that contact the cargo or its vapor: (a...
Obtaining NASA Approval for use of Non-Metallic Materials in Manned Space Flight
NASA Technical Reports Server (NTRS)
Davis, Samuel E.; Wise, Harry L.
2003-01-01
Material manufacturers and suppliers are often surprised when a material commonly provided to industry is not approved for use on manned spacecraft. Often the reason is a lack of test data in environments that simulate those encountered in space applications, especially oxygen-enriched conditions, which significantly increase both the likelihood of material combustion and the propagation of a fire. This paper introduces the requirements for flight approval of non-metallic materials, focusing on material testing for human-rated space flight programs; it reviews the history of flight materials requirements and provides the rationale for such and introduces specific requirements related to testing and to good material engineering and design practices. After describing the procedure for submitting materials to be tested, the paper outlines options available if a material fails testing. In addition, this treatise introduces the National Aeronautics and Space Administration's (NASA's) Materials and Processes Technical Information System (MAPTIS), a database housing all test data produced in accordance with NASA-STD-6001, Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion.
NASA Technical Reports Server (NTRS)
Thomas, D. E.
1976-01-01
Extensive studies are presented which were carried out on materials behavior in nine advanced energy conversion systems employing coal and coal-derived fuels. The areas of materials behavior receiving particular attention in this regard are: (1) fireside corrosion and erosion in boiler and heat exchanger materials, (2) oxidation and hot corrosion of gas turbine materials, (3) liquid metal corrosion and mass transport, (4) high temperature steam corrosion, (5) compatability of materials with coal slag and MHD seed, (6) reaction of materials with impure helium, (7) allowable stresses for boiler and heat exchanger materials, (8) environmental effects on mechanical properties, and (9) liquid metal purity control and instrumentation. Such information was then utilized in recommending materials for use in the critical components of the power systems, and at the same time to identify materials problem areas and to evaluate qualitatively the difficulty of solving those problems. Specific materials recommendations for critical components of the nine advanced systems under study are contained in summary tables.
NASA Technical Reports Server (NTRS)
Grugel, Richard N. (Inventor)
2004-01-01
A method is provided for the fabrication of a protective coating for a crucible with channels being formed in the coating. A material is adhered to the outer wall of the crucible to form a pattern thereon. The outer wall of the crucible along with the pattern of material adhered thereto is next coated with another material. The material used to form the pattern should extend through the outer material coating to define at least one port therein. Next, the crucible with its pattern of material and outer coating material is heated to a temperature of transformation at which the pattern of material is transformed to a fluidic state while the crucible and outer coating material maintain their solid integrity. Such transformation could also be accomplished by using a solvent that causes the pattern of material to dissolve. Finally, the material in its fluidic state is removed via the at least one port formed in the outer material coating thereby leaving channels defined in the coating adjacent the outer wall of the crucible.
The Next Generation Thermoelectric Materials
NASA Astrophysics Data System (ADS)
Tritt, Terry M.
1999-11-01
Recently there been renewed interest in materials for thermoelectric refrigeration and power generation applications.^1, 2 Many new materials and new classes of materials are being investigated for potential thermoelectric applications. An introduction to thermoelectric refrigeration and power generation, the advantages and disadvantages and potential applications will be discussed. An overview of some of the current thermoelectric materials under investigation and the criteria for selection of new materials will be given. To be promising as a thermoelectric material, a material must have a high Seebeck coefficient, α, high electrical conductivity, σ, and a low thermal conductivity, λ. These parameters go into the material's dimensionless figure of merit ZT = α ^2σT/λ. Our research at Clemson is focused on a number of new materials, quasicrystals and pentatelluride materials, which show promise for thermoelectrics and these systems will be briefly discussed. Demonstrations of thermoelectric devices will be shown and discussed. 1.) Thermoelectric Materials: New Directions and Approaches, MRS Volumes 478 and 545, edited by Terry M. Tritt et. al. 2.) G. Mahan, B. Sales and J. Sharp, Physics Today, March 50, 42, 1997
Thermal effects on transducer material for heat assisted magnetic recording application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Rong, E-mail: Ji-Rong@dsi.a-star.edu.sg; Xu, Baoxi; Cen, Zhanhong
2015-05-07
Heat Assisted Magnetic Recording (HAMR) is a promising technology for next generation hard disk drives with significantly increased data recording capacities. In HAMR, an optical near-field transducer (NFT) is used to concentrate laser energy on a magnetic recording medium to fulfill the heat assist function. The key components of a NFT are transducer material, cladding material, and adhesion material between the cladding and the transducer materials. Since transducer materials and cladding materials have been widely reported, this paper focuses on the adhesion materials between the Au transducer and the Al{sub 2}O{sub 3} cladding material. A comparative study for two kindsmore » of adhesion material, Ta and Cr, has been conducted. We found that Ta provides better thermal stability to the whole transducer than Cr. This is because after thermal annealing, chromium forms oxide material at interfaces and chromium atoms diffuse remarkably into the Au layer and react with Au to form Au alloy. This study also provides insights on the selection of adhesion material for HAMR transducer.« less
A multifluid model extended for strong temperature nonequilibrium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chong
2016-08-08
We present a multifluid model in which the material temperature is strongly affected by the degree of segregation of each material. In order to track temperatures of segregated form and mixed form of the same material, they are defined as different materials with their own energy. This extension makes it necessary to extend multifluid models to the case in which each form is defined as a separate material. Statistical variations associated with the morphology of the mixture have to be simplified. Simplifications introduced include combining all molecularly mixed species into a single composite material, which is treated as another segregatedmore » material. Relative motion within the composite material, diffusion, is represented by material velocity of each component in the composite material. Compression work, momentum and energy exchange, virtual mass forces, and dissipation of the unresolved kinetic energy have been generalized to the heterogeneous mixture in temperature nonequilibrium. The present model can be further simplified by combining all mixed forms of materials into a composite material. Molecular diffusion in this case is modeled by the Stefan-Maxwell equations.« less
Joining of dissimilar materials
Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P
2012-10-16
A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.
NASA Technical Reports Server (NTRS)
Morgan, Richard E. (Inventor); Meeks, Craig L. (Inventor)
2017-01-01
Insulation materials have a coating of a partially cured polymer on a plurality of fibers, and the plurality of coated fibers in a cross-linked polymeric matrix. Insulation may be formed by applying a preceramic polymer to a plurality of fibers, heating the preceramic polymer to form a partially cured polymer over at least portions of the plurality of fibers, disposing the plurality of fibers in a polymeric material, and curing the polymeric material. A rocket motor may be formed by disposing a plurality of coated fibers in an insulation precursor, curing the insulation precursor to form an insulation material without sintering the partially cured polymer, and providing an energetic material over the polymeric material. An article includes an insulation material over at least one surface.
Superconducting thermoelectric generator
Metzger, J.D.; El-Genk, M.S.
1998-05-05
An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.
Superconducting thermoelectric generator
Metzger, J.D.; El-Genk, M.S.
1996-01-01
An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.
Superconducting thermoelectric generator
Metzger, John D.; El-Genk, Mohamed S.
1998-01-01
An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.
Multi-component assembly casting
James, Allister W.
2015-10-13
Multi-component vane segment and method for forming the same. Assembly includes: positioning a pre-formed airfoil component (12) and a preformed shroud heat resistant material (18) in a mold, wherein the airfoil component (12) and the shroud heat resistant material (18) each comprises an interlocking feature (24); preheating the mold; introducing molten structural material (46) into the mold; and solidifying the molten structural material such that it interlocks the pre-formed airfoil component (12) with respect to the preformed shroud heat resistant material (18) and is effective to provide structural support for the shroud heat resistant material (18). Surfaces between the airfoil component (12) and the structural material (46), between the airfoil component (12) and the shroud heat resistant material (18), and between the shroud heat resistant material (18) and the structural material (46) are free of metallurgical bonds.
Termination of Safeguards for Accountable Nuclear Materials at the Idaho National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael Holzemer; Alan Carvo
2012-04-01
Termination of safeguards ends requirements of Nuclear Material Control and Accountability (MC&A) and thereby removes the safeguards basis for applying physical protection requirements for theft and diversion of nuclear material, providing termination requirements are met as described. Department of Energy (DOE) M 470.4 6 (Nuclear Material Control and Accountability [8/26/05]) stipulates: 1. Section A, Chapter I (1)( q) (1): Safeguards can be terminated on nuclear materials provided the following conditions are met: (a) 'If the material is special nuclear material (SNM) or protected as SNM, it must be attractiveness level E and have a measured value.' (b) 'The material hasmore » been determined by DOE line management to be of no programmatic value to DOE.' (c) 'The material is transferred to the control of a waste management organization where the material is accounted for and protected in accordance with waste management regulations. The material must not be collocated with other accountable nuclear materials.' Requirements for safeguards termination depend on the safeguards attractiveness levels of the material. For attractiveness level E, approval has been granted from the DOE Idaho Operations Office (DOE ID) to Battelle Energy Alliance, LLC (BEA) Safeguards and Security (S&S). In some cases, it may be necessary to dispose of nuclear materials of attractiveness level D or higher. Termination of safeguards for such materials must be approved by the Departmental Element (this is the DOE Headquarters Office of Nuclear Energy) after consultation with the Office of Security.« less
Nyame, Theodore T.; Lemon, Katherine P.; Kolter, Roberto; Liao, Eric C.
2013-01-01
Background There has been increasing use of various synthetic and biologically derived materials in surgery. Biologic surgical materials are used in many plastic surgery procedures, ranging from breast reconstruction to hernia repairs. In particular, acellular dermal matrix (ADM) material has gained popularity in these applications. There is a paucity of data on how ADM compares to other surgical materials as a substrate for bacterial adhesion, the first step in formation biofilm, which occurs in prosthetic wound infections. We have designed a high throughput assay to evaluate Staphylococcus aureus adherence on various synthetic and biologically derived materials. Methods Clinical isolates of Staphylococcus aureus (strains SC-1 and UAMS-1) were cultured with different materials and bacterial adherence was measured using a resazurin cell vitality reporter microtiter assay. Four materials that are commonly utilized in reconstructive procedures were evaluated: prolene mesh, vicryl mesh, and two different ADM preparations (AlloDerm®, FlexHD®). We were able to develop a high throughput and reliable assay for quantifying bacterial adhesion on synthetic and biologically derived materials. Results The resazurin vitality assay can be reliably used to quantify bacterial adherence to acellular dermal matrix material, as well as synthetic material. S. aureus strains SC-1 and UAMS-1 both adhered better to ADM materials (AlloDerm® vs. FlexHD®) than to the synthetic material prolene. S. aureus also adhered better to vicryl than to prolene. Strain UAMS-1 adhered better to vicryl and ADM materials than did strain SC-1. Conclusion Our results suggest that S. aureus adheres more readily to ADM material than to synthetic material. We have developed an assay to rapidly test bacterial formation on surgical materials, using two S. aureus bacterial strains. This provides a standard method to evaluate existing and new materials with regard to bacterial adherence and potential propensity for infection. This assay is particularly important in the clinical context of the severe sequelae of post-operative infection. PMID:22030489
What LDEF means for development and testing of materials
NASA Technical Reports Server (NTRS)
Whitaker, Ann F.; Stuckey, Wayne K.; Stein, Bland A.
1993-01-01
The Long Duration Exposure Facility (LDEF) served as the ultimate laboratory to provide combined space environmental effects on materials. The LDEF structure and its 57 experiments contained an estimated 12,000 to 14,000 specimens of materials and materials processes. It not only provided information about the resistance of these materials to the space environment but gives us direction into future needs for spacecraft materials development and testing. This paper provides an overview of the materials effects observed on the satellite and suggests recommendations for the future work in space-qualified materials development and space environmental simulation.
Improved method and composition for immobilization of waste in cement-based material
Tallent, O.K.; Dodson, K.E.; McDaniel, E.W.
1987-10-01
A composition and method for fixation or immobilization of aqueous hazardous waste material in cement-based materials (grout) is disclosed. The amount of drainable water in the cured grout is reduced by the addition of an ionic aluminum compound to either the waste material or the mixture of waste material and dry-solid cement- based material. This reduction in drainable water in the cured grout obviates the need for large, expensive amounts of gelling clays in grout materials and also results in improved consistency and properties of these cement-based waste disposal materials.
Schwendemanm, Irina G [Wexford, PA; Polcyn, Adam D [Pittsburgh, PA; Finley, James J [Pittsburgh, PA; Boykin, Cheri M [Kingsport, TN; Knowles, Julianna M [Apollo, PA
2011-03-15
An electrochromic device includes a first substrate spaced from a second substrate. A first conductive member is formed over at least a portion of the first substrate. A first electrochromic material is formed over at least a portion of the first conductive member. The first electrochromic material includes an organic material. A second conductive member is formed over at least a portion of the second substrate. A second electrochromic material is formed over at least a portion of the second conductive member. The second electrochromic material includes an inorganic material. An ionic liquid is positioned between the first electrochromic material and the second electrochromic material.
Half-heusler alloys with enhanced figure of merit and methods of making
Ren, Zhifeng; Yan, Xiao; Joshi, Giri; Chen, Shuo; Chen, Gang; Poudel, Bed; Caylor, James Christopher
2015-06-02
Thermoelectric materials and methods of making thermoelectric materials having a nanometer mean grain size less than 1 micron. The method includes combining and arc melting constituent elements of the thermoelectric material to form a liquid alloy of the thermoelectric material and casting the liquid alloy of the thermoelectric material to form a solid casting of the thermoelectric material. The method also includes ball milling the solid casting of the thermoelectric material into nanometer mean size particles and sintering the nanometer size particles to form the thermoelectric material having nanometer scale mean grain size.
Biviano, Marilyn B.; Wagner, Lorie A.; Sullivan, Daniel E.
1999-01-01
Materials consumption estimates, such as apparent consumption of raw materials, can be important indicators of sustainability. Apparent consumption of raw materials does not account for material contained in manufactured products that are imported or exported and may thus under- or over-estimate total consumption of materials in the domestic economy. This report demonstrates a methodology to measure the amount of materials contained in net imports (imports minus exports), using lead as an example. The analysis presents illustrations of differences between apparent and total consumption of lead and distributes these differences into individual lead-consuming sectors.
Nonterrestrial material processing and manufacturing of large space systems
NASA Technical Reports Server (NTRS)
Von Tiesenhausen, G.
1979-01-01
Nonterrestrial processing of materials and manufacturing of large space system components from preprocessed lunar materials at a manufacturing site in space is described. Lunar materials mined and preprocessed at the lunar resource complex will be flown to the space manufacturing facility (SMF), where together with supplementary terrestrial materials, they will be final processed and fabricated into space communication systems, solar cell blankets, radio frequency generators, and electrical equipment. Satellite Power System (SPS) material requirements and lunar material availability and utilization are detailed, and the SMF processing, refining, fabricating facilities, material flow and manpower requirements are described.
Laser detection of material thickness
Early, James W.
2002-01-01
There is provided a method for measuring material thickness comprising: (a) contacting a surface of a material to be measured with a high intensity short duration laser pulse at a light wavelength which heats the area of contact with the material, thereby creating an acoustical pulse within the material: (b) timing the intervals between deflections in the contacted surface caused by the reverberation of acoustical pulses between the contacted surface and the opposite surface of the material: and (c) determining the thickness of the material by calculating the proportion of the thickness of the material to the measured time intervals between deflections of the contacted surface.
Ptak, Aaron Joseph; Lin, Yong; Norman, Andrew; Alberi, Kirstin
2015-05-26
A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a spinel substrate using a sacrificial buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The sacrificial buffer material and semiconductor materials may be deposited using lattice-matching epitaxy or coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The sacrificial buffer layer may be dissolved using an epitaxial liftoff technique in order to separate the semiconductor device from the spinel substrate, and the spinel substrate may be reused in the subsequent fabrication of other semiconductor devices. The low-defect density semiconductor materials produced using this method result in the enhanced performance of the semiconductor devices that incorporate the semiconductor materials.
Inductively-Charged High-Temperature Superconductors And Methods Of Use
Bromberg, Leslie
2003-09-16
The invention provides methods of charging superconducting materials and, in particular, methods of charging high-temperature superconducting materials. The methods generally involve cooling a superconducting material to a temperature below its critical temperature. Then, an external magnetic field is applied to charge the material at a nearly constant temperature. The external magnetic field first drives the superconducting material to a critical state and then penetrates into the material. When in the critical state, the superconducting material loses all the pinning ability and therefore is in the flux-flow regime. In some embodiments, a first magnetic field may be used to drive the superconducting material to the critical state and then a second magnetic field may be used to penetrate the superconducting material. When the external field or combination of external fields are removed, the magnetic field that has penetrated into the material remains trapped. The charged superconducting material may be used as solenoidal magnets, dipole magnets, or other higher order multipole magnets in many applications.
NASA Astrophysics Data System (ADS)
Oses, Corey; Isayev, Olexandr; Toher, Cormac; Curtarolo, Stefano; Tropsha, Alexander
Historically, materials discovery is driven by a laborious trial-and-error process. The growth of materials databases and emerging informatics approaches finally offer the opportunity to transform this practice into data- and knowledge-driven rational design-accelerating discovery of novel materials exhibiting desired properties. By using data from the AFLOW repository for high-throughput, ab-initio calculations, we have generated Quantitative Materials Structure-Property Relationship (QMSPR) models to predict critical materials properties, including the metal/insulator classification, band gap energy, and bulk modulus. The prediction accuracy obtained with these QMSPR models approaches training data for virtually any stoichiometric inorganic crystalline material. We attribute the success and universality of these models to the construction of new materials descriptors-referred to as the universal Property-Labeled Material Fragments (PLMF). This representation affords straightforward model interpretation in terms of simple heuristic design rules that could guide rational materials design. This proof-of-concept study demonstrates the power of materials informatics to dramatically accelerate the search for new materials.
Fusion materials semiannual progress report for the period ending December 31, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-04-01
This is the twenty-first in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reportedmore » separately. The report covers the following topics: vanadium alloys; silicon carbide composite materials; ferritic/martensitic steels; copper alloys and high heat flux materials; austenitic stainless steels; insulating ceramics and optical materials; solid breeding materials; radiation effects, mechanistic studies and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; and irradiation facilities, test matrices, and experimental methods.« less
Automatically producing tailored web materials for public administration
NASA Astrophysics Data System (ADS)
Colineau, Nathalie; Paris, Cécile; Vander Linden, Keith
2013-06-01
Public administration organizations commonly produce citizen-focused, informational materials describing public programs and the conditions under which citizens or citizen groups are eligible for these programs. The organizations write these materials for generic audiences because of the excessive human resource costs that would be required to produce personalized materials for everyone. Unfortunately, generic materials tend to be longer and harder to understand than materials tailored for particular citizens. Our work explores the feasibility and effectiveness of automatically producing tailored materials. We have developed an adaptive hypermedia application system that automatically produces tailored informational materials and have evaluated it in a series of studies. The studies demonstrate that: (1) subjects prefer tailored materials over generic materials, even if the tailoring requires answering a set of demographic questions first; (2) tailored materials are more effective at supporting subjects in their task of learning about public programs; and (3) the time required to specify the demographic information on which the tailoring is based does not significantly slow down the subjects in their information seeking task.
Weintraub, Debra; Maliski, Sally L; Fink, Arlene; Choe, Sarah; Litwin, Mark S
2004-11-01
Written educational materials serve as important teaching instruments for prostate cancer patients and their families. However, they must be understandable for their intended audiences. We examined prostate cancer brochures and pamphlets using the Suitability Assessment of Materials (SAM) instrument for the materials' overall suitability, readability, and cultural appropriateness. These factors are crucial to ensure that patients are able to understand and relate to the information. Our evaluation of 29 materials demonstrated that the majority, 22 (75.8%), scored "adequate" for their overall suitability. However, 26 materials (90%) scored "not suitable" for their reading grade level, while 55% of the materials could not be rated on cultural appropriateness because of lack of cues about the intended audience. Also, many of the materials scored poorly on content, graphics, self-efficacy, and learning motivation and stimulation. Most of the materials did well with typography and layout. Overall, the findings point to the need to carefully assess written materials used for multicultural audiences with low reading ability.
Recent developments in the field of environmental reference materials at the JRC Ispra.
Muntau, H
2001-06-01
The production of reference materials for environmental analysis started in the Joint Research Centre at Ispra/Italy in 1972 with the objective of later certification by the BCR, but for obvious budget reasons only a fraction of the total production achieved at Ispra ever reached certification level, although all materials were produced according to the severe quality requirements requested for certified reference materials. Therefore, the materials not destinated to certification are in growing demand as inter-laboratory test materials and as laboratory reference materials, for internal quality control, e.g., by control charts. The history of reference material production within the Joint Research Centre is briefly reviewed and the latest additions described. New developments such as micro-scale reference materials intended for analytical methods requiring sample intakes at milligram or sub-milligram level and therefor not finding supply on the reference material market, and "wet" environmental reference materials, which meet more precisely the "real-world" environmental analysis conditions, are presented and the state-of-the-art discussed.
Thermal protection materials: Thermophysical property data
NASA Technical Reports Server (NTRS)
Williams, S. D.; Curry, Donald M.
1992-01-01
This publication presents a thermophysical property survey on materials that could potentially be used for future spacecraft thermal protection systems (TPS). This includes data that was reported in the 1960's as well as more current information reported through the 1980's. An attempt was made to cite the manufacturers as well as the data source in the bibliography. This volume represents an attempt to provide in a single source a complete set of thermophysical data on a large variety of materials used in spacecraft TPS analysis. The property data is divided into two categories: ablative and reusable. The ablative materials have been compiled into twelve categories that are descriptive of the material composition. An attempt was made to define the Arrhenius equation for each material although this data may not be available for some materials. In a similar manner, char data may not be available for some of the ablative materials. The reusable materials have been divided into three basic categories: thermal protection materials (such as insulators), adhesives, and structural materials.
Cladding material, tube including such cladding material and methods of forming the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garnier, John E.; Griffith, George W.
A multi-layered cladding material including a ceramic matrix composite and a metallic material, and a tube formed from the cladding material. The metallic material forms an inner liner of the tube and enables hermetic sealing of thereof. The metallic material at ends of the tube may be exposed and have an increased thickness enabling end cap welding. The metallic material may, optionally, be formed to infiltrate voids in the ceramic matrix composite, the ceramic matrix composite encapsulated by the metallic material. The ceramic matrix composite includes a fiber reinforcement and provides increased mechanical strength, stiffness, thermal shock resistance and highmore » temperature load capacity to the metallic material of the inner liner. The tube may be used as a containment vessel for nuclear fuel used in a nuclear power plant or other reactor. Methods for forming the tube comprising the ceramic matrix composite and the metallic material are also disclosed.« less
Collagen/hydroxyapatite composite materials with desired ceramic properties.
Andronescu, Ecaterina; Voicu, Georgeta; Ficai, Maria; Mohora, Ioana Anita; Trusca, Roxana; Ficai, Anton
2011-01-01
Our purpose was to obtain and characterize some collagen/hydroxyapatite (COLL/HA) hybrid composite materials with desired ceramic properties. The ceramic properties of these materials were achieved by combining two drying methods: controlled air drying at 30°C followed by freeze-drying. Through the function of the air drying times, the materials morphology varies from porous materials (when the materials are freeze-dried) up to dense materials (when the materials are air-dried), while the combined drying allows us to obtain an intermediary morphology. The composite materials intended to be used as bone grafts and in a drug delivery system were characterized by XRD, FTIR, SEM, and also by determining the ceramic properties by using the Arthur method. The ceramic properties of these COLL/HA composite materials vary in large range, for instance the density of the materials varies from 0.06 up to 1.5 g/cm(3) while the porosity varies from 96.5% down to 27.5%.
NASA Astrophysics Data System (ADS)
Hardiansyah, Andri; Chaldun, Elsy Rahimi; Nuryadin, Bebeh Wahid; Fikriyyah, Anti Khoerul; Subhan, Achmad; Ghozali, Muhammad; Purwasasmita, Bambang Sunendar
2018-04-01
In this study, carbon-based advanced materials for lithium-ion battery applications were prepared by using soybean waste-based biomass material, through a straightforward process of heat treatment followed by chemical modification processes. Various types of carbon-based advanced materials were developed. Physicochemical characteristics and electrochemical performance of the resultant materials were characterized systematically. Scanning electron microscopy observation revealed that the activated carbon and graphene exhibits wrinkles structures and porous morphology. Electrochemical impedance spectroscopy (EIS) revealed that both activated carbon and graphene-based material exhibited a good conductivity. For instance, the graphene-based material exhibited equivalent series resistance value of 25.9 Ω as measured by EIS. The graphene-based material also exhibited good reversibility and cyclic performance. Eventually, it would be anticipated that the utilization of soybean waste-based biomass material, which is conforming to the principles of green materials, could revolutionize the development of advanced material for high-performance energy storage applications, especially for lithium-ion batteries application.
Causes of shortage and delay in material supply: a preliminary study
NASA Astrophysics Data System (ADS)
Rahman, M. M.; Yap, Y. H.; Ramli, N. R.; Dullah, M. A.; Shamsuddin, M. S. W.
2017-11-01
Shortage and delay in materials supply is argued to be one of the most important factors that lead to delay in construction project delivery globally. However, the relevant underlying reasons vary from country to country. As such, this paper summarises the outcomes of a study that targeted identifying causes of shortage and delay in materials supply in Brunei Darussalam. The study was conducted through fifteen semi-structured interviews of contractors and materials suppliers in Brunei. The study identified six causes of shortageof materials and nine causes of delay in materials supply in Brunei. The most importantcausefor shortage of materials relates to the origin or availability of construction materials. On the other hand, the most influential cause of delay in material supply was found to be poor materials procurement and inventory management system, which has other underlying reasons such as late identification of the type of materials needed. The observations are expected to help in formulating or reviewing relevant policies, in order to ensure on-time project delivery.
NASA Astrophysics Data System (ADS)
Hardiansyah, Andri; Chaldun, Elsy Rahimi; Nuryadin, Bebeh Wahid; Fikriyyah, Anti Khoerul; Subhan, Achmad; Ghozali, Muhammad; Purwasasmita, Bambang Sunendar
2018-07-01
In this study, carbon-based advanced materials for lithium-ion battery applications were prepared by using soybean waste-based biomass material, through a straightforward process of heat treatment followed by chemical modification processes. Various types of carbon-based advanced materials were developed. Physicochemical characteristics and electrochemical performance of the resultant materials were characterized systematically. Scanning electron microscopy observation revealed that the activated carbon and graphene exhibits wrinkles structures and porous morphology. Electrochemical impedance spectroscopy (EIS) revealed that both activated carbon and graphene-based material exhibited a good conductivity. For instance, the graphene-based material exhibited equivalent series resistance value of 25.9 Ω as measured by EIS. The graphene-based material also exhibited good reversibility and cyclic performance. Eventually, it would be anticipated that the utilization of soybean waste-based biomass material, which is conforming to the principles of green materials, could revolutionize the development of advanced material for high-performance energy storage applications, especially for lithium-ion batteries application.
Organic light emitting device architecture for reducing the number of organic materials
D'Andrade, Brian [Westampton, NJ; Esler, James [Levittown, PA
2011-10-18
An organic light emitting device is provided. The device includes an anode and a cathode. A first emissive layer is disposed between the anode and the cathode. The first emissive layer includes a first non-emitting organic material, which is an organometallic material present in the first emissive layer in a concentration of at least 50 wt %. The first emissive layer also includes a first emitting organic material. A second emissive layer is disposed between the first emissive layer and the cathode, preferably, in direct contact with the first emissive layer. The second emissive material includes a second non-emitting organic material and a second emitting organic material. The first and second non-emitting materials, and the first and second emitting materials, are all different materials. A first non-emissive layer is disposed between the first emissive layer and the anode, and in direct contact with the first emissive layer. The first non- emissive layer comprises the first non-emissive organic material.
Materials discovery at high pressures
NASA Astrophysics Data System (ADS)
Zhang, Lijun; Wang, Yanchao; Lv, Jian; Ma, Yanming
2017-02-01
Pressure is a fundamental thermodynamic variable that can be used to control the properties of materials, because it reduces interatomic distances and profoundly modifies electronic orbitals and bonding patterns. It is thus a versatile tool for the creation of exotic materials not accessible at ambient conditions. Recently developed static and dynamic high-pressure experimental techniques have led to the synthesis of many functional materials with excellent performance: for example, superconductors, superhard materials and high-energy-density materials. Some of these advances have been aided and accelerated by first-principles crystal-structure searching simulations. In this Review, we discuss recent progress in high-pressure materials discovery, placing particular emphasis on the record high-temperature superconductivity in hydrogen sulfide and on nanotwinned cubic boron nitride and diamond, the hardest known materials. Energy materials and exotic chemical materials obtained under high pressures are also discussed. The main drawback of high-pressure materials is their destabilization after pressure release; this problem and its possible solutions are surveyed in the conclusions, which also provide an outlook on the future developments in the field.
Study of materials performance model for aircraft interiors
NASA Technical Reports Server (NTRS)
Leary, K.; Skratt, J.
1980-01-01
A demonstration version of an aircraft interior materials computer data library was developed and contains information on selected materials applicable to aircraft seats and wall panels, including materials for the following: panel face sheets, bond plies, honeycomb, foam, decorative film systems, seat cushions, adhesives, cushion reinforcements, fire blocking layers, slipcovers, decorative fabrics and thermoplastic parts. The information obtained for each material pertains to the material's performance in a fire scenario, selected material properties and several measures of processability.
2014-01-01
Study Material properties and performance are governed by material molecular chemistry structures and molecular level interactions. Methods to...understand relationships between the material properties and performance and their correlation to the molecular level chemistry and morphology, and thus...find ways of manipulating and adjusting matters at the atomistic level in order to improve material performance are required. A computational material
1974-07-01
elec- Materials se: trode materials and associ- operational ated conductors. 2.5.1 General. H" (02) Materials resources Technoeconomic analysis - None...Advanced Energy Systems Using New Fnels VIII Correlation and Analysis of Materials Requirements IX Research Recommendations and Priorities The authois...of government and industrial organizal ions who gave us the benefit of their knowledge and experience. iv VIII CORRELATION ANU ANALYSIS OF MATERIALS
Design of adaptive load mitigating materials usingnonlinear stress wave tailoring
2016-02-24
for granular material use). 3 • Prof. Trudy Kriven (UIUC, Materials Science) is an expert in ceramic and geopolymer fabrication. • Prof. John...Figure A5.1: Schematic diagram showing the 1D chain of spherical elements in contact with (a) a uniform linear medium and (b) a composite linear...each material point to consisting of one of the given material constituents, we allow each material point to be assigned a composite material that is
The geomechanical strength of carbonate rock in Kinta valley, Ipoh, Perak Malaysia
NASA Astrophysics Data System (ADS)
Mazlan, Nur Amanina; Lai, Goh Thian; Razib, Ainul Mardhiyah Mohd; Rafek, Abdul Ghani; Serasa, Ailie Sofyiana; Simon, Norbert; Surip, Noraini; Ern, Lee Khai; Mohamed, Tuan Rusli
2018-04-01
The stability of both cut rocks and underground openings were influenced by the geomechanical strength of rock materials, while the strength characteristics are influenced by both material characteristics and the condition of weathering. This paper present a systematic approach to quantify the rock material strength characteristics for material failure and material & discontinuities failure by using uniaxial compressive strength, point load strength index and Brazilian tensile strength for carbonate rocks. Statistical analysis of the results at 95 percent confidence level showed that the mean value of compressive strength, point load strength index and Brazilian tensile strength for with material failure and material & discontinuities failure were 76.8 ± 4.5 and 41.2 ± 4.1 MPa with standard deviation of 15.2 and 6.5 MPa, respectively. The point load strength index for material failure and material & discontinuities failure were 3.1 ± 0.2 MPa and 1.8 ± 0.3 MPa with standard deviation of 0.9 and 0.6 MPa, respectively. The Brazilian tensile strength with material failure and material & discontinuities failure were 7.1 ± 0.3 MPa and 4.1 ± 0.3 MPa with standard deviation of 1.4 and 0.6 MPa, respectively. The results of this research revealed that the geomechanical strengths of rock material of carbonate rocks for material & discontinuities failure deteriorates approximately ½ from material failure.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-18
... Materials: Improving the Safety of Railroad Transportation of Hazardous Materials AGENCY: Pipeline and... that affect the safety of the transportation of hazardous materials by rail and are seeking input from... authority to FRA. 49 CFR 1.89(a) through (q). The Federal hazardous materials transportation laws, 49 U.S.C...
Coated electroactive materials
Amine, Khalil; Abouimrane, Ali
2016-08-30
A process includes suspending an electroactive material in a solvent, suspending or dissolving a carbon precursor in the solvent; and depositing the carbon precursor on the electroactive material to form a carbon-coated electroactive material. Compositions include a graphene-coated electroactive material prepared from a solution phase mixture or suspension of an electroactive material and graphene, graphene oxide, or a mixture thereof.
Meeting EFL Learners Halfway by Using Locally Relevant Authentic Materials
ERIC Educational Resources Information Center
Thomas, Catherine
2014-01-01
The author defines and describes authentic materials and discusses their benefits--citing the Input Hypothesis and the Output Principle in support of such materials--as well as some challenges of using authentic materials. Five categories of authentic materials are presented, and sources for materials and ways to use them in the EFL classroom are…
Nanocrystalline ceramic materials
Siegel, R.W.; Nieman, G.W.; Weertman, J.R.
1994-06-14
A method is disclosed for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material. 19 figs.
Near-Resonant Thermomechanics of Energetic and Mock Energetic Composite Materials
2016-11-01
munition design . 15. SUBJECT TERMS Energetic Materials; Explosives; Mechanical Vibration; Thermomechanics; Damping; Plasticity 16. SECURITY...preliminary computational modeling tools, which can be used to predict material response during energetic material formulation and munition design . Key...which can be used to predict material response during energetic material formulation and munition design . More specifically, Task Order 0001
The Art Recipe Book, Volume One: 60 Non-toxic Art Materials from Readily Available Materials.
ERIC Educational Resources Information Center
Janeczko, Donna
This collection of recipes is intended for art teachers to provide low-cost, non-toxic materials for classroom use. The materials needed are readily available and can be purchased in quantity to help the budget conscious teacher. Recipes included are for modeling materials, edible modeling materials, paints and inks, adhesives, fixatives, and…
Full-scale aircraft cabin flammability tests of improved fire-resistant materials, test series 2
NASA Technical Reports Server (NTRS)
Stuckey, R. N.; Bricker, R. W.; Kuminecz, J. F.; Supkis, D. E.
1976-01-01
Full-scale aircraft flammability tests in which the effectiveness of new fire-resistant materials was evaluated by comparing their burning characteristics with those of other fire-resistant aircraft materials were described. New-fire-resistant materials that are more economical and better suited for aircraft use than the previously tested fire-resistant materials were tested. The fuel ignition source for one test was JP-4; a smokeless fuel was used for the other test. Test objectives, methods, materials, and results are presented and discussed. The results indicate that, similar to the fire-resistant materials tested previously, the new materials decompose rather than ignite and do not support fire propagation. Furthermore, the new materials did not produce a flash fire.
The Applications of Modern Nanoindentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Buskirk, Caleb Griffith
2017-03-16
The TI-950 TriboIndenter is a nanoindentation device that obtains nanometer resolution material topography images using Scanning Probe Microscopy (SPM), modulus maps of material using nano-Dynamic Mechanical Analysis, and provides hardness measurements with a resolution of 0.2 nm. The instrument applies a force to a material through a sharp tip and used a transducer to measure the force a material applies back to the tip to derive information about the material. The information can be used to study the homogeneity of material surfaces as well as the homogeneity of the material as a function of depth and can lead to importantmore » information on the aging of the material as well as the consistency of the production of the material.« less
Processes for fabricating composite reinforced material
Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.
2015-11-24
A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.
Nanostructured composite reinforced material
Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN
2012-07-31
A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.
System and method for measuring permeability of materials
Hallman, Jr., Russell Louis; Renner, Michael John
2013-07-09
Systems and methods are provided for measuring the permeance of a material. The permeability of the material may also be derived. Systems typically provide a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.
Material permeance measurement system and method
Hallman, Jr., Russell Louis; Renner, Michael John [Oak Ridge, TN
2012-05-08
A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.
Methods and apparatus for coating particulate material
NASA Technical Reports Server (NTRS)
Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)
2012-01-01
Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.
Methods for Coating Particulate Material
NASA Technical Reports Server (NTRS)
Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)
2013-01-01
Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.
Reaction propagation test. Evaluation of the behavior of nonmetallic materials in hydrogen
NASA Technical Reports Server (NTRS)
Smith, I. D.
1972-01-01
Results of tests conducted to evaluate the behavior of nonmetallic materials in hydrogen are described. The reaction propagation test simulates the conditions resulting from the interaction of an electrical wire in an overload condition in contract with a material in the test medium. The test is designed to evaluate the behavior of a material subjected to an energy input (usually heat) sufficient to cause a reaction which propagates to consume larger quantities of the material. Ten nonmetallic materials were evaluated to establish baseline data on the behavior of nonmetallic materials in hydrogen and to characterize, on an initial basis, one mode of material failure considered to be a factor pertinent to the safe use of a material in hydrogen.
The New Toxicology of Sophisticated Materials: Nanotoxicology and Beyond
Maynard, Andrew D.; Warheit, David B.; Philbert, Martin A.
2011-01-01
It has long been recognized that the physical form of materials can mediate their toxicity—the health impacts of asbestiform materials, industrial aerosols, and ambient particulate matter are prime examples. Yet over the past 20 years, toxicology research has suggested complex and previously unrecognized associations between material physicochemistry at the nanoscale and biological interactions. With the rapid rise of the field of nanotechnology and the design and production of increasingly complex nanoscale materials, it has become ever more important to understand how the physical form and chemical composition of these materials interact synergistically to determine toxicity. As a result, a new field of research has emerged—nanotoxicology. Research within this field is highlighting the importance of material physicochemical properties in how dose is understood, how materials are characterized in a manner that enables quantitative data interpretation and comparison, and how materials move within, interact with, and are transformed by biological systems. Yet many of the substances that are the focus of current nanotoxicology studies are relatively simple materials that are at the vanguard of a new era of complex materials. Over the next 50 years, there will be a need to understand the toxicology of increasingly sophisticated materials that exhibit novel, dynamic and multifaceted functionality. If the toxicology community is to meet the challenge of ensuring the safe use of this new generation of substances, it will need to move beyond “nano” toxicology and toward a new toxicology of sophisticated materials. Here, we present a brief overview of the current state of the science on the toxicology of nanoscale materials and focus on three emerging toxicology-based challenges presented by sophisticated materials that will become increasingly important over the next 50 years: identifying relevant materials for study, physicochemical characterization, and biointeractions. PMID:21177774
Using smart materials to solve new challenges in the automotive industry
NASA Astrophysics Data System (ADS)
Gath, Kerrie K.; Maranville, Clay; Tardiff, Janice
2018-03-01
Ford has an extensive history of developing and utilizing smart and innovative materials in its vehicles. In this paper, we present new challenges the automotive industry is facing and explore how intelligent uses of smart materials can help provide solutions. We explore which vehicle attributes may provide most advantageous for the use smart materials, and discuss how smart material have had technical challenges that limit their use. We also look at how smart materials such as gecko inspired adhesion is providing opportunities during the vehicle assembly process by improving manufacturing quality, environmental sustainability, and worker safety. An emerging area for deployment of smart materials may involve autonomous vehicles and mobility solutions, where customer expectations are migrating toward a seamless and adaptive experience leading to new expectations for an enhanced journey. Another area where smart materials are influencing change is interior and exterior design including smart textiles, photochromatic dyes, and thermochromatic materials. The key to advancing smart materials in automotive industry is to capitalize on the smaller niche applications where there will be an advantage over traditional methods. Ford has an extensive history of developing and utilizing smart and innovative materials. Magnetorheological fluids, thermoelectric materials, piezoelectric actuators, and shape memory alloys are all in production. In this paper we present new challenges the automotive industry is facing and explore how intelligent uses of smart materials can help provide solutions. We explore which vehicle attributes may provide most advantageous for the use smart materials, and discuss how smart materials have had technical challenges that limit their use. An emerging area for deployment of smart materials may involve autonomous vehicles and mobility solutions, where customer expectations may require a seamless and adaptive experience for users having various expectations.
Development of a Novel Method for Determination of Residual Stresses in a Friction Stir Weld
NASA Technical Reports Server (NTRS)
Reynolds, Anthony P.
2001-01-01
Material constitutive properties, which describe the mechanical behavior of a material under loading, are vital to the design and implementation of engineering materials. For homogeneous materials, the standard process for determining these properties is the tensile test, which is used to measure the material stress-strain response. However, a majority of the applications for engineering materials involve the use of heterogeneous materials and structures (i.e. alloys, welded components) that exhibit heterogeneity on a global or local level. Regardless of the scale of heterogeneity, the overall response of the material or structure is dependent on the response of each of the constituents. Therefore, in order to produce materials and structures that perform in the best possible manner, the properties of the constituents that make up the heterogeneous material must be thoroughly examined. When materials exhibit heterogeneity on a local level, such as in alloys or particle/matrix composites, they are often treated as statistically homogenous and the resulting 'effective' properties may be determined through homogenization techniques. In the case of globally heterogeneous materials, such as weldments, the standard tensile test provides the global response but no information on what is Occurring locally within the different constituents. This information is necessary to improve the material processing as well as the end product.
Wang, Y; Lin, D; Fu, T
1997-03-01
Morphology of inorganic material powders before and after being treated by ultrafine crush was observed by transformite electron microscope. The length and diameter of granules were measured. Polymers inorganic material powders before and after being treated by ultrafine crush were used for preparing radiological equivalent materials. Blending compatibility of inorganic meterials with polymer materials was observed by scanning electron microscope. CT values of tissue equivalent materials were measured by X-ray CT. Distribution of inorganic materials was examined. The compactness of materials was determined by the water absorbed method. The elastic module of materials was measured by laser speckle interferementry method. The results showed that the inorganic material powders treated by the ultrafine crush blent well with polymer and the distribution of these powders in the polymer was homogeneous. The equivalent errors of linear attenuation coefficients and CT values of equivalent materials were small. Their elastic modules increased one order of magnitude from 6.028 x 10(2) kg/cm2 to 9.753 x 10(3) kg/cm2. In addition, the rod inorganic material powders having rod granule blent easily with polymer. The present study provides a theoretical guidance and experimental basis for the design and synthesis of radiological equivalent materials.
Impact of physical properties on ozone removal by several porous materials.
Gall, Elliott T; Corsi, Richard L; Siegel, Jeffrey A
2014-04-01
Models of reactive uptake of ozone in indoor environments generally describe materials through aerial (horizontal) projections of surface area, a potentially limiting assumption for porous materials. We investigated the effect of changing porosity/pore size, material thickness, and chamber fluid mechanic conditions on the reactive uptake of ozone to five materials: two cellulose filter papers, two cementitious materials, and an activated carbon cloth. Results include (1) material porosity and pore size distributions, (2) effective diffusion coefficients for ozone in materials, and (3) material-ozone deposition velocities and reaction probabilities. At small length scales (0.02-0.16 cm) increasing thickness caused increases in estimated reaction probabilities from 1 × 10(-6) to 5 × 10(-6) for one type of filter paper and from 1 × 10(-6) to 1 × 10(-5) for a second type of filter paper, an effect not observed for materials tested at larger thicknesses. For high porosity materials, increasing chamber transport-limited deposition velocities resulted in increases in reaction probabilities by factors of 1.4-2.0. The impact of physical properties and transport effects on values of the Thiele modulus, ranging across all materials from 0.03 to 13, is discussed in terms of the challenges in estimating reaction probabilities to porous materials in scenarios relevant to indoor environments.
Frictional forces in material removal for glasses and ceramics using magnetorheological finishing
NASA Astrophysics Data System (ADS)
Miao, Chunlin
Magnetorheological finishing (MRF) spotting experiments on stationary parts are conducted in this work to understand the material removal mechanism in MRF. Drag force and normal force are measured in situ, simultaneously for the first time for a variety of optical materials in MRF. We study material removal process in MRF as a function of material mechanical properties. We experimentally demonstrate that material removal in MRF is strongly related to shear stress. Shear stress is predominantly determined by material mechanical properties. A modified Preston's equation is proposed to estimate the material removal in MRF by combining shear stress and material mechanical properties. We investigate extensively the effect of various MRF process parameters, including abrasive concentration, magnetic field strength, penetration depth and wheel speed, on material removal efficiency. Material removal rate model is expanded to include these parameters. We develop a nonaqueous magnetorheological (MR) fluid for examining the mechanical contribution in MRF material removal. This fluid is based on a combination of two CI particles and a combination of two organic liquids. Material removal with this nonaqueous MR fluid is discussed. We formulate a new corrosion resistant MR fluid which is based on metal oxide coated carbonyl iron (CI) particles. The rheological behavior, stability and corrosion resistance are examined.
PREFACE: MRS International Materials Research Conference (IMRC-2008)
NASA Astrophysics Data System (ADS)
Wang, Zhanguo; Qiu, Yong; Li, Yongxiang
2009-03-01
This volume contains selected papers presented at the MRS International Materials Research Conference (IMRC-2008) held in Chongqing, China, 9-12 June 2008. IMRC-2008 included 9 symposia of A. Eco/Environmental Materials, B. Sustainable Energy Materials, C. Electronic Packaging Materials, D. Electronic Materials, E. Materials and Processes for Flat-panel Displays, F. Functional Ceramics, G. Transportation Materials, H. Magnesium and I. Biomaterials for Medical Applications. Nearly 1200 participants from 33 countries attended the conference, and the conference organizers received more than 700 papers. After the peer review processes, 555 papers were selected to be published in 9 Journals or proceedings, including J. of Materials Research (JMR), Rare Metal Materials and Engineering, J. of Univ. Science and Technology Beijing, Biomedical Materials: Materials for Tissue Engineering and Regenerative Medicine, Chinese Journal of Aeronautics, Materials Science Forum, and Journal of Physics: Conference Series. Among the 555 selected papers, 91 papers are published in this volume, and the topics mainly cover electronic matrials, processes for flat-panel displays and functional ceramics. The editors would like to give special thanks to the graduate students Liwu Jiang, Ming Li and Di He from Beihang University for their hard work compiling and typesetting each paper in this volume. Zhanguo Wang, Yong Qiu and Yongxiang Li Editors
Methods of chemically converting first materials to second materials utilizing hybrid-plasma systems
Kong, Peter C.; Grandy, Jon D.
2002-01-01
In one aspect, the invention encompasses a method of chemically converting a first material to a second material. A first plasma and a second plasma are formed, and the first plasma is in fluid communication with the second plasma. The second plasma comprises activated hydrogen and oxygen, and is formed from a water vapor. A first material is flowed into the first plasma to at least partially ionize at least a portion of the first material. The at least partially ionized first material is flowed into the second plasma to react at least some components of the first material with at least one of the activated hydrogen and activated oxygen. Such converts at least some of the first material to a second material. In another aspect, the invention encompasses a method of forming a synthetic gas by flowing a hydrocarbon-containing material into a hybrid-plasma system. In yet another aspect, the invention encompasses a method of degrading a hydrocarbon-containing material by flowing such material into a hybrid-plasma system. In yet another aspect, the invention encompasses a method of releasing an inorganic component of a complex comprising the inorganic component and an other component, wherein the complex is flowed through a hybrid-plasma system.
Method of fabricating a monolithic core for a solid oxide fuela cell
Zwick, S.A.; Ackerman, J.P.
1983-10-12
A method is disclosed for forming a core for use in a solid oxide fuel cell that electrochemically combines fuel and oxidant for generating galvanic output. The core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support consisting instead only of the active anode, cathode, electrolyte and interconnect materials. Each electrolyte wall consists of cathode and anode materials sandwiching electrolyte material therebetween, and each interconnect wall consists of the cathode and anode materials sandwiching interconnect material therebetween. The electrolyte and interconnect walls define a plurality of substantially parallel core passageways alternately having respectively the inside faces thereof with only the anode material or with only the cathode material exposed. In the wall structure, the electrolyte and interconnect materials are only 0.002 to 0.01 cm thick; and the cathode and anode materials are only 0.002 to 0.05 cm thick. The method consists of building up the electrolyte and interconnect walls by depositing each material on individually and endwise of the wall itself, where each material deposit is sequentially applied for one cycle; and where the depositing cycle is repeated many times until the material buildup is sufficient to formulate the core. The core is heat cured to become dimensionally and structurally stable.
Method of fabricating a monolithic core for a solid oxide fuel cell
Zwick, Stanley A.; Ackerman, John P.
1985-01-01
A method is disclosed for forming a core for use in a solid oxide fuel cell that electrochemically combines fuel and oxidant for generating galvanic output. The core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support consisting instead only of the active anode, cathode, electrolyte and interconnect materials. Each electrolyte wall consists of cathode and anode materials sandwiching electrolyte material therebetween, and each interconnect wall consists of the cathode and anode materials sandwiching interconnect material therebetween. The electrolyte and interconnect walls define a plurality of substantially parallel core passageways alternately having respectively the inside faces thereof with only the anode material or with only the cathode material exposed. In the wall structure, the electrolyte and interconnect materials are only 0.002-0.01 cm thick; and the cathode and anode materials are only 0.002-0.05 cm thick. The method consists of building up the electrolyte and interconnect walls by depositing each material on individually and endwise of the wall itself, where each material deposit is sequentially applied for one cycle; and where the depositing cycle is repeated many times until the material buildup is sufficient to formulate the core. The core is heat cured to become dimensionally and structurally stable.
Long-term pavement performance project laboratory materials testing and handling guide
DOT National Transportation Integrated Search
2007-09-01
The Long Term Pavement Performance (LTPP) Laboratory Material Testing Guide was originally prepared for laboratory material handling and testing of material specimens and samples of asphalt materials, portland cement concrete, aggregates, and soils u...
78 FR 18419 - Office of Hazardous Materials Safety; Delayed Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-26
... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Office of Hazardous Materials Safety; Delayed Applications AGENCY: Pipeline and Hazardous Materials Safety.... FOR FURTHER INFORMATION CONTACT: Ryan Paquet, Director, Office of Hazardous Materials Special Permits...
Lewis Researcher in the Materials and Stresses Building
1952-12-21
A materials researcher at the NACA’s Lewis Flight Propulsion Laboratory examines a surface crack detection apparatus in the Materials and Stresses Building during December 1952. Materials research was an important aspect of propulsion technology. Advanced engine systems relied upon alloys, and later composites, that were strong, lightweight, and impervious to high temperatures. Jet engines which became increasingly popular in the late 1940s, produced much higher temperatures than piston engines. These higher temperatures stressed engine components, particularly turbines. Although Lewis materials research began during World War II, the Materials and Thermodynamics Division was not created until 1949. Its primary laboratories were located in the Materials and Stresses Building. The group sought to create new, improved materials and to improve engine design through increased understanding of materials. The Lewis materials researchers of the 1950s made contributions to nickel-aluminum alloys, cermet blades, metal matrix composites, oxide dispersion strengthened superalloys, and universal slopes.
Materials And Processes Technical Information System (MAPTIS) LDEF materials data base
NASA Technical Reports Server (NTRS)
Funk, Joan G.; Strickland, John W.; Davis, John M.
1993-01-01
A preliminary Long Duration Exposure Facility (LDEF) Materials Data Base was developed by the LDEF Materials Special Investigation Group (MSIG). The LDEF Materials Data Base is envisioned to eventually contain the wide variety and vast quantity of materials data generated from LDEF. The data is searchable by optical, thermal, and mechanical properties, exposure parameters (such as atomic oxygen flux) and author(s) or principal investigator(s). Tne LDEF Materials Data Base was incorporated into the Materials and Processes Technical Information System (MAPTIS). MAPTIS is a collection of materials data which has been computerized and is available to engineers, designers, and researchers in the aerospace community involved in the design and development of spacecraft and related hardware. The LDEF Materials Data Base is described and step-by-step example searches using the data base are included. Information on how to become an authorized user of the system is included.
High Temperature Superconducting Thick Films
Arendt, Paul N.; Foltyn, Stephen R.; Groves, James R.; Holesinger, Terry G.; Jia, Quanxi
2005-08-23
An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, (generally the inert oxide material layer has a smooth surface, i.e., a RMS roughness of less than about 2 nm), a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer is provided together with additional layers such as at least one layer of a buffer material upon the oriented cubic oxide material layer or a HTS top-layer of YBCO directly upon the oriented cubic oxide material layer. With a HTS top-layer of YBCO upon at least one layer of a buffer material in such an article, Jc's of 1.4×106 A/cm2 have been demonstrated with projected Ic's of 210 Amperes across a sample 1 cm wide.
NASA Technical Reports Server (NTRS)
Lee, Jonathan A.
2005-01-01
High-throughput measurement techniques are reviewed for solid phase transformation from materials produced by combinatorial methods, which are highly efficient concepts to fabricate large variety of material libraries with different compositional gradients on a single wafer. Combinatorial methods hold high potential for reducing the time and costs associated with the development of new materials, as compared to time-consuming and labor-intensive conventional methods that test large batches of material, one- composition at a time. These high-throughput techniques can be automated to rapidly capture and analyze data, using the entire material library on a single wafer, thereby accelerating the pace of materials discovery and knowledge generation for solid phase transformations. The review covers experimental techniques that are applicable to inorganic materials such as shape memory alloys, graded materials, metal hydrides, ferric materials, semiconductors and industrial alloys.
Method and apparatus for testing surface characteristics of a material
NASA Technical Reports Server (NTRS)
Johnson, David L. (Inventor); Kersker, Karl D. (Inventor); Stratton, Troy C. (Inventor); Richardson, David E. (Inventor)
2006-01-01
A method, apparatus and system for testing characteristics of a material sample is provided. The system includes an apparatus configured to house the material test sample while defining a sealed volume against a surface of the material test sample. A source of pressurized fluid is in communication with, and configured to pressurize, the sealed volume. A load applying apparatus is configured to apply a defined load to the material sample while the sealed volume is monitored for leakage of the pressurized fluid. Thus, the inducement of surface defects such as microcracking and crazing may be detected and their effects analyzed for a given material. The material test samples may include laminar structures formed of, for example, carbon cloth phenolic, glass cloth phenolic, silica cloth phenolic materials or carbon-carbon materials. In one embodiment the system may be configured to analyze the material test sample while an across-ply loading is applied thereto.
Enhanced magnetocaloric effect material
Lewis, Laura J. H.
2006-07-18
A magnetocaloric effect heterostructure having a core layer of a magnetostructural material with a giant magnetocaloric effect having a magnetic transition temperature equal to or greater than 150 K, and a constricting material layer coated on at least one surface of the magnetocaloric material core layer. The constricting material layer may enhance the magnetocaloric effect by restriction of volume changes of the core layer during application of a magnetic field to the heterostructure. A magnetocaloric effect heterostructure powder comprising a plurality of core particles of a magnetostructural material with a giant magnetocaloric effect having a magnetic transition temperature equal to or greater than 150 K, wherein each of the core particles is encapsulated within a coating of a constricting material is also disclosed. A method for enhancing the magnetocaloric effect within a giant magnetocaloric material including the step of coating a surface of the magnetocaloric material with a constricting material is disclosed.
Impact Compaction of a Granular Material
NASA Astrophysics Data System (ADS)
Fenton, Gregg; Asay, Blaine; Todd, Steve; Grady, Dennis
2017-06-01
The dynamic behavior of granular materials has importance to a variety of engineering applications. Although, the mechanical behavior of granular materials have been studied extensively for several decades, the dynamic behavior of these materials remains poorly understood. High-quality experimental data are needed to improve our general understanding of granular material compaction physics. This paper describes how an instrumented plunger impact system can be used to measure the compaction process for granular materials at high and controlled strain rates and subsequently used for computational modelling. The experimental technique relies on a gas-gun driven plunger system to generate a compaction wave through a volume of granular material. This volume of material has been redundantly instrumented along the bed length to track the progression of the compaction wave, and the piston displacement is measured with Photon Doppler Velocimetry (PDV). Using the gathered experimental data along with the initial material tap density, a granular material equation of state can be determined.
Methods and apparatus for handling or treating particulate material
NASA Technical Reports Server (NTRS)
Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)
2009-01-01
An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.
Materials Data Science: Current Status and Future Outlook
NASA Astrophysics Data System (ADS)
Kalidindi, Surya R.; De Graef, Marc
2015-07-01
The field of materials science and engineering is on the cusp of a digital data revolution. After reviewing the nature of data science and Big Data, we discuss the features of materials data that distinguish them from data in other fields. We introduce the concept of process-structure-property (PSP) linkages and illustrate how the determination of PSPs is one of the main objectives of materials data science. Then we review a selection of materials databases, as well as important aspects of materials data management, such as storage hardware, archiving strategies, and data access strategies. We introduce the emerging field of materials data analytics, which focuses on data-driven approaches to extract and curate materials knowledge from available data sets. The critical need for materials e-collaboration platforms is highlighted, and we conclude the article with a number of suggestions regarding the near-term future of the materials data science field.
[Applications of synthetic biology in materials science].
Zhao, Tianxin; Zhong, Chao
2017-03-25
Materials are the basis for human being survival and social development. To keep abreast with the increasing needs from all aspects of human society, there are huge needs in the development of advanced materials as well as high-efficiency but low-cost manufacturing strategies that are both sustainable and tunable. Synthetic biology, a new engineering principle taking gene regulation and engineering design as the core, greatly promotes the development of life sciences. This discipline has also contributed to the development of material sciences and will continuously bring new ideas to future new material design. In this paper, we review recent advances in applications of synthetic biology in material sciences, with the focus on how synthetic biology could enable synthesis of new polymeric biomaterials and inorganic materials, phage display and directed evolution of proteins relevant to materials development, living functional materials, engineered bacteria-regulated artificial photosynthesis system as well as applications of gene circuits for material sciences.
Recent advances in the development of aerospace materials
NASA Astrophysics Data System (ADS)
Zhang, Xuesong; Chen, Yongjun; Hu, Junling
2018-02-01
In recent years, much progress has been made on the development of aerospace materials for structural and engine applications. Alloys, such as Al-based alloys, Mg-based alloys, Ti-based alloys, and Ni-based alloys, are developed for aerospace industry with outstanding advantages. Composite materials, the innovative materials, are taking more and more important roles in aircrafts. However, recent aerospace materials still face some major challenges, such as insufficient mechanical properties, fretting wear, stress corrosion cracking, and corrosion. Consequently, extensive studies have been conducted to develop the next generation aerospace materials with superior mechanical performance and corrosion resistance to achieve improvements in both performance and life cycle cost. This review focuses on the following topics: (1) materials requirements in design of aircraft structures and engines, (2) recent advances in the development of aerospace materials, (3) challenges faced by recent aerospace materials, and (4) future trends in aerospace materials.
Process of producing a ceramic matrix composite article and article formed thereby
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corman, Gregory Scot; McGuigan, Henry Charles; Brun, Milivoj Konstantin
A CMC article and process for producing the article to have a layer on its surface that protects a reinforcement material within the article from damage. The method entails providing a body containing a ceramic reinforcement material in a matrix material that contains a precursor of a ceramic matrix material. A fraction of the reinforcement material is present and possibly exposed at a surface of the body. The body surface is then provided with a surface layer formed of a slurry containing a particulate material but lacking the reinforcement material of the body. The body and surface layer are heatedmore » to form the article by converting the precursor within the body to form the ceramic matrix material in which the reinforcement material is contained, and by converting the surface layer to form the protective layer that covers any fraction of the reinforcement material exposed at the body surface.« less
Process of producing a ceramic matrix composite article and article formed thereby
Corman, Gregory Scot [Ballston Lake, NY; McGuigan, Henry Charles [Duanesburg, NY; Brun, Milivoj Konstantin [Ballston Lake, NY
2011-10-25
A CMC article and process for producing the article to have a layer on its surface that protects a reinforcement material within the article from damage. The method entails providing a body containing a ceramic reinforcement material in a matrix material that contains a precursor of a ceramic matrix material. A fraction of the reinforcement material is present and possibly exposed at a surface of the body. The body surface is then provided with a surface layer formed of a slurry containing a particulate material but lacking the reinforcement material of the body. The body and surface layer are heated to form the article by converting the precursor within the body to form the ceramic matrix material in which the reinforcement material is contained, and by converting the surface layer to form the protective layer that covers any fraction of the reinforcement material exposed at the body surface.
Roofing Materials Assessment: Investigation of Five Metals in Runoff from Roofing Materials.
Winters, Nancy; Granuke, Kyle; McCall, Melissa
2015-09-01
To assess the contribution of five toxic metals from new roofing materials to stormwater, runoff was collected from 14 types of roofing materials and controls during 20 rain events and analyzed for metals. Many of the new roofing materials evaluated did not show elevated metals concentrations in the runoff. Runoff from several other roofing materials was significantly higher than the controls for arsenic, copper, and zinc. Notably, treated wood shakes released arsenic and copper, copper roofing released copper, PVC roofing released arsenic, and Zincalume® and EPDM roofing released zinc. For the runoff from some of the roofing materials, metals concentrations decreased significantly over an approximately one-year period of aging. Metals concentrations in runoff were demonstrated to depend on a number of factors, such as roofing materials, age of the materials, and climatic conditions. Thus, application of runoff concentrations from roofing materials to estimate basin-wide releases should be undertaken cautiously.
Trask, N.J.; McCauley, J.F.
1972-01-01
Materials of possible volcanic origin in the lunar highlands include (1) highland plains materials, (2) materials forming closely spaced hills in which summit furrows and chains of craters are common and (3) materials forming closely spaced hills (some of which parallel the lunar grid) on which summit furrows and chain craters are rare. The highland plains materials probably are basaltic lavas with less Fe and Ti than the mare plains materials. The two hilly units appear to consist of materials that, if volcanic, were more viscous in the molten state than any of the lunar plains units; thus these materials may be significantly enriched in felsic components. Most of the highland materials of possible volcanic origin formed after the Imbrium multi-ring basin but before mare material completed flooding parts of the moon; they therefore postdate accretion of the moon and may represent several episodes of premare volcanism. ?? 1972.
Method and apparatus for semi-solid material processing
Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN
2009-02-24
A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming machine.
A Look Inside Argonne's Center for Nanoscale Materials
Divan, Ralu; Rosenthal, Dan; Rose, Volker; Wai Hla
2018-05-23
At a very small, or "nano" scale, materials behave differently. The study of nanomaterials is much more than miniaturization - scientists are discovering how changes in size change a material's properties. From sunscreen to computer memory, the applications of nanoscale materials research are all around us. Researchers at Argonne's Center for Nanoscale Materials are creating new materials, methods and technologies to address some of the world's greatest challenges in energy security, lightweight but durable materials, high-efficiency lighting, information storage, environmental stewardship and advanced medical devices.
Method and apparatus for semi-solid material processing
Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN
2009-11-24
A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming maching.
Temperature control transport system
Schabron, John F; Sorini-Wong, Susan S
2014-12-09
Embodiments of the inventive technology may involve the use of layered, insulated PCM assemblage that itself comprises: modular insulating foam material 8 that, upon establishment as part of the assemblage, defines inner foam material sides 9 and outer foam material sides 10; thin reflective material 11 established against (whether directly in contact with or not) at least either the inner foam material sides or the outer foam materials sides, and modular, enclosed PCM sections 12 established between the modular insulating foam material and the interior center.
Method and apparatus for semi-solid material processing
Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN
2007-05-15
A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming machine.
NASA Technical Reports Server (NTRS)
Gordon, Gail
2012-01-01
The Materials Test Branch resides at Marshall Space Flight Center's Materials and Processing laboratory and has a long history of supporting NASA programs from Mercury to the recently retired Space Shuttle. The Materials Test Branch supports its customers by supplying materials testing expertise in a wide range of applications. The Materials Test Branch is divided into three Teams, The Chemistry Team, The Tribology Team and the Mechanical Test Team. Our mission and goal is to provide world-class engineering excellence in materials testing with a special emphasis on customer service.
Chemical Fingerprinting of Materials Developed Due to Environmental Issues
NASA Technical Reports Server (NTRS)
Smith, Doris A.; McCool, A. (Technical Monitor)
2000-01-01
Instrumental chemical analysis methods are developed and used to chemically fingerprint new and modified External Tank materials made necessary by changing environmental requirements. Chemical fingerprinting can detect and diagnose variations in material composition. To chemically characterize each material, fingerprint methods are selected from an extensive toolbox based on the material's chemistry and the ability of the specific methods to detect the material's critical ingredients. Fingerprint methods have been developed for a variety of materials including Thermal Protection System foams, adhesives, primers, and composites.
Nondestructive material characterization
Deason, Vance A.; Johnson, John A.; Telschow, Kenneth L.
1991-01-01
A method and apparatus for nondestructive material characterization, such as identification of material flaws or defects, material thickness or uniformity and material properties such as acoustic velocity. The apparatus comprises a pulsed laser used to excite a piezoelectric (PZ) transducer, which sends acoustic waves through an acoustic coupling medium to the test material. The acoustic wave is absorbed and thereafter reflected by the test material, whereupon it impinges on the PZ transducer. The PZ transducer converts the acoustic wave to electrical impulses, which are conveyed to a monitor.
Carbon Materials Metal/Metal Oxide Nanoparticle Composite and Battery Anode Composed of the Same
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh (Inventor)
2006-01-01
A method of forming a composite material for use as an anode for a lithium-ion battery is disclosed. The steps include selecting a carbon material as a constituent part of the composite, chemically treating the selected carbon material to receive nanoparticles, incorporating nanoparticles into the chemically treated carbon material and removing surface nanoparticles from an outside surface of the carbon material with incorporated nanoparticles. A material making up the nanoparticles alloys with lithium.
Final Report: Design of adaptive load mitigating materials using nonlinear stress wave tailoring
2016-02-26
for granular material use). 3 • Prof. Trudy Kriven (UIUC, Materials Science) is an expert in ceramic and geopolymer fabrication. • Prof. John...Figure A5.1: Schematic diagram showing the 1D chain of spherical elements in contact with (a) a uniform linear medium and (b) a composite linear...each material point to consisting of one of the given material constituents, we allow each material point to be assigned a composite material that is
Environment and human friendly colored materials prepared using black and white components.
Takeoka, Yukikazu
2018-05-10
Our lives in the present age are full of colorful items. However, when many coloring materials cannot be used due to environmental concerns, this colorful life that has been constructed will be diminished. Maintaining our rich lifestyle necessitates the development of technologies that can make safe and secure color materials from materials with less burden on people and the environment. Herein, the author reveals that structural colored materials with little angle dependence can be prepared using various materials with short-range order in the refractive index, which is comparable to the wavelength of visible light, and with the aid of a black substance. This approach enables the preparation of colorful materials from materials that have a low environmental burden and are non-toxic to living things; examples of such materials include silica, carbon black, and iron oxide. If we can achieve mechanical stabilization and hue stabilization of these coloring materials, we can develop new green pigments with low toxicity, good color development, and high durability. The use of conventional angular-dependent structural colored materials has been limited. However, structural colored materials with no angle dependence, such as those prepared by the author, can be used in fields where pigments have traditionally been used. For example, they could be used in coating materials for automobiles and buildings, and in pigments used by artists. Environmentally friendly green color materials are expected to promote sustainable development. In this review, I will describe how to prepare structural colored materials with less angle dependency using white and black substances previously reported by the author.
Three-Dimensional-Printing of Bio-Inspired Composites.
Xiang Gu, Grace; Su, Isabelle; Sharma, Shruti; Voros, Jamie L; Qin, Zhao; Buehler, Markus J
2016-02-01
Optimized for millions of years, natural materials often outperform synthetic materials due to their hierarchical structures and multifunctional abilities. They usually feature a complex architecture that consists of simple building blocks. Indeed, many natural materials such as bone, nacre, hair, and spider silk, have outstanding material properties, making them applicable to engineering applications that may require both mechanical resilience and environmental compatibility. However, such natural materials are very difficult to harvest in bulk, and may be toxic in the way they occur naturally, and therefore, it is critical to use alternative methods to fabricate materials that have material functions similar to material function as their natural counterparts for large-scale applications. Recent progress in additive manufacturing, especially the ability to print multiple materials at upper micrometer resolution, has given researchers an excellent instrument to design and reconstruct natural-inspired materials. The most advanced 3D-printer can now be used to manufacture samples to emulate their geometry and material composition with high fidelity. Its capabilities, in combination with computational modeling, have provided us even more opportunities for designing, optimizing, and testing the function of composite materials, in order to achieve composites of high mechanical resilience and reliability. In this review article, we focus on the advanced material properties of several multifunctional biological materials and discuss how the advanced 3D-printing techniques can be used to mimic their architectures and functions. Lastly, we discuss the limitations of 3D-printing, suggest possible future developments, and discuss applications using bio-inspired materials as a tool in bioengineering and other fields.
Three-Dimensional-Printing of Bio-Inspired Composites
Xiang Gu, Grace; Su, Isabelle; Sharma, Shruti; Voros, Jamie L.; Qin, Zhao; Buehler, Markus J.
2016-01-01
Optimized for millions of years, natural materials often outperform synthetic materials due to their hierarchical structures and multifunctional abilities. They usually feature a complex architecture that consists of simple building blocks. Indeed, many natural materials such as bone, nacre, hair, and spider silk, have outstanding material properties, making them applicable to engineering applications that may require both mechanical resilience and environmental compatibility. However, such natural materials are very difficult to harvest in bulk, and may be toxic in the way they occur naturally, and therefore, it is critical to use alternative methods to fabricate materials that have material functions similar to material function as their natural counterparts for large-scale applications. Recent progress in additive manufacturing, especially the ability to print multiple materials at upper micrometer resolution, has given researchers an excellent instrument to design and reconstruct natural-inspired materials. The most advanced 3D-printer can now be used to manufacture samples to emulate their geometry and material composition with high fidelity. Its capabilities, in combination with computational modeling, have provided us even more opportunities for designing, optimizing, and testing the function of composite materials, in order to achieve composites of high mechanical resilience and reliability. In this review article, we focus on the advanced material properties of several multifunctional biological materials and discuss how the advanced 3D-printing techniques can be used to mimic their architectures and functions. Lastly, we discuss the limitations of 3D-printing, suggest possible future developments, and discuss applications using bio-inspired materials as a tool in bioengineering and other fields. PMID:26747791
Farrugia, Cher; Camilleri, Josette
2015-04-01
It has been reported that complete caries removal from cavities during restoration of teeth is difficult. Furthermore with the tissue saving approach it is expected that more of the saved affected tissue will possibly harbor more residual bacteria. Antimicrobial restorative filling materials would be ideal to prevent the spread of caries after completion of tooth restoration, thus preventing recurrent decay and eventually restoration failure. This paper reviews the literature on the antimicrobial properties of dental restorative filling materials. Pubmed searches on the antibacterial properties of restorative materials were carried out. Keywords were chosen to assess antibacterial properties of conventional filling materials. Methods of introducing antimicrobial agents in restorative materials were also reviewed together with the methodology used to assess antimicrobial activity. 174 articles from 1983 till 2014 were included. Adhesive materials have decreased antimicrobial activity when compared to amalgams and zinc oxides. Several techniques have been employed in order to increase the antimicrobial activity of restorative materials. Although antimicrobial activity of restorative materials is important, the introduction of antimicrobial agents/techniques should not be at the expense of other material properties. Environmental changes within a material may affect the bacterial response to the antimicrobial. Bacterial adhesion to the restorative materials should be assessed. Long term assessment of antimicrobial activity is important and is clinically relevant. The use of antimicrobial dental materials is important unless such characteristics are gained to the detriment of other material properties. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Stein, Bland A.
1993-01-01
The flight and retrieval of the National Aeronautics and Space Administration's Long Duration Exposure Facility (LDEF) provided an opportunity for the study of the low-Earth orbit (LEO) environment and long-duration space environmental effects (SEE) on materials that is unparalleled in the history of the U.S. Space Program. The 5-year, 9-month flight of LDEF greatly enhanced the potential value of all materials on LDEF to the international SEE community, compared to that of the original 1-year flight plan. The remarkable flight attitude stability of LDEF enables specific analyses of individual and combined effects of LEO environmental parameters on identical materials on the same space vehicle. NASA recognized this potential by forming the LDEF Space Environmental Effects on Materials Special Investigation Group (MSIG) to address the greatly expanded materials and LEO space environment analysis opportunities available in the LDEF structure, experiment trays, and corollary measurements so that the combined value of all LDEF materials data to current and future space missions will be addressed and documented. An overview of the interim LDEF materials findings of the principal investigators and the Materials Special Investigation Group is provided. These revelations are based on observations of LEO environmental effects on materials made in space during LDEF retrieval and during LDEF tray deintegration at the Kennedy Space Center, and on findings of approximately 1.5 years of laboratory analyses of LDEF materials by the LDEF materials scientists. These findings were extensively reviewed and discussed at the MSIG-sponsored LDEF Materials Workshop '91. The results are presented in a format that categorizes the revelations as 'clear findings' or 'obscure preliminary findings' (and progress toward their resolution), plus resultant needs for new space materials developments and ground simulation testing/analytical modeling, in seven categories: materials/environmental parameters and data bases; LDEF contamination; thermal control coatings and protective treatments; polymers and films; polymer-matrix composites; metals, ceramics, and optical materials; and systems-related materials. The utilization of LDEF materials data for future low-Earth orbit missions is also discussed, concentrating on Space Station Freedom. In general, the LDEF data is remarkably consistent; LDEF will provide a 'benchmark' for materials design data bases for satellites in low-Earth orbit. Some materials were identified to be encouragingly resistant to LEO SEE for 5.8-years; other 'space qualified' materials displayed significant environmental degradation. General contamination levels on LDEF were low, but molecular contamination was widespread; LDEF offers an unprecedented opportunity to provide a unified perspective of unmanned LEO spacecraft contamination mechanisms. New material development requirements for long-term LEO missions were identified and current ground simulation testing methods/data for new, durable materials concepts can be validated with LDEF results. LDEF findings are already being integrated into the design of Space Station Freedom.
Application of Chemistry in Materials Research at NASA GRC
NASA Technical Reports Server (NTRS)
Kavandi, Janet L.
2016-01-01
Overview of NASA GRC Materials Development. New materials enabled by new chemistries offering unique properties and chemical processing techniques. Durability of materials in harsh environments requires understanding and modeling of chemical interaction of materials with the environment.
Electrode material comprising graphene-composite materials in a graphite network
Kung, Harold H.; Lee, Jung K.
2014-07-15
A durable electrode material suitable for use in Li ion batteries is provided. The material is comprised of a continuous network of graphite regions integrated with, and in good electrical contact with a composite comprising graphene sheets and an electrically active material, such as silicon, wherein the electrically active material is dispersed between, and supported by, the graphene sheets.
Print material as a public health education tool.
Paul, C L; Redman, S; Sanson-Fisher, R W
1998-02-01
Despite the widespread use of print materials in public health education, little is known about the costs and processes involved in developing these materials and their effectiveness in practice. We examined a sample of printed health education materials, using interviews and checklists. The most cost-effective processes for developing materials were not being used and the effectiveness of materials was rarely evaluated.
Electrode material comprising graphene-composite materials in a graphite network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kung, Harold H.; Lee, Jung K.
A durable electrode material suitable for use in Li ion batteries is provided. The material is comprised of a continuous network of graphite regions integrated with, and in good electrical contact with a composite comprising graphene sheets and an electrically active material, such as silicon, wherein the electrically active material is dispersed between, and supported by, the graphene sheets.
FUEL-BREEDER FUEL ELEMENT FOR NUCLEAR REACTOR
Abbott, W.E.; Balent, R.
1958-09-16
A fuel element design to facilitate breeding reactor fuel is described. The fuel element is comprised of a coatainer, a central core of fertile material in the container, a first bonding material surrounding the core, a sheet of fissionable material immediately surrounding the first bonding material, and a second bonding material surrounding the fissionable material and being in coniact with said container.
ERIC Educational Resources Information Center
Moody, John Charles
Assessed were the effects of linear and modified linear programed materials on the achievement of slow learners in tenth grade Biological Sciences Curriculum Study (BSCS) Special Materials biology. Two hundred and six students were randomly placed into four programed materials formats: linear programed materials, modified linear program with…
Electrically conducting ternary amorphous fully oxidized materials and their application
NASA Technical Reports Server (NTRS)
Giauque, Pierre (Inventor); Nicolet, Marc (Inventor); Gasser, Stefan M. (Inventor); Kolawa, Elzbieta A. (Inventor); Cherry, Hillary (Inventor)
2004-01-01
Electrically active devices are formed using a special conducting material of the form Tm--Ox mixed with SiO2 where the materials are immiscible. The immiscible materials are forced together by using high energy process to form an amorphous phase of the two materials. The amorphous combination of the two materials is electrically conducting but forms an effective barrier.
Free-standing oxide superconducting articles
Wu, Xin D.; Muenchausen, Ross E.
1993-01-01
A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template lay This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).
DOE Office of Scientific and Technical Information (OSTI.GOV)
MM Hall
2006-01-31
A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing.
Development of E-Learning Materials for Machining Safety Education
NASA Astrophysics Data System (ADS)
Nakazawa, Tsuyoshi; Mita, Sumiyoshi; Matsubara, Masaaki; Takashima, Takeo; Tanaka, Koichi; Izawa, Satoru; Kawamura, Takashi
We developed two e-learning materials for Manufacturing Practice safety education: movie learning materials and hazard-detection learning materials. Using these video and sound media, students can learn how to operate machines safely with movie learning materials, which raise the effectiveness of preparation and review for manufacturing practice. Using these materials, students can realize safety operation well. Students can apply knowledge learned in lectures to the detection of hazards and use study methods for hazard detection during machine operation using the hazard-detection learning materials. Particularly, the hazard-detection learning materials raise students‧ safety consciousness and increase students‧ comprehension of knowledge from lectures and comprehension of operations during Manufacturing Practice.
Sequential infiltration synthesis for advanced lithography
Darling, Seth B.; Elam, Jeffrey W.; Tseng, Yu-Chih; Peng, Qing
2015-03-17
A plasma etch resist material modified by an inorganic protective component via sequential infiltration synthesis (SIS) and methods of preparing the modified resist material. The modified resist material is characterized by an improved resistance to a plasma etching or related process relative to the unmodified resist material, thereby allowing formation of patterned features into a substrate material, which may be high-aspect ratio features. The SIS process forms the protective component within the bulk resist material through a plurality of alternating exposures to gas phase precursors which infiltrate the resist material. The plasma etch resist material may be initially patterned using photolithography, electron-beam lithography or a block copolymer self-assembly process.
Method and system for radioisotope generation
Toth, James J.; Soderquist, Chuck Z.; Greenwood, Lawrence R.; Mattigod, Shas V.; Fryxell, Glen E.; O'Hara, Matthew J.
2014-07-15
A system and a process for producing selected isotopic daughter products from parent materials characterized by the steps of loading the parent material upon a sorbent having a functional group configured to selectively bind the parent material under designated conditions, generating the selected isotopic daughter products, and eluting said selected isotopic daughter products from the sorbent. In one embodiment, the process also includes the step of passing an eluent formed by the elution step through a second sorbent material that is configured to remove a preselected material from said eluent. In some applications a passage of the material through a third sorbent material after passage through the second sorbent material is also performed.
Thermally emissive sensing materials for chemical spectroscopy analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poole, Zsolt; Ohodnicki, Paul R.
A sensor using thermally emissive materials for chemical spectroscopy analysis includes an emissive material, wherein the emissive material includes the thermally emissive materials which emit electromagnetic radiation, wherein the electromagnetic radiation is modified due to chemical composition in an environment; and a detector adapted to detect the electromagnetic radiation, wherein the electromagnetic radiation is indicative of the chemical interaction changes and hence chemical composition and/or chemical composition changes of the environment. The emissive material can be utilized with an optical fiber sensor, with the optical fiber sensor operating without the emissive material probed with a light source external to themore » material.« less
Organic photovoltaic cells utilizing ultrathin sensitizing layer
Forrest, Stephen R [Ann Arbor, MI; Yang, Fan [Piscataway, NJ; Rand, Barry P [Somers, NY
2011-09-06
A photosensitive device includes a plurality of organic photoconductive materials disposed in a stack between a first electrode and a second electrode, including a first continuous layer of donor host material, a second continuous layer of acceptor host material, and at least one other organic photoconductive material disposed as a plurality of discontinuous islands between the first continuous layer and the second continuous layer. Each of these other photoconductive materials has an absorption spectra different from the donor host material and the acceptor host material. Preferably, each of the discontinuous islands consists essentially of a crystallite of the respective organic photoconductive material, and more preferably, the crystallites are nanocrystals.
Jet engine applications for materials with nanometer-scale dimensions
NASA Technical Reports Server (NTRS)
Appleby, J. W., Jr.
1995-01-01
The performance of advanced military and commercial gas turbine engines is often linked to advances in materials technology. High performance gas turbine engines being developed require major material advances in strength, toughness, reduced density and improved temperature capability. The emerging technology of nanostructured materials has enormous potential for producing materials with significant improvements in these properties. Extraordinary properties demonstrated in the laboratory include material strengths approaching theoretical limit, ceramics that demonstrate ductility and toughness, and materials with ultra-high hardness. Nanostructured materials and coatings have the potential for meeting future gas turbine engine requirements for improved performance, reduced weight and lower fuel consumption.
Jet engine applications for materials with nanometer-scale dimensions
NASA Technical Reports Server (NTRS)
Appleby, J. W., Jr.
1995-01-01
The performance of advanced military and commercial gas turbine engines is often linked to advances in materials technology. High performance gas turbine engines being developed require major material advances in strength, toughness, reduced density and improved temperature capability. The emerging technology of nanostructured materials has enormous potential for producing materials with significant improvements in these properties. Extraordinary properties demonstrated in the laboratory include material strengths approaching theoretical limit, ceramics that demonstrate ductility and toughness, and material with ultra-high hardness. Nanostructured materials and coatings have the potential for meeting future gas turbine engine requirements for improved performance, reduced weight and lower fuel consumption.
The electrical properties and glass transition of some dental materials after temperature exposure.
Marcinkowska, Agnieszka; Gauza-Wlodarczyk, Marlena; Kubisz, Leszek; Hedzelek, Wieslaw
2017-10-17
The physicochemical properties of dental materials will remain stable only when these materials in question are resistant to the changes in the oral cavity. The oral environment is subject to large temperature variations. The aim of the study was the assessment of electrical properties and glass transition of some dental materials after temperature exposure. Composite materials, compomers, materials for temporary prosthetic replacement and resin-based pit and fissure sealants were used in the study. The method used was electric conductivity of materials under changing temperature. The order of materials presenting the best characteristics for insulators was as follows: materials for temporary prosthetic replacement, resin-based pit and fissure sealants, composites, and compomers. Thanks to comparisons made between graphs during I and II heating run, the method could be used to observe changes in the heated material and determine whether the changes observed are reversible or permanent. The graphs also provided temperature values which contain information on glass transition during heating. In the oral cavity the effect of the constant temperature stimulus influences maturity of dental materials and improves their properties. But high temperatures over glass transition temperature can cause irreversible deformation and changes of the materials properties, even in a short time.
Vanadium based materials as electrode materials for high performance supercapacitors
NASA Astrophysics Data System (ADS)
Yan, Yan; Li, Bing; Guo, Wei; Pang, Huan; Xue, Huaiguo
2016-10-01
As a kind of supercapacitors, pseudocapacitors have attracted wide attention in recent years. The capacitance of the electrochemical capacitors based on pseudocapacitance arises mainly from redox reactions between electrolytes and active materials. These materials usually have several oxidation states for oxidation and reduction. Many research teams have focused on the development of an alternative material for electrochemical capacitors. Many transition metal oxides have been shown to be suitable as electrode materials of electrochemical capacitors. Among them, vanadium based materials are being developed for this purpose. Vanadium based materials are known as one of the best active materials for high power/energy density electrochemical capacitors due to its outstanding specific capacitance and long cycle life, high conductivity and good electrochemical reversibility. There are different kinds of synthetic methods such as sol-gel hydrothermal/solvothermal method, template method, electrospinning method, atomic layer deposition, and electrodeposition method that have been successfully applied to prepare vanadium based electrode materials. In our review, we give an overall summary and evaluation of the recent progress in the research of vanadium based materials for electrochemical capacitors that include synthesis methods, the electrochemical performances of the electrode materials and the devices.
Nishigawa, G; Sato, T; Suenaga, K; Minagi, S
1998-02-01
Tray adhesive, which is used for the adhesion of elastomer rubber impression materials to a custom resin tray, lowers the retention of the impression materials to the impression modeling plastics, as some ingredients of tray adhesive make the impression modeling plastic soft and tacky. The efficacy of tray adhesive, which is used for the adhesion of elastomer rubber impression materials to a custom resin tray, on the adhesion between elastomer rubber impression material and impression modeling plastic was investigated. Four silicone rubber impression materials (two addition reaction types and two condensation reaction types), two polysulfide rubber impression materials, and one impression modeling plastic were used in this study. Tensile strength between elastomer rubber impression material and impression modeling plastic with or without the application of tray adhesive was evaluated. Although tray adhesives for both addition reaction type and both condensation reaction type of silicone impression materials and one tray adhesive for polysulfide rubber impression material increased the tensile strength between the impression material and impression modeling plastic, one tray adhesive for polysulfide rubber impression material decreased the tensile strength when sufficient drying time was not applied.
RCRA Sustainable Materials Management Information
This asset includes a broad variety of documents, descriptive data, technical analyses and guidance materials relative to voluntary improvements in resource conservation, the beneficial use of sustainable materials and the management of non-hazardous wastes and materials. Included in this asset are participant information and outreach materials of various voluntary programs relating to better materials and waste management programs. An example is the WasteWise program and Sustainable Materials Management (SMM) Challenges, which help organizations and businesses apply sustainable materials management practices to reduce municipal and select industrial wastes. Also included in this asset are guidance materials to assist municipalities in recycling and reuse of municipal solid waste, including diverting materials to composting, and the use of conversion methods such as anaerobic digestion. Another component are the data necessary to compile reports on the characterization of municipal solid waste (including such waste streams as food waste, yard and wood waste, discarded electronics, and household non-hazardous waste), the recycled content of manufactured goods, and other analyses performed using such tools as the Waste Assessment Reduction Model (WARM).For industrial non-hazardous waste, this asset includes guidance and outreach materials on industrial materials recycling and waste minimization. Finally, this asset includes research analyses on sustainable materia
Paul, J T; Singh, A K; Dong, Z; Zhuang, H; Revard, B C; Rijal, B; Ashton, M; Linscheid, A; Blonsky, M; Gluhovic, D; Guo, J; Hennig, R G
2017-11-29
The discovery of two-dimensional (2D) materials comes at a time when computational methods are mature and can predict novel 2D materials, characterize their properties, and guide the design of 2D materials for applications. This article reviews the recent progress in computational approaches for 2D materials research. We discuss the computational techniques and provide an overview of the ongoing research in the field. We begin with an overview of known 2D materials, common computational methods, and available cyber infrastructures. We then move onto the discovery of novel 2D materials, discussing the stability criteria for 2D materials, computational methods for structure prediction, and interactions of monolayers with electrochemical and gaseous environments. Next, we describe the computational characterization of the 2D materials' electronic, optical, magnetic, and superconducting properties and the response of the properties under applied mechanical strain and electrical fields. From there, we move on to discuss the structure and properties of defects in 2D materials, and describe methods for 2D materials device simulations. We conclude by providing an outlook on the needs and challenges for future developments in the field of computational research for 2D materials.
Nanostructured mesoporous materials for lithium-ion battery applications
NASA Astrophysics Data System (ADS)
Balaya, P.; Saravanan, K.; Hariharan, S.; Ramar, V.; Lee, H. S.; Kuezma, M.; Devaraj, S.; Nagaraju, D. H.; Ananthanarayanan, K.; Mason, C. W.
2011-06-01
The Energy crisis happens to be one of the greatest challenges we are facing today. In this view, much effort has been made in developing new, cost effective, environmentally friendly energy conversion and storage devices. The performance of such devices is fundamentally related to material properties. Hence, innovative materials engineering is important in solving the energy crisis problem. One such innovation in materials engineering is porous materials for energy storage. Porous electrode materials for lithium-ion batteries (LIBs) offer a high degree of electrolyte-electrode wettability, thus enhancing the electrochemical activity within the material. Among the porous materials, mesoporous materials draw special attention, owing to shorter diffusion lengths for Li+ and electronic movement. Nanostructured mesoporous materials also offer better packing density compared to their nanostructured counterparts such as nanopowders, nanowires, nanotubes etc., thus opening a window for developing electrode materials with high volumetric energy densities. This would directly translate into a scenario of building batteries which are much lighter than today's commercial LIBs. In this article, the authors present a simple, soft template approach for preparing both cathode and anode materials with high packing density for LIBs. The impact of porosity on the electrochemical storage performance is highlighted.
Liu, Jie; Guo, Liang; Jiang, Jiping; Jiang, Dexun; Liu, Rentao; Wang, Peng
2016-06-05
In the emergency management relevant to pollution accidents, efficiency emergency rescues can be deeply influenced by a reasonable assignment of the available emergency materials to the related risk sources. In this study, a two-stage optimization framework is developed for emergency material reserve layout planning under uncertainty to identify material warehouse locations and emergency material reserve schemes in pre-accident phase coping with potential environmental accidents. This framework is based on an integration of Hierarchical clustering analysis - improved center of gravity (HCA-ICG) model and material warehouse location - emergency material allocation (MWL-EMA) model. First, decision alternatives are generated using HCA-ICG to identify newly-built emergency material warehouses for risk sources which cannot be satisfied by existing ones with a time-effective manner. Second, emergency material reserve planning is obtained using MWL-EMA to make emergency materials be prepared in advance with a cost-effective manner. The optimization framework is then applied to emergency management system planning in Jiangsu province, China. The results demonstrate that the developed framework not only could facilitate material warehouse selection but also effectively provide emergency material for emergency operations in a quick response. Copyright © 2016. Published by Elsevier B.V.
Removal of Organic Pollutants from Water Using Superwetting Materials.
Li, Lingxiao; Zhang, Junping; Wang, Aiqin
2018-02-01
The frequent occurrence of water pollution accidents and the leakage of organic pollutants have caused severe environmental and ecological crisis. It is thus highly imperative to find efficient materials to solve the problem. Inspired by the lotus leaf, superwetting materials are receiving increasing attention in the field of removal of organic pollutants from water. Various superwetting materials have been successfully generated and integrated into devices for removal of organic pollutants from water. On the basis of our previous work in the field, we summarized in this account the progress of removal of (1) floating and underwater insoluble, (2) emulsified insoluble, and (3) both insoluble and soluble organic pollutants from water using superwetting materials including superhydrophobic & superoleophilic materials, superhydrophilic & underwater superoleophobic materials, and materials with controllable wettability. The superwetting materials are in the forms of 2D porous materials, 3D porous materials and particles, etc. Finally, the current state and future challenges in this field are discussed. We hope this account could shed light on the design of novel superwetting materials for efficient removal of organic pollutants from water. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Boyer, Treavor H; Persaud, Amar; Banerjee, Poulomi; Palomino, Pedro
2011-10-15
Excess phosphorus (P) in lakes and rivers remains a major water quality problem on a global scale. As a result, new materials and innovative approaches to P remediation are required. Natural materials and waste byproduct materials from industrial processes have the potential to be effective materials for P removal from surface water. Advantages of natural and waste byproduct materials include their low-cost, abundant supply, and minimal preparation, especially compared with engineered materials, such as ion exchange resins and polymeric adsorbents. As a result, natural and waste byproduct materials are commonly referred to as low-cost materials. Despite the potential advantages of low-cost materials, there are critical gaps in knowledge that are preventing their effective use. In particular, there are limited data on the performance of low-cost materials in surface waters that have high concentrations of natural organic matter (NOM), and there are no systematic studies that track the changes in water chemistry following treatment with low-cost materials or compare their performance with engineered materials. Accordingly, the goal of this work was to evaluate and compare the effectiveness of low-cost and engineered materials for P removal from NOM-rich surface water. Seven low-cost materials and three engineered materials were evaluated using jar tests and mini-column experiments. The test water was a surface water that had a total P concentration of 132-250 μg P/L and a total organic carbon concentration of 15-32 mg C/L. Alum sludge, a byproduct of drinking water treatment, and a hybrid anion exchange resin loaded with nanosize iron oxide were the best performing materials in terms of selective P removal in the presence of NOM and minimum undesirable secondary changes to the water chemistry. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
1998-01-01
This handbook establishes NASA program requirements for evaluation, testing, and selection of materials to preclude unsafe conditions related to flammability, odor, offgassing, and fluid compatibility. Materials intended for use in space vehicles, specified test facilities, and specified ground support equipment (GSE) must meet the requirements of this document. Additional materials performance requirements may be specified in other program or NASA center specific documentation. Responsible NASA centers materials organizations must include applicable requirements of this document in their materials control programs. Materials used in habitable areas of spacecraft, including the materials of the spacecraft, stowed equipment, and experiments, must be evaluated for flammability, odor, and offgassing characteristics. All materials used in other areas must be evaluated for flammability characteristics. In addition, materials that are exposed to liquid oxygen (LOX), gaseous oxygen (GOX), and other reactive fluids' must be evaluated for compatibility with the fluid in their use application. Materials exposed to pressurized breathing gases also must be evaluated for odor and offgassing characteristics. The worst-case anticipated use environment (most hazardous pressure, temperature, material thickness, and fluid exposure conditions) must be used in the evaluation process. Materials that have been shown to meet the criteria of the required tests are acceptable for further consideration in design. Whenever possible, materials should be selected that have already been shown to meet the test criteria in the use environment. Existing test data are compiled in the NASA Marshall Space Flight Center (MSFC) Materials and Processes Technical Information System (MAPTIS) and published periodically as the latest revision of a joint document with Johnson Space Center (JSC), MSFC-HDBK-527/JSC 09604. MAPTIS can be accessed by computer datalink. Systems containing materials that have not been tested or do not meet the criteria of the required tests must be verified to be acceptable in the use configuration by analysis or testing. This verification rationale must be documented and submitted to the responsible NASA center materials organization for approval.
Intermetallics as innovative CRM-free materials
NASA Astrophysics Data System (ADS)
Novák, Pavel; Jaworska, Lucyna; Cabibbo, Marcello
2018-03-01
Many of currently used technical materials cannot be imagined without the use of critical raw materials. They require chromium (e.g. in stainless and tool steels), tungsten and cobalt (tool materials, heat resistant alloys), niobium (steels and modern biomaterials). Therefore there is a need to find substitutes to help the European economy. A promising solution can be the application of intermetallics. These materials offer wide variety of interesting properties, such as high hardness and wear resistance or high chemical resistance. In this paper, the overview of possible substitute materials among intermetallics is presented. Intermetallics based on aluminides and silicides are shown as corrosion resistant materials, composites composed of ceramics in intermetallic matrix as possible tool materials. The manufacturing processes are being developed to minimize the disadvantages of these materials, mainly the room-temperature brittleness.
Diagnostic monitor for carbon fiber processing
Paulauskas, Felix L.; Bigelow, Timothy S.; Meek, Thomas T.
2002-01-01
A method for monitoring characteristics of materials includes placing a material in an application zone, measuring a change in at least one property value of the application zone caused by placing the material in the application zone and relating changes in the property value of the application zone caused by the material to at least one characteristic of the material An apparatus for monitoring characteristics of a material includes a measuring device for measuring a property value resulting from applying a frequency signal to the application zone after placing a material in the application zone and a processor for relating changes in the property value caused by placement of the material in the application zone to at least one desired characteristic of the material. The application zone is preferably a resonant cavity.
NASA Technical Reports Server (NTRS)
Vickers, John
2015-01-01
The Materials Genome Initiative (MGI) project element is a cross-Center effort that is focused on the integration of computational tools to simulate manufacturing processes and materials behavior. These computational simulations will be utilized to gain understanding of processes and materials behavior to accelerate process development and certification to more efficiently integrate new materials in existing NASA projects and to lead to the design of new materials for improved performance. This NASA effort looks to collaborate with efforts at other government agencies and universities working under the national MGI. MGI plans to develop integrated computational/experimental/ processing methodologies for accelerating discovery and insertion of materials to satisfy NASA's unique mission demands. The challenges include validated design tools that incorporate materials properties, processes, and design requirements; and materials process control to rapidly mature emerging manufacturing methods and develop certified manufacturing processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chilkoti, Ashutosk
2012-06-29
The emerging, interdisciplinary field of Bioinspired Materials focuses on developing a fundamental understanding of the synthesis, directed self-assembly and hierarchical organization of natural occurring materials, and uses this understanding to engineer new bioinspired artificial materials for diverse applications. The inaugural 2012 Gordon Conference on Bioinspired Materials seeks to capture the excitement of this burgeoning field by a cutting-edge scientific program and roster of distinguished invited speakers and discussion leaders who will address the key issues in the field. The Conference will feature a wide range of topics, such as materials and devices from DNA, reprogramming the genetic code for designmore » of new materials, peptide, protein and carbohydrate based materials, biomimetic systems, complexity in self-assembly, and biomedical applications of bioinspired materials.« less
Method for making field-structured memory materials
Martin, James E.; Anderson, Robert A.; Tigges, Chris P.
2002-01-01
A method of forming a dual-level memory material using field structured materials. The field structured materials are formed from a dispersion of ferromagnetic particles in a polymerizable liquid medium, such as a urethane acrylate-based photopolymer, which are applied as a film to a support and then exposed in selected portions of the film to an applied magnetic or electric field. The field can be applied either uniaxially or biaxially at field strengths up to 150 G or higher to form the field structured materials. After polymerizing the field-structure materials, a magnetic field can be applied to selected portions of the polymerized field-structured material to yield a dual-level memory material on the support, wherein the dual-level memory material supports read-and-write binary data memory and write once, read many memory.
Kijima, Misako; Oaki, Yuya; Munekawa, Yurika; Imai, Hiroaki
2013-02-11
We have studied the simultaneous synthesis and morphogenesis of polymer materials with hierarchical structures from nanoscopic to macroscopic scales. The morphologies of the original materials can be replicated to the polymer materials. In general, it is not easy to achieve the simultaneous synthesis and morphogenesis of polymer material even using host materials. In the present work, four biominerals and three biomimetic mesocrystal structures are used as the host materials or templates and polypyrrole, poly(3-hexylthiopehene), and silica were used as the precursors for the simultaneous syntheses and morphogenesis of polymer materials. The host materials with the hierarchical structure possess the nanospace for the incorporation of the monomers. After the incorporation of the monomers, the polymerization reaction proceeds in the nanospace with addition of the initiator agents. Then, the dissolution of the host materials leads to the formation and morphogenesis of the polymer materials. The scheme of the replication can be classified into the three types based on the structures of the host materials (types I-III). The type I template facilitates the hierarchical replication of the whole host material, type II mediates the hierarchical surface replication, and type III induces the formation of the two-dimensional nanosheets. Based on these results, the approach for the coupled synthesis and morphogenesis can be applied to a variety of combinations of the templates and polymer materials. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dielectric Characteristics of Microstructural Changes and Property Evolution in Engineered Materials
NASA Astrophysics Data System (ADS)
Clifford, Jallisa Janet
Heterogeneous materials are increasingly used in a wide range of applications such as aerospace, civil infrastructure, fuel cells and many others. The ability to take properties from two or more materials to create a material with properties engineered to needs is always very attractive. Hence heterogeneous materials are evolving into more complex formulations in multiple disciplines. Design of microstructure at multiple scales control the global functional properties of these materials and their structures. However, local microstructural changes do not directly cause a proportional change to the global properties (such as strength and stiffness). Instead, local changes follow an evolution process including significant interactions. Therefore, in order to understand property evolution of engineered materials, microstructural changes need to be effectively captured. Characterizing these changes and representing them by material variables will enable us to further improve our material level understanding. In this work, we will demonstrate how microstructural features of heterogeneous materials can be described quantitatively using broadband dielectric spectroscopy (BbDS). The frequency dependent dielectric properties can capture the change in material microstructure and represent these changes in terms of material variables, such as complex permittivity. These changes in terms of material properties can then be linked to a number of different conditions, such as increasing damage due to impact or fatigue. Two different broadband dielectric spectroscopy scanning modes are presented: bulk measurements and continuous scanning to measure dielectric property change as a function of position across the specimen. In this study, we will focus on ceramic materials and fiber reinforced polymer matrix composites as test bed material systems. In the first part of the thesis, we will present how different micro-structural design of porous ceramic materials can be captured quantitatively using BbDS. These materials are typically used in solid oxide fuel cells (SOFC). Results show significant effect of microstructural design on material properties at multiple temperatures (up to 800 °C). In the later part of the thesis, we will focus on microstructural changes of fiber reinforced composite materials due to impact and static loading. The changes in dielectric response can then be linked to the bulk mechanical properties of the material and various damage modes. Observing trends in dielectric response enables us to further determine local mechanisms and distribution of properties throughout the damaged specimens. A 3D X-ray microscope and a digital microscope have been used to visualize these changes in material microstructure and validate experimental observations. The increase in damage observed in the material microstructure can then also be linked to the changes in dielectric response. Results show that BbDS is an extremely useful tool for identifying microstructural changes within a heterogeneous material and particularly useful in relating remaining properties. Dielectric material variables can be used directly in property degradation laws and help develop a framework for future predictive modeling methodologies.
Biosmart Materials: Breaking New Ground in Dentistry
Badami, Vijetha; Ahuja, Bharat
2014-01-01
By definition and general agreement, smart materials are materials that have properties which may be altered in a controlled fashion by stimuli, such as stress, temperature, moisture, pH, and electric or magnetic fields. There are numerous types of smart materials, some of which are already common. Examples include piezoelectric materials, which produce a voltage when stress is applied or vice versa, shape memory alloys or shape memory polymers which are thermoresponsive, and pH sensitive polymers which swell or shrink as a response to change in pH. Thus, smart materials respond to stimuli by altering one or more of their properties. Smart behaviour occurs when a material can sense some stimulus from its environment and react to it in a useful, reliable, reproducible, and usually reversible manner. These properties have a beneficial application in various fields including dentistry. Shape memory alloys, zirconia, and smartseal are examples of materials exhibiting a smart behavior in dentistry. There is a strong trend in material science to develop and apply these intelligent materials. These materials would potentially allow new and groundbreaking dental therapies with a significantly enhanced clinical outcome of treatments. PMID:24672407
The use of diamond-filled polymers as thermally conductive composites
NASA Astrophysics Data System (ADS)
Morlidge, Christopher Patrick
A need for a material that combines excellent thermal conductivity with high electrical resistivity has been identified in the electrical industry. As many materials currently exist that conduct both materials the investigation was carried out into a ceramic filled polymer. Diamond was chosen as the filling material due to its exceptionally high thermal conductivity. Three polymer materials were investigated as matrices for this material. The materials used were silicone rubber, polyester and a paint based on poly vinyl chloride. A study of method of production and mixing was first carried out to find the best route to produce the composite by ensuring even dispersion and ease of application. Various examination techniques were employed to find the success of the different processes. These methods were calibrated and optimised. The best methods of mixing and choice of filling material was established. Thermal conductivity tests carried out on the composite materials showed that there was a marked increase in the thermal conductivity of the materials. The strength and thermal expansion of the silicone rubber based material were also increased.
Crossmodal association of auditory and visual material properties in infants.
Ujiie, Yuta; Yamashita, Wakayo; Fujisaki, Waka; Kanazawa, So; Yamaguchi, Masami K
2018-06-18
The human perceptual system enables us to extract visual properties of an object's material from auditory information. In monkeys, the neural basis underlying such multisensory association develops through experience of exposure to a material; material information could be processed in the posterior inferior temporal cortex, progressively from the high-order visual areas. In humans, however, the development of this neural representation remains poorly understood. Here, we demonstrated for the first time the presence of a mapping of the auditory material property with visual material ("Metal" and "Wood") in the right temporal region in preverbal 4- to 8-month-old infants, using near-infrared spectroscopy (NIRS). Furthermore, we found that infants acquired the audio-visual mapping for a property of the "Metal" material later than for the "Wood" material, since infants form the visual property of "Metal" material after approximately 6 months of age. These findings indicate that multisensory processing of material information induces the activation of brain areas related to sound symbolism. Our findings also indicate that the material's familiarity might facilitate the development of multisensory processing during the first year of life.
Are X-rays the key to integrated computational materials engineering?
Ice, Gene E.
2015-11-01
The ultimate dream of materials science is to predict materials behavior from composition and processing history. Owing to the growing power of computers, this long-time dream has recently found expression through worldwide excitement in a number of computation-based thrusts: integrated computational materials engineering, materials by design, computational materials design, three-dimensional materials physics and mesoscale physics. However, real materials have important crystallographic structures at multiple length scales, which evolve during processing and in service. Moreover, real materials properties can depend on the extreme tails in their structural and chemical distributions. This makes it critical to map structural distributions with sufficient resolutionmore » to resolve small structures and with sufficient statistics to capture the tails of distributions. For two-dimensional materials, there are high-resolution nondestructive probes of surface and near-surface structures with atomic or near-atomic resolution that can provide detailed structural, chemical and functional distributions over important length scales. Furthermore, there are no nondestructive three-dimensional probes with atomic resolution over the multiple length scales needed to understand most materials.« less
Selection Criteria for New Materials For Thermoelectric Applications
NASA Astrophysics Data System (ADS)
Tritt, T. M.
1997-11-01
Recently there has been renewed interest in materials for thermoelectric refrigeration and power generation applications.(Terry M. Tritt, Science, 272, 1276, 1996),(G. Mahan, B. Sales and J. Sharp, Physics Today, March 50, 42, 1997) We have established a multidisciplinary program within the Physics Department and in collaboration with the Chemistry Department at Clemson University. The focus of our research utilizes a broad understanding of solid state physics coupled with solid state chemistry to synthesize and fully characterize promising materials for their potential as the "next generation" thermoelectric materials. An introduction to thermoelectric materials and the criteria for their selection and potential for applications will be given. To be promising as a thermoelectric material, a material must have a high Seebeck coefficient, α, high electrical conductivity, σ, and a low thermal conductivity, λ. These parameters go into the materials dimensionless figure of merit ZT = α^2σT/λ. We will discuss these parameters in relation to this materials performance as a potential thermoelectric material. We will also discuss some of the materials that are currently being investigated in the program at Clemson University.
He, Jiankang; Du, Yanan; Guo, Yuqi; Hancock, Matthew J.; Wang, Ben; Shin, Hyeongho; Wu, Jinhui; Li, Dichen; Khademhosseini, Ali
2010-01-01
Combinatorial material synthesis is a powerful approach for creating composite material libraries for the high-throughput screening of cell–material interactions. Although current combinatorial screening platforms have been tremendously successful in identifying target (termed “hit”) materials from composite material libraries, new material synthesis approaches are needed to further optimize the concentrations and blending ratios of the component materials. Here we employed a microfluidic platform to rapidly synthesize composite materials containing cross-gradients of gelatin and chitosan for investigating cell–biomaterial interactions. The microfluidic synthesis of the cross-gradient was optimized experimentally and theoretically to produce quantitatively controllable variations in the concentrations and blending ratios of the two components. The anisotropic chemical compositions of the gelatin/chitosan cross-gradients were characterized by Fourier transform infrared spectrometry and X-ray photoelectron spectrometry. The three-dimensional (3D) porous gelatin/chitosan cross-gradient materials were shown to regulate the cellular morphology and proliferation of smooth muscle cells (SMCs) in a gradient-dependent manner. We envision that our microfluidic cross-gradient platform may accelerate the material development processes involved in a wide range of biomedical applications. PMID:20721897
Method for detecting radiation dose utilizing thermoluminescent material
Miller, Steven D.; McDonald, Joseph C.; Eichner, Fred N.; Durham, James S.
1992-01-01
The amount of ionizing radiation to which a thermoluminescent material has been exposed is determined by first cooling the thermoluminescent material and then optically stimulating the thermoluminescent material by exposure to light. Visible light emitted by the thermoluminescent material as it is allowed to warm up to room temperature is detected and counted. The thermoluminescent material may be annealed by exposure to ultraviolet light.
NMR characterization of thin films
Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela
2010-06-15
A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.
NMR characterization of thin films
Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela
2008-11-25
A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.
ERIC Educational Resources Information Center
Joint Council on Economic Education, New York, NY.
The Materials Evaluation Committee of the Joint Council reviewed both print and non-print supplementary student materials for economics in order to make this selected list of those materials thought to be suitable according to: 1) whether the materials are genuinely concerned with economic matters; 2) whether they are analytical in nature; and, 3)…
Method for detecting radiation dose utilizing thermoluminescent material
Miller, S.D.; McDonald, J.C.; Eichner, F.N.; Durham, J.S.
1992-08-04
The amount of ionizing radiation to which a thermoluminescent material has been exposed is determined by first cooling the thermoluminescent material and then optically stimulating the thermoluminescent material by exposure to light. Visible light emitted by the thermoluminescent material as it is allowed to warm up to room temperature is detected and counted. The thermoluminescent material may be annealed by exposure to ultraviolet light. 5 figs.
Corrosion resistant neutron absorbing coatings
Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA
2012-05-29
A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.
Corrosion resistant neutron absorbing coatings
Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor
2013-11-12
A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.
Apparatus for continuous feed material melting
Surma, Jeffrey E.; Perez, Jr., Joseph M.
1998-01-01
The apparatus of the present invention is a melter housing having a pretreat chamber heated with a feed material heater that is partially isolated from a melter chamber. The method of the present invention has the steps of introducing feed material into a pretreat chamber and heating the feed material to a softening temperature of the feed material, and passing the pretreated feed material to a melter chamber.
Informatics Infrastructure for the Materials Genome Initiative
NASA Astrophysics Data System (ADS)
Dima, Alden; Bhaskarla, Sunil; Becker, Chandler; Brady, Mary; Campbell, Carelyn; Dessauw, Philippe; Hanisch, Robert; Kattner, Ursula; Kroenlein, Kenneth; Newrock, Marcus; Peskin, Adele; Plante, Raymond; Li, Sheng-Yen; Rigodiat, Pierre-François; Amaral, Guillaume Sousa; Trautt, Zachary; Schmitt, Xavier; Warren, James; Youssef, Sharief
2016-08-01
A materials data infrastructure that enables the sharing and transformation of a wide range of materials data is an essential part of achieving the goals of the Materials Genome Initiative. We describe two high-level requirements of such an infrastructure as well as an emerging open-source implementation consisting of the Materials Data Curation System and the National Institute of Standards and Technology Materials Resource Registry.
NASA Technical Reports Server (NTRS)
Pedley, M. D.; Mayeaux, B.
2001-01-01
A viewgraph presentation gives an overview of the materials selection for the TransHab, the habitation module on the International Space Station (ISS). Details are given on the location of TransHab on the ISS, the multilayer inflatable shell that surrounds the module, the materials requirements (including information on the expected thermal environment), the materials selection challenges, the bladder materials requirements and testing, and meteoroid/debris shielding material.
An n -material thresholding method for improving integerness of solutions in topology optimization
Watts, Seth; Tortorelli, Daniel A.
2016-04-10
It is common in solving topology optimization problems to replace an integer-valued characteristic function design field with the material volume fraction field, a real-valued approximation of the design field that permits "fictitious" mixtures of materials during intermediate iterations in the optimization process. This is reasonable so long as one can interpolate properties for such materials and so long as the final design is integer valued. For this purpose, we present a method for smoothly thresholding the volume fractions of an arbitrary number of material phases which specify the design. This method is trivial for two-material design problems, for example, themore » canonical topology design problem of specifying the presence or absence of a single material within a domain, but it becomes more complex when three or more materials are used, as often occurs in material design problems. We take advantage of the similarity in properties between the volume fractions and the barycentric coordinates on a simplex to derive a thresholding, method which is applicable to an arbitrary number of materials. As we show in a sensitivity analysis, this method has smooth derivatives, allowing it to be used in gradient-based optimization algorithms. Finally, we present results, which show synergistic effects when used with Solid Isotropic Material with Penalty and Rational Approximation of Material Properties material interpolation functions, popular methods of ensuring integerness of solutions.« less
NASA Astrophysics Data System (ADS)
Hartono, Rachmad; Raharno, Sri; Yuwana Martawirya, Yatna; Arthaya, Bagus
2018-03-01
This paper described a methodology to monitor the availability of products in a production unit in the automotive component industry. Automotive components made are automotive components made through sheet metal working. Raw material coming into production unit in the form of pieces of plates that have a certain size. Raw materials that come stored in the warehouse. Data of raw each material in the warehouse are recorded and stored in a data base system. The material will then undergo several production processes in the production unit. When the material is taken from the warehouse, material data are also recorded and stored in a data base. The data recorded are the amount of material, material type, and date when the material is out of the warehouse. The material coming out of the warehouse is labeled with information related to the production processes that the material must pass. Material out of the warehouse is a product will be made. The products have been completed, are stored in the warehouse products. When the product is entered into the product warehouse, product data is also recorded by scanning the barcode contained on the label. By recording the condition of the product at each stage of production, we can know the availability of the product in a production unit in the form of a raw material, the product being processed and the finished product.
Nanocomposite of graphene and metal oxide materials
Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo
2013-10-15
Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-19
... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 172 Hazardous Materials Table, Special Provisions, Hazardous Materials Communications, Emergency Response Information, Training Requirements, and Security Plans CFR Correction In Title 49 of the Code of...
Nanocomposite of graphene and metal oxide materials
Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo
2012-09-04
Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.
Nanocomposite of graphene and metal oxide materials
Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo
2015-06-30
Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.
Materials Discovery | Photovoltaic Research | NREL
and specialized analysis algorithms. The Center for Next Generation of Materials by Design (CNGMD) is , incorporating metastable materials into predictive design, and developing theory to guide materials synthesis design, accuracy and relevance, metastability, and synthesizability-to make computational materials
40 CFR 466.30 - Applicability; description of the aluminum basis material subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... aluminum basis material subcategory. 466.30 Section 466.30 Protection of Environment ENVIRONMENTAL... Aluminum Basis Material Subcategory § 466.30 Applicability; description of the aluminum basis material... into publicly owned treatment works from porcelain enameling of aluminum basis materials. ...
49 CFR 572.30 - Incorporated materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 7 2011-10-01 2011-10-01 false Incorporated materials. 572.30 Section 572.30....30 Incorporated materials. (a) The drawings and specifications referred to in this regulation that... Federal Register has approved the materials incorporated by reference. For materials subject to change...
49 CFR 193.2607 - Foreign material.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Foreign material. 193.2607 Section 193.2607 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY...: FEDERAL SAFETY STANDARDS Maintenance § 193.2607 Foreign material. (a) The presence of foreign material...
49 CFR 572.30 - Incorporated materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 7 2010-10-01 2010-10-01 false Incorporated materials. 572.30 Section 572.30....30 Incorporated materials. (a) The drawings and specifications referred to in this regulation that... Federal Register has approved the materials incorporated by reference. For materials subject to change...
40 CFR 466.40 - Applicability; description of the copper basis material subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... copper basis material subcategory. 466.40 Section 466.40 Protection of Environment ENVIRONMENTAL... Copper Basis Material Subcategory § 466.40 Applicability; description of the copper basis material... into publicly owned treatment works from porcelain enameling of copper basis materials. ...
40 CFR 466.40 - Applicability; description of the copper basis material subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... copper basis material subcategory. 466.40 Section 466.40 Protection of Environment ENVIRONMENTAL... Copper Basis Material Subcategory § 466.40 Applicability; description of the copper basis material... into publicly owned treatment works from porcelain enameling of copper basis materials. ...
77 FR 61432 - Proposal Review for Materials Research; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-09
... NATIONAL SCIENCE FOUNDATION Proposal Review for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and... Director, Materials Research Science and Engineering Centers Program, Division of Materials Research, Room...
49 CFR 572.30 - Incorporated materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Incorporated materials. 572.30 Section 572.30....30 Incorporated materials. (a) The drawings and specifications referred to in this regulation that... Federal Register has approved the materials incorporated by reference. For materials subject to change...
49 CFR 193.2607 - Foreign material.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Foreign material. 193.2607 Section 193.2607 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY...: FEDERAL SAFETY STANDARDS Maintenance § 193.2607 Foreign material. (a) The presence of foreign material...
49 CFR 572.30 - Incorporated materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 7 2013-10-01 2013-10-01 false Incorporated materials. 572.30 Section 572.30....30 Incorporated materials. (a) The drawings and specifications referred to in this regulation that... Federal Register has approved the materials incorporated by reference. For materials subject to change...
Materials Characterization Laboratory | Energy Systems Integration Facility
| NREL Materials Characterization Laboratory Materials Characterization Laboratory The Energy Systems Integration Facility's Materials Characterization Laboratory supports the physical and photo -electrochemical characterization of novel materials. Photo of an NREL researcher preparing samples for a gas
Other NASA-developed materials and some industrial applications
NASA Technical Reports Server (NTRS)
Radnofsky, M. I.
1971-01-01
The characteristics and applications of various materials for fireproofing aerospace vehicles are discussed. Materials described are: (1) fibrous materials, (2) nonflammable paper and paperboard, (3) elastomers, (4) foams, and (5) plastics. The suitability of the various materials for specific applications are investigated.
NASA Astrophysics Data System (ADS)
DeStefano, Paul R.; Michaloski, Paul F.
1993-12-01
Building successive generations of state-of-the-art wide field, sub-micron microlithographic lens systems dictates ever-tightening material tolerances that challenge glass manufacturers. This paper discusses the optical material needs for microlithographic lens systems and Tropel's in-house material qualification program. Material qualification is divided into three successive stages: (1) fluorescence testing to qualitatively analyze color center characteristics of the material; (2) homogeneity testing to determine the relative volumetric variations in index; and (3) absolute index testing at multiple wavelengths to determine the material's dispersion characteristics.
Contact angle of unset elastomeric impression materials.
Menees, Timothy S; Radhakrishnan, Rashmi; Ramp, Lance C; Burgess, John O; Lawson, Nathaniel C
2015-10-01
Some elastomeric impression materials are hydrophobic, and it is often necessary to take definitive impressions of teeth coated with some saliva. New hydrophilic materials have been developed. The purpose of this in vitro study was to compare contact angles of water and saliva on 7 unset elastomeric impression materials at 5 time points from the start of mixing. Two traditional polyvinyl siloxane (PVS) (Aquasil, Take 1), 2 modified PVS (Imprint 4, Panasil), a polyether (Impregum), and 2 hybrid (Identium, EXA'lence) materials were compared. Each material was flattened to 2 mm and a 5 μL drop of distilled water or saliva was dropped on the surface at 25 seconds (t0) after the start of mix. Contact angle measurements were made with a digital microscope at initial contact (t0), t1=2 seconds, t2=5 seconds, t3=50% working time, and t4=95% working time. Data were analyzed with a generalized linear mixed model analysis, and individual 1-way ANOVA and Tukey HSD post hoc tests (α=.05). For water, materials grouped into 3 categories at all time-points: the modified PVS and one hybrid material (Identium) produced the lowest contact angles, the polyether material was intermediate, and the traditional PVS materials and the other hybrid (EXA'lence) produced the highest contact angles. For saliva, Identium, Impregum, and Imprint 4 were in the group with the lowest contact angle at most time points. Modified PVS materials and one of the hybrid materials are more hydrophilic than traditional PVS materials when measured with water. Saliva behaves differently than water in contact angle measurement on unset impression material and produces a lower contact angle on polyether based materials. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, M. C.; Sullivan, J. L.
The use of lightweight materials in vehicle components, also known as “lightweighting,” can result in automobile weight reduction, which improves vehicle fuel economy and generally its environmental footprint. Materials often used for vehicle lightweighting include aluminum, magnesium, and polymers reinforced with either glass or carbon fiber. However, because alternative materials typically used for vehicle lightweighting require more energy to make on a per part basis than the material being replaced (often steel or iron), the fuel efficiency improvement induced by a weight reduction is partially offset by an increased energy for the vehicle material production. To adequately quantify this tradeoff,more » reliable and current values for life-cycle production energy are needed for both conventional and alternative materials. Our focus here is on the production of two such alternative materials: magnesium and carbon fibers. Both these materials are low density solids with good structural properties. These properties have enabled their use in applications where weight is an issue, not only for automobiles but also for aerospace applications. This report addresses the predominant production methods for these materials and includes a tabulation of available material and energy input data necessary to make them. The life cycle inventory (LCI) information presented herein represents a process chain analysis (PCA) approach to life cycle assessment (LCA) and is intended for evaluation as updated materials production data for magnesium and carbon fiber for inclusion into the Greenhouse gases, Regulated Emissions, and Energy use in Transportation model (GREET2_2012). The summary life-cycle metrics used to characterize the cradle-to-gate environmental performance of these materials are the cumulative energy demand (CED) and greenhouse gas emissions (GHG) per kilogram of material.« less
Uranium-233 waste definition: Disposal options, safeguards, criticality control, and arms control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, C.W.; Storch, S.N.; Lewis, L.C.
1998-07-07
The US investigated the use of {sup 233}U for weapons, reactors, and other purposes from the 1950s into the 1970s. Based on the results of these investigations, it was decided not to use {sup 233}U on a large scale. Most of the {sup 233}U-containing materials were placed in long-term storage. At the end of the cold war, the US initiated, as part of its arms control policies, a disposition program for excess fissile materials. Other programs were accelerated for disposal of radioactive wastes placed in storage during the cold war. Last, potential safety issues were identified related to the storagemore » of some {sup 233}U-containing materials. Because of these changes, significant activities associated with {sup 233}U-containing materials are expected. This report is one of a series of reports to provide the technical bases for future decisions on how to manage this material. A basis for defining when {sup 233}U-containing materials can be managed as waste and when they must be managed as concentrated fissile materials has been developed. The requirements for storage, transport, and disposal of radioactive wastes are significantly different than those for fissile materials. Because of these differences, it is important to classify material in its appropriate category. The establishment of a definition of what is waste and what is fissile material will provide the guidance for appropriate management of these materials. Wastes are defined in this report as materials containing sufficiently small masses or low concentrations of fissile materials such that they can be managed as typical radioactive waste. Concentrated fissile materials are defined herein as materials containing sufficient fissile content such as to warrant special handling to address nuclear criticality, safeguards, and arms control concerns.« less
Static sublimation purification process and characterization of LiZnAs semiconductor material
NASA Astrophysics Data System (ADS)
Montag, Benjamin W.; Reichenberger, Michael A.; Edwards, Nathaniel S.; Ugorowski, Philip B.; Sunder, Madhana; Weeks, Joseph; McGregor, Douglas S.
2016-03-01
Refinement of the class AIBIICV materials continue as a candidate for solid-state neutron detectors. Such a device would have greater efficiency, in a compact form, than present day gas-filled 3He and 10BF3 detectors. The 6Li(n,t)4He reaction yields a total Q value of 4.78 MeV, larger than 10B, and easily identified above background radiations. Hence, devices composed of either natural Li (nominally 7.5% 6Li) or enriched 6Li (usually 95% 6Li) may provide a semiconductor material for compact high efficiency neutron detectors. A sub-branch of the III-V semiconductors, the filled tetrahedral compounds, AIBIICV, known as Nowotny-Juza compounds, are known for their desirable cubic crystal structure. Starting material was synthesized by equimolar portions of Li, Zn, and As sealed under vacuum (10-6 Torr) in quartz ampoules with a boron nitride lining, and reacted in a compounding furnace [1]. The synthesized material showed signs of high impurity levels from material and electrical property characterization. In the present work, a static vacuum sublimation of synthesized LiZnAs loaded in a quartz vessel was performed to help purify the synthesized material. The chemical composition of the sublimed material and remains material was confirmed by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Lithium was not detected in the sublimed material, however, near stoichiometric amounts of each constituent element were found in the remains material for LiZnAs. X-ray diffraction phase identification scans of the remains material and sublimed material were compared, and further indicated the impurity materials were removed from the synthesized materials. The remaining powder post the sublimation process showed characteristics of a higher purity ternary compound.
Gutowski, Timothy; Cooper, Daniel; Sahni, Sahil
2017-06-13
In this paper, we review the drivers for the high levels of material use in society, investigating both historical and current trends. We present recent national and global data by different material categories and accounting schemes, showing the correlations between materials use and different measures of human well-being. We also present a development narrative to accompany these observed trends, focusing on the strong role materials have played in economic development by industrialization and in the consumer economy. Finally, we speculate on how material efficiency might alter this pattern going forward and whether it is possible to de-couple well-being from material use.This article is part of the themed issue 'Material demand reduction'. © 2017 The Author(s).
Sequential infiltration synthesis for advanced lithography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darling, Seth B.; Elam, Jeffrey W.; Tseng, Yu-Chih
A plasma etch resist material modified by an inorganic protective component via sequential infiltration synthesis (SIS) and methods of preparing the modified resist material. The modified resist material is characterized by an improved resistance to a plasma etching or related process relative to the unmodified resist material, thereby allowing formation of patterned features into a substrate material, which may be high-aspect ratio features. The SIS process forms the protective component within the bulk resist material through a plurality of alternating exposures to gas phase precursors which infiltrate the resist material. The plasma etch resist material may be initially patterned usingmore » photolithography, electron-beam lithography or a block copolymer self-assembly process.« less
Effects of natural enrichment materials on stress, memory and exploratory behavior in mice.
Acklin, Casey J; Gault, Ruth A
2015-07-01
Environmental enrichment is an essential component of laboratory animal housing that allows animals to engage in natural behaviors in an otherwise artificial setting. Previous research by the authors suggested that, compared with synthetic enrichment materials, natural materials were associated with lower stress levels in mice. Here, the authors compare the effects of different enrichment materials on stress, memory and exploratory behavior in Swiss Webster mice. Mice that were provided with natural enrichment materials had lower stress levels, better memory and greater exploratory behavior than did mice provided with synthetic enrichment materials or with no enrichment materials. These findings suggest that provision of natural enrichment materials can improve well-being of laboratory mice.
NASA Astrophysics Data System (ADS)
Miyazato, Itsuki; Tanaka, Yuzuru; Takahashi, Keisuke
2018-02-01
Two-dimensional (2D) magnets are explored in terms of data science and first principle calculations. Machine learning determines four descriptors for predicting the magnetic moments of 2D materials within reported 216 2D materials data. With the trained machine, 254 2D materials are predicted to have high magnetic moments. First principle calculations are performed to evaluate the predicted 254 2D materials where eight undiscovered stable 2D materials with high magnetic moments are revealed. The approach taken in this work indicates that undiscovered materials can be surfaced by utilizing data science and materials data, leading to an innovative way of discovering hidden materials.
NASA Astrophysics Data System (ADS)
Gutowski, Timothy; Cooper, Daniel; Sahni, Sahil
2017-05-01
In this paper, we review the drivers for the high levels of material use in society, investigating both historical and current trends. We present recent national and global data by different material categories and accounting schemes, showing the correlations between materials use and different measures of human well-being. We also present a development narrative to accompany these observed trends, focusing on the strong role materials have played in economic development by industrialization and in the consumer economy. Finally, we speculate on how material efficiency might alter this pattern going forward and whether it is possible to de-couple well-being from material use. This article is part of the themed issue 'Material demand reduction'.
NASA Technical Reports Server (NTRS)
Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)
2014-01-01
Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.
Processing materials in space - The history and the future
NASA Technical Reports Server (NTRS)
Chassay, Roger; Carswell, Bill
1987-01-01
The development of materials processing in space, and some of the Soyuz, Apollo, Skylab, and Shuttle orbital materials experiments are reviewed. Consideration is given to protein crystal growth, electrophoresis, low-gravity isoelectric focusing, phase partitioning, a monodisperse latex reactor, semiconductor crystal growth, solution crystal growth, the triglycine sulfate experiment, vapor crystal growth experiments, the mercuric iodide experiment, electronic and electrooptical materials, organic thin films and crystalline solids, deep undercooling of metals and alloys, magnetic materials, immiscible materials, metal solidification research, reluctant glass-forming materials, and containerless glass formation. The space processing apparatuses and ground facilities, for materials processing are described. Future facilities for commercial research, development, and manufacturing in space are proposed.
PRODUCTION OF SHEET FROM PARTICULATE MATERIAL
Blainey, A.
1959-05-12
A process is presented for forming coherent sheet material from particulate material such as granular or powdered metal, granular or powdered oxide, slurries, pastes, and plastic mixes which cohere under pressure. The primary object is to avoid the use of expensive and/ or short lived pressing tools, that is, dies and specially profiled rolls, and so to reduce the cost of the product and to prcvide in a simple manner for the making of the product in a variety of shapes or sizes. The sheet material is formed when the particulate material is laterally confined in a boundary material deformable in all lateral directions under axial pressure and then axially compressing the layer of particulate material together with the boundary material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This method is for determination of n-hexane extractable material (HEM; oil and grease) and n-hexane extractable material that is not adsorbed by silica gel (SGT-HEM; non-polar material) in surface and saline waters and industrial and domestic aqueous wastes. Extractable materials that may be determined are relatively non-volatile hydrocarbons, vegetable oils, animal fats, waxes, soaps, greases, and related materials. This method is capable of measuring HEM and SGT-HEM in the range of 5 to 1000 mg/L, and may be extended to higher levels by analysis of a smaller sample volume collected separately.
Porous graphene nanocages for battery applications
Amine, Khalil; Lu, Jun; Du, Peng; Wen, Jianguo; Curtiss, Larry A.
2017-03-07
An active material composition includes a porous graphene nanocage and a source material. The source material may be a sulfur material. The source material may be an anodic material. A lithium-sulfur battery is provided that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode of the lithium-sulfur battery includes a porous graphene nanocage and a sulfur material and at least a portion of the sulfur material is entrapped within the porous graphene nanocage. Also provided is a lithium-air battery that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode includes a porous graphene nanocage and where the cathode may be free of a cathodic metal catalyst.
LDEF Materials Workshop 1991, part 2
NASA Technical Reports Server (NTRS)
Stein, Bland A. (Compiler); Young, Philip R. (Compiler)
1992-01-01
The LDEF Materials Workshop 1991 was a follow-on to the Materials Sessions at the First LDEF Post-Retrieval Symposium held in Kissimmee, Florida, June 1991. The workshop comprised a series of technical sessions on materials themes, followed by theme panel meetings. Themes included materials, environmental parameters, and data bases; contamination; thermal control and protective coating and surface treatments; polymers and films; polymer matrix composites; metals, ceramics, and optical materials; lubricants adhesives, seals, fasteners, solar cells, and batteries. This document continues the LDEF Space Environmental Effects on Materials Special Investigation Group (MSIG) pursuit to investigate the effects of LEO exposure on materials which were not originally planned to be test specimens. Papers from the technical sessions are presented.
Method of making nanopatterns and nanostructures and nanopatterned functional oxide materials
Dravid, Vinayak P; Donthu, Suresh K; Pan, Zixiao
2014-02-11
Method for nanopatterning of inorganic materials, such as ceramic (e.g. metal oxide) materials, and organic materials, such as polymer materials, on a variety of substrates to form nanopatterns and/or nanostructures with control of dimensions and location, all without the need for etching the materials and without the need for re-alignment between multiple patterning steps in forming nanostructures, such as heterostructures comprising multiple materials. The method involves patterning a resist-coated substrate using electron beam lithography, removing a portion of the resist to provide a patterned resist-coated substrate, and spin coating the patterned resist-coated substrate with a liquid precursor, such as a sol precursor, of the inorganic or organic material. The remaining resist is removed and the spin coated substrate is heated at an elevated temperature to crystallize the deposited precursor material.
Shape memory system with integrated actuation using embedded particles
Buckley, Patrick R [New York, NY; Maitland, Duncan J [Pleasant Hill, CA
2009-09-22
A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
Shape memory system with integrated actuation using embedded particles
Buckley, Patrick R [New York, NY; Maitland, Duncan J [Pleasant Hill, CA
2012-05-29
A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
Shape memory system with integrated actuation using embedded particles
Buckley, Patrick R.; Maitland, Duncan J.
2014-04-01
A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
Materials development and evaluation for the ceramic helical expander
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landingham, R.L.; Taylor, R.W.
The supporting role of the materials program for the ceramic helical expander program is described. The materials problems for this rotory expander in an extremely severe environment-a direct coal-fired Brayton topping cycle is defined. Readily available materials and methods for possible solution to these material problems as well as initiating some longer-range studies to improve reliability were evaluated. A preliminary screening of materials in hot coal-fired environments to select candidate materials and coating was made. More detailed evaluations of these candidate materials-reaction-bonded silicon nitride (RBSN) and Si--Al--O--N (Sialon) system- and coatings-chemical-vapor-deposited silicon nitride (CVD-Si/sub 3/N/sub 4/) and CVD-Sialon need tomore » be performed. Termination of the helical expander program abruptly stopped the materials program during this evaluation.« less
Materials development and evaluation for the ceramic helical expander
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landingham, R.L.; Taylor, R.W.
The supporting role of the materials program for the ceramic helical expander program is described. The materials problems for this rotory expander in an extremely severe environment - a direct coal-fired Brayton topping cycle is defined. Readily available materials and methods are evaluated for possible solution to these material problems as well as initiating some longer-range studies to improve reliability. A preliminary screening of materials in hot coal-fired environments to select candidate materials and coating, was made, but there is a need to perform more detailed evaluations of these candidate materials-reaction-bonded silicon nitride (RBSN) and Si--Al--O--N (Sialon) system- and coatings-chemical-vapor-depositedmore » silicon nitride (CVD-Si/sub 3/N/sub 4/) and CVD-Sialon. Termination of the helical expander program abruptly stopped the materials program during this evaluation.« less
Method for studying a sample of material using a heavy ion induced mass spectrometer source
Fries, D.P.; Browning, J.F.
1999-02-16
A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.
Method for studying a sample of material using a heavy ion induced mass spectrometer source
Fries, David P.; Browning, James F.
1999-01-01
A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.
System for studying a sample of material using a heavy ion induced mass spectrometer source
Fries, David P.; Browning, James F.
1998-01-01
A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.
System for studying a sample of material using a heavy ion induced mass spectrometer source
Fries, D.P.; Browning, J.F.
1998-07-21
A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high (n,f) reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.
NASA Astrophysics Data System (ADS)
Halpern, J. B.
2017-12-01
Libretexts is an online open system for distributing educational materials with over 5 million page views per month. Covering geophysics, chemistry, physics and more it offers a platform for authors and users including faculty and students to access curated educational materials. Currently there are on line texts covering geology, geobiology, natural hazards and understanding the refusal to accept climate change as well as relevant materials in other sections on aquatic and atmospheric chemistry. In addition to "written" materials Libretexts provides access to simulations and demonstrations that are relevant. Most importantly the Libretext project welcomes new contributors. Faculty can use available materials to construct their own texts or supplementary materials in relatively short order. Since all material is covered by a Creative Commons Copyright, material can be added to as needed for teaching.
Ion exchange materials, method of forming ion exchange materials, and methods of treating liquids
Wertsching, Alan K.; Peterson, Eric S.; Wey, John E.
2007-12-25
The invention includes an ion affinity material having an organic component which is sulfonated and which is chemically bonded to an inorganic substrate component. The invention includes a method of forming a metal binding material. A solid support material comprising surface oxide groups is provided and an organic component having at least one alkyl halide is covalently linked to at least some of the surface oxide groups to form a modified support material. The at least one alkyl halide is subsequently converted into an alkyl sulfonate. The invention further includes a method and system for extracting ions from a liquid. An ion exchange material having a sulfonated alkyl silane component covalently bonded to a metal oxide support material is provided and a liquid is exposed to the ion exchange material.
2016-01-01
The theory of inhomogeneous analytic materials is developed. These are materials where the coefficients entering the equations involve analytic functions. Three types of analytic materials are identified. The first two types involve an integer p. If p takes its maximum value, then we have a complete analytic material. Otherwise, it is incomplete analytic material of rank p. For two-dimensional materials, further progress can be made in the identification of analytic materials by using the well-known fact that a 90° rotation applied to a divergence-free field in a simply connected domain yields a curl-free field, and this can then be expressed as the gradient of a potential. Other exact results for the fields in inhomogeneous media are reviewed. Also reviewed is the subject of metamaterials, as these materials provide a way of realizing desirable coefficients in the equations. PMID:27956882
Radiation shielding materials and containers incorporating same
Mirsky, Steven M.; Krill, Stephen J.; Murray, Alexander P.
2005-11-01
An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound ("PYRUC") shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.
Radiation Shielding Materials and Containers Incorporating Same
Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.
2005-11-01
An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.
NASA Astrophysics Data System (ADS)
Mańkowski, J.; Lipnicki, J.
2017-08-01
The authors tried to identify the parameters of numerical models of digital materials, which are a kind of composite resulting from the manufacture of the product in 3D printers. With the arrangement of several heads of the printer, the new material can result from mixing of materials with radically different properties, during the process of producing single layer of the product. The new material has properties dependent on the base materials properties and their proportions. Digital materials tensile characteristics are often non-linear and qualify to be described by hyperelastic materials models. The identification was conducted based on the results of tensile tests models, its various degrees coefficients of the polynomials to various degrees coefficients of the polynomials. The Drucker's stability criterion was also examined. Fourteen different materials were analyzed.
Selected Materials on the Chicano.
ERIC Educational Resources Information Center
Gomez-Q., Juan, Comp.
Over 200 selected materials on the Chicano are listed in this bibliography. These materials include bibliographies, statistical materials, books, articles, journals, films, and newspapers which pertain to the Mexican American population. The materials consist of such topics as the Mexican American community; their culture, history, heritage,…
42 CFR 493.1252 - Standard: Test systems, equipment, instruments, reagents, materials, and supplies.
Code of Federal Regulations, 2011 CFR
2011-10-01
... electrical current that adversely affect patient test results and test reports. (c) Reagents, solutions, culture media, control materials, calibration materials, and other supplies, as appropriate, must be... proper use. (d) Reagents, solutions, culture media, control materials, calibration materials, and other...
42 CFR 493.1252 - Standard: Test systems, equipment, instruments, reagents, materials, and supplies.
Code of Federal Regulations, 2012 CFR
2012-10-01
... electrical current that adversely affect patient test results and test reports. (c) Reagents, solutions, culture media, control materials, calibration materials, and other supplies, as appropriate, must be... proper use. (d) Reagents, solutions, culture media, control materials, calibration materials, and other...
42 CFR 493.1252 - Standard: Test systems, equipment, instruments, reagents, materials, and supplies.
Code of Federal Regulations, 2013 CFR
2013-10-01
... electrical current that adversely affect patient test results and test reports. (c) Reagents, solutions, culture media, control materials, calibration materials, and other supplies, as appropriate, must be... proper use. (d) Reagents, solutions, culture media, control materials, calibration materials, and other...
19 CFR 191.13 - Packaging materials.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 2 2010-04-01 2010-04-01 false Packaging materials. 191.13 Section 191.13 Customs... (CONTINUED) DRAWBACK General Provisions § 191.13 Packaging materials. (a) Imported packaging material... packaging material when used to package or repackage merchandise or articles exported or destroyed pursuant...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Material. 178.338-2 Section 178.338-2 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers for Motor Vehicle Transportation § 178.338-2 Material. (a) All material used in the construction...
77 FR 61433 - Proposal Review Panel for Materials Research; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-09
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and..., Program Director, Materials Research Science and Engineering Centers Program, Division of Materials...
77 FR 56236 - Proposal Review Panel for Materials Research; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-12
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and... Director, Materials Research Science and Engineering Centers Program, Division of Materials Research, Room...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-27
... Activities (Advertising, Sales, and Enrollment Materials, and Candidate Handbooks) Under OMB Review AGENCY....'' SUPPLEMENTARY INFORMATION: Title: Advertising, Sales, and Enrollment Materials, and Candidate Handbooks, 38 CFR... such tests, must maintain a complete record of all advertising, sales materials, enrollment materials...
Hydrogenation of passivated contacts
Nemeth, William; Yuan, Hao-Chih; LaSalvia, Vincenzo; Stradins, Pauls; Page, Matthew R.
2018-03-06
Methods of hydrogenation of passivated contacts using materials having hydrogen impurities are provided. An example method includes applying, to a passivated contact, a layer of a material, the material containing hydrogen impurities. The method further includes subsequently annealing the material and subsequently removing the material from the passivated contact.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Material. 178.338-2 Section 178.338-2 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers for Motor Vehicle Transportation § 178.338-2 Material. (a) All material used in the construction...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Material. 178.338-2 Section 178.338-2 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers for Motor Vehicle Transportation § 178.338-2 Material. (a) All material used in the construction...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Material. 178.338-2 Section 178.338-2 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers for Motor Vehicle Transportation § 178.338-2 Material. (a) All material used in the construction...
77 FR 71031 - Office of Hazardous Materials Safety; Actions on Special Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-28
...), transportation in commerce 173.465(d). of certain Radioactive material in alternative packaging by highway. A... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Office of Hazardous Materials Safety; Actions on Special Permit Applications AGENCY: Pipeline And Hazardous Materials...
78 FR 67225 - Amendments to Material Control and Accounting Regulations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-08
... Amendments to Material Control and Accounting Regulations AGENCY: Nuclear Regulatory Commission. ACTION... for material control and accounting (MC&A) of special nuclear material (SNM). The goal of this... added to designate material balance areas, item control areas, and custodians? N. Why would calendar...
Open Learning Materials and Learning Centres.
ERIC Educational Resources Information Center
Clarke, Alan; Walmsley, Joyce
The availability and nature of open learning materials and centers in Great Britain were examined in a study that focused on the following: the open learning market; learning materials; commercial suppliers; basic skills materials; information technology materials; online learning; information technology and tutors; qualifications; prices;…
10 CFR 74.15 - Nuclear material transaction reports.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear material transaction reports. 74.15 Section 74.15 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.15 Nuclear material transaction reports. (a...
10 CFR 74.15 - Nuclear material transaction reports.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Nuclear material transaction reports. 74.15 Section 74.15 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.15 Nuclear material transaction reports. (a...
10 CFR 74.15 - Nuclear material transaction reports.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Nuclear material transaction reports. 74.15 Section 74.15 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.15 Nuclear material transaction reports. (a...
10 CFR 74.15 - Nuclear material transaction reports.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear material transaction reports. 74.15 Section 74.15 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.15 Nuclear material transaction reports. (a...
Advertising Content in Physical Activity Print Materials.
ERIC Educational Resources Information Center
Cardinal, Bradley J.
2002-01-01
Evaluated the advertising content contained in physical activity print materials. Analysis of print materials obtained from 80 sources (e.g., physicians' offices and fitness events) indicated that most materials contained some form of advertising. Materials coming from commercial product vendors generally contained more advertising than materials…
77 FR 6826 - Proposal Review Panel for Materials Research; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-09
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and..., Program Director, Materials Research Science and Engineering Centers Program, Division of Materials...
77 FR 57162 - Proposal Review Panel for Materials Research; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-17
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and... Director, Materials Research Science and Engineering Centers Program, Division of Materials Research, Room...
77 FR 14441 - Proposal Review Panel for Materials Research; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-09
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and..., Materials Research Science and Engineering Centers Program, Division of Materials Research, Room 1065...
Thermal Storage Materials Laboratory | Energy Systems Integration Facility
| NREL Materials Laboratory Thermal Storage Materials Laboratory In the Energy Systems Integration Facility's Thermal Storage Materials Laboratory, researchers investigate materials that can be used as high-temperature heat transfer fluids or thermal energy storage media in concentrating solar
43 CFR 3602.20 - Administration of mineral materials sales.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Administration of mineral materials sales... OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL MATERIALS DISPOSAL Mineral Materials Sales Administration of Sales § 3602.20 Administration of mineral materials sales. ...
43 CFR 3602.20 - Administration of mineral materials sales.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Administration of mineral materials sales... OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL MATERIALS DISPOSAL Mineral Materials Sales Administration of Sales § 3602.20 Administration of mineral materials sales. ...
43 CFR 3602.20 - Administration of mineral materials sales.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Administration of mineral materials sales... OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL MATERIALS DISPOSAL Mineral Materials Sales Administration of Sales § 3602.20 Administration of mineral materials sales. ...
43 CFR 3602.20 - Administration of mineral materials sales.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Administration of mineral materials sales... OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL MATERIALS DISPOSAL Mineral Materials Sales Administration of Sales § 3602.20 Administration of mineral materials sales. ...
Three-dimensional nanoscale characterisation of materials by atom probe tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devaraj, Arun; Perea, Daniel E.; Liu, Jia
The development of three-dimensional (3D), characterization techniques with high spatial and mass resolution is crucial for understanding and developing advanced materials for many engineering applications as well as for understanding natural materials. In recent decades, atom probe tomography (APT) which combines a point projection microscope and time-of-flight mass spectrometer has evolved to be an excellent characterization technique capable of providing 3D nanoscale characterization of materials with sub-nanometer scale spatial resolution, with equal sensitivity for all elements. This review discusses the current state as of beginning of the year 2016 of APT instrumentation, new developments in sample preparation methods, experimental proceduresmore » for different material classes, reconstruction of APT results, the current status of correlative microscopy, and application of APT for microstructural characterization in established scientific areas like structural materials as well as new applications in semiconducting nanowires, semiconductor devices, battery materials, catalyst materials, geological materials and biological materials. Finally, a brief perspective is given regarding the future of APT.« less
An effective method to screen sodium-based layered materials for sodium ion batteries
NASA Astrophysics Data System (ADS)
Zhang, Xu; Zhang, Zihe; Yao, Sai; Chen, An; Zhao, Xudong; Zhou, Zhen
2018-03-01
Due to the high cost and insufficient resource of lithium, sodium-ion batteries are widely investigated for large-scale applications. Typically, insertion-type materials possess better cyclic stability than alloy-type and conversion-type ones. Therefore, in this work, we proposed a facile and effective method to screen sodium-based layered materials based on Materials Project database as potential candidate insertion-type materials for sodium ion batteries. The obtained Na-based layered materials contains 38 kinds of space group, which reveals that the credibility of our screening approach would not be affected by the space group. Then, some important indexes of the representative materials, including the average voltage, volume change and sodium ion mobility, were further studied by means of density functional theory computations. Some materials with extremely low volume changes and Na diffusion barriers are promising candidates for sodium ion batteries. We believe that our classification algorithm could also be used to search for other alkali and multivalent ion-based layered materials, to accelerate the development of battery materials.
Thermoelectric materials having porosity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir
A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments,more » the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.« less
Methods for the additive manufacturing of semiconductor and crystal materials
Stowe, Ashley C.; Speight, Douglas
2016-11-22
A method for the additive manufacturing of inorganic crystalline materials, including: physically combining a plurality of starting materials that are used to form an inorganic crystalline compound to be used as one or more of a semiconductor, scintillator, laser crystal, and optical filter; heating or melting successive regions of the combined starting materials using a directed heat source having a predetermined energy characteristic, thereby facilitating the reaction of the combined starting materials; and allowing each region of the combined starting materials to cool in a controlled manner, such that the desired inorganic crystalline compound results. The method also includes, prior to heating or melting the successive regions of the combined starting materials using the directed heat source, heating the combined starting materials to facilitate initial reaction of the combined starting materials. The method further includes translating the combined starting materials and/or the directed heat source between successive locations. The method still further includes controlling the mechanical, electrical, photonic, and/or optical properties of the inorganic crystalline compound.
Method and apparatus for assessing material properties of sheet-like materials
Telschow, Kenneth L.; Deason, Vance A.
2002-01-01
Apparatus for producing an indication of a material property of a sheet-like material according to the present invention may comprise an excitation source for vibrating the sheet-like material to produce at least one traveling wave therein. A light source configured to produce an object wavefront and a reference wavefront directs the object wavefront toward the sheet-like material to produce a modulated object wavefront. A modulator operatively associated with the reference wavefront modulates the reference wavefront in synchronization with the traveling wave on the sheet-like material to produce a modulated reference wavefront. A sensing medium positioned to receive the modulated object wavefront and the modulated reference wavefront produces an image of the traveling wave in the sheet-like material, the image of the anti-symmetric traveling wave being related to a displacement amplitude of the anti-symmetric traveling wave over a two-dimensional area of the vibrating sheet-like material. A detector detects the image of the traveling wave in the sheet-like material.
Application of addition-cured silicone denture relining materials to adjust mouthguards.
Fukasawa, Shintaro; Churei, Hiroshi; Chowdhury, Ruman Uddin; Shirako, Takahiro; Shahrin, Sharika; Shrestha, Abhishekhi; Wada, Takahiro; Uo, Motohiro; Takahashi, Hidekazu; Ueno, Toshiaki
2016-01-01
The purposes of this study were to examine the shock absorption capability of addition-cured silicone denture relining materials and the bonding strength of addition-cured silicone denture relining materials and a commercial mouthguard material to determine its applicability to mouthguard adjustment. Two addition-cured silicone denture relining materials and eleven commercial mouthguard materials were selected as test materials. The impact test was applied by a free-falling steel ball. On the other hand, bonding strength was determined by a delamination test. After prepared surface treatments using acrylic resin on MG sheet surface, 2 types of addition-cured silicone denture relining materials were glued to MG surface. The peak intensity, the time to peak intensity from the onset of the transmitted force and bonding strength were statistically analyzed using ANOVA and Tukey's honest significant difference post hoc test (p<0.05). These results suggest that the silicone denture relining materials could be clinically applicable as a mouthguard adjustment material.
Comparative study of the physical properties of core materials.
Saygili, Gülbin; Mahmali, Sevil M
2002-08-01
This study was undertaken to measure physical properties of materials used for direct core buildups, including high-copper amalgam, visible light-cured resin composite, autocured titanium-containing composite, polyacid-modified composite, resin-modified glass-ionomer, and silver cermet cement. Compressive strength, diametral tensile strength, and flexural strength of six core materials of various material classes were measured for each material as a function of time up to 3 months at different storage conditions, using a standard specification test designed for the materials. Three different storage conditions (dry, humid, wet) at 37 degrees C were chosen. Materials were manipulated according to manufacturers' instructions for use as cores. Mean compressive, diametral tensile, and flexural strengths with associated standard deviations were calculated for each material. Multiple comparison and Newman-Keuls tests discerned many differences among materials. All materials were found to meet the minimum specification requirements, except in terms of flexural strength for amalgam after 1 hour and the silver cermet at all time intervals.
A comparison of haptic material perception in blind and sighted individuals.
Baumgartner, Elisabeth; Wiebel, Christiane B; Gegenfurtner, Karl R
2015-10-01
We investigated material perception in blind participants to explore the influence of visual experience on material representations and the relationship between visual and haptic material perception. In a previous study with sighted participants, we had found participants' visual and haptic judgments of material properties to be very similar (Baumgartner, Wiebel, & Gegenfurtner, 2013). In a categorization task, however, visual exploration had led to higher categorization accuracy than haptic exploration. Here, we asked congenitally blind participants to explore different materials haptically and rate several material properties in order to assess the role of the visual sense for the emergence of haptic material perception. Principal components analyses combined with a procrustes superimposition showed that the material representations of blind and blindfolded sighted participants were highly similar. We also measured haptic categorization performance, which was equal for the two groups. We conclude that haptic material representations can emerge independently of visual experience, and that there are no advantages for either group of observers in haptic categorization. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Wadley, Hadyn N. G. (Inventor); Zhou, Xiaowang (Inventor); Quan, Junjie (Inventor)
2002-01-01
A method of producing a multilayer structure that has reduced interfacial roughness and interlayer mixing by using a physical-vapor deposition apparatus. In general the method includes forming a bottom layer having a first material wherein a first plurality of monolayers of the first material is deposited on an underlayer using a low incident adatom energy. Next, a second plurality of monolayers of the first material is deposited on top of the first plurality of monolayers of the first material using a high incident adatom energy. Thereafter, the method further includes forming a second layer having a second material wherein a first plurality of monolayers of the second material is deposited on the second plurality of monolayers of the first material using a low incident adatom energy. Next, a second plurality of monolayers of the second material is deposited on the first plurality of monolayers of the second material using a high incident adatom energy.
Fluorescence observations of LDEF exposed materials as an indicator of induced material reactions
NASA Technical Reports Server (NTRS)
Linton, Roger C.; Whitaker, Ann F.; Kamenetzky, Rachel R.
1993-01-01
Observations and measurements of induced changes in the fluorescent emission of materials exposed to the space environment on the Long Duration Exposure Facility (LDEF) have revealed systematic patterns of material-dependent behavior. These results have been supplemented by inspection of similar materials exposed on previous Space Shuttle Missions and in laboratory testing. The space environmental factors affecting the fluorescence of exposed materials have been found to include (but are not necessarily limited to) solar ultraviolet (UV) radiation, atomic oxygen (AO), thermal vacuum exposure, and synergistic combinations of these factors. Observed changes in material fluorescent behavior include stimulation, quenching, and spectral band shifts of emission. For example, the intrinsic yellow fluorescence of zinc oxide pigmented thermal control coatings undergoes quenching as a result of exposure, while coloration is stimulated in the fluorescent emission of several polyurethane coating materials. The changes in fluorescent behavior of these materials are shown to be a revealing indicator of induced material reactions as a result of space environmental exposure.
Measurement of natural radioactivity in building materials used in Urumqi, China.
Ding, Xiang; Lu, Xinwei; Zhao, Caifeng; Yang, Guang; Li, Nan
2013-07-01
Building materials contain natural radionuclides (226)Ra, (232)Th and (40)K, which cause direct radiation exposure of the public. The concentrations of (226)Ra, (232)Th and (40)K in commonly used building materials of Urumqi, China have been analysed using gamma-ray spectrometry. The concentrations of (226)Ra, (40)K and (232)Th in the studied building materials range from 19.8 to 87.4, from 273.3 to 981.2 and from 11.6 to 47.7 Bq kg(-1), respectively. The radium equivalent activity (Raeq), gamma index (Iγ) and alpha index (Iα) were calculated to assess the radiation hazards to people living in dwellings made of the materials studied. The calculated Raeq values of all the building materials are lower than the limit of 370 Bq kg(-1) for building materials. The values of Iγ and Iα of all the building materials are less than unity. The study shows that these materials may be safely used as construction materials and do not pose significant radiation hazards.
Apparatus and method for transient thermal infrared spectrometry
McClelland, John F.; Jones, Roger W.
1991-12-03
A method and apparatus for enabling analysis of a material (16, 42) by applying a cooling medium (20, 54) to cool a thin surface layer portion of the material and to transiently generate a temperature differential between the thin surface layer portion and the lower portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material. The altered thermal infrared emission spectrum of the material is detected by a spectrometer/detector (28, 50) while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of the emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation, so that the detected altered thermal infrared emission spectrum is indicative of the characteristics relating to the molecular composition of the material.
Materials Challenges in Space Exploration
NASA Technical Reports Server (NTRS)
Bhat, Biliyar N.
2005-01-01
United States civil space program administered by National Aeronautics and Space Administration has a new strategic direction to explore the solar system. This new 'vision for space exploration' encompasses a broad range of human and robotic missions, including the Moon. Mars and destinations beyond. These missions require advanced systems and capabilities that will accelerate the development of many critical technologies, including advanced materials and structural concepts. Specifically, it is planned to develop high-performance materials for vehicle structures, propulsion systems, and space suits; structural concepts for modular assembly for space infrastructure: lightweight deployable and inflatable structures for large space systems and crew habitats; and highly integrated structural systems and advanced thermal management systems for reducing launch mass and volume. This paper will present several materials challenges in advanced space systems-high performance structural and thermal materials, space durable materials, radiation protection materials, and nano-structural materials. Finally, the paper will take a look at the possibility of utilizing materials in situ, i.e., processing materials on the surface of the Moon and Mars.
Probe for contamination detection in recyclable materials
Taleyarkhan, Rusi
2003-08-05
A neutron detection system for detection of contaminants contained within a bulk material during recycling includes at least one neutron generator for neutron bombardment of the bulk material, and at least one gamma ray detector for detection of gamma rays emitted by contaminants within the bulk material. A structure for analyzing gamma ray data is communicably connected to the gamma ray detector, the structure for analyzing gamma ray data adapted. The identity and concentration of contaminants in a bulk material can also be determined. By scanning the neutron beam, discrete locations within the bulk material having contaminants can be identified. A method for recycling bulk material having unknown levels of contaminants includes the steps of providing at least one neutron generator, at least one gamma ray detector, and structure for analyzing gamma ray data, irradiating the bulk material with neutrons, and then determining the presence of at least one contaminant in the bulk material from gamma rays emitted from the bulk material.
An In-Depth Tutorial on Constitutive Equations for Elastic Anisotropic Materials
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.
2011-01-01
An in-depth tutorial on the constitutive equations for elastic, anisotropic materials is presented. Basic concepts are introduced that are used to characterize materials, and notions about how anisotropic material deform are presented. Hooke s law and the Duhamel-Neuman law for isotropic materials are presented and discussed. Then, the most general form of Hooke s law for elastic anisotropic materials is presented and symmetry requirements are given. A similar presentation is also given for the generalized Duhamel-Neuman law for elastic, anisotropic materials that includes thermal effects. Transformation equations for stress and strains are presented and the most general form of the transformation equations for the constitutive matrices are given. Then, specialized transformation equations are presented for dextral rotations about the coordinate axes. Next, concepts of material symmetry are introduced and criteria for material symmetries are presented. Additionally, engineering constants of fully anisotropic, elastic materials are derived from first principles and the specialized to several cases of practical importance.
Seeding materials: Health and safety considerations
NASA Technical Reports Server (NTRS)
Brown, R. D.
1985-01-01
The choice of a proper seeding material for laser velocimeters must include health and safety considerations. Failure to do so can lead to catastrophic results. All materials are toxic, and laser velocimeter seeding materials are no exception. Toxicity may be considered an inherent property of a given material. The manifestation of that property or the physiological response to the material is dependent on dose and exposure conditions. An approximate physiological classification of toxicity is given in tablular form. Toxicity in some situations is not necessarily the most restrictive factor in selection of materials. It is also very important to consider how the material is used so that actual exposure to the material in a damaging form can result. For example, nickel and cadmium are both extremely toxic as systemic poisons and in the case of nickel as a carcinogen. Seeding materials are dispersed in air under conditions that favor personnel exposure. Dispersal equipment is frequently if not normally manned, and personnel are often required to make frequent adjustments to assure proper operations.
LDEF materials: An overview of the interim findings
NASA Technical Reports Server (NTRS)
Stein, Bland A.
1992-01-01
The flight and retrieval of the National Aeronautics and Space Administration's Long Duration Exposure Facility (LDEF) provided an opportunity for the study of the low-Earth orbit (LEO) environment and long-duration space environmental effect (SEE) on materials that are unparalleled in the history of the U.S. space program. The 5.8-year flight of LDEF greatly enhanced the potential value of materials data from LDEF to the international SEE community, compared to that of the original 1-year flight plan. The remarkable flight attitude stability of LDEF enables specific analyses of various individual and combined effects of LEO environmental parameters on identical materials of the same space vehicle. NASA recognized the potential by forming the LDEF Space Environmental Effects on Materials Special Investigation Group (MSIG) to address the greatly expanded materials and LEO space environment parameter analysis opportunities available in the LDEF structure, experiment trays, and corollary measurements, so that the combined value of all LDEF materials data to current and future space missions will be assessed and documented. This paper provides an overview of the interim LDEF materials findings of the Principal Investigators and the Materials Special Investigation Group. These revelations are based on observations of LEO environmental effects on materials made in-space during LDEF retrieval and during LDEF tray deintegration at the Kennedy Space Center, and on findings of approximately 1.5 years of laboratory analyses of LDEF materials by the LDEF materials scientists. These findings were extensively reviewed and discussed at the MSIG-sponsored LDEF Materials Workshop '91. The results are presented in a format which categorizes the revelations as 'clear findings' or 'confusing/unexplained findings' and resultant needs for new space materials developments and ground simulation testing/analytical modeling in seven categories: environmental parameters and data bases; LDEF contamination; thermal control coatings and protective treatments; polymers and films; polymer-matrix composites; metals, ceramics, and optical materials; and systems-related materials. General outlines of findings of the other LDEF Special Investigation Groups (Ionizing Radiation, Meteoroid and Debris, and Systems) are also included. The utilization of LDEF materials data for future low-earth orbit missions is also discussed, concentrating on Space Station Freedom. Some directions for continuing studies of LDEF materials are outlined. In general, the LDEF data is remarkable consistent; LDEF will provide a 'benchmark' for materials design data bases for satellites in low-Earth orbit. Some materials were identified to be encouragingly resistant to LEO SEE for 5.8-years; other 'space qualified' materials displayed significant environmental degradation. Molecular contamination was widespread; LDEF offers an unprecedented opportunity to provide a unified perspective of unmanned LEO spacecraft contamination mechanisms. New material development requirements for long-term LEO missions have been identified and current ground simulation testing methods/data for new, durable materials concepts can be validated with LDEF results. LDEF findings are already being integrated into the design of Space Station Freedom.