Sample records for materials characterization center

  1. High Performance Polymers and Composites (HiPPAC) Center

    NASA Technical Reports Server (NTRS)

    Mintz, Eric A.; Veazie, David

    2005-01-01

    NASA University Research Centers funding has allowed Clark Atlanta University (CAU) to establish a High Performance Polymers and Composites (HiPPAC) Research Center. Clark Atlanta University, through the HiPPAC Center has consolidated and expanded its polymer and composite research capabilities through the development of research efforts in: (1) Synthesis and characterization of polymeric NLO, photorefractive, and piezoelectric materials; (2) Characterization and engineering applications of induced strain smart materials; (3) Processable polyimides and additives to enhance polyimide processing for composite applications; (4) Fabrication and mechanical characterization of polymer based composites.

  2. NASA Space Engineering Research Center for utilization of local planetary resources

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Lewis, John S.

    1990-01-01

    The University of Arizona and NASA have joined to form the UA/NASA Space Engineering Research Center. The purpose of the Center is to discover, characterize, extract, process, and fabricate useful products from the extraterrestrial resources available in the inner solar system (the moon, Mars, and nearby asteroids). Individual progress reports covering the center's research projects are presented and emphasis is placed on the following topics: propellant production, oxygen production, ilmenite, lunar resources, asteroid resources, Mars resources, space-based materials processing, extraterrestrial construction materials processing, resource discovery and characterization, mission planning, and resource utilization.

  3. Progress report

    NASA Technical Reports Server (NTRS)

    Abhiraman, A.; Collard, D.; Cardelino, B.; Bhatia, S.; Desai, P.; Harruna, I.; Khan, I.; Mariam, Y.; Mensah, T.; Mitchell, M.

    1992-01-01

    The NASA funding allowed Clark Atlanta University (CAU) to establish a High Performance Polymers And Ceramics (HiPPAC) Research Center. The HiPPAC Center is consolidating and expanding the existing polymer and ceramic research capabilities at CAU through the development of interdepartmental and interinstitutional research in: (1) polymer synthesis; (2) polymer characterization and properties; (3) polymer processing; (4) polymer-based ceramic synthesis; and (5) ceramic characterization and properties. This Center has developed strong interactions between scientists and materials scientists of CAU and their counterparts from sister institutions in the Atlanta University Center (AUC) and the Georgia Institute of Technology. As a component of the center, we have started to develop strong collaborations with scientists from other universities and the HBCU's, national and federal agency laboratories, and the private sector during this first year. During this first year we have refined the focus of the research in the HiPPAC Center to three areas with seven working groups that will start programmatic activities on January 1, 1993, as follows: (1) nonlinear optical properties of chitosan derivatives; (2) polymeric electronic materials; (3) nondestructive characterization and prediction of polyimide performance; (4) solution processing of high-performance materials; (5) processable polyimides for composite applications; (6) sol-gel based ceramic materials processing; and (7) synthetic based processing of pre-ceramic polymers.

  4. A summary of laboratory testing performed to characterize and select an elastomeric O-ring material to be used in the redesigned solid rocket motors of the space transportation system

    NASA Technical Reports Server (NTRS)

    Turner, J. E.

    1993-01-01

    An elastomeric O-ring material is used in the joints of the redesigned solid motors (RSRM's) of the National Space Transportation System (NSTS). The selection of the O-ring material used in the RSRM's was a very thorough process that included efforts by NASA's Marshall Space Flight Center and the Langley Research Center, and the Thiokol Corporation. One of the efforts performed at MSFC was an extensive in-house laboratory test regime to screen potential O-ring materials and ultimately to characterize the elastomeric material that was chosen to be used in the RSRM's. The laboratory tests performed at MSFC are summarized.

  5. Advanced NDE techniques for quantitative characterization of aircraft

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.; Winfree, William P.

    1990-01-01

    Recent advances in nondestructive evaluation (NDE) at NASA Langley Research Center and their applications that have resulted in quantitative assessment of material properties based on thermal and ultrasonic measurements are reviewed. Specific applications include ultrasonic determination of bolt tension, ultrasonic and thermal characterization of bonded layered structures, characterization of composite materials, and disbonds in aircraft skins.

  6. Characterization on Smart Optics Using Ellipsometry

    NASA Technical Reports Server (NTRS)

    Song, Kyo D.

    2002-01-01

    Recently, NASA Langley Research Center developed a smart active optical concept to filter narrow band pass or to control optical intensity. To characterize developed smart optics materials, we have measured thickness and reflection properties of the materials using a WVASE32 ellipsometry. This project allowed us to: (1) prepare the smart optical materials for measurement of thickness and optical properties at NASA Langley Research Center; (2) measure thickness and optical properties of the smart optical materials; (3) evaluate the measured properties in terms of applications for narrow band-pass filters. The outcomes of this research provide optical properties and physical properties of the smart optics on a selected spectral range. The applications of this development were used for field-controlled spectral smart filters.

  7. 2004 research briefs :Materials and Process Sciences Center.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-sciencemore » base has on the ultimate success of the NW program and the overall DOE technology portfolio.« less

  8. Thermal and Chemical Characterization of Composite Materials. MSFC Center Director's Discretionary Fund Final Report, Project No. ED36-18

    NASA Technical Reports Server (NTRS)

    Stanley, D. C.; Huff, T. L.

    2003-01-01

    The purpose of this research effort was to: (1) provide a concise and well-defined property profile of current and developing composite materials using thermal and chemical characterization techniques and (2) optimize analytical testing requirements of materials. This effort applied a diverse array of methodologies to ascertain composite material properties. Often, a single method of technique will provide useful, but nonetheless incomplete, information on material composition and/or behavior. To more completely understand and predict material properties, a broad-based analytical approach is required. By developing a database of information comprised of both thermal and chemical properties, material behavior under varying conditions may be better understood. THis is even more important in the aerospace community, where new composite materials and those in the development stage have little reference data. For example, Fourier transform infrared (FTIR) spectroscopy spectral databases available for identification of vapor phase spectra, such as those generated during experiments, generally refer to well-defined chemical compounds. Because this method renders a unique thermal decomposition spectral pattern, even larger, more diverse databases, such as those found in solid and liquid phase FTIR spectroscopy libraries, cannot be used. By combining this and other available methodologies, a database specifically for new materials and materials being developed at Marshall Space Flight Center can be generated . In addition, characterizing materials using this approach will be extremely useful in the verification of materials and identification of anomalies in NASA-wide investigations.

  9. Engineering of Transition Metal Catalysts Confined in Zeolites

    PubMed Central

    2018-01-01

    Transition metal–zeolite composites are versatile catalytic materials for a wide range of industrial and lab-scale processes. Significant advances in fabrication and characterization of well-defined metal centers confined in zeolite matrixes have greatly expanded the library of available materials and, accordingly, their catalytic utility. In this review, we summarize recent developments in the field from the perspective of materials chemistry, focusing on synthesis, postsynthesis modification, (operando) spectroscopy characterization, and computational modeling of transition metal–zeolite catalysts. PMID:29861546

  10. Developing Carbon Nanotube Standards at NASA

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pasha; Arepalli, Sivaram; Sosa, Edward; Gorelik, Olga; Yowell, Leonard

    2007-01-01

    Single wall carbon nanotubes (SWCNTs) are currently being produced and processed by several methods. Many researchers are continuously modifying existing methods and developing new methods to incorporate carbon nanotubes into other materials and utilize the phenomenal properties of SWCNTs. These applications require availability of SWCNTs with known properties and there is a need to characterize these materials in a consistent manner. In order to monitor such progress, it is critical to establish a means by which to define the quality of SWCNT material and develop characterization standards to evaluate of nanotube quality across the board. Such characterization standards should be applicable to as-produced materials as well as processed SWCNT materials. In order to address this issue, NASA Johnson Space Center has developed a protocol for purity and dispersion characterization of SWCNTs (Ref.1). The NASA JSC group is currently working with NIST, ANSI and ISO to establish purity and dispersion standards for SWCNT material. A practice guide for nanotube characterization is being developed in cooperation with NIST (Ref.2). Furthermore, work is in progress to incorporate additional characterization methods for electrical, mechanical, thermal, optical and other properties of SWCNTs.

  11. Developing Carbon Nanotube Standards at NASA

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pasha; Arepalli, Sivaram; Sosa, Edward; Gorelik, Olga; Yowell, Leonard

    2007-01-01

    Single wall carbon nanotubes (SWCNTs) are currently being produced and processed by several methods. Many researchers are continuously modifying existing methods and developing new methods to incorporate carbon nanotubes into other materials and utilize the phenomenal properties of SWCNTs. These applications require availability of SWCNTs with known properties and there is a need to characterize these materials in a consistent manner. In order to monitor such progress, it is critical to establish a means by which to define the quality of SWCNT material and develop characterization standards to evaluate of nanotube quality across the board. Such characterization standards should be applicable to as-produced materials as well as processed SWCNT materials. In order to address this issue, NASA Johnson Space Center has developed a protocol for purity and dispersion characterization of SWCNTs. The NASA JSC group is currently working with NIST, ANSI and ISO to establish purity and dispersion standards for SWCNT material. A practice guide for nanotube characterization is being developed in cooperation with NIST. Furthermore, work is in progress to incorporate additional characterization methods for electrical, mechanical, thermal, optical and other properties of SWCNTs.

  12. Solid State Technology Branch of NASA Lewis Research Center: Fifth Annual Digest

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The digest is a collection of papers written by the members of the Solid State Technology Branch of NASA Lewis Research Center from June 1992-June 1993. The papers cover a range of topics relating to superconductivity, monolithic microwave integrated circuits (MMIC's), coplanar waveguide, and material characterization.

  13. Slit disk for modified faraday cup diagnostic for determining power density of electron and ion beams

    DOEpatents

    Teruya, Alan T [Livermore, CA; Elmer,; John, W [Danville, CA; Palmer, Todd A [State College, PA

    2011-03-08

    A diagnostic system for characterization of an electron beam or an ion beam includes an electrical conducting disk of refractory material having a circumference, a center, and a Faraday cup assembly positioned to receive the electron beam or ion beam. At least one slit in the disk provides diagnostic characterization of the electron beam or ion beam. The at least one slit is located between the circumference and the center of the disk and includes a radial portion that is in radial alignment with the center and a portion that deviates from radial alignment with the center. The electron beam or ion beam is directed onto the disk and translated to the at least one slit wherein the electron beam or ion beam enters the at least one slit for providing diagnostic characterization of the electron beam or ion beam.

  14. Research Collaborations | NREL

    Science.gov Websites

    University, and the University of Colorado at Boulder. Visit CRES ICMC-International Center for Multiscale the art in multiscale characterization. Of special interest are materials for photovoltaic, battery

  15. Electrostatic Levitation: A Tool to Support Materials Research in Microgravity

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; SanSoucie, Mike

    2012-01-01

    Containerless processing represents an important topic for materials research in microgravity. Levitated specimens are free from contact with a container, which permits studies of deeply undercooled melts, and high-temperature, highly reactive materials. Containerless processing provides data for studies of thermophysical properties, phase equilibria, metastable state formation, microstructure formation, undercooling, and nucleation. The European Space Agency (ESA) and the German Aerospace Center (DLR) jointly developed an electromagnetic levitator facility (MSL-EML) for containerless materials processing in space. The electrostatic levitator (ESL) facility at the Marshall Space Flight Center provides support for the development of containerless processing studies for the ISS. Apparatus and techniques have been developed to use the ESL to provide data for phase diagram determination, creep resistance, emissivity, specific heat, density/thermal expansion, viscosity, surface tension and triggered nucleation of melts. The capabilities and results from selected ESL-based characterization studies performed at NASA's Marshall Space Flight Center will be presented.

  16. Nondestructive Evaluation Approaches Developed for Material Characterization in Aeronautics and Space Applications

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Kautz, Harold E.; Gyekenyesi, Andrew L.; Abdul-Aziz, Ali; Martin, Richard E.

    2001-01-01

    At the NASA Glenn Research Center, nondestructive evaluation (NDE) approaches were developed or tailored for characterizing advanced material systems. The emphasis was on high-temperature aerospace propulsion applications. The material systems included monolithic ceramics, superalloys, and high-temperature composites. In the aeronautics area, the major applications were cooled ceramic plate structures for turbine applications, gamma-TiAl blade materials for low-pressure turbines, thermoelastic stress analysis for residual stress measurements in titanium-based and nickel-based engine materials, and acousto-ultrasonics for creep damage assessment in nickel-based alloys. In the space area, applications consisted of cooled carbon-carbon composites for gas generator combustors and flywheel rotors composed of carbon-fiber-reinforced polymer matrix composites for energy storage on the International Space Station.

  17. Nanomaterials Work at NASA-Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2005-01-01

    Nanomaterials activities at NASA-Johnson Space Center focus on single wall carbon nanotube production, characterization and their applications for aerospace. Nanotubes are produced by arc and laser methods and the growth process is monitored by in-situ diagnostics using time resolved passive emission and laser induced fluorescence of the active species. Parametric study of both these processes are conducted to monitor the effect of production parameters including temperature, buffer gas, flow rate, pressure, laser fluence and arc current. Characterization of the nanotube material is performed using the NASA-JSC protocol developed by combining analytical techniques of SEM, TEM, UV-VIS-NIR absorption, Raman, and TGA. Efforts at JSC over the past five years in composites have centered on structural polymernanotube systems. Recent activities broadened this focus to multifunctional materials, supercapacitors, fuel cells, regenerable CO2 absorbers, electromagnetic shielding, radiation dosimetry and thermal management systems of interest for human space flight. Preliminary tests indicate improvement of performance in most of these applications because of the large surface area as well as high conductivity exhibited by SWCNTs.

  18. Upgrading the Center for Lightweighting Automotive Materials and Processing - a GATE Center of Excellence at the University of Michigan-Dearborn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallick, P. K.

    2012-08-30

    The Center for Lightweighting Materials and Processing (CLAMP) was established in September 1998 with a grant from the Department of Energy’s Graduate Automotive Technology Education (GATE) program. The center received the second round of GATE grant in 2005 under the title “Upgrading the Center for Lightweighting Automotive Materials and Processing”. Using the two grants, the Center has successfully created 10 graduate level courses on lightweight automotive materials, integrated them into master’s and PhD programs in Automotive Systems Engineering, and offered them regularly to the graduate students in the program. In addition, the Center has created a web-based lightweight automotive materialsmore » database, conducted research on lightweight automotive materials and organized seminars/symposia on lightweight automotive materials for both academia and industry. The faculty involved with the Center has conducted research on a variety of topics related to design, testing, characterization and processing of lightweight materials for automotive applications and have received numerous research grants from automotive companies and government agencies to support their research. The materials considered included advanced steels, light alloys (aluminum, magnesium and titanium) and fiber reinforced polymer composites. In some of these research projects, CLAMP faculty have collaborated with industry partners and students have used the research facilities at industry locations. The specific objectives of the project during the current funding period (2005 – 2012) were as follows: (1) develop new graduate courses and incorporate them in the automotive systems engineering curriculum (2) improve and update two existing courses on automotive materials and processing (3) upgrade the laboratory facilities used by graduate students to conduct research (4) expand the Lightweight Automotive Materials Database to include additional materials, design case studies and make it more accessible to outside users (5) provide support to graduate students for conducting research on lightweight automotive materials and structures (6) provide industry/university interaction through a graduate certificate program on automotive materials and technology idea exchange through focused seminars and symposia on automotive materials.« less

  19. NASA Space Engineering Research Center for utilization of local planetary resources

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Reports covering the period from 1 Nov. 1991 to 31 Oct. 1992 and documenting progress at the NASA Space Engineering Research Center are included. Topics covered include: (1) processing of propellants, volatiles, and metals; (2) production of structural and refractory materials; (3) system optimization discovery and characterization; (4) system automation and optimization; and (5) database development.

  20. Theoretical and material studies on thin-film electroluminescent devices

    NASA Technical Reports Server (NTRS)

    Summers, C. J.; Brennan, K. F.

    1986-01-01

    Electroluminescent materials and device technology were assessed. The evaluation strongly suggests the need for a comprehensive theoretical and experimental study of both materials and device structures, particularly in the following areas: carrier generation and multiplication; radiative and nonradiative processes of luminescent centers; device modeling; new device concepts; and single crystal materials growth and characterization. Modeling of transport properties of hot electrons in ZnSe and the generation of device concepts were initiated.

  1. Characterization of Space Environmental Effects on Candidate Solar Sail Material

    NASA Technical Reports Server (NTRS)

    Edwards, David; Hubbs, Whitney; Stanaland, Tesia; Altstatt, Richard

    2002-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) is concentrating research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A sail operates on the principle that photons, originating from the sun, impart pressure and provide a source of spacecraft propulsion. The pressure can be increased, by a factor of two if the sun-facing surface is perfectly reflective. Solar sails are generally composed of a highly reflective metallic front layer, a thin polymeric substrate, and occasionally a highly emissive back surface. The Space Environmental Effects Team at MSFC is actively characterizing candidate solar sail materials to evaluate the thermo-optical and mechanical properties after exposure to a simulated Geosynchronous Transfer Orbit (GTO) radiation environment. The technique of radiation dose verses material depth profiling was used to determine the orbital equivalent exposure doses. The solar sail exposure procedures and results of the material characterization will be discussed.

  2. Cryogenic thermal conductivity measurements on candidate materials for space missions

    NASA Astrophysics Data System (ADS)

    Tuttle, James; Canavan, Edgar; Jahromi, Amir

    2017-12-01

    Spacecraft and instruments on space missions are built using a wide variety of carefully-chosen materials. It is common for NASA engineers to propose new candidate materials which have not been totally characterized at cryogenic temperatures. In many cases a material's cryogenic thermal conductivity must be known before selecting it for a specific space-flight application. We developed a test facility in 2004 at NASA's Goddard Space Flight Center to measure the longitudinal thermal conductivity of materials at temperatures between 4 and 300 K, and we have characterized many candidate materials since then. The measurement technique is not extremely complex, but proper care to details of the setup, data acquisition and data reduction is necessary for high precision and accuracy. We describe the thermal conductivity measurement process and present results for ten engineered materials, including alloys, polymers, composites, and a ceramic.

  3. High-throughput characterization for solar fuels materials discovery

    NASA Astrophysics Data System (ADS)

    Mitrovic, Slobodan; Becerra, Natalie; Cornell, Earl; Guevarra, Dan; Haber, Joel; Jin, Jian; Jones, Ryan; Kan, Kevin; Marcin, Martin; Newhouse, Paul; Soedarmadji, Edwin; Suram, Santosh; Xiang, Chengxiang; Gregoire, John; High-Throughput Experimentation Team

    2014-03-01

    In this talk I will present the status of the High-Throughput Experimentation (HTE) project of the Joint Center for Artificial Photosynthesis (JCAP). JCAP is an Energy Innovation Hub of the U.S. Department of Energy with a mandate to deliver a solar fuel generator based on an integrated photoelectrochemical cell (PEC). However, efficient and commercially viable catalysts or light absorbers for the PEC do not exist. The mission of HTE is to provide the accelerated discovery through combinatorial synthesis and rapid screening of material properties. The HTE pipeline also features high-throughput material characterization using x-ray diffraction and x-ray photoemission spectroscopy (XPS). In this talk I present the currently operating pipeline and focus on our combinatorial XPS efforts to build the largest free database of spectra from mixed-metal oxides, nitrides, sulfides and alloys. This work was performed at Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award No. DE-SC0004993.

  4. Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thackeray, Michael M.

    "Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries" was submitted by the Center for Electrochemical Energy Science (CEES) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEES, an EFRC directed by Michael Thackery at Argonne National Laboratory is a partnership of scientists from four institutions: ANL (lead), Northwestern University, Purdue University, and the University of Illinois at Urbana-Champaign. The Office of Basic Energy Sciences in the U.S. Department ofmore » Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Electrochemical Energy Science (CEES) is "to create a robust fundamental understanding of the phenomena that control the reactivity of electrified oxide interfaces, films and materials relevant to lithium-ion battery chemistries". Research topics are: electrical energy storage, batteries, battery electrodes, electrolytes, adaptive materials, interfacial characterization, matter by design; novel materials synthesis, charge transport, and defect tolerant materials.« less

  5. SUPERFUND TECHNICAL SUPPORT

    EPA Science Inventory

    Under this task, technical support is provided to Regional Remedial Project Managers (RPMs)/On-Scene Coordinators (OSCs) at Superfund, RCRA, and Brownfields sites contaminated with hazardous materials by the Technical Support Center (TSC) for Monitoring and Site Characterization....

  6. Characterization of the Material Microstructure for Reactive Material Design. 3rd Quarterly Progress Report II/2008

    DTIC Science & Technology

    2008-08-05

    metallic) materials, which fragment under certain dynamic loading conditions into small particles, which can chemically react with a suitable ambient ...medium, such as shock heated ambient air or hot detonation products. Such materials could be effectively used to devise new or improved weapons with...test is blue. The impacto conditions of the the center of the the opposite surfa reflection of the w Figure 6.1: Example o specimen. Another aspect

  7. An x-ray diffraction study of microstructural deformation induced by cyclic loading of selected steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fourspring, P.M.; Pangborn, R.N.

    1996-06-01

    X-ray double crystal diffractometry (XRDCD) was used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The first objective of the investigation was to determine if XRDCD could be used to effectively monitor cyclic microstructural deformation in polycrystalline Fe alloys. A second objective was to study the microstructural deformation induced by cyclic loading of polycrystalline Fe alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life ofmore » the material. Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0--10 {micro}m), subsurface (10--300 {micro}m), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels. In addition, for the AISI304 material, the level of cyclic microstructural deformation in the bulk material was found to be greater than the level in the near surface material. In contrast, previous investigations have shown that the deformation is greater in the near surface than the bulk for Al alloys and bcc Fe alloys.« less

  8. Solid State Technology Branch of NASA Lewis Research Center: Fifth Annual Digest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    The digest is a collection of papers written by the members of the Solid State Technology Branch of NASA Lewis Research Center from June 1992-June 1993. The papers cover a range of topics relating to superconductivity, monolithic microwave integrated circuits (MMIC`s), coplanar waveguide, and material characterization. Individual papers are abstracted separately on the data base.

  9. Cryo-Infrared Optical Characterization at NASA GSFC

    NASA Technical Reports Server (NTRS)

    Boucarut, Ray; Quijada, Manuel A.; Henry, Ross M.

    2004-01-01

    The development of large space infrared optical systems, such as the Next Generation Space Telescope (NGST), has increased requirements for measurement accuracy in the optical properties of materials. Many materials used as optical components in infrared optical systems, have strong temperature dependence in their optical properties. Unfortunately, data on the temperature dependence of most of these materials is sparse. In this paper, we provide a description of the capabilities existing in the Optics Branch at the Goddard Space Flight Center that enable the characterization of the refractive index and absorption coefficient changes and other optical properties in infrared materials at cryogenic temperatures. Details of the experimental apparatus, which include continuous flow liquid helium optical cryostat, and a Fourier Transform Infrared (FTIR) spectrometer are discussed.

  10. Electrical Characterizations of Lightning Strike Protection Techniques for Composite Materials

    NASA Technical Reports Server (NTRS)

    Szatkowski, George N.; Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Mielnik, John J.

    2009-01-01

    The growing application of composite materials in commercial aircraft manufacturing has significantly increased the risk of aircraft damage from lightning strikes. Composite aircraft designs require new mitigation strategies and engineering practices to maintain the same level of safety and protection as achieved by conductive aluminum skinned aircraft. Researchers working under the NASA Aviation Safety Program s Integrated Vehicle Health Management (IVHM) Project are investigating lightning damage on composite materials to support the development of new mitigation, diagnosis & prognosis techniques to overcome the increased challenges associated with lightning protection on composite aircraft. This paper provides an overview of the electrical characterizations being performed to support IVHM lightning damage diagnosis research on composite materials at the NASA Langley Research Center.

  11. An x-ray diffraction study of microstructural deformation induced by cyclic loading of selected steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fourspring, P.M.; Pangborn, R.N.

    1997-12-31

    X-ray double crystal diffractometry (XRDCD) was used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The objectives of the investigation were to determine if XRDCD could be used effectively to monitor cyclic microstructural deformation in polycrystalline Fe alloys and to study the distribution of the microstructural deformation induced by cyclic loading in these alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life of the material.more » Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0--10 {micro}m), subsurface (10--300 {micro}m), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels.« less

  12. Characterization of Space Environmental Effects on Candidate Solar Sail Material

    NASA Technical Reports Server (NTRS)

    Edwards, David; Hubbs, Whitney; Stanaland, Tesia; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) is concentrating research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two if the sunfacing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. The Space Environmental Effects Team, at MSFC, is actively characterizing candidate solar sail material to evaluate the thermo-optical and mechanical properties after exposure to radiation environments simulating orbital environments. This paper describes the results of three candidate materials after exposure to a simulated Geosynchronous Transfer Orbit (GTO). This is the first known characterization of solar sail material exposed to space simulated radiation environments. The technique of radiation dose versus material depth profiling was used to determine the orbital equivalent exposure doses. The solar sail exposure procedures and results of the material characterization will be discussed.

  13. Characterization of Mineralogy Across Vesta

    NASA Technical Reports Server (NTRS)

    De Sanctis, M. C.; Ammannito, E.; Capria, M. T.; Capaccioni, F.; Carraro, F.; Fonte, S.; Frigeri, A.; Magni, G.; Marchi, S.; Palomba, E.; hide

    2012-01-01

    Dawn VIR spectra are characterized by pyroxene absorptions and no clear evidence for abundant other minerals are observed at the scale of the present measurements. Even though Vesta spectra are dominated by pyroxenes, spectral variation at regional and local scales are evident and distinct color units are identified. Although almost all of the surface materials exhibit spectra like those of howardites, some large units can be interpreted to be material richer in diogenite (based on pyroxenes band depths and band centers) and some others like eucrite-rich howardite units. VIR data strongly indicate that the south polar region (Rheasilvia) has its own spectral characteristics, indicating the presence of Mg-pyroxene-rich terrains (diogenite-like), while the equatorial areas have swallower band depths and average band centers at slightly longer wavelengths, consistent with more eucrite rich materials. Vesta surface shows considerable diversity at smaller scales (tens of km), in terms of spectral reflectance and emission, band depths and slopes. Many bright and dark spots are present on Vesta. Dark spots have low reflectance at visible wavelengths and are spectrally characterized by shallower 1 and 2 micron bands with respect the surrounding terrains. Bright materials have high reflectance and are often spectrally characterized by deep pyroxenes absorption bands. Vesta presents complex geology/topography and the mineral distribution is often correlated with geological and topographical structures. Ejecta from large craters have distinct spectral behaviors, and materials exposed in the craters show distinct spectra on floors and rims. VIR reveals the mineralogical variation of Vesta s crustal stratigraphy on local and global scales. Maps of spectral parameters show surface and subsurface unit compositions in their stratigraphic context. The hypothesis that Vesta is the HED parent body is consistent with, and strengthened by, the geologic and spectral context for pyroxene distribution provided by Dawn.

  14. Adhesive evaluation of LARC-TPI and a water-soluble version of LARC-TPI

    NASA Technical Reports Server (NTRS)

    Progar, D. J.

    1985-01-01

    The results of a study to evaluate two Langley Research Center thermoplastic polimide (TPI) materials, identified as TPI/MTC for the material from Mitsui Toatsu Chemicals Inc. and TPI/H2O for the material from United Technologies Research Center, as high temperature thermoplastic adhesives and primers for bonding titanium (6AL-4V) adherends are discussed. A limited characterization of the materials was performed using a Diffuse Reflectance-Fourier Transform Infrared Spectroscopy (DR-FTIR) technique. Thermomechanical Analysis (TMA) and torsional braid techniques were used to determine glass transition temperature. The adhesive's strength, as determined by simple lap shear tests, as used to evaluate the effects of long term thermal exposure (up to 1000 hrs) at 204 deg C and a 72-hour water-boil.

  15. Nanotube Activities at NASA-Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2004-01-01

    Nanotube activities at NASA-Johnson Space Center include production, purification, characterization as well as applications of single wall carbon nanotubes (SWCNTs). A parametric study of the pulsed laser ablation process is recently completed to monitor the effect of production parameters including temperature, buffer gas, flow rate, pressure, and laser fluence. Enhancement of production is achieved by rastering the graphite target and by increasing the target surface temperature with a cw laser. In-situ diagnostics during production included time resolved passive emission and laser induced fluorescence from the plume. The improvement of the purity by a variety of steps in the purification process is monitored by characterization techniques including SEM, TEM, Raman, UV-VIS-NIR and TGA. A recently established NASA-JSC protocol for SWCNT characterization is undergoing revision with feedback from nanotube community. Efforts at JSC over the past five years in composites have centered on structural polymer/nanotube systems. Recent activities broadened this focus to multifunctional materials, supercapacitors, fuel cells, regenerable CO2 absorbers, electromagnetic shielding, radiation dosimetry and thermal management systems of interest for human space flight. Preliminary tests indicate improvement of performance in most of these applications because of the large Surface area as well as high electrical and thermal conductivity exhibited by SWCNTs. Comparison with existing technologies and possible future improvements in the SWCNT materials sill be presented.

  16. Using Artifacts to Characterize Reform-Oriented Instruction: The Scoop Notebook and Rating Guide. CSE Technical Report 707

    ERIC Educational Resources Information Center

    Borko, Hilda; Stecher, Brian; Kuffner, Karin

    2007-01-01

    This document includes the final data collection and scoring tools created by the "Scoop" project, a five-year project funded through the Center for Evaluation, Standards,and Student Testing (CRESST), to develop an alternative approach for characterizing classroom practice. The goal of the project was to use artifacts and related materials to…

  17. X-Ray Micro-Tomography Applied to Nasa's Materials Research: Heat Shields, Parachutes and Asteroids

    NASA Technical Reports Server (NTRS)

    Panerai, Francesco; Borner, Arnaud; Ferguson, Joseph C.; Mansour, Nagi N.; Stern, Eric C.; Barnard, Harold S.; Macdowell, Alastair A.; Parkinson, Dilworth Y.

    2017-01-01

    X-ray micro-tomography is used to support the research on materials carried out at NASA Ames Research Center. The technique is applied to a variety of applications, including the ability to characterize heat shield materials for planetary entry, to study the Earth- impacting asteroids, and to improve broadcloths of spacecraft parachutes. From micro-tomography images, relevant morphological and transport properties are determined and validated against experimental data.

  18. Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Thackeray, Michael (Director, Center for Electrical Energy Storage); CEES Staff

    2017-12-09

    'Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries' was submitted by the Center for Electrical Energy Storage (CEES) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEES, an EFRC directed by Michael Thackery at Argonne National Laboratory is a partnership of scientists from three institutions: ANL (lead), Northwestern University, and the University of Illinois at Urbana-Champaign. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Electrical Energy Storage is 'to acquire a fundamental understanding of interfacial phenomena controlling electrochemical processes that will enable dramatic improvements in the properties and performance of energy storage devices, notable Li ion batteries.' Research topics are: electrical energy storage, batteries, battery electrodes, electrolytes, adaptive materials, interfacial characterization, matter by design; novel materials synthesis, charge transport, and defect tolerant materials.

  19. Installation and Characterization of Charged Particle Sources for Space Environmental Effects Testing

    NASA Technical Reports Server (NTRS)

    Skevington, Jennifer L.

    2010-01-01

    Charged particle sources are integral devices used by Marshall Space Flight Center s Environmental Effects Branch (EM50) in order to simulate space environments for accurate testing of materials and systems. By using these sources inside custom vacuum systems, materials can be tested to determine charging and discharging properties as well as resistance to sputter damage. This knowledge can enable scientists and engineers to choose proper materials that will not fail in harsh space environments. This paper combines the steps utilized to build a low energy electron gun (The "Skevington 3000") as well as the methods used to characterize the output of both the Skevington 3000 and a manufactured Xenon ion source. Such characterizations include beam flux, beam uniformity, and beam energy. Both sources were deemed suitable for simulating environments in future testing.

  20. Carbon Nanotube Material Quality Assessment

    NASA Technical Reports Server (NTRS)

    Yowell, Leonard; Arepalli, Sivaram; Sosa, Edward; Niolaev, Pavel; Gorelik, Olga

    2006-01-01

    The nanomaterial activities at NASA Johnson Space Center focus on carbon nanotube production, characterization and their applications for aerospace systems. Single wall carbon nanotubes are produced by arc and laser methods. Characterization of the nanotube material is performed using the NASA JSC protocol developed by combining analytical techniques of SEM, TEM, UV-VIS-NIR absorption, Raman, and TGA. A possible addition of other techniques such as XPS, and ICP to the existing protocol will be discussed. Changes in the quality of the material collected in different regions of the arc and laser production chambers is assessed using the original JSC protocol. The observed variations indicate different growth conditions in different regions of the production chambers.

  1. Metals and Ceramics Division Materials Sciences Program. Annual progress report for period ending December 31, 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiegler, J.O.

    1986-06-01

    The report is divided into the following: structural characterization, high-temperature alloy research, structural ceramics, radiation effects, structure and properties of surfaces and interfaces, and collaborative research centers. (DLC)

  2. Ballast degradation characterized through triaxial test : research results.

    DOT National Transportation Integrated Search

    2016-06-01

    Transportation Technology Center, Inc. (TTCI) : has supported the development of a large-scale : triaxial test device (Figure 1) for testing ballast : size aggregate materials at the University of : Illinois at Urbana-Champaign (UIUC). This new : tes...

  3. Physics Education in a Multidisciplinary Materials Research Environment

    NASA Astrophysics Data System (ADS)

    Doyle, W. D.

    1997-03-01

    The MINT Center, an NSF Materials Research Science and Engineering Center, is a multidisciplinary research program focusing on materials information storage. It involves 17 faculty, 10 post-doctoral fellows and 25 graduate students from six academic programs including Physics, Chemistry, Materials Science, Metallurgical and Materials Engineering, Electric al Engineering and Chemical Engineering, whose research is supported by university, federal and industrial funds. The research facilities (15,000 ft^2) which include faculty and student offices are located in one building and are maintained by the university and the Center at no cost to participating faculty. The academic requirements for the students are determined by the individual departments along relatively rigid, traditional grounds although several materials and device courses are offered for students from all departments. Within the Center, participants work in teams assigning responsibilities and sharing results at regularly scheduled meetings. Bi-weekly research seminars for all participants provide excellent opportunities for students to improve their communication skills and to receive critical input from a large, diverse audience. Strong collaboration with industrial partners in the storage industry supported by workshops, research reviews, internships, industrial visitors and participation in industry consortia give students a broader criteria for self-evaluation, higher motivation and excellent career opportunities. Physics students, because of their rigorous basic training, are an important element in a strong materials sciences program, but they often are deficient in the behavior and characterization of real materials. The curriculum for physics students should be broadened to prepare them fully for a rewarding career in this emerging discipline.

  4. Vacuum/Zero Net-Gravity Application for On-Orbit TPS Tile Repair

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Humes, Donald H.; Siochi, Emilie J.

    2004-01-01

    The Orbiter Columbia catastrophically failed during reentry February 1, 2003. All Space Shuttle flights were suspended, including logistics support for the International Space Station. NASA Langley Research Center s (LaRC) Structures and Materials Competency is performing characterizations of candidate materials for on-orbit repair of orbiter Thermal Protection System (TPS) tiles to support Return-to-Flight activities led by Johnson Space Center (JSC). At least ten materials properties or attributes (adhesion to damage site, thermal protection, char/ash strength, thermal expansion, blistering, flaming, mixing ease, application in vacuum and zero gravity, cure time, shelf or storage life, and short-term outgassing and foaming) of candidate materials are of interest for on-orbit repair. This paper reports application in vacuum and zero net-gravity (for viscous flow repair materials). A description of the test apparatus and preliminary results of several candidate materials are presented. The filling of damage cavities is different for some candidate repair materials in combined vacuum and zero net-gravity than in either vacuum or zero net-gravity alone.

  5. International Conference on Control and Estimation of Distributed Parameter Systems: Nonlinear Phenomena Held in Vorau, Austria on July 18-24, 1993

    DTIC Science & Technology

    1993-07-24

    detection anit charact(erization in smart material structures 21 NI. BER;OUNIoUX, T. N’IANNIKK6) AN) D. TmIA: Optimnality conditions for non-qumalified...UISA DAMAGE DETECTION AND CHARACTERIZATION IN SMART MATERIAL STRUCTURES HI. TF. BANKS AND) Y, WAN(, C~enter for Rtsvarchliti Scientific Cumpiptatioii...111,u’, + +pt,’, ,x 123 22 (3.3) 0~’ ={( othi’i-wist’. Wie iitmt sought to dlemnonstrat~e tiht capabliity of1 pieoll"t~tItrit m~aterialds inl smart

  6. An environmentally safe and effective paint removal process for aircraft

    NASA Astrophysics Data System (ADS)

    Kozol, Joseph

    2001-03-01

    To reduce hazardous waste from fleet and depot aircraft paint stripping and to conform to regulations banning toxic chemical paint strippers, the U.S. Naval Air Systems Team (materials division, depots, and head-quarters) teamed with the U.S. Air Force at Warner Robins Air Logistics Center for concept development, characterization, and demonstration of a mature, advanced paint-removal system, the Boeing xenon/flashlamp CO2 (Flashjet®) process. Extensive metallic and composite-materials testing was conducted. This paper describes the development and characterization program leading to authorization of the process for use on fixed-wing navy aircraft.

  7. Materials characterization of dusts generated by the collapse of the World Trade Center

    USGS Publications Warehouse

    Meeker, Gregory P.; Sutley, Stephen J.; Brownfield, Isabelle; Lowers, Heather; Bern, Amy M.; Swayze, Gregg A.; Hoefen, Todd M.; Plumlee, Geoffrey S.; Clark, Roger N.; Gent, Carol A.

    2009-01-01

    The major inorganic components of the dusts generated from the collapse of the World Trade Center buildings on September 11, 2001 were concrete materials, gypsum, and man-made vitreous fibers. These components were likely derived from lightweight Portland cement concrete floors, gypsum wallboard, and spray-on fireproofing and ceiling tiles, respectively. All of the 36 samples collected by the USGS team had these materials as the three major inorganic components of the dust. Components found at minor and trace levels include chrysotile asbestos, lead, crystalline silica, and particles of iron and zinc oxides. Other heavy metals, such as lead, bismuth, copper, molybdenum, chromium, and nickel, were present at much lower levels occurring in a variety of chemical forms. Several of these materials have health implications based on their chemical composition, morphology, and bioaccessibility.

  8. An Overview of Innovative Strategies for Fracture Mechanics at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.; Glaessgen, Edward H.; Ratcliffe, James G.

    2010-01-01

    Engineering fracture mechanics has played a vital role in the development and certification of virtually every aerospace vehicle that has been developed since the mid-20th century. NASA Langley Research Center s Durability, Damage Tolerance and Reliability Branch has contributed to the development and implementation of many fracture mechanics methods aimed at predicting and characterizing damage in both metallic and composite materials. This paper presents a selection of computational, analytical and experimental strategies that have been developed by the branch for assessing damage growth under monotonic and cyclic loading and for characterizing the damage tolerance of aerospace structures

  9. Characterization of Piezoelectric Energy Harvesting MEMS

    DTIC Science & Technology

    2015-12-01

    dimensional image of the piezoelectric energy harvester under test. The image shows the intrinsic stress within the material resulting in the curved ...amount of deformation. This indicates that the center pad is curved concave up in the z-direction at rest, which may affect the stiffness of the...greatest amount of deformation; blue indicates the least amount of deformation. This indicates that the center pad is curved concave up in the z

  10. Modeling defect cluster evolution in irradiated structural materials: Focus on comparing to high-resolution experimental characterization studies

    DOE PAGES

    Wirth, Brian D.; Hu, Xunxiang; Kohnert, Aaron; ...

    2015-03-02

    Exposure of metallic structural materials to irradiation environments results in significant microstructural evolution, property changes, and performance degradation, which limits the extended operation of current generation light water reactors and restricts the design of advanced fission and fusion reactors. Further, it is well recognized that these irradiation effects are a classic example of inherently multiscale phenomena and that the mix of radiation-induced features formed and the corresponding property degradation depend on a wide range of material and irradiation variables. This inherently multiscale evolution emphasizes the importance of closely integrating models with high-resolution experimental characterization of the evolving radiation-damaged microstructure. Lastly,more » this article provides a review of recent models of the defect microstructure evolution in irradiated body-centered cubic materials, which provide good agreement with experimental measurements, and presents some outstanding challenges, which will require coordinated high-resolution characterization and modeling to resolve.« less

  11. Challenges of Enterprise Wide AM for Air Force Sustainment

    DTIC Science & Technology

    2016-12-01

    December 2016 Naguy is chief of the Air Force Life Cycle Management Center’s Product Support Engineering Division at Wright Patterson Air Force Base in...today and into the future. To truly capitalize on the full potential of AM, the Air Force Life Cycle Management Center (AFLCMC) in close collabora...approach for material standards and quality include un- derstanding powder characteristics, developing an enterprise material characterization

  12. Engineered Film Surfaces Via Spontaneous Phase Segregation

    DTIC Science & Technology

    2004-12-01

    constituents of a Langmuir Blodgett thin Figure 1: Contact angles w/ H2O Contact angles determined from cast films of TPU with (right) 1% wt/wt...Synn, D.; Stelzle, M.; Rabolt, J. F., 2000: Characterization of Orientation of Perfluorostearic Acid Langmuir - Blodgett Multilayers by Infrared...Natick Soldier Center Materials Science Team Natick, MA 01760 ABSTRACT A series of hyperbranched materials have been developed that allow

  13. Oxide Ceramic Films Grown on 60 Nitinol for NASA and Department of Defense Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Street, Kenneth W.; Lukco, Dorothy; Cytron, Sheldon J.

    2005-01-01

    Both the NASA Glenn Research Center and the U.S. Army Research Laboratory, Development and Engineering Center (ARDEC) have worked to develop oxide ceramic films grown on 60 nitinol (60-wt% nickel and 40-wt% titanium) to decrease friction and increase wear resistance under unlubricated conditions. In general, oxide and nonoxide ceramic films have unique capabilities as mechanical-, chemical-, and thermal-barrier materials in diverse applications, including high-temperature bearings and gas bearings requiring low friction, wear resistance, and chemical stability. All oxide ceramic films grown on 60 nitinol were furnished by ARDEC, and materials and surface characterization and tribological experiments were conducted at Glenn.

  14. Improved concrete railway crosstie design and performance.

    DOT National Transportation Integrated Search

    2014-11-01

    The approach for the proposed concrete tie research under the NEXTRANS Center funding was to : characterize the abrasion demand on the concrete-tie rail seat, as well as the abrasion resistance of : different rail seat materials and designs (e.g. con...

  15. Energy Materials Center at Cornell: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abruña, Héctor; Mutolo, Paul F

    2015-01-02

    The mission of the Energy Materials Center at Cornell (emc 2) was to achieve a detailed understanding, via a combination of synthesis of new materials, experimental and computational approaches, of how the nature, structure, and dynamics of nanostructured interfaces affect energy conversion and storage with emphasis on fuel cells, batteries and supercapacitors. Our research on these systems was organized around a full system strategy for; the development and improved performance of materials for both electrodes at which storage or conversion occurs; understanding their internal interfaces, such as SEI layers in batteries and electrocatalyst supports in fuel cells, and methods formore » structuring them to enable high mass transport as well as high ionic and electronic conductivity; development of ion-conducting electrolytes for batteries and fuel cells (separately) and other separator components, as needed; and development of methods for the characterization of these systems under operating conditions (operando methods) Generally, our work took industry and DOE report findings of current materials as a point of departure to focus on novel material sets for improved performance. In addition, some of our work focused on studying existing materials, for example observing battery solvent degradation, fuel cell catalyst coarsening or monitoring lithium dendrite growth, employing in operando methods developed within the center.« less

  16. Physics and Process Modeling (PPM) and Other Propulsion R and T. Volume 1; Materials Processing, Characterization, and Modeling; Lifting Models

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This CP contains the extended abstracts and presentation figures of 36 papers presented at the PPM and Other Propulsion R&T Conference. The focus of the research described in these presentations is on materials and structures technologies that are parts of the various projects within the NASA Aeronautics Propulsion Systems Research and Technology Base Program. These projects include Physics and Process Modeling; Smart, Green Engine; Fast, Quiet Engine; High Temperature Engine Materials Program; and Hybrid Hyperspeed Propulsion. Also presented were research results from the Rotorcraft Systems Program and work supported by the NASA Lewis Director's Discretionary Fund. Authors from NASA Lewis Research Center, industry, and universities conducted research in the following areas: material processing, material characterization, modeling, life, applied life models, design techniques, vibration control, mechanical components, and tribology. Key issues, research accomplishments, and future directions are summarized in this publication.

  17. Electronic materials high-T(sub c) superconductivity polymers and composites structural materials surface science and catalysts industry participation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The fifth year of the Center for Advanced Materials was marked primarily by the significant scientific accomplishments of the research programs. The Electronics Materials program continued its work on the growth and characterization of gallium arsenide crystals, and the development of theories to understand the nature and distribution of defects in the crystals. The High Tc Superconductivity Program continued to make significant contributions to the field in theoretical and experimental work on both bulk materials and thin films and devices. The Ceramic Processing group developed a new technique for cladding YBCO superconductors for high current applications in work with the Electric Power Research Institute. The Polymers and Composites program published a number of important studies involving atomistic simulations of polymer surfaces with excellent correlations to experimental results. The new Enzymatic Synthesis of Materials project produced its first fluorinated polymers and successfully began engineering enzymes designed for materials synthesis. The structural Materials Program continued work on novel alloys, development of processing methods for advanced ceramics, and characterization of mechanical properties of these materials, including the newly documented characterization of cyclic fatigue crack propagation behavior in toughened ceramics. Finally, the Surface Science and Catalysis program made significant contributions to the understanding of microporous catalysts and the nature of surface structures and interface compounds.

  18. An x-ray diffraction study of microstructural deformation induced by cyclic loading of selected steel

    NASA Astrophysics Data System (ADS)

    Fourspring, Patrick Michael

    X-ray double crystal diffractometry (XRDCD) and X-ray scanning diffractometry (XRSD) were used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The objectives of the investigation were to determine if X-ray diffraction could be used effectively to monitor cyclic microstructural deformation in polycrystalline Fe alloys and to study the distribution of the microstructural deformation induced by cyclic loading in these alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life of the material. Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0-10 mum), subsurface (10-300 mum), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. The results from the XRSD data show similar but less coherent trends than the results from the XRDCD data. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels. In addition, for the AISI304 material, the level of cyclic microstructural deformation in the bulk material was found to be greater than the level in the near surface material. In contrast, previous investigations have shown that the deformation is greater in the near surface than the bulk for Al alloys and bcc Fe alloys.

  19. Multiscale Modeling, Simulation and Visualization and Their Potential for Future Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    2002-01-01

    This document contains the proceedings of the Training Workshop on Multiscale Modeling, Simulation and Visualization and Their Potential for Future Aerospace Systems held at NASA Langley Research Center, Hampton, Virginia, March 5 - 6, 2002. The workshop was jointly sponsored by Old Dominion University's Center for Advanced Engineering Environments and NASA. Workshop attendees were from NASA, other government agencies, industry, and universities. The objectives of the workshop were to give overviews of the diverse activities in hierarchical approach to material modeling from continuum to atomistics; applications of multiscale modeling to advanced and improved material synthesis; defects, dislocations, and material deformation; fracture and friction; thin-film growth; characterization at nano and micro scales; and, verification and validation of numerical simulations, and to identify their potential for future aerospace systems.

  20. High-temperature electronics

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Seng, Gary T.

    1990-01-01

    To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices.

  1. BIOMASS ACCUMULATION AT THE ELIZABETH CITY AND DENVER FEDERAL CENTER PRBS

    EPA Science Inventory

    Microbial characterization results, based on PLFA profiles, from the Elizabeth City PRB and adjacent aquifer materials showed a diverse microbiological community dominated by Gram-negative bacteria. Iron core samples from near the upgradient edge of the PRB are typically enriche...

  2. Advanced Materials for Exploration Task Research Results

    NASA Technical Reports Server (NTRS)

    Cook, M. B. (Compiler); Murphy, K. L.; Schneider, T.

    2008-01-01

    The Advanced Materials for Exploration (AME) Activity in Marshall Space Flight Center s (MSFC s) Exploration Science and Technology Directorate coordinated activities from 2001 to 2006 to support in-space propulsion technologies for future missions. Working together, materials scientists and mission planners identified materials shortfalls that are limiting the performance of long-term missions. The goal of the AME project was to deliver improved materials in targeted areas to meet technology development milestones of NASA s exploration-dedicated activities. Materials research tasks were targeted in five areas: (1) Thermal management materials, (2) propulsion materials, (3) materials characterization, (4) vehicle health monitoring materials, and (5) structural materials. Selected tasks were scheduled for completion such that these new materials could be incorporated into customer development plans.

  3. Smart Materials, Structures, and Mathematical Issues for Active Damage Control

    DTIC Science & Technology

    1997-10-01

    composites at both low and high velocities. The effect of low volume fractions (3% and 6%) of embedded Nitinol fibers on the impact-absorbing ability...ICI Wilton Materials Research Center General Dynamics Lockheed-Martin Hercules Aerospace Company U.S. Nitinol Owens-Corning DSB Associates...Reduction in a Plate," submitted to AIAA Journal. Paine, J. S. N., Rogers, C. A. 1993. "Characterization of Interfacial Adhesion of Nitinol Fibers

  4. Characterization of the proton irradiation induced luminescence of materials and application in radiation oncology dosimetry

    NASA Astrophysics Data System (ADS)

    Darafsheh, Arash; Zhang, Rongxiao; Kassaee, Alireza; Finlay, Jarod C.

    2018-03-01

    Visible light generated as the result of interaction of ionizing radiation with matter can be used for radiation therapy quality assurance. In this work, we characterized the visible light observed during proton irradiation of poly(methyl methacrylate) (PMMA) and silica glass fiber materials by performing luminescence spectroscopy. The spectra of the luminescence signal from PMMA and silica glass fibers during proton irradiation showed continuous spectra whose shape were different from that expected from Čerenkov radiation, indicating that Čerenkov radiation cannot be the responsible radioluminescence signal. The luminescence signal from each material showed a Bragg peak pattern and their corresponding proton ranges are in agreement with measurements performed by a standard ion chamber. The spectrum of the silica showed two peaks at 460 and 650 nm stem from the point defects of the silica: oxygen deficiency centers (ODC) and non-bridging oxygen hole centers (NBOHC), respectively. The spectrum of the PMMA fiber showed a continuous spectrum with a peak at 410 nm whose origin is connected with the fluorescence of the PMMA material. Our results are of interest for various applications based on imaging radioluminescent signal in proton therapy and will inform on the design of high-resolution fiber probes for proton therapy dosimetry.

  5. The patterning center of excellence (CoE): an evolving lithographic enablement model

    NASA Astrophysics Data System (ADS)

    Montgomery, Warren; Chun, Jun Sung; Liehr, Michael; Tittnich, Michael

    2015-03-01

    As EUV lithography moves toward high-volume manufacturing (HVM), a key need for the lithography materials makers is access to EUV photons and imaging. The SEMATECH Resist Materials Development Center (RMDC) provided a solution path by enabling the Resist and Materials companies to work together (using SUNY Polytechnic Institute's Colleges of Nanoscale Science and Engineering (SUNY Poly CNSE) -based exposure systems), in a consortium fashion, in order to address the need for EUV photons. Thousands of wafers have been processed by the RMDC (leveraging the SUNY Poly CNSE/SEMATECH MET, SUNY Poly CNSE Alpha Demo Tool (ADT) and the SEMATECH Lawrence Berkeley MET) allowing many of the questions associated with EUV materials development to be answered. In this regard the activities associated with the RMDC are continuing. As the major Integrated Device Manufacturers (IDMs) have continued to purchase EUV scanners, Materials companies must now provide scanner based test data that characterizes the lithography materials they are producing. SUNY Poly CNSE and SEMATECH have partnered to evolve the RMDC into "The Patterning Center of Excellence (CoE)". The new CoE leverages the capability of the SUNY Poly CNSE-based full field ASML 3300 EUV scanner and combines that capability with EUV Microexposure (MET) systems resident in the SEMATECH RMDC to create an integrated lithography model which will allow materials companies to advance materials development in ways not previously possible.

  6. Characterizing GEO Titan IIIC Transtage Fragmentations using Ground-Based and Telescopic Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather; Anz-Meador, Phillip; Reyes, Jacqueline A.

    2017-01-01

    In a continued effort to better characterize the geosynchronous orbit (GEO) environment, NASA's Orbital Debris Program Office (ODPO) utilizes various ground-based optical assets to acquire photometric and spectral data of known debris associated with fragmentations in or near GEO. The Titan IIIC Transtage upper stage is known to have fragmented four times. Two of the four fragmentations were in GEO while the Transtage fragmented a third time in GEO transfer orbit. The forth fragmentation occurred in low Earth orbit. To better assess and characterize these fragmentations, the NASA ODPO acquired a Titan Transtage test and display article previously in the custody of the 309th Aerospace Maintenance and Regeneration Group (AMARG) in Tucson, Arizona. After initial inspections at AMARG demonstrated that it was of sufficient fidelity to be of interest, the test article was brought to NASA Johnson Space Center (JSC) to continue material analysis and historical documentation. The Transtage has undergone two separate spectral measurement campaigns to characterize the reflectance spectroscopy of historical aerospace materials. These data have been incorporated into the NASA Spectral Database, with the goal of using telescopic data comparisons for potential material identification. A Light Detection and Ranging (LIDAR) system scan also has been completed and a scale model has been created for use in the Optical Measurement Center (OMC) for photometric analysis of an intact Transtage, including bidirectional reflectance distribution function (BRDF) measurements. An historical overview of the Titan IIIC Transtage, the current analysis that has been done to date, and the future work to be completed in support of characterizing the GEO and near GEO orbital debris environment will be discussed in the subsequent presentation.

  7. Characterizing GEO Titan IIIC Transtage Fragmentations Using Ground-based and Telescopic Measurements

    NASA Astrophysics Data System (ADS)

    Cowardin, H.; Anz-Meador, P.; Reyes, J. A.

    In a continued effort to better characterize the geosynchronous orbit (GEO) environment, NASA’s Orbital Debris Program Office (ODPO) utilizes various ground-based optical assets to acquire photometric and spectral data of known debris associated with fragmentations in or near GEO. The Titan IIIC Transtage upper stage is known to have fragmented four times. Two of the four fragmentations were in GEO while the Transtage fragmented a third time in GEO transfer orbit. The forth fragmentation occurred in low Earth orbit. To better assess and characterize these fragmentations, the NASA ODPO acquired a Titan Transtage test and display article previously in the custody of the 309th Aerospace Maintenance and Regeneration Group (AMARG) in Tucson, Arizona. After initial inspections at AMARG demonstrated that it was of sufficient fidelity to be of interest, the test article was brought to NASA Johnson Space Center (JSC) to continue material analysis and historical documentation. The Transtage has undergone two separate spectral measurement campaigns to characterize the reflectance spectroscopy of historical aerospace materials. These data have been incorporated into the NASA Spectral Database, with the goal of using telescopic data comparisons for potential material identification. A Light Detection and Ranging (LIDAR) system scan also has been completed and a scale model has been created for use in the Optical Measurement Center (OMC) for photometric analysis of an intact Transtage, including bidirectional reflectance distribution function (BRDF) measurements. An historical overview of the Titan IIIC Transtage, the current analysis that has been done to date, and the future work to be completed in support of characterizing the GEO and near GEO orbital debris environment will be discussed in the subsequent presentation.

  8. Solid State Technology Branch of NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A collection of papers written by the members of the Solid State Technology Branch of NASA LeRC from Jun. 1991 - Jun. 1992 is presented. A range of topics relating to superconductivity, Monolithic Microwave Circuits (MMIC's), coplanar waveguides, and material characterization is covered.

  9. Preserving Samples and Their Scientific Integrity — Insights into MSR from the Astromaterials Acquisition and Curation Office at NASA Johnson Space Center

    NASA Astrophysics Data System (ADS)

    Calaway, M. J.; Regberg, A. B.; Mitchell, J. L.; Fries, M. D.; Zeigler, R. A.; McCubbin, F. M.; Harrington, A. D.

    2018-04-01

    Rigorous collection of samples for contamination knowledge, the information gained from the characterization of reference materials and witness plates in concurrence with sample return, is essential for MSR mission success.

  10. Planar polymer and glass graded index waveguides for data center applications

    NASA Astrophysics Data System (ADS)

    Pitwon, Richard; Yamauchi, Akira; Brusberg, Lars; Wang, Kai; Ishigure, Takaaki; Schröder, Henning; Neitz, Marcel; Worrall, Alex

    2016-03-01

    Embedded optical waveguide technology for optical printed circuit boards (OPCBs) has advanced considerably over the past decade both in terms of materials and achievable waveguide structures. Two distinct classes of planar graded index multimode waveguide have recently emerged based on polymer and glass materials. We report on the suitability of graded index polymer waveguides, fabricated using the Mosquito method, and graded index glass waveguides, fabricated using ion diffusion on thin glass foils, for deployment within future data center environments as part of an optically disaggregated architecture. To this end, we first characterize the wavelength dependent performance of different waveguide types to assess their suitability with respect to two dominant emerging multimode transceiver classes based on directly modulated 850 nm VCSELs and 1310 silicon photonics devices. Furthermore we connect the different waveguide types into an optically disaggregated data storage system and characterize their performance with respect to different common high speed data protocols used at the intra and inter rack level including 10 Gb Ethernet and Serial Attached SCSI.

  11. Accurate Characterization of the Pore Volume in Microporous Crystalline Materials

    PubMed Central

    2017-01-01

    Pore volume is one of the main properties for the characterization of microporous crystals. It is experimentally measurable, and it can also be obtained from the refined unit cell by a number of computational techniques. In this work, we assess the accuracy and the discrepancies between the different computational methods which are commonly used for this purpose, i.e, geometric, helium, and probe center pore volumes, by studying a database of more than 5000 frameworks. We developed a new technique to fully characterize the internal void of a microporous material and to compute the probe-accessible and -occupiable pore volume. We show that, unlike the other definitions of pore volume, the occupiable pore volume can be directly related to the experimentally measured pore volumes from nitrogen isotherms. PMID:28636815

  12. Accurate Characterization of the Pore Volume in Microporous Crystalline Materials

    DOE PAGES

    Ongari, Daniele; Boyd, Peter G.; Barthel, Senja; ...

    2017-06-21

    Pore volume is one of the main properties for the characterization of microporous crystals. It is experimentally measurable, and it can also be obtained from the refined unit cell by a number of computational techniques. In this work, we assess the accuracy and the discrepancies between the different computational methods which are commonly used for this purpose, i.e, geometric, helium, and probe center pore volumes, by studying a database of more than 5000 frameworks. We developed a new technique to fully characterize the internal void of a microporous material and to compute the probe-accessible and -occupiable pore volume. Lasty, wemore » show that, unlike the other definitions of pore volume, the occupiable pore volume can be directly related to the experimentally measured pore volumes from nitrogen isotherms.« less

  13. Preparation and characterization of a suite of ephedra-containing standard reference materials.

    PubMed

    Sharpless, Katherine E; Anderson, David L; Betz, Joseph M; Butler, Therese A; Capar, Stephen G; Cheng, John; Fraser, Catharine A; Gardner, Graeme; Gay, Martha L; Howell, Daniel W; Ihara, Toshihide; Khan, Mansoor A; Lam, Joseph W; Long, Stephen E; McCooeye, Margaret; Mackey, Elizabeth A; Mindak, William R; Mitvalsky, Staci; Murphy, Karen E; NguyenPho, Agnes; Phinney, Karen W; Porter, Barbara J; Roman, Mark; Sander, Lane C; Satterfield, Mary B; Scriver, Christine; Sturgeon, Ralph; Thomas, Jeanice Brown; Vocke, Robert D; Wise, Stephen A; Wood, Laura J; Yang, Lu; Yen, James H; Ziobro, George C

    2006-01-01

    The National Institute of Standards and Technology, the U.S. Food and Drug Administration, Center for Drug Evaluation and Research and Center for Food Safety and Applied Nutrition, and the National Institutes of Health, Office of Dietary Supplements, are collaborating to produce a series of Standard Reference Materials (SRMs) for dietary supplements. A suite of ephedra materials is the first in the series, and this paper describes the acquisition, preparation, and value assignment of these materials: SRMs 3240 Ephedra sinica Stapf Aerial Parts, 3241 E. sinica Stapf Native Extract, 3242 E. sinica Stapf Commercial Extract, 3243 Ephedra-Containing Solid Oral Dosage Form, and 3244 Ephedra-Containing Protein Powder. Values are assigned for ephedrine alkaloids and toxic elements in all 5 materials. Values are assigned for other analytes (e.g., caffeine, nutrient elements, proximates, etc.) in some of the materials, as appropriate. Materials in this suite of SRMs are intended for use as primary control materials when values are assigned to in-house (secondary) control materials and for validation of analytical methods for the measurement of alkaloids, toxic elements, and, in the case of SRM 3244, nutrients in similar materials.

  14. Research studies on advanced optical module/head designs for optical devices

    NASA Technical Reports Server (NTRS)

    Burke, James J.

    1991-01-01

    A summary is presented of research in optical data storage materials and of research at the center. The first section contains summary reports under the general headings of: (1) Magnetooptic media: modeling, design, fabrication, characterization, and testing; (2) Optical heads: holographic optical elements; and (3) Optical heads: integrated optics. The second section consist of a proposal entitled, Signal Processing Techniques for Optical Data Storage. And section three presents various publications prepared by the center.

  15. Characterization of Candidate Solar Sail Material Exposed to Space Environmental Effects

    NASA Technical Reports Server (NTRS)

    Edwards, David; Hovater, Mary; Hubbs, Whitney; Wertz, George; Hollerman, William; Gray, Perry

    2003-01-01

    Solar sailing is a unique form of propulsion where a spacecraft gains momentum from incident photons. Solar sails are not limited by reaction mass and provide continual acceleration, reduced only by the lifetime of the lightweight film in the space environment and the distance to the Sun. Once thought to be difficult or impossible, solar sailing has come out of science fiction and into the realm of possibility. Any spacecraft using this method would need to deploy a thin sail that could be as large as many kilometers in extent. The availability of strong, ultra lightweight, and radiation resistant materials will determine the future of solar sailing. The National Aeronautics and Space Administration's Marshall Space Flight Center (MSFC) is concentrating research into the utilization of ultra lightweight materials for spacecraft propulsion. The Space Environmental Effects Team at MSFC is actively characterizing candidate solar sail material to evaluate the thermo-optical and mechanical properties after exposure to space environmental effects. This paper will describe the exposure of candidate solar sail materials to emulated space environmental effects including energetic electrons, combined electrons and Ultraviolet radiation, and hypervelocity impact of irradiated solar sail material. This paper will describe the testing procedure and the material characterization results of this investigation.

  16. NASA Space Engineering Research Center for Utilization of Local Planetary Resources

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Lewis, John S.

    1991-01-01

    In the processing of propellants, volatiles, and metals subject area, the following topics are discussed: reduction of lunar regolith; reduction of carbon dioxide; and reduction of carbonaceous materials. Other areas addressed include: (1) production of structural and refractory materials; (2) resource discovery and characterization; (3) system automation and optimization; and (4) database development. The majority of these topics are discussed with respect to the development of lunar and mars bases. Some main topics of interest include: asteroid resources, lunar resources, mars resources, materials processing, construction materials, propellant production, oxygen production, and space-based oxygen production plants.

  17. Characterization of an Integral Thermal Protection and Cryogenic Insulation Material for Advanced Space Transportation Vehicles

    NASA Technical Reports Server (NTRS)

    Salerno, L. J.; White, S. M.; Helvensteijn, B. P. M.

    2000-01-01

    NASA's planned advanced space transportation vehicles will benefit from the use of integral/conformal cryogenic propellant tanks which will reduce the launch weight and lower the earth-to-orbit costs considerably. To implement the novel concept of integral/conformal tanks requires developing an equally novel concept in thermal protection materials. Providing insulation against reentry heating and preserving propellant mass can no longer be considered separate problems to be handled by separate materials. A new family of materials, Superthermal Insulation (STI), has been conceiving and investigated by NASA's Ames Research Center to simultaneously provide both thermal protection and cryogenic insulation in a single, integral material.

  18. An instrument for spatial conductivity measurements of high Tc superconducting (HTSC) materials

    NASA Technical Reports Server (NTRS)

    Vansant, T.

    1991-01-01

    High T(sub c) Superconducting (HTSC) thin films are suggested for use in a number of aerospace applications such as an IR bolometer and as electromagnetic shielding. As part of its flight assurance role, the Materials Branch of the Goddard Space Flight Center has initiated development of an instrument capable of measuring variations in conductivity for flat samples using an eddy current testing device and an X-Y positioning table. This instrument was used to examine bulk HTSC samples. System changes that would enable characterization of thin film materials are discussed.

  19. Magnetic Ultrathin Films: Multilayers and Surfaces, Interfaces and Characterization

    DTIC Science & Technology

    1993-04-01

    Copyright Clearance Center, Salem , Massachusetts. Published by: Materials Research Society 9,S30 McKnight Road Pittsburgh, Pennsylvania 15237 Telephone...magnetization are parallel to each other, and pF4 = 2 PFA (l-l) to be the resistivity when they are antiparallel. Here PF is the F resistivity measured

  20. Nuclear waste management. Semiannual progress report, October 1982-March 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikalla, T.D.; Powell, J.A.

    1983-06-01

    This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies.

  1. Determination Of Constituent Concentration In Fluid Mixtures Using Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Galloway, Robert L.; Collins, Jerry C.; Carroll, Frank E.

    1987-01-01

    The primary application of magnetic resonance imaging (MRI) has been qualitative and anatomical evaluation of patient status. Recent efforts to analyze image information for quantitative evaluation centered on two relaxation parameters, Tl and T2, as the descriptors for the image data. In our work we have found that relaxation curves for biologic materials cannot be described by a monoexponential function and that, in a spin echo system, calculated Tl values are dependent on repetition time. This finding is not unexpected since, in physiologic imaging, any region of interest (ROI), is composed of a number of distinct substances and the response of that ROI will be a composite of the constituent materials. The purpose of our study was to develop a method by which the relaxation behaviors of a composite of physiological material might be characterized and use that characterization to determine its constituent materials. We created a phantom in which volumes of several "pure" materials (blood, plasma, saline and oil) were available as well as volumes which contained concentric enclosures of the pure materials. Images were formed at a number of repetition times, ranging from 160 milliseconds to 2 seconds. The image data was then transferred to a VAX 11/750 where regions of interest were marked and the mean image intensity for each ROI at each repetition time was calculated. The resultant relaxation curves of the pure materials formed basis vectors for the composite responses and the fractional content of each material was determined by a least-square error fit to the basis vectors. Excellent agreement was seen between known and measured mixture percentages. Ongoing work is centered around optimizing repetition time selection and accounting for the interaction between species in the mixtures.

  2. Interaction of spatially separated oscillating solitons in biased two-photon photorefractive materials

    NASA Astrophysics Data System (ADS)

    Asif, Noushin; Biswas, Anjan; Jovanoski, Z.; Konar, S.

    2015-01-01

    This paper presents the dynamics of two spatially separated optical solitons in two-photon photorefractive materials. The variational formalism has been employed to derive evolution equations of different parameters which characterize the dynamics of two interacting solitons. This approach yields a system of coupled ordinary differential equations for evolution of different parameters characterizing solitons such as amplitude, spatial width, chirp, center of gravity, etc., which have been subsequently solved adopting numerical method to extract information on their dynamics. Depending on their initial separation and power, solitons are shown to either disperse or compresses individually and attract each other. Dragging and trapping of a probe soliton by another pump have been discussed.

  3. Material Characterization of Microsphere-Based Scaffolds with Encapsulated Raw Materials

    PubMed Central

    Sridharan, BanuPriya; Mohan, Neethu; Berkland, Cory J.; Detamore, Michael S.

    2016-01-01

    “Raw materials,” or materials capable of serving both as building blocks and as signals, which are often but not always natural materials, are taking center stage in biomaterials for contemporary regenerative medicine. In osteochondral tissue engineering, a field leveraging the underlying bone to facilitate cartilage regeneration, common raw materials include chondroitin sulfate (CS) for cartilage and β-tricalcium phosphate (TCP) for bone. Building on our previous work with gradient scaffolds based on microspheres, here we delved deeper into the characterization of individual components. In the current study, the release of CS and TCP from poly(D,L-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds was evaluated over a time period of 4 weeks. Raw material encapsulated groups were compared to ‘blank’ groups and evaluated for surface topology, molecular weight, and mechanical performance as a function of time. The CS group may have led to increased surface porosity, and the addition of CS improved the mechanical performance of the scaffold. The finding that CS was completely released into the surrounding media by 4 weeks has a significant impact on future in vivo studies, given rapid bioavailability. The addition of TCP seemed to contribute to the rough external appearance of the scaffold. The current study provides an introduction to degradation patterns of homogenous raw material encapsulated scaffolds, providing characterization data to advance the field of microsphere-based scaffolds in tissue engineering. PMID:27040236

  4. Martian Analogue Sample Characterization and Spectral Library Development at the Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.

    2002-01-01

    An extensive collection of Martian analogue samples housed at the Johnson Space Center is the focus of ongoing research by the JSC Mars soil genesis group and their collaborators. Because the major element composition of Martian meteorites and in situ analyses of Martian soils and rocks indicate that Mars is predominantly an iron-rich basaltic world, the focus of active sample collection and analysis is basaltic materials and their hydrolytic (both aqueous and hydrothermal) and sulfatetic alteration products. Described below are the scope of the JSC Mars analogue sample collection, the characterization process, and plans to incorporate the data into spectral libraries for the Mars 2003 Mars Exploration Rover (MER) and Mars 2005 Mars Reconnaissance Orbiter (MRO) CRISM missions.

  5. Heart of the Solution - Energy Frontiers (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Green, Peter F. (Director, Center for Solar and Thermal Energy Conversion, University of Michigan); CSTEC Staff

    2017-12-09

    'Heart of the Solution - Energy Frontiers' was submitted by the Center for Solar and Thermal Energy Conversion (CSTEC) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was both the People's Choice Award winner and selected as one of five winners by a distinguished panel of judges for its 'exemplary explanation of the role of an Energy Frontier Research Center'. The Center for Solar and Thermal Energy Conversion is directed by Peter F. Green at the University of Michigan. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Solar and Thermal Energy Conversion is 'to study complex material structures on the nanoscale to identify key features for their potential use as materials to convert solar energy and heat to electricity.' Research topics are: solar photovoltaic, photonic, optics, solar thermal, thermoelectric, phonons, thermal conductivity, solar electrodes, defects, ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, and self-assembly.

  6. Materials Characterization of Additively Manufactured Components for Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary

    2015-01-01

    To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRC's Additive Manufacturing roles and experimental findings will be presented.

  7. Material Characterization of Additively Manufactured Components for Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary

    2015-01-01

    To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRCs Additive Manufacturing roles and experimental findings will be presented.

  8. The Center for Nanophase Materials Sciences

    NASA Astrophysics Data System (ADS)

    Lowndes, Douglas

    2005-03-01

    The Center for Nanophase Materials Sciences (CNMS) located at Oak Ridge National Laboratory (ORNL) will be the first DOE Nanoscale Science Research Center to begin operation, with construction to be completed in April 2005 and initial operations in October 2005. The CNMS' scientific program has been developed through workshops with the national community, with the goal of creating a highly collaborative research environment to accelerate discovery and drive technological advances. Research at the CNMS is organized under seven Scientific Themes selected to address challenges to understanding and to exploit particular ORNL strengths (see http://cnms.ornl.govhttp://cnms.ornl.gov). These include extensive synthesis and characterization capabilities for soft, hard, nanostructured, magnetic and catalytic materials and their composites; neutron scattering at the Spallation Neutron Source and High Flux Isotope Reactor; computational nanoscience in the CNMS' Nanomaterials Theory Institute and utilizing facilities and expertise of the Center for Computational Sciences and the new Leadership Scientific Computing Facility at ORNL; a new CNMS Nanofabrication Research Laboratory; and a suite of unique and state-of-the-art instruments to be made reliably available to the national community for imaging, manipulation, and properties measurements on nanoscale materials in controlled environments. The new research facilities will be described together with the planned operation of the user research program, the latter illustrated by the current ``jump start'' user program that utilizes existing ORNL/CNMS facilities.

  9. Neural network approach for characterizing structural transformations by X-ray absorption fine structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timoshenko, Janis; Frenkel, Anatoly I.; Cintins, Arturs

    The knowledge of coordination environment around various atomic species in many functional materials provides a key for explaining their properties and working mechanisms. Many structural motifs and their transformations are difficult to detect and quantify in the process of work (operando conditions), due to their local nature, small changes, low dimensionality of the material, and/or extreme conditions. Here we use artificial neural network approach to extract the information on the local structure and its in-situ changes directly from the X-ray absorption fine structure spectra. We illustrate this capability by extracting the radial distribution function (RDF) of atoms in ferritic andmore » austenitic phases of bulk iron across the temperature-induced transition. Integration of RDFs allows us to quantify the changes in the iron coordination and material density, and to observe the transition from body-centered to face-centered cubic arrangement of iron atoms. Furthermore, this method is attractive for a broad range of materials and experimental conditions« less

  10. Neural network approach for characterizing structural transformations by X-ray absorption fine structure

    DOE PAGES

    Timoshenko, Janis; Frenkel, Anatoly I.; Cintins, Arturs; ...

    2018-05-25

    The knowledge of coordination environment around various atomic species in many functional materials provides a key for explaining their properties and working mechanisms. Many structural motifs and their transformations are difficult to detect and quantify in the process of work (operando conditions), due to their local nature, small changes, low dimensionality of the material, and/or extreme conditions. Here we use artificial neural network approach to extract the information on the local structure and its in-situ changes directly from the X-ray absorption fine structure spectra. We illustrate this capability by extracting the radial distribution function (RDF) of atoms in ferritic andmore » austenitic phases of bulk iron across the temperature-induced transition. Integration of RDFs allows us to quantify the changes in the iron coordination and material density, and to observe the transition from body-centered to face-centered cubic arrangement of iron atoms. Furthermore, this method is attractive for a broad range of materials and experimental conditions« less

  11. Characterization of contaminant removal by an optical strip material

    NASA Astrophysics Data System (ADS)

    Hamilton, James P.; Frigo, S. P.; Caroll, Brenden J.; Assoufidyen, L.; Lewis, Matthew S.; Cook, Russell E.; de Carlo, F.

    2001-03-01

    Department of Chemistry and Engineering Physics, University of Wisconsin-Platteville, Platteville, WI 53818 Advanced Photon Source, X-Ray Facilities Division, Argonne National Laboratory, Advanced Photon Source, User Program Division, Argonne National Laboratory, *Electron Microscopy Center, Materials Science Division, Argonne National Laboratory, Argonne National Laboratory, 9700 S. Cass Ave., Argonne IL 60439-4856 USA A novel optical strip coating material, Opticlean, has been shown to safely remove fingerprints, particles and contamination from a variety of optical surfaces including coated glass, Si and first surface mirrors. Contaminant removal was monitored by Nomarski, Atomic Force and Scanning Electron Microscopy. Sub-micron features on diffraction gratings and silicon wafers were also cleaned without leaving light scattering particles on the surface. **This work was supported in part by the U.S. Department of Energy, Basic Energy Sciences-Materials Sciences, under contract no. W-31-109-ENG-38. The authors acknowledge the support and facilities provided by the Advanced Photon Source and the Electron Microscopy Center at Argonne National Laboratory.

  12. Neural Network Approach for Characterizing Structural Transformations by X-Ray Absorption Fine Structure Spectroscopy

    NASA Astrophysics Data System (ADS)

    Timoshenko, Janis; Anspoks, Andris; Cintins, Arturs; Kuzmin, Alexei; Purans, Juris; Frenkel, Anatoly I.

    2018-06-01

    The knowledge of the coordination environment around various atomic species in many functional materials provides a key for explaining their properties and working mechanisms. Many structural motifs and their transformations are difficult to detect and quantify in the process of work (operando conditions), due to their local nature, small changes, low dimensionality of the material, and/or extreme conditions. Here we use an artificial neural network approach to extract the information on the local structure and its in situ changes directly from the x-ray absorption fine structure spectra. We illustrate this capability by extracting the radial distribution function (RDF) of atoms in ferritic and austenitic phases of bulk iron across the temperature-induced transition. Integration of RDFs allows us to quantify the changes in the iron coordination and material density, and to observe the transition from a body-centered to a face-centered cubic arrangement of iron atoms. This method is attractive for a broad range of materials and experimental conditions.

  13. Characterization and development of materials for advanced textile composites

    NASA Technical Reports Server (NTRS)

    Hartness, J. Timothy; Greene, Timothy L.; Taske, Leo E.

    1993-01-01

    Work ongoing under the NASA Langley - Advanced Composite Technology (ACT) program is discussed. The primary emphasis of the work centers around the development and characterization of graphite fiber that has been impregnated with an epoxy powder. Four epoxies have been characterized in towpreg form as to their weaveability and braidability. Initial mechanical properties have been generated on each resin system. These include unidirectional as well as 8-harness satin cloth. Initial 2D and 3D weaving and braiding trials will be reported on as well as initial efforts to develop towpreg suitable for advanced tow placement.

  14. NDE for Material Characterization in Aeronautic and Space Applications

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Kautz, Harold E.; Gyekenyesi, Andrew L.; Abdul-Aziz, Ali; Martin, Richard E.

    2000-01-01

    This paper describes selected nondestructive evaluation (NDE) approaches that were developed or tailored at the NASA Glenn Research Center for characterizing advanced material systems. The emphasis is on high-temperature aerospace propulsion applications. The material systems include monolithic ceramics, superalloys, and high temperature composites. In the aeronautic area, the highlights are cooled ceramic plate structures for turbine applications, F-TiAl blade materials for low-pressure turbines, thermoelastic stress analysis (TSA) for residual stress measurements in titanium based and nickel based engine materials, and acousto ultrasonics (AU) for creep damage assessment in nickel-based alloys. In the space area, examples consist of cooled carbon-carbon composites for gas generator combustors and flywheel rotors composed of carbon fiber reinforced polymer matrix composites for energy storage on the international space station (ISS). The role of NDE in solving manufacturing problems, the effect of defects on structural behavior, and the use of NDE-based finite element modeling are discussed. NDE technology needs for improved microelectronic and mechanical systems as well as health monitoring of micro-materials and components are briefly discussed.

  15. Testing and Characterization of a Prototype Telescope for the Evolved Laser Interferometer Space Antenna (eLISA)

    NASA Technical Reports Server (NTRS)

    Sankar, S.; Livas, J.

    2016-01-01

    We describe our efforts to fabricate, test and characterize a prototype telescope for the eLISA mission. Much of our work has centered on the modeling and measurement of scattered light performance. This work also builds on a previous demonstration of a high dimensional stability metering structure using particular choices of materials and interfaces. We will discuss ongoing plans to merge these two separate demonstrations into a single telescope design demonstrating both stray light and dimensional stability requirements simultaneously.

  16. Propulsion Research at the Propulsion Research Center of the NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Blevins, John; Rodgers, Stephen

    2003-01-01

    The Propulsion Research Center of the NASA Marshall Space Flight Center is engaged in research activities aimed at providing the bases for fundamental advancement of a range of space propulsion technologies. There are four broad research themes. Advanced chemical propulsion studies focus on the detailed chemistry and transport processes for high-pressure combustion, and on the understanding and control of combustion stability. New high-energy propellant research ranges from theoretical prediction of new propellant properties through experimental characterization propellant performance, material interactions, aging properties, and ignition behavior. Another research area involves advanced nuclear electric propulsion with new robust and lightweight materials and with designs for advanced fuels. Nuclear electric propulsion systems are characterized using simulated nuclear systems, where the non-nuclear power source has the form and power input of a nuclear reactor. This permits detailed testing of nuclear propulsion systems in a non-nuclear environment. In-space propulsion research is focused primarily on high power plasma thruster work. New methods for achieving higher thrust in these devices are being studied theoretically and experimentally. Solar thermal propulsion research is also underway for in-space applications. The fourth of these research areas is advanced energetics. Specific research here includes the containment of ion clouds for extended periods. This is aimed at proving the concept of antimatter trapping and storage for use ultimately in propulsion applications. Another activity in this involves research into lightweight magnetic technology for space propulsion applications.

  17. Powder Processing of High Temperature Cermets and Carbides at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Salvail, Pat; Panda, Binayak; Hickman, Robert R.

    2007-01-01

    The Materials and Processing Laboratory at NASA Marshall Space Flight Center is developing Powder Metallurgy (PM) processing techniques for high temperature cermet and carbide material consolidation. These new group of materials would be utilized in the nuclear core for Nuclear Thermal Rockets (NTR). Cermet materials offer several advantages for NTR such as retention of fission products and fuels, better thermal shock resistance, hydrogen compatibility, high thermal conductivity, and high strength. Carbide materials offer the highest operating temperatures but are sensitive to thermal stresses and are difficult to process. To support the effort, a new facility has been setup to process refractory metal, ceramic, carbides and depleted uranium-based powders. The facility inciudes inert atmosphere glove boxes for the handling of reactive powders, a high temperature furnace, and powder processing equipment used for blending, milling, and sieving. The effort is focused on basic research to identify the most promising compositions and processing techniques. Several PM processing methods including Cold and Hot Isostatic Pressing are being evaluated to fabricate samples for characterization and hot hydrogen testing.

  18. Department of Defense In-House RDT and E Activities Report for Fiscal Year 1990

    DTIC Science & Technology

    1990-01-01

    equipment systems. Advanced personnel and cargo airdrop system. 1FUNCTIONS/EQUIPMENT!/FACI LITIES Biotechnology lab, materials characterization lab...4 Airworthines. Qualification Test Directorate ..... .................................... 5 Armament Rrsearch . Developaent & Eaguiecring Center...1), exploratory development (6.2), advanced development (6.3), engineering development (6.4), management support (6.5), operational systems support

  19. Homelessness as the Unforgiving Minute of the Present: The Rhetorical Tenses of Democratic Citizenship

    ERIC Educational Resources Information Center

    Loehwing, Melanie

    2010-01-01

    Popular discourse and advocacy efforts characterize homelessness as a social problem bound by the present-centered concerns of physical affliction and material deprivation. Wayne Powers's documentary film "Reversal of Fortune" exemplifies this tendency by performing a "social experiment" to investigate how giving a homeless man $100,000 would…

  20. Developing Self-Regulated Learners through Collaborative Online Case Discussion in Educational Psychology

    ERIC Educational Resources Information Center

    Willems, Patricia P.; Gonzalez-DeHass, Alyssa

    2015-01-01

    Case study instruction is characterized by centering instruction around the use of hypothetical classroom dilemmas. It uses descriptive stories and invites students to discuss application of course material as they engage in hypothetical classroom problem-solving and teacher decision-making. Teaching is a complex profession that requires high…

  1. Reaction Control System Thruster Cracking Consultation: NASA Engineering and Safety Center (NESC) Materials Super Problem Resolution Team (SPRT) Findings

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Smith, Stephen W.; Shah, Sandeep R.; Piascik, Robert S.

    2005-01-01

    The shuttle orbiter s reaction control system (RCS) primary thruster serial number 120 was found to contain cracks in the counter bores and relief radius after a chamber repair and rejuvenation was performed in April 2004. Relief radius cracking had been observed in the 1970s and 1980s in seven thrusters prior to flight; however, counter bore cracking had never been seen previously in RCS thrusters. Members of the Materials Super Problem Resolution Team (SPRT) of the NASA Engineering and Safety Center (NESC) conducted a detailed review of the relevant literature and of the documentation from the previous RCS thruster failure analyses. It was concluded that the previous failure analyses lacked sufficient documentation to support the conclusions that stress corrosion cracking or hot-salt cracking was the root cause of the thruster cracking and lacked reliable inspection controls to prevent cracked thrusters from entering the fleet. The NESC team identified and performed new materials characterization and mechanical tests. It was determined that the thruster intergranular cracking was due to hydrogen embrittlement and that the cracking was produced during manufacturing as a result of processing the thrusters with fluoride-containing acids. Testing and characterization demonstrated that appreciable environmental crack propagation does not occur after manufacturing.

  2. Computational Nanotechnology at NASA Ames Research Center, 1996

    NASA Technical Reports Server (NTRS)

    Globus, Al; Bailey, David; Langhoff, Steve; Pohorille, Andrew; Levit, Creon; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    Some forms of nanotechnology appear to have enormous potential to improve aerospace and computer systems; computational nanotechnology, the design and simulation of programmable molecular machines, is crucial to progress. NASA Ames Research Center has begun a computational nanotechnology program including in-house work, external research grants, and grants of supercomputer time. Four goals have been established: (1) Simulate a hypothetical programmable molecular machine replicating itself and building other products. (2) Develop molecular manufacturing CAD (computer aided design) software and use it to design molecular manufacturing systems and products of aerospace interest, including computer components. (3) Characterize nanotechnologically accessible materials of aerospace interest. Such materials may have excellent strength and thermal properties. (4) Collaborate with experimentalists. Current in-house activities include: (1) Development of NanoDesign, software to design and simulate a nanotechnology based on functionalized fullerenes. Early work focuses on gears. (2) A design for high density atomically precise memory. (3) Design of nanotechnology systems based on biology. (4) Characterization of diamonoid mechanosynthetic pathways. (5) Studies of the laplacian of the electronic charge density to understand molecular structure and reactivity. (6) Studies of entropic effects during self-assembly. Characterization of properties of matter for clusters up to sizes exhibiting bulk properties. In addition, the NAS (NASA Advanced Supercomputing) supercomputer division sponsored a workshop on computational molecular nanotechnology on March 4-5, 1996 held at NASA Ames Research Center. Finally, collaborations with Bill Goddard at CalTech, Ralph Merkle at Xerox Parc, Don Brenner at NCSU (North Carolina State University), Tom McKendree at Hughes, and Todd Wipke at UCSC are underway.

  3. Heart of the Solution - Energy Frontiers (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Peter F.

    "Heart of the Solution- Energy Frontiers" was submitted by the Center for Solar and Thermal Energy Conversion (CSTEC) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was both the People's Choice Award winner and selected as one of five winners by a distinguished panel of judges for its "exemplary explanation of the role of an Energy Frontier Research Center". The Center for Solar and Thermal Energymore » Conversion is directed by Peter F. Green at the University of Michigan. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Solar and Thermal Energy Conversion is 'to study complex material structures on the nanoscale to identify key features for their potential use as materials to convert solar energy and heat to electricity.' Research topics are: solar photovoltaic, photonic, optics, solar thermal, thermoelectric, phonons, thermal conductivity, solar electrodes, defects, ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, and self-assembly.« less

  4. Ford/BASF/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veenstra, Mike; Purewal, Justin; Xu, Chunchuan

    Widespread adoption of hydrogen as a vehicular fuel depends critically on the development of low-cost, on-board hydrogen storage technologies capable of achieving high energy densities and fast kinetics for hydrogen uptake and release. As present-day technologies -- which rely on physical storage methods such as compressed hydrogen -- are incapable of attaining established Department of Energy (DOE) targets, development of materials-based approaches for storing hydrogen have garnered increasing attention. Material-based storage technologies have potential to store hydrogen beyond twice the density of liquid hydrogen. To hasten development of these ‘hydride’ materials, the DOE previously established three centers of excellence formore » materials storage R&D associated with the key classes of materials: metal hydrides, chemical hydrogen, and adsorbents. While these centers made progress in identifying new storage materials, the challenges associated with the engineering of the system around a candidate storage material are in need of further advancement. In 2009 the DOE established the Hydrogen Storage Engineering Center of Excellence with the objective of developing innovative engineering concepts for materials-based hydrogen storage systems. As a partner in the Hydrogen Storage Engineering Center of Excellence, the Ford-UM-BASF team conducted a multi-faceted research program that addresses key engineering challenges associated with the development of materials-based hydrogen storage systems. First, we developed a novel framework that allowed for a material-based hydrogen storage system to be modeled and operated within a virtual fuel cell vehicle. This effort resulted in the ability to assess dynamic operating parameters and interactions between the storage system and fuel cell power plant, including the evaluation of performance throughout various drive cycles. Second, we engaged in cost modeling of various incarnations of the storage systems. This analysis revealed cost gaps and opportunities that identified a storage system that was lower cost than a 700 bar compressed system. Finally, we led the HSECoE efforts devoted to characterizing and enhancing metal organic framework (MOF) storage materials. This report serves as a final documentation of the Ford-UM-BASF project contributions to the HSECoE during the 6-year timeframe of the Center. The activities of the HSECoE have impacted the broader goals of the DOE-EERE and USDRIVE, leading to improved understanding in the engineering of materials-based hydrogen storage systems. This knowledge is a prerequisite to the development of a commercially-viable hydrogen storage system.« less

  5. Fabrication and characterization of morphology-tuned single-crystal monodisperse Fe3O4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Yu, Xuegang; Shan, Yan; Chen, Kezheng

    2018-05-01

    Monodisperse Fe3O4 nanocrystals with different size and morphology have been successfully fabricated by a facile high temperature reflow method. The presented materials were characterized by X-ray diffraction (XRD), fourier transform infrared (FTIR) spectroscopy, transmission electron microscope (TEM), selection area electron diffraction (SAED) and magnetic property measurement system (MPMS). The results showed that the as-prepared materials have face-centered cubic structures. Oleic acid plays a key role in the dispersion of Fe3O4 nanocrystals. The cubic and octahedral nanocrystals are enclosed by {1 0 0} and {1 1 1} lattice planes. The MPMS measurements show that magnetic properties are closely related to the sizes of the materials, and there is a stronger dipolar interaction between Fe3O4 nanocrystals with larger sizes. The controllable magnetic property and good dispersion endow the as-synthesized materials with great potential applications in magnetic fluid fields including sealing, medical equipment, mineral processing and other aspects.

  6. Aperture Shield Materials Characterized and Selected for Solar Dynamic Space Power System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The aperture shield in a solar dynamic space power system is necessary to prevent thermal damage to the heat receiver should the concentrated solar radiation be accidentally or intentionally focused outside of the heat receiver aperture opening and onto the aperture shield itself. Characterization of the optical and thermal properties of candidate aperture shield materials was needed to support the joint U.S./Russian solar dynamic space power effort for Mir. The specific objective of testing performed at the NASA Lewis Research Center was to identify a high-temperature material with a low specular reflectance, a low solar absorptance, and a high spectral emittance so that during an off-pointing event, the amount of solar energy reflecting off the aperture shield would be small, the ratio of solar absorptance to spectral emittance would provide the lowest possible equilibrium temperature, and the integrity of the aperture shield would remain intact.

  7. Low-cost infrared glass for IR imaging applications

    NASA Astrophysics Data System (ADS)

    Graham, Amy G.; LeBlanc, Richard A.; Hilton, Ray A., Sr.

    2003-09-01

    With the advent of the uncooled detectors, the fraction of infrared (IR) imaging system cost due to lens elements has risen to the point where work was needed in the area of cost. Since these IR imaging systems often have tight packaging requirements which drive the optical elements to have complex surfaces, typical IR optical elements are costly to manufacture. The drive of our current optical material research is to lower the cost of the materials as well as the element fabrication for IR imaging systems. A low cost, moldable amorphous material, Amtir-4, has been developed and characterized. Ray Hilton Sr., Amorphous Materials Inc., Richard A. LeBlanc, Amy Graham and Others at Lockheed Martin Missiles and Fire Control Orlando (LMMFC-O) and James Johnson, General Electric Global Research Center (GE-GRC), along with others have been doing research for the past three years characterizing and designing IR imaging systems with this material. These IR imaging systems have been conventionally fabricated via diamond turning and techniques required to mold infrared optical elements have been developed with this new material, greatly reducing manufacturing costs. This paper will outline efforts thus far in incorporating this new material into prototype IR imaging systems.

  8. Carbon Nanotubes for Human Space Flight

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Files, Brad; Yowell, Leonard

    2003-01-01

    Single-wall carbon nanotubes offer the promise of a new class of revolutionary materials for space applications. The Carbon Nanotube Project at NASA Johnson Space Center has been actively researching this new technology by investigating nanotube production methods (arc, laser, and HiPCO) and gaining a comprehensive understanding of raw and purified material using a wide range of characterization techniques. After production and purification, single wall carbon nanotubes are processed into composites for the enhancement of mechanical, electrical, and thermal properties. This "cradle-to-grave" approach to nanotube composites has given our team unique insights into the impact of post-production processing and dispersion on the resulting material properties. We are applying our experience and lessons-learned to developing new approaches toward nanotube material characterization, structural composite fabrication, and are also making advances in developing thermal management materials and electrically conductive materials in various polymer-nanotube systems. Some initial work has also been conducted with the goal of using carbon nanotubes in the creation of new ceramic materials for high temperature applications in thermal protection systems. Human space flight applications such as advanced life support and fuel cell technologies are also being investigated. This discussion will focus on the variety of applications under investigation.

  9. Research and education at the NASA Fisk University Center for Photonic Materials and Devices

    NASA Astrophysics Data System (ADS)

    Silberman, Enrique

    1996-07-01

    In 1992, NASA awarded Fisk University a 5 year grant to establish a center for research and education on photonic materials are synthesized, characterized and, in some cases, developed into devices with applications in the fields of radiation detectors and nonlinear optical crystals, glasses and nanomaterials. The educational components include participation in the research by 3 types of students majoring in Physics, Chemistry and Biology: 1) Fisk undergraduates participating during the academic year. 2) Fisk graduates performing their Maser Thesis research. 3) Fisk and other HBCU's and Minority Institutions' undergraduates attending a 10 week summer workshop with a very rigorous program of study, research and progress reporting. Funds are available for supporting participating students. Prerequisite, schedules of activities, evaluation procedures and typical examples of the outcome are presented.

  10. Carbon Nanotube Activities at NASA-Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2006-01-01

    Research activities on carbon nanotubes at NASA-Johnson Space Center include production, purification, characterization and their applications for human space flight. In-situ diagnostics during nanotube production by laser oven process include collection of spatial and temporal data of passive emission and laser induced fluorescence from C2, C3 and Nickel atoms in the plume. Details of the results from the "parametric study" of the pulsed laser ablation process indicate the effect of production parameters including temperature, buffer gas, flow rate, pressure, and laser fluence. Improvement of the purity by a variety of steps in the purification process is monitored by characterization techniques including SEM, TEM, Raman, UV-VIS-NIR and TGA. A recently established NASA-JSC protocol for SWCNT characterization is undergoing revision with feedback from nanotube community. Efforts at JSC over the past five years in composites have centered on structural polymednanotube systems. Recent activities broadened this focus to multifunctional materials, supercapacitors, fuel cells, regenerable CO2 absorbers, electromagnetic shielding, radiation dosimetry and thermal management systems of interest for human space flight. Preliminary tests indicate improvement of performance in most of these applications because of the large surface area as well as high electrical and thermal conductivity exhibited by SWCNTs.

  11. Nano-casted Metal Oxide Aerogels as Dual Purpose Structural Components for Space Exploration

    NASA Technical Reports Server (NTRS)

    Vassilaras, Plousia E.

    2004-01-01

    NASA missions and space exploration rely on strong, ultra lightweight materials. Such materials are needed for building up past and present space vehicles such as the Sojourner Rover (1997) or the two MERs (2003), but also for a number of components and/or systems including thermal insulators, Solar Sails, Rigid Aeroshells, and Ballutes. The purpose of my internship here at Glenn Research Center is to make dual purpose materials; materials that in addition to being lightweight have electronic, photophysical and magnetic properties and, therefore, act as electronic components and sensors as well as structural components. One type of ultra lightweight material of great interest is aerogels, which have densities ranging from 0.003 g/cc to 0.8 g/cc . However, aerogels are extremely fragile and, as a result, have limited practical applications. Recently, Glenn Research Center has developed a process of nano-casting polymers onto the inorganic network of silica-based aerogels increasing the strength 300 fold while only increasing the density 3 fold. By combining the process of nano-casting polymers with inorganic oxide networks other than silica, we are actively pursuing lightweight dual purpose materials. To date, thirty different inorganic oxide aerogels have been prepared using either standard sol-gel chemistry or a non-alkoxide method involving metal chloride precursors and an epoxide; epichlorohydrin, propylene oxide or trimethylene oxide, as proton scavengers. More importantly, preliminary investigations show that the residual surface hydroxyl groups on each of these inorganic oxide aerogels can be successfully crosslinked with urethane. In addition to characterizing physical and mechanical properties such as density, strength and flexibility, each of these metal oxide aerogels are being characterized for thermal and electronic conductivity and magnetic and optical properties.

  12. Solar Sail Material Performance Property Response to Space Environmental Effects

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (Ll) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA s Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar[TM], Teonex[TM], and CPl (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were characterized. The contribution of Near Ultraviolet (NUV) radiation combined with electron and proton radiation was also investigated.

  13. Space Environmental Effects on Candidate Solar Sail Materials

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Nehls, Mary; Semmel, Charles; Hovater, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted ot a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (L1) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA's Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar, Teonex, and CP1 (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were characterized. The contribution of Near Ultraviolet (NUV) radiation combined with electron and proton radiation was also investigated.

  14. Solar Sail Material Performance Property Response to Space Environmental Effects

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (L1) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager' and the L1 Diamond '. The Environmental Effects Group at NASA's Marshall Space Fliglit Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail3-'. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar TM, Teonexm, and CP1 (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were characterized. The contribution of Near Ultraviolet (NUV) radiation combined with electron and proton radiation was also investigated. Conclusions will be presented providing a gauge of measure for engineering performance stability for sails operating in the L1 space environment.

  15. Advanced Electrical Materials and Components Development: An Update

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2005-01-01

    The primary means to develop advanced electrical components is to develop new and improved materials for magnetic components (transformers, inductors, etc.), capacitors, and semiconductor switches and diodes. This paper will give an update of the Advanced Power Electronics and Components Technology being developed by the NASA Glenn Research Center for use in future Power Management and Distribution subsystems used in space power systems for spacecraft and lunar and planetary surface power. The initial description and status of this technology program was presented two years ago at the First International Energy Conversion Engineering Conference held at Portsmouth, Virginia, August 2003. The present paper will give a brief background of the previous work reported and a summary of research performed the past several years on soft magnetic materials characterization, dielectric materials and capacitor developments, high quality silicon carbide atomically smooth substrates, and SiC static and dynamic device characterization under elevated temperature conditions. The rationale for and the benefits of developing advanced electrical materials and components for the PMAD subsystem and also for the total power system will also be briefly discussed.

  16. Center for Cement Composite Materials

    DTIC Science & Technology

    1990-01-31

    metal-oxygen structures G. Kordas MSE-Ceramics Electron paramagnetic resonance W. M. Kriven MSE-Ceramics Electron microscopy Microstructural...SPONSORING iSb. OFFICE SYMBOL 9. PROWIREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (If applicable) C S(2is _ _ _- r_,__’ Contract F49620-87-C...novel in-situ technique involving nuclear magnetic resonance . Fiber- matrix interactions in MDF laminates were also studied. Characterization of DSP

  17. The Innovative Activity of Schools in a Regional System of Education

    ERIC Educational Resources Information Center

    Larina, V. P.

    2006-01-01

    Education today is characterized by two opposite tendencies: (1) A centripetal tendency, which conditions the link between the region and the center, without which it is not possible to find local solutions to a number of important problems related to resource support for the regional system of education (legal, normative, material and technical,…

  18. Effect of analytical proton beam irradiation on lead-white pigments, characterized by EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gourier, Didier; Binet, Laurent; Gonzalez, Victor; Vezin, Hervé; Touati, Nadia; Calligaro, Thomas

    2018-01-01

    Analytical techniques using proton beams with energy in the MeV range are commonly used to study archeological artefact and artistic objects. However ion beams can induce alteration of fragile materials, which is notably the case of easel paintings, limiting the use of these techniques. We used continuous wave EPR and pulse EPR spectroscopy to reveal the effect of 3 MeV proton irradiation on lead carbonates, which were extensively employed as white pigments from the antiquity to the 20th century. Two kinds of paramagnetic centers were identified in cerussite (PbCO3): the first one is CO3- radicals formed by hole trapping by CO32- ions, and the second one is NO32- radical resulting from electron trapping by NO3- impurities. Hydrocerussite (2PbCO3·Pb(OH)2) is the most darkened material under proton beam, however it exhibits no NO32- radicals and 20 times less CO3- radicals than cerussite. Consequently these paramagnetic centers are not directly responsible for the darkening of lead-white pigments. We proposed that their higher instability in hydrocerussite might be at the origin of the formation of color centers in this material.

  19. Cryogenic Laboratory Experiments into Radiation Effects on the Spectra of Non-Ice Materials relevant to Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Cahill, K. R. S.; Hibbitts, C.; Wing, B. R.

    2017-12-01

    The airless satellites of Jupiter and Saturn are bombarded by high-energy particles from solar wind and their planetary magnetospheres. The particles range up to MeV energies and penetrate sufficiently far (microns) into the surface to cause damage that can affect their UV - IR spectral signatures. These particles physically and chemically alter the exposed surface by damaging crystallinity, sputtering non-refractory neutrals, depositing into the material, and inducing chemical reactions between existing and/or exogenous components. Previous studies of salts irradiated at room temperature ( 293 K) under high vacuum (1e-7 Torr) demonstrated the formation of radiation-induced color centers, or Farbe-centers, that are active at near UV, visible, and near IR wavelengths [1,2]. In this study, we investigated the effects of irradiation on these and other materials at temperatures relevant to the surfaces of the Galilean and Saturnian satellites. Experiments at the appropriate temperatures are important because the diffusion of the H-centers, which can interact with F-centers [3], are strongly temperature dependent and may be inhibited. This could affect the spectral signature of the irradiated materials. The experiments simulated the radiation environment using 40 keV electrons at 80 microamps under high vacuum at 100 K while characterizing the spectral changes (UV through mid-IR). Spectral measurements were obtained in the UV-Visible ( 130-570 nm) using a McPherson monochromater and photomultiplier detector, in the Visible-SWIR ( 340-2500 nm) using a SVC point spectrometer, and in the NIR-MIR ( 1500 to 8000 nm) using a Bruker Vertex 70 FTIR coupled to a liquid nitrogen cooled MCT detector. Spectra were collected while the sample was held under high vacuum at cryogenic temperatures both before, during, and after irradiation. Our results characterize the spectral signature of radiation-induced color centers that can form at the temperatures present at the surface of airless ocean worlds. We will show the spectral change induced by irradiation at cryogenic temperatures and compare these results to performed at room temperature. [1] Hibbitts et al. [2017], Icarus, submitted. [2] Hand and Carlson. [2015], GRL, 42, 3174-3178. [3] Soppe et al. [1994] J. Nuc. Mat., 217, 1-31.

  20. Cryogenic Thermal Conductivity Measurements on Candidate Materials for Space Missions

    NASA Technical Reports Server (NTRS)

    Tuttle, JIm; Canavan, Ed; Jahromi, Amir

    2017-01-01

    Spacecraft and instruments on space missions are built using a wide variety of carefully-chosen materials. In addition to having mechanical properties appropriate for surviving the launch environment, these materials generally must have thermal conductivity values which meet specific requirements in their operating temperature ranges. Space missions commonly propose to include materials for which the thermal conductivity is not well known at cryogenic temperatures. We developed a test facility in 2004 at NASAs Goddard Space Flight Center to measure material thermal conductivity at temperatures between 4 and 300 Kelvin, and we have characterized many candidate materials since then. The measurement technique is not extremely complex, but proper care to details of the setup, data acquisition and data reduction is necessary for high precision and accuracy. We describe the thermal conductivity measurement process and present results for several materials.

  1. Mechanical properties of a fiberglass prepreg system at cryogenic and other temperatures

    NASA Technical Reports Server (NTRS)

    Klich, P. J.; Cockrell, C. E.

    1982-01-01

    The compressor driving the flow in the National Transonic Facility, which is nearing completion at the Langley Research Center, has 25 fiberglass blades. E-glass cloth with a pre-impregnated epoxy resin has been selected as the material for the fan blades because of its low cost, high damping, and fatigue resistance. A complete characterization is presented of this fan blade fiberglass system at temperatures of 367 K, room temperature, and 89 K. The characterization test results suggest that the material follows the general trends of metals and other glass-reinforced plastics at cryogenic temperatures. A slight diminution in strength was observed at the elevated temperature. The tests included the following: tensile, compression, fatigue, inplane shear, interlaminar shear, thermal expansion, creep, and thermal cycle.

  2. Methods of Measurement for Semiconductor Materials, Process Control, and Devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1973-01-01

    The development of methods of measurement for semiconductor materials, process control, and devices is reported. Significant accomplishments include: (1) Completion of an initial identification of the more important problems in process control for integrated circuit fabrication and assembly; (2) preparations for making silicon bulk resistivity wafer standards available to the industry; and (3) establishment of the relationship between carrier mobility and impurity density in silicon. Work is continuing on measurement of resistivity of semiconductor crystals; characterization of generation-recombination-trapping centers, including gold, in silicon; evaluation of wire bonds and die attachment; study of scanning electron microscopy for wafer inspection and test; measurement of thermal properties of semiconductor devices; determination of S-parameters and delay time in junction devices; and characterization of noise and conversion loss of microwave detector diodes.

  3. Metals combustion in normal gravity and microgravity

    NASA Technical Reports Server (NTRS)

    Steinberg, Theodore A.; Wilson, D. Bruce; Benz, Frank J.

    1993-01-01

    The study of the combustion characteristics of metallic materials has been an ongoing area of research at the NASA White Sands Test Facility (WSTF). This research has been in support of both government and industrial operations and deals not only with the combustion of specific metallic materials but also with the relative flammabilities of these materials under similar conditions. Since many of the metallic materials that are characterized at WSTF for aerospace applications are to be used in microgravity environments, it was apparent that the testing of these materials needed to proceed in a microgravity environment. It was believed that burning metallic materials in a microgravity environment would allow the evaluation of the validity of applying normal gravity combustion tests to characterize metallic materials to be used in microgravity environments. It was also anticipated that microgravity testing would provide insight into the general combustion process of metallic materials. The availability of the NASA Lewis Research Center's (LeRC) 2.2-second drop tower provided the necessary facility to accomplish the microgravity portion of the testing while the normal gravity testing was conducted at NASA WSTF. The tests, both at LeRC and WSTF, were conducted in the same instrumented system and utilized the standard metal flammability test of upward propagation burning of cylindrical rod samples.

  4. Portable Device Analyzes Rocks and Minerals

    NASA Technical Reports Server (NTRS)

    2008-01-01

    inXitu Inc., of Mountain View, California, entered into a Phase II SBIR contract with Ames Research Center to develop technologies for the next generation of scientific instruments for materials analysis. The work resulted in a sample handling system that could find a wide range of applications in research and industrial laboratories as a means to load powdered samples for analysis or process control. Potential industries include chemical, cement, inks, pharmaceutical, ceramics, and forensics. Additional applications include characterizing materials that cannot be ground to a fine size, such as explosives and research pharmaceuticals.

  5. NASA Glenn Research Center Support of the ASRG Project

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Wong, Wayne A.

    2014-01-01

    A high efficiency radioisotope power system is being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company (LMSSC) to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center (GRC). Sunpower Inc. held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with DOELockheed Martin to produce ASC-F flight units, and one with GRC for the production of ASC-E3 engineering unit pathfinders that are built to the flight design. In support of those contracts, GRC provided testing, materials expertise, government furnished equipment, inspections, and related data products to DOELockheed Martin and Sunpower. The technical support includes material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests have been performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests have been used to characterize performance under operating conditions that are representative of various mission conditions. Technology transfers enhanced contractor capabilities for specialized production processes and tests. Despite termination of flight ASRG contract, NASA continues to develop the high efficiency ASC conversion technology under the ASC-E3 contract. This paper describes key government furnished services performed for ASRG and future tests used to provide data for ongoing reliability assessments.

  6. Impact of Multifunctional Bimetallic Materials on Lithium Battery Electrochemistry.

    PubMed

    Durham, Jessica L; Poyraz, Altug S; Takeuchi, Esther S; Marschilok, Amy C; Takeuchi, Kenneth J

    2016-09-20

    Electric energy storage devices such as batteries are complex systems comprised of a variety of materials with each playing separate yet interactive roles, complicated by length scale interactions occurring from the molecular to the mesoscale. Thus, addressing specific battery issues such as functional capacity requires a comprehensive perspective initiating with atomic level concepts. For example, the electroactive materials which contribute to the functional capacity in a battery comprise approximately 30% or less of the total device mass. Thus, the design and implementation of multifunctional materials can conceptually reduce or eliminate the contribution of passive materials to the size and mass of the final system. Material multifunctionality can be achieved through appropriate material design on the atomic level resulting in bimetallic electroactive materials where one metal cation forms mesoscale conductive networks upon discharge while the other metal cations can contribute to atomic level structure and net functional secondary capacity, a device level issue. Specifically, this Account provides insight into the multimechanism electrochemical redox processes of bimetallic cathode materials based on transition metal oxides (MM'O) or phosphorus oxides (MM'PO) where M = Ag and M' = V or Fe. One discharge process can be described as reduction-displacement where Ag(+) is reduced to Ag(0) and displaced from the parent structure. This reduction-displacement reaction in silver-containing bimetallic electrodes allows for the in situ formation of a conductive network, enhancing the electrochemical performance of the electrode and reducing or eliminating the need for conductive additives. A second discharge process occurs through the reduction of the second transition metal, V or Fe, where the oxidation state of the metal center is reduced and lithium cations are inserted into the structure. As both metal centers contribute to the functional capacity, determining the kinetically and thermodynamically preferred reduction processes at various states of discharge is critical to elucidating the mechanism. Specific advanced in situ and ex situ characterization techniques are conducive to gaining insight regarding the electrochemical behavior of these multifunctional materials over multiple length scales. At the material level, optical microscopy, scanning electron microscopy, and local conductivity measurement via a nanoprobe can track the discharge mechanism of an isolated single particle. At the mesoscale electrode level, in situ data from synchrotron based energy dispersive X-ray diffraction (EDXRD) within fully intact steel batteries can be used to spatially map the distribution of silver metal generated through reduction displacement as a function of discharge depth and discharge rate. As illustrated here, appropriate design of materials with multiple electrochemically active metal centers and properties tuned through strategically conceptualized materials synthesis may provide a path toward the next generation of high energy content electroactive materials and systems. Full understanding of the multiple electrochemical mechanisms can be achieved only by utilizing advanced characterization tools over multiple length scales.

  7. Development of a Genomic DNA Reference Material Panel for Myotonic Dystrophy Type 1 (DM1) Genetic Testing

    PubMed Central

    Kalman, Lisa; Tarleton, Jack; Hitch, Monica; Hegde, Madhuri; Hjelm, Nick; Berry-Kravis, Elizabeth; Zhou, Lili; Hilbert, James E.; Luebbe, Elizabeth A.; Moxley, Richard T.; Toji, Lorraine

    2014-01-01

    Myotonic dystrophy type 1 (DM1) is caused by expansion of a CTG triplet repeat in the 3′ untranslated region of the DMPK gene that encodes a serine-threonine kinase. Patients with larger repeats tend to have a more severe phenotype. Clinical laboratories require reference and quality control materials for DM1 diagnostic and carrier genetic testing. Well-characterized reference materials are not available. To address this need, the Centers for Disease Control and Prevention-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the genetic testing community, the National Registry of Myotonic Dystrophy and Facioscapulohumeral Muscular Dystrophy Patients and Family Members, and the Coriell Cell Repositories, has established and characterized cell lines from patients with DM1 to create a reference material panel. The CTG repeats in genomic DNA samples from 10 DM1 cell lines were characterized in three clinical genetic testing laboratories using PCR and Southern blot analysis. DMPK alleles in the samples cover four of five DM1 clinical categories: normal (5 to 34 repeats), mild (50 to 100 repeats), classical (101 to 1000 repeats), and congenital (>1000 repeats). We did not identify or establish Coriell cell lines in the premutation range (35 to 49 repeats). These samples are publicly available for quality control, proficiency testing, test development, and research and should help improve the accuracy of DM1 testing. PMID:23680132

  8. NRL Fact Book

    DTIC Science & Technology

    1985-04-01

    characteristics of targets Tank 9.1 m (30 ft) in diameter by 6.7 m (22 ft) deep , automated with computer con- trol and analysis for detailed studies of acoustic...structures; and conducts experiments in the deep ocean, in acoustically shallow water, and in the Arctic. The Division carries out theoretical and...Laser Materials-Application Center Failure Analysis and Fractography Staff Research Activity Areas Environmental Effects Microstructural characterization

  9. Advanced ceramic matrix composites for TPS

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J.

    1992-01-01

    Recent advances in ceramic matrix composite (CMC) technology provide considerable opportunity for application to future aircraft thermal protection system (TPS), providing materials with higher temperature capability, lower weight, and higher strength and stiffness than traditional materials. The Thermal Protection Material Branch at NASA Ames Research Center has been making significant progress in the development, characterization, and entry simulation (arc-jet) testing of new CMC's. This protection gives a general overview of the Ames Thermal Protection Materials Branch research activities, followed by more detailed descriptions of recent advances in very-high temperature Zr and Hf based ceramics, high temperature, high strength SiC matrix composites, and some activities in polymer precursors and ceramic coating processing. The presentation closes with a brief comparison of maximum heat flux capabilities of advanced TPS materials.

  10. Particle Size Characterization of Water-Elutriated Libby Amphibole 2000 and RTI International Amosite

    USGS Publications Warehouse

    Lowers, Heather; Bern, Amy M.

    2009-01-01

    This report presents data on particle characterization analyzed by scanning electron microscopy on Libby amphibole collected by the U.S. Geological Survey in 2000 (LA2000) and amosite material collected by RTI International (RTI amosite). The particle characterization data were generated to support a portion of the Libby Action Plan. Prior to analysis, the raw LA2000 and RTI amosite materials were subjected to a preparation step. Each sample was water-elutriated by U.S. Environmental Protection Agency (USEPA) Office of Research and Development, Research Triangle Park using the methods generally described in another published report and then delivered to the U.S. Geological Survey, Denver Microbeam Laboratory for analysis. Data presented here represent analyses performed by the U.S. Geological Survey, Denver Microbeam Laboratory and USEPA National Enforcement Investigations Center. This report consists of two Excel spreadsheet files developed by USEPA, Region 8 Superfund Technical Assistance Unit and describe the particle size characterization of the LA2000 and RTI amosite, respectively. Multiple tabs and data entry cells exist in each spreadsheet and are defined herein.

  11. Radiation-induced defect centers in glass ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, T.E.; Friebele, E.J.; Griscom, D.L.

    1989-01-15

    Electron spin resonance (ESR) was used to characterize the radiation-induced defect centers in low-thermal-expansion glass ceramics, including two types of Zerodur and Astrositall. The observed ESR spectra can be associated with different types of defect centers: a Zn/sup +/ center, several types of oxygen hole centers (OHCs), an aluminum-oxygen hole center (Al-OHC), an Fe/sup 3 +/ center, Ti/sup 3 +/ and Zr/sup 3 +/ centers, and three types of As centers. An Sb/sup 4 +/ center, which is not observed in Zerodur, is tentatively identified in Astrositall. From the effect of crystallization on the observed defect concentrations in Zerodur andmore » computer simulation of the spectral lines of some of the centers, we infer that among the nine defect centers observed in the Zerodurs, the As-associated centers are located in the glassy phase and/or at the interface between the glassy and crystalline phases, Zn/sup +/ and Al-OHC are in the crystalline phase, and the rest (including most of the OHCs) are in the glassy phase. Radiation-induced compaction in these materials appears to be related to the generation of OHCs in the glass phase.« less

  12. NASA Glenn Research Center UEET (Ultra-Efficient Engine Technology) Program: Agenda and Abstracts

    NASA Technical Reports Server (NTRS)

    Manthey, Lri

    2001-01-01

    Topics discussed include: UEET Overview; Technology Benefits; Emissions Overview; P&W Low Emissions Combustor Development; GE Low Emissions Combustor Development; Rolls-Royce Low Emissions Combustor Development; Honeywell Low Emissions Combustor Development; NASA Multipoint LDI Development; Stanford Activities In Concepts for Advanced Gas Turbine Combustors; Large Eddy Simulation (LES) of Gas Turbine Combustion; NASA National Combustion Code Simulations; Materials Overview; Thermal Barrier Coatings for Airfoil Applications; Disk Alloy Development; Turbine Blade Alloy; Ceramic Matrix Composite (CMC) Materials Development; Ceramic Matrix Composite (CMC) Materials Characterization; Environmental Barrier Coatings (EBC) for Ceramic Matrix Composite (CMC) Materials; Ceramic Matrix Composite Vane Rig Testing and Design; Ultra-High Temperature Ceramic (UHTC) Development; Lightweight Structures; NPARC Alliance; Technology Transfer and Commercialization; and Turbomachinery Overview; etc.

  13. Carbon Nanotube Composites: Strongest Engineering Material Ever?

    NASA Technical Reports Server (NTRS)

    Mayeaux, Brian; Nikolaev, Pavel; Proft, William; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    The primary goal of the carbon nanotube project at Johnson Space Center (JSC) is to fabricate structural materials with a much higher strength-to-weight ratio than any engineered material today, Single-wall nanotubes present extraordinary mechanical properties along with new challenges for materials processing. Our project includes nanotube production, characterization, purification, and incorporation into applications studies. Now is the time to move from studying individual nanotubes to applications work. Current research at JSC focuses on structural polymeric materials to attempt to lower the weight of spacecraft necessary for interplanetary missions. These nanoscale fibers present unique new challenges to composites engineers. Preliminary studies show good nanotube dispersion and wetting by the epoxy materials. Results of tensile strength tests will also be reported. Other applications of nanotubes are also of interest for energy storage, gas storage, nanoelectronics, field emission, and biomedical uses.

  14. The Effects of Grain Size and Texture on Dynamic Abnormal Grain Growth in Mo

    NASA Astrophysics Data System (ADS)

    Noell, Philip J.; Taleff, Eric M.

    2016-10-01

    This is the first report of abnormal grain morphologies specific to a Mo sheet material produced from a commercial-purity arc-melted ingot. Abnormal grains initiated and grew during plastic deformation of this material at temperatures of 1793 K and 1813 K (1520 °C and 1540 °C). This abnormal grain growth during high-temperature plastic deformation is termed dynamic abnormal grain growth, DAGG. DAGG in this material readily consumes nearly all grains near the sheet center while leaving many grains near the sheet surface unconsumed. Crystallographic texture, grain size, and other microstructural features are characterized. After recrystallization, a significant through-thickness variation in crystallographic texture exists in this material but does not appear to directly influence DAGG propagation. Instead, dynamic normal grain growth, which may be influenced by texture, preferentially occurs near the sheet surface prior to DAGG. The large grains thus produced near the sheet surface inhibit the subsequent growth of the abnormal grains produced by DAGG, which preferentially consume the finer grains near the sheet center. This produces abnormal grains that span the sheet center but leave unconsumed polycrystalline microstructure near the sheet surface. Abnormal grains are preferentially oriented with the < 110rangle approximately along the tensile axis. These results provide additional new evidence that boundary curvature is the primary driving force for DAGG in Mo.

  15. Mechanical properties of several neat polymer matrix materials and unidirectional carbon fiber-reinforced composites

    NASA Technical Reports Server (NTRS)

    Coguill, Scott L.; Adams, Donald F.

    1989-01-01

    The mechanical and physical properties of three neat matrix materials, i.e., PEEK (polyetheretherketone) thermoplastic, Hexcel F155 rubber-toughened epoxy and Hercules 8551-7 rubber-toughened epoxy, were experimentally determined. Twelve unidirectional carbon fiber composites, incorporating matrix materials characterized in this or earlier studies (with one exception; the PISO(sub 2)-TPI matrix itself was not characterized), were also tested. These composite systems included AS4/2220-1, AS4/2220-3, T500/R914, IM6/HX1504, T300/4901A (MDA), T700/4901A (MDA), T300/4901B (MPDA), T700/4901B (MPDA), APC2 (AS4/PEEK, ICI), APC2 (AS4/PEEK, Langley Research Center), AS4/8551-7, and AS4/PISO(sub 2)-TPI. For the neat matrix materials, the tensile, shear, fracture toughness, coefficient of thermal expansion, and coefficient of moisture expansion properties were measured as a function of both temperature and moisture content. For the unidirectional composites, axial and transverse tensile, longitudinal shear, coefficient of thermal expansion, and coefficient of moisture expansion properties were determined, at room temperature and 100 C.

  16. Developing an in-situ Detector of Neutron-Induced Fission for Actinide Sputtering Characterization

    NASA Astrophysics Data System (ADS)

    Fellers, Deion

    2016-09-01

    The physical mechanism describing the transfer of large amounts of energy due to fission in a material is not well understood and represents one of the modern challenges facing nuclear scientists, with applications including nuclear energy and national defense. Fission fragments cause damage to the material from sputtering of matter as they pass through or near the material's surface. We have developed a new technique at the Los Alamos Neutron Science Center for characterizing the ejecta by using ultracold neutrons (neutrons with kinetic energy less than 300 neV) to induce fission at finely controlled depths in an actinide. This program will ultimately provide a detailed description of the properties of the sputtered particles as a function of the depth of the fission in the material. A key component of this project is accurately quantifying the number of neutron induced fissions in the sample. This poster depicts the development of an in-situ detector of neutron-induced fission for the AShES (Actinide Sputtering from ultracold neutron Exposure at the Surface) experiment.

  17. An assessment of surface emissivity variation effects on plasma uniformity analysis using IR cameras

    NASA Astrophysics Data System (ADS)

    Greenhalgh, Abigail; Showers, Melissa; Biewer, Theodore

    2017-10-01

    The Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) is a linear plasma device operating at Oak Ridge National Laboratory (ORNL). Its purpose is to test plasma source and heating concepts for the planned Material Plasma Exposure eXperiment (MPEX), which has the mission to test the plasma-material interactions under fusion reactor conditions. In this device material targets will be exposed to high heat fluxes (>10 MW/m2). To characterize the heat fluxes to the target a IR thermography system is used taking up to 432 frames per second videos. The data is analyzed to determine the surface temperature on the target in specific regions of interest. The IR analysis has indicated a low level of plasma uniformity; the plasma often deposits more heat to the edge of the plate than the center. An essential parameter for IR temperature calculation is the surface emissivity of the plate (stainless steel). A study has been performed to characterize the variation in the surface emissivity of the plate as its temperature changes and its surface finish is modified by plasma exposure.

  18. Granule-by-granule reconstruction of a sandpile from x-ray microtomography data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidler, G. T.; Martinez, G.; Seeley, L. H.

    2000-12-01

    Mesoscale disordered materials are ubiquitous in industry and in the environment. Any fundamental understanding of the transport and mechanical properties of such materials must follow from a thorough understanding of their structure. However, in the overwhelming majority of cases, experimental characterization of such materials has been limited to first- and second-order structural correlation functions, i.e., the mean filling fraction and the structural autocorrelation function. We report here the successful combination of synchrotron x-ray microtomography and image processing to determine the full three-dimensional real-space structure of a model disordered material, a granular bed of relatively monodisperse glass spheres. Specifically, we determinemore » the center location and the local connectivity of each granule. This complete knowledge of structure can be used to calculate otherwise inaccessible high-order correlation functions. We analyze nematic order parameters for contact bonds to characterize the geometric anisotropy or fabric induced by the sample boundary conditions. Away from the boundaries we find short-range bond orientational order exhibiting characteristics of the underlying polytetrahedral structure.« less

  19. Bicarbonate of soda paint stripping process validation and material characterization

    NASA Technical Reports Server (NTRS)

    Haas, Michael N.

    1995-01-01

    The Aircraft Production Division at San Antonio Air Logistics Center has conducted extensive investigation into the replacement of hazardous chemicals in aircraft component cleaning, degreasing, and depainting. One of the most viable solutions is process substitution utilizing abrasive techniques. SA-ALC has incorporated the use of Bicarbonate of Soda Blasting as one such substitution. Previous utilization of methylene chloride based chemical strippers and carbon removal agents has been replaced by a walk-in blast booth in which we remove carbon from engine nozzles and various gas turbine engine parts, depaint cowlings, and perform various other functions on a variety of parts. Prior to implementation of this new process, validation of the process was performed, and materials and waste stream characterization studies were conducted. These characterization studies examined the effects of the blasting process on the integrity of the thin-skinned aluminum substrates, the effects of the process on both air emissions and effluent disposal, and the effects on the personnel exposed to the process.

  20. Ultrasonic Guided-Wave Scan System Used to Characterize Microstructure and Defects in Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Cosgriff, Laura M.; Martin, Richard E.; Verrilli, Michael J.; Bhatt, Ramakrishna T.

    2004-01-01

    Ceramic matrix composites (CMCs) are being developed for advanced aerospace propulsion applications to save weight, improve reuse capability, and increase performance. However, mechanical and environmental loads applied to CMCs can cause discrete flaws and distributed microdamage, significantly reducing desirable physical properties. Such microdamage includes fiber/matrix debonding (interface failure), matrix microcracking, fiber fracture and buckling, oxidation, and second phase formation. A recent study (ref. 1) of the durability of a C/SiC CMC discussed the requirement for improved nondestructive evaluation (NDE) methods for monitoring degradation in these materials. Distributed microdamage in CMCs has proven difficult to characterize nondestructively because of the complex microstructure and macrostructure of these materials. This year, an ultrasonic guided-wave scan system developed at the NASA Glenn Research Center was used to characterize various microstructural and flaw conditions in SiC/SiC (silicon carbide fiber in silicon carbide matrix) and C/SiC (carbon fiber in silicon carbide matrix) CMC samples.

  1. Measurement Challenges for Carbon Nanotube Material

    NASA Technical Reports Server (NTRS)

    Sosa, Edward; Arepalli, Sivaram; Nikolaev, Pasha; Gorelik, Olga; Yowell, Leonard

    2006-01-01

    The advances in large scale applications of carbon nanotubes demand a reliable supply of raw and processed materials. It is imperative to have a consistent quality control of these nanomaterials to distinguish material inconsistency from the modifications induced by processing of nanotubes for any application. NASA Johnson Space Center realized this need five years back and started a program to standardize the characterization methods. The JSC team conducted two workshops (2003 and 2005) in collaboration with NIST focusing on purity and dispersion measurement issues of carbon nanotubes [1]. In 2004, the NASA-JSC protocol was developed by combining analytical techniques of SEM, TEM, UV-VIS-NIR absorption, Raman, and TGA [2]. This protocol is routinely used by several researchers across the world as a first step in characterizing raw and purified carbon nanotubes. A suggested practice guide consisting of detailed chapters on TGA, Raman, electron microscopy and NIR absorption is in the final stages and is undergoing revisions with input from the nanotube community [3]. The possible addition of other techniques such as XPS, and ICP to the existing protocol will be presented. Recent activities at ANSI and ISO towards implementing these protocols as nanotube characterization standards will be discussed.

  2. NASA Research Center Contributions to Space Shuttle Return to Flight (SSRTF)

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Barnes, Robert S.; Belvin, Harry L.; Allmen, John; Otero, Angel

    2005-01-01

    Contributions provided by the NASA Research Centers to key Space Shuttle return-to-flight milestones, with an emphasis on debris and Thermal Protection System (TPS) damage characterization, are described herein. Several CAIB recommendations and Space Shuttle Program directives deal with the mitigation of external tank foam insulation as a debris source, including material characterization as well as potential design changes, and an understanding of Orbiter TPS material characteristics, damage scenarios, and repair options. Ames, Glenn, and Langley Research Centers have performed analytic studies, conducted experimental testing, and developed new technologies, analysis tools, and hardware to contribute to each of these recommendations. For the External Tank (ET), these include studies of spray-on foam insulation (SOFI), investigations of potential design changes, and applications of advanced non-destructive evaluation (NDE) technologies to understand ET TPS shedding during liftoff and ascent. The end-to-end debris assessment included transport analysis to determine the probabilities of impact for various debris sources. For the Orbiter, methods were developed, and validated through experimental testing, to determine thresholds for potential damage of Orbiter TPS components. Analysis tools were developed and validated for on-orbit TPS damage assessments, especially in the area of aerothermal environments. Advanced NDE technologies were also applied to the Orbiter TPS components, including sensor technologies to detect wing leading edge impacts during liftoff and ascent. Work is continuing to develop certified TPS repair options and to develop improved methodologies for reinforced carbon-carbon (RCC) damage progression to assist in on-orbit repair decision philosophy.

  3. Battle against Phonons (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum

    ScienceCinema

    Chen, Gang (Director, Solid-State Solar-Thermal Energy Conversion Center); S3TEC Staff

    2017-12-09

    'Battle against Phonons' was submitted by the Solid-State Solar-Thermal Energy Conversion (S3TEC) EFRC to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was selected as one of five winners by a distinguished panel of judges for the special award, 'Best with Popcorn'. S3TEC, an EFRC directed by Gang Chen at the Massachusetts Institute of Technology is a partnership of scientists from four research institutions: MIT (lead), Oak Ridge National Laboratory, Boston College, and Rensselaer Polytechnic Institute. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Solid-State Solar Thermal Energy Conversion Center is 'to create novel, solid-state materials for the conversion of sunlight into electricity using thermal and photovoltaic processes.' Research topics are: solar photovoltaic, photonic, metamaterial, optics, solar thermal, thermoelectric, phonons, thermal conductivity, defects, ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, defect tolerant materials, and scalable processing.

  4. Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    NASA Technical Reports Server (NTRS)

    Pearman, Benjamin Pieter; Li, Wenyan; Buhrow, Jerry; Zhang, Xuejun; Surma, Jan; Fitzpatrick, Lilly; Montgomery, Eliza; Calle, Luz Marina

    2014-01-01

    Research efforts are under way to replace current corrosion inhibitors with more environmentally friendly alternatives. However, problems with corrosion inhibition efficiency, coating compatibility and solubility have hindered the use of many of these materials as simple pigment additives.This paper will present technical details on how the Corrosion Technology Lab at NASAs Kennedy Space Center (KSC) has addressed these issues by encapsulating environmentally friendly inhibitors into organic and inorganic microparticles and microcapsules. The synthetic process for polymer particles was characterized and post-synthesis analysis was performed to determine the interactions between the inhibitors and the encapsulation material. The pH-controlled release of inhibitors from various particle formulations in aqueous base was monitored and compared to both electrochemical and salt immersion accelerated corrosion experiment. Furthermore, synergistic corrosion inhibition effects observed during the corrosion testing of several inhibitor combinations will be presented.

  5. Zero Launch Mass 3D printer

    NASA Image and Video Library

    2018-05-01

    Packing light is the idea behind the Zero Launch Mass 3-D Printer. Instead of loading up on heavy building supplies, a large scale 3-D printer capable of using recycled plastic waste and dirt at the destination as construction material would save mass and money when launching robotic precursor missions to build infrastructure on the Moon or Mars in preparation for human habitation. To make this a reality, Nathan Gelino, a researcher engineer with NASA’s Swamp Works at Kennedy Space Center, measured the temperature of a test specimen from the 3-D printer Tuesday as an early step in characterizing printed material strength properties. Material temperature plays a large role in the strength of bonds between layers.

  6. Characterization of the treefrog null allele, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guttman, S.I.

    1992-04-01

    Spring peeper (Hyla crucifer) tadpoles collected from the waste storage area during the Biological and Ecological Site Characterization of the Feed Materials Production Center (FEMP) in 1986 and 1987 appeared to be unique. A null (inactive) allele was found at the glucose phosphate isomerase enzyme locus in significant frequencies (approximately 20%) each year; this allele did not appear to occur in the offsite sample collected approximately 15km from the FEMP. Null alleles at this locus have not been reported in other amphibian populations; when they have been found in other organisms they have invariably been lethal in the homozygous condition.

  7. Development of new techniques for the characterization of crystals and their growth solutions: Center director's discretionary fund

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L.; Reiss, Donald A.

    1989-01-01

    The solubility measurement system and the laser scattering microscope system were designed, built, and utilized for the study of crystal growth solutions and crystal characterization measurements. Solubility measurements and crystal defect maps were made with this equipment for a number of new materials. In some cases, where there have been published solubility data (i.e., TGS), more accurate measurements were made and discrepancies in the published data were resolved. The design of these instruments is presented along with a description of their use and some typical data generated using them.

  8. Innovative Technology Development for Comprehensive Air Quality Characterization from Open Burning

    DTIC Science & Technology

    2012-04-01

    Burning/Open Detonation (OB/OD) has been used as a safe, effective , and economic way to demilitarize munitions for energetic material disposal. Field...target analyte i (lb/lb i in ordnance) ERDC-CERL Engineer Research Development Center, Construction Engineering Research Laboratory GC/FID gas ...chromatograph(y) - flame ionization detector GC/MS gas chromatography/mass spectrometry GPS global positioning system ISO International Organization for

  9. Center for Alternative Energy Storage Research and Technology

    DTIC Science & Technology

    2013-03-28

    measurement systems needed for characterization of the resulting exfoliated graphite coated metal nanowires for their evaluation in supercapacitors...Synthesis of exfoliated graphite nanoplatelet (xGnP) composite carbon aerogels for use in supercapacitors,” oral presentation at the Spring, Materials...Research Society Meeting in San Francisco, CA. W. Qian, J. Cintron-Rivera, S. Han, X. Lu and F. Z. Peng, “Management and control of energy storage

  10. Synthesis and Characterization of DNase 1-Stabilized Gold Nanoclusters

    DTIC Science & Technology

    2014-10-01

    Acknowledgments The authors would like to thank Victor Rodriguez Santiago for the X-ray photoelectron spectroscopy. We also acknowledge the support of the...a Materials Research Science and Engineering Center Shared Experimental Facility. The authors would also like to thank Michael Sellers and Joshua...Postdoctoral Associateship. vi INTENTIONALLY LEFT BLANK. 1 1. Introduction The labeling of biological molecules like protein or DNA has been a large

  11. Fabrication of Novel Types of Colloidosome Microcapsules for Drug Delivery Applications

    DTIC Science & Technology

    2005-01-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP019733 TITLE: Fabrication of Novel Types of Colloidosome Microcapsules ...UNCLASSIFIED Mater. Res. Soc. Symp. Proc. Vol. 845 © 2005 Materials Research Society AA5.18 Fabrication of Novel Types of Colloidosome Microcapsules for Drug...Novel colloidosome microcapsules with aqueous gel cores and shells of different polymeric colloid particles have been prepared and characterized. Our

  12. Incorporation of Pyrazine and Bipyridine Linkers with High-Spin Fe(II) and Co(II) in a Metal–Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, Airi; Greenwood, Arin R.; Filatov, Alexander S.

    2017-02-27

    A series of isoreticular metal organic frameworks (MOFs) of the formula M(BDC)(L) (M = Fe(II) or Co(II), BDC = 1,4-benzenedicarboxylate, L = pyrazine (pyz) or 4,4'-bipyridine (bipy)) has been synthesized and characterized by N-2 gas uptake Measurements, single crystal and powder X-ray diffraction, magnetometry, X-ray absorption spectroscopy, and Mossbauer spectroscopy. These studies indicate the formation of a permanently porous solid with high-spin Fe(II) and Co(II) centers that are weakly coupled, consistent with first-principles density functional theory calculations. This family of materials represents unusual examples of paramagnetic metal centers coordinated by linkers capable of mediating magnetic or electronic coupling in amore » porous framework. While only weak interactions are observed, the rigid 3D framework of the MOF dramatically impacts the properties of these materials when compared with close structural analogues.« less

  13. MISSE 6-Testing Materials in Space

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S; Kinard, William H.

    2008-01-01

    The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment by placing them in space environment for several months. In this paper, a few materials and components from NASA Langley Research Center (LaRC) that have been flown on MISSE 6 mission will be discussed. These include laser and optical elements for photonic devices. The pre-characterized MISSE 6 materials were packed inside a ruggedized Passive Experiment Container (PEC) that resembles a suitcase. The PEC was tested for survivability due to launch conditions. Subsequently, the MISSE 6 PEC was transported by the STS-123 mission to International Space Station (ISS) on March 11, 2008. The astronauts successfully attached the PEC to external handrails and opened the PEC for long term exposure to the space environment.

  14. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Ordway, David O; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approx. 9 inches from the source) dominated by direct wave propagation, mid-field environment (approx. 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This report documents the outcome of the assessment.

  15. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading. [Appendices

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (9 inches from the source) dominated by direct wave propagation, mid-field environment (approximately 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.

  16. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading: Appendices

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approx. 9 inches from the source) dominated by direct wave propagation, mid-field environment (approx. 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.

  17. A Study of the Surface Structure of Polymorphic Graphene and Other Two-Dimensional Materials for Use in Novel Electronics and Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Grady, Maxwell

    For some time there has been interest in the fundamental physical properties of low- dimensional material systems. The discovery of graphene as a stable two-dimensional form of solid carbon lead to an exponential increase in research in two-dimensional and other re- duced dimensional systems. It is now known that there is a wide range of materials which are stable in two-dimensional form. These materials span a large configuration space of struc- tural, mechanical, and electronic properties, which results in the potential to create novel electronic devices from nano-scale heterostructures with exactly tailored device properties. Understanding the material properties at the nanoscale level requires specialized tools to probe materials with atomic precision. Here I present the growth and analysis of a novel graphene-ruthenium system which exhibits unique polymorphism in its surface structure, hereby referred to as polymorphic graphene. Scanning Tunneling Microscopy (STM) investigations of the polymorphic graphene surface reveal a periodically rippled structure with a vast array of domains, each exhibiting xvia unique moire period. The majority of moire domains found in this polymorphic graphene system are previously unreported in past studies of the structure of graphene on ruthenium. To better understand many of the structural properties of this system, characterization methods beyond those available at the UNH surface science lab are employed. Further investigation using Low Energy Electron Microscopy (LEEM) has been carried out at Sandia National Laboratory's Center for Integrated Nanotechnology and the Brookhaven National Laboratory Center for Functional Nanomaterials. To aid in analysis of the LEEM data, I have developed an open source software package to automate extraction of electron reflectivity curves from real space and reciprocal space data sets. This software has been used in the study of numerous other two-dimensional materials beyond graphene. When combined with computational modeling, the analysis of electron I(V) curves presents a method to quantify structural parameters in a material with angstrom level precision. While many materials studied in this thesis offer unique electronic properties, my work focuses primarily on their structural aspects, as well as the instrumentation required to characterize the structure with ultra high resolution.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Gang

    "Battle against Phonons" was submitted by the Solid State Solar Thermal Energy Conversion (S3TEC) EFRC to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was selected as one of five winners by a distinguished panel of judges for the special award, "Best with Popcorn". S3TEC, an EFRC directed by Gang Chen at the Massachusetts Institute of Technology is a partnership of scientists from four research institutions: MITmore » (lead), Oak Ridge National Laboratory, Boston College, and Rensselaer Polytechnic Institute. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Solid-State Solar Thermal Energy Conversion Center is 'to create novel, solid-state materials for the conversion of sunlight into electricity using thermal and photovoltaic processes.' Research topics are: solar photovoltaic, photonic, metamaterial, optics, solar thermal, thermoelectric, phonons, thermal conductivity, defects, ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, defect tolerant materials, and scalable processing.« less

  19. Growth of Bulk Wide Bandgap Semiconductor Crystals and Their Potential Applications

    NASA Technical Reports Server (NTRS)

    Chen, Kuo-Tong; Shi, Detang; Morgan, S. H.; Collins, W. Eugene; Burger, Arnold

    1997-01-01

    Developments in bulk crystal growth research for electro-optical devices in the Center for Photonic Materials and Devices since its establishment have been reviewed. Purification processes and single crystal growth systems employing physical vapor transport and Bridgman methods were assembled and used to produce high purity and superior quality wide bandgap materials such as heavy metal halides and II-VI compound semiconductors. Comprehensive material characterization techniques have been employed to reveal the optical, electrical and thermodynamic properties of crystals, and the results were used to establish improved material processing procedures. Postgrowth treatments such as passivation, oxidation, chemical etching and metal contacting during the X-ray and gamma-ray device fabrication process have also been investigated and low noise threshold with improved energy resolution has been achieved.

  20. NASA Glenn Research Center Support of the Advanced Stirling Radioisotope Generator Project

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Wong, Wayne A.

    2015-01-01

    A high-efficiency radioisotope power system was being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center. DOE initiated termination of that contract in late 2013, primarily due to budget constraints. Sunpower, Inc., held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with Lockheed Martin to produce ASC-F flight units, and one with Glenn for the production of ASC-E3 engineering unit "pathfinders" that are built to the flight design. In support of those contracts, Glenn provided testing, materials expertise, Government-furnished equipment, inspection capabilities, and related data products to Lockheed Martin and Sunpower. The technical support included material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests were performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests were conducted to characterize performance under operating conditions that are representative of various mission conditions. Despite termination of the ASRG flight development contract, NASA continues to recognize the importance of high-efficiency ASC power conversion for Radioisotope Power Systems (RPS) and continues investment in the technology, including the continuation of the ASC-E3 contract. This paper describes key Government support for the ASRG project and future tests to be used to provide data for ongoing reliability assessments.

  1. Development of a genomic DNA reference material panel for myotonic dystrophy type 1 (DM1) genetic testing.

    PubMed

    Kalman, Lisa; Tarleton, Jack; Hitch, Monica; Hegde, Madhuri; Hjelm, Nick; Berry-Kravis, Elizabeth; Zhou, Lili; Hilbert, James E; Luebbe, Elizabeth A; Moxley, Richard T; Toji, Lorraine

    2013-07-01

    Myotonic dystrophy type 1 (DM1) is caused by expansion of a CTG triplet repeat in the 3' untranslated region of the DMPK gene that encodes a serine-threonine kinase. Patients with larger repeats tend to have a more severe phenotype. Clinical laboratories require reference and quality control materials for DM1 diagnostic and carrier genetic testing. Well-characterized reference materials are not available. To address this need, the Centers for Disease Control and Prevention-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the genetic testing community, the National Registry of Myotonic Dystrophy and Facioscapulohumeral Muscular Dystrophy Patients and Family Members, and the Coriell Cell Repositories, has established and characterized cell lines from patients with DM1 to create a reference material panel. The CTG repeats in genomic DNA samples from 10 DM1 cell lines were characterized in three clinical genetic testing laboratories using PCR and Southern blot analysis. DMPK alleles in the samples cover four of five DM1 clinical categories: normal (5 to 34 repeats), mild (50 to 100 repeats), classical (101 to 1000 repeats), and congenital (>1000 repeats). We did not identify or establish Coriell cell lines in the premutation range (35 to 49 repeats). These samples are publicly available for quality control, proficiency testing, test development, and research and should help improve the accuracy of DM1 testing. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. LDEF polymeric materials: A summary of Langley characterization

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Slemp, Wayne S.; Whitley, Karen S.; Kalil, Carol R.; Siochi, Emilie J.; Shen, James Y.; Chang, A. C.

    1995-01-01

    The NASA Long Duration Exposure Facility (LDEF) enabled the exposure of a wide variety of materials to the low earth orbit (LEO) environment. This paper provides a summary of research conducted at the Langley Research Center into the response of selected LDEF polymers to this environment. Materials examined include graphite fiber reinforced epoxy, polysulfone, and additional polyimide matrix composites, films of FEP Teflon, Kapton, several experimental high performance polyimides, and films of more traditional polymers such as poly(vinyl toluene) and polystyrene. Exposure duration was either 10 months or 5.8 years. Flight and control specimens were characterized by a number of analytical techniques including ultraviolet-visible and infrared spectroscopy, thermal analysis, scanning electron and scanning tunneling microscopy, x-ray photoelectron spectroscopy, and, in some instances, selected solution property measurements. Characterized effects were found to be primarily surface phenomena. These effects included atomic oxygen-induced erosion of unprotected surfaces and ultraviolet-induced discoloration and changes in selected molecular level parameters. No gross changes in molecular structure or glass transition temperature were noted. The intent of this characterization is to increase our fundamental knowledge of space environmental effects as an aid in developing new and improved polymers for space application. A secondary objective is to develop benchmarks to enhance our methodology for the ground-based simulation of environmental effects so that polymer performance in space can be more reliably predicted.

  3. XPS Protocol for the Characterization of Pristine and Functionalized Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Sosa, E. D.; Allada, R.; Huffman, C. B.; Arepalli, S.

    2009-01-01

    Recent interest in developing new applications for carbon nanotubes (CNT) has fueled the need to use accurate macroscopic and nanoscopic techniques to characterize and understand their chemistry. X-ray photoelectron spectroscopy (XPS) has proved to be a useful analytical tool for nanoscale surface characterization of materials including carbon nanotubes. Recent nanotechnology research at NASA Johnson Space Center (NASA-JSC) helped to establish a characterization protocol for quality assessment for single wall carbon nanotubes (SWCNTs). Here, a review of some of the major factors of the XPS technique that can influence the quality of analytical data, suggestions for methods to maximize the quality of data obtained by XPS, and the development of a protocol for XPS characterization as a complementary technique for analyzing the purity and surface characteristics of SWCNTs is presented. The XPS protocol is then applied to a number of experiments including impurity analysis and the study of chemical modifications for SWCNTs.

  4. Photoacoustic Determination of Non-radiative Relaxation Time of Absorbing Centers in Maize Seeds

    NASA Astrophysics Data System (ADS)

    Domínguez-Pacheco, A.; Hernández-Aguilar, C.; Cruz-Orea, A.

    2017-07-01

    Using non-destructive photothermal techniques, it is possible to characterize non-homogenous materials to obtain its optical and thermal properties through photoacoustic spectroscopy (PAS). In photoacoustic (PA) phenomena, there are transient states of thermal excitation, when samples absorb the incident light; these states manifest an excitation process that generates the PA signal, being in direct relation with the non-radiative relaxation times with the sample absorbent centers. The objective of this study was to determine the non-radiative relaxation times associated with different absorbent centers of corn seeds ( Zea mays L.), by using PAS. A frequency scan was done at different wavelengths (350 nm, 470 nm and 650 nm) in order to obtain the non-radiative relaxation times with different types of maize seeds.

  5. Impact of Multifunctional Bimetallic Materials on Lithium Battery Electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, Jessica L.; Poyraz, Altug S.; Takeuchi, Esther S.

    Electric energy storage devices such as batteries are complex systems comprised of a variety of materials with each playing separate yet interactive roles, complicated by length scale interactions occurring from the molecular to the mesoscale. Thus, addressing specific battery issues such as functional capacity requires a comprehensive perspective initiating with atomic level concepts. For example, the electroactive materials which contribute to the functional capacity in a battery comprise approximately 30% or less of the total device mass. Thus, the design and implementation of multifunctional materials can conceptually reduce or eliminate the contribution of passive materials to the size and massmore » of the final system. Material multi-functionality can be achieved through appropriate material design on the atomic level resulting in bimetallic electroactive materials where one metal cation forms mesoscale conductive networks upon discharge while the other metal cation can contribute to atomic level structure and net functional secondary capacity, a device level issue. Specifically, this Account provides insight into the multi-mechanism electrochemical redox processes of bimetallic cathode materials based on transition metal oxides (MM’O) or phosphorous oxides (MM’PO) where M = Ag and M’ = V or Fe. One discharge process can be described as reduction-displacement where Ag + is reduced to Ag 0 and displaced from the parent structure. This reduction-displacement reaction in silver-containing bimetallic electrodes allows for the in-situ formation of a conductive network, enhancing the electrochemical performance of the electrode and reducing or eliminating the need for conductive additives. A second discharge process occurs through the reduction of the second transition metal, V or Fe, where the oxidation state of the metal center is reduced and lithium cations are inserted into the structure. As both metal centers contribute to the functional capacity, determining the kinetically and thermodynamically preferred reduction processes at various states of discharge is critical to elucidating the mechanism. Specific advanced in-situ and ex-situ characterization techniques are conducive to gaining insight regarding the electrochemical behavior of these multifunctional materials over multiple length scales. At the material level, optical microscopy, scanning electron microscopy, and local conductivity measurement via a nanoprobe can track the discharge mechanism of an isolated single particle. At the mesoscale electrode level, in-situ data from synchrotron based energy dispersive X-ray diffraction (EDXRD) within fully intact steel batteries can be used to spatially map the distribution of silver metal generated through reduction displacement as a function of discharge depth and discharge rate. As illustrated here, appropriate design of materials with multiple electrochemically active metal centers and properties tuned through strategically conceptualized materials synthesis may provide a path toward the next generation of high energy content electroactive materials and systems. In conclusion, full understanding of the multiple electrochemical mechanisms can be achieved only by utilizing advanced characterization tools over multiple length scales.« less

  6. Impact of Multifunctional Bimetallic Materials on Lithium Battery Electrochemistry

    DOE PAGES

    Durham, Jessica L.; Poyraz, Altug S.; Takeuchi, Esther S.; ...

    2016-08-26

    Electric energy storage devices such as batteries are complex systems comprised of a variety of materials with each playing separate yet interactive roles, complicated by length scale interactions occurring from the molecular to the mesoscale. Thus, addressing specific battery issues such as functional capacity requires a comprehensive perspective initiating with atomic level concepts. For example, the electroactive materials which contribute to the functional capacity in a battery comprise approximately 30% or less of the total device mass. Thus, the design and implementation of multifunctional materials can conceptually reduce or eliminate the contribution of passive materials to the size and massmore » of the final system. Material multi-functionality can be achieved through appropriate material design on the atomic level resulting in bimetallic electroactive materials where one metal cation forms mesoscale conductive networks upon discharge while the other metal cation can contribute to atomic level structure and net functional secondary capacity, a device level issue. Specifically, this Account provides insight into the multi-mechanism electrochemical redox processes of bimetallic cathode materials based on transition metal oxides (MM’O) or phosphorous oxides (MM’PO) where M = Ag and M’ = V or Fe. One discharge process can be described as reduction-displacement where Ag + is reduced to Ag 0 and displaced from the parent structure. This reduction-displacement reaction in silver-containing bimetallic electrodes allows for the in-situ formation of a conductive network, enhancing the electrochemical performance of the electrode and reducing or eliminating the need for conductive additives. A second discharge process occurs through the reduction of the second transition metal, V or Fe, where the oxidation state of the metal center is reduced and lithium cations are inserted into the structure. As both metal centers contribute to the functional capacity, determining the kinetically and thermodynamically preferred reduction processes at various states of discharge is critical to elucidating the mechanism. Specific advanced in-situ and ex-situ characterization techniques are conducive to gaining insight regarding the electrochemical behavior of these multifunctional materials over multiple length scales. At the material level, optical microscopy, scanning electron microscopy, and local conductivity measurement via a nanoprobe can track the discharge mechanism of an isolated single particle. At the mesoscale electrode level, in-situ data from synchrotron based energy dispersive X-ray diffraction (EDXRD) within fully intact steel batteries can be used to spatially map the distribution of silver metal generated through reduction displacement as a function of discharge depth and discharge rate. As illustrated here, appropriate design of materials with multiple electrochemically active metal centers and properties tuned through strategically conceptualized materials synthesis may provide a path toward the next generation of high energy content electroactive materials and systems. In conclusion, full understanding of the multiple electrochemical mechanisms can be achieved only by utilizing advanced characterization tools over multiple length scales.« less

  7. Spin and Optical Characterization of Defects in Group IV Semiconductors for Quantum Memory Applications

    NASA Astrophysics Data System (ADS)

    Rose, Brendon Charles

    This thesis is focused on the characterization of highly coherent defects in both silicon and diamond, particularly in the context of quantum memory applications. The results are organized into three parts based on the spin system: phosphorus donor electron spins in silicon, negatively charged nitrogen vacancy color centers in diamond (NV-), and neutrally charged silicon vacancy color centers in diamond (SiV0). The first part on phosphorus donor electron spins presents the first realization of strong coupling with spins in silicon. To achieve this, the silicon crystal was made highly pure and highly isotopically enriched so that the ensemble dephasing time, T2*, was long (10 micros). Additionally, the use of a 3D resonator aided in realizing uniform coupling, allowing for high fidelity spin ensemble manipulation. These two properties have eluded past implementations of strongly coupled spin ensembles and have been the limiting factor in storing and retrieving quantum information. Second, we characterize the spin properties of the NV- color center in diamond in a large magnetic field. We observe that the electron spin echo envelope modulation originating from the central 14N nuclear spin is much stronger at large fields and that the optically induced spin polarization exhibits a strong orientation dependence that cannot be explained by the existing model for the NV- optical cycle, we develop a modification of the existing model that reproduces the data in a large magnetic field. In the third part we perform characterization and stabilization of a new color center in diamond, SiV0, and find that it has attractive, highly sought-after properties for use as a quantum memory in a quantum repeater scheme. We demonstrate a new approach to the rational design of new color centers by engineering the Fermi level of the host material. The spin properties were characterized in electron spin resonance, revealing long spin relaxation and spin coherence times at cryogenic temperature. Additionally, we observe that the optical emission is highly coherent, predominately into a narrow zero phonon line that is stable in frequency. The combination of coherent optical and spin degrees of freedom has eluded all previous solid state defects.

  8. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Computational Study of Excited-State Phenomena in Energy Materials Center for X-ray Optics MSD Facilities Ion and Materials Physics Scattering and Instrumentation Science Centers Center for Computational Study of Sciences Centers Center for Computational Study of Excited-State Phenomena in Energy Materials Center for X

  9. Perylene Diimide Based ``Nanofabric'' Thin Films for Organic Photovoltaic Cells

    NASA Astrophysics Data System (ADS)

    Carter, Austin; Park, June Hyoung; Min, Yong; Epstein, Arthur

    2011-03-01

    We report progress in using a perylene diimide (PDI) nanofabric as an effective electron accepting nanostructure for organic photovoltaics (OPV). A key challenge in OPV continues to be the recovery of electrons after charge separation due to the relatively poor mobility of C60 and related materials. A series of PDI compounds and complexes have been synthesized and used to fabricate nanofibers and thin films using solution and vacuum deposition techniques. Overlaping PDI-based nanofibers form a fast electron-transporting ``nanofabric'' that has been characterized (AFM, PL, UV-vis, etc.) and can be blended with electron donating materials. A solution-processible OPV configuration containing a nanofabric heterojunction (FHJ) of poly(3-hexylthiophene) and the PDI nanofabric was investigated. We observed a significant improvement in power-conversion efficiency due in part to expansion of the interfacial area and the presence of high mobility electron pathways to the LiF/Al electrode. This work is supported by the Wright Center for Photovoltaic Innovation and Commercialization, the Institute for Materials Research and the Center for Affordable Nanoengineering of Polymeric Biomedical Devices.

  10. Optical Surface Analysis

    DTIC Science & Technology

    1996-08-01

    34 : " ... , h„.,. ... rP,„onse includinq the time for reviewing instructions, searching existing data sources , gÄÄa^^^ Shsi^ BT ::^^"!in9’°n...DISTRIBUTION CODE ^^ZZ^Z^ZZ centered around the continued development of a unique "^ ^^ to semiconductor materials characterization. A brief...NEW SCATTEROMETER CAPABILITIES 23 4.1 Polarization control 23 4.2 Four-inch sample translation 25 4.3 New photometer 26 4.4 New laser sources 27

  11. Caracterisation mecanique dynamique de materiaux poro-visco-elastiques

    NASA Astrophysics Data System (ADS)

    Renault, Amelie

    Poro-viscoelastic materials are well modelled with Biot-Allard equations. This model needs a number of geometrical parameters in order to describe the macroscopic geometry of the material and elastic parameters in order to describe the elastic properties of the material skeleton. Several characterisation methods of viscoelastic parameters of porous materials are studied in this thesis. Firstly, quasistatic and resonant characterization methods are described and analyzed. Secondly, a new inverse dynamic characterization of the same modulus is developed. The latter involves a two layers metal-porous beam, which is excited at the center. The input mobility is measured. The set-up is simplified compared to previous methods. The parameters are obtained via an inversion procedure based on the minimisation of the cost function comparing the measured and calculated frequency response functions (FRF). The calculation is done with a general laminate model. A parametric study identifies the optimal beam dimensions for maximum sensitivity of the inversion model. The advantage of using a code which is not taking into account fluid-structure interactions is the low computation time. For most materials, the effect of this interaction on the elastic properties is negligible. Several materials are tested to demonstrate the performance of the method compared to the classical quasi-static approaches, and set its limitations and range of validity. Finally, conclusions about their utilisation are given. Keywords. Elastic parameters, porous materials, anisotropy, vibration.

  12. Establishment of computerized numerical databases on thermophysical and other properties of molten as well as solid materials and data evaluation and validation for generating recommended reliable reference data

    NASA Technical Reports Server (NTRS)

    Ho, C. Y.

    1993-01-01

    The Center for Information and Numerical Data Analysis and Synthesis, (CINDAS), measures and maintains databases on thermophysical, thermoradiative, mechanical, optical, electronic, ablation, and physical properties of materials. Emphasis is on aerospace structural materials especially composites and on infrared detector/sensor materials. Within CINDAS, the Department of Defense sponsors at Purdue several centers: the High Temperature Material Information Analysis Center (HTMIAC), the Ceramics Information Analysis Center (CIAC) and the Metals Information Analysis Center (MIAC). The responsibilities of CINDAS are extremely broad encompassing basic and applied research, measurement of the properties of thin wires and thin foils as well as bulk materials, acquisition and search of world-wide literature, critical evaluation of data, generation of estimated values to fill data voids, investigation of constitutive, structural, processing, environmental, and rapid heating and loading effects, and dissemination of data. Liquids, gases, molten materials and solids are all considered. The responsibility of maintaining widely used databases includes data evaluation, analysis, correlation, and synthesis. Material property data recorded on the literature are often conflicting, diverging, and subject to large uncertainties. It is admittedly difficult to accurately measure materials properties. Systematic and random errors both enter. Some errors result from lack of characterization of the material itself (impurity effects). In some cases assumed boundary conditions corresponding to a theoretical model are not obtained in the experiments. Stray heat flows and losses must be accounted for. Some experimental methods are inappropriate and in other cases appropriate methods are carried out with poor technique. Conflicts in data may be resolved by curve fitting of the data to theoretical or empirical models or correlation in terms of various affecting parameters. Reasons (e.g. phase transitions) must be found for unusual dependence or any anomaly. Such critical evaluation involves knowledge of theory, experience in measurement, familiarity with metallurgy (microstructural behavior) and not inconsiderable judgment. An examination of typical data compiled and analyzed by CINDAS shows that the thermal conductivity of a material reported in the literature may vary by a factor of two of more; the range of reported values increases as temperature increases reflecting the difficulty of high temperature measurements. Often only estimates of melt behavior are available, despite the importance of melt properties in modeling, welding, or other solidification processes. There may be only a few measurements available for properties such as kinematic viscosity, even for widely used materials such as stainless steel. In the face of such a paucity of existing data and in a national environment where too few new data are being generated it is nonetheless the responsibility of CINDAS to select and disseminate recommended values of a wide variety of thermophysical properties.

  13. First-principles Investigation of the Structure, Mobility and Optical Properties of Self-Trapped Excitons in Alkali Metal, Lanthanum and Barium Halide Scintillators

    NASA Astrophysics Data System (ADS)

    Bizarri, Gregory; Del Ben, Mauro; Bourret, Edith; Canning, Andrew

    The performance of new and improved materials for gamma ray scintillator detectors is dependant on multiple factors such as quantum efficiency, energy transport etc. In halide scintillator materials the energy transport is often impacted by self-trapped exciton (STE) formation and mobility. We present first-principles calculations at the hybrid density functional theory level for the structure, mobility and optical properties of STEs and their associated lattice defects (VK centers) in two important families of scintillator materials, alkali metal and lanthanum halides (AX and LaX). AX and LaX have been extensively characterized by experiments and serve as benchmark systems to assess the accuracy of our theoretical procedure. We show that hydrid functionals accurately predict the different types of self-trapped excitons (on and off-center) found in AX and LX materials in agreement with EPR experiments. We then applied this approach to perform preliminary studies on classes of new scintillator materials including the barium mixed halides and compared with our new experimental results. These studies have the potential to benefit the development of improved scintillator materials tailored for specific applications. This work is supported by the U.S. Department of Energy/NNSA/DNN R&D and is carried out at Lawrence Berkeley National Laboratory under Contract No. AC02-05CH11231.

  14. Inhibition of bacterial and leukocyte adhesion under shear stress conditions by material surface chemistry.

    PubMed

    Patel, Jasmine D; Ebert, Michael; Stokes, Ken; Ward, Robert; Anderson, James M

    2003-01-01

    Biomaterial-centered infections, initiated by bacterial adhesion, persist due to a compromised host immune response. Altering implant materials with surface modifying endgroups (SMEs) may enhance their biocompatibility by reducing bacterial and inflammatory cell adhesion. A rotating disc model, which generates shear stress within physiological ranges, was used to characterize adhesion of leukocytes and Staphylococcus epidermidis on polycarbonate-urethanes and polyetherurethanes modified with SMEs (polyethylene oxide, fluorocarbon and dimethylsiloxane) under dynamic flow conditions. Bacterial adhesion in the absence of serum was found to be mediated by shear stress and surface chemistry, with reduced adhesion exhibited on materials modified with polydimethylsiloxane and polyethylene oxide SMEs. In contrast, bacterial adhesion was enhanced on materials modified with fluorocarbon SMEs. In the presence of serum, bacterial adhesion was primarily neither material nor shear dependent. However, bacterial adhesion in serum was significantly reduced to < or = 10% compared to adhesion in serum-free media. Leukocyte adhesion in serum exhibited a shear dependency with increased adhesion occurring in regions exposed to lower shear-stress levels of < or = 7 dyne/cm2. Additionally, polydimethylsiloxane and polyethylene oxide SMEs reduced leukocyte adhesion on polyether-urethanes. In conclusion, these results suggest that surface chemistry and shear stress can mediate bacterial and cellular adhesion. Furthermore, materials modified with polyethylene oxide SMEs are capable of inhibiting bacterial adhesion, consequently minimizing the probability of biomaterial-centered infections.

  15. Biomass production chamber air analysis of wheat study (BWT931)

    NASA Technical Reports Server (NTRS)

    Batten, J. H.; Peterson, B. V.; Berdis, E.; Wheeler, E. M.

    1993-01-01

    NASA's Controlled Ecological Life Support System (CELSS) biomass production chamber at John F. Kennedy Space Center provides a test bed for bioregenerative studies using plants to provide food, oxygen, carbon dioxide removal, and potable water to humans during long term space travel. Growing plants in enclosed environments has brought about concerns regarding the level of volatile organic compounds (VOC's) emitted from plants and the construction materials that make up the plant growth chambers. In such closed systems, the potential exists for some VOC's to reach toxic levels and lead to poor plant growth, plant death, or health problems for human inhabitants. This study characterized the air in an enclosed environment in which wheat cv. Yocora Rojo was grown. Ninty-four whole air samples were analyzed by gas chromatography/mass spectrometry throughout the eighty-four day planting. VOC emissions from plants and materials were characterized and quantified.

  16. Packaging strategies for printed circuit board components. Volume I, materials & thermal stresses.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilsen, Michael K.; Austin, Kevin N.; Adolf, Douglas Brian

    2011-09-01

    Decisions on material selections for electronics packaging can be quite complicated by the need to balance the criteria to withstand severe impacts yet survive deep thermal cycles intact. Many times, material choices are based on historical precedence perhaps ignorant of whether those initial choices were carefully investigated or whether the requirements on the new component match those of previous units. The goal of this program focuses on developing both increased intuition for generic packaging guidelines and computational methodologies for optimizing packaging in specific components. Initial efforts centered on characterization of classes of materials common to packaging strategies and computational analysesmore » of stresses generated during thermal cycling to identify strengths and weaknesses of various material choices. Future studies will analyze the same example problems incorporating the effects of curing stresses as needed and analyzing dynamic loadings to compare trends with the quasi-static conclusions.« less

  17. [Ag2M(Te2O5)2]SO4 (M = CeIV or ThIV): A New Purely Inorganic d/f-Heterometallic Cationic Material.

    PubMed

    Poe, Todd N; White, Frankie D; Proust, Vanessa; Villa, Eric M; Polinski, Matthew J

    2018-05-07

    Two new isotypic d/f-heterometallic purely inorganic cationic materials, [Ag 2 M(Te 2 O 5 ) 2 ]SO 4 (M = Ce IV or Th IV ), were synthesized using the metal oxides (MO 2 and TeO 2 ), silver nitrate, and sulfuric acid under mild hydrothermal conditions. The prepared materials were characterized via single-crystal X-ray diffraction, which revealed that the materials possess a 3D framework of corner-sharing Te 2 O 5 2- units. The tellurite framework creates four unique pores, three of which are occupied by the M IV and Ag I metal centers. The tellurite network, metal coordination, and total charge yield a cationic framework, which is charge-balanced by electrostatically bound sulfate anions residing in the largest of the four framework pores. These materials also possess Ag I in a ligand-imposed linear geometry.

  18. Feasibility Study on 3-D Printing of Metallic Structural Materials with Robotized Laser-Based Metal Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Ding, Yaoyu; Kovacevic, Radovan

    2016-07-01

    Metallic structural materials continue to open new avenues in achieving exotic mechanical properties that are naturally unavailable. They hold great potential in developing novel products in diverse industries such as the automotive, aerospace, biomedical, oil and gas, and defense. Currently, the use of metallic structural materials in industry is still limited because of difficulties in their manufacturing. This article studied the feasibility of printing metallic structural materials with robotized laser-based metal additive manufacturing (RLMAM). In this study, two metallic structural materials characterized by an enlarged positive Poisson's ratio and a negative Poisson's ratio were designed and simulated, respectively. An RLMAM system developed at the Research Center for Advanced Manufacturing of Southern Methodist University was used to print them. The results of the tensile tests indicated that the printed samples successfully achieved the corresponding mechanical properties.

  19. A teleoperated system for remote site characterization

    NASA Technical Reports Server (NTRS)

    Sandness, Gerald A.; Richardson, Bradley S.; Pence, Jon

    1994-01-01

    The detection and characterization of buried objects and materials is an important step in the restoration of burial sites containing chemical and radioactive waste materials at Department of Energy (DOE) and Department of Defense (DOD) facilities. By performing these tasks with remotely controlled sensors, it is possible to obtain improved data quality and consistency as well as enhanced safety for on-site workers. Therefore, the DOE Office of Technology Development and the US Army Environmental Center have jointly supported the development of the Remote Characterization System (RCS). One of the main components of the RCS is a small remotely driven survey vehicle that can transport various combinations of geophysical and radiological sensors. Currently implemented sensors include ground-penetrating radar, magnetometers, an electromagnetic induction sensor, and a sodium iodide radiation detector. The survey vehicle was constructed predominantly of non-metallic materials to minimize its effect on the operation of its geophysical sensors. The system operator controls the vehicle from a remote, truck-mounted, base station. Video images are transmitted to the base station by a radio link to give the operator necessary visual information. Vehicle control commands, tracking information, and sensor data are transmitted between the survey vehicle and the base station by means of a radio ethernet link. Precise vehicle tracking coordinates are provided by a differential Global Positioning System (GPS).

  20. W-Band Free Space Permittivity Measurement Setup for Candidate Radome Materials

    NASA Technical Reports Server (NTRS)

    Fralick, Dion T.

    1997-01-01

    This paper presents a measurement system used for w-band complex permittivity measurements performed in NASA Langley Research Center's Electromagnetics Research Branch. The system was used to characterize candidate radome materials for the passive millimeter wave (PMMW) camera experiment. The PMMW camera is a new technology sensor, with goals of all-weather landings of civilian and military aircraft. The sensor is being developed under a NASA Technology Reinvestment program with TRW, McDonnell- Douglas, Honeywell, and Composite Optics, Inc. as participants. The experiment is scheduled to be flight tested on the Air Force's 'Speckled Trout' aircraft in late 1997. The camera operates at W-band, in a radiometric capacity and generates an image of the viewable field. Because the camera is a radiometer, the system is very sensitive to losses. Minimal transmission loss through the radome at the operating frequency, 89 GHz, was critical to the success of the experiment. This paper details the design, set-up, calibration and operation of a free space measurement system developed and used to characterize the candidate radome materials for this program.

  1. Materials International Space Station Experiment (MISSE) 5 Developed to Test Advanced Solar Cell Technology Aboard the ISS

    NASA Technical Reports Server (NTRS)

    Wilt, David M.

    2004-01-01

    The testing of new technologies aboard the International Space Station (ISS) is facilitated through the use of a passive experiment container, or PEC, developed at the NASA Langley Research Center. The PEC is an aluminum suitcase approximately 2 ft square and 5 in. thick. Inside the PEC are mounted Materials International Space Station Experiment (MISSE) plates that contain the test articles. The PEC is carried to the ISS aboard the space shuttle or a Russian resupply vehicle, where astronauts attach it to a handrail on the outer surface of the ISS and deploy the PEC, which is to say the suitcase is opened 180 deg. Typically, the PEC is left in this position for approximately 1 year, at which point astronauts close the PEC and it is returned to Earth. In the past, the PECs have contained passive experiments, principally designed to characterize the durability of materials subjected to the ultraviolet radiation and atomic oxygen present at the ISS orbit. The MISSE5 experiment is intended to characterize state-of-art (SOA) and beyond photovoltaic technologies.

  2. Characterizing GEO Titan IIIC Transtage Fragmentations Using Ground-Based and Telescopic Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, H.

    2017-01-01

    In a continued effort to better characterize the Geosynchronous Orbit (GEO) environment, NASA's Orbital Debris Program Office (ODPO) utilizes various ground-based optical assets to acquire photometric and spectral data of known debris associated with fragmentations in or near GEO. The Titan IIIC Transtage upper stage is known to have fragmented four times. Two of the four fragmentations were in GEO while a third Transtage fragmented in GEO transfer orbit. The forth fragmentation occurred in Low Earth Orbit. In order to better assess and characterize these fragmentations, the NASA ODPO acquired a Titan Transtage test and display article previously in the custody of the 309th Aerospace Maintenance and Regeneration Group (AMARG) in Tucson, Arizona. After initial inspections at AMARG demonstrated that the test article was of sufficient fidelity to be of interest, the test article was brought to JSC to continue material analysis and historical documentation of the Titan Transtage. The Transtage has been subject to two separate spectral measurement campaigns to characterize the reflectance spectroscopy of historical aerospace materials. These data have been incorporated into the NASA Spectral Database, the goal being to enable comparison with telescopic data and potential material identification. A LIDAR scan has been completed and a scale model has been created for use in the Optical Measurement Center for photometric analysis of an intact Transtage, including a BRDF. An historical overview of the Titan IIIC Transtage, the current analysis that has been done to date, and the future work to be completed in support of characterizing the GEO and near GEO orbital debris environment will be discussed in the subsequent presentation.

  3. Universality in the nonlinear leveling of capillary films

    NASA Astrophysics Data System (ADS)

    Zheng, Zhong; Fontelos, Marco A.; Shin, Sangwoo; Stone, Howard A.

    2018-03-01

    Many material science, coating, and manufacturing problems involve liquid films where defects that span the film thickness must be removed. Here, we study the surface-tension-driven leveling dynamics of a thin viscous film following closure of an initial hole. The dynamics of the film shape is described by a nonlinear evolution equation, for which we obtain a self-similar solution. The analytical results are verified using time-dependent numerical and experimental results for the profile shapes and the minimum film thickness at the center. The universal behavior we identify can be useful for characterizing the time evolution of the leveling process and estimating material properties from experiments.

  4. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading. Volume 2, Part 1; Appendices

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approximately 9 inches from the source) dominated by direct wave propagation, mid-field environment (approximately 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.

  5. TPF coronagraph instrument design

    NASA Technical Reports Server (NTRS)

    Shaklan, S B.; Balasubramanian, K.; Ceperly, D.; Green, J.; Hoppe, D.; Lay, O. P.; Lisman, P. D.; Mouroulis, P. Z.

    2005-01-01

    For the past 2 years, NASA has invested substantial resources to study the design and performance of the Terrestrial Planet Finder Coronagraph (TPF-C). The work, led by the Jet Propulsion Laboratory with collaboration from Goddard Space Flight Center and several university and commercial entities, encompasses observatory design, performance modeling, materials characterization, primary mirror studies, and a significant technology development effort including a high-contrast imaging testbed that has achieved 1e-9 contrast in a laboratory experiment.

  6. Michigan/Air Force Research Laboratory (AFRL) Collaborative Center in Aeronautical Sciences (MACCAS)

    DTIC Science & Technology

    2013-09-01

    Interactions - PIV Database for the Second SBLI Workshop”  “Design of a Glass Supersonic Wind Tunnel Experiment for Mixed Compression Inlet Investigations...or small-scale wind tunnel tests. Some of the discipline components have also been compared against well-established numerical solutions (e.g...difficult to test in a wind tunnel environment. The choice of construction, materials, and geometry were such that they allow accurate characterization of

  7. North Carolina Biomolecular Engineering and Materials Applications Center (NC-BEMAC).

    DTIC Science & Technology

    1987-12-29

    enzyme has been replaced with cobalt(II). A further objective was to investigate Co2 activation by low molecular weight transition metal complexes as...Characterization of Low Molecular Weight Metal Complexes as Potential Models for IBio-Catalytic Processes. A number of transit ion met~~il oom~pi cxe; hive...binding, the enzyme suffered loss of activity during radiation polymerization. When covalent binding was u:sed it was necessary to introduce suitably

  8. Application of electron paramagnetic resonance imaging to the characterization of the Ultem(R) exposed to 1 MeV electrons. Correlation of radical density data to tiger code calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suleman, N.K.

    1994-12-01

    A major long-term goal of the Materials Division at the NASA Langley Research Center is the characterization of new high-performance materials that have potential applications in the aircraft industry, and in space. The materials used for space applications are often subjected to a harsh and potentially damaging radiation environment. The present study constitutes the application of a novel technique to obtain reliable data for ascertaining the molecular basis for the resilience and durability of materials that have been exposed to simulated space radiations. The radiations of greatest concern are energetic electrons and protons, as well as galactic cosmic rays. Presently,more » the effects of such radiation on matter are not understood in their entirety. It is clear however, that electron radiation causes ionization and homolytic bond rupture, resulting in the formation of paramagnetic spin centers in the polymer matrices of the structural materials. Since the detection and structure elucidation of paramagnetic species are most readily accomplished using Electron Paramagnetic Resonance (EPR) Spectroscopy, the NASA LaRC EPR system was brought back on-line during the 1991 ASEE term. The subsequent 1992 ASEE term was devoted to the adaptation of the EPR core system to meet the requirements for EPR Imaging (EPRI), which provides detailed information on the spatial distribution of paramagnetic species in bulk media. The present (1994) ASEE term was devoted to the calibration of this EPR Imaging system, as well as to the application of this technology to study the effects of electron irradiation on Ultem(exp R), a high performance polymer which is a candidate for applications in aerospace. The Ultem was exposed to a dose of 2.4 x 10(exp 9) Rads (1-MeV energy/electron) at the LaRC electron accelerator facility. Subsequently, the exposed specimens were stored in liquid nitrogen, until immediately prior to analyses by EPRI.« less

  9. Center for the development of commercial crystal growth in space

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.

    1989-01-01

    The second year of operation of the Center for Commercial Crystal Growth in Space is described. This center is a consortium of businesses, universities and national laboratories. The primary goal of the Center's research is the development of commercial crystal growth in space. A secondary goal is to develop scientific understanding and technology which will improve commercial crystal growth on earth. In order to achieve these goals the Center's research is organized into teams by growth technique; melt growth, solution growth, and vapor growth. The melt growth team is working on solidification and characterization of bulk crystals of gallium arsenide and cadmium telluride. They used high resolution X-ray topography performed at the National Synchrotron Light Source at Brookhaven National Laboratory. Streak-like features were found in the diffraction images of semi-insulating undoped LEC GaAs. These were shown to be (110) antiphase boundaries, which have not been reported before but appear to be pervasive and responsible for features seen via less-sensitive characterization methods. The results on CdTe were not as definitive, but indicate that antiphase boundaries may also be responsible for the double peaks often seen in X-ray rocking curves of this material. A liquid encapsulated melt zone system for GaAs has been assembled and techniques for casting feed rods developed. It was found that scratching the inside of the quartz ampoules with silicon carbide abrasive minimized sticking of the GaAs to the quartz. Twelve floating zone experiments were done.

  10. Imaging of volcanic activity on Jupiter's moon Io by Galileo during the Galileo Europa Mission and the Galileo Millennium Mission

    USGS Publications Warehouse

    Keszthelyi, L.; McEwen, A.S.; Phillips, C.B.; Milazzo, M.; Geissler, P.; Turtle, E.P.; Radebaugh, J.; Williams, D.A.; Simonelli, D.P.; Breneman, H.H.; Klaasen, K.P.; Levanas, G.; Denk, T.; Alexander, D.D.A.; Capraro, K.; Chang, S.-H.; Chen, A.C.; Clark, J.; Conner, D.L.; Culver, A.; Handley, T.H.; Jensen, D.N.; Knight, D.D.; LaVoie, S.K.; McAuley, M.; Mego, V.; Montoya, O.; Mortensen, H.B.; Noland, S.J.; Patel, R.R.; Pauro, T.M.; Stanley, C.L.; Steinwand, D.J.; Thaller, T.F.; Woncik, P.J.; Yagi, G.M.; Yoshimizu, J.R.; Alvarez, Del; Castillo, E.M.; Belton, M.J.S.; Beyer, R.; Branston, D.; Fishburn, M.B.; Mueller, B.; Ragan, R.; Samarasinha, N.; Anger, C.D.; Cunningham, C.; Little, B.; Arriola, S.; Carr, M.H.; Asphaug, E.; Moore, J.; Morrison, D.; Rages, K.; Banfield, D.; Bell, M.; Burns, J.A.; Carcich, B.; Clark, B.; Currier, N.; Dauber, I.; Gierasch, P.J.; Helfenstein, P.; Mann, M.; Othman, O.; Rossier, L.; Solomon, N.; Sullivan, R.; Thomas, P.C.; Veverka, J.; Becker, T.; Edwards, K.; Gaddis, L.; Kirk, R.; Lee, E.; Rosanova, T.; Sucharski, R.M.; Beebe, R.F.; Simon, A.; Bender, K.; Chuang, F.; Fagents, S.; Figueredo, P.; Greeley, R.; Homan, K.; Kadel, S.; Kerr, J.; Klemaszewski, J.; Lo, E.; Schwarz, W.; Williams, K.; Bierhaus, E.; Brooks, S.; Chapman, C.R.; Merline, B.; Keller, J.; Schenk, P.; Tamblyn, P.; Bouchez, A.; Dyundian, U.; Ingersoll, A.P.; Showman, A.; Spitale, J.; Stewart, S.; Vasavada, A.; Cunningham, W.F.; Johnson, T.V.; Jones, T.J.; Kaufman, J.M.; Magee, K.P.; Meredith, M.K.; Orton, G.S.; Senske, D.A.; West, A.; Winther, D.; Collins, G.; Fripp, W.J.; Head, J. W.; Pappalardo, R.; Pratt, S.; Procter, L.; Spaun, N.; Colvin, T.; Davies, M.; DeJong, E.M.; Hall, J.; Suzuki, S.; Gorjian, Z.; Giese, B.; Koehler, U.; Neukum, G.; Oberst, J.; Roatsch, T.; Tost, W.; Schuster, P.; Wagner, R.; Dieter, N.; Durda, D.; Greenberg, R.J.; Hoppa, G.; Jaeger, W.; Plassman, J.; Tufts, R.; Fanale, F.P.; Gran,

    2001-01-01

    The Solid-State Imaging (SSI) instrument provided the first high- and medium-resolution views of Io as the Galileo spacecraft closed in on the volcanic body in late 1999 and early 2000. While each volcanic center has many unique features, the majority can be placed into one of two broad categories. The "Promethean" eruptions, typified by the volcanic center Prometheus, are characterized by long-lived steady eruptions producing a compound flow field emplaced in an insulating manner over a period of years to decades. In contrast, "Pillanian" eruptions are characterized by large pyroclastic deposits and short-lived but high effusion rate eruptions from fissures feeding open-channel or open-sheet flows. Both types of eruptions commonly have ???100-km-tall, bright, SO2-rich plumes forming near the flow fronts and smaller deposits of red material that mark the vent for the silicate lavas. Copyright 2001 by the American Geophysical Union.

  11. Electrochemical characterization of FeMnO3 microspheres as potential material for energy storage applications

    NASA Astrophysics Data System (ADS)

    Saravanakumar, B.; Ramachandran, S. P.; Ravi, G.; Ganesh, V.; Guduru, Ramesh K.; Yuvakkumar, R.

    2018-01-01

    In this study, uniform iron manganese trioxide (FeMnO3) microspheres were characterized as electrode for supercapacitor applications. The microspheres were synthesized by hydrothermal method in the presence of different molar ratios of sucrose. X-ray diffraction pattern confirmed that the obtained microsphere has body-centered lattice structure of space group 1213(199). The Raman peak observed at 640 cm-1 might be attributed to the stretching mode of vibration of Mn-O bonds perpendicular to the direction of MnO6 octahedral double chains. The photoluminescence peak at the 536 nm corresponded to Fe2+ ions in FeMnO3 lattice point of body-centered cubic structure. The characteristic strong infrared (IR) bands observed at 669 cm-1 corresponded to Fe-O stretching. The electrochemical characterization of the obtained FeMnO3 products could be understood by carrying out cyclic voltammeter, electroimpedance spectra, and galvanostatic charging and discharge studies in a three-cell setup that demonstrates the exceptional specific capacitance of 773.5 F g-1 at a scan rate of 10 mV s-1 and 763.4 F g-1 at a current density of 1 A g-1.

  12. Search for the ANSER (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasielewski, Michael R.; ANSER Staff

    2011-05-01

    'Search for the ANSER' was submitted by the Argonne-Northwestern Solar Energy Research Center (ANSER) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. ANSER, an EFRC directed by Michael Wasielewski at Argonne National Laboratory is a partnership of scientists from five institutions: Argonne National Laboratory, Northwestern University, University of Chicago, University of Illinois at Urbana-Champaign, and Yale. The Office of Basic Energy Sciences in the U.S. Department of Energy'smore » Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. At ANSER, the mission is 'to revolutionize our understanding of molecules, materials and methods necessary to create dramatically more efficient technologies for solar fuels and electricity production.' Research topics are: catalysis (water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar photovoltaic, solar fuels, solar electrodes, photosynthesis, transportation fuels, bio-inspired, spin dynamics, hydrogen (fuel), ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, and self-assembly.« less

  13. Search for the ANSER (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum

    ScienceCinema

    Wasielewski, Michael R. (Director, Argonne-Northwestern Solar Energy Research Center); ANSER Staff

    2017-12-09

    'Search for the ANSER' was submitted by the Argonne-Northwestern Solar Energy Research Center (ANSER) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. ANSER, an EFRC directed by Michael Wasielewski at Argonne National Laboratory is a partnership of scientists from five institutions: Argonne National Laboratory, Northwestern University, University of Chicago, University of Illinois at Urbana-Champaign, and Yale. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. At ANSER, the mission is 'to revolutionize our understanding of molecules, materials and methods necessary to create dramatically more efficient technologies for solar fuels and electricity production.' Research topics are: catalysis (water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar photovoltaic, solar fuels, solar electrodes, photosynthesis, transportation fuels, bio-inspired, spin dynamics, hydrogen (fuel), ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, and self-assembly.

  14. Aerogel Blanket Insulation Materials for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Coffman, B. E.; Fesmire, J. E.; White, S.; Gould, G.; Augustynowicz, S.

    2009-01-01

    Aerogel blanket materials for use in thermal insulation systems are now commercially available and implemented by industry. Prototype aerogel blanket materials were presented at the Cryogenic Engineering Conference in 1997 and by 2004 had progressed to full commercial production by Aspen Aerogels. Today, this new technology material is providing superior energy efficiencies and enabling new design approaches for more cost effective cryogenic systems. Aerogel processing technology and methods are continuing to improve, offering a tailor-able array of product formulations for many different thermal and environmental requirements. Many different varieties and combinations of aerogel blankets have been characterized using insulation test cryostats at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Detailed thermal conductivity data for a select group of materials are presented for engineering use. Heat transfer evaluations for the entire vacuum pressure range, including ambient conditions, are given. Examples of current cryogenic applications of aerogel blanket insulation are also given. KEYWORDS: Cryogenic tanks, thermal insulation, composite materials, aerogel, thermal conductivity, liquid nitrogen boil-off

  15. Purification and Crystal Growth of Lead Iodide by Physical Vapor Transport Method

    NASA Technical Reports Server (NTRS)

    Wright, G. W.; Cole, M.; Chen, Y.-F.; Chen, K.-T.; Chen, H.; Chattopadhyay, K.; Burger, A.

    1998-01-01

    Lead iodide (PbI2) is a layered compound semiconductor being developed as room temperature x- and gamma-ray detector. Compared to the more studied material, mercuric iodide, PbI2 has a higher melting temperature and no phase transition until liquid phase which are indications of better mechanical properties. In this study, the source material was purified by the zone-refining process, and the purest section was extracted from center of the the zone-refined ingot to be grown by physical vapor transport (PVT) method. The zone-refined material and as-grown crystals were characterized by optical microscopy and differential scanning calorimetry (DSC) to reveal the surface morphology, purity and stoichiometry. The results shows that both materials are near-stoichiometric composition, with the purity of the as-grown crystals higher than zone-refined materials. The resistivity of the as-grown crystal (10" Omega-cm) was derived from current-voltage (I-V) measurement, and is 10 times higher than the zone-refined materials. Detail results will be presented and discussed.

  16. Revitalization of the NASA Langley Research Center's Infrastructure

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S.; Mastaler, Michael D.; Craft, Stephen J.; Kegelman, Jerome T.; Hope, Drew J.; Mangum, Cathy H.

    2012-01-01

    The NASA Langley Research Center (Langley) was founded in 1917 as the nation's first civilian aeronautical research facility and NASA's first field center. For nearly 100 years, Langley has made significant contributions to the Aeronautics, Space Exploration, and Earth Science missions through research, technology, and engineering core competencies in aerosciences, materials, structures, the characterization of earth and planetary atmospheres and, more recently, in technologies associated with entry, descent, and landing. An unfortunate but inevitable outcome of this rich history is an aging infrastructure where the longest serving building is close to 80 years old and the average building age is 44 years old. In the current environment, the continued operation and maintenance of this aging and often inefficient infrastructure presents a real challenge to Center leadership in the trade space of sustaining infrastructure versus not investing in future capabilities. To address this issue, the Center has developed a forward looking revitalization strategy that ties future core competencies and technical capabilities to the Center Master Facility Plan to maintain a viable Center well into the future. This paper documents Langley's revitalization strategy which integrates the Center's missions, the Langley 2050 vision, the Center Master Facility Plan, and the New Town repair-by-replacement program through the leadership of the Vibrant Transformation to Advance Langley (ViTAL) Team.

  17. Student Success Center Toolkit

    ERIC Educational Resources Information Center

    Jobs For the Future, 2014

    2014-01-01

    "Student Success Center Toolkit" is a compilation of materials organized to assist Student Success Center directors as they staff, launch, operate, and sustain Centers. The toolkit features materials created and used by existing Centers, such as staffing and budgeting templates, launch materials, sample meeting agendas, and fundraising…

  18. Marshall Space Flight Center solid waste characterization and recycling improvement study

    NASA Technical Reports Server (NTRS)

    Eley, Michael H.; Crews, Lavonne; Johnston, Ben; Lee, David; Colebaugh, James

    1995-01-01

    The MSFC Facilities Office, which is responsible for disposing of all waste generated by MSFC, issued a delivery order to the University of Alabama in Huntsville (UAH) to characterize current MSFC waste streams and to evaluate their existing recycling program. The purpose of the study was to define the nature, quantity, and types of waste produced and to generate ideas for improving the present recycling program. Specifically, the following tasks were to be performed: Identify various surplus and waste materials--as identified by the Contracting Officer's Technical Representative (COTR)--by source, location, and type; Analyze MSFC's current methods for handling, storage, transport, and disposition of waste and surplussed materials; Determine the composition of various surplus and waste materials as to type and quantities from various sources and locations; Analyze different methods for the disposition of various surplus and waste materials, including quality, quantity, preparation, transport cost, and value; Study possible alternatives to current methods of handling, storage, transport, and disposition of surplus and waste materials to improve the quality and quantities recycled or sold and to reduce and minimize the quantities of surplus and waste material currently being disposed of or stored; Provide recommendations for source and centralized segregation and aggregation of materials for recycling and/or disposition; and The analysis could include identification and laboratory level evaluation of methods and/or equipment, including capital costs, operating costs, maintenance requirements, life cycle and return on investment for systems to support the waste reduction program mission.

  19. [Morphology of gametes in sea urchins from Peter the Great Bay, Sea of Japan].

    PubMed

    Drozdov, A L; Vinnikova, V V

    2010-01-01

    The fine structure of the gametes in six sea urchin species of the Sea of Japan was studied. The spermatozoons in Strongylocentrotus nudus, S. intermedius, Echinocardium cordatum, Scaphechinus mirabilis, Sc. grizeus and Echinarachnius parma are species-specific. The conical head and symmetrically disposed ring-shape mitochondrion are common to regular sea urchin sperm cells. S. nudus is characterized by the bulb-shaped head of the zoosperm; S. intermedius, by a bullet-shaped one. The zoosperm spearhead and small amount of postacrosome material are common to irregular sea urchins; the sperm width: length ratio varies for different species, with the highest for Sc. mirabilis. The zoosperm of Sc. griseus is characterized by two lipid drops in the cell center. Asymmetrical mitochondrion disposal is usual for E. parma. Actin filaments are found in the postacrosome material in the zoosperm of cordiform sea urchins. The differences in the fine structure of zoosperm in eurybiont species Ech. cordatum inhabiting the Sea of Japan and coastal areas of the Northeast Atlantic may bear record to the complex existence of species Ech. cordatum. The fine structure of zoosperm is unique for each of the studied families, Strongylocentrotidae, Scutellidae, and Loveniidae. The eggs of all the species are characterized by vitelline and tremelloid membranes. The vitelline membrane is formed by cytoplasm protrusions; the area between them is filled with fubrillary material. The tremelloid membrane is formed by fubrillary material associated with apical parts of microvilli of the vitelline membrane. The irregular sea urchins Sc. griseus, Sc. mirabilis and E. parma are characterized by chromatophores situated in the tremelloid membrane, with the highest abundance in Sc. mirabilis.

  20. 7 CFR 600.8 - Plant materials centers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Plant materials centers. 600.8 Section 600.8..., DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.8 Plant materials centers. Plant materials centers (PMC) assemble and test plant species for conservation uses. Usually a PMC serves two or more States, and is...

  1. 7 CFR 600.8 - Plant materials centers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Plant materials centers. 600.8 Section 600.8..., DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.8 Plant materials centers. Plant materials centers (PMC) assemble and test plant species for conservation uses. Usually a PMC serves two or more States, and is...

  2. 7 CFR 600.8 - Plant materials centers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Plant materials centers. 600.8 Section 600.8..., DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.8 Plant materials centers. Plant materials centers (PMC) assemble and test plant species for conservation uses. Usually a PMC serves two or more States, and is...

  3. 7 CFR 600.8 - Plant materials centers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Plant materials centers. 600.8 Section 600.8..., DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.8 Plant materials centers. Plant materials centers (PMC) assemble and test plant species for conservation uses. Usually a PMC serves two or more States, and is...

  4. 7 CFR 600.8 - Plant materials centers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Plant materials centers. 600.8 Section 600.8..., DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.8 Plant materials centers. Plant materials centers (PMC) assemble and test plant species for conservation uses. Usually a PMC serves two or more States, and is...

  5. Wave Rotor Research and Technology Development

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1998-01-01

    Wave rotor technology offers the potential to increase the performance of gas turbine engines significantly, within the constraints imposed by current material temperature limits. The wave rotor research at the NASA Lewis Research Center is a three-element effort: 1) Development of design and analysis tools to accurately predict the performance of wave rotor components; 2) Experiments to characterize component performance; 3) System integration studies to evaluate the effect of wave rotor topping on the gas turbine engine system.

  6. Shift in Global Tantalum Mine Production, 2000–2014

    USGS Publications Warehouse

    Bleiwas, Donald I.; Papp, John F.; Yager, Thomas R.

    2015-12-10

    One of the activities of the U.S. Geological Survey National Minerals Information Center (USGS-NMIC) is to analyze global supply chains and characterize major components of mineral and material flows from ore extraction through processing to first tier products. These analyses support the core mission of the USGS-NMIC as the Federal entity responsible for the collection, analysis, and dissemination of objective, unbiased, factual information on minerals essential to the U.S. economy and national security.

  7. CARES/Life Used for Probabilistic Characterization of MEMS Pressure Sensor Membranes

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    2002-01-01

    Microelectromechanical systems (MEMS) devices are typically made from brittle materials such as silicon using traditional semiconductor manufacturing techniques. They can be etched (or micromachined) from larger structures or can be built up with material deposition processes. Maintaining dimensional control and consistent mechanical properties is considerably more difficult for MEMS because feature size is on the micrometer scale. Therefore, the application of probabilistic design methodology becomes necessary for MEMS. This was demonstrated at the NASA Glenn Research Center and Case Western Reserve University in an investigation that used the NASA-developed CARES/Life brittle material design program to study the probabilistic fracture strength behavior of single-crystal SiC, polycrystalline SiC, and amorphous Si3N4 pressurized 1-mm-square thin-film diaphragms. These materials are of interest because of their superior high-temperature characteristics, which are desirable for harsh environment applications such as turbine engine and rocket propulsion system hot sections.

  8. Toward a benchmark material in aerogel development

    NASA Astrophysics Data System (ADS)

    Sibille, Laurent; Cronise, Raymond J.; Noever, David A.; Hunt, Arlon J.

    1996-03-01

    Discovered in the thirties, aerogels constitute today the lightest solids known while exhibiting outstanding thermal and noise insulation properties in air and vacuum. In a far-reaching collaboration, the Space Science Laboratory at NASA Marshall Space Flight Center and the Microstructured Materials Group at Lawrence Berkeley National Laboratory are engaged in a two-fold research effort aiming at characterizing the microstructure of silica aerogels and the development of benchmark samples through the use of in-orbit microgravity environment. Absence of density-driven convection flows and sedimentation is sought to produce aerogel samples with narrow distribution of pore sizes, thus largely improving transparency of the material in the visible range. Furthermore, highly isotropic distribution of doping materials are attainable even in large gels grown in microgravity. Aerospace companies (cryogenic tanks insulation and high temperature insulation of space vehicles), insulation manufacturers (household and industrial applications) as well as pharmaceutical companies (biosensors) are potential end-users of this rapidly developing technology.

  9. Material Analysis and System Design for Exploration Life Support Systems 2017

    NASA Technical Reports Server (NTRS)

    Knox, Jim; Cmarik, Gregory E.

    2017-01-01

    Advanced Environmental Control and Life Support System (ECLSS) design is critical for manned space flight beyond Earth. Current systems enable extended missions in low-Earth orbit, but for deep-space missions, not only will astronauts be outside the reach of resupply operations from Earth but they will also need to handle malfunctions and compensate for the degradation of materials. These two daunting challenges must be overcome for long-term independent space flight. In order to solve the first, separation and recycling of onboard atmosphere is required. Current systems utilize space vacuum to fully regenerate CO2 sorbent beds, but this is not sustainable. The second challenge stems from material and performance degradation due to operational cycling and on-board contaminants. This report will review the recent work by the ECLSS team at Marshall Space Flight Center towards overcoming these challenges by characterizing materials via novel methods and by assessing new air revitalization systems.

  10. Preparation for microgravity: The role of the microgravity materials science laboratory

    NASA Technical Reports Server (NTRS)

    Johnston, J. Christopher; Rosenthal, Bruce N.; Meyer, Maryjo B.; Glasgow, Thomas K.

    1988-01-01

    A laboratory dedicated to ground based materials processing in preparation for space flight was established at the NASA Lewis Research Center. Experiments are performed to delineate the effects of gravity on processes of both scientific and commercial interest. Processes are modeled physically and mathematically. Transport model systems are used where possible to visually track convection, settling, crystal growth, phase separation, agglomeration, vapor transport, diffusive flow, and polymers reactions. The laboratory contains apparatus which functionally duplicates apparatus available for flight experiments and other pieces instrumented specifically to allow process characterization. Materials addressed include metals, alloys, salts, glasses, ceramics, and polymers. The Microgravity Materials Science Laboratory is staffed by engineers and technicians from a variety of disciplines and is open to users from industry and academia as well as the government. Examples will be given of the laboratory apparatus typical experiments and results.

  11. Test and Analysis Capabilities of the Space Environment Effects Team at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Finckenor, M. M.; Edwards, D. L.; Vaughn, J. A.; Schneider, T. A.; Hovater, M. A.; Hoppe, D. T.

    2002-01-01

    Marshall Space Flight Center has developed world-class space environmental effects testing facilities to simulate the space environment. The combined environmental effects test system exposes temperature-controlled samples to simultaneous protons, high- and low-energy electrons, vacuum ultraviolet (VUV) radiation, and near-ultraviolet (NUV) radiation. Separate chambers for studying the effects of NUV and VUV at elevated temperatures are also available. The Atomic Oxygen Beam Facility exposes samples to atomic oxygen of 5 eV energy to simulate low-Earth orbit (LEO). The LEO space plasma simulators are used to study current collection to biased spacecraft surfaces, arcing from insulators and electrical conductivity of materials. Plasma propulsion techniques are analyzed using the Marshall magnetic mirror system. The micro light gas gun simulates micrometeoroid and space debris impacts. Candidate materials and hardware for spacecraft can be evaluated for durability in the space environment with a variety of analytical techniques. Mass, solar absorptance, infrared emittance, transmission, reflectance, bidirectional reflectance distribution function, and surface morphology characterization can be performed. The data from the space environmental effects testing facilities, combined with analytical results from flight experiments, enable the Environmental Effects Group to determine optimum materials for use on spacecraft.

  12. Synthesis and Characterization of Fluorescently Labeled Diblock Copolymers for Location-Specific Measurements of The Glass Transition Temperature

    NASA Astrophysics Data System (ADS)

    Christie, Dane; Register, Richard; Priestley, Rodney

    Interfaces play a determinant role in the size dependence of the glass transition temperature (Tg) of polymers confined to nanometric length scales. Interfaces are intrinsic in diblock copolymers, which, depending on their molecular weight and composition, are periodically nanostructured in the bulk. As a result diblock copolymers are model systems for characterizing the effect of interfaces on Tg in bulk nanostructured materials. Investigating the effect of intrinsic interfaces on Tg in diblock copolymers has remained unexplored due to their small periodic length scale. By selectively incorporating trace amounts of a fluorescent probe into a diblock copolymer, Tg can be characterized relative to the diblock copolymer's intrinsic interface using fluorescence spectroscopy. Here, pyrene is selectively incorporated into the poly(methyl methacrylate) (PMMA) block of lamellar forming diblock copolymers of poly(butyl- b-methyl methacrylate) (PBMA-PMMA). Preliminary results show a correlation of Tg as measured by fluorescence with the onset of Tg as measured by calorimetry in labeled homopolymers of PMMA. This result is consistent with previous characterizations of Tg using fluorescence spectroscopy. In selectively labeled diblock copolymers Tg is found to vary systematically depending on the distance of the probe from the PBMA-PMMA interface. We acknowledge funding from the Princeton Center for Complex Materials, a MRSEC supported by NSF Grant DMR 1420541.

  13. Characterization of Thermal and Mechanical Impact on Aluminum Honeycomb Structures

    NASA Technical Reports Server (NTRS)

    Robinson, Christen M.

    2013-01-01

    This study supports NASA Kennedy Space Center's research in the area of intelligent thermal management systems and multifunctional thermal systems. This project addresses the evaluation of the mechanical and thermal properties of metallic cellular solid (MCS) materials; those that are lightweight; high strength, tunable, multifunctional and affordable. A portion of the work includes understanding the mechanical properties of honeycomb structured cellular solids upon impact testing under ambient, water-immersed, liquid nitrogen-cooled, and liquid nitrogen-immersed conditions. Additionally, this study will address characterization techniques of the aluminum honeycomb's ability to resist multiple high-rate loadings or impacts in varying environmental conditions, using various techniques for the quantitative and qualitative determination for commercial applicability.

  14. A Case Study for Probabilistic Methods Validation (MSFC Center Director's Discretionary Fund, Project No. 94-26)

    NASA Technical Reports Server (NTRS)

    Price J. M.; Ortega, R.

    1998-01-01

    Probabilistic method is not a universally accepted approach for the design and analysis of aerospace structures. The validity of this approach must be demonstrated to encourage its acceptance as it viable design and analysis tool to estimate structural reliability. The objective of this Study is to develop a well characterized finite population of similar aerospace structures that can be used to (1) validate probabilistic codes, (2) demonstrate the basic principles behind probabilistic methods, (3) formulate general guidelines for characterization of material drivers (such as elastic modulus) when limited data is available, and (4) investigate how the drivers affect the results of sensitivity analysis at the component/failure mode level.

  15. Laboratory Simulations and Spectral Analyses of Space Weathering of Non-Ice Materials on Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Wing, B. R.; Shusterman, M. L.; Irvin, B. L.; Hibbitts, C.

    2016-12-01

    Airless solar system bodies are subjected to bombardment by high-energy particles from the solar wind and for Galilean satellites, from the Jovian magnetosphere. These keV-MeV electrons and ions damage the upper microns of the exposed surface, resulting in physical, chemical, and spectral alterations that may confound interpretations of mineralogical properties. We conducted experiments simulating space weathering by energetic electrons for characterizing the spectral effects from the UV through the mid-IR; wavelengths commonly used to determine compositions of airless bodies. We bombarded analog non-ice materials with 40 keV electrons under high vacuum conditions for a period of 48-96 hours at a fluence of 80 μA. Spectral measurements were obtained at UV, VIS-SWIR, and NIR-MIR ranges from 0.14-5.0 μm using a McPherson 302 monochrometer, an SVC fiber-fed point spectrometer, and a Bruker Vertex 70 FTIR, respectively. The monochrometer and FTIR measurements were obtained before, during, and after irradiation, while the sample was under vacuum at 1e-7 torr. SVC measurements were obtained in a separate apparatus under an N2-purged environment before and after irradiation. The experiments were conducted to develop a better understanding of how exposure to particulate bombardment may affect the spectral features of airless bodies and subsequent interpretation of composition. Our results characterize the spectral nature of radiation-induced color centers, or Farbe-centers, that are active in the NUV-VIS-NIR wavelength range and inactive in the SWIR-MIR wavelength range. We confirmed the discoloration is due to the formation of F-centers rather than trace contamination such as iron, by analyzing samples under scanning electron microscope and X-ray spectrometer.

  16. General Multimechanism Reversible-Irreversible Time-Dependent Constitutive Deformation Model Being Developed

    NASA Technical Reports Server (NTRS)

    Saleeb, A. F.; Arnold, Steven M.

    2001-01-01

    Since most advanced material systems (for example metallic-, polymer-, and ceramic-based systems) being currently researched and evaluated are for high-temperature airframe and propulsion system applications, the required constitutive models must account for both reversible and irreversible time-dependent deformations. Furthermore, since an integral part of continuum-based computational methodologies (be they microscale- or macroscale-based) is an accurate and computationally efficient constitutive model to describe the deformation behavior of the materials of interest, extensive research efforts have been made over the years on the phenomenological representations of constitutive material behavior in the inelastic analysis of structures. From a more recent and comprehensive perspective, the NASA Glenn Research Center in conjunction with the University of Akron has emphasized concurrently addressing three important and related areas: that is, 1) Mathematical formulation; 2) Algorithmic developments for updating (integrating) the external (e.g., stress) and internal state variables; 3) Parameter estimation for characterizing the model. This concurrent perspective to constitutive modeling has enabled the overcoming of the two major obstacles to fully utilizing these sophisticated time-dependent (hereditary) constitutive models in practical engineering analysis. These obstacles are: 1) Lack of efficient and robust integration algorithms; 2) Difficulties associated with characterizing the large number of required material parameters, particularly when many of these parameters lack obvious or direct physical interpretations.

  17. Design and synthesis of a crystalline LiPON electrolyte

    NASA Astrophysics Data System (ADS)

    Holzwarth, N. A. W.; Senevirathne, Keerthi; Day, Cynthia S.; Lachgar, Abdessadek; Gross, Michael D.

    2013-03-01

    In the course of a computation study of the broad class of lithium phosphorus oxy-nitride materials of interest for solid electrolyte applications, Du and Holzwarth, [2] recently predicted a stable crystalline material with the stoichiometry Li2PO2N. The present paper reports the experimental preparation of the material using high temperature solid state synthesis and reports the results of experimental and calculational characterization studies. The so-named SD -Li2PO2N crystal structure has the orthorhombic space group Cmc21 with lattice constants a=9.0692(4) Å, b=5.3999(2) Å, and c=4.6856(2) Å. The structure is similar but not identical to the predicted structure, characterized by parallel arrangements of anionic phosphorus oxy-nitride chains having planar P -N -P -N backbones. Nitrogen 2p π states contribute to the strong bonding and to the chemical and thermal stablility of the material in air up to 600° C and in vacuum up to 1050° C. The measured Arrhenius activation energy for ionic conductivity is 0.6 eV which is comparable to computed vacancy migration energies in the presence of a significant population of Li+ ion vacancies. Supported by NSF grant DMR-1105485 and by a grnat from the Wake Forest University Center for Energy, Environment, and Sustainability.

  18. The materials processing research base of the Materials Processing Center

    NASA Technical Reports Server (NTRS)

    Flemings, M. C.; Bowen, H. K.; Kenney, G. B.

    1980-01-01

    The goals and activities of the center are discussed. The center activities encompass all engineering materials including metals, ceramics, polymers, electronic materials, composites, superconductors, and thin films. Processes include crystallization, solidification, nucleation, and polymer synthesis.

  19. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn E.; Lehman, John R.; Frazier, Natalie C.

    2014-01-01

    The Materials Science Research Rack (MSRR) is a highly automated facility developed in a joint venture/partnership between NASA and ESA center dot Allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses onboard the International Space Station (ISS) center dot Multi-user facility for high temperature materials science research center dot Launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module ?Research goals center dot Provide means of studying materials processing in space to develop a better understanding of the chemical and physical mechanisms involved center dot Benefit materials science research via the microgravity environment of space where the researcher can better isolate the effects of gravity during solidification on the properties of materials center dot Use the knowledge gained from experiments to make reliable predictions about conditions required on Earth to achieve improved materials

  20. Novel tools for accelerated materials discovery in the AFLOWLIB.ORG repository: breakthroughs and challenges in the mapping of the materials genome

    NASA Astrophysics Data System (ADS)

    Buongiorno Nardelli, Marco

    2015-03-01

    High-Throughput Quantum-Mechanics computation of materials properties by ab initio methods has become the foundation of an effective approach to materials design, discovery and characterization. This data driven approach to materials science currently presents the most promising path to the development of advanced technological materials that could solve or mitigate important social and economic challenges of the 21st century. In particular, the rapid proliferation of computational data on materials properties presents the possibility to complement and extend materials property databases where the experimental data is lacking and difficult to obtain. Enhanced repositories such as AFLOWLIB, open novel opportunities for structure discovery and optimization, including uncovering of unsuspected compounds, metastable structures and correlations between various properties. The practical realization of these opportunities depends on the the design effcient algorithms for electronic structure simulations of realistic material systems, the systematic compilation and classification of the generated data, and its presentation in easily accessed form to the materials science community, the primary mission of the AFLOW consortium. This work was supported by ONR-MURI under Contract N00014-13-1-0635 and the Duke University Center for Materials Genomics.

  1. A hydrostatic stress-dependent anisotropic model of viscoplasticity

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.; Tao, Q.; Verrilli, M. J.

    1994-01-01

    A hydrostatic stress-dependent, anisotropic model of viscoplasticity is formulated as an extension of Bodner's model. This represents a further extension of the isotropic Bodner model over that made to anisotropy by Robinson and MitiKavuma. Account is made of the inelastic deformation that can occur in metallic composites under hydrostatic stress. A procedure for determining the material parameters is identified that is virtually identical to the established characterization procedure for the original Bodner model. Characterization can be achieved using longitudinal/transverse tensile and shear tests and hydrostatic stress tests; alternatively, four off-axis tensile tests can be used. Conditions for a yield stress minimum under off-axis tension are discussed. The model is applied to a W/Cu composite; characterization is made using off-axis tensile data generated at NASA Lewis Research Center (LeRC).

  2. Optical Studies of Nd-doped benzil, a potential luminescent and laser material

    NASA Astrophysics Data System (ADS)

    Noginov, M. A.; Curley, M.; Noginova, N.; Wang, W. S.; Aggarwal, M. D.

    1998-08-01

    Neodymium-doped benzil crystals have been synthesized and characterized for their absorption, emission, and kinetics properties. From Judd Ofelt analysis, the radiative decay time of Nd emission (peaking at 1055 nm) is estimated to be equal to 441 s. The experimental Nd lifetime (under Ar laser excitation) is equal to 19 s. The broad emission band centered at approximately 700 nm ( decay 15 ns) and the Raman scattering with characteristic frequency shift of 1600 cm 1 have been observed at excitation of benzil with 532-nm Q -switched laser pulses. We show that rare-earth-doped benzil can be considered as a potential candidate for luminescent and solid-state laser material.

  3. Optical Studies of Nd-doped benzil, a potential luminescent and laser material.

    PubMed

    Noginov, M A; Curley, M; Noginova, N; Wang, W S; Aggarwal, M D

    1998-08-20

    Neodymium-doped benzil crystals have been synthesized and characterized for their absorption, emission, and kinetics properties. From Judd-Ofelt analysis, the radiative decay time of Nd emission (peaking at 1055 nm) is estimated to be equal to 441 mus. The experimental Nd lifetime (under Ar+ laser excitation) is equal to 19 mus. The broad emission band centered at approximately 700 nm (tau(decay) approximately 15 ns) and the Raman scattering with characteristic frequency shift of 1600 cm(-1) have been observed at excitation of benzil with 532-nm Q-switched laser pulses. We show that rare-earth-doped benzil can be considered as a potential candidate for luminescent and solid-state laser material.

  4. Investigation of Zerodur material processing

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry

    1993-01-01

    The Final Report of the Center for Applied Optics (CAO), of The University of Alabama (UAH) study entitled 'Investigation of Zerodur Material Processing' is presented. The objectives of the effort were to prepare glass samples by cutting, grinding, etching, and polishing block Zerodur to desired specifications using equipment located in the optical shop located in the Optical System Branch at NASA/MSFC; characterize samples for subsurface damage and surface roughness; utilize Zerodur samples for coating investigations; and perform investigations into enhanced optical fabrication and metrology techniques. The results of this investigation will be used to support the Advanced X Ray Astrophysics Facility (AXAF) program as well as other NASA/MSFC research programs. The results of the technical effort are presented and discussed.

  5. New plant releases from the USDA-NRCS Aberdeen, Idaho, Plant Materials Center

    Treesearch

    L. St. John; P. Blaker

    2001-01-01

    The Plant Materials Center at Aberdeen, Idaho, is operated by the United States Department of Agriculture, Natural Resources Conservation Service. The purpose of the Plant Materials Center is to evaluate and release plant materials for conservation use and to develop and transfer new technology for the establishment and management of plants. The Center serves portions...

  6. DebriSat: The New Hypervelocity Impact Test for Satellite Breakup Fragment Characterization

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather

    2015-01-01

    To replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoD and NASA breakup models: DebriSat is intended to be representative of modern LEO satellites. Major design decisions were reviewed and approved by Aerospace subject matter experts from different disciplines. DebriSat includes 7 major subsystems. Attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. center dotA key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), supporting the development of the DoD and NASA satellite breakup models was conducted at AEDC in 1992. Breakup models based on SOCIT have supported many applications and matched on-orbit events reasonably well over the years.

  7. Use of Computed Tomography for Characterizing Materials Grown Terrestrially and in Microgravity

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Engel, H. P.

    2001-01-01

    The purpose behind this work is to provide NASA Principal Investigators (PIs) rapid information, nondestructively, about their samples. This information will be in the form of density values throughout the samples, especially within slices 1 mm high. With correct interpretation and good calibration, these values will enable the PI to obtain macro chemical compositional analysis for his/her samples. Alternatively, the technique will provide information about the porosity level and its distribution within the sample. Experience gained with a NASA Microgravity Research Division-sponsored Advanced Technology Development (ATD) project on this topic has brought the technique to a level of maturity at which it has become a viable characterization tool for many of the Materials Science Pls, but with equipment that could never be supported within their own facilities. The existing computed tomography (CT) facility at NASA's Kennedy Space Center (KSC) is ideally situated to furnish information rapidly and conveniently to PIs, particularly immediately before and after flight missions.

  8. Use of Computed Tomography for Characterizing Materials Grown Terrestrially and in Microgravity

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Engel, H. P.

    2000-01-01

    The purpose behind this work is to provide NASA Principal Investigators (PI) rapid information, non-destructively, about their samples. This information will be in the form of density values throughout the samples, especially within slices 1 mm high. With correct interpretation and good calibration, these values will enable the PI to obtain macro chemical compositional analysis for his/her samples. Alternatively, the technique will provide information about the porosity level and its distribution within the sample. Experience gained with a NASA MRD-sponsored Advanced Technology Development (ATD) project on this topic has brought the technique to a level of maturity at which it has become a viable characterization tool for many of the Materials Science PIs, but with equipment that could never be supported within their own facilities. The existing computed tomography (CT) facility at NASA's Kennedy Space Center (KSC) is ideally situated to furnish information rapidly and conveniently to PIs, particularly immediately before and after flight missions.

  9. Scattered light characterization of FORTIS

    NASA Astrophysics Data System (ADS)

    McCandliss, Stephan R.; Carter, Anna; Redwine, Keith; Teste, Stephane; Pelton, Russell; Hagopian, John; Kutyrev, Alexander; Li, Mary J.; Moseley, S. Harvey

    2017-08-01

    We describe our efforts to build a Wide-Field Lyman alpha Geocoronal simulator (WFLaGs) for characterizing the end-to-end sensitivity of FORTIS (Far-UV Off Rowland-circle Telescope for Imaging and Spectroscopy) to scattered Lyman α emission from outside of the nominal (1/2 degree)2 field-of-view. WFLaGs is a 50 mm diameter F/1 aluminum parabolic collimator fed by a hollow cathode discharge lamp with a 80 mm clear MgF2 window housed in a vacuum skin. It creates emission over a 10 degree FOV. WFLaGS will allow us to validate and refine a recently developed scattered light model and verify our scatter light mitigation strategies, which will incorporate low scatter baffle materials, and possibly 3-d printed light traps, covering exposed scatter centers. We present measurements of scattering intensity of Lyman alpha as a function of angle with respect to the specular reflectance direction for several candidate baffle materials. Initial testing of WFLaGs will be described.

  10. Cornell Center for Materials Research - An NSF MRSEC

    Science.gov Websites

    Cornell Center for Materials Research Cornell Center for Materials Research | An NSF MRSEC Search Research Atomic Membranes for 3D Systems Structured Materials for Strong Light-Matter Interactions Mechanisms, Materials, and Devices for Spin Manipulation Seed Projects - Exploratory Research Acknowledging

  11. Centrosymmetric [N(CH3)4]2TiF6 vs. noncentrosymmetric polar [C(NH2)3]2TiF6: A hydrogen-bonding effect on the out-of-center distortion of TiF6 octahedra

    NASA Astrophysics Data System (ADS)

    Kim, Eun-ah; Lee, Dong Woo; Ok, Kang Min

    2012-11-01

    The syntheses, structures, and characterization of organically templated zero-dimensional titanium fluoride materials, A2TiF6 (A[N(CH3)4] or [C(NH2)3]), are reported. Phase pure samples of A2TiF6 were synthesized by either solvothermal reaction method or a simple mixing method. While [N(CH3)4]2TiF6 crystallizes in a centrosymmetric space group, R-3, [C(NH2)3]2TiF6 crystallizes in a noncentrosymmetric polar space group, Cm. The asymmetric out-of-center distortion of TiF6 octahedra in polar [C(NH2)3]2TiF6 are attributable to the hydrogen-bonding interactions between the fluorine atoms in TiF6 octahedra and the nitrogen atoms in the [C(NH2)3]+ cation. Powder second-harmonic generation (SHG) measurements on the [C(NH2)3]2TiF6, using 1064 nm radiation, indicate the material has SHG efficiency of 25× that of α-SiO2, which indicates an average nonlinear optical susceptibility, exp of 2.8 pm/V. Additional SHG measurements reveal that the material is not phase-matchable (Type 1). The magnitudes of out-of-center distortions and dipole moment calculations for TiF6 octahedra will be also reported.

  12. Modeling Materials: Design for Planetary Entry, Electric Aircraft, and Beyond

    NASA Technical Reports Server (NTRS)

    Thompson, Alexander; Lawson, John W.

    2014-01-01

    NASA missions push the limits of what is possible. The development of high-performance materials must keep pace with the agency's demanding, cutting-edge applications. Researchers at NASA's Ames Research Center are performing multiscale computational modeling to accelerate development times and further the design of next-generation aerospace materials. Multiscale modeling combines several computationally intensive techniques ranging from the atomic level to the macroscale, passing output from one level as input to the next level. These methods are applicable to a wide variety of materials systems. For example: (a) Ultra-high-temperature ceramics for hypersonic aircraft-we utilized the full range of multiscale modeling to characterize thermal protection materials for faster, safer air- and spacecraft, (b) Planetary entry heat shields for space vehicles-we computed thermal and mechanical properties of ablative composites by combining several methods, from atomistic simulations to macroscale computations, (c) Advanced batteries for electric aircraft-we performed large-scale molecular dynamics simulations of advanced electrolytes for ultra-high-energy capacity batteries to enable long-distance electric aircraft service; and (d) Shape-memory alloys for high-efficiency aircraft-we used high-fidelity electronic structure calculations to determine phase diagrams in shape-memory transformations. Advances in high-performance computing have been critical to the development of multiscale materials modeling. We used nearly one million processor hours on NASA's Pleiades supercomputer to characterize electrolytes with a fidelity that would be otherwise impossible. For this and other projects, Pleiades enables us to push the physics and accuracy of our calculations to new levels.

  13. Recent progress in NASA Langley Research Center textile reinforced composites program

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Harris, Charles E.; Johnston, Norman J.

    1992-01-01

    Research was conducted to explore the benefits of textile reinforced composites for transport aircraft primary structures. The objective is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structural concepts. Some program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. Textile 3-D weaving, 3-D braiding, and knitting and/or stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighted against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural parts are required to establish the potential of textile reinforced composite materials.

  14. Interactive modeling-synthesis-characterization approach towards controllable in situ self-assembly of artificial pinning centers in RE-123 films

    NASA Astrophysics Data System (ADS)

    Wu, Judy; Shi, Jack

    2017-10-01

    Raising critical current density J c in high temperature superconductors (HTSs) is an important strategy towards performance-cost balanced HTS technology for commercialization. The development of strong nanoscale artificial pinning centers (APCs) in HTS, such as YBa2Cu3O7 or RE-123 in general, represents one of the most exciting progressions in HTS material research in the last decade. Significantly raised J c has been demonstrated in APC/RE-123 nanocomposites by enhanced pinning on magnetic vortices in magnetic fields towards that demanded in practical applications. Among other processes, strain-mediated self-organization has been explored extensively for in situ formation of the APCs based on fundamental physics design rules. The desire in controlling the morphology, dimension, orientation, and concentration of APCs has led to a fundamental question on how strains interact in determining APCs at a macroscopic scale. Answering this question demands an interactive modeling-synthesis-characterization approach towards a thorough understanding of fundamental physics governing the strain-mediated self-organization of the APCs in the APC/RE-123 nanocomposites. Such an understanding is the key for a leap forward from the traditionally empirical method to materials-by-design to enable an optimal APC landscape to be achieved in epitaxial films of APC/YBCO nanocomposites under a precise guidance of fundamental physics. The paper intends to provide a review of recent progress made in the controllable generation of APCs using the interactive modeling-synthesis-characterization approach. The emphasis will be given to the understanding so far achieved using such an approach on the collective effect of the strain field on the morphology, dimension, and orientation of APCs in epitaxial APC/RE-123 nanocomposite films.

  15. NASA GRC Technology Development Project for a Stirling Radioisotope Power System

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2000-01-01

    NASA Glenn Research Center (GRC), the Department of Energy (DOE), and Stirling Technology Company (STC) are developing a Stirling convertor for an advanced radioisotope power system to provide spacecraft on-board electric power for NASA deep space missions. NASA GRC is conducting an in-house project to provide convertor, component, and materials testing and evaluation in support of the overall power system development. A first characterization of the DOE/STC 55-We Stirling Technology Demonstration Convertor (TDC) under the expected launch random vibration environment was recently completed in the NASA GRC Structural Dynamics Laboratory. Two TDCs also completed an initial electromagnetic interference (EMI) characterization at NASA GRC while being tested in a synchronized, opposed configuration. Materials testing is underway to support a life assessment of the heater head, and magnet characterization and aging tests have been initiated. Test facilities are now being established for an independent convertor performance verification and technology development. A preliminary Failure Mode Effect Analysis (FMEA), initial finite element analysis (FEA) for the linear alternator, ionizing radiation survivability assessment, and radiator parametric study have also been completed. This paper will discuss the status, plans, and results to date for these efforts.

  16. Characterization of aluminum oxide doped with carbon and magnesium for radiation detection

    NASA Astrophysics Data System (ADS)

    Rodriguez, Matthew Gorman

    Scope and Method of Study. A general characterization of the dosimetric properties of Al2O3:C,Mg. This included the thermoluminescence (TL) optically stimulated luminescence (OSL), radioluminescence (RL) and scintillation characteristics of Al2O3:C,Mg compared to Al2O3:C. Findings and Conclusions. The presence of aggregate defects as well as an increased F+-center concentration leads to the behavior of Al2O3:C,Mg being far more complex than Al2O3:C. The main TL peak is shifted to a lower temperature and narrower when compared to the main TL peak of Al 2O3:C. The OSL curves of Al2O3:C,Mg decay faster than Al2O3:C. Al2O3:C,Mg shows smaller dependence on the RL sensitivity as a function of dose, thus reducing the dynamic behavior of the RL signal associated with Al2O 3:C. Al2O3:C,Mg also has fast luminescence centers with lifetimes <100 ns. Finally, Annealing Al2O 3:C,Mg to 900°C would appear to increase the number of F+ and F recombination centers while destroying the aggregate defects present in the material.

  17. The Center for Advanced Food Technology: Food Related Studies.

    DTIC Science & Technology

    1992-11-16

    Glucan (Callose) Synthase from Beta Vulgaris L. by Product-Entrapment," Entrapment Mechanisms and Polypeptide Characterization. Elant MU g. 97:684...Na3HGe7O16 xH20, xaO 0-6. 1," Chemiatr of Materials, 4:388. FRost, D.L, Drake, R.R., and B.P. Wasserman (1992) ’(1,3)-- glucan Synthase from Saccbaro...Wu, A., and R.W. Harriman (1992) "Probing the Molecular Architecture of (1,3-- Glucan (Callose) Synthase: Polypeptide Depletion Studies," Biochemical

  18. High Temperature Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    1985-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) characterization; (4) environmental effects; and (5) applications.

  19. Synthesis and Catalytic Hydrogenation Reactivity of a Chromium Catecholate Porous Organic Polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camacho-Bunquin, Jeffrey; Siladke, Nathan A.; Zhang, Guanghui

    2015-03-09

    A single-site chromium catecholate POP (catPOP A(2)B(1)) was synthesized and characterized via AT-IR, XAS, and EPR spectroscopy. The well-defined, four-coordinate, 11-electron Cr(III) centers bound to catecholate POP were demonstrated to be active hydrogenation catalysts for nonpolar unsaturated organic substrates under mild conditions (5 mol % of Cr, 200 psi of H-2, 60 degrees C). This material constitutes the first example of a well-defined, supported organometallic chromium hydrogenation precatalyst.

  20. Morphing wing structure with controllable twist based on adaptive bending-twist coupling

    NASA Astrophysics Data System (ADS)

    Raither, Wolfram; Heymanns, Matthias; Bergamini, Andrea; Ermanni, Paolo

    2013-06-01

    A novel semi-passive morphing airfoil concept based on variable bending-twist coupling induced by adaptive shear center location and torsional stiffness is presented. Numerical parametric studies and upscaling show that the concept relying on smart materials permits effective twist control while offering the potential of being lightweight and energy efficient. By means of an experimental characterization of an adaptive beam and a scaled adaptive wing structure, effectiveness and producibility of the structural concept are demonstrated.

  1. Ceramic Matrix Composite Characterization Under a Combustion and Loading Environment

    DTIC Science & Technology

    2009-03-01

    work showed that the material is sensitive in fatigue to center holes above 84% UTS. Barth Boyer did fatigue and creep testing double edge notched...panel obtained for this test was also used in previous AFIT thesis work by Boyer . It is a 12 in x 12 in panel consisting of an eight harness satin...weave with a [0°/90°] fiber orientation. The panel number is 4569-2. The panel properties obtained by Boyer are in Table 3. 17 Table 3

  2. Development of Novel Composite and Random Materials for Nonlinear Optics and Lasers

    NASA Technical Reports Server (NTRS)

    Noginov, Mikhail

    2002-01-01

    A qualitative model explaining sharp spectral peaks in emission of solid-state random laser materials with broad-band gain is proposed. The suggested mechanism of coherent emission relies on synchronization of phases in an ensemble of emitting centers, via time delays provided by a network of random scatterers, and amplification of spontaneous emission that supports the spontaneously organized coherent state. Laser-like emission from powders of solid-state luminophosphors, characterized by dramatic narrowing of the emission spectrum and shortening of emission pulses above the threshold, was first observed by Markushev et al. and further studied by a number of research groups. In particular, it has been shown that when the pumping energy significantly exceeds the threshold, one or several narrow emission lines can be observed in broad-band gain media with scatterers, such as films of ZnO nanoparticles, films of pi-conjugated polymers or infiltrated opals. The experimental features, commonly observed in various solid-state random laser materials characterized by different particle sizes, different values of the photon mean free path l*, different indexes of refraction, etc.. can be described as follows. (Liquid dye random lasers are not discussed here.)

  3. Damage accumulation in closed cross-section, laminated, composite structures

    NASA Technical Reports Server (NTRS)

    Bucinell, Ronald B.

    1996-01-01

    The need for safe, lightweight, less expensive, and more reliable launch vehicle components is being driven by the competitiveness of the commercial launch market. The United States has lost 2/3 of the commercial lunch market to Europe. As low cost Russian and Chinese vehicles become available, the US market share could be reduced even further. This international climate is driving the Single Stage To Orbit (SSTO) program at NASA. The goal of the SSTO program is to radically reduce the cost of safe, routine transportation to and from space with a totally reusable launch vehicle designed for low-cost aircraft-like operations. Achieving this goal will require more efficient uses of materials. Composite materials can provide this program with the material and structural efficiencies needed to stay competitive in the international launch market place. In satellite systems the high specific properties, design flexibility, improved corrosion and wear resistance, increased fatigue life, and low coefficient of thermal expansion that are characteristic of composite materials can all be used to improve the overall satellite performance. Some of the satellites that may be able to take advantage of these performance characteristics are the Tethered Satellite Systems (TOSCIFER, AIRSEDS, TSS2, SEDS1, and SEDS2), AXAF, GRO, and the next generation Hubble Space Telescope. These materials can also be utilized in projects at the NASAIMSFC Space Optics Technology and System Center of Excellence. The successful implementation of composite materials requires accurate performance characterization. Materials characterization data for composite materials is typically generated using flat coupons of finite width. At the free edge of these coupons the stress state is exacerbated by the presence of stiffness and geometric discontinuities. The exacerbated stress state has been shown to dominate the damage accumulation in these materials and to have a profound affect on the material constants. Space structures typically have closed cross-sections, absent of free edges. As a result, composite material characterization data generated using finite width flat specimens does not accurately reflect the performance of the composite materials used in a closed cross-section structural configuration. Several investigators have recognized the need to develop characterization techniques for composite materials in closed cross-sectioned structures. In these investigations test methods were developed and cylindrical specimens were evaluated. The behavior of the cylindrical specimens were observed to depart from behavior typical of flat coupons. However, no attempts were made to identify and monitor the progression of damage in these cylindrical specimens during loading. The identification and monitoring of damage is fundamental to the characterization of composite materials in closed cross-section configurations. In the study reported here, a closed cross-sectioned test method was developed to monitor damage progression in 2 in. diameter cylindrical specimens and 1.5 in. finite width flat coupons subjected to quasi-static, tensile loading conditions. Damage in these specimen configurations was monitored using pulse echo ultrasonic, acoustic emission, and X-ray techniques.

  4. Quantitative NDE applied to composites and metals

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.; Winfree, William P.; Parker, F. Raymond; Heath, D. Michele; Welch, Christopher S.

    1989-01-01

    Research at the NASA/Langley Research Center concerning quantitative NDE of composites and metals is reviewed. The relationship between ultrasonics and polymer cure is outlined. NDE models are presented, which can be used to develop measurement technologies for characterizing the curing of a polymer system for composite materials. The models can be used to determine the glass transition temperature, the degree of cure, and the cure rate. The application of the model to control autoclave processing of composite materials is noted. Consideration is given to the use of thermal diffusion models combined with controlled thermal input measurements to determine the thermal diffusivity of materials. Also, a two-dimensional physical model is described that permits delaminations in samples of Space Shuttle Solid Rocket Motors to be detected in thermograms in the presence of cooling effects and uneven heating.

  5. Testing of NASA LaRC Materials under MISSE 6 and MISSE 7 Missions

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.

    2009-01-01

    The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Two lasers and a few optical components from NASA Langley Research Center (LaRC) were included in the MISSE 6 mission for long term exposure. MISSE 6 items were characterized and packed inside a ruggedized Passive Experiment Container (PEC) that resembles a suitcase. The PEC was tested for survivability due to launch conditions. MISSE 6 was transported to the international Space Station (ISS) via STS 123 on March 11. 2008. The astronauts successfully attached the PEC to external handrails of the ISS and opened the PEC for long term exposure to the space environment. The current plan is to bring the MISSE 6 PEC back to the Earth via STS 128 mission scheduled for launch in August 2009. Currently, preparations for launching the MISSE 7 mission are progressing. Laser and lidar components assembled on a flight-worthy platform are included from NASA LaRC. MISSE 7 launch is scheduled to be launched on STS 129 mission. This paper will briefly review recent efforts on MISSE 6 and MISSE 7 missions at NASA Langley Research Center (LaRC).

  6. Study of Material Densification of In718 in the Higher Throughput Parameter Regime

    NASA Technical Reports Server (NTRS)

    Cordner, Samuel

    2016-01-01

    Selective Laser Melting (SLM) is a powder bed fusion additive manufacturing process used increasingly in the aerospace industry to reduce the cost, weight, and fabrication time for complex propulsion components. Previous optimization studies for SLM using the Concept Laser M1 and M2 machines at NASA Marshall Space Flight Center have centered on machine default parameters. The objective of this project is to characterize how heat treatment affects density and porosity from a microscopic point of view. This is performs using higher throughput parameters (a previously unexplored region of the manufacturing operating envelope for this application) on material consolidation. Density blocks were analyzed to explore the relationship between build parameters (laser power, scan speed, and hatch spacing) and material consolidation (assessed in terms of density and porosity). The study also considers the impact of post-processing, specifically hot isostatic pressing and heat treatment, as well as deposition pattern on material consolidation in the higher energy parameter regime. Metallurgical evaluation of specimens will also be presented. This work will contribute to creating a knowledge base (understanding material behavior in all ranges of the AM equipment operating envelope) that is critical to transitioning AM from the custom low rate production sphere it currently occupies to the world of mass high rate production, where parts are fabricated at a rapid rate with confidence that they will meet or exceed all stringent functional requirements for spaceflight hardware. These studies will also provide important data on the sensitivity of material consolidation to process parameters that will inform the design and development of future flight articles using SLM.

  7. Multi-scale characterization of nanostructured sodium aluminum hydride

    NASA Astrophysics Data System (ADS)

    NaraseGowda, Shathabish

    Complex metal hydrides are the most promising candidate materials for onboard hydrogen storage. The practicality of this class of materials is counter-poised on three critical attributes: reversible hydrogen storage capacity, high hydrogen uptake/release kinetics, and favorable hydrogen uptake/release thermodynamics. While a majority of modern metallic hydrides that are being considered are those that meet the criteria of high theoretical storage capacity, the challenges lie in addressing poor kinetics, thermodynamics, and reversibility. One emerging strategy to resolve these issues is via nanostructuring or nano-confinement of complex hydrides. By down-sizing and scaffolding them to retain their nano-dimensions, these materials are expected to improve in performance and reversibility. This area of research has garnered immense interest lately and there is active research being pursued to address various aspects of nanostructured complex hydrides. The research effort documented here is focused on a detailed investigation of the effects of nano-confinement on aspects such as the long range atomic hydrogen diffusivities, localized hydrogen dynamics, microstructure, and dehydrogenation mechanism of sodium alanate. A wide variety of microporous and mesoporous materials (metal organic frameworks, porous silica and alumina) were investigated as scaffolds and the synthesis routes to achieve maximum pore-loading are discussed. Wet solution infiltration technique was adopted using tetrahydrofuran as the medium and the precursor concentrations were found to have a major role in achieving maximum pore loading. These concentrations were optimized for each scaffold with varying pore sizes and confinement was quantitatively characterized by measuring the loss in specific surface area. This work is also aimed at utilizing neutron and synchrotron x-ray characterization techniques to study and correlate multi-scale material properties and phenomena. Some of the most advanced instruments were utilized for this work and their data collection and analysis are reported. Quasielastic neutron scattering experiments were conducted at NIST Center for Neutron Research to characterize atomic hydrogen diffusion in bulk and nano-confined NaAlH4. It was observed that upon confinement of NaAlH4, a significantly higher fraction of hydrogen atoms were involved in diffusive motion on the pico-second to nano-second timescales. However, the confinement had no impact on the lattice diffusivities (jump/hopping rates) of atomic hydrogen, indicating that the improved hydrogen release rates were not due to any kinetic destabilization effects. Instead, the investigation strongly suggested thermodynamic destabilization as the major effect of nano-confinement. The local interaction of the metal sites in metal organic frameworks with the infiltrated hydride was studied using extended x-ray absorption spectroscopy technique. The experiments were conducted at Center for Advanced Microstructures and Devices at Louisiana State University. The metal sites were found to be chemically un-altered, hence ruling out any catalytic role in the dehydrogenation at room temperatures. The fractal morphology of NaAlH4 was characterized by ultra-small angle x-ray scattering experiments performed at Argonne National Lab. The studies quantitatively estimated the extent of densification in the course of one desorption cycle. The particle sizes were found to increase two-fold during heat treatment. Also, the nano-confinement procedure was shown to produce dense mass fractals as opposed to pristine NaAlH4, exhibiting a surface fractal morphology. Based on this finding, a new method to identify confined material from un-confined material in nano-composites was developed and is presented. Preliminary results of modeling and correlating multi-scale phenomena using a phase-field approach are also presented as the foundation for future work.

  8. Polymers containing nickel(II) complexes of Goedken's macrocycle: optimized synthesis and electrochemical characterization.

    PubMed

    Paquette, Joseph A; Sauvé, Ethan R; Gilroy, Joe B

    2015-04-01

    The synthesis and characterization of a new class of nickel-containing polymers is described. The optimized copolymerization of alkyne-bearing nickel(II) complexes of Goedken's macrocycle (4,11-dihydro-5,7,12,14-tetramethyldibenzo[b,i][1,4,8,11]tetraazacyclotetradecine) and brominated 9,9-dihexylfluorene produced polymers with potential application as functional redox-active materials. The title polymers exhibit electrochemically reversible, ligand-centered oxidation events at 0.24 and 0.73 V versus the ferrocene/ferrocenium redox couple. They also display exceptional thermal stability and interesting absorption properties due to the presence of the macrocyclic nickel(II) complexes and π-conjugated units incorporated in their backbones. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ongari, Daniele; Boyd, Peter G.; Barthel, Senja

    Pore volume is one of the main properties for the characterization of microporous crystals. It is experimentally measurable, and it can also be obtained from the refined unit cell by a number of computational techniques. In this work, we assess the accuracy and the discrepancies between the different computational methods which are commonly used for this purpose, i.e, geometric, helium, and probe center pore volumes, by studying a database of more than 5000 frameworks. We developed a new technique to fully characterize the internal void of a microporous material and to compute the probe-accessible and -occupiable pore volume. Lasty, wemore » show that, unlike the other definitions of pore volume, the occupiable pore volume can be directly related to the experimentally measured pore volumes from nitrogen isotherms.« less

  10. Marshall Space Flight Center solid waste characterization and recycling improvement study: General office and laboratory waste, scrap metal, office and flight surplus

    NASA Technical Reports Server (NTRS)

    Eley, Michael H.; Crews, Lavonne; Johnston, Ben; Lee, David; Colebaugh, James

    1995-01-01

    The primary objectives of the study were to characterize the solid waste stream for MSFC facilities in Huntsville, Alabama, and to evaluate their present recycling program. The purpose of the study was to determine if improvements could be made in terms of increasing quantities of the present commodities collected, adding more recyclables to the program, and streamlining or improving operational efficiency. In conducting the study, various elements were implemented. These included sampling and sorting representative samples of the waste stream; visually inspecting each refuse bin, recycle bin, and roll-off; interviewing employees and recycling coordinators of other companies; touring local material recycling facilities; contacting experts in the field; and performing a literature search.

  11. Refractory Materials for Flame Deflector Protection System Corrosion Control: Refractory Ceramics Literature Survey

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark; Perusich, Stephen; Whitten, Mary C.; Trejo, David; Zidek, Jason; Sampson, Jeffrey W.; hide

    2009-01-01

    Ceramics can be defmed as a material consisting of hard brittle properties produced from inorganic and nonmetallic minerals made by firing at high temperatures. These materials are compounds between metallic and nonmetallic elements and are either totally ionic, or predominately ionic but having some covalent character. This definition allows for a large range of materials, not all applicable to refractory applications. As this report is focused on potential ceramic materials for high temperature, aggressive exposure applications, the ceramics reviewed as part of this report will focus on refractory ceramics specifically designed and used for these applications. Ceramic materials consist of a wide variety of products. Callister (2000) 1 characterized ceramic materials into six classifications: glasses, clay products, refractories, cements, abrasives, and advanced ceramics. Figure 1 shows this classification system. This review will focus mainly on refractory ceramics and cements as in general, the other classifications are neither applicable nor economical for use in large structures such as the flame trench. Although much work has been done in advanced ceramics over the past decade or so, these materials are likely cost prohibitive and would have to be fabricated off-site, transported to the NASA facilities, and installed, which make these even less feasible. Although the authors reviewed the literature on advanced ceramic refractories 2 center dot 3 center dot 4 center dot 5 center dot 6 center dot 7 center dot 8 center dot 9 center dot 10 center dot 11 center dot 12 after the review it was concluded that these materials should not be ' the focus of this report. A review is in progress on materials and systems for prefabricated refractory ceramic panels, but this review is focusing more on typical refractory materials for prefabricated systems, which could make the system more economically feasible. Refractory ceramics are used for a wide variety of applications. Figure 2 shows many ofthese applications, their life expectancy or requirement, and the exposure temperature for the refractory ceramic. Note that the exposure temperatures for refractory ceramics are very similar to the exposure conditions for specialty ceramics (rocket nozzles, space vehicle re-entry fields, etc.) and yet the life expectancy or requirement is relatively low. Currently NASA is repairing the refractory lining in the flame trench after every launch - although this is not a direct indication of low life expectancy, it does indicate that the current system may not be sufficiently durable to maximize economy. Better performing refractory ceramics are needed to improve the performance, economy, and safety during and after launches at the flame trenches at Kennedy Space Center (KSC). To achieve this goal a current study is underway to assess different refractory systems for possible use in the flame trenches at KSC. This report will target the potential applicability of refractory ceramics for use in the flame trenches. An overview of the different refractory ceramics will be provided (see Figure I). This will be followed with a brief description of the structure of refractory products, the properties and characteristics of different systems, the methodology for selecting refractories, and then a general design methodology. Based on these sections, future challenges and opportunities will be identified with the objective of improving the durability, performance, economy, and safety of the launch complex. Refractory ceramics are used for a wide variety of applications. Figure 2 shows many ofthese applications, their life expectancy or requirement, and the exposure temperature for the refractory ceramic. Note that the exposure temperatures for refractory ceramics are very similar to the exposure conditions for specialty ceramics (rocket nozzles, space vehicle re-entry fields, etc.) and yet the life expectancy or requirement is relatively low. Currently NASA is repairing the refractory lining in the flame trench after every launch - although this is not a direct indication of low life expectancy, it does indicate that the current system may not be sufficiently durable to maximize economy. Better performing refractory ceramics are needed to improve the performance, economy, and safety during and after launches at the flame trenches at Kennedy Space Center (KSC). To achieve this goal a current study is underway to assess different refractory systems for possible use in the flame trenches at KSC. This report will target the potential applicability of refractory ceramics for use in the flame trenches. An overview of the different refractory ceramics will be provided (see Figure I). This will be followed with a brief description of the structure of refractory products, the properties and characteristics of different systems, the methodology for selecting refractories, and then a general design methodology. Based on these sections, future challenges and opportunities will be identified with the objective of improving the durability, performance, economy, and safety of the launch complex.

  12. Facilities to Support Beamed Energy Launch Testing at the Laser Hardened Materials Evaluation Laboratory (LHMEL)

    NASA Astrophysics Data System (ADS)

    Lander, Michael L.

    2003-05-01

    The Laser Hardened Materials Evaluation Laboratory (LHMEL) has been characterizing material responses to laser energy in support of national defense programs and the aerospace industry for the past 26 years. This paper reviews the overall resources available at LHMEL to support fundamental materials testing relating to impulse coupling measurement and to explore beamed energy launch concepts. Located at Wright-Patterson Air Force Base, Ohio, LHMEL is managed by the Air Force Research Laboratory Materials Directorate AFRL/MLPJ and operated by Anteon Corporation. The facility's advanced hardware is centered around carbon dioxide lasers producing output power up to 135kW and neodymium glass lasers producing up to 10 kilojoules of repetitively pulsed output. The specific capabilities of each laser device and related optical systems are discussed. Materials testing capabilities coupled with the laser systems are also described including laser output and test specimen response diagnostics. Environmental simulation capabilities including wind tunnels and large-volume vacuum chambers relevant to beamed energy propulsion are also discussed. This paper concludes with a summary of the procedures and methods by which the facility can be accessed.

  13. Experimental and analytical characterization of triaxially braided textile composites

    NASA Technical Reports Server (NTRS)

    Masters, John E.; Fedro, Mark J.; Ifju, Peter G.

    1993-01-01

    There were two components, experimental and analytical, to this investigation of triaxially braided textile composite materials. The experimental portion of the study centered on measuring the materials' longitudinal and transverse tensile moduli, Poisson's ratio, and strengths. The identification of the damage mechanisms exhibited by these materials was also a prime objective of the experimental investigation. The analytical portion of the investigation utilized the Textile Composites Analysis (TECA) model to predict modulus and strength. The analytical and experimental results were compared to assess the effectiveness of the analysis. The figures contained in this paper reflect the presentation made at the conference. They may be divided into four sections: a definition of the material system tested; followed by a series of figures summarizing the experimental results (these figures contain results of a Moire interferometry study of the strain distribution in the material, examples and descriptions of the types of damage encountered in these materials, and a summary of the measured properties); a description of the TECA model follows the experimental results (this includes a series of predicted results and a comparison with measured values); and finally, a brief summary completes the paper.

  14. Electron Radiation Effects on Candidate Solar Sail Material

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Hollerman, William A.; Hubbs, Whitney S.; Gray, Perry A.; Wertz, George E.; Hoppe, David T.; Nehls, Mary K.; Semmel, Charles L.

    2003-01-01

    Solar sailing is a unique form of propulsion where a spacecraft gains momentum from incident photons. Solar sails are not limited by reaction mass and provide continual acceleration, reduced only by the lifetime of the lightweight film in the space environment and the distance to the Sun. Once thought to be difficult or impossible, solar sailing has come out of science fiction and into the realm of possibility. Any spacecraft using this propulsion method would need to deploy a thin sail that could be as large as many kilometers in extent. The availability of strong, ultra lightweight, and radiation resistant materials will determine the future of solar sailing. The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) is concentrating research into the utilization of ultra lightweight materials for spacecraft propulsion. The Space Environmental Effects Team at MSFC is actively characterizing candidate solar sail material to evaluate the thermo-optical and mechanical properties after exposure to space environmental effects. This paper will describe the irradiation of candidate solar sail materials to energetic electrons, in vacuum, to determine the hardness of several candidate sail materials.

  15. Research Performed within the Non-Destructive Evaluation Team at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Burns, Erin A.

    2004-01-01

    Non-destructive testing is essential in many fields of manufacturing and research in order to perform reliable examination of potentially damaged materials and parts without destroying the inherent structure of the materials. Thus, the Non-Destructive Evaluation (NDE) Team at NASA Glenn Research Center partakes in various projects to improve materials testing equipment as well as analyze materials, material defects, and material deficiencies. Due to the array of projects within the NDE Team at this time, five research aims were supplemental to some current projects. A literature survey of "DE and testing methodologies as related to rocks was performed. Also, Mars Expedition Rover technology was assessed to understand the requirements for instrumentation in harsh space environments (e.g. temperature). Potential instrumentation and technologies were also considered and documented. The literature survey provided background and potential sources for a proposal to acquire funding for ultrasonic instrumentation on board a future Mars expedition. The laboratory uses a Santec Systems AcousticScope AS200 acoustography system. Labview code was written within the current program in order to improve the current performance of the acoustography system. A sample of Reinforced Carbon/Carbon (RCC) material from the leading edge of the space shuttle underwent various non-destructive tests (guided wave scanning, thermography, computed tomography, real time x-ray, etc.) in order to characterize its structure and examine possible defects. Guided wave scan data of a ceramic matrix composite (CMC) panel was reanalyzed utilizing image correlations and signal processing variables. Additional guided wave scans and thermography were also performed on the CMC panel. These reevaluated data and images will be used in future presentations and publications. An additional axis for the guided wave scanner was designed, constructed, and implemented. This additional axis allowed incremental spacing of the previously fixed transducers for ultrasonic velocity measurements.

  16. Soft X-Ray Exposure Testing of FEP Teflon for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.

    1998-01-01

    The FEP Teflon (DuPont) multilayer insulation (MLI) thermal-control blanket material on the Hubble Space Telescope is degrading in the space environment. During the first Hubble servicing mission in 1993, after 3.6 years in low Earth orbit, aluminized and silvered FEP Teflon MLI thermal-control blanket materials were retrieved. These materials have been jointly analyzed by the NASA Lewis Research Center and the NASA Goddard Space Flight Center for degradation induced in the space environment (ref. 1). Solar-facing blanket materials were found to be embrittled with through-the-thickness cracking in the 5-mil FEP. During the second Hubble servicing mission in 1997, astronauts noticed that several blankets had large areas with tears. The torn FEP was curled up in some areas, exposing the underlying materials to the space environment. This tearing problem, and the associated curling up of torn areas, could lead to over-heating of the telescope and to particulate contamination. A Hubble Space Telescope MLI Failure Review Board was assembled by Goddard to investigate and identify the degradation mechanism of the FEP, to identify and characterize replacement materials, and to estimate the extent of damage at the time of the third servicing mission in 1999. A small piece of FEP retrieved during the second servicing mission is being evaluated by this failure review board along with materials from the first servicing mission. Since the first servicing mission, and as part of the failure review board, Lewis has been exposing FEP to soft x-rays to help determine the damage mechanisms of FEP in the space environment. Soft x-rays, which can penetrate into the bulk of FEP, are generated during solar flares and appear to be contributing to the degradation of the Hubble MLI.

  17. Design and Development of a Composite Dome for Experimental Characterization of Material Permeability

    NASA Technical Reports Server (NTRS)

    Estrada, Hector; Smeltzer, Stanley S., III

    1999-01-01

    This paper presents the design and development of a carbon fiber reinforced plastic dome, including a description of the dome fabrication, method for sealing penetrations in the dome, and a summary of the planned test series. This dome will be used for the experimental permeability characterization and leakage validation of composite vessels pressurized using liquid hydrogen and liquid nitrogen at the Cryostat Test Facility at the NASA Marshall Space Flight Center (MSFC). The preliminary design of the dome was completed using membrane shell analysis. Due to the configuration of the test setup, the dome will experience some flexural stresses and stress concentrations in addition to membrane stresses. Also, a potential buckling condition exists for the dome due to external pressure during the leak testing of the cryostat facility lines. Thus, a finite element analysis was conducted to assess the overall strength and stability of the dome for each required test condition. Based on these results, additional plies of composite reinforcement material were applied to local regions on the dome to alleviate stress concentrations and limit deflections. The dome design includes a circular opening in the center for the installation of a polar boss, which introduces a geometric discontinuity that causes high stresses in the region near the hole. To attenuate these high stresses, a reinforcement system was designed using analytical and finite element analyses. The development of a low leakage polar boss system is also investigated.

  18. Advances in Thin Film Sensor Technologies for Engine Applications

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Martin, Lisa C.; Will, Herbert A.

    1997-01-01

    Advanced thin film sensor techniques that can provide accurate surface strain and temperature measurements are being developed at NASA Lewis Research Center. These sensors are needed to provide minimally intrusive characterization of advanced materials (such as ceramics and composites) and structures (such as components for Space Shuttle Main Engine, High Speed Civil Transport, Advanced Subsonic Transports and General Aviation Aircraft) in hostile, high-temperature environments and for validation of design codes. This paper presents two advanced thin film sensor technologies: strain gauges and thermocouples. These sensors are sputter deposited directly onto the test articles and are only a few micrometers thick; the surface of the test article is not structurally altered and there is minimal disturbance of the gas flow over the surface. The strain gauges are palladium-13% chromium based and the thermocouples are platinum-13% rhodium vs. platinum. The fabrication techniques of these thin film sensors in a class 1000 cleanroom at the NASA Lewis Research Center are described. Their demonstration on a variety of engine materials, including superalloys, ceramics and advanced ceramic matrix composites, in several hostile, high-temperature test environments are discussed.

  19. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for materials and phenomena at multiple time and length scales. Through our core programs and research centers Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials

  20. Thickness-Independent Ultrasonic Imaging Applied to Abrasive Cut-Off Wheels: An Advanced Aerospace Materials Characterization Method for the Abrasives Industry. A NASA Lewis Research Center Technology Transfer Case History

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Farmer, Donald A.

    1998-01-01

    Abrasive cut-off wheels are at times unintentionally manufactured with nonuniformity that is difficult to identify and sufficiently characterize without time-consuming, destructive examination. One particular nonuniformity is a density variation condition occurring around the wheel circumference or along the radius, or both. This density variation, depending on its severity, can cause wheel warpage and wheel vibration resulting in unacceptable performance and perhaps premature failure of the wheel. Conventional nondestructive evaluation methods such as ultrasonic c-scan imaging and film radiography are inaccurate in their attempts at characterizing the density variation because a superimposing thickness variation exists as well in the wheel. In this article, the single transducer thickness-independent ultrasonic imaging method, developed specifically to allow more accurate characterization of aerospace components, is shown to precisely characterize the extent of the density variation in a cut-off wheel having a superimposing thickness variation. The method thereby has potential as an effective quality control tool in the abrasives industry for the wheel manufacturer.

  1. Characterization and Glass Formation of JSC-1 Lunar and Martian Soil Simulants

    NASA Technical Reports Server (NTRS)

    Sen, Subhayu

    2008-01-01

    The space exploration mission of NASA requires long duration presence of human being beyond the low earth orbit (LEO), especially on Moon and Mars. Developing a human habitat or colony on these planets would require a diverse range of materials, whose applications would range from structural foundations, (human) life support, (electric) power generation to components for scientific instrumentation. A reasonable and cost-effective approach for fabricating the materials needed for establishing a self-sufficient human outpost would be to primarily use local (in situ) resources on these planets. Since ancient times, glass and ceramics have been playing a vital role on human civilization. A long term project on studying the feasibility of developing glass and ceramic materials using Lunar and Martian soil simulants (JSC-1) as developed by Johnson Space Center has been undertaken. The first step in this on-going project requires developing a data base on results that fully characterize the simulants to be used for further investigations. The present paper reports characterization data of both JSC-1 Lunar and JSC Mars-1 simulants obtained up to this time via x-ray diffraction analysis, scanning electron microscopy, thermal analysis (DTA, TGA) and chemical analysis. The critical cooling rate for glass formation for the melts of the simulants was also measured in order to quantitatively assess the glass forming tendency of these melts. The importance of the glasses and ceramics developed using in-situ resources for constructing human habitats on Moon or Mars is discussed.

  2. Development of saw palmetto (Serenoa repens) fruit and extract standard reference materials.

    PubMed

    Schantz, Michele M; Bedner, Mary; Long, Stephen E; Molloy, John L; Murphy, Karen E; Porter, Barbara J; Putzbach, Karsten; Rimmer, Catherine A; Sander, Lane C; Sharpless, Katherine E; Thomas, Jeanice B; Wise, Stephen A; Wood, Laura J; Yen, James H; Yarita, Takashi; NguyenPho, Agnes; Sorenson, Wendy R; Betz, Joseph M

    2008-10-01

    As part of a collaboration with the National Institutes of Health's Office of Dietary Supplements and the Food and Drug Administration's Center for Drug Evaluation and Research, the National Institute of Standards and Technology has developed two standard reference materials (SRMs) representing different forms of saw palmetto (Serenoa repens), SRM 3250 Serenoa repens fruit and SRM 3251 Serenoa repens extract. Both of these SRMs have been characterized for their fatty acid and phytosterol content. The fatty acid concentration values are based on results from gas chromatography with flame ionization detection (GC-FID) and mass spectrometry (GC/MS) analysis while the sterol concentration values are based on results from GC-FID and liquid chromatography with mass spectrometry analysis. In addition, SRM 3250 has been characterized for lead content, and SRM 3251 has been characterized for the content of beta-carotene and tocopherols. SRM 3250 (fruit) has certified concentration values for three phytosterols, 14 fatty acids as triglycerides, and lead along with reference concentration values for four fatty acids as triglycerides and 16 free fatty acids. SRM 3251 (extract) has certified concentration values for three phytosterols, 17 fatty acids as triglycerides, beta-carotene, and gamma-tocopherol along with reference concentration values for three fatty acids as triglycerides, 17 fatty acids as free fatty acids, beta-carotene isomers, and delta-tocopherol and information values for two phytosterols. These SRMs will complement other reference materials currently available with concentrations for similar analytes and are part of a series of SRMs being developed for dietary supplements.

  3. Materials Characterization Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    | NREL Materials Characterization Laboratory Materials Characterization Laboratory The Energy Systems Integration Facility's Materials Characterization Laboratory supports the physical and photo -electrochemical characterization of novel materials. Photo of an NREL researcher preparing samples for a gas

  4. Investigation of Desiccants and CO2 Sorbents for Advanced Exploration Systems 2016-2017

    NASA Technical Reports Server (NTRS)

    Knox, Jim; Cmarik, Gregory E.

    2017-01-01

    Advanced Environmental Control and Life Support System (ECLSS) design is critical for manned space flight beyond Earth. Current systems enable extended missions in low-Earth orbit, but for deep-space missions, not only will astronauts be outside the reach of resupply operations from Earth but they will also need to handle malfunctions and compensate for the degradation of materials. These two daunting challenges must be overcome for long-term independent space flight. In order to solve the first, separation and recycling of onboard atmosphere is required. Current systems utilize space vacuum to fully regenerate CO2 sorbent beds, but this is not sustainable. The second challenge stems from material and performance degradation due to operational cycling and on-board contaminants. This report will review the recent work by the ECLSS team at Marshall Space Flight Center towards overcoming these challenges by characterizing materials via novel methods and by assessing new air revitalization systems.

  5. Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials.

    PubMed

    Matsubara, E; Okada, S; Ichitsubo, T; Kawaguchi, T; Hirata, A; Guan, P F; Tokuda, K; Tanimura, K; Matsunaga, T; Chen, M W; Yamada, N

    2016-09-23

    Despite the fact that phase-change materials are widely used for data storage, no consensus exists on the unique mechanism of their ultrafast phase change and its accompanied large and rapid optical change. By using the pump-probe observation method combining a femtosecond optical laser and an x-ray free-electron laser, we substantiate experimentally that, in both GeTe and Ge_{2}Sb_{2}Te_{5} crystals, rattling motion of mainly Ge atoms takes place with keeping the off-center position just after femtosecond-optical-laser irradiation, which eventually leads to a higher symmetry or disordered state. This very initial rattling motion in the undistorted lattice can be related to instantaneous optical change due to the loss of resonant bonding that characterizes GeTe-based phase change materials. Based on the amorphous structure derived by first-principles molecular dynamics simulation, we infer a plausible ultrafast amorphization mechanism via nonmelting.

  6. Material Characterization and Geometric Segmentation of a Composite Structure Using Microfocus X-Ray Computed Tomography Image-Based Finite Element Modeling

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Roth, D. J.; Cotton, R.; Studor, George F.; Christiansen, Eric; Young, P. C.

    2011-01-01

    This study utilizes microfocus x-ray computed tomography (CT) slice sets to model and characterize the damage locations and sizes in thermal protection system materials that underwent impact testing. ScanIP/FE software is used to visualize and process the slice sets, followed by mesh generation on the segmented volumetric rendering. Then, the local stress fields around several of the damaged regions are calculated for realistic mission profiles that subject the sample to extreme temperature and other severe environmental conditions. The resulting stress fields are used to quantify damage severity and make an assessment as to whether damage that did not penetrate to the base material can still result in catastrophic failure of the structure. It is expected that this study will demonstrate that finite element modeling based on an accurate three-dimensional rendered model from a series of CT slices is an essential tool to quantify the internal macroscopic defects and damage of a complex system made out of thermal protection material. Results obtained showing details of segmented images; three-dimensional volume-rendered models, finite element meshes generated, and the resulting thermomechanical stress state due to impact loading for the material are presented and discussed. Further, this study is conducted to exhibit certain high-caliber capabilities that the nondestructive evaluation (NDE) group at NASA Glenn Research Center can offer to assist in assessing the structural durability of such highly specialized materials so improvements in their performance and capacities to handle harsh operating conditions can be made.

  7. Effects of fabrication methods on spin relaxation and crystallite quality in Tm-doped ? powders studied using spectral hole burning

    NASA Astrophysics Data System (ADS)

    Lutz, Thomas; Veissier, Lucile; Thiel, Charles W.; Woodburn, Philip J. T.; Cone, Rufus L.; Barclay, Paul E.; Tittel, Wolfgang

    2016-01-01

    High-quality rare-earth-ion (REI) doped materials are a prerequisite for many applications such as quantum memories, ultra-high-resolution optical spectrum analyzers and information processing. Compared to bulk materials, REI doped powders offer low-cost fabrication and a greater range of accessible material systems. Here we show that crystal properties, such as nuclear spin lifetime, are strongly affected by mechanical treatment, and that spectral hole burning can serve as a sensitive method to characterize the quality of REI doped powders. We focus on the specific case of thulium doped ? (Tm:YAG). Different methods for obtaining the powders are compared and the influence of annealing on the spectroscopic quality of powders is investigated on a few examples. We conclude that annealing can reverse some detrimental effects of powder fabrication and, in certain cases, the properties of the bulk material can be reached. Our results may be applicable to other impurities and other crystals, including color centers in nano-structured diamond.

  8. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Evans, Steve; Finchum, Andy; Hubbs, Whitney; Gray, Perry

    2008-01-01

    Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California, The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a 'National Asset' by the DoD, The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  9. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Evans, Steve; Finchum, Andy; Hubbs, Whitney

    2008-01-01

    Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960% then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas grins, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  10. PNNL Development and Analysis of Material-Based Hydrogen Storage Systems for the Hydrogen Storage Engineering Center of Excellence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Alvine, Kyle J.; Johnson, Kenneth I.

    The Hydrogen Storage Engineering Center of Excellence is a team of universities, industrial corporations, and federal laboratories with the mandate to develop lower-pressure, materials-based, hydrogen storage systems for hydrogen fuel cell light-duty vehicles. Although not engaged in the development of new hydrogen storage materials themselves, it is an engineering center that addresses engineering challenges associated with the currently available hydrogen storage materials. Three material-based approaches to hydrogen storage are being researched: 1) chemical hydrogen storage materials 2) cryo-adsorbents, and 3) metal hydrides. As a member of this Center, Pacific Northwest National Laboratory (PNNL) has been involved in the design andmore » evaluation of systems developed with each of these three hydrogen storage materials. This report is a compilation of the work performed by PNNL for this Center.« less

  11. Characterization of 137 Genomic DNA Reference Materials for 28 Pharmacogenetic Genes

    PubMed Central

    Pratt, Victoria M.; Everts, Robin E.; Aggarwal, Praful; Beyer, Brittany N.; Broeckel, Ulrich; Epstein-Baak, Ruth; Hujsak, Paul; Kornreich, Ruth; Liao, Jun; Lorier, Rachel; Scott, Stuart A.; Smith, Chingying Huang; Toji, Lorraine H.; Turner, Amy; Kalman, Lisa V.

    2017-01-01

    Pharmacogenetic testing is increasingly available from clinical laboratories. However, only a limited number of quality control and other reference materials are currently available to support clinical testing. To address this need, the Centers for Disease Control and Prevention–based Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing community and the Coriell Cell Repositories, has characterized 137 genomic DNA samples for 28 genes commonly genotyped by pharmacogenetic testing assays (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, CYP4F2, DPYD, GSTM1, GSTP1, GSTT1, NAT1, NAT2, SLC15A2, SLC22A2, SLCO1B1, SLCO2B1, TPMT, UGT1A1, UGT2B7, UGT2B15, UGT2B17, and VKORC1). One hundred thirty-seven Coriell cell lines were selected based on ethnic diversity and partial genotype characterization from earlier testing. DNA samples were coded and distributed to volunteer testing laboratories for targeted genotyping using a number of commercially available and laboratory developed tests. Through consensus verification, we confirmed the presence of at least 108 variant pharmacogenetic alleles. These samples are also being characterized by other pharmacogenetic assays, including next-generation sequencing, which will be reported separately. Genotyping results were consistent among laboratories, with most differences in allele assignments attributed to assay design and variability in reported allele nomenclature, particularly for CYP2D6, UGT1A1, and VKORC1. These publicly available samples will help ensure the accuracy of pharmacogenetic testing. PMID:26621101

  12. Quantifying the Presence of Written Materials and the Use of Outside Texts in Nature Centers for Environmental Education

    ERIC Educational Resources Information Center

    Cagle, Nicolette L.

    2013-01-01

    Despite widespread distribution of nature centers across North America and Europe, the written materials available to their visitors have yet to be enumerated. To address this gap, this study quantifies the types of written materials available in 563 American nature centers and addresses how nature centers use outside texts. The survey results…

  13. Shopping Centers: Their Development and Impact on a Community.

    ERIC Educational Resources Information Center

    Berezowski, P. E.; And Others

    Presenting extensive background material on the development of shopping centers, this paper includes elementary and junior high school outdoor education activities centering upon shopping center studies. Background material includes analysis of the following: shopping center types (architecture, regional location, etc); land use (guidelines for…

  14. Development of the new generation of glass-based neutron detection materials

    NASA Astrophysics Data System (ADS)

    Dosovitskiy, Alexey E.; Dosovitskiy, Georgy A.; Korjik, Mikhail V.

    2012-10-01

    Approach to obtaining of neutron detector material alternative to 3He containing ionization gas detectors is proposed. Recently, a severe deficit of the 3He has pushed its price up strongly, so alternative cheaper detecting materials are demanded. Possible alternatives to 3He are materials containing 10B and 6Li isotopes. These two elements form many inorganic materials, either crystalline or amorphous. Glass scintillators look very advantageous as detector materials, especially for large area detectors, as their manufacturing could be cheaper and easier-to-scale, compared to single crystals and ceramics. A poor exciton transport, which is a fundamental feature of glass scintillators, limits their light yield and, therefore, practical use. Here we discuss a possibility to improve energy transfer to luminescent centers by creation of high concentration of crystalline luminophore particles in the glass matrix. This could be achieved through the controlled crystallization of the glass. We demonstrate how this approach works in well known Li-Al-Si (LAS) glass system. Partially crystallized Ce3+-doped glass with nanocrystalline inclusions is obtained, which shows the superior scintillation properties compared to amorphous glass. The material is characterized by an emission spectrum shift towards shorter wavelengths, which provides low light self-absorption.

  15. Consolidating NASA's Arc Jets

    NASA Technical Reports Server (NTRS)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald

    2015-01-01

    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  16. Quantitative Interpretation of Multifrequency Multimode EPR Spectra of Metal Containing Proteins, Enzymes, and Biomimetic Complexes.

    PubMed

    Petasis, Doros T; Hendrich, Michael P

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has long been a primary method for characterization of paramagnetic centers in materials and biological complexes. Transition metals in biological complexes have valence d-orbitals that largely define the chemistry of the metal centers. EPR spectra are distinctive for metal type, oxidation state, protein environment, substrates, and inhibitors. The study of many metal centers in proteins, enzymes, and biomimetic complexes has led to the development of a systematic methodology for quantitative interpretation of EPR spectra from a wide array of metal containing complexes. The methodology is now contained in the computer program SpinCount. SpinCount allows simulation of EPR spectra from any sample containing multiple species composed of one or two metals in any spin state. The simulations are quantitative, thus allowing determination of all species concentrations in a sample directly from spectra. This chapter will focus on applications to transition metals in biological systems using EPR spectra from multiple microwave frequencies and modes. © 2015 Elsevier Inc. All rights reserved.

  17. Characterizing the Chemical Stability of High Temperature Materials for Application in Extreme Environments

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth

    2005-01-01

    The chemical stability of high temperature materials must be known for use in the extreme environments of combustion applications. The characterization techniques available at NASA Glenn Research Center vary from fundamental thermodynamic property determination to material durability testing in actual engine environments. In this paper some of the unique techniques and facilities available at NASA Glenn will be reviewed. Multiple cell Knudsen effusion mass spectrometry is used to determine thermodynamic data by sampling gas species formed by reaction or equilibration in a Knudsen cell held in a vacuum. The transpiration technique can also be used to determine thermodynamic data of volatile species but at atmospheric pressures. Thermodynamic data in the Si-O-H(g) system were determined with this technique. Free Jet Sampling Mass Spectrometry can be used to study gas-solid interactions at a pressure of one atmosphere. Volatile Si(OH)4(g) was identified by this mass spectrometry technique. A High Pressure Burner Rig is used to expose high temperature materials in hydrocarbon-fueled combustion environments. Silicon carbide (SiC) volatility rates were measured in the burner rig as a function of total pressure, gas velocity and temperature. Finally, the Research Combustion Lab Rocket Test Cell is used to expose high temperature materials in hydrogen/oxygen rocket engine environments to assess material durability. SiC recession due to rocket engine exposures was measured as a function of oxidant/fuel ratio, temperature, and total pressure. The emphasis of the discussion for all techniques will be placed on experimental factors that must be controlled for accurate acquisition of results and reliable prediction of high temperature material chemical stability.

  18. Assessing local structure motifs using order parameters for motif recognition, interstitial identification, and diffusion path characterization

    NASA Astrophysics Data System (ADS)

    Zimmermann, Nils E. R.; Horton, Matthew K.; Jain, Anubhav; Haranczyk, Maciej

    2017-11-01

    Structure-property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells) of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal closed packed-like environments. Here, we showcase the usefulness of local order parameters to identify these basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP) database (61,422 compounds) for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT) facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.

  19. Assessing Local Structure Motifs Using Order Parameters for Motif Recognition, Interstitial Identification, and Diffusion Path Characterization

    DOE PAGES

    Zimmermann, Nils E. R.; Horton, Matthew K.; Jain, Anubhav; ...

    2017-11-13

    Structure–property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors, as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells) of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal close packed-like environments. Here, we showcase the usefulness of local order parameters to identify thesemore » basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP) database (61,422 compounds) for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT) facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO 2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.« less

  20. Assessing Local Structure Motifs Using Order Parameters for Motif Recognition, Interstitial Identification, and Diffusion Path Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmermann, Nils E. R.; Horton, Matthew K.; Jain, Anubhav

    Structure–property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors, as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells) of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal close packed-like environments. Here, we showcase the usefulness of local order parameters to identify thesemore » basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP) database (61,422 compounds) for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT) facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO 2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.« less

  1. Neutron Spectrum Measurements from Irradiations at NCERC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackman, Kevin Richard; Mosby, Michelle A.; Bredeweg, Todd Allen

    2015-04-15

    Several irradiations have been conducted on assemblies (COMET/ZEUS and Flattop) at the National Criticality Experiments Research Center (NCERC) located at the Nevada National Security Site (NNSS). Configurations of the assemblies and irradiated materials changed between experiments. Different metallic foils were analyzed using the radioactivation method by gamma-ray spectrometry to understand/characterize the neutron spectra. Results of MCNP calculations are shown. It was concluded that MCNP simulated spectra agree with experimental measurements, with the caveats that some data are limited by statistics at low-energies and some activation foils have low activities.

  2. Use of a Polyacetylene Cathode in Primary Lithium-Thionyl Chloride Cells.

    DTIC Science & Technology

    1983-10-01

    BUJREAU OF STANDAFRfA1.-, A 70 o 0 :0 .0 0 S S 0. 5, * ...- 7. * E~1 ~ C -TR-83-281 USE OF A POLYACETYLENE CATHODE IN PRIMARY LITHIUM -THIONYL CHLORIDE...CELLS ,.710 c-- -IGEO-CENTERS, INC. C. t 2G’ X=. 2. . ~t ~ ~* ~.4 . . ~. t ~ GC-TR-83-281 USE OF A POLYACETYLENE CATHODE IN PRIMARY LITHIUM -THIONYL...cathode material in a lithium /thionyl chloride (Li/SOCl 2) battery. S?The objective of the project was three-fold: -. (1) To characterize and

  3. Growth and Characterization of III-V Semiconductors for Device Applications

    NASA Technical Reports Server (NTRS)

    Williams, Michael D.

    2000-01-01

    The research goal was to achieve a fundamental understanding of the physical processes occurring at the surfaces and interfaces of epitaxially grown InGaAs/GaAs (100) heterostructures. This will facilitate the development of quantum well devices for infrared optical applications and provide quantitative descriptions of key phenomena which impact their performance. Devices impacted include high-speed laser diodes and modulators for fiber optic communications at 1.55 micron wavelengths and intersub-band lasers for longer infrared wavelengths. The phenomenon of interest studied was the migration of indium in InGaAs structures. This work centered on the molecular beam epitaxy reactor and characterization apparatus donated to CAU by AT&T Bell Laboratories. The material characterization tool employed was secondary ion mass spectrometry. The training of graduate and undergraduate students was an integral part of this program. The graduate students received a thorough exposure to state-of-the-art techniques and equipment for semiconductor materials analysis as part of the Master''s degree requirement in physics. The undergraduates were exposed to a minority scientist who has an excellent track record in this area. They also had the opportunity to explore surface physics as a career option. The results of the scientific work was published in a refereed journal and several talks were presented professional conferences and academic seminars.

  4. Publications - DDS 11 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Publications Geologic Materials Center General Information Inventory Monthly Report Hours and Location Policy DGGS DDS 11 Publication Details Title: Geologic Materials Center Inventory Authors: DGGS Staff ): Alaska Statewide Bibliographic Reference DGGS Staff, 2016, Geologic Materials Center Inventory: Alaska

  5. Method development for analysis of urban dust using scanning electron microscopy with energy dispersive x-ray spectrometry to detect the possible presence of world trade center dust constituents

    USGS Publications Warehouse

    Bern, A.M.; Lowers, H.A.; Meeker, G.P.; Rosati, J.A.

    2009-01-01

    The collapse of the World Trade Center Towers on September 11, 2001, sent dust and debris across much of Manhattan and in the surrounding areas. Indoor and outdoor dust samples were collected and characterized by U.S. Geological Survey (USGS) scientists using scanning electron microscopy with energy-dispersive spectrometry (SEM/EDS). From this characterization, the U.S. Environmental Protection Agency and USGS developed a particulate screening method to determine the presence of residual World Trade Center dust in the indoor environment using slag wool as a primary "signature". The method describes a procedure that includes splitting, ashing, and sieving of collected dust. From one split, a 10 mg/mL dust/ isopropanol suspension was prepared and 10-30 ??L aliquots of the suspension placed on an SEM substrate. Analyses were performed using SEM/EDS manual point counting for slag wool fibers. Poisson regression was used to identify some of the sources of uncertainty, which are directly related to the small number of fibers present on each sample stub. Preliminary results indicate that the procedure is promising for screening urban background dust for the presence of WTC dust. Consistent sample preparation of reference materials and samples must be performed by each laboratory wishing to use this method to obtain meaningful and accurate results. ?? 2009 American Chemical Society.

  6. SNM Movement Detection/Radiation Sensors and Advanced Materials Portfolio Review, CdMnTe (CMT) Gamma Ray Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotnikov,A.

    2009-06-02

    The project goals are: (1) Develop CMT radiation detectors - Demonstrate feasibility (Phase 1 is complete) and Improve material properties and device performance; (2) This project will lead to novel radiation detectors - high detection efficiency, high energy-resolution, ambient-temperature operation, and low production cost; and (3) Such detectors are needed in areas of nonproliferation and national security for detection of SNM. Research highlights are: (1) We achieved our Phase-I goal - Demonstration of CMT detector performance approaching that of CZT detectors; (2) Demonstrated that In-doped CMT is much closer to its anticipated performance as radiation detectors than other alternative materials,more » TlBr and HgI{sub 2} - Large crystal volumes, 10{sup 10}{Omega}{center_dot}cm, 3 x 10{sup -3}cm{sup 2}/V, and stable response; and (3) Conducted material and device characterization experiments - Detectors: I-V, {mu}{sub e}, ({mu}{tau}){sub e}, internal E fields, energy spectra, and high-resolution x-ray response mapping data and Materials - DLTS, TCT, PL, EPDs, XRD, PCD and IR transmission.« less

  7. Non-reciprocal elastic wave propagation in 2D phononic membranes with spatiotemporally varying material properties

    NASA Astrophysics Data System (ADS)

    Attarzadeh, M. A.; Nouh, M.

    2018-05-01

    One-dimensional phononic materials with material fields traveling simultaneously in space and time have been shown to break elastodynamic reciprocity resulting in unique wave propagation features. In the present work, a comprehensive mathematical analysis is presented to characterize and fully predict the non-reciprocal wave dispersion in two-dimensional space. The analytical dispersion relations, in the presence of the spatiotemporal material variations, are validated numerically using finite 2D membranes with a prescribed number of cells. Using omnidirectional excitations at the membrane's center, wave propagations are shown to exhibit directional asymmetry that increases drastically in the direction of the material travel and vanishes in the direction perpendicular to it. The topological nature of the predicted dispersion in different propagation directions are evaluated using the computed Chern numbers. Finally, the degree of the 2D non-reciprocity is quantified using a non-reciprocity index (NRI) which confirms the theoretical dispersion predictions as well as the finite simulations. The presented framework can be extended to plate-type structures as well as 3D spatiotemporally modulated phononic crystals.

  8. Real-Time Radiographic In-Situ Characterization Of Ply Lift In Composite Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Beshears, Ronald D.; Doering, Edward R.

    2006-01-01

    The problem of ply lifting in composite materials is a significant issue for various aerospace and military applications. A fundamental element in the prevention or mitigation of ply lift is determination of the timing of the ply lifting event during exposure of the composite material to flight conditions. The Marshall Space Flight Center s Nondestructive Evaluation Team developed a real-time radiographic technique for the detection of ply lift in carbon phenolic ablative materials in situ during live firings of subscale test motors in support of NASA s Reusable Solid Rocket Motor program, using amorphous silicon detector panels. The radiographic method has successfully detected ply lifting in seven consecutive carbon phenolic converging cones attached to solid fuel torches, providing the time of ply lift initiation in each test. Post-processing of the radiographic images improved the accuracy of timing measurements and allowed measurement of the ply lifting height as a function of time. Radiographic data correlated well with independent pressure and temperature measurements that indicate the onset of ply lift in the nozzle material.

  9. Biomimetic devices functionalized by membrane channel proteins

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob

    2004-03-01

    We are developing a new family of active materials which derive their functional properties from membrane proteins. These materials have two primary components: the proteins and the membranes themselves. I will discuss our recent work directed toward development of a generic platform for a "plug-and-play" philosophy of membrane protein engineering. By creating a stable biomimetic polymer membrane a single molecular monolayer thick, we will enable the exploitation of the function of any membrane protein, from pores and pumps to sensors and energy transducers. Our initial work has centered on the creation, study, and characterization of the biomimetic membranes. We are attempting to make large areas of membrane monolayers using Langmuir-Blodgett film formation as well as through arrays of microfabricated black lipid membrane-type septa. A number of techniques allow the insertion of protein into the membranes. As a benchmark, we have been employing a model system of voltage-gated pore proteins, which have electrically controllable porosities. I will report on the progress of this work, the characterization of the membranes, protein insertion processes, and the yield and functionality of the composite.

  10. Advanced Mirror Technology Development (AMTD) Thermal Trade Studies

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas

    2015-01-01

    Advanced Mirror Technology Development (AMTD) is being done at Marshall Space Flight Center (MSFC) in preparation for the next large aperture UVOIR space observatory. A key science mission of that observatory is the detection and characterization of 'Earth-like' exoplanets. Direct exoplanet observation requires a telescope to see a planet which will be 10(exp -10) times dimmer than its host star. To accomplish this using an internal coronagraph requires a telescope with an ultra-stable wavefront error (WFE). This paper investigates parametric relationships between primary mirror physical parameters and thermal WFE stability. Candidate mirrors are designed as a mesh and placed into a thermal analysis model to determine the temperature distribution in the mirror when it is placed inside of an actively controlled cylindrical shroud at Lagrange point 2. Thermal strains resulting from the temperature distribution are found and an estimation of WFE is found to characterize the effect that thermal inputs have on the optical quality of the mirror. This process is repeated for several mirror material properties, material types, and mirror designs to determine how to design a mirror for thermal stability.

  11. Metallurgical characterization of experimental Ag-based soldering alloys

    PubMed Central

    Ntasi, Argyro; Al Jabbari, Youssef S.; Silikas, Nick; Al Taweel, Sara M.; Zinelis, Spiros

    2014-01-01

    Aim To characterize microstructure, hardness and thermal properties of experimental Ag-based soldering alloys for dental applications. Materials and methods Ag12Ga (AgGa) and Ag10Ga5Sn (AgGaSn) were fabricated by induction melting. Six samples were prepared for each alloy and microstructure, hardness and their melting range were determined by, scanning electron microscopy, energy dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD), Vickers hardness testing and differential scanning calorimetry (DSC). Results Both alloys demonstrated a gross dendritic microstructure while according to XRD results both materials consisted predominately of a Ag-rich face centered cubic phase The hardness of AgGa (61 ± 2) was statistically lower than that of AgGaSn (84 ± 2) while the alloys tested showed similar melting range of 627–762 °C for AgGa and 631–756 °C for AgGaSn. Conclusion The experimental alloys tested demonstrated similar microstructures and melting ranges. Ga and Sn might be used as alternative to Cu and Zn to modify the selected properties of Ag based soldering alloys. PMID:25382945

  12. Characterizing Non-Resolved Debris Through Spectral and Photometric Ground-Based Telescopic Data: What Can Laboratory Ground-truth Data Do for You?

    NASA Technical Reports Server (NTRS)

    Lederer, Susan

    2017-01-01

    NASA's ODPO has recently collected data of unresolved objects at GEO with the 3.8m UKIRT infrared telescope on Mauna Kea and the 1.3m MCAT visible telescope on Ascension Island. Analyses of SWIR data of rocket bodies and HS-376 solar-panel covered buses demonstrate the uniqueness of spectral signatures. Data of 3 classes of rocket bodies show similarities amongst a given class, but distinct differences from one class to another, suggesting that infrared reflectance spectra could effectively be used toward characterizing and constraining potential parent bodies of uncorrelated targets (UCTs). The Optical Measurements Center (OMC) at NASA JSC is designed to collect photometric signatures in the laboratory that can be used for comparison with telescopic data. NASA also has a spectral database of spacecraft materials for use with spectral unmixing models. Spectral unmixing of the HS-376 bus data demonstrates how absorption features and slopes can be used to constrain material characteristics of debris. Broadband photometry likewise can be compared with MCAT data of non-resolved debris images. Similar studies have been applied to IDCSP satellites to demonstrate how color-color photometry can be compared with lab data to constrain bulk materials signatures of spacecraft and debris.

  13. Nuts and Bolts - Techniques for Genesis Sample Curation

    NASA Technical Reports Server (NTRS)

    Burkett, Patti J.; Rodriquez, M. C.; Allton, J. H.

    2011-01-01

    The Genesis curation staff at NASA Johnson Space Center provides samples and data for analysis to the scientific community, following allocation approval by the Genesis Oversight Committee, a sub-committee of CAPTEM (Curation Analysis Planning Team for Extraterrestrial Materials). We are often asked by investigators within the scientific community how we choose samples to best fit the requirements of the request. Here we will demonstrate our techniques for characterizing samples and satisfying allocation requests. Even with a systematic approach, every allocation is unique. We are also providing updated status of the cataloging and characterization of solar wind collectors as of January 2011. The collection consists of 3721 inventoried samples consisting of a single fragment, or multiple fragments containerized or pressed between post-it notes, jars or vials of various sizes.

  14. Material characterization of structural adhesives in the lap shear mode

    NASA Technical Reports Server (NTRS)

    Sancaktar, E.; Schenck, S. C.

    1983-01-01

    A general method for characterizing structual adhesives in the bonded lap shear mode is proposed. Two approaches in the form of semiempirical and theoretical approaches are used. The semiempirical approach includes Ludwik's and Zhurkov's equations to describe respectively, the failure stresses in the constant strain rate and constant stress loading modes with the inclusion of the temperature effects. The theoretical approach is used to describe adhesive shear stress-strain behavior with the use of viscoelastic or nonlinear elastic constitutive equations. Two different model adhesives are used in the single lap shear mode with titanium adherends. These adhesives (one of which was developed at NASA Langley Research Center) are currently considered by NASA for possible aerospace applications. Use of different model adhesives helps in assessment of the generality of the method.

  15. Structural and optical characterization of self-assembled Ge nanocrystal layers grown by plasma-enhanced chemical vapor deposition.

    PubMed

    Saeed, Saba; Buters, Frank; Dohnalova, Katerina; Wosinski, Lech; Gregorkiewicz, Tom

    2014-10-10

    We present a structural and optical study of solid-state dispersions of Ge nanocrystals prepared by plasma-enhanced chemical vapor deposition. Structural analysis shows the presence of nanocrystalline germanium inclusions embedded in an amorphous matrix of Si-rich SiO(2).Optical characterization reveals two prominent emission bands centered around 2.6 eV and 3.4 eV, and tunable by excitation energy. In addition, the lower energy band shows an excitation power-dependent blue shift of up to 0.3 eV. Decay dynamics of the observed emission contains fast (nanosecond) and slow (microseconds) components, indicating contributions of several relaxation channels. Based on these material characteristics, a possible microscopic origin of the individual emission bands is discussed.

  16. Implementation Plan for the NASA Center of Excellence for Structures and Materials

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1998-01-01

    This report presents the implementation plans of the Center of Excellence (COE) for Structures and Materials. The plan documented herein is the result of an Agencywide planning activity led by the Office of the Center of Excellence for Structures and Materials at Langley Research Center (LaRC). The COE Leadership Team, with a representative from each NASA Field Center, was established to assist LaRC in fulfilling the responsibilities of the COE. The Leadership Team developed the plan presented in this report.

  17. X-ray Micro-Tomography of Ablative Heat Shield Materials

    NASA Technical Reports Server (NTRS)

    Panerai, Francesco; Ferguson, Joseph; Borner, Arnaud; Mansour, Nagi N.; Barnard, Harold S.; MacDowell, Alastair A.; Parkinson, Dilworth Y.

    2016-01-01

    X-ray micro-tomography is a non-destructive characterization technique that allows imaging of materials structures with voxel sizes in the micrometer range. This level of resolution makes the technique very attractive for imaging porous ablators used in hypersonic entry systems. Besides providing a high fidelity description of the material architecture, micro-tomography enables computations of bulk material properties and simulations of micro-scale phenomena. This presentation provides an overview of a collaborative effort between NASA Ames Research Center and Lawrence Berkeley National Laboratory, aimed at developing micro-tomography experiments and simulations for porous ablative materials. Measurements are carried using x-rays from the Advanced Light Source at Berkeley Lab on different classes of ablative materials used in NASA entry systems. Challenges, strengths and limitations of the technique for imaging materials such as lightweight carbon-phenolic systems and woven textiles are discussed. Computational tools developed to perform numerical simulations based on micro-tomography are described. These enable computations of material properties such as permeability, thermal and radiative conductivity, tortuosity and other parameters that are used in ablator response models. Finally, we present the design of environmental cells that enable imaging materials under simulated operational conditions, such as high temperature, mechanical loads and oxidizing atmospheres.Keywords: Micro-tomography, Porous media, Ablation

  18. Institute for Advanced Materials at University of Louisville

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunkara, Mahendra; Sumaneskara, Gamini; Starr, Thomas L

    2009-10-29

    In this project, a university-wide, academic center has been established entitled Institute for Advanced Materials and Renewable Energy. In this institute, a comprehensive materials characterization facility has been established by co-locating several existing characterization equipment and acquiring several state of the art instrumentation such as field emission transmission electron microscope, scanning electron microscope, high resolution X-ray diffractometer, Particle Size Distribution/Zeta Potential measurement system, and Ultra-microtome for TEM specimen. In addition, a renewable energy conversion and storage research facility was also established by acquiring instrumentation such as UV-Vis absorption spectroscopy, Atomic Layer Deposition reactor, Solar light simulator, oxygen-free glove box, potentiostat/galvanostatsmore » and other miscellaneous items. The institute is staffed with three full-time staff members (one senior research technologist, a senior PhD level research scientist and a junior research scientist) to enable proper use of the techniques. About thirty faculty, fifty graduate students and several researchers access the facilities on a routine basis. Several industry R&D organizations (SudChemie, Optical Dynamics and Hexion) utilize the facility. The established Institute for Advanced Materials at UofL has three main objectives: (a) enable a focused research effort leading to the rapid discovery of new materials and processes for advancing alternate energy conversion and storage technologies; (b) enable offering of several laboratory courses on advanced materials science and engineering; and (c) develop university-industry partnerships based on the advanced materials research. The Institute's efforts were guided by an advisory board comprising eminent researchers from outside KY. Initial research efforts were focused on the discovery of new materials and processes for solar cells and Li ion battery electrodes. Initial sets of results helped PIs to secure a successful EPSCoR cluster implementation grant by teaming with additional researchers from UK. In addition to research efforts, the project enabled several other outcomes: (a) helped recruit a junior faculty member (Dr. Moises Carreon) and establish a lab focused on meso-porous materials toward separation and catalysis; (b) enabled offering of three new, graduate level courses (Materials characterization using spectroscopy and microscopy; Electron and x-ray diffraction; and renewable energy systems); and (c) mentoring of a junior faculty members (Dr. Gerold Willing).« less

  19. DOE Energy Frontiers Research Center for Heterogeneous Functional Materials; the “HeteroFoaM Center”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reifsnider, Kenneth Leonard

    Synopsis of five year accomplishments: Devices that convert and store energy are generally made from heterogeneous constituent materials that act and interact to selectively conduct, transport, and separate mass, heat, and charge. Controlling these actions and interactions enables the technical breakthroughs that have made fuel cells, batteries, and solid state membranes, for example, essential parts of our society. In the biological sense, these materials are ‘vascular’ rather than primitive ‘cellular’ materials, in which the arrangements and configurations of the constituents (including their void phases) play essential and definitive roles in their functional capabilities. In 2009 a group of investigators, withmore » lifetime investments of effort in the understanding of heterogeneous materials, recognized that the design of such material systems is not an optimization problem as such. Local interactions of the constituents create “emergent” properties and responses that are not part of the formal set of constituent characteristics, in much the same sense that society and culture is created by the group interactions of the people involved. The design of emergent properties is an open question in all formal science, but for energy materials the lack of this foundation science relegates development tasks to Edisonian trial and error, with anecdotal success and frequent costly failures. That group defined, for the first time, multi-scale heterogeneous functional materials with functional disordered and void phase regions as “HeteroFoaM,” and formed the first multidisciplinary research team to define and codify the foundation science of that material class. The primary goal of the HeteroFoaM Center was, and is, to create and establish the multi-scale fundamental knowledge and related methodology required for the rational and systematic multiphysics design of heterogeneous functional materials and their interfaces and surfaces for applications in energy transformation and storage. The scope of the HeteroFoaM center was focused on the discovery and development of the control science of key phenomena across multiple length scales that create functionality in heterogeneous materials and their structured interfaces, boundaries, and surfaces for applications in energy technologies. The HeteroFoaM Center defined a critical path and established an essential foundation for progress in the field of heterogeneous functional materials. Perhaps the single most important element of progress was the establishment of the capability to design, characterize, and model heterogeneous functional materials at the conformal level, i.e., for a limited set of material systems, the HeteroFoaM team defined how to control the order / disorder at the atomic level, the surfaces, and the interfaces for selected constituent morphologies, and to use multiphysical models to explain the remarkable property variations resulting from that control science for several heterogeneous material systems. For those cases we defined “meso-structures” (at various scales) where the interactive physics of constituent phases acted to create emergent properties, e.g., strongly emergent mixed conductor behavior and ionic transport. The general approach used by this EFRC is shown in Fig. 1. The HeteroFoaM Center created the genre of Heterogeneous Functional Materials with functional surfaces and interfaces (including void phases) called HeteroFoaM as a science platform to enable rational analysis and design of functional material systems by focusing on the meso-interactions that drive emergent response. The team firmly established this approach with over 180 archival publications (see “Publications” section), 7 patent applications, and over 100 invited lectures in 15 countries on this topic, enabled by building a remarkably effective and uniquely coherent research team. Indeed, our team was our principal strength; this problem eluded solution earlier because such a team was not available.« less

  20. 2D Crystal heterostructures properties and growth by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Xing, Grace Huili

    Two-dimensional (2D) crystals such as transition metal dichalcogenides (TMDs) along with other families of layered materials including graphene, SnSe2, GaSe, BN etc, has attracted intense attention from the scientific community. One monolayer of such materials represent the thinnest ``quantum wells''. These layered materials typically possess an in-plane hexagonal crystal structure, and can be stacked together by interlayer van der Waals interactions. Therefore, it is possible to create novel heterostructures by stacking materials with large lattice mismatches and different properties, for instance, superconductors (NbSe2) , metals, semi-metals (graphene), semiconductors (MoS2) and insulators (BN). Numerous novel material properties and device concepts have been discovered, proposed and demonstrated lately. However, the low internal photoluminescence efficiency (IPE, <1%) and low carrier mobility observed in the 2D semiconductors suggest strongly that the materials under investigation today most likely suffer from a high concentration of defects. In this talk, I will share our progress and the challenges we face in terms of preparing, characterizing these 2D crystals as well as pursuing their applications. This work has been supported in part by NSF, AFOSR and LEAST, one of the STARnet centers.

  1. Thermal properties of lauric acid filled in carbon nanotubes as shape-stabilized phase change materials.

    PubMed

    Feng, Yanhui; Wei, Runzhi; Huang, Zhi; Zhang, Xinxin; Wang, Ge

    2018-03-14

    Carbon nanotubes (CNTs) filled with lauric acid (LA) as a kind of shape-stabilized phase change material were prepared and their structures and phase change properties were characterized. The results showed that the melting point and latent heat of LA confined in carbon nanotubes were lower than those of the bulk material, and both decrease as the diameters of CNTs and the filling ratios of LA decrease. Molecular dynamics (MD) simulations indicated that LA molecules form a liquid layer near pore walls and crystallize at the pore center. When the LA filling ratio was reduced to a certain value, all LA molecules were attached to the inner walls of CNTs, hindering their crystallization. A linear relationship between the melting temperature shift and structural properties was obtained based on the modified Gibbs-Thomson equation, which gives a reliable interpretation of the size effect of nanochannels in phase change materials. We also found that the thermal conductivity of the composite CNTs/LA was four times larger than that of pure LA. This study will provide insights into the design of novel composite phase change materials with better thermal properties by the selection of suitable porous materials and tailoring their pore structures.

  2. Processing and Damage Tolerance of Continuous Carbon Fiber Composites Containing Puncture Self-Healing Thermoplastic Matrix

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Gordon, Keith L.; Czabaj, Michael W.; Cano, Roberto J.; Siochi, Emilie J.

    2012-01-01

    Research at NASA Langley Research Center (NASA LaRC) has identified several commercially available thermoplastic polymers that self-heal after ballistic impact and through-penetration. One of these resins, polybutadiene graft copolymer (PB(sub g)), was processed with unsized IM7 carbon fibers to fabricate reinforced composite material for further evaluation. Temperature dependent characteristics, such as the degradation point, glass transition (T(sub g)), and viscosity of the PBg polymer were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic parallel plate rheology. The PBg resin was processed into approximately equal to 22.0 cm wide unidirectional prepreg tape in the NASA LaRC Advanced Composites Processing Research Laboratory. Data from polymer thermal characterization guided the determination of a processing cycle used to fabricate quasi-isotropic 32-ply laminate panels in various dimensions up to 30.5cm x 30.5cm in a vacuum press. The consolidation quality of these panels was analyzed by optical microscopy and acid digestion. The process cycle was further optimized based on these results and quasi-isotropic, [45/0/-45/90]4S, 15.24cm x 15.24cm laminate panels were fabricated for mechanical property characterization. The compression strength after impact (CAI) of the IM7/pBG composites was measured both before and after an elevated temperature and pressure healing cycle. The results of the processing development effort of this composite material as well as the results of the mechanical property characterization are presented in this paper.

  3. Staff Manual for Instructional Material Centers. Fourth Revised Edition.

    ERIC Educational Resources Information Center

    Petrucci, Martha

    For media center volunteers or inexperienced technicians, a workshop training guide provides reference and assistance in everyday problems and situations that arise in an instructional material center (IMC). Two five-hour days of instruction and participation, using the guide, are suggested for workshops. Step-by-step processing of book materials,…

  4. Bilaminar Device of Poly(Lactic-co-Glycolic Acid)/Collagen Cultured With Adipose-Derived Stem Cells for Dermal Regeneration.

    PubMed

    Domingues, Juliana A; Cherutti, Giselle; Motta, Adriana C; Hausen, Moema A; Oliveira, Rômulo T D; Silva-Zacarin, Elaine C M; Barbo, Maria Lourdes P; Duek, Eliana A R

    2016-10-01

    Several materials are commercially available as substitutes for skin. However, new strategies are needed to improve the treatment of skin wounds. In this study, we developed and characterized a new device consisting of poly(lactic-co-glycolic acid) (PLGA) and collagen associated with mesenchymal stem cells derived from human adipose tissue. To develop the bilaminar device, we initially obtained a membrane of PLGA by dissolving the copolymer in chloroform and then produced a collagen type I scaffold by freeze-drying. The materials were characterized physically by gel permeation chromatography, scanning electron microscopy, and mass loss. Biological activity was assessed by cell proliferation assay. A preliminary study in vivo was performed with a pig model in which tissue regeneration was assessed macroscopically and histologically, the commercial device Integra being used as a control. The PLGA/collagen bilaminar material was porous, hydrolytically degradable, and compatible with skin growth. The polymer complex allowed cell adhesion and proliferation, making it a potentially useful cell carrier. In addition, the transparency of the material allowed monitoring of the lesion when the dressings were changed. Xenogeneic mesenchymal cells cultured on the device (PLGA/collagen/ASC) showed a reduced granulomatous reaction to bovine collagen, down-regulation of α-SMA, enhancement in the number of neoformed blood vessels, and collagen organization as compared with normal skin; the device was superior to other materials tested (PLGA/collagen and Integra) in its ability to stimulate the formation of new cutaneous tissue. Copyright © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  5. Release Properties and Electrochemical Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    NASA Technical Reports Server (NTRS)

    Pearman, B. P.; Calle, L. M.; Zhang, X.; Li, W.; Buhrow, J. W.; Johnsey, M. N.; Montgomery, E. L.; Fitzpatrick, L.; Surma, J. M.

    2015-01-01

    The NASA Kennedy Space Center's Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion indicators, inhibitors and self-healing agents. This allows for the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods. Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The total inhibitor content and the release of one of the inhibitors from the microparticles in basic solution was measured. Particles with inhibitor contents of up 60 wt% were synthesized. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed. The inhibition efficacy of the inhibitors, both as the pure materials and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.

  6. The Genesis Mission: Contamination Control and Curation

    NASA Technical Reports Server (NTRS)

    Stansbery, E. K.

    2002-01-01

    The Genesis mission, launched in August 2001, is collecting samples of the solar wind and will return to Earth in 2004. Genesis can be viewed as the most fundamental of NASA's sample return missions because it is expected to provide insight into the initial elemental and isotopic composition of the solar nebula from which all other planetary objects formed. The data from this mission will have a large impact on understanding the origins and diversity of planetary materials. The collectors consist of clean, pure materials into which the solar wind will imbed. Science and engineering issues such as bulk purity, cleanliness, retention of solar wind, and ability to withstand launch and entry drove material choices. Most of the collector materials are installed on array frames that are deployed from a clean science canister. Two of the arrays are continuously exposed for collecting the bulk solar wind; the other three are only exposed during specific solar wind regimes as measured by ion and electron monitors. Other materials are housed as targets at the focal point of an electrostatic mirror, or "concentrator", designed to enhance the flux of specific solar wind species. Johnson Space Center (JSC) has two principal responsibilities for the Genesis mission: contamination control and curation. Precise and accurate measurements of the composition of the solar atoms require that the collector materials be extremely clean and well characterized before launch and during the mission. Early involvement of JSC curation personnel in concept development resulted in a mission designed to minimize contaminants from the spacecraft and operations. A major goal of the Genesis mission is to provide a reservoir of materials for the 21 51 century. When the collector materials are returned to Earth, they must be handled in a clean manner and their condition well documented. Information gained in preliminary examination of the arrays and detailed surveys of each collector will be used to guide sample allocations to the scientific community. Samples allocated for analysis are likely to be small sections of individual collectors, therefore subdividing the materials must take place in a clean, well characterized way. A major focus of current research at JSC includes identifying and characterizing the contamination, waste, and alteration of the sample when using different subdividing, transport, and storage techniques and developing protocols for reducing their impact on the scientific integrity of the mission.

  7. Pulsed laser vaporization synthesis of boron loaded few layered graphene (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tennyson, Wesley D.; Tian, Mengkun; More, Karren L.; Geohegan, David B.; Puretzky, Alexander A.; Papandrew, Alexander B.; Rouleau, Christopher M.; Yoon, Mina

    2017-02-01

    The bulk production of loose graphene flakes and its doped variants are important for energy applications including batteries, fuel cells, and supercapacitors as well as optoelectronic and thermal applications. While laser-based methods have been reported for large-scale synthesis of single-wall carbon nanohorns (SWNHs), similar large-scale production of graphene has not been reported. Here we explored the synthesis of doped few layered graphene by pulsed laser vaporization (PLV) with the goal of producing an oxidation resistant electrode support for solid acid fuel cells. PLV of graphite with various amounts of boron was carried out in mixtures in either Ar or Ar/H2 at 0.1 MPa at elevated temperatures under conditions typically used for synthesis of SWNHs. Both the addition of hydrogen to the background argon, or the addition of boron to the carbon target, was found to shift the formation of carbon nanohorns to two-dimensional flakes of a new form of few-layer graphene material, with sizes up to microns in dimension as confirmed by XRD and TEM. However, the materials made with boron exhibited superior resistance to carbon corrosion in the solid acid fuel cell and thermal oxidation resistance in air compared to similar product made without boron. Mechanisms for the synthesis and oxidation resistance of these materials will be discussed based upon detailed characterization and modeling. •Synthesis science was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division. Material processing and characterization science supported by ARPA-E under Cooperative Agreement Number DE-AR0000499 and as a user project at the Center for Nanophase Materials Sciences, a Department of Energy Office of Science User Facility.

  8. Oxidation Characterization of Hafnium-Based Ceramics Fabricated by Hot Pressing and Electric Field-Assisted Sintering

    NASA Technical Reports Server (NTRS)

    Gasch, Matt; Johnson, Sylvia; Marschall, Jochen

    2010-01-01

    Ceramic borides, such as hafnium diboride (HfB2) and zirconium diboride (ZrB2), are members of a family of materials with extremely high melting temperatures referred to as Ultra High Temperature Ceramics (UHTCs). UHTCs constitute a class of promising materials for use in high temperature applications, such as sharp leading edges on future-generation hypersonic flight vehicles, because of their high melting points. The controlled development of microstructure has become important to the processing of UHTCs, with the prospect of improving their mechanical and thermal properties. The improved oxidation resistance of HfB2 has also become important if this material is to be successfully used at temperatures above 2000 C. Furthermore, the use of UHTCs on the leading edges of vehicles traveling at hypersonic speeds will mean exposure to a mixed oxidation environment comprised of both molecular and atomic oxygen. The current study has investigated the high-temperature oxidation behavior of HfB2-based materials in a pure O2 environment, as well as in environments containing different levels of dissociated oxygen (O/O2). Materials were processed by two techniques: conventional hot pressing (HP) and electric field-assisted sintering (FAS). Their oxidation behavior was evaluated in both a tube furnace at 1250 C for 3 hours and in a simulated re-entry environment in the Advanced Heating Facility (AHF) arcjet at NASA Ames Research Center, during a 10-minute exposure to a cold wall heat flux of 250W/sq cm and stagnation pressure of 0.1-0.2 atm. The microstructure of the different materials was characterized before and after oxidation using scanning electron microscopy (SEM).

  9. Mesoporous Silica-Supported Amidozirconium-Catalyzed Carbonyl Hydroboration

    DOE PAGES

    Eedugurala, Naresh; Wang, Zhuoran; Chaudhary, Umesh; ...

    2015-11-04

    The hydroboration of aldehydes and ketones using a silica-supported zirconium catalyst is reported. Reaction of Zr(NMe 2) 4 and mesoporous silica nanoparticles (MSN) provides the catalytic material Zr(NMe 2) n@MSN. Exhaustive characterization of Zr(NMe 2) n@MSN with solid-state (SS)NMR and infrared spectroscopy, as well as through reactivity studies, suggests its surface structure is primarily ≡SiOZr(NMe 2) 3. The presence of these nitrogen-containing zirconium sites is supported by 15N NMR spectroscopy, including natural abundance 15N NMR measurements using dynamic nuclear polarization (DNP) SSNMR. The Zr(NMe 2) n@MSN material reacts with pinacolborane (HBpin) to provide Me 2NBpin and the material ZrH/Bpin@MSN thatmore » is composed of interacting surface-bonded zirconium hydride and surface-bonded borane ≡SiOBpin moieties in an approximately 1:1 ratio, as well as zirconium sites coordinated by dimethylamine. The ZrH/Bpin@MSN is characterized by 1H/ 2H and 11B SSNMR and infrared spectroscopy and through its reactivity with D 2. The zirconium hydride material or the zirconium amide precursor Zr(NMe 2) n@MSN catalyzes the selective hydroboration of aldehydes and ketones with HBpin in the presence of functional groups that are often reduced under hydroboration conditions or are sensitive to metal hydrides, including olefins, alkynes, nitro groups, halides, and ethers. Remarkably, this catalytic material may be recycled without loss of activity at least eight times, and air-exposed materials are catalytically active. These supported zirconium centers are robust catalytic sites for carbonyl reduction and that surface-supported, catalytically reactive zirconium hydride may be generated from zirconium-amide or zirconium alkoxide sites.« less

  10. Mesoporous Silica-Supported Amidozirconium-Catalyzed Carbonyl Hydroboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eedugurala, Naresh; Wang, Zhuoran; Chaudhary, Umesh

    The hydroboration of aldehydes and ketones using a silica-supported zirconium catalyst is reported. Reaction of Zr(NMe 2) 4 and mesoporous silica nanoparticles (MSN) provides the catalytic material Zr(NMe 2) n@MSN. Exhaustive characterization of Zr(NMe 2) n@MSN with solid-state (SS)NMR and infrared spectroscopy, as well as through reactivity studies, suggests its surface structure is primarily ≡SiOZr(NMe 2) 3. The presence of these nitrogen-containing zirconium sites is supported by 15N NMR spectroscopy, including natural abundance 15N NMR measurements using dynamic nuclear polarization (DNP) SSNMR. The Zr(NMe 2) n@MSN material reacts with pinacolborane (HBpin) to provide Me 2NBpin and the material ZrH/Bpin@MSN thatmore » is composed of interacting surface-bonded zirconium hydride and surface-bonded borane ≡SiOBpin moieties in an approximately 1:1 ratio, as well as zirconium sites coordinated by dimethylamine. The ZrH/Bpin@MSN is characterized by 1H/ 2H and 11B SSNMR and infrared spectroscopy and through its reactivity with D 2. The zirconium hydride material or the zirconium amide precursor Zr(NMe 2) n@MSN catalyzes the selective hydroboration of aldehydes and ketones with HBpin in the presence of functional groups that are often reduced under hydroboration conditions or are sensitive to metal hydrides, including olefins, alkynes, nitro groups, halides, and ethers. Remarkably, this catalytic material may be recycled without loss of activity at least eight times, and air-exposed materials are catalytically active. These supported zirconium centers are robust catalytic sites for carbonyl reduction and that surface-supported, catalytically reactive zirconium hydride may be generated from zirconium-amide or zirconium alkoxide sites.« less

  11. Characterization of Orbital Debris via Hyper-Velocity Laboratory-Based Tests

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather; Liou, J.-C.; Anz-Meador, Phillip; Sorge, Marlon; Opiela, John; Fitz-Coy, Norman; Huynh, Tom; Krisko, Paula

    2017-01-01

    Existing DOD and NASA satellite breakup models are based on a key laboratory test, Satellite Orbital debris Characterization Impact Test (SOCIT), which has supported many applications and matched on-orbit events involving older satellite designs reasonably well over the years. In order to update and improve these models, the NASA Orbital Debris Program Office, in collaboration with the Air Force Space and Missile Systems Center, The Aerospace Corporation, and the University of Florida, replicated a hypervelocity impact using a mock-up satellite, DebriSat, in controlled laboratory conditions. DebriSat is representative of present-day LEO satellites, built with modern spacecraft materials and construction techniques. Fragments down to 2 mm in size will be characterized by their physical and derived properties. A subset of fragments will be further analyzed in laboratory radar and optical facilities to update the existing radar-based NASA Size Estimation Model (SEM) and develop a comparable optical-based SEM. A historical overview of the project, status of the characterization process, and plans for integrating the data into various models will be discussed herein.

  12. Characterization of Orbital Debris via Hyper-Velocity Laboratory-Based Tests

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather; Liou, J.-C.; Krisko, Paula; Opiela, John; Fitz-Coy, Norman; Sorge, Marlon; Huynh, Tom

    2017-01-01

    Existing DoD and NASA satellite breakup models are based on a key laboratory test, Satellite Orbital debris Characterization Impact Test (SOCIT), which has supported many applications and matched on-orbit events involving older satellite designs reasonably well over the years. In order to update and improve these models, the NASA Orbital Debris Program Office, in collaboration with the Air Force Space and Missile Systems Center, The Aerospace Corporation, and the University of Florida, replicated a hypervelocity impact using a mock-up satellite, DebriSat, in controlled laboratory conditions. DebriSat is representative of present-day LEO satellites, built with modern spacecraft materials and construction techniques. Fragments down to 2 mm in size will be characterized by their physical and derived properties. A subset of fragments will be further analyzed in laboratory radar and optical facilities to update the existing radar-based NASA Size Estimation Model (SEM) and develop a comparable optical-based SEM. A historical overview of the project, status of the characterization process, and plans for integrating the data into various models will be discussed herein.

  13. Materials Research With Neutrons at NIST

    PubMed Central

    Cappelletti, R. L.; Glinka, C. J.; Krueger, S.; Lindstrom, R. A.; Lynn, J. W.; Prask, H. J.; Prince, E.; Rush, J. J.; Rowe, J. M.; Satija, S. K.; Toby, B. H.; Tsai, A.; Udovic, T. J.

    2001-01-01

    The NIST Materials Science and Engineering Laboratory works with industry, standards bodies, universities, and other government laboratories to improve the nation’s measurements and standards infrastructure for materials. An increasingly important component of this effort is carried out at the NIST Center for Neutron Research (NCNR), at present the most productive center of its kind in the United States. This article gives a brief historical account of the growth and activities of the Center with examples of its work in major materials research areas and describes the key role the Center can expect to play in future developments. PMID:27500021

  14. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for ; Finance Templates Travel One-Stop Core Programs Materials Discovery, Design and Synthesis Condensed Matter

  15. Unusual plastic deformation and damage features in titanium: Experimental tests and constitutive modeling

    NASA Astrophysics Data System (ADS)

    Revil-Baudard, Benoit; Cazacu, Oana; Flater, Philip; Chandola, Nitin; Alves, J. L.

    2016-03-01

    In this paper, we present an experimental study on plastic deformation and damage of polycrystalline pure HCP Ti, as well as modeling of the observed behavior. Mechanical characterization data were conducted, which indicate that the material is orthotropic and displays tension-compression asymmetry. The ex-situ and in-situ X-ray tomography measurements conducted reveal that damage distribution and evolution in this HCP Ti material is markedly different than in a typical FCC material such as copper. Stewart and Cazacu (2011) anisotropic elastic/plastic damage model is used to describe the behavior. All the parameters involved in this model have a clear physical significance, being related to plastic properties, and are determined from very few simple mechanical tests. It is shown that this model predicts correctly the anisotropy in plastic deformation, and its strong influence on damage distribution and damage accumulation. Specifically, for a smooth axisymmetric specimen subject to uniaxial tension, damage initiates at the center of the specimen, and is diffuse; the level of damage close to failure being very low. On the other hand, for a notched specimen subject to the same loading the model predicts that damage initiates at the outer surface of the specimen, and further grows from the outer surface to the center of the specimen, which corroborates with the in-situ tomography data.

  16. Characterization of 107 Genomic DNA Reference Materials for CYP2D6, CYP2C19, CYP2C9, VKORC1, and UGT1A1

    PubMed Central

    Pratt, Victoria M.; Zehnbauer, Barbara; Wilson, Jean Amos; Baak, Ruth; Babic, Nikolina; Bettinotti, Maria; Buller, Arlene; Butz, Ken; Campbell, Matthew; Civalier, Chris; El-Badry, Abdalla; Farkas, Daniel H.; Lyon, Elaine; Mandal, Saptarshi; McKinney, Jason; Muralidharan, Kasinathan; Noll, LeAnne; Sander, Tara; Shabbeer, Junaid; Smith, Chingying; Telatar, Milhan; Toji, Lorraine; Vairavan, Anand; Vance, Carlos; Weck, Karen E.; Wu, Alan H.B.; Yeo, Kiang-Teck J.; Zeller, Markus; Kalman, Lisa

    2010-01-01

    Pharmacogenetic testing is becoming more common; however, very few quality control and other reference materials that cover alleles commonly included in such assays are currently available. To address these needs, the Centers for Disease Control and Prevention's Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing community and the Coriell Cell Repositories, have characterized a panel of 107 genomic DNA reference materials for five loci (CYP2D6, CYP2C19, CYP2C9, VKORC1, and UGT1A1) that are commonly included in pharmacogenetic testing panels and proficiency testing surveys. Genomic DNA from publicly available cell lines was sent to volunteer laboratories for genotyping. Each sample was tested in three to six laboratories using a variety of commercially available or laboratory-developed platforms. The results were consistent among laboratories, with differences in allele assignments largely related to the manufacturer's assay design and variable nomenclature, especially for CYP2D6. The alleles included in the assay platforms varied, but most were identified in the set of 107 DNA samples. Nine additional pharmacogenetic loci (CYP4F2, EPHX1, ABCB1, HLAB, KIF6, CYP3A4, CYP3A5, TPMT, and DPD) were also tested. These samples are publicly available from Coriell and will be useful for quality assurance, proficiency testing, test development, and research. PMID:20889555

  17. Characterization and Detailed Analysis of Regression Behavior for HTPB Solid Fuels Containing High Aluminum Loadings

    NASA Technical Reports Server (NTRS)

    Kibbey, Timothy P.; Cortopassi, Andrew C.; Boyer, Eric C.

    2017-01-01

    NASA Marshall Space Flight Center's Materials and Processes Department, with support from the Propulsion Systems Department, has renewed the development and maintenance of a hybrid test bed for exposing ablative thermal protection materials to an environment similar to that seen in solid rocket motors (SRM). The Solid Fuel Torch (SFT), operated during the Space Shuttle program, utilized gaseous oxygen for oxidizer and an aluminized hydroxyl-terminated polybutadiene (HTPB) fuel grain to expose a converging section of phenolic material to a 400 psi, 2-phase flow combustion environment. The configuration allows for up to a 2 foot long, 5 inch diameter fuel grain cartridge. Wanting to now test rubber insulation materials with a turn-back feature to mimic the geometry of an aft dome being impinged by alumina particles, the throat area has now been increased by several times to afford flow similarity. Combined with the desire to maintain a higher operating pressure, the oxidizer flow rate is being increased by a factor of 10. Out of these changes has arisen the need to characterize the fuel/oxidizer combination in a higher mass flux condition than has been previously tested at MSFC, and at which the literature has little to no reporting as well. For (especially) metalized fuels, hybrid references have pointed out possible dependence of fuel regression rate on a number of variables: mass flux, G - oxidizer only (G0), or - total mass flux (Gtot), Length, L, Pressure, P, and Diameter, D.

  18. Effect of neutron-irradiation on optical properties of SiO2-Na2O-MgO-Al2O3 glasses

    NASA Astrophysics Data System (ADS)

    Sandhu, Amanpreet Kaur; Singh, Surinder; Pandey, Om Prakash

    2009-07-01

    Silica based glasses are used as nuclear shielding materials. The effect of radiation on these glasses varies as per the constituents used in these glasses. Glasses of different composition of SiO2-Na2OMgO-Al2O3 were made by melt casting techniques. These glasses were irradiated with neutrons of different fluences. Optical absorption measurements of neutron-irradiated silica based glasses were performed at room temperature (RT) to detect and characterize the induced radiation damage in these materials. The absorption band found for neutron-irradiated glasses are induced by hole type color centers related to non-bridging oxygen ions (NBO) located in different surroundings of glass matrix. Decrease in the transmittance indicates the formation of color-center defects. Values for band gap energy and the width of the energy tail above the mobility gap have been measured before and after irradiation. The band gap energy has been found to decrease with increasing fluence while the Urbach energy shows an increase. The effects of the composition of the glasses on these parameters have been discussed in detail in this paper.

  19. Pair distribution function analysis applied to decahedral gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Nakotte, H.; Silkwood, C.; Page, K.; Wang, H.-W.; Olds, D.; Kiefer, B.; Manna, S.; Karpov, D.; Fohtung, E.; Fullerton, E. E.

    2017-11-01

    The five-fold symmetry of face-centered cubic (fcc) derived nanoparticles is inconsistent with the translational symmetry of a Bravais lattice and generally explained by multiple twinning of a tetrahedral subunit about a (joint) symmetry axis, with or without structural modification to the fcc motif. Unlike in bulk materials, five-fold twinning in cubic nanoparticles is common and strongly affects their structural, chemical, and electronic properties. To test and verify theoretical approaches, it is therefore pertinent that the local structural features of such materials can be fully characterized. The small size of nanoparticles severely limits the application of traditional analysis techniques, such as Bragg diffraction. A complete description of the atomic arrangement in nanoparticles therefore requires a departure from the concept of translational symmetry, and prevents fully evaluating all the structural features experimentally. We describe how recent advances in instrumentation, together with the increasing power of computing, are shaping the development of alternative analysis methods of scattering data for nanostructures. We present the application of Debye scattering and pair distribution function (PDF) analysis towards modeling of the total scattering data for the example of decahedral gold nanoparticles. PDF measurements provide a statistical description of the pair correlations of atoms within a material, allowing one to evaluate the probability of finding two atoms within a given distance. We explored the sensitivity of existing synchrotron x-ray PDF instruments for distinguishing four different simple models for our gold nanoparticles: a multiply twinned fcc decahedron with either a single gap or multiple distributed gaps, a relaxed body-centered orthorhombic (bco) decahedron, and a hybrid decahedron. The data simulations of the models were then compared with experimental data from synchrotron x-ray total scattering. We present our experimentally derived atomistic models of the gold nanoparticles, with surprising results and a perspective on remaining challenges. Our findings provide evidence for the suitability of PDF analysis in the characterization of other nanosized particles that may have commercial applications.

  20. Characterization of PVT Grown ZnSe by Low Temperature Photoluminescence

    NASA Technical Reports Server (NTRS)

    Wang, Ling Jun

    1998-01-01

    ZnSe, a II-VI semiconductor with a large direct band gap of 2.7 eV at room temperature and 2.82 eV at 10 K, is considered a promising material for optoelectric applications in the blue-green region of the spectrum. Photoemitting devices and diode laser action has been demonstrated as a result of decades of research. A key issue in the development of II-VI semiconductors is the control of the concentration of the various impurities. The II-VI semiconductors seem to defy the effort of high level doping due to the well known self compensation of the donors and the acceptors. A good understanding of roles of the impurities and the behavior of the various intrinsic defects such as vacancies, interstitials and their complexes with impurities is necessary in the development and application of these materials. Persistent impurities such as Li and Cu have long played a central role in the photoelectronic properties of many II-VI compounds, particularly ZnSe. The shallow centers which may promote useful electrical conductivity are of particular interest. They contribute the richly structured near gap edge luminescence, containing weak to moderate phonon coupling and therefore very accessible information about the energy states of the different centers. Significance of those residual impurities which may contribute such centers in II-VI semiconductors must be fully appreciated before improved control of their electrical properties may be possible. Low temperature photoluminescence spectroscopy is an important source of information and a useful tool of characterization of II-VI semiconductors such as ZnSe. The low temperature photoluminescence spectrum of a ZnSe single crystal typically consists of a broad band emission peaking at 2.34 eV, known as the Cu-green band, and some very sharp lines near the band gap. These bands and lines are used to identify the impurity ingredients and the defects. The assessment of the quality of the crystal based on the photoluminescence analysis is then possible. In this report we present the characterization of a ZnSe single crystal as grown by the physical vapor transport method, with special intention paid to the possible effects of the gravitational field to the growth of the crystal.

  1. Institute for Materials Science

    Science.gov Websites

    Search Site submit National Security Education Center Los Alamos National LaboratoryInstitute for Materials Science Incubate - Innovate - Integrate Los Alamos National Laboratory Institute for Materials educational center in NSEC focused on fostering the advancement of materials science at Los Alamos National

  2. High-Frequency (>50 MHz) Medical Ultrasound Linear Arrays Fabricated From Micromachined Bulk PZT Materials

    PubMed Central

    Liu, Changgeng; Zhou, Qifa; Djuth, Frank T.; Shung, K. Kirk

    2012-01-01

    This paper describes the development and characterization of a high-frequency (65-MHz) ultrasound transducer linear array. The array was built from bulk PZT which was etched using an optimized chlorine-based plasma dry-etching process. The median etch rate of 8 μm/h yielded a good profile (wall) angle (>83°) and a reasonable processing time for etch depths up to 40 μm (which corresponds to a 50-MHz transducer). A backing layer with an acoustic impedance of 6 MRayl and a front-end polymer matching layer yielded a transducer bandwidth of 40%. The major parameters of the transducer have been characterized. The two-way insertion loss and crosstalk between adjacent channels at the center frequency are 26.5 and −25 dB, respectively. PMID:24626041

  3. Refined Synthesis and Characterization of Controlled Diameter, Narrow Size Distribution Microparticles for Aerospace Research Applications

    NASA Technical Reports Server (NTRS)

    Tiemsin, Pacita I.; Wohl, Christopher J.

    2012-01-01

    Flow visualization using polystyrene microspheres (PSL)s has enabled researchers to learn a tremendous amount of information via particle based diagnostic techniques. To better accommodate wind tunnel researchers needs, PSL synthesis via dispersion polymerization has been carried out at NASA Langley Research Center since the late 1980s. When utilizing seed material for flow visualization, size and size distribution are of paramount importance. Therefore, the work described here focused on further refinement of PSL synthesis and characterization. Through controlled variation of synthetic conditions (chemical concentrations, solution stirring speed, temperature, etc.) a robust, controllable procedure was developed. The relationship between particle size and salt concentration, MgSO4, was identified enabling the determination of PSL diameters a priori. Suggestions of future topics related to PSL synthesis, stability, and size variation are also described.

  4. Characterization and biocompatibility studies of lead free X-ray shielding polymer composite for healthcare application

    NASA Astrophysics Data System (ADS)

    Singh, Anil Kumar; Singh, Rakesh Kumar; Sharma, Bhupesh; Tyagi, Ajay Kumar

    2017-09-01

    Lead based X-ray shielding systems are widely being used in healthcare and radiation processing centers to protect technicians, operators and patients from unwanted exposure to ionizing radiation. However, the use of lead is avoided mainly due to its toxic effects on human health and environment, and also discomfort due to heavier in weight. Hence, production of non-toxic, environment friendly, lead-free X-ray shielding system with less weight and good radiation shielding efficiency compared to conventional lead-based shielding systems is a challenging issue and need of the day. The objectives of present study are to develop, characterize and establish synergy of the materials making radiation shielding composition and their biocompatibility without compromising on radiation shielding efficiency and physico-mechanical attributes vis-à-vis lead based systems.

  5. [Enterovirus non-poliomyelitis infections in Krasnodar region].

    PubMed

    Zhukova, L I; Rafeenko, G K; Larin, F I; Shcherbina, L I; Shut', I N; Davydova, M A; Vaniukov, A A

    2014-01-01

    Evaluation of epidemic situation by non-poliomyelitis enterovirus infections in Krasnodar region in multi-year dynamics and characterization of clinical course of enterovirus serous meningitis in hospitalize patients. Retrospective analysis of non-poliomyelitis enterovirus infection epidemi process manifestations during 2002-2012 in Krasnodar region territory based on data of Center of Hygien and Epidemiology in Krasnodar Region. Clinical-epidemiologic characteristics of enterovirus infections in Krasnodar region are presented. Landscape ofenteroviruses isolated from the environment of some territories of the region and from the biological material of patients with various diseases is demonstrated. Clinical features ofenterovirus meningitis course are characterized. Enterovirus transmission b contact route was established to be the most frequent. A lack of pathognomonic symptoms and awareness o physicians of various specialties regarding diagnostics of this infection are the clinical problems of non-po liomyelitis enterovirus diseases.

  6. PESTICIDE RESULTS FROM AN INTERAGENCY EFFORT TO CHARACTERIZE CONTAMINANTS IN CHILD CARE CENTERS

    EPA Science Inventory

    Approximately 13 million children are placed in non-parental child care during the work day; but, children's exposures to chemicals in child care centers have not been characterized. To address this data gap, three federal agencies teamed to characterize contaminants in child ...

  7. The environmental and medical geochemistry of potentially hazardous materials produced by disasters

    USGS Publications Warehouse

    Plumlee, Geoffrey S.; Morman, Suzette A.; Meeker, G.P.; Hoefen, Todd M.; Hageman, Philip L.; Wolf, Ruth E.

    2014-01-01

    Many natural or human-caused disasters release potentially hazardous materials (HM) that may pose threats to the environment and health of exposed humans, wildlife, and livestock. This chapter summarizes the environmentally and toxicologically significant physical, mineralogical, and geochemical characteristics of materials produced by a wide variety of recent disasters, such as volcanic eruptions, hurricanes and extreme storms, spills of mining/mineral-processing wastes or coal extraction by-products, and the 2001 attacks on and collapse of the World Trade Center towers. In describing these characteristics, this chapter also illustrates the important roles that geochemists and other earth scientists can play in environmental disaster response and preparedness. In addition to characterizing in detail the physical, chemical, and microbial makeup of HM generated by the disasters, these roles also include (1) identifying and discriminating potential multiple sources of the materials; (2) monitoring, mapping, and modeling dispersal and evolution of the materials in the environment; (3) understanding how the materials are modified by environmental processes; (4) identifying key characteristics and processes that influence the materials' toxicity to exposed humans and ecosystems; (5) estimating shifts away from predisaster environmental baseline conditions; and (6) using geochemical insights learned from past disasters to help estimate, prepare for, and increase societal resilience to the environmental and related health impacts of future disasters.

  8. Thermomechanical Multiaxial Fatigue Testing Capability Developed

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Structural components in aeronautical gas turbine engines typically experience multiaxial states of stress under nonisothermal conditions. To estimate the durability of the various components in the engine, one must characterize the cyclic deformation and fatigue behavior of the materials used under thermal and complex mechanical loading conditions. To this end, a testing protocol and associated test control software were developed at the NASA Lewis Research Center for thermomechanical axial-torsional fatigue tests. These tests are to be performed on thin-walled, tubular specimens fabricated from the cobalt-based superalloy Haynes 188. The software is written in C and runs on an MS-DOS based microcomputer.

  9. Advanced Material Intelligent Processing Center: Next Generation Scalable Lean Manufacturing

    DTIC Science & Technology

    2012-09-04

    spacing) and initial resin distribution. This research is currently focused on characterizing Gurit® Single Sprint © ST94 Out-of-Autoclave prepreg for...consolidation). 200 400 600 Time (s) 1000 Figure 24. Images of ST 94 prepreg corresponding to the graph of the quantified area of resin observed...s) 1000 2kPa; 55C 4kPa; 55C 6kPa; 55C 15kPa.55C 30kPa. 55C 41kPa;55C 400 600 Time (s) 800 1000 Figure 25. (a) Effect of temperature and

  10. Cost-Efficient Storage of Cryogens

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Sass, J. P.; Nagy, Z.; Sojoumer, S. J.; Morris, D. L.; Augustynowicz, S. D.

    2007-01-01

    NASA's cryogenic infrastructure that supports launch vehicle operations and propulsion testing is reaching an age where major refurbishment will soon be required. Key elements of this infrastructure are the large double-walled cryogenic storage tanks used for both space vehicle launch operations and rocket propulsion testing at the various NASA field centers. Perlite powder has historically been the insulation material of choice for these large storage tank applications. New bulk-fill insulation materials, including glass bubbles and aerogel beads, have been shown to provide improved thermal and mechanical performance. A research testing program was conducted to investigate the thermal performance benefits as well as to identify operational considerations and associated risks associated with the application of these new materials in large cryogenic storage tanks. The program was divided into three main areas: material testing (thermal conductivity and physical characterization), tank demonstration testing (liquid nitrogen and liquid hydrogen), and system studies (thermal modeling, economic analysis, and insulation changeout). The results of this research work show that more energy-efficient insulation solutions are possible for large-scale cryogenic storage tanks worldwide and summarize the operational requirements that should be considered for these applications.

  11. Spectroscopic and antimicrobial studies of polystyrene films under air plasma and He-Ne laser treatment

    NASA Astrophysics Data System (ADS)

    Pawde, S. M.; Parab, Sanmesh S.

    2008-05-01

    Polystyrene (PS) films are used in packaging and biomedical applications because of their transparency and good environmental properties. The present investigation is centered on the antifungal and antibacterial activities involved in the film surface. Subsequently, microbial formations were immobilized on the modified PS films. Living microorganisms such as bacteria and yeast were used. Untreated PS films show very fast rate of growth of bacteria within few hours. The study involves developments of polymer surfaces with bacterial growth and further studies after giving antibacterial treatment such as plasma treatment. Major emphasis has been given to study the effect of various parameters which can affect the performance of the improved material. Films were prepared by two methods: plasma treatment under vacuum and under ongoing He-Ne laser source. The parameters such as (1) surface area by contact angle measurements, (2) quality of material before and after treatment by SEM and FTIR spectra and (3) material characterization by UV-vis spectra were studied. It was observed that plasma treatment of the PS material for different processing time improved the surface properties of PS films.

  12. Space Transportation System (STS)-133/External Tank (ET)-137 Intertank (IT) Stringer Cracking Issue and Repair Assessment: Proximate Cause Determination and Material Characterization Study

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.

    2011-01-01

    Several cracks were detected in stringers located beneath the foam on the External Tank (ET) following the launch scrub of Space Transportation System (STS)-133 on November 5, 2010. The stringer material was aluminum-lithium (AL-Li) 2090-T83 fabricated from sheets that were nominally 0.064 inches thick. The mechanical properties of the stringer material were known to vary between different material lots, with the stringers from ET-137 (predominately lots 620853 and 620854) having the highest yield and ultimate stresses. Subsequent testing determined that these same lots also had the lowest fracture toughness properties. The NASA Engineering and Safety Center (NESC) supported the Space Shuttle Program (SSP)-led investigation. The objective of this investigation was to develop a database of test results to provide validation for structural analysis models, independently confirm test results obtained from other investigators, and determine the proximate cause of the anomalous low fracture toughness observed in stringer lots 620853 and 620854. This document contains the outcome of the investigation.

  13. Production of three-dimensional quantum dot lattice of Ge/Si core-shell quantum dots and Si/Ge layers in an alumina glass matrix.

    PubMed

    Buljan, M; Radić, N; Sancho-Paramon, J; Janicki, V; Grenzer, J; Bogdanović-Radović, I; Siketić, Z; Ivanda, M; Utrobičić, A; Hübner, R; Weidauer, R; Valeš, V; Endres, J; Car, T; Jerčinović, M; Roško, J; Bernstorff, S; Holy, V

    2015-02-13

    We report on the formation of Ge/Si quantum dots with core/shell structure that are arranged in a three-dimensional body centered tetragonal quantum dot lattice in an amorphous alumina matrix. The material is prepared by magnetron sputtering deposition of Al2O3/Ge/Si multilayer. The inversion of Ge and Si in the deposition sequence results in the formation of thin Si/Ge layers instead of the dots. Both materials show an atomically sharp interface between the Ge and Si parts of the dots and layers. They have an amorphous internal structure that can be crystallized by an annealing treatment. The light absorption properties of these complex materials are significantly different compared to films that form quantum dot lattices of the pure Ge, Si or a solid solution of GeSi. They show a strong narrow absorption peak that characterizes a type II confinement in accordance with theoretical predictions. The prepared materials are promising for application in quantum dot solar cells.

  14. A structural model for composite rotor blades and lifting surfaces

    NASA Technical Reports Server (NTRS)

    Rehfield, Lawrence W.; Atilgan, Ali R.

    1987-01-01

    Composite material systems are currently candidates for aerospace structures, primarily for the design flexibiity they offer i.e., it is possible to tailor the material and manufacturing approach to the application. Two notable examples are the wing of the Grumman/USAF/DARPA X-29 and rotor blades under development by the U.S.A. Aerostructures Directorate (AVSCOM), Langley Research Center. A working definition of elastic or structural tailoring is the use of structural concept, fiber orientation, ply stacking sequence, and a blend of materials to achieve specific performance goals. In the design process, choices of materials and dimensions are made which produce specific response characteristics which permit the selected goals to be achieved. Common choices for tailoring goals are preventing instabilities or vibration resonances or enhancing damage tolerance. An essential, enabling factor in the design of tailored composite structures is structural modeling that accurately, but simply, characterizes response. The objective of this paper is to improve the single-cell beam model for composite rotor blades or lifting surfaces and to demonstrate its usefullness in applications.

  15. Geochemical Fingerprinting of the World Trade Center Attack in New York Harbor Sediments

    NASA Astrophysics Data System (ADS)

    Brabander, D. J.; Oktay, S.; Smith, J.; Kada, J.; Bullen, T.; Olsen, C.

    2002-12-01

    By comparing the textural, chemical, and isotopic composition of World Trade Center (WTC) ash samples (collected near Ground Zero one week after the terrorist attack) with sediment samples from cores taken on October 12, 2001 in known deposition areas in New York Harbor (NYH), we characterized a unique suite of geochemical-textural tracers that allow us to both identify and quantify the input of WTC derived material to adjacent areas in the Hudson River estuary. Scanning electron microscopy coupled with energy dispersive spectroscopy revealed two chemically distinct (Si-rich and Ca-rich) rod-like features (40-200 æm in length) in both ash and sediment samples. The Si-rich rods are consistent with a fiberglass parent material while the Ca-rich rods originate from gypsum. An 87Sr/86Sr ratio for the ash material of 0.7088 (n=2) coupled with Ca/Sr (wt. ratio) ranging from 260-300 suggest that the ash material analyzed is approximately 70% gypsum. As a function of depth within the sediment core, correlations exist between the measured activities of 7Be (a naturally occurring short-lived radionuclide), elemental weight-percent ratios of Ca/Sr, and the isotopic ratios of 87Sr/86Sr ratios. . These combined isotopic approaches allow us to constrain the timing (via 7Be), and the composition and amount (via 87Sr/86Sr and Ca/Sr) of WTC material input into the NYH sediments. These down-core isotope-ratio profiles can be described by a mixing line between background NYH 87Sr/86Sr ratios (>0.724) and the WTC derived ash material. The geochemical-textural tracers associated with the WTC terrorist attack may provide a potential tool for assessing the fate and transport of WTC material in the Lower Hudson River and aid in assessing the environmental and human health impacts of the WTC catastrophe.

  16. Novel composite material polyoxovanadate@MIL-101(Cr): a highly efficient electrocatalyst for ascorbic acid oxidation.

    PubMed

    Fernandes, Diana M; Barbosa, André D S; Pires, João; Balula, Salete S; Cunha-Silva, Luís; Freire, Cristina

    2013-12-26

    A novel hybrid composite material, PMo10V2@MIL-101 was prepared by the encapsulation of the tetra-butylammonium (TBA) salt of the vanadium-substituted phosphomolybdate [PMo10V2O40](5-) (PMo10V2) into the porous metal-organic framework (MOF) MIL-101(Cr). The materials characterization by powder X-ray diffraction, Fourier transform infrared spectra and scanning electron microscopy confirmed the preparation of the composite material without disruption of the MOF porous structure. Pyrolytic graphite electrodes modified with the original components (MIL-101(Cr), PMo10V2), and the composite material PMo10V2@MIL-101 were prepared and their electrochemical responses were studied by cyclic voltammetry. Surface confined redox processes were observed for all the immobilized materials. MIL-101(Cr) showed one-electron reduction process due to chromium centers (Cr(III) → Cr(II)), while PMo10V2 presented five reduction processes: the peak at more positive potentials is attributed to two superimposed 1-electron vanadium reduction processes (V(V) → V(IV)) and the other four peaks to Mo-centred two-electron reduction processes (Mo(VI) → Mo(V)). The electrochemical behavior of the composite material PMo10V2@MIL-101 showed both MIL-101(Cr) and PMo10V2 redox features, although with the splitting of the two vanadium processes and the shift of the Mo- and Cr- centered processes to more negative potentials. Finally, PMo10V2@MIL-101 modified electrode showed outstanding enhanced vanadium-based electrocatalytic properties towards ascorbic acid oxidation, in comparison with the free PMo10V2, as a result of its immobilization into the porous structure of the MOF. Furthermore, PMo10V2@MIL-101 modified electrode showed successful simultaneous detection of ascorbic acid and dopamine.

  17. Separator Materials Used in Secondary Alkaline Batteries Characterized and Evaluated

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Nickel-cadmium (Ni/Cd) and nickel-hydrogen (Ni/H2) secondary alkaline batteries are vital to aerospace applications. Battery performance and cycle life are significantly affected by the type of separators used in those batteries. A team from NASA Lewis Research Center's Electrochemical Technology Branch developed standardized testing procedures to characterize and evaluate new and existing separator materials to improve performance and cycle life of secondary alkaline batteries. Battery separators must function as good electronic insulators and as efficient electrolyte reservoirs. At present, new types of organic and inorganic separator materials are being developed for Ni/Cd and Ni/H2 batteries. The separator material previously used in the NASA standard Ni/Cd was Pellon 2505, a 100-percent nylon-6 polymer that must be treated with zinc chloride (ZnCl2) to bond the fibers. Because of stricter Environmental Protection Agency regulation of ZnCl2 emissions, the battery community has been searching for new separators to replace Pellon 2505. As of today, two candidate separator materials have been identified; however, neither of the two materials have performed as well as Pellon 2505. The separator test procedures that were devised at Lewis are being implemented to expedite the search for new battery separators. The new test procedures, which are being carried out in the Separator Laboratory at Lewis, have been designed to guarantee accurate evaluations of the properties that are critical for sustaining proper battery operation. These properties include physical and chemical stability, chemical purity, gas permeability, electrolyte retention and distribution, uniformity, porosity, and area resistivity. A manual containing a detailed description of 12 separator test procedures has been drafted and will be used by the battery community to evaluate candidate separator materials for specific applications. These standardized procedures will allow for consistent, uniform, and reliable results that will ensure that separator materials have the desired properties for long life and good performance in secondary alkaline cells.

  18. The development and characterization of degradable poly(vinyl ester) and poly(vinyl ester)/PEO block copolymers

    NASA Astrophysics Data System (ADS)

    Lipscomb, Corinne Elizabeth

    The development of biodegradable materials is a challenging and important problem in polymer science. A review of the state of the art in degradable materials is presented, which reveals that current biodegradable materials do not exhibit the thermal or mechanical properties necessary for widespread applications. One strategy for toughening polymeric materials, which has previously been applied to non-degradable thermoplastics and thermoplastic elastomers, is the formation of block copolymers. Poly(vinyl esters) (PVE) homopolymers are known to have a wide range of properties, but PVE block copolymers comprise a class of inexpensive and (bio)degradable materials that were previously unknown. Therefore, the synthesis and properties of these block copolymers were explored in an effort to develop robust degradable materials. This thesis research probes the reaction conditions necessary for the reversible-addition fragmentation chain transfer (RAFT) polymerization and chain extension reactions of vinyl ester monomers. PVE di- and triblock copolymers are synthesized and studied, and the triblock copolymers display extremely poor toughness due to their relatively low molecular weights in light of the high entanglement molecular weight of the poly(vinyl acetate) center block. Attempts to improve the mechanical properties of these materials focus on the incorporation of poly(ethylene oxide) (PEO) as a low entanglement molecular weight and biocompatible center block in PVE-containing triblock copolymers. Depending on the choice of PVE endblocks and the overall polymer composition, crystallization of the PEO block can be controlled, confined, or inhibited. Polymers in which PEO crystallization is completely inhibited exhibit enhanced mechanical properties and behave as weak thermoplastics. In order to understand the relationship between the inhibition of PEO crystallization and the mechanical properties of PVE/PEO materials, these polymers were studied using dynamic mechanical spectroscopy, wide angle X-ray scattering, small angle X-ray scattering, differential scanning calorimetry, and uniaxial tensile tests. By combining insights gained from these techniques, a complex picture emerges that explains the enhanced mechanical properties of these materials based on the type and location of thermal transitions, amorphous PEO entanglements, and the strain-induced crystallization of PEO. This work represents an important step toward developing robust materials with tunable properties containing (bio)degradable components.

  19. Ultrasonic characterization of microstructure in powder metal alloy

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.; Ahlberg, L. A.; Fertig, K.

    1986-01-01

    The ultrasonic wave propagation characteristics were measured for IN-100, a powder metallurgy alloy used for aircraft engine components. This material was as a model system for testing the feasibility of characterizing the microstructure of a variety of inhomogeneous media including powder metals, ceramics, castings and components. The data were obtained for a frequency range from about 2 to 20 MHz and were statistically averaged over numerous volume elements of the samples. Micrographical examination provided size and number distributions for grain and pore structure. The results showed that the predominant source for the ultrasonic attenuation and backscatter was a dense (approx. 100/cubic mm) distribution of small micropores (approx. 10 micron radius). Two samples with different micropore densities were studied in detail to test the feasibility of calculating from observed microstructural parameters the frequency dependence of the microstructural backscatter in the regime for which the wavelength is much larger than the size of the individual scattering centers. Excellent agreement was found between predicted and observed values so as to demonstrate the feasibility of solving the forward problem. The results suggest a way towards the nondestructive detection and characterization of anomalous distributions of micropores when conventional ultrasonic imaging is difficult. The findings are potentially significant toward the application of the early detection of porosity during the materials fabrication process and after manufacturing of potential sites for stress induced void coalescence leading to crack initiation and subsequent failure.

  20. Comparison Testings between Two High-temperature Strain Measurement Systems

    NASA Technical Reports Server (NTRS)

    Lei, J.-F.; Castelli, M. G.; Androjna, D.; Blue, C.; Blue, R.; Lin, R. Y.

    1996-01-01

    An experimental evaluation was conducted at NASA Lewis Research Center to compare and contrast the performance of a newly developed resistance strain gage, the PdCr temperature-compensated wire strain gage, to that of a conventional high-temperature extensometry. The evaluation of the two strain measurement systems was conducted through the application of various thermal and mechanical loading spectra using a high-temperature thermomechanical uniaxial testing system equipped with quartz lamp heating. The purpose of the testing was not only to compare and contrast the two strain sensors but also to investigate the applicability of the PdCr strain gage to the testing environment typically employed when characterizing the high-temperature mechanical behavior of structural materials. Strain measurement capabilities to 8OO C were investigated with a nickel base superalloy IN100 substrate material, and application to titanium matrix composite (TMC) materials was examined with the SCS-6/Ti-15-3 08 system. PdCr strain gages installed by three attachment techniques, namely, flame spraying, spot welding and rapid infrared joining were investigated.

  1. Investigation of Desiccants and CO2 Sorbents for Advanced Exploration Systems 2015-2016

    NASA Technical Reports Server (NTRS)

    Cmarik, Gregory E.; Knox, Jim

    2016-01-01

    Advanced Environmental Control and Life Support System (ECLSS) design is critical for human space flight beyond Earth. Current systems enable extended missions in low-Earth orbit, but for deep-space missions, not only will astronauts be outside the reach of resupply operations from Earth but they will also need to handle malfunctions and compensate for the degradation of materials. These two daunting challenges must be overcome for long-term independent space flight. In order to solve the first, separation and reuse of onboard atmosphere components is required. Current systems utilize space vacuum to fully regenerate adsorbent beds, but this is not sustainable thus necessitating a closed-loop system. The second challenge stems from material and performance degradation due to operational cycling and on-board contaminants. This report will review the recent work by the ECLSS team at Marshall Space Flight Center towards overcoming these challenges by characterizing materials via novel methods for use in future systems.

  2. Synthesis, crystal structure, photophysical properties and theoretical studies of a novel bis(phenylisoxazolyl) benzene derivative

    NASA Astrophysics Data System (ADS)

    de Brito, A. C. F.; Correa, R. S.; Pinto, A. A.; Matos, M. J. S.; Tenorio, J. C.; Taylor, J. G.; Cazati, T.

    2018-07-01

    Isoxazoles have well established biological activities but, have been underexplored as synthetic intermediates for applications in materials science. The aims of this work are to synthesis a novel isoxazole and analyze its structural and photophysical properties for application in electronic organic materials. The novel bis (phenylisoxazolyl) benzene compound was synthesized in four steps and characterized by NMR, high resolution mass spectrometry, differential thermal analysis, infrared spectroscopy, cyclic voltammetry, ultraviolet-visible spectroscopy, fluorescence spectroscopy, DFT and TDDFT calculations. The molecule presented optical absorption in the ultraviolet region (from 290 nm to 330 nm), with maximum absorption length centered at 306 nm. The molar extinction coefficients (ε), fluorescence emission spectra and quantum efficiencies in chloroform and dimethylformamide solution were determined. Cyclic voltammetry analysis was carried out for estimating the HOMO energy level and these properties make it desirable material for photovoltaic device applications. Finally, the excited-state properties of present compound were calculated by time-dependent density functional theory (TDDFT).

  3. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Sciences Division About Organization Contact Research Core Programs Materials Discovery, Design and

  4. Nondestructive Evaluation for Aerospace Composites

    NASA Technical Reports Server (NTRS)

    Leckey, Cara; Cramer, Elliott; Perey, Daniel

    2015-01-01

    Nondestructive evaluation (NDE) techniques are important for enabling NASA's missions in space exploration and aeronautics. The expanded and continued use of composite materials for aerospace components and vehicles leads to a need for advanced NDE techniques capable of quantitatively characterizing damage in composites. Quantitative damage detection techniques help to ensure safety, reliability and durability of space and aeronautic vehicles. This presentation will give a broad outline of NASA's range of technical work and an overview of the NDE research performed in the Nondestructive Evaluation Sciences Branch at NASA Langley Research Center. The presentation will focus on ongoing research in the development of NDE techniques for composite materials and structures, including development of automated data processing tools to turn NDE data into quantitative location and sizing results. Composites focused NDE research in the areas of ultrasonics, thermography, X-ray computed tomography, and NDE modeling will be discussed.

  5. Some Activities of MISSE 6 Mission

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.

    2009-01-01

    The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. In this paper, a few laser and optical elements from NASA Langley Research Center (LaRC) that have been flown on MISSE 6 mission will be discussed. These items were characterized and packed inside a ruggedized Passive Experiment Container (PEC) that resembles a suitcase. The PEC was tested for survivability due to launch conditions. Subsequently, the MISSE 6 PEC was transported by the STS-123 mission to International Space Station (ISS) on March 11, 2008. The astronauts successfully attached the PEC to external handrails and opened the PEC for long term exposure to the space environment. The plan is to retrieve the MISSE 6 PEC by STS-128 mission in August 2009.

  6. Isolation and Puification of Uranium Isotopes for Measurement by Mass-Spectrometry (233, 234, 235, 236, 238U) and Alpha Spectrometry (232U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinelli, R; Hamilton, T; Brown, T

    2006-05-30

    This report describes a standardized methodology used by researchers from the Center for Accelerator Mass Spectrometry (CAMS) (Energy and Environment Directorate) and the Environmental Radiochemistry Group (Chemistry and Materials Science Directorate) at the Lawrence Livermore National Laboratory (LLNL) for the full isotopic analysis of uranium from solution. The methodology has largely been developed for use in characterizing the uranium composition of selected nuclear materials but may also be applicable to environmental studies and assessments of public, military or occupational exposures to uranium using in-vitro bioassay monitoring techniques. Uranium isotope concentrations and isotopic ratios are measured using a combination of Multimore » Collector Inductively Coupled Plasma Mass Spectrometry (MC ICP-MS), Accelerator Mass Spectrometry (AMS) and Alpha Spectrometry.« less

  7. FY04 Engineering Technology Reports Laboratory Directed Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharpe, R M

    2005-01-27

    This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2004, and exemplifies Engineering's more than 50-year history of developing the technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. Engineering's investmentmore » in technologies is carried out through two programs, the ''Tech Base'' program and the LDRD program. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply technologies to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2004, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology and nanotechnology for national security applications. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, are responsible for guiding the long-term science and technology investments for the Directorate. The Centers represent technologies that have been identified as critical for the present and future work of the Laboratory, and are chartered to develop their respective areas. Their LDRD projects are the key resources to attain this competency, and, as such, nearly all of Engineering's portfolio falls under one of the five Centers. The Centers and their Directors are: (1) Center for Computational Engineering: Robert M. Sharpe; (2) Center for Microtechnology and Nanotechnology: Raymond P. Mariella, Jr.; (3) Center for Nondestructive Characterization: Harry E. Martz, Jr.; (4) Center for Precision Engineering: Keith Carlisle; and (5) Center for Complex Distributed Systems: Gregory J. Suski, Acting Director.« less

  8. Triaxial fiber optic magnetic field sensor for MRI applications

    NASA Astrophysics Data System (ADS)

    Filograno, Massimo L.; Pisco, Marco; Catalano, Angelo; Forte, Ernesto; Aiello, Marco; Soricelli, Andrea; Davino, Daniele; Visone, Ciro; Cutolo, Antonello; Cusano, Andrea

    2016-05-01

    In this paper, we report a fiber-optic triaxial magnetic field sensor, based on Fiber Bragg Gratings (FBGs) integrated with giant magnetostrictive material, the Terfenol-D. The realized sensor has been designed and engineered for Magnetic Resonance Imaging (MRI) applications. A full magneto-optical characterization of the triaxial sensing probe has been carried out, providing the complex relationship among the FBGs wavelength shift and the applied magnetostatic field vector. Finally, the developed fiber optic sensors have been arranged in a sensor network composed of 20 triaxial sensors for mapping the magnetic field distribution in a MRI-room at a diagnostic center in Naples (SDN), equipped with Positron emission tomography/magnetic resonance (PET/MR) instrumentation. Experimental results reveal that the proposed sensor network can be efficiently used in MRI centers for performing quality assurance tests, paving the way for novel integrated tools to measure the magnetic dose accumulated day by day by MRI operators.

  9. Thermal Nondestructive Characterization of Corrosion in Boiler Tubes by Application fo a Moving Line Heat Source

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Winfree, William P.

    2000-01-01

    Wall thinning in utility boiler waterwall tubing is a significant inspection concern for boiler operators. Historically, conventional ultrasonics has been used lor inspection of these tubes. This technique has proved to be very labor intensive and slow. This has resulted in a "spot check" approach to inspections, making thickness measurements over a relatively small percentage of the total boiler wall area. NASA Langley Research Center has developed a thermal NDE technique designed to image and quantitatively characterize the amount of material thinning present in steel tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source, coupled with this analysis technique, represents a significant improvement in the inspection speed for large structures such as boiler waterwalls while still providing high-resolution thickness measurements. A theoretical basis for the technique will be presented thus demonstrating the quantitative nature of the technique. Further, results of laboratory experiments on flat Panel specimens with fabricated material loss regions will be presented.

  10. Application of a quality by design approach to the cell culture process of monoclonal antibody production, resulting in the establishment of a design space.

    PubMed

    Nagashima, Hiroaki; Watari, Akiko; Shinoda, Yasuharu; Okamoto, Hiroshi; Takuma, Shinya

    2013-12-01

    This case study describes the application of Quality by Design elements to the process of culturing Chinese hamster ovary cells in the production of a monoclonal antibody. All steps in the cell culture process and all process parameters in each step were identified by using a cause-and-effect diagram. Prospective risk assessment using failure mode and effects analysis identified the following four potential critical process parameters in the production culture step: initial viable cell density, culture duration, pH, and temperature. These parameters and lot-to-lot variability in raw material were then evaluated by process characterization utilizing a design of experiments approach consisting of a face-centered central composite design integrated with a full factorial design. Process characterization was conducted using a scaled down model that had been qualified by comparison with large-scale production data. Multivariate regression analysis was used to establish statistical prediction models for performance indicators and quality attributes; with these, we constructed contour plots and conducted Monte Carlo simulation to clarify the design space. The statistical analyses, especially for raw materials, identified set point values, which were most robust with respect to the lot-to-lot variability of raw materials while keeping the product quality within the acceptance criteria. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Characterization of Electron Beam Free-Form Fabricated 2219 Aluminum and 316 Stainless Steel

    NASA Technical Reports Server (NTRS)

    Ekrami, Yasamin; Forth, Scott C.; Waid, Michael C.

    2011-01-01

    Researchers at NASA Langley Research Center have developed an additive manufacturing technology for ground and future space based applications. The electron beam free form fabrication (EBF3) is a rapid metal fabrication process that utilizes an electron beam gun in a vacuum environment to replicate a CAD drawing of a part. The electron beam gun creates a molten pool on a metal substrate, and translates with respect to the substrate to deposit metal in designated regions through a layer additive process. Prior to demonstration and certification of a final EBF3 part for space flight, it is imperative to conduct a series of materials validation and verification tests on the ground in order to evaluate mechanical and microstructural properties of the EBF3 manufactured parts. Part geometries of EBF3 2219 aluminum and 316 stainless steel specimens were metallographically inspected, and tested for strength, fatigue crack growth, and fracture toughness. Upon comparing the results to conventionally welded material, 2219 aluminum in the as fabricated condition demonstrated a 30% and 16% decrease in fracture toughness and ductility, respectively. The strength properties of the 316 stainless steel material in the as deposited condition were comparable to annealed stainless steel alloys. Future fatigue crack growth tests will integrate various stress ranges and maximum to minimum stress ratios needed to fully characterize EBF3 manufactured specimens.

  12. Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1998-01-01

    An overall goal of this research has been to enhance our understanding of the scientific principles necessary to develop advanced ultrasonic nondestructive techniques for the quantitative characterization of advanced composite structures. To this end, we have investigated a thin woven composite (5-harness biaxial weave). We have studied the effects that variations of the physical parameters of the experimental setup can have on the ultrasonic determination of the material properties for this thin composite. In particular, we have considered the variation of the nominal center frequency and the f-number of the transmitting transducer which in turn address issues such as focusing and beam spread of ultrasonic fields. This study has employed a planar, two-dimensional, receiving pseudo-array that has permitted investigation of the diffraction patterns of ultrasonic fields. Distortion of the ultrasonic field due to the spatial anisotropy of the thin composite has prompted investigation of the phenomenon of phase cancellation at the face of a finite-aperture, piezoelectric receiver. We have performed phase-sensitive and phase-insensitive analyses to provide a measure of the amount of phase cancellation at the face of a finite-aperture, piezoelectric receiver. The pursuit of robust measurements of received energy (i.e., those not susceptible to phase cancellation at the face of a finite-aperture, piezoelectric receiver) supports the development of robust techniques to determine material properties from measure ultrasonic parameters.

  13. Non-Radiative Carrier Recombination Enhanced by Two-Level Process: A First-Principles Study

    NASA Astrophysics Data System (ADS)

    Yang, Ji-Hui; Shi, Lin; Wang, Lin-Wang; Wei, Su-Huai

    2016-02-01

    Non-radiative recombination plays an important role in the performance of optoelectronic semiconductor devices such as solar cells and light-emitting diodes. Most textbook examples assume that the recombination process occurs through a single defect level, where one electron and one hole are captured and recombined. Based on this simple picture, conventional wisdom is that only defect levels near the center of the bandgap can be effective recombination centers. Here, we present a new two-level recombination mechanism: first, one type of carrier is captured through a defect level forming a metastable state; then the local defect configuration rapidly changes to a stable state, where the other type of carrier is captured and recombined through another defect level. This novel mechanism is applied to the recombination center in CdTe. We show that this two-level process can significantly increase the recombination rate (by three orders of magnitude) in agreement with experiments. We expect that this two-level recombination process can exist in a wide range of semiconductors, so its effect should be carefully examined in characterizing optoelectronic materials.

  14. Revisiting PbTe to identify how thermal conductivity is really limited

    NASA Astrophysics Data System (ADS)

    Ju, Shenghong; Shiga, Takuma; Feng, Lei; Shiomi, Junichiro

    2018-05-01

    Due to the long range interaction in lead telluride (PbTe), the transverse optical (TO) phonon becomes soft around the Brillouin zone center. Previous studies have postulated that this zone-center softening causes the low thermal conductivity of PbTe through either enlarged phonon scattering phase space and/or strengthened lattice anharmonicity. In this paper, we reported an extensive sensitivity analysis of the PbTe thermal conductivity to various factors: range and magnitude of harmonic and anharmonic interatomic force constants and phonon wave vectors in the three-phonon scattering processes. The analysis reveals that the softening by long range harmonic interaction itself does not reduce thermal conductivity, and it is the large magnitude of the anharmonic (cubic) force constants that realizes low thermal conductivity, however, not through the TO phonons around the zone center but dominantly through the ones with larger wave vectors in the middle of Brillion zone. The paper clarifies that local band softening cannot be a direct finger print for low thermal conductivity and that the entire Brillion zone needs to be characterized on exploring low thermal conductivity materials.

  15. Motion Control and Optical Interrogation of a Levitating Single Nitrogen Vacancy in Vacuum.

    PubMed

    Conangla, Gerard P; Schell, Andreas W; Rica, Raúl A; Quidant, Romain

    2018-05-24

    Levitation optomechanics exploits the unique mechanical properties of trapped nano-objects in vacuum to address some of the limitations of clamped nanomechanical resonators. In particular, its performance is foreseen to contribute to a better understanding of quantum decoherence at the mesoscopic scale as well as to lead to novel ultrasensitive sensing schemes. While most efforts have focused so far on the optical trapping of low-absorption silica particles, further opportunities arise from levitating objects with internal degrees of freedom, such as color centers. Nevertheless, inefficient heat dissipation at low pressures poses a challenge because most nano-objects, even with low-absorption materials, experience photodamage in an optical trap. Here, by using a Paul trap, we demonstrate levitation in vacuum and center-of-mass feedback cooling of a nanodiamond hosting a single nitrogen-vacancy center. The achieved level of motion control enables us to optically interrogate and characterize the emitter response. The developed platform is applicable to a wide range of other nano-objects and represents a promising step toward coupling internal and external degrees of freedom.

  16. Heat treatment influence on the superconducting properties of nanometric-scale Nb3Sn wires with Cu-Sn artificial pinning centers

    NASA Astrophysics Data System (ADS)

    Da Silva, L. B. S.; Rodrigues, C. A.; Oliveira, N. F., Jr.; Bormio-Nunes, C.; Rodrigues, D., Jr.

    2010-11-01

    Since the discovery of Nb3Sn superconductors many efforts have been expended to improve the transport properties in these materials. In this work, the heat treatment profiles for Nb3Sn superconductor wires with Cu(Sn) artificial pinning centers (APCs) with nanometric-scale sizes were analyzed in an attempt to improve the critical current densities and upper critical magnetic field. The methodology to optimize the heat treatment profiles in respect to the diffusion, reaction and formation of the superconducting phases is described. Microstructural characterization, transport and magnetic measurements were performed in an attempt to relate the microstructure to the pinning mechanisms acting in the samples. It was concluded that the maximum current densities occur due to normal phases (APCs) that act as the main pinning centers in the global behavior of the Nb3Sn superconducting wire. The APC technique was shown to be very powerful because it permitted mixing of the pinning mechanism. This achievement was not possible in other studies in Nb3Sn wires reported up to now.

  17. Level 3 material characterization of NARC HRPF, HRHU, HRHF, and HRPU

    NASA Technical Reports Server (NTRS)

    Tobias, Mark E.

    1993-01-01

    The North American Rayon Corporation (NARC) precursor was developed, qualified, and characterized for Space Shuttle nozzle carbon-cloth phenolic ablative materials in three distinct phases. The characterization phase includes thermal and structural material property analysis and comparisons. This report documents the thermal and structural material property characterization performed by Southern Research Institute (SRI) on the two NARC baseline and two crossover materials.

  18. Characterization of radiation-induced damage in high performance polymers by electron paramagnetic resonance imaging spectroscopy

    NASA Technical Reports Server (NTRS)

    Suleman, Naushadalli K.

    1992-01-01

    The potential for long-term human activity beyond the Earth's protective magnetosphere is limited in part by the lack of detailed information on the effectiveness and performance of existing structural materials to shield the crew and spacecraft from highly penetrating space radiations. The two radiations of greatest concern are high energy protons emitted during solar flares and galactic cosmic rays which are energetic ions ranging from protons to highly oxidized iron. Although the interactions of such high-energy radiations with matter are not completely understood at this time, the effects of the incident radiation are clearly expected to include the formation of paramagnetic spin centers via ionization and bond-scission reactions in the molecular matrices of structural materials. Since this type of radiation damage is readily characterized by Electron Paramagnetic Resonance (EPR) spectroscopy, the NASA Langley Research Center EPR system was repaired and brought on-line during the 1991 ASEE term. A major goal of the 1992 ASEE term was to adapt the existing core of the LaRC EPR system to meet the requirements for EPR Imaging--a powerful new technique which provides detailed information on the internal structure of materials by mapping the spatial distribution of unpaired spin density in bulk media. Major impetus for this adaptation arises from the fact that information derived from EPRI complements other methods such as scanning electron microscopy which primarily characterize surface phenomena. The modification of the EPR system has been initiated by the construction of specially designed, counterwound Helmholtz coils which will be mounted on the main EPR electromagnet. The specifications of the coils have been set to achieve a static linear magnetic field gradient of 10 gauss/mm/amp along the principal (Z) axis of the Zeeman field. Construction is also in progress of a paramagnetic standard in which the spin distribution is known in all three dimensions. This sample will be used to assess the linearity of the magnetic field gradient and to ensure authentic image reconstruction. A second major task was to secure the computer capability to enable image reconstruction from projection data generated by the magnetic field gradients. To this end, commercially available and public domain software packages which perform inverse Fourier Transform and convoluted (filtered) back projection functions are being integrated into the existing EPR data processing system.

  19. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Computational Study of Excited-State Phenomena in Energy Materials Center for X-ray Optics MSD Facilities Ion Facilities and Centers Staff Center for X-ray Optics Patrick Naulleau Director 510-486-4529 2-432 PNaulleau

  20. THE ENGLISH PROGRAM OF THE USOE CURRICULUM STUDY AND DEMONSTRATION CENTER MATERIALS CURRENTLY AVAILABLE.

    ERIC Educational Resources Information Center

    1967

    AFTER FIVE YEARS OF FEDERALLY-SUPPORTED CURRICULUM RESEARCH IN ENGLISH, 14 STUDY CENTERS AND FIVE DEMONSTRATION CENTERS ARE NOW MAKING THE RESULTS OF THEIR WORK AVAILABLE TO THE PUBLIC. THIS PAMPHLET LISTS TITLES OF REPORTS AND INSTRUCTIONAL MATERIALS PREPARED BY THE FOLLOWING CENTERS--(1) CARNEGIE-MELLON UNIVERSITY, (2) TEACHERS COLLEGE, COLUMBIA…

  1. High-temperature behavior of advanced spacecraft TPS

    NASA Technical Reports Server (NTRS)

    Pallix, Joan

    1994-01-01

    The objective of this work has been to develop more efficient, lighter weight, and higher temperature thermal protection systems (TPS) for future reentry space vehicles. The research carried out during this funding period involved the design, analysis, testing, fabrication, and characterization of thermal protection materials to be used on future hypersonic vehicles. This work is important for the prediction of material performance at high temperature and aids in the design of thermal protection systems for a number of programs including programs such as the National Aerospace Plane (NASP), Pegasus and Pegasus/SWERVE, the Comet Rendezvous and Flyby Vehicle (CRAF), and the Mars mission entry vehicles. Research has been performed in two main areas including development and testing of thermal protection systems (TPS) and computational research. A variety of TPS materials and coatings have been developed during this funding period. Ceramic coatings were developed for flexible insulations as well as for low density ceramic insulators. Chemical vapor deposition processes were established for the fabrication of ceramic matrix composites. Experimental testing and characterization of these materials has been carried out in the NASA Ames Research Center Thermophysics Facilities and in the Ames time-of-flight mass spectrometer facility. By means of computation, we have been better able to understand the flow structure and properties of the TPS components and to estimate the aerothermal heating, stress, ablation rate, thermal response, and shape change on the surfaces of TPS. In addition, work for the computational surface thermochemistry project has included modification of existing computer codes and creating new codes to model material response and shape change on atmospheric entry vehicles in a variety of environments (e.g., earth and Mars atmospheres).

  2. High-temperature behavior of advanced spacecraft TPS

    NASA Astrophysics Data System (ADS)

    Pallix, Joan

    1994-05-01

    The objective of this work has been to develop more efficient, lighter weight, and higher temperature thermal protection systems (TPS) for future reentry space vehicles. The research carried out during this funding period involved the design, analysis, testing, fabrication, and characterization of thermal protection materials to be used on future hypersonic vehicles. This work is important for the prediction of material performance at high temperature and aids in the design of thermal protection systems for a number of programs including programs such as the National Aerospace Plane (NASP), Pegasus and Pegasus/SWERVE, the Comet Rendezvous and Flyby Vehicle (CRAF), and the Mars mission entry vehicles. Research has been performed in two main areas including development and testing of thermal protection systems (TPS) and computational research. A variety of TPS materials and coatings have been developed during this funding period. Ceramic coatings were developed for flexible insulations as well as for low density ceramic insulators. Chemical vapor deposition processes were established for the fabrication of ceramic matrix composites. Experimental testing and characterization of these materials has been carried out in the NASA Ames Research Center Thermophysics Facilities and in the Ames time-of-flight mass spectrometer facility. By means of computation, we have been better able to understand the flow structure and properties of the TPS components and to estimate the aerothermal heating, stress, ablation rate, thermal response, and shape change on the surfaces of TPS. In addition, work for the computational surface thermochemistry project has included modification of existing computer codes and creating new codes to model material response and shape change on atmospheric entry vehicles in a variety of environments (e.g., earth and Mars atmospheres).

  3. Synthesis and characterization of mesoporous materials

    NASA Astrophysics Data System (ADS)

    Cheng, Wei

    Mesoporous materials are highly porous solids with pore sizes in the range of 20 to 500 A and a narrow pore size distribution. Creating a mesoporous morphology in transition metal oxides is expected to increase the kinetics of electrochemical photoelectrochemical processes due to the improved accessibility of electrolyte to electrode. The objective of the dissertation research is to prepare functional mesoporous materials based on transition metal oxides and to determine the effects of the mesoporous structure on the resulting charge transfer, electrochromism, and optical properties. In this dissertation, mesoporous tungsten oxide and niobium oxide were synthesized by incorporating tri-block copolymer surfactant templates into the sol-gel synthesis procedure. Both mesoporous materials have surface areas in the range of 130 m2/g with a narrow pore size distribution centered at ˜45A. Their electrochromic properties were characterized and found to be strongly influenced by the mesoporous morphology. Both mesoporous systems exhibit better electrochemical and optical reversibilities than the analogous sol-gel materials (without using surfactant) and the kinetics of bleaching is substantially faster. Coloration efficiencies for the mesoporous tungsten oxide and niobium oxide films are in the range of 16--37 cm 2/C and 12--16 cm2/C, respectively. Dye sensitized solar cells (DSSC) were fabricated using mesoporous niobium oxide as electrodes. Due to the higher surface area, the mesoporous electrodes have greater dye adsorption and electrolyte penetration compared to sol-gel electrodes, which leads to better electron injection, faster dye regeneration and thus, better cell performance. The mesoporous DSSC exhibits photocurrents of 2.9 mA and fill factors of 0.61. Open circuit voltages of the mesoporous DSSC are in the range of 0.6--0.83V.

  4. Application of electron paramagnetic resonance imaging to the characterization of the Ultem(R) exposed to 1 MeV electrons. Correlation of radical density data to tiger code calculations

    NASA Technical Reports Server (NTRS)

    Suleman, Naushadalli K.

    1994-01-01

    A major long-term goal of the Materials Division at the NASA Langley Research Center is the characterization of new high-performance materials that have potential applications in the aircraft industry, and in space. The materials used for space applications are often subjected to a harsh and potentially damaging radiation environment. The present study constitutes the application of a novel technique to obtain reliable data for ascertaining the molecular basis for the resilience and durability of materials that have been exposed to simulated space radiations. The radiations of greatest concern are energetic electrons and protons, as well as galactic cosmic rays. Presently, the effects of such radiation on matter are not understood in their entirety. It is clear however, that electron radiation causes ionization and homolytic bond rupture, resulting in the formation of paramagnetic spin centers in the polymer matrices of the structural materials. Since the detection and structure elucidation of paramagnetic species are most readily accomplished using Electron Paramagnetic Resonance (EPR) Spectroscopy, the NASA LaRC EPR system was brought back on-line during the 1991 ASEE term. The subsequent 1992 ASEE term was devoted to the adaptation of the EPR core system to meet the requirements for EPR Imaging (EPRI), which provides detailed information on the spatial distribution of paramagnetic species in bulk media. The present (1994) ASEE term was devoted to the calibration of this EPR Imaging system, as well as to the application of this technology to study the effects of electron irradiation on Ultem(exp R), a high performance polymer which is a candidate for applications in aerospace. The Ultem was exposed to a dose of 2.4 x 10(exp 9) Rads (1-MeV energy/electron) at the LaRC electron accelerator facility. Subsequently, the exposed specimens were stored in liquid nitrogen, until immediately prior to analyses by EPRI. The intensity and dimensions of the EPR Images that were generated for the irradiated specimens showed that the electrons penetrated the material to a depth of approximately 0.125 inch. These data show a very high degree of correlation to the energy deposition profile as predicted by the Tiger Code, a Monte Carlo code that provides guidelines for the transport of electrons in matter. Subsequent efforts will focus on delineating the transport properties of energetic protons in Ultem(R).

  5. Round robin test on the measurement of the specific heat of solar salt

    NASA Astrophysics Data System (ADS)

    Muñoz-Sánchez, Belén; Nieto-Maestre, Javier; González-Aguilar, José; Julia, José Enrique; Navarrete, Nuria; Faik, Abdessamad; Bauer, Thomas; Bonk, Alexander; Navarro, María Elena; Ding, Yulong; Uranga, Nerea; Veca, Elisabetta; Sau, Salvatore; Giménez, Pau; García, Pierre; Burgaleta, Juan Ignacio

    2017-06-01

    Solar salt (SS), a well-known non-eutectic mixture of sodium nitrate (60% w/w) and potassium nitrate (40% w/w), is commonly used either as Thermal Energy Storage (TES) material (double tank technology) or Heat Transfer Fluid (HTF) (solar tower) in modern CSP plants worldwide. The specific heat (cp, kJ kg-1 °C-1) of SS is a very important property in order to support the design of new CSP Plants or develop novel materials based on SS. A high scientific effort has been dedicated to perform a suitable thermophysical characterization of this material. However, there is still a great discrepancy among the cp values reported by different authors1. These differences may be due to either experimental errors (random or systematic) or divergences in the starting material (grade of purity, presence of impurities and/or water). In order to avoid the second source of uncertainty (the starting material), a Round Robin Test (RRT) was proposed starting from a common material. In this way, the different methods from each laboratory could be compared. The study should lay the foundations for the establishment of a systematic procedure for the measurement of the specific heat of this kind of materials. Nine institutions, research centers and companies, accepted the proposal and are contributing with their results. The initiative was organized within the Workshop SolarPACES Task III - Material activity.

  6. Instructional Materials Center, Project Director's Report: 1969-70.

    ERIC Educational Resources Information Center

    Trockman, Mitchell D.

    The Instructional Materials Center (IMC) originated in association with the development of a course to train teachers in specific techniques for teaching reading and the use of a wide range of multisensory reading materials. The major objective of the IMC project was to supply teachers with a wide variety of useful instructional materials for…

  7. Scholarly Citadel in Chicago: The Center for Research Libraries.

    ERIC Educational Resources Information Center

    Boylan, Ray

    1979-01-01

    The Center provides access to infrequently used research materials in three interrelated ways: (1) it provides a deposit library for such materials from the collections of member libraries; (2) it acquires such materials at members' shared expense and for their common use; and (3) it provides rapid access to its collection materials. (Author/JD)

  8. Characterization of 137 Genomic DNA Reference Materials for 28 Pharmacogenetic Genes: A GeT-RM Collaborative Project.

    PubMed

    Pratt, Victoria M; Everts, Robin E; Aggarwal, Praful; Beyer, Brittany N; Broeckel, Ulrich; Epstein-Baak, Ruth; Hujsak, Paul; Kornreich, Ruth; Liao, Jun; Lorier, Rachel; Scott, Stuart A; Smith, Chingying Huang; Toji, Lorraine H; Turner, Amy; Kalman, Lisa V

    2016-01-01

    Pharmacogenetic testing is increasingly available from clinical laboratories. However, only a limited number of quality control and other reference materials are currently available to support clinical testing. To address this need, the Centers for Disease Control and Prevention-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing community and the Coriell Cell Repositories, has characterized 137 genomic DNA samples for 28 genes commonly genotyped by pharmacogenetic testing assays (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, CYP4F2, DPYD, GSTM1, GSTP1, GSTT1, NAT1, NAT2, SLC15A2, SLC22A2, SLCO1B1, SLCO2B1, TPMT, UGT1A1, UGT2B7, UGT2B15, UGT2B17, and VKORC1). One hundred thirty-seven Coriell cell lines were selected based on ethnic diversity and partial genotype characterization from earlier testing. DNA samples were coded and distributed to volunteer testing laboratories for targeted genotyping using a number of commercially available and laboratory developed tests. Through consensus verification, we confirmed the presence of at least 108 variant pharmacogenetic alleles. These samples are also being characterized by other pharmacogenetic assays, including next-generation sequencing, which will be reported separately. Genotyping results were consistent among laboratories, with most differences in allele assignments attributed to assay design and variability in reported allele nomenclature, particularly for CYP2D6, UGT1A1, and VKORC1. These publicly available samples will help ensure the accuracy of pharmacogenetic testing. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  9. Carbon-Carbon Nozzle Extension Development in Support of In-Space and Upper-Stage Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R.; Valentine, Peter G.

    2017-01-01

    Upper stage and in-space liquid rocket engines are optimized for performance through the use of high area ratio nozzles to fully expand combustion gases to low exit pressures, increasing exhaust velocities. Due to the large size of such nozzles, and the related engine performance requirements, carbon-carbon (C-C) composite nozzle extensions are being considered to reduce weight impacts. Currently, the state-of-the-art is represented by the metallic and foreign composite nozzle extensions limited to approximately 2000 degrees F. used on the Atlas V, Delta IV, Falcon 9, and Ariane 5 launch vehicles. NASA and industry partners are working towards advancing the domestic supply chain for C-C composite nozzle extensions. These development efforts are primarily being conducted through the NASA Small Business Innovation Research (SBIR) program in addition to other low level internal research efforts. This has allowed for the initial material development and characterization, subscale hardware fabrication, and completion of hot-fire testing in relevant environments. NASA and industry partners have designed, fabricated and hot-fire tested several subscale domestically produced C-C extensions to advance the material and coatings fabrication technology for use with a variety of liquid rocket and scramjet engines. Testing at NASA's Marshall Space Flight Center (MSFC) evaluated heritage and state-of-the-art C-C materials and coatings, demonstrating the initial capabilities of the high temperature materials and their fabrication methods. This paper discusses the initial material development, design and fabrication of the subscale carbon-carbon nozzle extensions, provides an overview of the test campaign, presents results of the hot fire testing, and discusses potential follow-on development work. The follow on work includes the fabrication of ultra-high temperature materials, larger C-C nozzle extensions, material characterization, sub-element testing and hot-fire testing at larger scale.

  10. Ideas for Planning Your Instructional Materials Center. Administration; Conference and Independent Study; Listening and Viewing; Materials Production; Reading, Research and Borrowing; Storage and Maintenance.

    ERIC Educational Resources Information Center

    Massachusetts School Building Assistance Commission, Boston.

    This report suggests that the instructional materials center be flexible for multigroup activities, expansible for future physical growth, and central to the instructional program. Area specifications are given for the following areas: materials research, small groups, cataloging and processing materials, and listening and speaking, and for a dark…

  11. Development Status for the Stennis Space Center LIDAR Product Characterization Range

    NASA Technical Reports Server (NTRS)

    Zanoni, Vicki; Berglund, Judith; Ross, Kenton

    2004-01-01

    The presentation describes efforts to develop a LIDAR in-flight product characterization range at Stennis Space Center as the next phase of the NASA Verification and Validation activities. It describes the status of surveying efforts on targets of interest to LIDAR vendors as well as the potential guidelines that will be used for product characterization.

  12. Optical characterization of single-crystal diamond grown by DC arc plasma jet CVD

    NASA Astrophysics Data System (ADS)

    Hei, Li-fu; Zhao, Yun; Wei, Jun-jun; Liu, Jin-long; Li, Cheng-ming; Lü, Fan-xiu

    2017-12-01

    Optical centers of single-crystal diamond grown by DC arc plasma jet chemical vapor deposition (CVD) were examined using a low-temperature photoluminescence (PL) technique. The results show that most of the nitrogen-vacancy (NV) complexes are present as NV- centers, although some H2 and H3 centers and B-aggregates are also present in the single-crystal diamond because of nitrogen aggregation resulting from high N2 incorporation and the high mobility of vacancies under growth temperatures of 950-1000°C. Furthermore, emissions of radiation-induced defects were also detected at 389, 467.5, 550, and 588.6 nm in the PL spectra. The reason for the formation of these radiation-induced defects is not clear. Although a Ni-based alloy was used during the diamond growth, Ni-related emissions were not detected in the PL spectra. In addition, the silicon-vacancy (Si-V)-related emission line at 737 nm, which has been observed in the spectra of many previously reported microwave plasma chemical vapor deposition (MPCVD) synthetic diamonds, was absent in the PL spectra of the single-crystal diamond prepared in this work. The high density of NV- centers, along with the absence of Ni-related defects and Si-V centers, makes the single-crystal diamond grown by DC arc plasma jet CVD a promising material for applications in quantum computing.

  13. Searching for organics on the dwarf planet Ceres

    NASA Astrophysics Data System (ADS)

    Nayak, Michael

    The Herschel Space Observatory recently detected the presence of water vapor in observations of Ceres, bringing it into the crosshairs of the search for the building blocks of life in the solar system. I present a mission concept designed in collaboration with the NASA Ames Research Center for a two-probe mission to the dwarf planet Ceres, utilizing a pair of small low-cost spacecraft. The primary spacecraft will carry both a mass and an infrared spectrometer to characterize the detected vapor. Shortly after its arrival a second and largely similar spacecraft will impact Ceres to create an impact ejecta "plume" timed to enable a rendezvous and sampling by the primary spacecraft. This enables additional subsurface chemistry, volatile content and material characterization, and new science complementary to the Dawn spacecraft, the first to arrive at Ceres. Science requirements, candidate instruments, rendezvous trajectories, spacecraft design and comparison with Dawn science are detailed.

  14. Instructional Materials Thesaurus for Special Education.

    ERIC Educational Resources Information Center

    Council for Exceptional Children, Reston, VA. Information Center on Exceptional Children.

    The thesaurus is intended to clarify and standardize terminology used to index instructional materials for exceptional children within the Special Education Instructional Materials Centers/Regional Media Centers Network. Although most of the approximately 1100 terms are descriptors selected from the thesaurus of the Educational Resources…

  15. [Medical and surgical health care for congenital heart disease: a panoramic vision of the reality in Mexico. Inquiry 2009].

    PubMed

    Calderón-Colmenero, Juan; De-la-Llata, Manuel; Vizcaíno, Alfredo; Ramírez, Samuel; Bolio, Alejandro

    2011-01-01

    The only way to characterize the Mexican problem related to congenital heart disease care is promoting the creation of a national database for registering the organization, resources, and related activities. The Health Secretary of Mexico adopted a Spanish registration model to design a survey for obtaining a national Mexican reference in congenital heart disease. This survey was distributed to all directors of medical and/or surgical health care centers for congenital heart disease in Mexico. This communication presents the results obtained in relation to organization, resources and activities performed during the last year 2009. From the 22 health care centers which answered the survey 10 were reference centers (45%) and 12 were assistant centers (55%). All of them are provided with cardiologic auxiliary diagnostic methods. Except one, all centers have at least one bidimentional echocardiography apparatus. There is a general deficit between material and human resources detected in our study. Therapeutic actions for congenital heart disease (70% surgical and 30% therapeutical interventionism) show a clear centralization tendency for this kind of health care in Mexico City, Monterrey and finally Guadalajara. Due to the participation of almost all cardiac health centers in Mexico, our study provides an important information related to organization, resources, and medical and/or surgical activities for congenital heart disease. The data presented not only show Mexican reality, but allows us to identify better the national problematic for establishing priorities and propose solution alternatives.

  16. Semiconductor Characterization: from Growth to Manufacturing

    NASA Astrophysics Data System (ADS)

    Colombo, Luigi

    The successful growth and/or deposition of materials for any application require basic understanding of the materials physics for a given device. At the beginning, the first and most obvious characterization tool is visual observation; this is particularly true for single crystal growth. The characterization tools are usually prioritized in order of ease of measurement, and have become especially sophisticated as we have moved from the characterization of macroscopic crystals and films to atomically thin materials and nanostructures. While a lot attention is devoted to characterization and understanding of materials physics at the nano level, the characterization of single crystals as substrates or active components is still critically important. In this presentation, I will review and discuss the basic materials characterization techniques used to get to the materials physics to bring crystals and thin films from research to manufacturing in the fields of infrared detection, non-volatile memories, and transistors. Finally I will present and discuss metrology techniques used to understand the physics and chemistry of atomically thin two-dimensional materials for future device applications.

  17. Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This handbook establishes NASA program requirements for evaluation, testing, and selection of materials to preclude unsafe conditions related to flammability, odor, offgassing, and fluid compatibility. Materials intended for use in space vehicles, specified test facilities, and specified ground support equipment (GSE) must meet the requirements of this document. Additional materials performance requirements may be specified in other program or NASA center specific documentation. Responsible NASA centers materials organizations must include applicable requirements of this document in their materials control programs. Materials used in habitable areas of spacecraft, including the materials of the spacecraft, stowed equipment, and experiments, must be evaluated for flammability, odor, and offgassing characteristics. All materials used in other areas must be evaluated for flammability characteristics. In addition, materials that are exposed to liquid oxygen (LOX), gaseous oxygen (GOX), and other reactive fluids' must be evaluated for compatibility with the fluid in their use application. Materials exposed to pressurized breathing gases also must be evaluated for odor and offgassing characteristics. The worst-case anticipated use environment (most hazardous pressure, temperature, material thickness, and fluid exposure conditions) must be used in the evaluation process. Materials that have been shown to meet the criteria of the required tests are acceptable for further consideration in design. Whenever possible, materials should be selected that have already been shown to meet the test criteria in the use environment. Existing test data are compiled in the NASA Marshall Space Flight Center (MSFC) Materials and Processes Technical Information System (MAPTIS) and published periodically as the latest revision of a joint document with Johnson Space Center (JSC), MSFC-HDBK-527/JSC 09604. MAPTIS can be accessed by computer datalink. Systems containing materials that have not been tested or do not meet the criteria of the required tests must be verified to be acceptable in the use configuration by analysis or testing. This verification rationale must be documented and submitted to the responsible NASA center materials organization for approval.

  18. A Look Inside Argonne's Center for Nanoscale Materials

    ScienceCinema

    Divan, Ralu; Rosenthal, Dan; Rose, Volker; Wai Hla

    2018-05-23

    At a very small, or "nano" scale, materials behave differently. The study of nanomaterials is much more than miniaturization - scientists are discovering how changes in size change a material's properties. From sunscreen to computer memory, the applications of nanoscale materials research are all around us. Researchers at Argonne's Center for Nanoscale Materials are creating new materials, methods and technologies to address some of the world's greatest challenges in energy security, lightweight but durable materials, high-efficiency lighting, information storage, environmental stewardship and advanced medical devices.

  19. Fire and safety materials utilization at the John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Reynolds, J. R.

    1971-01-01

    The special needs of the Kennedy Space Center in the area of protective garments for personnel engaged in hazardous emergency operations are discussed. The materials used in the protective clothing and the specialized applications of various materials are described. It is concluded that Nomex is the best general purpose nonflammable material for protective clothing.

  20. Fabrication and characterization of SU-8-based capacitive micromachined ultrasonic transducer for airborne applications

    NASA Astrophysics Data System (ADS)

    Joseph, Jose; Singh, Shiv Govind; Vanjari, Siva Rama Krishna

    2018-01-01

    We present a successful fabrication and characterization of a capacitive micromachined ultrasonic transducer (CMUT) with SU-8 as the membrane material. The goal of this research is to develop a post-CMOS compatible CMUT that can be monolithically integrated with the CMOS circuitry. The fabrication is based on a simple, three mask process, with all wet etching steps involved so that the device can be realized with minimal laboratory conditions. The maximum temperature involved in the whole process flow was 140°C, and hence, it is post-CMOS compatible. The fabricated device exhibited a resonant frequency of 835 kHz with bandwidth 62 kHz, when characterized in air. The pull-in and snapback characteristics of the device were analyzed. The influence of membrane radius on the center frequency and bandwidth was also experimentally evaluated by fabricating CMUTs with membrane radius varying from 30 to 54 μm with an interval of 4 μm. These devices were vibrating at frequencies from 5.2 to 1.8 MHz with an average Q-factor of 23.41. Acoustic characterization of the fabricated devices was performed in air, demonstrating the applicability of SU-8 CMUTs in airborne applications.

  1. Characterization and Modeling of Asphalt Binder Fatigue

    NASA Astrophysics Data System (ADS)

    Safaei, Farinaz

    Fatigue cracking is a primary distress in asphalt pavements caused by the accumulation of damage under repeated traffic loading. Many factors influence fatigue damage in pavements, including pavement structure, environmental conditions, and asphalt mixture volumetric properties. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design. A comprehensive understanding and prediction of asphalt binder fatigue performance require a suitable experiment coupled with a model to predict how the binder will perform under various traffic, temperature, and structural conditions encountered in the field. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. Although the literature shows promise for applying VECD modeling to asphalt binder fatigue, the past efforts have several shortcomings. It has been demonstrated that flow and adhesion loss can impede DSR fatigue test results. Thus, definition of test conditions (e.g., temperature) where cyclic DSR tests are appropriate for fatigue characterization of binders is necessary. In addition, the applicability of the model to predict fatigue performance under varying loading and thermal history has not been rigorously evaluated. Furthermore, the effects of material nonlinearity have been largely neglected in past modeling efforts for simplicity. In addition, past efforts have employed the parallel plate DSR geometry for the fatigue characterization of asphalt binders. In the parallel plate geometry, the strain depends on the radial distance from the specimen center. Therefore, the material will fail at different rates as a function of radial location. Past efforts have neglected the radial strain gradient, using the apparent shear stress at the sample edge to infer fatigue damage and derive S-VECD model parameters. Apparent edge stress is calculated using linear mapping to the total torque, which is erroneous in the presence of material or geometric nonlinearities (such as cracking). This study seeks to overcome the aforementioned shortcomings of past efforts to improve the ability to characterize and predict asphalt binder fatigue.

  2. The Minnesota Project English Center: Selected Materials. Unit 701: Introduction to the Study of Language.

    ERIC Educational Resources Information Center

    Minnesota Univ., Minneapolis. Center for Curriculum Development in English.

    This Minnesota Curriculum Center report recounts the development of teaching materials on the nature and uses of language for grades 7-12 and presents the first of five seventh-grade units. A description of the origins, purposes, and personnel of the Center is followed by brief discussions of (1) the Center's underlying assumption that a study of…

  3. Materials sciences programs: Fiscal year 1994

    NASA Astrophysics Data System (ADS)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  4. Materials sciences programs, fiscal year 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance andmore » other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.« less

  5. Excess-Si related defect centers in buried SiO2 thin films

    NASA Astrophysics Data System (ADS)

    Warren, W. L.; Fleetwood, D. M.; Shaneyfelt, M. R.; Schwank, J. R.; Winokur, P. S.; Devine, R. A. B.

    1993-06-01

    Using electron paramagnetic resonance (EPR) and capacitance-voltage measurements we have investigated the role of excess-silicon related defect centers as charge traps in separation by the implantation of oxygen materials. Three types of EPR-active centers were investigated: oxygen vacancy Eγ' centers (O3≡Si• +Si≡O3), delocalized Eδ' centers, and D centers (Si3≡Si•). It was found that all of these paramagnetic centers are created by selective hole injection, and are reasonably ascribed as positively charged when paramagnetic. These results provide the first experimental evidence for (1) the charge state of the Eδ' center, and (2) that the D center is an electrically active point defect in these materials.

  6. NMR characterization of thin films

    DOEpatents

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  7. NMR characterization of thin films

    DOEpatents

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  8. Thesaurus for Special Education Instructional Materials.

    ERIC Educational Resources Information Center

    Dailey, Rebecca; And Others

    The thesaurus is intended as a preliminary standardization and clarification of terms used to index special education instructional materials throughout the Special Education Instructional Materials Centers/Regional Media Centers (IMC/RMC) Network. The majority of entries are approved descriptors appearing in the selected standard, the Thesaurus…

  9. The Center for Nanophase Materials Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christen, Hans; Ovchinnikova, Olga; Jesse, Stephen

    2016-03-11

    The Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory (ORNL) integrates nanoscale science with neutron science; synthesis science; and theory, modeling, and simulation. Operating as a national user facility, the CNMS supports a multidisciplinary environment for research to understand nanoscale materials and phenomena.

  10. The Center for Nanophase Materials Sciences

    ScienceCinema

    Christen, Hans; Ovchinnikova, Olga; Jesse, Stephen; Mazumder, Baishakhi; Norred, Liz; Idrobo, Juan Carlos; Berlijn, Tom

    2018-06-25

    The Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory (ORNL) integrates nanoscale science with neutron science; synthesis science; and theory, modeling, and simulation. Operating as a national user facility, the CNMS supports a multidisciplinary environment for research to understand nanoscale materials and phenomena.

  11. UNC EFRC: Fuels from Sunlight (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Thomas J.

    "Fuels from Sunlight" was submitted by the University of North Carolina (UNC) EFRC: Center for Solar Fuels, to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. The Center for Solar Fuels (UNC) EFRC directed by Thomas J. Meyer is a partnership of scientists from four institutions: UNC (lead), Brookhaven National Laboratory, Georgia Institute of Technology and University of Texas at San Antonio. The Office of Basic Energy Sciences inmore » the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Center for Solar Fuels (UNC) is 'to combine the best features of academic and translational research to study light/matter interactions and chemical processes for the efficient collection, transfer, and conversion of solar energy into chemical fuels and electricity.' Research topics are: catalysis (CO2, hydrocarbons, water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar photovoltaic, solar fuels, photonic, solar electrodes, photosynthesis, fuel cells, CO2 (convert), greenhosue gas, hydrogen (fuel), interfacial characterization, novel materials synthesis, charge transport, and self-assembly.« less

  12. Reinventing Material Science - Continuum Magazine | NREL

    Science.gov Websites

    to reinvent an entire field of study, but that is exactly what the Center for Inverse Design is functional materials by developing an "inverse design" approach, powered by theory that guides experiment. The Center for Inverse Design was established as an Energy Frontier Research Center, funded by

  13. Plan for Progress in the Media Center.

    ERIC Educational Resources Information Center

    Iowa State Dept. of Public Instruction, Des Moines.

    The outpouring of new instructional materials and techniques has resulted in a demand for instructional materials centers at the elementary school level. This handbook has been published to assist in planning and developing such a facility. The media center's usefullness to students, teachers, and administrators is outlined. The qualifications and…

  14. Safer Aviation Materials Tested

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    2001-01-01

    A series of thermally stable polymer samples were tested. These materials are called low heat release materials and are designed for aircraft interior decorative materials. The materials are designed to give off a minimum amount of noxious gases when heated, which increases the possibility that people can escape from a burning aircraft. New cabin materials have suitably low heat release so that fire does not spread, toxic chemicals are not given off, and the fire-emergency escape time for crew and passengers is lengthened. These low heat-release materials have a variety of advantages and applications: interiors for ground-based facilities, interiors of space vehicles, and many commercial fire-protection environments. A microscale combustion calorimeter at the Federal Aviation Administration's (FAA) Technical Center tested NASA Langley Research Center materials samples. The calorimeter is shown. A sharp, quantitative, and reproducible heat-release-rate peak is obtained in the microscale heat-release-rate test. The newly tested NASA materials significantly reduced the heat release capacity and total heat release. The thermal stability and flammability behavior of the samples was very good. The new materials demonstrated a factor of 4 reduction in total heat release over ULTEM (a currently used material). This information is provided in the following barchart. In other tests, the materials showed greater than a factor 9 reduction in heat-release capacity over ULTEM. The newly tested materials were developed for low dielectric constant, low color, and good solubility. A scale up of the material samples is needed to determine the repeatability of the performance in larger samples. Larger panels composed of the best candidate materials will be tested in a larger scale FAA Technical Center fire facility. The NASA Glenn Research Center, Langley (Jeff Hinkley), and the FAA Technical Center (Richard Lyon) cooperatively tested these materials for the Accident Mitigation aspects of Fire Prevention under NASA's Aviation Safety Program.

  15. Nanoparticle-based biologic mimetics

    PubMed Central

    Cliffel, David E.; Turner, Brian N.; Huffman, Brian J.

    2009-01-01

    Centered on solid chemistry foundations, biology and materials science have reached a crossroad where bottom-up designs of new biologically important nanomaterials are a reality. The topics discussed here present the interdisciplinary field of creating biological mimics. Specifically, this discussion focuses on mimics that are developed using various types of metal nanoparticles (particularly gold) through facile synthetic methods. These methods conjugate biologically relevant molecules, e.g., small molecules, peptides, proteins, and carbohydrates, in conformationally favorable orientations on the particle surface. These new products provide stable, safe, and effective substitutes for working with potentially hazardous biologicals for applications such as drug targeting, immunological studies, biosensor development, and biocatalysis. Many standard bioanalytical techniques can be used to characterize and validate the efficacy of these new materials, including quartz crystal microbalance (QCM), surface plasmon resonance (SPR), and enzyme-linked immunosorbent assay (ELISA). Metal nanoparticle–based biomimetics continue to be developed as potential replacements for the native biomolecule in applications of immunoassays and catalysis. PMID:20049778

  16. Venus - Complex Crater Dickinson in NE Atalanta Region

    NASA Image and Video Library

    1996-11-26

    This Magellan image is centered at 74.6 degrees north latitude and 177.3 east longitude, in the northeastern Atalanta Region of Venus. The image is approximately 185 kilometers (115 miles) wide at the base and shows Dickinson, an impact crater 69 kilometers (43 miles) in diameter. The crater is complex, characterized by a partial central ring and a floor flooded by radar-dark and radar-bright materials. Hummocky, rough-textured ejecta extend all around the crater, except to the west. The lack of ejecta to the west may indicate that the impactor that produced the crater was an oblique impact from the west. Extensive radar-bright flows that emanate from the crater's eastern walls may represent large volumes of impact melt, or they may be the result of volcanic material released from the subsurface during the cratering event. http://photojournal.jpl.nasa.gov/catalog/PIA00479

  17. Thermo-Optical and Mechanical Property Testing of Candidate Solar Sail Materials

    NASA Technical Reports Server (NTRS)

    Hollerman, WIlliam A.; Stanaland, T. L.; Womack, F.; Edwards, David; Hubbs, Whitney; Semmel, Charles

    2003-01-01

    Solar sailing is a unique form of propulsion where a spacecraft gains momentum from incident photons. Since sails are not limited by reaction mass, they provide continual acceleration, reduced only by the lifetime of the lightweight film in the space environment and the distance to the Sun. Practical solar sails can expand the number of possible missions, enabling new concepts that are difficult by conventional means. The National Aeronautics and Space Administration's Marshall Space Flight Center (MSFC) is concentrating research into the utilization of ultra-lightweight materials for spacecraft propulsion. Solar sails are generally composed of a highly reflective metallic front layer, a thin polymeric substrate, and occasionally a highly emissive back surface. The Space Environmental Effects Team at MSFC is actively characterizing candidate sails to evaluate the thermo-optical and mechanical properties after exposure to electrons. This poster will discuss the preliminary results of this research.

  18. Out of the Autoclave Fabrication of LaRC[TradeMark] PETI-9 Polyimide Laminates

    NASA Technical Reports Server (NTRS)

    Cano, Robert J.; Jensen, Brian J.

    2013-01-01

    The NASA Langley Research Center developed polyimide system, LaRC PETI-9, has successfully been processed into composites by high temperature vacuum assisted resin transfer molding (HT-VARTM). To extend the application of this high use temperature material to other out-of-autoclave (OOA) processing techniques, the fabrication of PETI- 9 laminates was evaluated using only a vacuum bag and oven cure. A LaRC PETI-9 polyimide solution in NMP was prepared and successfully utilized to fabricate unidirectional IM7 carbon fiber prepreg that was subsequently processed into composites with a vacuum bag and oven cure OOA process. Composite panels of good quality were successfully fabricated and mechanically tested. Processing characteristics, composite panel quality and mechanical properties are presented in this work. The resultant properties are compared to previously developed LaRC material systems processed by both autoclave and OOA techniques including the well characterized, autoclave processed LaRC PETI-5.

  19. Radiation hardness of Ce-doped sol-gel silica fibers for high energy physics applications.

    PubMed

    Cova, Francesca; Moretti, Federico; Fasoli, Mauro; Chiodini, Norberto; Pauwels, Kristof; Auffray, Etiennette; Lucchini, Marco Toliman; Baccaro, Stefania; Cemmi, Alessia; Bártová, Hana; Vedda, Anna

    2018-02-15

    The results of irradiation tests on Ce-doped sol-gel silica using x- and γ-rays up to 10 kGy are reported in order to investigate the radiation hardness of this material for high-energy physics applications. Sol-gel silica fibers with Ce concentrations of 0.0125 and 0.05 mol. % are characterized by means of optical absorption and attenuation length measurements before and after irradiation. The two different techniques give comparable results, evidencing the formation of a main broad radiation-induced absorption band, peaking at about 2.2 eV, related to radiation-induced color centers. The results are compared with those obtained on bulk silica. This study reveals that an improvement of the radiation hardness of Ce-doped silica fibers can be achieved by reducing Ce content inside the fiber core, paving the way for further material development.

  20. Metal catalyzed synthesis of hyperbranched ethylene and/or .alpha.-olefin polymers

    DOEpatents

    Sen, Ayusman; Kim, Jang Sub; Pawlow, James H.; Murtuza, Shahid; Kacker, Smita; Wojcinski, III, Louis M.

    2001-01-01

    Oily hyperbranched polymers derived from ethylene, propylene, butene and/or a C.sub.5 -C.sub.24 .alpha.-olefin, and a method for their synthesis, are disclosed. The polymers have non-regular microstructures and are characterized by a ratio ({character pullout})of methyl hydrogens centered around 0.85 ppm on the 1H-NMR spectra of the polymers relative to total aliphatic hydrogens of from about 0.40 to about 0.65 for polymers derived from ethylene or butene, and a ratio ({character pullout})of from greater than 0.50 to about 0.65 for polymers derived from propylene. A method for grafting hyperbranched polymers derived from ethylene, propylene, butene and/or a C.sub.5 -C.sub.24 .alpha.-olefin onto aromatic rings in organic molecules and polymers, and the resulting grafted materials, are also disclosed. The hyperbranched polymers and grafted materials are useful, for example, as lubricants and lubricant additives.

  1. One-Pot Synthesis of Co-Based Coordination Polymer Nanowire for Li-Ion Batteries with Great Capacity and Stable Cycling Stability

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Lou, Xiaobing; Li, Chao; Hu, Xiaoshi; Yang, Qi; Hu, Bingwen

    2018-06-01

    Nanowire coordination polymer cobalt-terephthalonitrile (Co-BDCN) was successfully synthesized using a simple solvothermal method and applied as anode material for lithium-ion batteries (LIBs). A reversible capacity of 1132 mAh g-1 was retained after 100 cycles at a rate of 100 mA g-1, which should be one of the best LIBs performances among metal organic frameworks and coordination polymers-based anode materials at such a rate. On the basis of the comprehensive structural and morphology characterizations including fourier transform infrared spectroscopy, 1H NMR, 13C NMR, and scanning electron microscopy, we demonstrated that the great electrochemical performance of the as-synthesized Co-BDCN coordination polymer can be attributed to the synergistic effect of metal centers and organic ligands, as well as the stability of the nanowire morphology during cycling.[Figure not available: see fulltext.

  2. Ablation Modeling of Ares-I Upper State Thermal Protection System Using Thermal Desktop

    NASA Technical Reports Server (NTRS)

    Sharp, John R.; Page, Arthur T.

    2007-01-01

    The thermal protection system (TPS) for the Ares-I Upper Stage will be based on Space Transportation System External Tank (ET) and Solid Rocket Booster (SRB) heritage materials. These TPS materials were qualified via hot gas testing that simulated ascent and re-entry aerothermodynamic convective heating environments. From this data, the recession rates due to ablation were characterized and used in thermal modeling for sizing the thickness required to maintain structural substrate temperatures. At Marshall Space Flight Center (MSFC), the in-house code ABL is currently used to predict TPS ablation and substrate temperatures as a FORTRAN application integrated within SINDA/G. This paper describes a comparison of the new ablation utility in Thermal Desktop and SINDA/FLUINT with the heritage ABL code and empirical test data which serves as the validation of the Thermal Desktop software for use on the design of the Ares-I Upper Stage project.

  3. Comparability of clinical wear measurements by optical 3D laser scanning in two different centers.

    PubMed

    Stober, Thomas; Heuschmid, Navina; Zellweger, Gaby; Rousson, Valentin; Rues, Stefan; Heintze, Siegward D

    2014-05-01

    The purpose of this study was to compare the use of different variables to measure the clinical wear of two denture tooth materials in two analysis centers. Twelve edentulous patients were provided with full dentures. Two different denture tooth materials (experimental material and control) were placed randomly in accordance with the split-mouth design. For wear measurements, impressions were made after an adjustment phase of 1-2 weeks and after 6, 12, 18, and 24 months. The occlusal wear of the posterior denture teeth of 11 subjects was assessed in two study centers by use of plaster replicas and 3D laser-scanning methods. In both centers sequential scans of the occlusal surfaces were digitized and superimposed. Wear was described by use of four different variables. Statistical analysis was performed after log-transformation of the wear data by use of the Pearson and Lin correlation and by use of a mixed linear model. Mean occlusal vertical wear of the denture teeth after 24 months was between 120μm and 212μm, depending on wear variable and material. For three of the four variables, wear of the experimental material was statistically significantly less than that of the control. Comparison of the two study centers, however, revealed correlation of the wear variables was only moderate whereas strong correlation was observed among the different wear variables evaluated by each center. Moderate correlation was observed for clinical wear measurements by optical 3D laser scanning in two different study centers. For the two denture tooth materials, wear measurements limited to the attrition zones led to the same qualitative assessment. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Characterization of Space Shuttle External Tank Thermal Protection System (TPS) Materials in Support of the Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Wingard, Charles D.

    2004-01-01

    NASA suffered the loss of the seven-member crew of the Space Shuttle Columbia on February 1, 2003 when the vehicle broke apart upon re-entry to the Earth's atmosphere. The final report of the Columbia Accident Investigation Board (CAIB) determined that the accident was caused by a launch ascent incident-a suitcase-sized chunk of insulating foam on the Shuttle's External Tank (ET) broke off, and moving at almost 500 mph, struck an area of the leading edge of the Shuttle s left wing. As a result, one or more of the protective Reinforced Carbon-Carbon (RCC) panels on the wing leading edge were damaged. Upon re-entry, superheated air approaching 3,000 F breached the wing damage and caused the vehicle breakup and loss of crew. The large chunk of insulating foam that broke off during the Columbia launch was determined to come from the so-called bipod ramp area where the Shuttle s orbiter (containing crew) is attached to the ET. Underneath the foam in the bipod ramp area is a layer of TPS that is a cork-filled silicone rubber composite. In March 2003, the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama received cured samples of the foam and composite for testing from the Michoud Assembly Facility (MAF) in New Orleans, Louisiana. The MAF is where the Shuttle's ET is manufactured. The foam and composite TPS materials for the ET have been well characterized for mechanical property data at the super-cold temperatures of the liquid oxygen and hydrogen fuels used in the ET. However, modulus data on these materials is not as well characterized. The TA Instruments 2980 Dynamic Mechanical Analyzer (DMA) was used to determine the modulus of the two TPS materials over a range of -145 to 95 C in the dual cantilever bending mode. Multi-strain, fixed frequency DMA tests were followed by multi-frequency, fixed strain tests to determine the approximate bounds of linear viscoelastic behavior for the two materials. Additional information is included in the original extended abstract.

  5. Consortium for Molecular Characterization of Screen-Detected Lesions Created: Eight Grants Awarded | Division of Cancer Prevention

    Cancer.gov

    The NCI has awarded eight grants to create the Consortium for Molecular Characterization of Screen-Detected Lesions. The consortium has seven molecular characterization laboratories (MCLs) and a coordinating center, and is supported by the Division of Cancer Prevention and the Division of Cancer Biology. | 7 laboratories and a coordinating center focused on identifying

  6. Neutron Diffraction Studies of Some Rare Earth-Transition Metal Deuterides.

    DTIC Science & Technology

    1986-05-01

    RD-A168 M NEUTRON DIFFRACTION STUDIES OF SONE RARE EARTH-TRANSITION METAL DEUTERIDES(U) MISSOURI UNIV-ROLLR MATERIALS RESEARCH CENTER N J JAMES MY 86...REPORT William J. James OTtO -il May 1986 ZLECTEJU U. S. Army Research Office DAAG29-83-K-01 59 ".;’ Graduate Center for Materials Research ...9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK AREA & WORK UNIT NUMBERS 2* Graduate Center for Materials Research

  7. Extraterrestrial resource utilization for economy in space missions

    NASA Technical Reports Server (NTRS)

    Lewis, J. S.; Ramohalli, K.; Triffet, T.

    1990-01-01

    The NASA/University of Arizona Space Engineering Research Center is dedicated to research on the discovery, characterization, mapping, beneficiation, extraction, processing, and fabrication of useful products from extraterrestrial material. Schemes for the automated production of low-technology products that are likely to be desired in large quantities in the early stages of any large-scale space activity are identified and developed. This paper summarizes the research program, concentrating upon the production of (1) propellants, both cryogenic and storable, (2) volatiles such as water, nitrogen, and carbon dioxide for use in life-support systems (3) structural metals, and (4) refractories for use in aerobrakes and furnace linings.

  8. Characterizing the absorption and aging behavior of DUV optical material by high-resolution excimer laser calorimetry

    NASA Astrophysics Data System (ADS)

    Mann, Klaus R.; Eva, Eric

    1998-06-01

    Absorption loss in DUV optics during 193 nm irradiation is investigated by employing a high-resolution calorimetric technique which allows determining both single and two photon absorption coefficients at energy densities of several 10 mJ/cm2, avoiding a significant thermal load on the samples. UV calorimetry is also employed to investigate laser induced aging phenomena, e.g. color center formation in fused silica or CaF2. A separation of transient and cumulative effects as a function of intensity can be achieved, giving insight into various loss mechanisms. Moreover, the influence of dielectric coatings on the absorption characteristics is discussed.

  9. Proceedings of the 4th International Conference and Exhibition: World Congress on Superconductivity, volume 1

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Editor); Burnham, Calvin (Editor)

    1995-01-01

    The papers presented at the 4th International Conference Exhibition: World Congress on Superconductivity held at the Marriott Orlando World Center, Orlando, Florida, are contained in this document and encompass the research, technology, applications, funding, political, and social aspects of superconductivity. Specifically, the areas covered included: high-temperature materials; thin films; C-60 based superconductors; persistent magnetic fields and shielding; fabrication methodology; space applications; physical applications; performance characterization; device applications; weak link effects and flux motion; accelerator technology; superconductivity energy; storage; future research and development directions; medical applications; granular superconductors; wire fabrication technology; computer applications; technical and commercial challenges, and power and energy applications.

  10. Photocatalytic degradation of congo red using copper substituted cobalt ferrite

    NASA Astrophysics Data System (ADS)

    Kirankumar, V. S.; Hardik, B.; Sumathi, S.

    2017-11-01

    Co1-xCuxFe2O4 nanoparticles with x = 0 and 0.5 were synthesized through the combustion method. The as-made materials are face centered-cubic close-packed spinel structures. The characterization techniques such as powder XRD, FTIR, UV-DRS and SEM studies collectively verified that the formed products are cobalt ferrite and copper substituted cobalt ferrite nanoparticles. In addition, the mean crystalline size, lattice parameter and band gap energy of nanoparticles are calculated. The photocatalytic activity of the obtained Co1-xCuxFe2O4 spinel nanoparticles is evaluated by monitoring the degradation of congo red under visible light irradiation.

  11. Europa's Active Surface

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A newly discovered impact crater can be seen just right of the center of this image of Jupiter's moon Europa returned by NASA's Galileo spacecraft camera. The crater is about 30 kilometers (18.5 miles) in diameter. The impact excavated into Europa's icy crust, throwing debris (seen as whitish material) across the surrounding terrain. Also visible is a dark band, named Belus Linea, extending east-west across the image. This type of feature, which scientists call a 'triple band,' is characterized by a bright stripe down the middle. The outer margins of this and other triple bands are diffuse, suggesting that the dark material was put there as a result of possible geyser-like activity which shot gas and rocky debris from Europa's interior. The curving 'X' pattern seen in the lower left corner of the image appears to represent fracturing of the icy crust and infilling by slush which froze in place. The crater is centered at about 2 degrees north latitude by 239 degrees west longitude. The image was taken from a distance of 156,000 kilometers (about 96,300 miles) on June 27, 1996, during Galileo's first orbit around Jupiter. The area shown is 860 by 700 kilometers (530 by 430 miles), or about the size of Oregon and Washington combined. The Galileo mission is managed by NASA's Jet Propulsion Laboratory.

  12. A PDMS-Based Conical-Well Microelectrode Array for Surface Stimulation and Recording of Neural Tissues

    PubMed Central

    Guo, Liang; Meacham, Kathleen W.; Hochman, Shawn

    2012-01-01

    A method for fabricating polydimethylsiloxane (PDMS)-based microelectrode arrays (MEAs) featuring novel conical-well microelectrodes is described. The fabrication technique is reliable and efficient, and facilitates controllability over both the depth and the slope of the conical wells. Because of the high PDMS elasticity (as compared to other MEA substrate materials), this type of compliant MEA is promising for acute and chronic implantation in applications that benefit from conformable device contact with biological tissue surfaces and from minimal tissue damage. The primary advantage of the conical-well microelectrodes—when compared to planar electrodes—is that they provide an improved contact on tissue surface, which potentially provides isolation of the electrode microenvironment for better electrical interfacing. The raised wells increase the uniformity of current density distributions at both the electrode and tissue surfaces, and they also protect the electrode material from mechanical damage (e.g. from rubbing against the tissue). Using this technique, electrodes have been fabricated with diameters as small as 10µm and arrays have been fabricated with center-to-center electrode spacings of 60µm. Experimental results are presented, describing electrode-profile characterization, electrode-impedance measurement, and MEA-performance evaluation on fiber bundle recruitment in spinal cord white matter. PMID:20550983

  13. Electronic properties of new topological quantum materials

    NASA Astrophysics Data System (ADS)

    Kaminski, Adam

    Topological materials are characterized by the presence of nontrivial quantum electronic states, where often the electron spin is locked to its momentum. This opens up the possibility for developing new devices in which information is processed or stored by means of spin rather than charge. In this talk we will discuss the electronic properties of several of newly discovered topological quantum materials. In WTe2 we have observed a topological transition involving a change of the Fermi surface topology (known as a Lifshitz transition) driven by temperature. The strong temperature-dependence of the chemical potential that is at the heart of this phenomenon is also important for understanding the thermoelectric properties of such semimetals. Both WTe2 and MoTe2 were proposed to host type II Weyl semimetalic state. Indeed our data provides first experimental confirmation of such state in both of these materials. We will also present evidence for a new topological state in PtSn4 where pairs of extended Dirac node arcs rather are present rather than Dirac points, that is so far not understood theoretically. Our research opens up new directions on enhancing topological responsiveness of new quantum materials. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division (ARPES measurements), Center for Emergent Materials, an NSF MRSEC, under Grant DMR-1420451 (theory and data anal.

  14. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for ; Finance Templates Travel One-Stop Latest News Postdoc Forum Research Highlights Awards Publications

  15. Materials Center Collections and Procedures: Suggested Modifications.

    ERIC Educational Resources Information Center

    Davis, Larry L.

    This description of a three year project of services to educators by the Kentucky Department of Education Materials Center includes the current collections, future collections, and the anticipated procedures necessary to provide optimum service and best utilize those materials. The plan involves better coordination between the three major…

  16. NASA. Lewis Research Center materials research and technology: An overview

    NASA Technical Reports Server (NTRS)

    Grisaffe, Salvatore J.

    1990-01-01

    The Materials Division at the Lewis Research Center has a long record of contributions to both materials and process technology as well as to the understanding of key high-temperature phenomena. This paper overviews the division staff, facilities, past history, recent progress, and future interests.

  17. Is it time to rebalance the case mix? A portfolio analysis of direct catheterization laboratory costs over a 5-year period.

    PubMed

    Plehn, Gunnar; Butz, Thomas; Maagh, Petra; Oernek, Ahmet; Meissner, Axel; Plehn, Natalie

    2016-11-03

    Cardiac catheterization laboratories (CLL) have continued to function as profit centers for hospitals. Due to a high percentage of material and labor costs, they are natural targets for process improvement. Our study applied a contribution margin (CBM) concept to evaluate costs and cost dynamics over a 5-year period. We retrospectively analyzed all procedures performed at a tertiary heart center between 2007 and 2011. Total variable costs, including labor time, material, and maintenance-expenses, were allocated at a global as well as a procedural level. CBM and CBM ratios were calculated by integration of individual DRG revenues. Annual case volume increased from 1288 to 1545. In parallel, overall profitability improved as indicated by a 2% increase in CBM ratio and a higher CBM generated per hour of CLL working time (4325 vs. 5892 €, p < 0.001). Coronary angiography generated higher average CBMs per hour than coronary or electrophysiological interventions (5831 vs. 3458 vs. 1495 €; p < 0.001). The latter are characterized by relatively high per case material expenditures. On a procedural level, DRG-specific trends as a steady improvement of examination time or an increase in material costs were detectable. The CBM concept allows a comprehensive analysis of CLL costs and cost dynamics. From a health service providers view, its range of application includes global profitability analysis, portfolio evaluation, and a detailed cost analysis of specific service lines. From a healthcare payers perspective, it may help to monitor hospital activities and to provide a solid data basis in cases where inappropriate developments are suspected. The calculation principle is simple which may increase user acceptance and thus the motivation of team members.

  18. Purchase of a Raman and Photoluminescence Imaging System for Characterization of Advanced Electrochemical and Electronic Materials

    DTIC Science & Technology

    2016-01-05

    regularly used the Raman imaging system to characterize the doping chemistry of colloidal indium nitride nanoparticles . This material shows an interesting...regularly used the Raman imaging system to characterize the doping chemistry of colloidal indium nitride nanoparticles . This material shows an...analysis of thin film coatings, bulk materials, powders and nanoparticles . The instrument is extensively used to characterize advanced electrochemical and

  19. Library Educators' Awareness and Evaluation of National Audiovisual Center Materials.

    ERIC Educational Resources Information Center

    Palmer, Joseph W.

    1980-01-01

    Describes a survey of 18 library schools conducted to determine if faculty are familiar with audiovisual materials available from the National Audiovisual Center, and how these materials are rated in quality. Results indicate that there is a need for more descriptive and evaluative information to reach library educators. (BK)

  20. Evaluation of Instructional Materials. Position Paper No. 1.

    ERIC Educational Resources Information Center

    Ward, Ted

    The position paper on the evaluation of instructional materials by the Michigan State University Regional Instructional Materials Center for Handicapped Children and Youth (IMC HCY) examines the professional and ethical dilemmas of evaluation and presents evaluation policies of the center. Evaluated by a roster of field evaluators throughout the…

  1. Standards for School Library/Media Programs, 1972-75.

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Public Instruction, Madison. Div. of Library Services.

    To aid elementary, middle, junior high, and high schools in planning an Instructional Materials Center, this handbook presents standards for this modern concept of a school library. The term Instructional Materials Center (IMC) is used throughout to designate a centralized collection of materials, with a staff of professional and clerical…

  2. Military aircraft and missile technology at the Langley Research Center: A selected bibliography

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1980-01-01

    A compilation of reference material is presented on the Langley Research Center's efforts in developing advanced military aircraft and missile technology over the past twenty years. Reference material includes research made in aerodynamics, performance, stability, control, stall-spin, propulsion integration, flutter, materials, and structures.

  3. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Computational Study of Excited-State Phenomena in Energy Materials Center for X-ray Optics MSD Facilities Ion Excited-State Phenomena in Energy Materials Center for X-ray Optics MSD Facilities Ion Beam Analysis Behavior of Lithium Metal across a Rigid Block Copolymer Electrolyte Membrane. Journal of the

  4. Advanced Carbon Materials Center Established At UK

    Science.gov Websites

    UK Home Academics Athletics Medical Center Research Site Index Search UK University Master ] [research at UK] Advanced Carbon Materials Center Established At UK The tiny but mighty nanotube will continue to be the subject of several research projects at the University of Kentucky, thanks in part to a

  5. 21 CFR 700.27 - Use of prohibited cattle materials in cosmetic products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... examined at the Center for Food Safety and Applied Nutrition's Library, 5100 Paint Branch Pkwy., College... the Center Director, Center for Food Safety and Applied Nutrition, Food and Drug Administration, at... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Use of prohibited cattle materials in cosmetic...

  6. 21 CFR 700.27 - Use of prohibited cattle materials in cosmetic products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... examined at the Center for Food Safety and Applied Nutrition's Library, 5100 Paint Branch Pkwy., College... the Center Director, Center for Food Safety and Applied Nutrition, Food and Drug Administration, at... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Use of prohibited cattle materials in cosmetic...

  7. 21 CFR 700.27 - Use of prohibited cattle materials in cosmetic products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... examined at the Center for Food Safety and Applied Nutrition's Library, 5100 Paint Branch Pkwy., College... the Center Director, Center for Food Safety and Applied Nutrition, Food and Drug Administration, at... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Use of prohibited cattle materials in cosmetic...

  8. 21 CFR 700.27 - Use of prohibited cattle materials in cosmetic products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... examined at the Center for Food Safety and Applied Nutrition's Library, 5100 Paint Branch Pkwy., College... the Center Director, Center for Food Safety and Applied Nutrition, Food and Drug Administration, at... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Use of prohibited cattle materials in cosmetic...

  9. 21 CFR 700.27 - Use of prohibited cattle materials in cosmetic products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... examined at the Center for Food Safety and Applied Nutrition's Library, 5100 Paint Branch Pkwy., College... the Center Director, Center for Food Safety and Applied Nutrition, Food and Drug Administration, at... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Use of prohibited cattle materials in cosmetic...

  10. Characterization of the Boundary Layers on Full-Scale Bluefin Tuna

    DTIC Science & Technology

    2014-09-30

    NUWC-NPT Technical Report 12,163 30 September 2014 Characterization of the Boundary Layers on Full-Scale Bluefin Tuna Kimberly M. Cipolla...Center Division Newport, under Section 219 Research Project, “Characterization of the Boundary Layers on Full-Scale Bluefin Tuna ,” principal...K. Amaral (Code 1522). The author thanks Barbara Block (Stanford University), head of the Tuna Research and Conservation Center (TRCC) at the

  11. Preparation and characterization of green-nano-composite material based on polyaniline, multiwalled carbon nano tubes and carboxymethyl cellulose: For electrochemical sensor applications.

    PubMed

    Gautam, Vineeta; Singh, Karan Pratap; Yadav, Vijay Laxmi

    2018-06-01

    In this paper, we are presenting the preparation and characterization of "polyaniline/multiwalled carbon nanotubes/carboxymethyl cellulose" based novel composite material. It's morphological, thermal, structural, and electrochemical properties were investigated by using different instrumental techniques. During the in-situ chemical polymerization of aniline in the aqueous suspension of CMC and MWCNTs, the particle size change in two different ways "top to bottom" (low molecular weight oligomers grows in size) and "bottom to top" (long fibers of CMC fragmented in the reaction mixture). The combination of these two processes facilitated the fabrication of an integrated green-nano-composite material. In addition, a little amount of conductive nanofillers (MWCNTs) boosts the electrical and electrocatalytic properties of the material. Electron-rich centers of benzenoid rings exhibited π-π stacking with sp 2 carbon of MWCNTs. CMC dominantly impact on the properties of PANI, negatively charged carboxylate group of CMC ionically bonded with protonated amine/imine. FTIR and Raman analysis confirmed that the material has dominated quinoid units and effective charge transfer. Hydroxyl and carboxyl groups and bonded water molecules of CMC results in a network of hydrogen bonds (which induced directional property). PANI/MWCNTs/CMC have nanobead-like structures (TEM analysis), large surface area, large pore volume, small pore diameter (BET and BJH studies) and good dispersion ability in the aqueous phase. Nanostructures of aligned PANI exhibited excellent electrochemical properties have attracted increasing attention. Modified carbon paste electrode was used for electrocatalytic detection of ascorbic acid (as a model analyte). The sensor exhibited a linear range 0.05 mM-5 mM, sensitivity 100.63 μA mM -1  cm -2 , and limit of detection 0.01 mM. PANI/MWCNTs/CMC is suitable nanocomposite material for apply electroactive/conducting ink and membrane (which could be used in electrochemical sensor applications). Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Topics covered include: Reversible Chemochromic Hydrogen Detectors; Determining Trajectory of Triboelectrically Charged Particles, Using Discrete Element Modeling; Using Indium Tin Oxide To Mitigate Dust on Viewing Ports; High-Performance Polyimide Powder Coatings; Controlled-Release Microcapsules for Smart Coatings for Corrosion Applications; Aerocoat 7 Replacement Coatings; Photocatalytic Coatings for Exploration and Spaceport Design; New Materials for the Repair of Polyimide Electrical Wire Insulation; Commodity-Free Calibration; Novel Ice Mitigation Methods; Crack Offset Measurement With the Projected Laser Target Device; New Materials for Structural Composites and Protective Coatings; Fire Chemistry Testing of Spray-On Foam Insulation (SOFI); Using Aerogel-Based Insulation Material To Prevent Foam Loss on the Liquid-Hydrogen Intertank; Particle Ejection and Levitation Technology (PELT); Electrostatic Characterization of Lunar Dust; Numerical Analysis of Rocket Exhaust Cratering; RESOLVE Projects: Lunar Water Resource Demonstration and Regolith Volatile Characterization; Tribocharging Lunar Soil for Electrostatic Beneficiation; Numerically Modeling the Erosion of Lunar Soil by Rocket Exhaust Plumes; Trajectory Model of Lunar Dust Particles; Using Lunar Module Shadows To Scale the Effects of Rocket Exhaust Plumes; Predicting the Acoustic Environment Induced by the Launch of the Ares I Vehicle; Measuring Ultrasonic Acoustic Velocity in a Thin Sheet of Graphite Epoxy Composite; Hail Size Distribution Mapping; Launch Pad 39 Hail Monitor Array System; Autonomous Flight Safety System - Phase III; The Photogrammetry Cube; Bird Vision System; Automating Range Surveillance Through Radio Interferometry and Field Strength Mapping Techniques; Next-Generation Telemetry Workstation; GPS Metric Tracking Unit; and Space-Based Range.

  13. CMUTs with high-K atomic layer deposition dielectric material insulation layer.

    PubMed

    Xu, Toby; Tekes, Coskun; Degertekin, F

    2014-12-01

    Use of high-κ dielectric, atomic layer deposition (ALD) materials as an insulation layer material for capacitive micromachined ultrasonic transducers (CMUTs) is investigated. The effect of insulation layer material and thickness on CMUT performance is evaluated using a simple parallel plate model. The model shows that both high dielectric constant and the electrical breakdown strength are important for the dielectric material, and significant performance improvement can be achieved, especially as the vacuum gap thickness is reduced. In particular, ALD hafnium oxide (HfO2) is evaluated and used as an improvement over plasma-enhanced chemical vapor deposition (PECVD) silicon nitride (Six)Ny)) for CMUTs fabricated by a low-temperature, complementary metal oxide semiconductor transistor-compatible, sacrificial release method. Relevant properties of ALD HfO2) such as dielectric constant and breakdown strength are characterized to further guide CMUT design. Experiments are performed on parallel fabricated test CMUTs with 50-nm gap and 16.5-MHz center frequency to measure and compare pressure output and receive sensitivity for 200-nm PECVD Six)Ny) and 100-nm HfO2) insulation layers. Results for this particular design show a 6-dB improvement in receiver output with the collapse voltage reduced by one-half; while in transmit mode, half the input voltage is needed to achieve the same maximum output pressure.

  14. Overview of Materials Qualification Needs for Metal Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Seifi, Mohsen; Salem, Ayman; Beuth, Jack; Harrysson, Ola; Lewandowski, John J.

    2016-03-01

    This overview highlights some of the key aspects regarding materials qualification needs across the additive manufacturing (AM) spectrum. AM technology has experienced considerable publicity and growth in the past few years with many successful insertions for non-mission-critical applications. However, to meet the full potential that AM has to offer, especially for flight-critical components (e.g., rotating parts, fracture-critical parts, etc.), qualification and certification efforts are necessary. While development of qualification standards will address some of these needs, this overview outlines some of the other key areas that will need to be considered in the qualification path, including various process-, microstructure-, and fracture-modeling activities in addition to integrating these with lifing activities targeting specific components. Ongoing work in the Advanced Manufacturing and Mechanical Reliability Center at Case Western Reserve University is focusing on fracture and fatigue testing to rapidly assess critical mechanical properties of some titanium alloys before and after post-processing, in addition to conducting nondestructive testing/evaluation using micro-computerized tomography at General Electric. Process mapping studies are being conducted at Carnegie Mellon University while large area microstructure characterization and informatics (EBSD and BSE) analyses are being conducted at Materials Resources LLC to enable future integration of these efforts via an Integrated Computational Materials Engineering approach to AM. Possible future pathways for materials qualification are provided.

  15. Integrated Design Software Predicts the Creep Life of Monolithic Ceramic Components

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Significant improvements in propulsion and power generation for the next century will require revolutionary advances in high-temperature materials and structural design. Advanced ceramics are candidate materials for these elevated-temperature applications. As design protocols emerge for these material systems, designers must be aware of several innate features, including the degrading ability of ceramics to carry sustained load. Usually, time-dependent failure in ceramics occurs because of two different, delayedfailure mechanisms: slow crack growth and creep rupture. Slow crack growth initiates at a preexisting flaw and continues until a critical crack length is reached, causing catastrophic failure. Creep rupture, on the other hand, occurs because of bulk damage in the material: void nucleation and coalescence that eventually leads to macrocracks which then propagate to failure. Successful application of advanced ceramics depends on proper characterization of material behavior and the use of an appropriate design methodology. The life of a ceramic component can be predicted with the NASA Lewis Research Center's Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design programs. CARES/CREEP determines the expected life of a component under creep conditions, and CARES/LIFE predicts the component life due to fast fracture and subcritical crack growth. The previously developed CARES/LIFE program has been used in numerous industrial and Government applications.

  16. Characterization of Viscoelastic Materials for Low-Magnitude Blast Mitigation

    NASA Astrophysics Data System (ADS)

    Bartyczak, Susan; Mock, Willis

    2013-06-01

    Recent preliminary research indicates that exposure to low amplitude blast waves, such as from IED detonation or multiple firings of a weapon, causes damage to brain tissue resulting in Traumatic Brain Injury (TBI) and Post Traumatic Stress Disorder (PTSD). Current combat helmets are not sufficiently protecting warfighters from this danger and the effects are debilitating, costly, and long-lasting. The objective of this research is to evaluate the blast mitigating behavior of current helmet materials and new materials designed for blast mitigation using a test fixture recently developed at the Naval Surface Warfare Center Dahlgren Division for use with an existing gas gun. A 40-mm-bore gas gun is used as a shock tube to generate blast waves (ranging from 5 to 30 psi) in a test fixture mounted at the gun muzzle. A fast opening valve is used to release helium gas from a breech which forms into a blast wave and impacts instrumented targets in the test fixture. Blast attenuation of selected materials is determined through the measurement of pressure and accelerometer data in front of and behind the target. Materials evaluated in this research include 6061-T6 aluminum, polyurea 1000, Styrofoam, and Sorbothane (durometer 50, shore 00). The experimental technique, calibration and checkout procedures, and results will be presented.

  17. 2002 Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Gillies, Donald (Editor); Ramachandran, Narayanan (Editor); Murphy, Karen (Editor); McCauley, Dannah (Editor); Bennett, Nancy (Editor)

    2003-01-01

    The 2002 Microgravity Materials Science Conference was held June 25-26, 2002, at the Von Braun Center, Huntsville, Alabama. Organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Physical Sciences Research Division, NASA Headquarters, and hosted by NASA Marshall Space Flight Center and member institutions under the Cooperative Research in Biology and Materials Science (CORBAMS) agreement, the conference provided a forum to review the current research and activities in materials science, discuss the envisioned long-term goals, highlight new crosscutting research areas of particular interest to the Physical Sciences Research Division, and inform the materials science community of research opportunities in reduced gravity. An abstracts book was published and distributed at the conference to the approximately 240 people attending, who represented industry, academia, and other NASA Centers. This CD-ROM proceedings is comprised of the research reports submitted by the Principal Investigators in the Microgravity Materials Science program.

  18. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Issue 3, March Issue 2, February Issue 1, January A U.S. Department of Energy National Laboratory

  19. Materials engineering data base

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The various types of materials related data that exist at the NASA Marshall Space Flight Center and compiled into databases which could be accessed by all the NASA centers and by other contractors, are presented.

  20. Characterizing the Three-Dimensional Structure of Block Copolymers via Sequential Infiltration Synthesis and Scanning Transmission Electron Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segal-Peretz, Tamar; Winterstein, Jonathan; Doxastakis, Manolis

    Understanding and controlling the three-dimensional structure of block copolymer (BCP) thin films is critical for utilizing these materials for sub-20 nm nanopatterning in semiconductor devices, as well as in membranes and solar cell applications. Combining an atomic layer deposition (ALD) based technique for enhancing the contrast of BCPs in transmission electron microscopy (TEM) together with scanning TEM (STEM) tomography reveals and characterizes the three-dimensional structures of poly(styrene-block-methyl methacrylate) (PS-b-PMMA) thin films with great clarity. Sequential infiltration synthesis (SIS), a block-selective technique for growing inorganic materials in BCPs films in ALD, and an emerging tool for enhancing the etch contrast ofmore » BCPs, was harnessed to significantly enhance the high-angle scattering from the polar domains of BCP films in the TEM. The power of combining SIS and STEM tomography for three dimensional (3D) characterization of BCPs films was demonstrated with the following cases: self-assembled cylindrical, lamellar, and spherical PS-PMMA thin films. In all cases, STEM tomography has revealed 3D structures that were hidden underneath the surface, including: 1) the 3D structure of defects in cylindrical and lamellar phases, 2) non-perpendicular 3D surface of grain boundaries in the cylindrical phase, and 3) the 3D arrangement of spheres in body centered cubic (BCC) and hexagonal closed pack (HCP) morphologies in the spherical phase. The 3D data of the spherical morphologies was compared to coarse-grained simulations and assisted in validating the simulations’ parameters. STEM tomography of SIS-treated BCP films enables the characterization of the exact structure used for pattern transfer, and can lead to better understating of the physics which is utilized in BCP lithography.« less

  1. Characterization of Dual-Band Infrared Detectors for Application to Remote Sensing

    NASA Technical Reports Server (NTRS)

    Abedin, M. Nurul; Refaat, Tamer F.; Xiao, Yegao; Bhat, Ishwara

    2005-01-01

    NASA Langley Research Center (LaRC), in partnership with the Rensselaer Polytechnic Institute (RPI), developed photovoltaic infrared (IR) detectors suitable at two different wavelengths using Sb-based material systems. Using lattice-matched InGaAsSb grown on GaSb substrates, dual wavelength detectors operating at 1.7 and 2.5 micron wavelengths can be realized. P-N junction diodes are fabricated on both GaSb and InGaAsSb materials. The photodiode on GaSb detects wavelengths at 1.7 micron and the InGaAsSb detector detects wavelengths at 2.2 micron or longer depending on the composition. The films for these devices are grown by metal-organic vapor phase epitaxy (MOVPE). The cross section of the independently accessed back-to-back photodiode dual band detector consists of a p-type substrate on which n-on-p GaInAsSb junction is grown, followed by a p-on-n GaSb junction. There are three ohmic contacts in this structure, one to the p-GaSb top layer, one to the n-GaSb/n-GaInAsSb layer and one to the p-type GaSb substrate. The common terminal is the contact to the n-GaSb/n-GaInAsSb layer. The contact to the n-GaSb/p-GaInAsSb region of the photodiode in the dual band is electrically connected and is accessed at the edge of the photodiode. NASA LaRC acquired the fabricated dual band detector from RPI and characterized the detector at its Detector Characterization Laboratory. Characterization results, such as responsivity, noise, quantum efficiency, and detectivity will be presented.

  2. The Preparation and Characterization of Materials.

    ERIC Educational Resources Information Center

    Wold, Aaron

    1980-01-01

    Presents several examples illustrating different aspects of materials problems, including problems associated with solid-solid reactions, sintering and crystal growth, characterization of materials, preparation and characterization of stoichiometric ferrites and chromites, copper-sulfur systems, growth of single crystals by chemical vapor…

  3. Micromachining Techniques in Developing High-Frequency Piezoelectric Composite Ultrasonic Array Transducers

    PubMed Central

    Liu, Changgeng; Djuth, Frank T.; Zhou, Qifa; Shung, K. Kirk

    2014-01-01

    Several micromachining techniques for the fabrication of high-frequency piezoelectric composite ultrasonic array transducers are described in this paper. A variety of different techniques are used in patterning the active piezoelectric material, attaching backing material to the transducer, and assembling an electronic interconnection board for transmission and reception from the array. To establish the feasibility of the process flow, a hybrid test ultrasound array transducer consisting of a 2-D array having an 8 × 8 element pattern and a 5-element annular array was designed, fabricated, and assessed. The arrays are designed for a center frequency of ~60 MHz. The 2-D array elements are 105 × 105 μm in size with 5-μm kerfs between elements. The annular array surrounds the square 2-D array and provides the option of transmitting from the annular array and receiving with the 2-D array. Each annular array element has an area of 0.71 mm2 with a 16-μm kerf between elements. The active piezoelectric material is (1 − x) Pb(Mg1/3Nb2/3)O3−xPbTiO3 (PMN-PT)/epoxy 1–3 composite with a PMN-PT pillar lateral dimension of 8 μm and an average gap width of ~4 μm, which was produced by deep reactive ion etching (DRIE) dry etching techniques. A novel electric interconnection strategy for high-density, small-size array elements was proposed. After assembly, the array transducer was tested and characterized. The capacitance, pulse–echo responses, and crosstalk were measured for each array element. The desired center frequency of ~60 MHz was achieved and the −6-dB bandwidth of the received signal was ~50%. At the center frequency, the crosstalk between adjacent 2-D array elements was about −33 dB. The techniques described herein can be used to build larger arrays containing smaller elements. PMID:24297027

  4. Role of the Muon in Semiconductor Research

    NASA Astrophysics Data System (ADS)

    Mengyan, Rick (P. W.)

    Muons are used in semiconductor research as an experimentally accessible analog to the isolated Hydrogen (H) impurity - a complex that is very difficult (or impossible) to study by other means. Hydrogen impurities of any concentration can modify the electrical, optical or magnetic properties of the host. For instance, H can be incorporated to remove electrically active levels from the energy gap (i.e. passivation) while some can form isolated centers that tend to be responsible for the trap and release of charge carriers and participate in site and charge-state dynamics which certainly affect the electrical properties of the host. Therefore, it can be quite useful to characterize these impurities in semiconducting materials that are of interest for use in devices. A muon has the same charge and spin as a proton but a mass that is nine times lighter. When implanted in a target material, a positively charged muon can behave as a light proton or bind with an electron to form a complex known as Muonium (Mu) with properties that are very similar to that of ionic or neutral H, respectively. A result of these similarities and direct non-destructive implantation is that Mu provides a direct measure of local electronic structure, thermal stability and charge-state transitions of these impurity centers. Since any material can be subjected to muon implantation and it is the muons themselves that mimic the H impurity centers, these measurements do not depend (at all) on the host's solubility of hydrogen nor do they require some minimum concentration; unlike many other techniques, such as EPR, ENDOR, NMR, or IR vibrational spectroscopy. Here we summarize major contributions muons have made to the field of semiconductor research followed by a few case studies to demonstrate the technique and detailed knowledge of the physical and electronic structures as well as dynamics (e.g.: charge-state and site transitions; local motion; long-range diffusion) of Mu/H that can be obtained.

  5. Influence of Catalysis and Oxidation on Slug Calorimeter Measurements in Arc Jets

    NASA Technical Reports Server (NTRS)

    Nawaz, Anuscheh; Driver, Dave; TerrazasSalinas, Imelda

    2012-01-01

    Arc jet tests play a critical role in the characterization and certification of thermal protection materials and systems (TPS). The results from these arc jet tests feed directly into computational models of material response and aerothermodynamics to predict the performance of the TPS in flight. Thus the precise knowledge of the plasma environment to which the test material is subjected, is invaluable. As one of the environmental parameters, the heat flux is commonly measured. The measured heat flux is used to determine the plasma enthalpy through analytical or computational models. At NASA Ames Research Center (ARC), slug calorimeters of a geometrically similar body to the test article are routinely used to determine the heat flux. A slug calorimeter is a thermal capacitance-type calorimeter that uses the temperature rise in a thermally insulated slug to determine the heat transfer rate, see Figure 1(left). Current best practices for measuring the heat flux with a slug calorimeter are described in ASTM E457 - 96. Both the calorimeter body and slug are made of Oxygen Free High Conductivity Copper, and are cleaned before each run.

  6. Curved Thermopiezoelectric Shell Structures Modeled by Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun

    2000-01-01

    "Smart" structures composed of piezoelectric materials may significantly improve the performance of aeropropulsion systems through a variety of vibration, noise, and shape-control applications. The development of analytical models for piezoelectric smart structures is an ongoing, in-house activity at the NASA Glenn Research Center at Lewis Field focused toward the experimental characterization of these materials. Research efforts have been directed toward developing analytical models that account for the coupled mechanical, electrical, and thermal response of piezoelectric composite materials. Current work revolves around implementing thermal effects into a curvilinear-shell finite element code. This enhances capabilities to analyze curved structures and to account for coupling effects arising from thermal effects and the curved geometry. The current analytical model implements a unique mixed multi-field laminate theory to improve computational efficiency without sacrificing accuracy. The mechanics can model both the sensory and active behavior of piezoelectric composite shell structures. Finite element equations are being implemented for an eight-node curvilinear shell element, and numerical studies are being conducted to demonstrate capabilities to model the response of curved piezoelectric composite structures (see the figure).

  7. Rapid Prototyping of Continuous Fiber Reinforced Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, R.; Green, C.; Phillips, T.; Cipriani, R.; Yarlagadda, S.; Gillespie, J.; Effinger, M.; Cooper, K. C.; Gordon, Gail (Technical Monitor)

    2002-01-01

    For ceramics to be used as structural components in high temperature applications, their fracture toughness is improved by embedding continuous ceramic fibers. Ceramic matrix composite (CMC) materials allow increasing the overall operating temperature, raising the temperature safety margins, avoiding the need for cooling, and improving the damping capacity, while reducing the weight at the same time. They also need to be reliable and available in large quantities as well. In this paper, an innovative rapid prototyping technique to fabricate continuous fiber reinforced ceramic matrix composites is described. The process is simple, robust and will be widely applicable to a number of high temperature material systems. This technique was originally developed at the University of Delaware Center for Composite Materials (UD-CCM) for rapid fabrication of polymer matrix composites by a technique called automated tow placement or ATP. The results of mechanical properties and microstructural characterization are presented, together with examples of complex shapes and parts. It is believed that the process will be able to create complex shaped parts at an order of magnitude lower cost than current CVI and PIP processes.

  8. Phase Change Material Heat Sink for an ISS Flight Experiment

    NASA Technical Reports Server (NTRS)

    Quinn, Gregory; Stieber, Jesse; Sheth, Rubik; Ahlstrom, Thomas

    2015-01-01

    A flight experiment is being constructed to utilize the persistent microgravity environment of the International Space Station (ISS) to prove out operation of a microgravity compatible phase change material (PCM) heat sink. A PCM heat sink can help to reduce the overall mass and volume of future exploration spacecraft thermal control systems (TCS). The program is characterizing a new PCM heat sink that incorporates a novel phase management approach to prevent high pressures and structural deformation that often occur with PCM heat sinks undergoing cyclic operation in microgravity. The PCM unit was made using brazed aluminum construction with paraffin wax as the fusible material. It is designed to be installed into a propylene glycol and water cooling loop, with scaling consistent with the conceptual designs for the Orion Multipurpose Crew Vehicle. This paper reports on the construction of the PCM heat sink and on initial ground test results conducted at UTC Aerospace Systems prior to delivery to NASA. The prototype will be tested later on the ground and in orbit via a self-contained experiment package developed by NASA Johnson Space Center to operate in an ISS EXPRESS rack.

  9. Electrochemical Evaluation of Alloys for Spaceport Design

    NASA Astrophysics Data System (ADS)

    Calle, Luz Marina; MacDowell, Louis G.; Vinje, Rubiela D.

    2003-01-01

    Corrosion studies began at the Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the corrosion protection of carbon steel. NASA's KSC Beach Corrosion Test Site, which was established at that time, has been documented by the American Society of Materials (ASM) as one of the most corrosive naturally occurring environments in the world. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocker boosters. In the years that followed, numerous studies have identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosive environment at the launch pad. The Corrosion Laboratory was established at KSC in 1985 and was outfitted with state-of-the-art electrochemistry equipment to conduct research and materials characterization in many different corrosive environments. This paper will describe the application of electrochemistry in combination with atmospheric exposure to the selection of alloys in a spaceport environment.

  10. Synthesis of a new π-conjugated redox oligomer: Electrochemical and optical investigation

    NASA Astrophysics Data System (ADS)

    Blili, Saber; Zaâboub, Zouhour; Maaref, Hassen; Haj Said, Ayoub

    2017-01-01

    A new π-conjugated redox oligomer was prepared according a two-Step Synthesis. Firstly, an oligophenylene (OMPA) was obtained from the anodic oxidation of the (4-methoxyphenyl)acetonitrile. Then, the resulting material was chemically modified by the Knoevenagel condensation with the ferrocenecarboxaldehyde. This reaction led to a redox-conjugated oligomer the Fc-OMPA. The synthesized material was characterized using different spectroscopic techniques: NMR, FTIR, UV-vis and photoluminescence (PL) spectroscopy. The Fc-OMPA was used to modify a platinum electrode surface and the electrochemical response of the ferrocene redox-center was investigated by cyclic voltammetry. Moreover, the room temperature PL spectra of Fc-OMPA revealed that the ferrocene moiety, which acts as an electron donor, can effectively quench the oligomer luminescence. However, when ferrocene was oxidized to ferrocenium ion, the intramolecular charge transfer process was prevented which consequently enhanced the light emission. Thus, the oligomer light-emission can be, chemically or electrochemically tuned. The obtained results showed that the prepared material is a good candidate for the elaboration of electrochemical sensors and for the development of luminescent Redox-switchable devices.

  11. High-Power, High-Temperature Superconductor Technology Development

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.

    2005-01-01

    Since the first discovery of high-temperature superconductors (HTS) 10 years ago, the most promising areas for their applications in microwave systems have been as passive components for communication systems. Soon after the discovery, experiments showed that passive microwave circuits made from HTS material exceeded the performance of conventional devices for low-power applications and could be 10 times as small or smaller. However, for superconducting microwave components, high-power microwave applications have remained elusive until now. In 1996, DuPont and Com Dev Ltd. developed high-power superconducting materials and components for communication applications under a NASA Lewis Research Center cooperative agreement, NCC3-344 "High Power High Temperature Superconductor (HTS) Technology Development." The agreement was cost shared between the Defense Advanced Research Projects Agency's (DARPA) Technology Reinvestment Program Office and the two industrial partners. It has the following objectives: 1) Material development and characterization for high-power HTS applications; 2) Development and validation of generic high-power microwave components; 3) Development of a proof-of-concept model for a high-power six-channel HTS output multiplexer.

  12. Current Condition of Michigan Curriculum Materials Centers and Collections in Academic Institutions

    ERIC Educational Resources Information Center

    Kohrman, Rita

    2015-01-01

    A 2005 sabbatical study revealed 24 unique curriculum materials centers or collections (CMCs) in Michigan colleges or universities. The focus of the study was to investigate the number, characteristics, and quality of these centers and collections supporting education faculty and students. A follow up 2014 study asked how or if the Michigan…

  13. A Guide to the Management of Curriculum Materials Centers for the 21st Century: The Promise and the Challenge.

    ERIC Educational Resources Information Center

    Carr, Jo Ann, Ed.

    Curriculum Materials Centers (CMCs), resource centers that support teacher education programs, are facing many challenges, including maintaining funding, meeting increased expectations, and coping with changes in technology. This volume covers a wide range of management issues from the perspective of 18 librarians, including practical advice on…

  14. Research and technology, 1984: Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Moorehead, T. W. (Editor)

    1984-01-01

    The Marshall Space Flight Center conducts research programs in space sciences, materials processing in space, and atmospheric sciences, as well as technology programs in such areas as propulsion, materials, processes, and space power. This Marshall Space Flight Center 1984 Annual Report on Research and Technology contains summaries of the more significant scientific and technical results obtained during FY-84.

  15. How to Set Up a Resource Center to be Compatible with an Outdoor Program.

    ERIC Educational Resources Information Center

    Stilson, Jan

    A materials collection can provide indirect experiences that will supplement the direct learning experiences offered by an outdoor education nature center. The Instructional Materials Center at Lorado Taft Field Campus provides such multiple learning experiences as it offers print media as well as slides, films, tapes, and projection and field…

  16. How Does the Secondary School Library Become an Instructional Materials Center? Personnel, Program, Materials, Housing.

    ERIC Educational Resources Information Center

    Rogers, Margaret

    1968-01-01

    Objectives of this paper are: (1) to provide a practical point of view, based on experience of library and audiovisual practitioners, for expanding secondary school library programs into instructional materials center programs as demanded by instructional programs involving flexible scheduling, inquiry, and independent study; (2) to provide an…

  17. Editing Distance Education Materials. Knowledge Series.

    ERIC Educational Resources Information Center

    Swales, Christine

    Distance education (DE) materials take a learner-centered approach rather than the traditionally content-centered approach of textbooks. This fact has several implications for the editing of DE materials. The role of the editor within the DE organization will depend on the organization's size and structure. The basic features of the DE program or…

  18. University of Maryland MRSEC - Education: Resources

    Science.gov Websites

    . University of Maryland Materials Research Science and Engineering Center Home About Us Leadership Moments in MSE The Materials Science and Engineering Career Resources Center Materials Research Society Central Super Science Fair Projects: Ideas, Topics, & Experiments All Science Fair Projects Science

  19. Analytical Microscopy and Imaging Science | Materials Science | NREL

    Science.gov Websites

    Microanalysis (EPMA) for quantitative compositional analysis. It relies on wavelength-dispersive spectroscopy to Science group in NREL's Materials Science Center. Mowafak Al-Jassim Group Manager Dr. Al-Jassim manages the Analytical Microscopy and Imaging Science group with the Materials Science Center. Email | 303-384

  20. Focus on Parents: The Parenting Materials Information Center.

    ERIC Educational Resources Information Center

    Espinoza, Renato

    To bridge the gap between producers of parenting materials and potential users, the National Institute of Education funded the Southwest Educational Laboratory to design, develop, and research the effectiveness of a model Parenting Materials Information Center. During the last 2 years this model has been developed to include more than 1400…

  1. Libraries and Instructional Materials Centers. Educational Facilities Review Series Number 13.

    ERIC Educational Resources Information Center

    Baas, Alan M.

    The concept of the instructional materials center (IMC) has evolved in response to the limitations of the traditional single-resource library. The IMC is an organizational solution for integrating traditional library services with the variety of multimedia devices and materials necessary to contemporary educational practice. The concept grew from…

  2. GATE Center for Automotive Fuel Cell Systems at Virginia Tech

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Douglas

    2011-09-30

    The Virginia Tech GATE Center for Automotive Fuel Cell Systems (CAFCS) achieved the following objectives in support of the domestic automotive industry: Expanded and updated fuel cell and vehicle technologies education programs; Conducted industry directed research in three thrust areas development and characterization of materials for PEM fuel cells; performance and durability modeling for PEM fuel cells; and fuel cell systems design and optimization, including hybrid and plug-in hybrid fuel cell vehicles; Developed MS and Ph.D. engineers and scientists who are pursuing careers related to fuel cells and automotive applications; Published research results that provide industry with new knowledge whichmore » contributes to the advancement of fuel cell and vehicle systems commercialization. With support from the Dept. of Energy, the CAFCS upgraded existing graduate course offerings; introduced a hands-on laboratory component that make use of Virginia Tech's comprehensive laboratory facilities, funded 15 GATE Fellowships over a five year period; and expanded our program of industry interaction to improve student awareness of challenges and opportunities in the automotive industry. GATE Center graduate students have a state-of-the-art research experience preparing them for a career to contribute to the advancement fuel cell and vehicle technologies.« less

  3. Non-radiative carrier recombination enhanced by two-level process: A first-principles study

    DOE PAGES

    Yang, Ji -Hui; Shi, Lin; Wang, Lin -Wang; ...

    2016-02-16

    In this study, non-radiative recombination plays an important role in the performance of optoelectronic semiconductor devices such as solar cells and light-emitting diodes. Most textbook examples assume that the recombination process occurs through a single defect level, where one electron and one hole are captured and recombined. Based on this simple picture, conventional wisdom is that only defect levels near the center of the bandgap can be effective recombination centers. Here, we present a new two-level recombination mechanism: first, one type of carrier is captured through a defect level forming a metastable state; then the local defect configuration rapidly changesmore » to a stable state, where the other type of carrier is captured and recombined through another defect level. This novel mechanism is applied to the recombination center Te 2+ cd in CdTe. We show that this two-level process can significantly increase the recombination rate (by three orders of magnitude) in agreement with experiments. We expect that this two-level recombination process can exist in a wide range of semiconductors, so its effect should be carefully examined in characterizing optoelectronic materials.« less

  4. Evaluating cryostat performance for naval applications

    NASA Astrophysics Data System (ADS)

    Knoll, David; Willen, Dag; Fesmire, James; Johnson, Wesley; Smith, Jonathan; Meneghelli, Barry; Demko, Jonathan; George, Daniel; Fowler, Brian; Huber, Patti

    2012-06-01

    The Navy intends to use High Temperature Superconducting Degaussing (HTSDG) coil systems on future Navy platforms. The Navy Metalworking Center (NMC) is leading a team that is addressing cryostat configuration and manufacturing issues associated with fabricating long lengths of flexible, vacuum-jacketed cryostats that meet Navy shipboard performance requirements. The project includes provisions to evaluate the reliability performance, as well as proofing of fabrication techniques. Navy cryostat performance specifications include less than 1 Wm-1 heat loss, 2 MPa working pressure, and a 25-year vacuum life. Cryostat multilayer insulation (MLI) systems developed on the project have been validated using a standardized cryogenic test facility and implemented on 5-meterlong test samples. Performance data from these test samples, which were characterized using both LN2 boiloff and flow-through measurement techniques, will be presented. NMC is working with an Integrated Project Team consisting of Naval Sea Systems Command, Naval Surface Warfare Center-Carderock Division, Southwire Company, nkt cables, Oak Ridge National Laboratory (ORNL), ASRC Aerospace, and NASA Kennedy Space Center (NASA-KSC) to complete these efforts. Approved for public release; distribution is unlimited. This material is submitted with the understanding that right of reproduction for governmental purposes is reserved for the Office of Naval Research, Arlington, Virginia 22203-1995.

  5. Study of Material Consolidation at Higher Throughput Parameters in Selective Laser Melting of Inconel 718

    NASA Technical Reports Server (NTRS)

    Prater, Tracie

    2016-01-01

    Selective Laser Melting (SLM) is a powder bed fusion additive manufacturing process used increasingly in the aerospace industry to reduce the cost, weight, and fabrication time for complex propulsion components. SLM stands poised to revolutionize propulsion manufacturing, but there are a number of technical questions that must be addressed in order to achieve rapid, efficient fabrication and ensure adequate performance of parts manufactured using this process in safety-critical flight applications. Previous optimization studies for SLM using the Concept Laser M1 and M2 machines at NASA Marshall Space Flight Center have centered on machine default parameters. The objective of this work is to characterize the impact of higher throughput parameters (a previously unexplored region of the manufacturing operating envelope for this application) on material consolidation. In phase I of this work, density blocks were analyzed to explore the relationship between build parameters (laser power, scan speed, hatch spacing, and layer thickness) and material consolidation (assessed in terms of as-built density and porosity). Phase II additionally considers the impact of post-processing, specifically hot isostatic pressing and heat treatment, as well as deposition pattern on material consolidation in the same higher energy parameter regime considered in the phase I work. Density and microstructure represent the "first-gate" metrics for determining the adequacy of the SLM process in this parameter range and, as a critical initial indicator of material quality, will factor into a follow-on DOE that assesses the impact of these parameters on mechanical properties. This work will contribute to creating a knowledge base (understanding material behavior in all ranges of the AM equipment operating envelope) that is critical to transitioning AM from the custom low rate production sphere it currently occupies to the world of mass high rate production, where parts are fabricated at a rapid rate with confidence that they will meet or exceed all stringent functional requirements for spaceflight hardware. These studies will also provide important data on the sensitivity of material consolidation to process parameters that will inform the design and development of future flight articles using SLM.

  6. Undergraduate Research at the Center for Energy Efficient Materials (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum

    ScienceCinema

    Bowers, John (Director, Center for Energy Efficient Materials ); CEEM Staff

    2017-12-09

    'Undergraduate Research at the Center for Energy Efficient Materials (CEEM)' was submitted by CEEM to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEEM, an EFRC directed by John Bowers at the University of California, Santa Barbara is a partnership of scientists from four institutions: UC, Santa Barbara (lead), UC, Santa Cruz, Los Alamos National Laboratory, and National Renewable Energy Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Energy Efficient Materials is 'to discover and develop materials that control the interactions between light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.' Research topics are: solar photovoltaic, photonic, solid state lighting, optics, thermoelectric, bio-inspired, electrical energy storage, batteries, battery electrodes, novel materials synthesis, and scalable processing.

  7. Undergraduate Research at the Center for Energy Efficient Materials (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halabi, Linda

    "Undergraduate Research at the Center for Energy Efficient Materials (CEEM)" was submitted by CEEM to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEEM, an EFRC directed by John Bowers at the University of California, Santa Barbara is a partnership of scientists from four institutions: UC, Santa Barbara (lead), UC, Santa Cruz, Los Alamos National Laboratory, and National Renewable Energy Laboratory. The Office of Basic Energy Sciences in themore » U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Energy Efficient Materials is 'to discover and develop materials that control the interactions between light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.' Research topics are: solar photovoltaic, photonic, solid state lighting, optics, thermoelectric, bio-inspired, electrical energy storage, batteries, battery electrodes, novel materials synthesis, and scalable processing.« less

  8. Final Results for the GRC Supporting Technology Development Project for the 110-Watt Stirling Radioisotope Generator (SRG110)

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Thieme, Lanny G.

    2007-01-01

    From 1999 to 2006, the NASA Glenn Research Center (GRC) supported the development of a high-efficiency, nominal 110-We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions, including deep space missions, Mars rovers, and lunar applications. Lockheed Martin (LM) was the system integrator for the SRG110, under contract to the Department of Energy (DOE). Infinia Corporation (formerly Stirling Technology Company) developed the Stirling convertor, first as a contractor to DOE and then under subcontract to LM. The SRG110 development has been redirected, and recent program changes have been made to significantly increase the specific power of the generator. System development of an Advanced Stirling Radioisotope Generator (ASRG) has now begun, using a lightweight, advanced convertor from Sunpower, Inc. This paper summarizes the results of the supporting technology effort that GRC completed for the SRG110. GRC tasks included convertor extended-duration testing in air and thermal vacuum environments, heater head life assessment, materials studies, permanent magnet aging characterization, linear alternator evaluations, structural dynamics testing, electromagnetic interference (EMI) and electromagnetic compatibility (EMC) characterization, organic materials evaluations, reliability studies, and development of an end-to-end system dynamic model. Related efforts are now continuing in many of these areas to support ASRG development.

  9. Final Results for the GRC Supporting Technology Development Project for the 110-Watt Stirling Radioisotope Generator (SRG110)

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Thieme, Lanny G.

    2007-01-01

    From 1999-2006, the NASA Glenn Research Center (GRC) supported the development of a high-efficiency, nominal 110-We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions, including deep space missions, Mars rovers, and lunar applications. Lockheed Martin (LM) was the system integrator for the SRG110, under contract to the Department of Energy (DOE). Infinia Corporation (formerly Stirling Technology Company) developed the Stirling convertor, first as a contractor to DOE and then under subcontract to LM. The SRG110 development has been redirected, and recent program changes have been made to significantly increase the specific power of the generator. System development of an Advanced Stirling Radioisotope Generator (ASRG) has now begun, using a lightweight, advanced convertor from Sunpower, Inc. This paper summarizes the results of the supporting technology effort that GRC completed for the SRG110. GRC tasks included convertor extended-duration testing in air and thermal vacuum environments, heater head life assessment, materials studies, permanent magnet aging characterization, linear alternator evaluations, structural dynamics testing, electromagnetic interference (EMI) and electromagnetic compatibility (EMC) characterization, organic materials evaluations, reliability studies, and development of an end-to-end system dynamic model. Related efforts are now continuing in many of these areas to support ASRG development.

  10. GRC Supporting Technology for NASA's Advanced Stirling Radioisotope Generator (ASRG)

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Thieme, Lanny G.

    2008-01-01

    From 1999 to 2006, the NASA Glenn Research Center (GRC) supported a NASA project to develop a high-efficiency, nominal 110-We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions. Lockheed Martin was selected as the System Integration Contractor for the SRG110, under contract to the Department of Energy (DOE). The potential applications included deep space missions, and Mars rovers. The project was redirected in 2006 to make use of the Advanced Stirling Convertor (ASC) that was being developed by Sunpower, Inc. under contract to GRC, which would reduce the mass of the generator and increase the power output. This change would approximately double the specific power and result in the Advanced Stirling Radioisotope Generator (ASRG). The SRG110 supporting technology effort at GRC was replanned to support the integration of the Sunpower convertor and the ASRG. This paper describes the ASRG supporting technology effort at GRC and provides details of the contributions in some of the key areas. The GRC tasks include convertor extended-operation testing in air and in thermal vacuum environments, heater head life assessment, materials studies, permanent magnet characterization and aging tests, structural dynamics testing, electromagnetic interference and electromagnetic compatibility characterization, evaluation of organic materials, reliability studies, and analysis to support controller development.

  11. Paradigm Shift in Data Content and Informatics Infrastructure Required for Generalized Constitutive Modeling of Materials Behavior

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.

    2006-01-01

    Materials property information such as composition and thermophysical/mechanical properties abound in the literature. Oftentimes, however, the corresponding response curves from which these data are determined are missing or at the very least difficult to retrieve. Further, the paradigm for collecting materials property information has historically centered on (1) properties for materials comparison/selection purposes and (2) input requirements for conventional design/analysis methods. However, just as not all materials are alike or equal, neither are all constitutive models (and thus design/ analysis methods) equal; each model typically has its own specific and often unique required materials parameters, some directly measurable and others indirectly measurable. Therefore, the type and extent of materials information routinely collected is not always sufficient to meet the current, much less future, needs of the materials modeling community. Informatics has been defined as the science concerned with gathering, manipulating, storing, retrieving, and classifying recorded information. A key aspect of informatics is its focus on understanding problems and applying information technology as needed to address those problems. The primary objective of this article is to highlight the need for a paradigm shift in materials data collection, analysis, and dissemination so as to maximize the impact on both practitioners and researchers. Our hope is to identify and articulate what constitutes "sufficient" data content (i.e., quality and quantity) for developing, characterizing, and validating sophisticated nonlinear time- and history-dependent (hereditary) constitutive models. Likewise, the informatics infrastructure required for handling the potentially massive amounts of materials data will be discussed.

  12. RP-1 Thermal Stability and Copper Based Materials Compatibility Study

    NASA Technical Reports Server (NTRS)

    Stiegemeier, B. R.; Meyer, M. L.; Driscoll, E.

    2005-01-01

    A series of electrically heated tube tests was performed at the NASA Glenn Research Center s Heated Tube Facility to investigate the effect that sulfur content, test duration, and tube material play in the overall thermal stability and materials compatibility characteristics of RP-1. Scanning-electron microscopic (SEM) analysis in conjunction with energy dispersive spectroscopy (EDS) were used to characterize the condition of the tube inner wall surface and any carbon deposition or corrosion formed during these runs. Results of the parametric study indicate that tests with standard RP-1 (total sulfur -23 ppm) and pure copper tubing are characterized by a depostion/deposit shedding process producing local wall temperature swings as high as 500 F. The effect of this shedding is to keep total carbon deposition levels relatively constant for run times from 20 minutes up to 5 hours, though increasing tube pressure drops were observed in all runs. Reduction in the total sulfur content of the fuel from 23 ppm to less than 0.1 ppm resulted in the elimination of deposit shedding, local wall temperature variation, and the tube pressure drop increases that were observed in standard sulfur level RP-1 tests. The copper alloy GRCop-84, a copper alloy developed specifically for high heat flux applications, was found to exhibit higher carbon deposition levels compared to identical tests performed in pure copper tubes. Results of the study are consistent with previously published heated tube data which indicates that small changes in fuel total sulfur content can lead to significant differences in the thermal stability of kerosene type fuels and their compatibility with copper based materials. In conjunction with the existing thermal stability database, these findings give insight into the feasibility of cooling a long life, high performance, high-pressure liquid rocket combustor and nozzle with RP-1.

  13. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Berkeley National Laboratory 1 Cyclotron Road MS 66R0200 Berkeley CA 94720 510-486-4957 A U.S. Department

  14. Add Sparkle to Your Learning Centers

    ERIC Educational Resources Information Center

    Miller, Susan

    2005-01-01

    This brief column offers ten tips on how to revive classroom learning centers by cleaning up, reassessing spaces, and adding fresh materials. Some of the tips include: create colorful banners; provide inspirational materials; and share surprise boxes.

  15. Photoluminescent properties of complex metal oxide nanopowders for gas sensing

    NASA Astrophysics Data System (ADS)

    Bovhyra, R. V.; Mudry, S. I.; Popovych, D. I.; Savka, S. S.; Serednytski, A. S.; Venhryn, Yu. I.

    2018-03-01

    This work carried out research on the features of photoluminescence of the mixed and complex metal oxide nanopowders (ZnO/TiO2, ZnO/SnO2, Zn2SiO4) in vacuum and gaseous ambient. The nanopowders were obtained using pulsed laser reactive technology. The synthesized nanoparticles were characterized by X-ray diffractometry, energy-dispersive X-ray analysis, and scanning and transmission electron microscopy analysis for their sizes, shapes and collocation. The influence of gas environment on the photoluminescence intensity was investigated. A change of ambient gas composition leads to a rather significant change in the intensity of the photoluminescence spectrum and its deformation. The most significant changes in the photoluminescent spectrum were observed for mixed ZnO/TiO2 nanopowders. This obviously is the result of a redistribution of existing centers of luminescence and the appearance of new adsorption centers of luminescence on the surface of nanopowders. The investigated nanopowders can be effectively used as sensing materials for the construction of the multi-component photoluminescent sensing matrix.

  16. APS SCIENCE 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenner, Richard B.

    The Advanced Photon Source (APS) occupies an 80-acre site on the Argonne national laboratory campus, about 25 miles from downtown chicago, illinois. it shares the site with the center for nanoscale materials and the Advanced Protein characterization facility. for directions to Argonne, see http://www.anl.gov/directions-and-visitor-information. The APS, a national synchrotron radiation research facility operated by Argonne for the u.S. department of energy (doe) office of Science, provides this nation’s brightest high-energy x-ray beams for science. research by APS users extends from the center of the earth to outer space, from new information on combustion engines and microcircuits to new drugs andmore » nanotechnologies whose scale is measured in billionths of a meter. The APS helps researchers illuminate answers to the challenges of our high-tech world, from developing new forms of energy, to sustaining our nation’s technological and economic competitiveness, to pushing back against the ravages of disease. research at the APS promises to have far-reaching« less

  17. Analytical application of femtosecond laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Melikechi, Noureddine; Markushin, Yuri

    2015-05-01

    We report on significant advantages provided by femtosecond laser-induced breakdown spectroscopy (LIBS) for analytical applications in fields as diverse as protein characterization and material science. We compare the results of a femto- and nanosecond-laser-induced breakdown spectroscopy analysis of dual-elemental pellets in terms of the shot-to-shot variations of the neutral/ionic emission line intensities. This study is complemented by a numerical model based on two-dimensional random close packing of disks in an enclosed geometry. In addition, we show that LIBS can be used to obtain quantitative identification of the hydrogen composition of bio-macromolecules in a heavy water solution. Finally, we show that simultaneous multi-elemental particle assay analysis combined with LIBS can significantly improve macromolecule detectability up to near single molecule per particle efficiency. Research was supported by grants from the National Science Foundation Centers of Research Excellence in Science and Technology (0630388), National Aeronautics and Space Administration (NX09AU90A). Our gratitude to Dr. D. Connolly, Fox Chase Cancer Center.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, Thomas Winfield; Brown, Kathryn Elizabeth; Chavez, David E.

    Here, the synthesis and characterization of new 1,2,4-triazolyl and 4-nitro-pyrazolyl substituted tetrazine ligands has been achieved. The strongly electron deficient 1,2,4-triazolyl substituted ligands did not coordinate Fe(II) metal centers, while the mildly electron deficient 4-nitro-pyrazolyl substituted ligands did coordinate Fe(II) metal centers in a 2:1 ratio of ligand to metal. The thermal stability and mechanical sensitivity characteristics of the complexes are similar to the conventional explosive pentaerythritol tetranitrate. The complexes had strong absorption in the visible region of the spectrum that extended into the near-infrared. In spite of having improved oxygen balances, increased mechanical sensitivity, and similar absorption of NIRmore » light to recently reported Fe(II) tetrazine complexes, these newly synthesized explosives were more difficult to initiate with Nd:YAG pulsed laser light. More specifically, the complexes required lower densities (0.9 g/cm 3) to initiate at the same threshold utilized to initiate previous materials at higher densities (1.05 g/cm 3).« less

  19. PMN-PT Single-Crystal High-Frequency Kerfless Phased Array

    PubMed Central

    Chen, Ruimin; Cabrera-Munoz, Nestor E.; Lam, Kwok Ho; Hsu, Hsiu-sheng; Zheng, Fan; Zhou, Qifa; Shung, K. Kirk

    2015-01-01

    This paper reports the design, fabrication, and characterization of a miniature high-frequency kerfless phased array prepared from a PMN-PT single crystal for forward-looking intravascular or endoscopic imaging applications. After lapping down to around 40 μm, the PMN-PT material was utilized to fabricate 32-element kerfless phased arrays using micromachining techniques. The aperture size of the active area was only 1.0 × 1.0 mm. The measured results showed that the array had a center frequency of 40 MHz, a bandwidth of 34% at −6 dB with a polymer matching layer, and an insertion loss of 20 dB at the center frequency. Phantom images were acquired and compared with simulated images. The results suggest that the feasibility of developing a phased array mounted at the tip of a forward-looking intravascular catheter or endoscope. The fabricated array exhibits much higher sensitivity than PZT ceramic-based arrays and demonstrates that PMN-PT is well suited for this application. PMID:24859667

  20. Report on the Progress of Weld Development of Irradiated Materials at the Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhili; Miller, Roger G.; Chen, Jian

    This report summarizes recent welding activities on irradiated alloys in the advanced welding facility at the Radiochemical Engineering Development Center of Oak Ridge National Laboratory and the development of post-weld characterization capabilities and procedures that will be critical for assessing the ability of the advanced welding processes housed within the facility to make successful repairs on irradiated alloys. This facility and its capabilities were developed jointly by the U.S. Department of Energy, Office of Nuclear Energy, Light Water Reactor Sustainability Program and the Electric Power Research Institute, Long Term Operations Program (and the Welding and Repair Technology Center), with additionalmore » support from Oak Ridge National Laboratory. The significant, on-going effort to weld irradiated alloys with high Helium concentrations and comprehensively analyze the results will eventually yield validated repair techniques and guidelines for use by the nuclear industry in extending the operational lifetimes of nuclear power plants.« less

  1. PESTICIDE MEASUREMENT RESULTS FROM THE FIRST NATIONAL ENVIRONMENTAL SURVEY OF CHILD CARE CENTERS

    EPA Science Inventory

    Approximately 13 million children are placed in non-parental child care during the work day; however, children's exposures to chemicals in child care centers have not been characterized. To address this data gap, three federal agencies teamed to characterize contaminants in child...

  2. Multiscale analysis: a way to investigate laser damage precursors in materials for high power applications at nanosecond pulse duration

    NASA Astrophysics Data System (ADS)

    Natoli, J. Y.; Wagner, F.; Ciapponi, A.; Capoulade, J.; Gallais, L.; Commandré, M.

    2010-11-01

    The mechanism of laser induced damage in optical materials under high power nanosecond laser irradiation is commonly attributed to the presence of precursor centers. Depending on material and laser source, the precursors could have different origins. Some of them are clearly extrinsic, such as impurities or structural defects linked to the fabrication conditions. In most cases the center size ranging from sub-micrometer to nanometer scale does not permit an easy detection by optical techniques before irradiation. Most often, only a post mortem observation of optics permits to proof the local origin of breakdown. Multi-scale analyzes by changing irradiation beam size have been performed to investigate the density, size and nature of laser damage precursors. Destructive methods such as raster scan, laser damage probability plot and morphology studies permit to deduce the precursor densities. Another experimental way to get information on nature of precursors is to use non destructive methods such as photoluminescence and absorption measurements. The destructive and non destructive multiscale studies are also motivated for practical reasons. Indeed LIDT studies of large optics as those used in LMJ or NIF projects are commonly performed on small samples and with table top lasers whose characteristics change from one to another. In these conditions, it is necessary to know exactly the influence of the different experimental parameters and overall the spot size effect on the final data. In this paper, we present recent developments in multiscale characterization and results obtained on optical coatings (surface case) and KDP crystal (bulk case).

  3. PREFACE: 8th Ibero-American Congress on Sensors (IBERSENSOR 2012)

    NASA Astrophysics Data System (ADS)

    Ramos, Idalia; Santiago-Avilés, Jorge J.

    2013-03-01

    The 8th Ibero-American Congress on Sensors (IBERSENSOR 2012) was held in Carolina, Puerto Rico on 16-19 October 2012. IBERSENSOR is a forum of the Spanish and Portuguese speaking scientific community, working in the fields of sensors of every possible kind and their applications. Previous conferences in the series were successfully carried out in La Habana, Cuba (1998); Buenos Aires, Argentina (2000); Lima, Perú (2002); Puebla, México (2004); Montevideo, Uruguay (2006); Sao Paulo, Brasil (2008) and Lisboa, Portugal (2010). IBERSENSOR 2012 participants included researchers from eleven countries in the Americas and Europe, in particular young men and women. The conference was organized and sponsored by the Partnership for Research and Education in Materials (NSF-DMR-0934195) a collaborative program between the University of Puerto Rico at Humacao (UPRH) and the University of Pennsylvania (PENN) Materials Research Science and Engineering Center, sponsored by the USA National Science Foundation (NSF). Other sponsors included the Center for Advanced Nanoscale Materials of the University of Puerto Rico at Río Piedras and the Nano/Bio Interface Center (NBIC) at PENN. The Proceedings of IBERSENSOR 2012 include a selection of 21 research papers in the areas of Materials and Processes for Sensor Development, Nano-Sensors, Chemical Sensors, Mechanical Sensors, Optical Sensors, Wireless Sensors, Sensor signal conditioning and Instrumentation, Microfluidic Devices, and Biomedical and Environmental Applications. Editors Idalia Ramos University of Puerto Rico at Humacao, Puerto Rico Jorge J Santiago-Avilés University of Pennsylvania, USA Group photograph Logos Ibero-American Congress on Sensors Ibero-American Congress on Sensors (Ibersensor) Main Sponsors PENN-UPRH-PREM Partnership for Research and Education in Materials (PENN-UPRH-PREM) University of Puerto Rico at Humacao USA National Science Foundation USA National Science Foundation Other Sponsors Center for Advanced Nanoscale Materials Center for Advanced Nanoscale Materials (CNM), University of Puerto Rico, Río Piedras Nano/Bio Interface Center Nano/Bio Interface Center, University of Pennsylvania

  4. Pathologic observations of the duodenum in 615 consecutive duodenal specimens: I. benign lesions

    PubMed Central

    Terada, Tadashi

    2012-01-01

    The author investigated histopathology of 615 consecutive duodenal specimens in our pathology laboratory. Computer search of the duodenal lesions was performed. Review of histological slides was done, when appropriate. The duodenal specimens were composed of 567 benign lesions and 48 malignant lesions. The 567 benign lesions were composed of chronic non-specific duodenitis in 334 cases (60.0%), duodenal ulcer in 101 cases (17,8%), heterotopic gastric mucosa in 81 cases (14.3%), hyperplastic polyp in 16 cases (2.8%), Brunner's gland hyperplasia in 14 cases (2.5%), Brunner's gland adenoma in 8 cases (1.4%), lymphoid polyp in 5 cases (0.8%), tubular adenoma in 4 cases (0.7%), lymphangioma in 2 cases (0.4%), endocrine nests in 1 case (0.2%), and amyloidosis in 1 case (0.2%). The chronic non-specific duodenitis was characterized by edema and lymphocytic infiltration. The duodenal ulcer was characterized by exudate, necrosis, granulation tissue and regenerative epithelium. The heterotopic gastric mucosa consisted of two types: one was composed of only foveolar epithelium (n=21) and another foveolar epithelium and fundic glands (n=60). Hyperplastic polyp was characterized by proliferation of gastric foveolar-like epithelium. The Brunner's gland hyperplasia was characterized by hyperplastic proliferation of the gland. The Brunner gland adenoma was characterized by neoplastic proliferation of the gland. The lymphoid polyp was characterized by large lymph follicles with large germinal centers. The tubular adenoma was characterized by adenomatous proliferation of intestinal epithelium, similar to colon adenoma. The lymphangioma was characterized by submucosal cavernous proliferation of lymphatics. The endocrine cell nests were characterized by non-neoplasmic proliferation of neuroendocrine cells. The amyloidosis was characterized by deposition of amorphous materials positive with Congo-red stain. PMID:22295146

  5. Pathologic observations of the duodenum in 615 consecutive duodenal specimens: I. benign lesions.

    PubMed

    Terada, Tadashi

    2012-01-01

    The author investigated histopathology of 615 consecutive duodenal specimens in our pathology laboratory. Computer search of the duodenal lesions was performed. Review of histological slides was done, when appropriate. The duodenal specimens were composed of 567 benign lesions and 48 malignant lesions. The 567 benign lesions were composed of chronic non-specific duodenitis in 334 cases (60.0%), duodenal ulcer in 101 cases (17,8%), heterotopic gastric mucosa in 81 cases (14.3%), hyperplastic polyp in 16 cases (2.8%), Brunner's gland hyperplasia in 14 cases (2.5%), Brunner's gland adenoma in 8 cases (1.4%), lymphoid polyp in 5 cases (0.8%), tubular adenoma in 4 cases (0.7%), lymphangioma in 2 cases (0.4%), endocrine nests in 1 case (0.2%), and amyloidosis in 1 case (0.2%). The chronic non-specific duodenitis was characterized by edema and lymphocytic infiltration. The duodenal ulcer was characterized by exudate, necrosis, granulation tissue and regenerative epithelium. The heterotopic gastric mucosa consisted of two types: one was composed of only foveolar epithelium (n=21) and another foveolar epithelium and fundic glands (n=60). Hyperplastic polyp was characterized by proliferation of gastric foveolar-like epithelium. The Brunner's gland hyperplasia was characterized by hyperplastic proliferation of the gland. The Brunner gland adenoma was characterized by neoplastic proliferation of the gland. The lymphoid polyp was characterized by large lymph follicles with large germinal centers. The tubular adenoma was characterized by adenomatous proliferation of intestinal epithelium, similar to colon adenoma. The lymphangioma was characterized by submucosal cavernous proliferation of lymphatics. The endocrine cell nests were characterized by non-neoplasmic proliferation of neuroendocrine cells. The amyloidosis was characterized by deposition of amorphous materials positive with Congo-red stain.

  6. Space Environmental Effects on Coated Tether Materials

    NASA Technical Reports Server (NTRS)

    Gittemeier, Keith A.; Hawk, Clark W.; Finckenor, Miria M.; Watts, Ed

    2005-01-01

    The University of Alabama in Huntsville s Propulsion Research Center has teamed with NASA's Marshall Space Flight Center (MSFC) to research the effects of atomic oxygen (AO) bombardment on coated tether materials. Tethers Unlimited Inc. has provided several candidate tether materials with various coatings for AO exposure in MSFC s Atomic Oxygen Beam Facility. Additional samples were exposed to ultraviolet (UV) radiation at MSFC. AO erodes most organic materials, and ultraviolet radiation embrittles polymers. This test series was performed to determine the effect of AO and UV on the mechanical integrity of tether materials that were treated with AO-protective coatings, such as polyhedral oligomeric silsesquioxane (POSS) or metallization. Both TUI's Multi-Application Survivable Tether (MAST) Experiment and Marshall Space Flight Center s Momentum Exchange Electrodynamic Reboost (MXER) programs will benefit from this research by helping to determine tether materials and coatings that give the longest life with the lowest mass penalty.

  7. Atomic Oxygen Effects on Coated Tether Materials

    NASA Technical Reports Server (NTRS)

    Gittemeier, Keith A.; Hawk, Clark W.; Finckenor, Miria M.; Watts, Ed

    2005-01-01

    The University of Alabama in Huntsville s Propulsion Research Center has teamed with NASA's Marshall Space Flight Center (MSFC) to research the effects of atomic oxygen (AO) bombardment on coated tether materials. Tethers Unlimited Inc. has provided several candidate tether materials with various coatings for (AO) exposure in MSFC's Atomic Oxygen Beam Facility. Additional samples were exposed to ultraviolet (UV) radiation at MSFC. AO erodes most organic materials, and ultraviolet radiation embrittles polymers. This test series was performed to determine the effect of AO and UV on the mechanical integrity of tether materials that were treated with AO-protective coatings, such as Photosil or metallization. Both TUI's Multi-Application Survivable Tether (MAST) Experiment and Marshall Space Flight Center's Momentum Exchange Electrodynamic Reboost (MXER) programs will benefit from this research by helping to determine tether materials and coatings that give the longest life with the lowest mass penalty.

  8. Hazardous Materials Management and Emergency Response training Center needs assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGinnis, K.A.; Bolton, P.A.; Robinson, R.K.

    1993-09-01

    For the Hanford Site to provide high-quality training using simulated job-site situations to prepare the 4,000 Site workers and 500 emergency responders for known and unknown hazards a Hazardous Materials Management and Emergency Response Training Center is needed. The center will focus on providing classroom lecture as well as hands-on, realistic training. The establishment of the center will create a partnership among the US Department of Energy; its contractors; labor; local, state, and tribal governments; and Xavier and Tulane Universities of Louisiana. This report presents the background, history, need, benefits, and associated costs of the proposed center.

  9. Complexities in pyroxene compositions derived from absorption band centers: Examples from Apollo samples, HED meteorites, synthetic pure pyroxenes, and remote sensing data

    NASA Astrophysics Data System (ADS)

    Moriarty, D. P.; Pieters, C. M.

    2016-02-01

    We reexamine the relationship between pyroxene composition and near-infrared absorption bands, integrating measurements of diverse natural and synthetic samples. We test an algorithm (PLC) involving a two-part linear continuum removal and parabolic fits to the 1 and 2 μm bands—a computationally simple approach which can easily be automated and applied to remote sensing data. Employing a suite of synthetic pure pyroxenes, the PLC technique is shown to derive similar band centers to the modified Gaussian model. PLC analyses are extended to natural pyroxene-bearing materials, including (1) bulk lunar basalts and pyroxene separates, (2) diverse lunar soils, and (3) HED meteorites. For natural pyroxenes, the relationship between composition and absorption band center differs from that of synthetic pyroxenes. These differences arise from complexities inherent in natural materials such as exsolution, zoning, mixing, and space weathering. For these reasons, band center measurements of natural pyroxene-bearing materials are compositionally nonunique and could represent three distinct scenarios (1) pyroxene with a narrow compositional range, (2) complexly zoned pyroxene grains, or (3) a mixture of multiple pyroxene (or nonpyroxene) components. Therefore, a universal quantitative relationship between band centers and pyroxene composition cannot be uniquely derived for natural pyroxene-bearing materials without additional geologic context. Nevertheless, useful relative relationships between composition and band center persist in most cases. These relationships are used to interpret M3 data from the Humboldtianum Basin. Four distinct compositional units are identified (1) Mare Humboldtianum basalts, (2) distinct outer basalts, (3) low-Ca pyroxene-bearing materials, and (4) feldspathic materials.

  10. Embedded fragments from U.S. military personnel--chemical analysis and potential health implications.

    PubMed

    Centeno, José A; Rogers, Duane A; van der Voet, Gijsbert B; Fornero, Elisa; Zhang, Lingsu; Mullick, Florabel G; Chapman, Gail D; Olabisi, Ayodele O; Wagner, Dean J; Stojadinovic, Alexander; Potter, Benjamin K

    2014-01-23

    The majority of modern war wounds are characterized by high-energy blast injuries containing a wide range of retained foreign materials of a metallic or composite nature. Health effects of retained fragments range from local or systemic toxicities to foreign body reactions or malignancies, and dependent on the chemical composition and corrosiveness of the fragments in vivo. Information obtained by chemical analysis of excised fragments can be used to guide clinical decisions regarding the need for fragment removal, to develop therapeutic interventions, and to better anticipate future medical problems from retained fragment related injuries. In response to this need, a new U.S Department of Defense (DoD) directive has been issued requiring characterization of all removed fragments to provide a database of fragment types occurring in combat injuries. The objective of this study is to determine the chemical composition of retained embedded fragments removed from injured military personnel, and to relate results to histological findings in tissue adjacent to fragment material. We describe an approach for the chemical analysis and characterization of retained fragments and adjacent tissues, and include case examples describing fragments containing depleted uranium (DU), tungsten (W), lead (Pb), and non-metal foreign bodies composed of natural and composite materials. Fragments obtained from four patients with penetrating blast wounds to the limbs were studied employing a wide range of chemical and microscopy techniques. Available adjacent tissues from three of the cases were histologically, microscopically, and chemically examined. The physical and compositional properties of the removed foreign material surfaces were examined with energy dispersive x-ray fluorescence spectrometry (EDXRF), scanning electron microscopy (SEM), laser ablation inductively-coupled plasma mass-spectrometry (LA-ICP-MS), and confocal laser Raman microspectroscopy (CLRM). Quantitative chemical analysis of both fragments and available tissues was conducted employing ICP-MS. Over 800 fragments have been characterized and included as part of the Joint Pathology Center Embedded Fragment Registry. Most fragments were obtained from penetrating wounds sustained to the extremities, particularly soft tissue injuries. The majority of the fragments were primarily composed of a single metal such as iron, copper, or aluminum with traces of antimony, titanium, uranium, and lead. One case demonstrated tungsten in both the fragment and the connected tissue, together with lead. Capsular tissue and fragments from a case from the 1991 Kuwait conflict showed evidence of uranium that was further characterized by uranium isotopic ratios analysis to contain depleted uranium. The present study provides a systematic approach for obtaining a full chemical characterization of retained embedded fragments. Given the vast number of combat casualties with retained fragments, it is expected that fragment analysis will have significant implications for the optimal short and long-term care of wounded service members.

  11. Embedded Fragments from U.S. Military Personnel—Chemical Analysis and Potential Health Implications

    PubMed Central

    Centeno, José A.; Rogers, Duane A.; van der Voet, Gijsbert B.; Fornero, Elisa; Zhang, Lingsu; Mullick, Florabel G.; Chapman, Gail D.; Olabisi, Ayodele O.; Wagner, Dean J.; Stojadinovic, Alexander; Potter, Benjamin K.

    2014-01-01

    Background: The majority of modern war wounds are characterized by high-energy blast injuries containing a wide range of retained foreign materials of a metallic or composite nature. Health effects of retained fragments range from local or systemic toxicities to foreign body reactions or malignancies, and dependent on the chemical composition and corrosiveness of the fragments in vivo. Information obtained by chemical analysis of excised fragments can be used to guide clinical decisions regarding the need for fragment removal, to develop therapeutic interventions, and to better anticipate future medical problems from retained fragment related injuries. In response to this need, a new U.S Department of Defense (DoD) directive has been issued requiring characterization of all removed fragments to provide a database of fragment types occurring in combat injuries. Objectives: The objective of this study is to determine the chemical composition of retained embedded fragments removed from injured military personnel, and to relate results to histological findings in tissue adjacent to fragment material. Methods: We describe an approach for the chemical analysis and characterization of retained fragments and adjacent tissues, and include case examples describing fragments containing depleted uranium (DU), tungsten (W), lead (Pb), and non-metal foreign bodies composed of natural and composite materials. Fragments obtained from four patients with penetrating blast wounds to the limbs were studied employing a wide range of chemical and microscopy techniques. Available adjacent tissues from three of the cases were histologically, microscopically, and chemically examined. The physical and compositional properties of the removed foreign material surfaces were examined with energy dispersive x-ray fluorescence spectrometry (EDXRF), scanning electron microscopy (SEM), laser ablation inductively-coupled plasma mass-spectrometry (LA-ICP-MS), and confocal laser Raman microspectroscopy (CLRM). Quantitative chemical analysis of both fragments and available tissues was conducted employing ICP-MS. Results: Over 800 fragments have been characterized and included as part of the Joint Pathology Center Embedded Fragment Registry. Most fragments were obtained from penetrating wounds sustained to the extremities, particularly soft tissue injuries. The majority of the fragments were primarily composed of a single metal such as iron, copper, or aluminum with traces of antimony, titanium, uranium, and lead. One case demonstrated tungsten in both the fragment and the connected tissue, together with lead. Capsular tissue and fragments from a case from the 1991 Kuwait conflict showed evidence of uranium that was further characterized by uranium isotopic ratios analysis to contain depleted uranium. Conclusions: The present study provides a systematic approach for obtaining a full chemical characterization of retained embedded fragments. Given the vast number of combat casualties with retained fragments, it is expected that fragment analysis will have significant implications for the optimal short and long-term care of wounded service members. PMID:24464236

  12. Laboratory Information Management System (LIMS): A case study

    NASA Technical Reports Server (NTRS)

    Crandall, Karen S.; Auping, Judith V.; Megargle, Robert G.

    1987-01-01

    In the late 70's, a refurbishment of the analytical laboratories serving the Materials Division at NASA Lewis Research Center was undertaken. As part of the modernization efforts, a Laboratory Information Management System (LIMS) was to be included. Preliminary studies indicated a custom-designed system as the best choice in order to satisfy all of the requirements. A scaled down version of the original design has been in operation since 1984. The LIMS, a combination of computer hardware, provides the chemical characterization laboratory with an information data base, a report generator, a user interface, and networking capabilities. This paper is an account of the processes involved in designing and implementing that LIMS.

  13. Overview of Vesta Mineralogy Diversity

    NASA Technical Reports Server (NTRS)

    DeSanctis, M. C.; Ammannito, E.; Capria, M. T.; Capaccioni, F.; Carraro, F.; Fonte, S.; Frigeri, A.; Magni, G.; Marchi, S.; Palomba, E.; hide

    2012-01-01

    4 Vesta is known to have a surface of basaltic material through visible/near-infrared reflectance spectroscopy (1). Vesta s spectrum has strong absorption features centered near 0.9 and 1.9 m, indicative of Fe-bearing pyroxenes. The spectra of HED (howardite, eucrite and diogenite) meteorites have similar features (1). This led to the hypothesis that Vesta was the parent body of the HED clan (2,3) and the discovery of a dynamical Vesta family of asteroids (Vestoids) provides a further link between Vesta and HEDs (4). Data from the Dawn VIR (Visible InfraRed mapping Spectrometer) (5) characterize and map the mineral distribution on Vesta, strengthen the Vesta - HED linkage and provide new insights into Vesta s formation and evolution.

  14. Characterization and performances of DOSION, a dosimetry equipment dedicated to radiobiology experiments taking place at GANIL

    NASA Astrophysics Data System (ADS)

    Boissonnat, Guillaume; Fontbonne, Jean-Marc; Balanzat, Emmanuel; Boumard, Frederic; Carniol, Benjamin; Cassimi, Amine; Colin, Jean; Cussol, Daniel; Etasse, David; Fontbonne, Cathy; Frelin, Anne-Marie; Hommet, Jean; Salvador, Samuel

    2017-06-01

    Currently, radiobiology experiments using heavy ions at GANIL (Grand Accélérateur National d‧Ions Lourds) are conducted under the supervision of the CIMAP (Center for research on Ions, MAterials and Photonics). In this context, a new beam monitoring equipment named DOSION has been developed. It allows to perform measurements of accurate fluence and dose maps in near real time for each biological sample irradiated. In this paper, we present the detection system, its design, performances, calibration protocol and measurements performed during radiobiology experiments. This setup is currently available for any radiobiology experiments if one wishes to correlate one's own sample analysis to state-of-the-art dosimetric references.

  15. Magnetic circuit modifications in resonant vibration harvesters

    NASA Astrophysics Data System (ADS)

    Szabo, Zoltan; Fiala, Pavel; Dohnal, Premysl

    2018-01-01

    The paper discusses the conclusions obtained from a research centered on a vibration-powered milli- or micro generator (MG) operating as a harvester to yield the maximum amount of energy transferred by the vibration of an independent system. The investigation expands on the results proposed within papers that theoretically define the properties characterizing the basic configurations of a generator based on applied Faraday's law of induction. We compared two basic principles of circuit closing in a magnetic circuit that, fully or partially, utilizes a ferromagnetic material, and a large number of generator design solutions were examined and tested. In the given context, the article brings a compact survey of the rules facilitating energy transformation and the designing of harvesters.

  16. Orbital Debris Characterization via Laboratory Optical Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, Healther

    2011-01-01

    Optical observations of orbital debris offer insights that differ from radar measurements (specifically the size parameter,wavelength regime,and altitude range). For example, time-dependent photometric data yield lightcurves in multiple bandpasses that aid in material identification and possible periodic orientations. These data can also be used to help identify shapes and optical properties at multiple phase angles. Capitalizing on optical data products and applying them to generate a more complete understanding of orbital objects is a key objective of NASA's Optical Measurement Program, and the primary reason for the creation of the Optical Measurements Center(OMC). The OMC attempts to emulate space-based illumination conditions using equipment and techniques that parallel telescopic observations and source-target-sensor orientations.

  17. Advanced Materials and Solids Analysis Research Core (AMSARC)

    EPA Science Inventory

    The Advanced Materials and Solids Analysis Research Core (AMSARC), centered at the U.S. Environmental Protection Agency's (EPA) Andrew W. Breidenbach Environmental Research Center in Cincinnati, Ohio, is the foundation for the Agency's solids and surfaces analysis capabilities. ...

  18. Energy Frontier Research Center Materials Science of Actinides (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Burns, Peter (Director, Materials Science of Actinides); MSA Staff

    2017-12-09

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  19. Three-dimensional nanoscale characterisation of materials by atom probe tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devaraj, Arun; Perea, Daniel E.; Liu, Jia

    The development of three-dimensional (3D), characterization techniques with high spatial and mass resolution is crucial for understanding and developing advanced materials for many engineering applications as well as for understanding natural materials. In recent decades, atom probe tomography (APT) which combines a point projection microscope and time-of-flight mass spectrometer has evolved to be an excellent characterization technique capable of providing 3D nanoscale characterization of materials with sub-nanometer scale spatial resolution, with equal sensitivity for all elements. This review discusses the current state as of beginning of the year 2016 of APT instrumentation, new developments in sample preparation methods, experimental proceduresmore » for different material classes, reconstruction of APT results, the current status of correlative microscopy, and application of APT for microstructural characterization in established scientific areas like structural materials as well as new applications in semiconducting nanowires, semiconductor devices, battery materials, catalyst materials, geological materials and biological materials. Finally, a brief perspective is given regarding the future of APT.« less

  20. Symposium on Research and Utilization of Educational Media for Teaching the Deaf: The Educational Media Complex (Nebraska Center for Continuing Education, Lincoln, Nebraska, April 10-12, 1967).

    ERIC Educational Resources Information Center

    Nebraska Univ., Lincoln. Dept. of Educational Administration.

    Papers consider the problems of combining library science and audiovisual education into educational media complexes, or instructional materials centers (IMC's), in schools for the deaf. Areas covered include the concept of such centers, their relationship with the school library, and the personnel, equipment, materials, and production facilities…

Top