Science.gov

Sample records for materials detection research

  1. Materials Science for Nuclear Detection

    SciTech Connect

    Peurrung, Anthony J.

    2008-03-01

    In response to the elevated importance of nuclear detection technology, a variety of research efforts have sought to accelerate the discovery and development of useful new radiation detection materials These efforts have goals such as improving our understanding of how these materials perform, supporting the development of formalized discovery tools, or enabling rapid and effective performance characterization. This article provides an overview of these efforts along with an introduction to the history, physics, and taxonomy of these materials.

  2. Early detection of materials degradation

    NASA Astrophysics Data System (ADS)

    Meyendorf, Norbert

    2017-02-01

    Lightweight components for transportation and aerospace applications are designed for an estimated lifecycle, taking expected mechanical and environmental loads into account. The main reason for catastrophic failure of components within the expected lifecycle are material inhomogeneities, like pores and inclusions as origin for fatigue cracks, that have not been detected by NDE. However, material degradation by designed or unexpected loading conditions or environmental impacts can accelerate the crack initiation or growth. Conventional NDE methods are usually able to detect cracks that are formed at the end of the degradation process, but methods for early detection of fatigue, creep, and corrosion are still a matter of research. For conventional materials ultrasonic, electromagnetic, or thermographic methods have been demonstrated as promising. Other approaches are focused to surface damage by using optical methods or characterization of the residual surface stresses that can significantly affect the creation of fatigue cracks. For conventional metallic materials, material models for nucleation and propagation of damage have been successfully applied for several years. Material microstructure/property relations are well established and the effect of loading conditions on the component life can be simulated. For advanced materials, for example carbon matrix composites or ceramic matrix composites, the processes of nucleation and propagation of damage is still not fully understood. For these materials NDE methods can not only be used for the periodic inspections, but can significantly contribute to the material scientific knowledge to understand and model the behavior of composite materials.

  3. Materials research at CMAM

    NASA Astrophysics Data System (ADS)

    Zucchiatti, Alessandro

    2013-07-01

    The Centro de Micro Analisis de Materiales (CMAM) is a research centre of the Universidad Autónoma de Madrid dedicated to the modification and analysis of materials using ion beam techniques. The infrastructure, based on a HVEE 5MV tandem accelerator, provided with a coaxial Cockcroft Walton charging system, is fully open to research groups of the UAM, to other public research institutions and to private enterprises. The CMAM research covers a few important lines such as advanced materials, surface science, biomedical materials, cultural heritage, materials for energy production. The Centre gives as well support to university teaching and technical training. A detail description of the research infrastructures and their use statistics will be given. Some of the main research results will be presented to show the progress of research in the Centre in the past few years and to motivate the strategic plans for the forthcoming.

  4. Materials research at CMAM

    SciTech Connect

    Zucchiatti, Alessandro

    2013-07-18

    The Centro de Micro Analisis de Materiales (CMAM) is a research centre of the Universidad Autonoma de Madrid dedicated to the modification and analysis of materials using ion beam techniques. The infrastructure, based on a HVEE 5MV tandem accelerator, provided with a coaxial Cockcroft Walton charging system, is fully open to research groups of the UAM, to other public research institutions and to private enterprises. The CMAM research covers a few important lines such as advanced materials, surface science, biomedical materials, cultural heritage, materials for energy production. The Centre gives as well support to university teaching and technical training. A detail description of the research infrastructures and their use statistics will be given. Some of the main research results will be presented to show the progress of research in the Centre in the past few years and to motivate the strategic plans for the forthcoming.

  5. Materials research for fusion

    NASA Astrophysics Data System (ADS)

    Knaster, J.; Moeslang, A.; Muroga, T.

    2016-05-01

    Fusion materials research started in the early 1970s following the observation of the degradation of irradiated materials used in the first commercial fission reactors. The technological challenges of fusion energy are intimately linked with the availability of suitable materials capable of reliably withstanding the extremely severe operational conditions of fusion reactors. Although fission and fusion materials exhibit common features, fusion materials research is broader. The harder mono-energetic spectrum associated with the deuterium-tritium fusion neutrons (14.1 MeV compared to <2 MeV on average for fission neutrons) releases significant amounts of hydrogen and helium as transmutation products that might lead to a (at present undetermined) degradation of structural materials after a few years of operation. Overcoming the historical lack of a fusion-relevant neutron source for materials testing is an essential pending step in fusion roadmaps. Structural materials development, together with research on functional materials capable of sustaining unprecedented power densities during plasma operation in a fusion reactor, have been the subject of decades of worldwide research efforts underpinning the present maturity of the fusion materials research programme.

  6. Puncture detecting barrier materials

    DOEpatents

    Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

    1998-03-31

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

  7. Puncture detecting barrier materials

    DOEpatents

    Hermes, Robert E.; Ramsey, David R.; Stampfer, Joseph F.; Macdonald, John M.

    1998-01-01

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material.

  8. Materials Research Capabilities

    NASA Technical Reports Server (NTRS)

    Stofan, Andrew J.

    1986-01-01

    Lewis Research Center, in partnership with U.S. industry and academia, has long been a major force in developing advanced aerospace propulsion and power systems. One key aspect that made many of these systems possible has been the availability of high-performance, reliable, and long-life materials. To assure a continuing flow of new materials and processing concepts, basic understanding to guide such innovation, and technological support for development of major NASA systems, Lewis has supported a strong in-house materials research activity. Our researchers have discovered new alloys, polymers, metallic composites, ceramics, coatings, processing techniques, etc., which are now also in use by U.S. industry. This brochure highlights selected past accomplishments of our materials research and technology staff. It also provides many examples of the facilities available with which we can conduct materials research. The nation is now beginning to consider integrating technology for high-performance supersonic/hypersonic aircraft, nuclear space power systems, a space station, and new research areas such as materials processing in space. As we proceed, I am confident that our materials research staff will continue to provide important contributions which will help our nation maintain a strong technology position in these areas of growing world competition. Lewis Research Center, in partnership with U.S. industry and academia, has long been a major force in developing advanced aerospace propulsion and power systems. One key aspect that made many of these systems possible has been the availability of high-performance, reliable, and long-life materials. To assure a continuing flow of new materials and processing concepts, basic understanding to guide such innovation, and technological support for development of major NASA systems, Lewis has supported a strong in-house materials research activity. Our researchers have discovered new alloys, polymers, metallic composites

  9. Optical materials research.

    PubMed

    Parsons, W F

    1972-01-01

    There are eras in research when days are filled with excitement because unique materials are being produced and researchers "think what nobody else has thought" (Albert von Szent Gyorgyi). Such were the periods when many new optical glasses emerged from the laboratories of the Eastman Kodak Company and when the hot pressing technology was applied to produce new polycrystalline materials. This paper discusses the people and accomplishments of those periods.

  10. Materials research. [research concerning materials for aerospace applications

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The research is reported concerned with materials for aerospace applications. Areas reported include: electrical properties of glasses, oxides and metals; structural and high temperature properties of crystalline and amorphous materials; and physical properties, and microstructure of materials.

  11. Materials Science Research

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Rathz, Tom

    1995-01-01

    Microgravity materials processing experiments provide an opportunity to perform scientific research in an environment which allows one to observe various phenomena without the masking effects of gravity-driven convective flows, buoyancy, or contaminating influences of walled containers. Even for the most experienced scientists, it is still difficult to predict beforehand, whether or not microgravity experimentation can be successfully performed in space and achieve solutions to problems which are not attainable in 1 g. Consequently, experimentation in ground based facilities which are capable of simulating, in somewhat lesser time frames and to a lesser degree of microgravity, provides a unique low-cost approach to determine the feasibility of continuing research in a particular experiment. The utilization of these facilities in developing the full requirements for a space experiment does present a very cost-effective approach to microgravity experimentation. The Drop Tube Facility at Marshall Space Flight Center (MSFC) provides an excellent test bed for containerless processing experiments such as described here. These facilities have demonstrated for a number of years the capability to develop insight into space experiments involving containerless processing, rapid solidification, and wetting phenomena through the use of lower-cost ground facilities. Once sufficient data has been obtained, then a space-based experiment can be better defined.

  12. Electronics materials research

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The electronic materials and is aimed at the establishment of quantitative relationships underlying crystal growth parameters, materials properties, electronic characteristics and device applications. The overall program evolves about the following main thrust areas: (1) crystal growth novel approaches to engineering of semiconductor materials; (2) investigation of materials properties and electronic characteristics on a macro and microscale; (3) surface properties and surface interactions with the bulk and ambients; (4) electronic properties controlling device applications and device performance.

  13. Carbon Materials Research

    DTIC Science & Technology

    2005-07-14

    behavior, interfacial energies, and surface molecular orientation (surface anchoring states) for mesophase pitch on carbon fibers and other...Mochida (2) extended it to the production of mesophase pitch by dramatically raising Distribution A: Approved for public release; distribution...involved i.e. it is a very insoluble material. Mochida, however, recognized that this material was liquid-crystalline mesophase pitch , which was

  14. Materials research at Stanford University

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Information briefly describing the total research activity related to the science of materials is reported. Emphasis is placed on physical and mechanical properties of composite materials, energy transportation, superconductors, microwave electronics, and solid state electrochemistry.

  15. Encapsulation materials research

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1984-01-01

    Encapsulation materials for solar cells were investigated. The different phases consisted of: (1) identification and development of low cost module encapsulation materials; (2) materials reliability examination; and (3) process sensitivity and process development. It is found that outdoor photothermal aging devices (OPT) are the best accelerated aging methods, simulate worst case field conditions, evaluate formulation and module performance and have a possibility for life assessment. Outdoor metallic copper exposure should be avoided, self priming formulations have good storage stability, stabilizers enhance performance, and soil resistance treatment is still effective.

  16. Instrumentation for Materials Research

    ERIC Educational Resources Information Center

    Claassen, Richard S.

    1976-01-01

    Discusses how sophisticated instrumentation techniques yield practical results in three typical materials problems: fracture analysis, joining, and compatibility. Describes techniques such as scanning and transmission electron microscopy, and Auger spectroscopy. (MLH)

  17. Computational Materials Research

    NASA Technical Reports Server (NTRS)

    Veazie, David R.

    1998-01-01

    High temperature thermoplastic polyimide polymers are incorporated in engineering structures in the form of matrix materials in advanced fiber composites and adhesives in bonded joints. Developing analytical tools to predict long term performance and screen for final materials selection for polymers is the impetus for intensive studies at NASA and major industry based airframe developers. These fiber-reinforced polymeric composites (FRPCs) combine high strength with lightweight. In addition, they offer corrosion and fatigue resistance, a reduction in parts count, and new possibilities for control through aeroelastic tailoring and "smart" structures containing fully-integrated sensors and actuators. However, large-scale acceptance and use of polymer composites has historically been extremely slow. Reasons for this include a lack of familiarity of designers with the materials; the need for new tooling and new inspection and repair infrastructures; and high raw materials and fabrication costs.

  18. Encapsulation materials research

    NASA Technical Reports Server (NTRS)

    Willis, P.

    1985-01-01

    The successful use of outdoor mounting racks as an accelerated aging technique (these devices are called optal reactors); a beginning list of candidate pottant materials for thin-film encapsulation, which process at temperatures well below 100 C; and description of a preliminary flame retardant formulation for ethylene vinyl acetate which could function to increase module flammability ratings are presented.

  19. Materials Sciences Research.

    DTIC Science & Technology

    1975-07-01

    mechanical properties , electron microscopy), b) thermodynamic properties and solubility of oxygen in vanadium and in 8-V 0 (emf of solid 9 galvanic...the electromotive force of solid electrolyte cells in controlled atmospheres is used to • 146 "" determine thermodynamic properties . Effects of...17 A. Anderson - Properties of Materials at Very Low Temperatures (NSF) ............................ 20 J. Mochel

  20. Development of Research Infrastructure in Nevada for the Exploitation of Hyperspectral Image Data to Address Proliferation and Detection of Chemical and Biological Materials.

    SciTech Connect

    James V. Taranik

    2007-12-31

    This research was to exploit hyperspectral reflectance imaging technology for the detection and mapping variability (clutter) of the natural background against which gases in the atmosphere are imaged. The natural background consists of landscape surface cover composed of consolidated rocks, unconsolidated rock weathering products, soils, coatings on rock materials, vegetation, water, materials constructed by humans, and mixtures of the above. Human made gases in the atmosphere may indicate industrial processes important to detecting non-nuclear chemical and biological proliferation. Our research was to exploit the Visible and Near-Infrared (NIR) and the Short-wave Infrared (SWIR) portions of the electromagnetic spectrum to determine the properties of solid materials on the earth’s surface that could influence the detection of gases in the Long-Wave Infrared (LWIR). We used some new experimental hyperspectral imaging technologies to collect data over the Non-Proliferation Test and Evaluation Center (NPTEC) located on the Nevada Test Site (NTS). The SpecTIR HyperSpecTIR (HST) and Specim Dual hyperspectral sensors were used to understand the variability in the imaged background (clutter), that detected, measured, identified and mapped with operational commercial hyperspectral techniques. The HST sensors were determined to be more experimental than operational because of problems with radiometric and atmospheric data correction. However the SpecTIR Dual system, developed by Specim in Finland, eventually was found to provide cost-effective hyperspectral image data collection and it was possible to correct the Dual system’s data for specific areas. Batch processing of long flightlines was still complex, and if comparison to laboratory spectra was desired, the Dual system data still had to be processed using the empirical line method. This research determined that 5-meter spatial resolution was adequate for mapping natural background variations. Furthermore, this

  1. Computational Materials Research

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A. (Editor); Gates, Thomas S. (Editor)

    1996-01-01

    Computational Materials aims to model and predict thermodynamic, mechanical, and transport properties of polymer matrix composites. This workshop, the second coordinated by NASA Langley, reports progress in measurements and modeling at a number of length scales: atomic, molecular, nano, and continuum. Assembled here are presentations on quantum calculations for force field development, molecular mechanics of interfaces, molecular weight effects on mechanical properties, molecular dynamics applied to poling of polymers for electrets, Monte Carlo simulation of aromatic thermoplastics, thermal pressure coefficients of liquids, ultrasonic elastic constants, group additivity predictions, bulk constitutive models, and viscoplasticity characterization.

  2. Programs in Materials Research

    DTIC Science & Technology

    1990-02-01

    Hannah H. GrayII Provost. Gerhard Casper Vice President for Research, Walter E. Massey Dean of Division of the Physical Sciences, Stuart A. RiceUr...88, 7893 (1988). 36. K.D. Gibson, C. Cerjan, J.C. Light, and S.J. Sibener, J. Chem Phys. 88, 7911 (1988). 37. K.D. Gibson, B.M. Hall, D.L. Mills , J.E...Physical Society (1989). I I 51 I 48. C.11. Li, S.Y. Tong and D.L. Mills , Phys. Rev. B 21, 3057 (1980). 49. V. Bortolani, A. Franchini, F. Nizzoli, and

  3. Laser detection of material thickness

    DOEpatents

    Early, James W.

    2002-01-01

    There is provided a method for measuring material thickness comprising: (a) contacting a surface of a material to be measured with a high intensity short duration laser pulse at a light wavelength which heats the area of contact with the material, thereby creating an acoustical pulse within the material: (b) timing the intervals between deflections in the contacted surface caused by the reverberation of acoustical pulses between the contacted surface and the opposite surface of the material: and (c) determining the thickness of the material by calculating the proportion of the thickness of the material to the measured time intervals between deflections of the contacted surface.

  4. Materials Research in Microgravity 2012

    NASA Technical Reports Server (NTRS)

    Hyers, R. (Editor); Bojarevis, V. (Editor); Downey, J.; Henein, H. (Editor); Matson, D.; Seidel, A. (Editor); Voss, D. (Editor); SanSoucie, M. (Compiler)

    2012-01-01

    Reducing gravitational effects such as thermal and solutal buoyancy enables investigation of a large range of different phenomena in materials science. The Symposium on Materials Research in Microgravity involved 6 sessions composed of 39 presentations and 14 posters with contributions from more than 14 countries. The sessions concentrated on four different categories of topics related to ongoing reduced-gravity research. Highlights from this symposium will be featured in the September 2012 issue of JOM. The TMS Materials Processing and Manufacturing Division, Process Technology and Modeling Committee and Solidification Committee sponsored the symposium.

  5. Strain-Detecting Composite Materials

    NASA Technical Reports Server (NTRS)

    Wallace, Terryl A. (Inventor); Smith, Stephen W. (Inventor); Piascik, Robert S. (Inventor); Horne, Michael R. (Inventor); Messick, Peter L. (Inventor); Alexa, Joel A. (Inventor); Glaessgen, Edward H. (Inventor); Hailer, Benjamin T. (Inventor)

    2016-01-01

    A composite material includes a structural material and a shape-memory alloy embedded in the structural material. The shape-memory alloy changes crystallographic phase from austenite to martensite in response to a predefined critical macroscopic average strain of the composite material. In a second embodiment, the composite material includes a plurality of particles of a ferromagnetic shape-memory alloy embedded in the structural material. The ferromagnetic shape-memory alloy changes crystallographic phase from austenite to martensite and changes magnetic phase in response to the predefined critical macroscopic average strain of the composite material. A method of forming a composite material for sensing the predefined critical macroscopic average strain includes providing the shape-memory alloy having an austenite crystallographic phase, changing a size and shape of the shape-memory alloy to thereby form a plurality of particles, and combining the structural material and the particles at a temperature of from about 100-700.degree. C. to form the composite material.

  6. Probe for contamination detection in recyclable materials

    DOEpatents

    Taleyarkhan, Rusi

    2003-08-05

    A neutron detection system for detection of contaminants contained within a bulk material during recycling includes at least one neutron generator for neutron bombardment of the bulk material, and at least one gamma ray detector for detection of gamma rays emitted by contaminants within the bulk material. A structure for analyzing gamma ray data is communicably connected to the gamma ray detector, the structure for analyzing gamma ray data adapted. The identity and concentration of contaminants in a bulk material can also be determined. By scanning the neutron beam, discrete locations within the bulk material having contaminants can be identified. A method for recycling bulk material having unknown levels of contaminants includes the steps of providing at least one neutron generator, at least one gamma ray detector, and structure for analyzing gamma ray data, irradiating the bulk material with neutrons, and then determining the presence of at least one contaminant in the bulk material from gamma rays emitted from the bulk material.

  7. Detection device for hazardous materials

    DOEpatents

    Partin, Judy K.; Grey, Alan E.

    1994-04-05

    A detection device that is activated by the interaction of a hazardous chcal with a coating interactive with said chemical on an optical fiber thereby reducing the amount of light passing through the fiber to a light detector. A combination of optical filters separates the light into a signal beam and a reference beam which after detection, appropriate amplification, and comparison with preset internal signals, activates an alarm means if a predetermined level of contaminant is observed.

  8. Detection device for hazardous material

    SciTech Connect

    Partin, J.K.; Grey, A.E.

    1990-12-31

    This invention is comprised of a detection device that is activated by the interaction of a hazardous chemical with a coating interactive with said chemical on an optical fiber thereby reducing the amount of light passing through the fiber to a light detector. A combination of optical filters separates the light into a signal beam and a reference beam which after detection, appropriate amplification, and comparison with preset internal signals, activates an alarm means if a predetermined level of contaminant is observed.

  9. Detection device for hazardous materials

    DOEpatents

    Partin, Judy K.; Grey, Alan E.

    1994-01-01

    A detection device that is activated by the interaction of a hazardous chcal with a coating interactive with said chemical on an optical fiber thereby reducing the amount of light passing through the fiber to a light detector. A combination of optical filters separates the light into a signal beam and a reference beam which after detection, appropriate amplification, and comparison with preset internal signals, activates an alarm means if a predetermined level of contaminant is observed.

  10. Radiation Detection Material Discovery Initiative at PNNL

    NASA Astrophysics Data System (ADS)

    Milbrath, Brian

    2006-05-01

    Today's security threats are being met with 30-year old radiation technology. Discovery of new radiation detection materials is currently a slow and Edisonian process. With heightened concerns over nuclear proliferation, terrorism and unconventional warfare, an alternative strategy for identification and development of potential radiation detection materials must be adopted. Through the Radiation Detection Materials Discovery Initiative, PNNL focuses on the science-based discovery of next generation materials for radiation detection by addressing three ``grand challenges'': fundamental understanding of radiation detection, identification of new materials, and accelerating the discovery process. The new initiative has eight projects addressing these challenges, which will be described, including early work, paths forward and the opportunities for collaboration.

  11. Automatic on-line detection system design research on internal defects of metal materials based on optical fiber F-P sensing technology

    NASA Astrophysics Data System (ADS)

    Xia, Liu; Shan, Ning; Chao, Ban; Caoshan, Wang

    2016-10-01

    Metal materials have been used in aerospace and other industrial fields widely because of its excellent characteristics, so its internal defects detection is very important. Ultrasound technology is used widely in the fields of nondestructive detection because of its excellent characteristic. But the conventional detection instrument for ultrasound, which has shortcomings such as low intelligent level and long development cycles, limits its development. In this paper, the theory of ultrasound detection is analyzed. A computational method of the defects distributional position is given. The non-contact type optical fiber F-P interference cavity structure is designed and the length of origin cavity is given. The real-time on-line ultrasound detecting experiment devices for internal defects of metal materials is established based on the optical fiber F-P sensing system. The virtual instrument of automation ultrasound detection internal defects is developed based on LabVIEW software and the experimental study is carried out. The results show that this system can be used in internal defect real-time on-line locating of engineering structures effectively. This system has higher measurement precision. Relative error is 6.7%. It can be met the requirement of engineering practice. The system is characterized by simple operation, easy realization. The software has a friendly interface, good expansibility, and high intelligent level.

  12. Polarization imaging detection technology research

    NASA Astrophysics Data System (ADS)

    Xue, Mo-gen; Wang, Feng; Xu, Guo-ming; Yuan, Hong-wu

    2013-09-01

    In this paper we analyse the polarization imaging theory and the commonly process of the polarization imaging detection. Based on this, we summarize our many years' research work especially in the mechanism, technology and system of the polarization imaging detection technology. Combined with the up-to-date development at home and abroad, this paper discusses many theory and technological problems of polarization imaging detection in detail from the view of the object polarization characteristics, key problem and key technology of polarization imaging detection, polarization imaging detection system and application, etc. The theory and technological problems include object all direction polarization characteristic retrieving, the optical electronic machinery integration designing of the polarization imaging detection system, the high precision polarization information analysis and the polarization image fast processing. Moreover, we point out the possible application direction of the polarization imaging detection technology both in martial and civilian fields. We also summarize the possible future development trend of the polarization imaging detection technology in the field of high spectrum polarization imaging. This paper can provide evident reference and guidance to promote the research and development of the polarization imaging detection technology.

  13. Materials sciences research. [research facilities, research projects, and technical reports of materials tests

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Research projects involving materials research conducted by various international test facilities are reported. Much of the materials research is classified in the following areas: (1) acousto-optic, acousto-electric, and ultrasonic research, (2) research for elucidating transport phenomena in well characterized oxides, (3) research in semiconductor materials and semiconductor devices, (4) the study of interfaces and interfacial phenomena, and (5) materials research relevant to natural resources. Descriptions of the individual research programs are listed alphabetically by the name of the author and show all personnel involved, resulting publications, and associated meeting speeches.

  14. Materials science research in microgravity

    NASA Technical Reports Server (NTRS)

    Perepezko, John H.

    1992-01-01

    There are several important attributes of an extended duration microgravity environment that offer a new dimension in the control of the microstructure, processing, and properties of materials. First, when gravitational effects are minimized, buoyancy driven convection flows are also minimized. The flows due to density differences, brought about either by composition or temperature gradients will then be reduced or eliminated to permit a more precise control of the temperature and the composition of a melt which is critical in achieving high quality crystal growth of electronic materials or alloy structures. Secondly, body force effects such as sedimentation, hydrostatic pressure, and deformation are similarly reduced. These effects may interfere with attempts to produce uniformly dispersed or aligned second phases during melt solidification. Thirdly, operating in a microgravity environment will facilitate the containerless processing of melts to eliminate the limitations of containment for reactive melts. The noncontacting forces such as those developed from electromagnet, electrostatic, or acoustic fields can be used to position samples. With this mode of operation, contamination can be minimized to enable the study of reactive melts and to eliminate extraneous crystal nucleation so that novel crystalline structures and new glass compositions may be produced. In order to take advantage of the microgravity environment for materials research, it has become clear that reliable processing models based on a sound ground based experimental experience and an established thermophysical property data base are essential.

  15. System for detecting special nuclear materials

    DOEpatents

    Jandel, Marian; Rusev, Gencho Yordanov; Taddeucci, Terry Nicholas

    2015-07-14

    The present disclosure includes a radiological material detector having a convertor material that emits one or more photons in response to a capture of a neutron emitted by a radiological material; a photon detector arranged around the convertor material and that produces an electrical signal in response to a receipt of a photon; and a processor connected to the photon detector, the processor configured to determine the presence of a radiological material in response to a predetermined signature of the electrical signal produced at the photon detector. One or more detectors described herein can be integrated into a detection system that is suited for use in port monitoring, treaty compliance, and radiological material management activities.

  16. Wireless sensor for detecting explosive material

    SciTech Connect

    Lamberti, Vincent E; Howell, Jr., Layton N; Mee, David K; Sepaniak, Michael J

    2014-10-28

    Disclosed is a sensor for detecting explosive devices. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon absorption of vapor from an explosive material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The explosive device is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.

  17. Detection and drug delivery from superhydrophobic materials

    NASA Astrophysics Data System (ADS)

    Falde, Eric John

    The wetting of a rough material is controlled by surface chemistry and morphology, the liquid phase, solutes, and surfactants that affect the surface tension with the gas phase, and environmental conditions such as temperature and pressure. Materials with high (>150°) apparent contact angles are known as superhydrophobic and are very resistant to wetting. However, in complex biological mixtures eventually protein adsorbs, fouling the surface and facilitating wetting on time scales from seconds to months. The work here uses the partially-wetted (Cassie-Baxter) to fully-wetted (Wenzel) state transition to control drug delivery and to perform surfactant detection via surface tension using hydrophobic and superhydrophobic materials. First there is an overview of the physics of the non-wetting state and the transition to wetting. Then there is a review of how wetting can be controlled by outside stimuli and applications of these materials. Next there is work presented on controlling drug release using superhydrophobic materials with controlled wetting rates, with both in vitro and in vivo results. Then there is work on developing a sensor based on this wetting state transition and its applications toward detecting solute levels in biological fluids for point-of-care diagnosis. Finally, there is work presented on using these sensors for detecting the alcohol content in wine and spirits.

  18. Matrix Characterization in Threat Material Detection Processes

    SciTech Connect

    Obhodas, J.; Sudac, D.; Valkovic, V.

    2009-03-10

    Matrix characterization in the threat material detection is of utmost importance, it generates the background against which the threat material signal has to be identified. Threat materials (explosive, chemical warfare, ...) are usually contained within small volume inside large volumes of variable matrices. We have studied the influence of matrix materials on the capability of neutron systems to identify hidden threat material. Three specific scenarios are considered in some details: case 1--contraband material in the sea containers, case 2 - explosives in soil (landmines), case 3 - explosives and chemical warfare on the sea bottom. Effects of container cargo material on tagged neutron system are seen in the increase of gamma background and the decrease of neutron beam intensity. Detection of landmines is more complex because of variable soil properties. We have studied in detail space and time variations of soil elemental compositions and in particular hydrogen content (humidity). Of special interest are ammunitions and chemical warfare on the sea bottom, damping sites and leftovers from previous conflicts (WW-I, WW-II and local). In this case sea sediment is background source and its role is similar to the role of the soil in the landmine detection. In addition to geochemical cycling of chemical elements in semi-enclosed sea, like the Adriatic Sea, one has to consider also anthropogenic influence, especially when studying small scale variations in concentration levels. Some preliminary experimental results obtained with tagged neutron sensor inside an underwater vehicle are presented as well as data on sediment characterization by X-Ray Fluorescence.

  19. Metabonomics for detection of nuclear materials processing.

    SciTech Connect

    Alam, Todd Michael; Luxon, Bruce A.; Neerathilingam, Muniasamy; Ansari, S.; Volk, David; Sarkar, S.; Alam, Mary Kathleen

    2010-08-01

    Tracking nuclear materials production and processing, particularly covert operations, is a key national security concern, given that nuclear materials processing can be a signature of nuclear weapons activities by US adversaries. Covert trafficking can also result in homeland security threats, most notably allowing terrorists to assemble devices such as dirty bombs. Existing methods depend on isotope analysis and do not necessarily detect chronic low-level exposure. In this project, indigenous organisms such as plants, small mammals, and bacteria are utilized as living sensors for the presence of chemicals used in nuclear materials processing. Such 'metabolic fingerprinting' (or 'metabonomics') employs nuclear magnetic resonance (NMR) spectroscopy to assess alterations in organismal metabolism provoked by the environmental presence of nuclear materials processing, for example the tributyl phosphate employed in the processing of spent reactor fuel rods to extract and purify uranium and plutonium for weaponization.

  20. Detection Of Special Nuclear Materials Tagged Neutrons

    SciTech Connect

    Deyglun, Clement; Perot, Bertrand; Carasco, Cedric; Sannie, Guillaume; Gameiro, Jordan; Corre, Gwenole; Boudergui, Karim; Konzdrasovs, Vladimir; Normand, Stephane; Cusset, Eric

    2015-07-01

    In order to detect Special Nuclear Materials (SNM) in unattended luggage or cargo containers in the field of homeland security, fissions are induced by 14 MeV neutrons produced by an associated particle DT neutron generator, and prompt fission particles correlated with tagged neutron are detected by plastic scintillators. SMN produce high multiplicity events due to induced fissions, whereas nonnuclear materials produce low multiplicity events due to cross-talk, (n,2n) or (n,n'γ) reactions. The data acquisition electronics is made of compact FPGA boards. The coincidence window is triggered by the alpha particle detection, allowing to tag the emission date and direction of the 14 MeV interrogating neutron. The first part of the paper presents experiment vs. calculation comparisons to validate MCNP-PoliMi simulations and the post-processing tools developed with the data analysis framework ROOT. Measurements have been performed using different targets (iron, lead, graphite), first with small plastic scintillators (10 x 10 x 10 cm{sup 3}) and then with large detectors (10 x 10 x 100 cm{sup 3}) to demonstrate that nuclear materials can be differentiated from nonnuclear dense materials (iron, lead) in iron and wood matrixes. A special attention is paid on SNM detection in abandoned luggage. In the second part of the paper, the performances of a cargo container inspection system are studied by numerical simulation, following previous work reported in. Detectors dimensions and shielding against the neutron generator background are optimized for container inspection. Events not correlated to an alpha particle (uncorrelated background), counting statistics, time and energy resolutions of the data acquisition system are all taken into account in a realistic numerical model. The impact of the container matrix (iron, ceramic, wood) has been investigated by studying the system capability to detect a few kilograms of SNM in different positions in the cargo container, within 10

  1. Strategic Research Directions In Microgravity Materials Science

    NASA Technical Reports Server (NTRS)

    Clinton, Raymond G., Jr.; Wargo, Michael J.; Marzwell, Neville L.; Sanders, Gerald; Schlagheck, Ron; Semmes, Ed; Bassler, Julie; Cook, Beth

    2004-01-01

    The Office of Biological and Physical Research (OBPR) is moving aggressively to align programs, projects, and products with the vision for space exploration. Research in advanced materials is a critical element in meeting exploration goals. Research in low gravity materials science in OBPR is being focused on top priority needs in support of exploration: 1) Space Radiation Shielding; 2) In Situ Resource Utilization; 3) In Situ Fabrication and Repair; 4) Materials Science for Spacecraft and Propulsion Systems; 5) Materials Science for Advanced Life Support Systems. Roles and responsibilities in low gravity materials research for exploration between OBPR and the Office of Exploration Systems are evolving.

  2. Muon Tracking to Detect Special Nuclear Materials

    SciTech Connect

    Schwellenbach, D.; Dreesen, W.; Green, J. A.; Tibbitts, A.; Schotik, G.; Borozdin, K.; Bacon, J.; Midera, H.; Milner, C.; Morris, C.; Perry, J.; Barrett, S.; Perry, K.; Scott, A.; Wright, C.; Aberle, D.

    2013-03-18

    Previous experiments have proven that nuclear assemblies can be imaged and identified inside of shipping containers using vertical trajectory cosmic-ray muons with two-sided imaging. These experiments have further demonstrated that nuclear assemblies can be identified by detecting fission products in coincidence with tracked muons. By developing these technologies, advanced sensors can be designed for a variety of warhead monitoring and detection applications. The focus of this project is to develop tomographic-mode imaging using near-horizontal trajectory muons in conjunction with secondary particle detectors. This will allow imaging in-situ without the need to relocate the objects and will enable differentiation of special nuclear material (SNM) from other high-Z materials.

  3. Materials research at Stanford University. [composite materials, crystal structure, acoustics

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.

  4. Sensor Materials - Detecting Molecules, Mixtures and Microorganisms -

    DTIC Science & Technology

    2002-04-05

    1090 Vienna, Austria ABSTRACT Sensor materials based on molecularly imprinted organic and inorganic polymers were designed and characterized according...both organic and inorganic polymers , able to selectively re-include the template species. Imprinting was performed both on the molecular and the...for the specific detection of small organic molecules, major improvements in sensor layer design can be achieved by molecular imprinting methods [3,4

  5. Detecting fission from special nuclear material sources

    DOEpatents

    Rowland, Mark S [Alamo, CA; Snyderman, Neal J [Berkeley, CA

    2012-06-05

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. The system includes a graphing component that displays the plot of the neutron distribution from the unknown source over a Poisson distribution and a plot of neutrons due to background or environmental sources. The system further includes a known neutron source placed in proximity to the unknown source to actively interrogate the unknown source in order to accentuate differences in neutron emission from the unknown source from Poisson distributions and/or environmental sources.

  6. The Evaluation and Research of Curriculum Materials.

    ERIC Educational Resources Information Center

    Eisner, Elliot W.

    The production and sale of instructional materials are now big business in this country. Hence it is desirable, and probably necessary, to establish standards for such materials. Research in the area of curriculum materials is basically virgin territory. The evaluation of different types of curriculum materials will require the application of…

  7. Photo-fission Methods to detect Fissile Materials

    NASA Astrophysics Data System (ADS)

    Johnson, Micah S.; Glenn, A.; Hartouni, E. P.; Sheets, S. A.; Soltz, R. A.; Danagoulian, A.; Korbly, S. E.; Ledoux, R. J.

    2014-09-01

    A mission objective of various national security agencies is to develop systems that can detect fissile material. There are a myriad of researchers at national laboratories, academic institutions, and industry who are investigating various methods to detect fissile materials. These methods are broken down into active or passive detection systems. Examples of active systems include neutron or photon sources to stimulate and/or scatter from materials. Our focus has been to use photons near the fission barrier of various actinides to excite fission modes and measure the correlated and uncorrelated neutrons. We will present and discuss results from recent measurements. We will present the overall results of our effort and discuss some of the open questions. A mission objective of various national security agencies is to develop systems that can detect fissile material. There are a myriad of researchers at national laboratories, academic institutions, and industry who are investigating various methods to detect fissile materials. These methods are broken down into active or passive detection systems. Examples of active systems include neutron or photon sources to stimulate and/or scatter from materials. Our focus has been to use photons near the fission barrier of various actinides to excite fission modes and measure the correlated and uncorrelated neutrons. We will present and discuss results from recent measurements. We will present the overall results of our effort and discuss some of the open questions. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. New Trends in Research of Energetic Materials

    DTIC Science & Technology

    2007-11-02

    material costs) recycling liquidation by combustion liquidation costs " safe " material usage safe disarming cost decreasing about 60-80...4. TITLE AND SUBTITLE New Trends in Research of Energetic Materials 5. FUNDING NUMBERS FA8655-04-1-5001 6. AUTHOR(S) Prof Zvatopluk Zeman...Affairs Office) 12b. DISTRIBUTION CODE A ABSTRACT (Maximum 200 words) The Final Proceedings for New Trends in Research of Energetic Materials , 20

  9. Materials and Waste Management Research

    EPA Pesticide Factsheets

    EPA is developing data and tools to reduce waste, manage risks, reuse and conserve natural materials, and optimize energy recovery. Collaboration with states facilitates assessment and utilization of technologies developed by the private sector.

  10. Nonlinear ultrasonic scanning to detect material defects

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1998-01-01

    A method and system are provided to detect defects in a material. Waves of known frequency(ies) are mixed at an interaction zone in the material. As a result, at least one of a difference wave and a sum wave are generated in the interaction zone. The difference wave occurs at a difference frequency and the sum wave occurs at a sum frequency. The amplitude of at least one nonlinear signal based on the sum and/or difference waves is then measured. The nonlinear signal is defined as the amplitude of one of the difference wave and sum wave relative to the product of the amplitude of the surface waves. The amplitude of the nonlinear signal is an indication of defects (e.g., dislocation dipole density) in the interaction zone.

  11. Advanced Materials for Exploration Task Research Results

    NASA Technical Reports Server (NTRS)

    Cook, M. B. (Compiler); Murphy, K. L.; Schneider, T.

    2008-01-01

    The Advanced Materials for Exploration (AME) Activity in Marshall Space Flight Center s (MSFC s) Exploration Science and Technology Directorate coordinated activities from 2001 to 2006 to support in-space propulsion technologies for future missions. Working together, materials scientists and mission planners identified materials shortfalls that are limiting the performance of long-term missions. The goal of the AME project was to deliver improved materials in targeted areas to meet technology development milestones of NASA s exploration-dedicated activities. Materials research tasks were targeted in five areas: (1) Thermal management materials, (2) propulsion materials, (3) materials characterization, (4) vehicle health monitoring materials, and (5) structural materials. Selected tasks were scheduled for completion such that these new materials could be incorporated into customer development plans.

  12. Basic and Applied Research in Materials

    DTIC Science & Technology

    1976-06-30

    This report describes the research carried out in two major areas: 1) Materials for Energy Storage and 2) Heterogeneous Catalysis . Materials for...constructed from inexpensive, readily obtainable materials. Heterogeneous Catalysis : a number of the most important heterogeneous catalysts consist of

  13. Materials Processing Research and Development

    DTIC Science & Technology

    2010-08-01

    of microstructural evolution, (5) development of Gamma and Beta-Gamma titanium alloys towards rolled sheets for thermal protection applications, ( 6 ...the hydrostatic stress. This work was published in Metallurgical and Materials Transactions A by Nicolaou, Miller, and Semiatin [ 6 ]. 4 2.2.2 The...observed values for the Titanium 6242s measured by Porter and John, as well as Ti6- 4 alloy reported on by Chan in Mater. Trans, 2008. In addition

  14. Analytical Ultrasonics in Materials Research and Testing

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1986-01-01

    Research results in analytical ultrasonics for characterizing structural materials from metals and ceramics to composites are presented. General topics covered by the conference included: status and advances in analytical ultrasonics for characterizing material microstructures and mechanical properties; status and prospects for ultrasonic measurements of microdamage, degradation, and underlying morphological factors; status and problems in precision measurements of frequency-dependent velocity and attenuation for materials analysis; procedures and requirements for automated, digital signal acquisition, processing, analysis, and interpretation; incentives for analytical ultrasonics in materials research and materials processing, testing, and inspection; and examples of progress in ultrasonics for interrelating microstructure, mechanical properites, and dynamic response.

  15. Meta-material for nuclear particle detection

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Salvato, M.; Lucci, M.; Ottaviani, I.; Cirillo, M.; Scherillo, A.; Schooneveld, E. M.; Vannozzi, A.; Celentano, G.; Pietropaolo, A.

    2017-02-01

    Superconducting strips coated with boron were engineered with a view to subnuclear particle detection. Combining the characteristics of boron as a generator of α-particles (as a consequence of neutron absorption) and the ability of superconducting strips to act as resistive switches, it is shown that fabricated Nb-boron and NbN-boron strips represent a promising basis for implementing neutron detection devices. In particular, the superconducting transition of boron-coated NbN strips generates voltage outputs of the order of a few volts thanks to the relatively higher normal state resitivity of NbN with respect to Nb. This result, combined with the relatively high transition temperature of NbN (of the order of 16 K for the bulk material), is an appealing prospect for future developments. The coated strips are meta-devices since their constituting material does not exist in nature and it is engineered to accomplish a specific task, i.e. generate an output voltage signal upon α-particle irradiation.

  16. Detection of electromagnetic radiation using nonlinear materials

    DOEpatents

    Hwang, Harold Y.; Liu, Mengkun; Averitt, Richard D.; Nelson, Keith A.; Sternbach, Aaron; Fan, Kebin

    2016-06-14

    An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.

  17. Intense Photoneutron Sources For Nuclear Material Detection

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi; Shaw, Timothy; King, Michael

    2011-06-01

    Intense neutron sources are essential for cargo inspection for a broad range of threats from explosives, to contraband, to nuclear materials and especially SNM (Special Nuclear Materials). To be effective over a wide range of cargo materials, in particular for hydrogenous cargo such as food, and to offer practical inspection times, the neutron source must be very strong, typically >1010 neutrons per second. Unfortunately there are currently no reasonably compact and economical neutron generators with the required intensities. The insufficiency and inadequacy of intense neutron sources are especially conspicuous in the ≤2.5 MeV range (low voltage (d,D) generator). This energy range is needed if the strong signature of prompt fission neutrons (≈3 per fission) is to be detected and discerned from the numerous source neutrons. The photonuclear reactions of x-rays from commercial linacs in appropriate converters can provide ample intensities of neutrons. These converters have a very low (γ,n) energy threshold: 1.67 MeV for beryllium and 2.23 MeV for deuterium. The intense x-ray beams provided by commercial x-ray systems, more than compensate for the relatively low (γ,n) cross-sections which are in the milli-barn range. The choice of converter material, the geometrical shape, dimensions and location relative to the x-ray source, determine the efficiency of the neutron conversion. For electron accelerators with less than 10 MeV, the preferred converters, Be and D2O, are also very good neutron moderators. Thus, while increasing the converters' thickness leads to an increase in the overall neutron yield, this causes the softening of the neutron spectrum, which reduces the neutron penetration especially in hydrogenous cargos. Photoneutron sources can be optimized to meet specific needs such as maximum fission signals in various cargo materials of interest. Efficient photoneutron sources with different energy spectra were investigated. Conversion efficiency of more than

  18. Active Neutron Interrogation to Detect Shielded Fissionable Material

    SciTech Connect

    D. L. Chichester; E. H. Seabury

    2009-05-01

    Portable electronic neutron generators (ENGs) may be used to interrogate suspicious items to detect, characterize, and quantify the presence fissionable material based upon the measurement of prompt and/or delayed emissions of neutrons and/or photons resulting from fission. The small size (<0.2 m3), light weight (<12 kg), and low power consumption (<50 W) of modern ENGs makes them ideally suited for use in field situations, incorporated into systems carried by 2-3 individuals under rugged conditions. At Idaho National Laboratory we are investigating techniques and portable equipment for performing active neutron interrogation of moderate sized objects less than ~2-4 m3 to detect shielded fissionable material. Our research in this area relies upon the use of pulsed deuterium-tritium ENGs and the measurement of die-away prompt fission neutrons and other neutron signatures in-between neutron pulses from the ENG and after the ENG is turned off.

  19. Reusable surface insulation materials research and development

    NASA Technical Reports Server (NTRS)

    Goldstein, H. E.; Buckley, J. D.; King, H. M.; Probst, H. B.; Spiker, I. K.

    1972-01-01

    Reusable surface insulation is considered a prime candidate for heat shielding large areas of the space shuttle vehicle. The composition and fabrication of RSI materials are discussed, followed by evolution of RSI and current problems, physical and thermal properties, arc plasma test data and results, and material improvement research. Finally, a summary of RSI technology status is presented.

  20. The materials processing research base of the Materials Processing Center

    NASA Technical Reports Server (NTRS)

    Latanision, R. M.

    1986-01-01

    An annual report of the research activities of the Materials Processing Center of the Massachusetts Institute of Technology is given. Research on dielectrophoresis in the microgravity environment, phase separation kinetics in immiscible liquids, transport properties of droplet clusters in gravity-free fields, probes and monitors for the study of solidification of molten semiconductors, fluid mechanics and mass transfer in melt crystal growth, and heat flow control and segregation in directional solidification are discussed.

  1. Materials Research With Neutrons at NIST

    PubMed Central

    Cappelletti, R. L.; Glinka, C. J.; Krueger, S.; Lindstrom, R. A.; Lynn, J. W.; Prask, H. J.; Prince, E.; Rush, J. J.; Rowe, J. M.; Satija, S. K.; Toby, B. H.; Tsai, A.; Udovic, T. J.

    2001-01-01

    The NIST Materials Science and Engineering Laboratory works with industry, standards bodies, universities, and other government laboratories to improve the nation’s measurements and standards infrastructure for materials. An increasingly important component of this effort is carried out at the NIST Center for Neutron Research (NCNR), at present the most productive center of its kind in the United States. This article gives a brief historical account of the growth and activities of the Center with examples of its work in major materials research areas and describes the key role the Center can expect to play in future developments. PMID:27500021

  2. Novel Materials and Devices for Solid-State Neutron Detection

    SciTech Connect

    Manginell, Ronald P.; Pfeifer, Kent B.

    2015-11-01

    There is a need in many fields, such as nuclear medicine, non-proliferation, energy exploration, national security, homeland security, nuclear energy, etc, for miniature, thermal neutron detectors. Until recently, thermal neutron detection has required physically large devices to provide sufficient neutron interaction and transduction signal. Miniaturization would allow broader use in the fields just mentioned and open up other applications potentially. Recent research shows promise in creating smaller neutron detectors through the combination of high-neutron-cross-section converter materials and solid-state devices. Yet, till recently it is difficult to measure low neutron fluxes by solidstate means given the need for optimized converter materials (purity, chemical composition and thickness) and a lack of designs capable of efficient transduction of the neutron conversion products (x-rays, electrons, gamma rays). Gadolinium-based semiconductor heterojunctions have detected electrons produced by Gd-neutron reactions but only at high neutron fluxes. One of the main limitations to this type of approach is the use of thin converter layers and the inability to utilize all the conversion products. In this LDRD we have optimized the converter material thickness and chemical composition to improve capture of conversion electrons and have detected thermal neutrons with high fidelity at low flux. We are also examining different semiconductor materials and converter materials to attempt to capture a greater percentage of the conversion electrons, both low and higher energy varieties. We have studied detector size and bias scaling, and cross-sensitivity to xrays and shown that we can detect low fluxes of thermal neutrons in less than 30 minutes with high selectivity by our approach. We are currently studying improvements in performance with direct placement of the Gd converter on the detector. The advancement of sensitive, miniature neutron detectors will have benefits in

  3. Materials research institute annual report FY98

    SciTech Connect

    Radousky, H

    1999-11-02

    The Materials Research Institute (MRI) is the newest of the University/LLNL Institutes and began operating in March 1997. The MRI is one of five Institutes reporting to the LLNL University Relations Program (URP), all of which have as their primary goal to facilitate university interactions at LLNL. This report covers the period from the opening of the MRI through the end of FY98 (September 30, 1998). The purpose of this report is to emphasize both the science that has been accomplished, as well as the LLNL and university people who were involved. The MRI is concentrating on projects, which highlight and utilize the Laboratory's unique facilities and expertise. Our goal is to enable the best university research to enhance Laboratory programs in the area of cutting-edge materials science. The MRI is focusing on three primary areas of materials research: Biomaterials (organic/inorganic interfaces, biomemetic processes, materials with improved biological response, DNA materials science); Electro/Optical Materials (laser materials and nonlinear optical materials, semiconductor devices, nanostructured materials); and Metals/Organics (equation of state of metals, synthesis of unique materials, high explosives/polymers). In particular we are supporting projects that will enable the MRI to begin to make a distinctive name for itself within the scientific community and will develop techniques applicable to LLNL's core mission. This report is organized along the lines of these three topic areas. A fundamental goal of the MRI is to nucleate discussion and interaction between Lab and university researchers, and among Lab researchers from different LLNL Directorates. This is accomplished through our weekly seminar series, special seminar series such as Biomaterials and Applications of High Pressure Science, conferences and workshops, our extensive visitors program and MRI lunches. We are especially pleased to have housed five graduate students who are performing their thesis

  4. Composite Structures and Materials Research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, Roberto J.

    2001-01-01

    A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI) Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

  5. Composite Structures and Materials Research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, roberto J.

    2003-01-01

    A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI), Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

  6. Chemistry and materials science research report

    SciTech Connect

    Not Available

    1990-05-31

    The research reported here in summary form was conducted under the auspices of Weapons-Supporting Research (WSR) and Institutional Research and Development (IR D). The period covered is the first half of FY90. The results reported here are for work in progress; thus, they may be preliminary, fragmentary, or incomplete. Research in the following areas are briefly described: energetic materials, tritium, high-Tc superconductors, interfaces, adhesion, bonding, fundamental aspects of metal processing, plutonium, synchrotron-radiation-based materials science, photocatalysis on doped aerogels, laser-induced chemistry, laser-produced molecular plasmas, chemistry of defects, dta equipment development, electronic structure study of the thermodynamic and mechanical properties of Al-Li Alloys, and the structure-property link in sub-nanometer materials.

  7. Method for detecting radiation dose utilizing thermoluminescent material

    DOEpatents

    Miller, Steven D.; McDonald, Joseph C.; Eichner, Fred N.; Durham, James S.

    1992-01-01

    The amount of ionizing radiation to which a thermoluminescent material has been exposed is determined by first cooling the thermoluminescent material and then optically stimulating the thermoluminescent material by exposure to light. Visible light emitted by the thermoluminescent material as it is allowed to warm up to room temperature is detected and counted. The thermoluminescent material may be annealed by exposure to ultraviolet light.

  8. Pulsed Photofission Delayed Gamma Ray Detection for Nuclear Material Identification

    SciTech Connect

    John Kavouras; Xianfei Wen; Daren R. Norman; Dante R. Nakazawa; Haori Yang

    2012-11-01

    Innovative systems with increased sensitivity and resolution are in great demand to detect diversion and to prevent misuse in support of nuclear materials management for the U.S. fuel cycle. Nuclear fission is the most important multiplicative process involved in non-destructive active interrogation. This process produces the most easily recognizable signature for nuclear materials. High-energy gamma rays can also excite a nucleus and cause fission through a process known as photofission. After photofission reactions, delayed signals are easily distinguishable from the interrogating radiation. Linac-based, advanced inspection techniques utilizing the fission signals after photofission have been extensively studied for homeland security applications. Previous research also showed that a unique delayed gamma ray energy spectrum exists for each fissionable isotope. Isotopic composition measurement methods based on delayed gamma ray spectroscopy will be the primary focus of this work.

  9. Advanced research workshop: nuclear materials safety

    SciTech Connect

    Jardine, L J; Moshkov, M M

    1999-01-28

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  10. Material and Virtual Workspaces in Physics Research

    NASA Astrophysics Data System (ADS)

    Wickman, Chad; Haas, Christina; Palffy-Muhoray, Peter

    2009-03-01

    A growing body of research has examined the potential for computer-based tools to improve the quality and scope of physics education. Yet, few studies have investigated how experienced scientists deploy those tools in the conduct and communication of their work. Based on a study of text production in liquid crystal physics, I will discuss how specific applications, like LabVIEW, mediate the practice of experimental research. Findings suggest that experimentation involves a complex negotiation of material and virtual constraints and that, as a result, a concept of scientific literacy must account for the processes through which scientists visualize, display, and characterize their objects of study symbolically and textually. This approach, in examining the relationship between the material and virtual in a modern scientific workplace, ultimately offers insight into education that prepares students to undertake and communicate research in dynamic, multimedia laboratory environments.

  11. Integrated nuclear techniques to detect illicit materials

    SciTech Connect

    DeVolpi, A.

    1997-10-01

    This paper discusses the problem of detecting explosives in the context of an object being transported for illicit purposes. The author emphasizes that technologies developed for this particular application have payoffs in many related problem areas. The author discusses nuclear techniques which can be applied to this detection problem. These include: x-ray imaging; neutronic interrogation; inelastic neutron scattering; fieldable neutron generators. He discusses work which has been done on the applications of these technologies, including results for detection of narcotics. He also discusses efforts to integrate these techniques into complementary systems which offer improved performance.

  12. Overview of NASA's Microgravity Materials Research Program

    NASA Technical Reports Server (NTRS)

    Downey, James Patton; Grugel, Richard

    2012-01-01

    The NASA microgravity materials program is dedicated to conducting microgravity experiments and related modeling efforts that will help us understand the processes associated with the formation of materials. This knowledge will help improve ground based industrial production of such materials. The currently funded investigations include research on the distribution of dopants and formation of defects in semiconductors, transitions between columnar and dendritic grain morphology, coarsening of phase boundaries, competition between thermally and kinetically favored phases, and the formation of glassy vs. crystalline material. NASA microgravity materials science investigators are selected for funding either through a proposal in response to a NASA Research Announcement or by participation in a team proposing to a foreign agency research announcement. In the latter case, a US investigator participating in a successful proposal to a foreign agency can then apply to NASA for funding of an unsolicited proposal. The program relies on cooperation with other aerospace partners from around the world. The ISS facilities used for these investigations are provided primarily by partnering with foreign agencies and in most cases the US investigators are working as a part of a larger team studying a specific area of materials science. The following facilities are to be utilized for the initial investigations. The ESA provided Low Gradient Facility and the Solidification and Quench Inserts to the Materials Research Rack/Materials Science Laboratory are to be used primarily for creating bulk samples that are directionally solidified or quenched from a high temperature melt. The CNES provided DECLIC facility is used to observe morphological development in transparent materials. The ESA provided Electro-Magnetic Levitator (EML) is designed to levitate, melt and then cool samples in order to study nucleation behavior. The facility provides conditions in which nucleation of the solid is

  13. Neutron scattering for materials science. Materials Research Society proceedings

    SciTech Connect

    Shapiro, S.M. ); Moss, S.C. ); Jorgensen, J.D. )

    1990-01-01

    Neutron Scattering is by now a well-established technique which has been used by condensed matter scientists to probe both the structure and the dynamical interactions in solids and liquids. The use of neutron scattering methods in materials science research has in turn increased dramatically in recent years. The symposium presented in this book was assembled to bring together scientists with a wide range of interest, including high-T{sub c} superconducting materials, phase transformations, neutron depth profiling, structure and dynamics of glasses and liquids, surfaces and interfaces, porous media, intercalation compounds and lower dimensional systems, structure and dynamics of polymers, residual stress analysis, ordering and phase separation in alloys, and magnetism in alloys and multilayers. The symposium included talks covering the latest advances in broad areas of interest such as Rietveld structure refinement, triple axis spectrometry, quasi elastic scattering and diffusion, small angle scattering and surface scattering.

  14. Space Research Results Purify Semiconductor Materials

    NASA Technical Reports Server (NTRS)

    2010-01-01

    While President Obama's news that NASA would encourage private companies to develop vehicles to take NASA into space may have come as a surprise to some, NASA has always encouraged private companies to invest in space. More than two decades ago, NASA established Commercial Space Centers across the United States to encourage industry to use space as a place to conduct research and to apply NASA technology to Earth applications. Although the centers are no longer funded by NASA, the advances enabled by that previous funding are still impacting us all today. For example, the Space Vacuum Epitaxy Center (SVEC) at the University of Houston, one of the 17 Commercial Space Centers, had a mission to create advanced thin film semiconductor materials and devices through the use of vacuum growth technologies both on Earth and in space. Making thin film materials in a vacuum (low-pressure environment) is advantageous over making them in normal atmospheric pressures, because contamination floating in the air is lessened in a vacuum. To grow semiconductor crystals, researchers at SVEC utilized epitaxy the process of depositing a thin layer of material on top of another thin layer of material. On Earth, this process took place in a vacuum chamber in a clean room lab. For space, the researchers developed something called the Wake Shield Facility (WSF), a 12-foot-diameter disk-shaped platform designed to grow thin film materials using the low-pressure environment in the wake of the space shuttle. Behind an orbiting space shuttle, the vacuum levels are thousands of times better than in the best vacuum chambers on Earth. Throughout the 1990s, the WSF flew on three space shuttle missions as a series of proof-of-concept missions. These experiments are a lasting testament to the success of the shuttle program and resulted in the development of the first thin film materials made in the vacuum of space, helping to pave the way for better thin film development on Earth.

  15. Method of enhancing radiation response of radiation detection materials

    DOEpatents

    Miller, Steven D.

    1997-01-01

    The present invention is a method of increasing radiation response of a radiation detection material for a given radiation signal by first pressurizing the radiation detection material. Pressurization may be accomplished by any means including mechanical and/or hydraulic. In this application, the term "pressure" includes fluid pressure and/or mechanical stress.

  16. Method for detecting radiation dose utilizing thermoluminescent material

    DOEpatents

    Miller, Steven D.; McDonald, Joseph C.; Eichner, Fred N.; Tomeraasen, Paul L.

    1991-01-01

    The amount of ionizing radiation to which a thermoluminescent material has been exposed is determined by first cooling the thermoluminescent material to a cryogenic temperature. The thermoluminescent material is then optically stimulated by exposure to ultraviolet light. Visible light emitted by the thermoluminescent material as it is allowed to warm up to room temperature is detected and counted. The thermoluminescent material may be annealed by exposure to ultraviolet light.

  17. Method for detecting radiation dose utilizing thermoluminescent material

    DOEpatents

    Miller, S.D.; McDonald, J.C.; Eichner, F.N.; Durham, J.S.

    1992-08-04

    The amount of ionizing radiation to which a thermoluminescent material has been exposed is determined by first cooling the thermoluminescent material and then optically stimulating the thermoluminescent material by exposure to light. Visible light emitted by the thermoluminescent material as it is allowed to warm up to room temperature is detected and counted. The thermoluminescent material may be annealed by exposure to ultraviolet light. 5 figs.

  18. NASA Materials Research for Extreme Conditions

    NASA Technical Reports Server (NTRS)

    Sharpe, R. J.; Wright, M. D.

    2009-01-01

    This Technical Memorandum briefly covers various innovations in materials science and development throughout the course of the American Space program. It details each innovation s discovery and development, explains its significance, and describes the applications of this material either in the time period discovered or today. Topics of research include silazane polymers, solvent-resistant elastomeric polymers (polyurethanes and polyisocyanurates), siloxanes, the Space Shuttle thermal protection system, phenolic-impregnated carbon ablator, and carbon nanotubes. Significance of these developments includes the Space Shuttle, Apollo programs, and the Constellation program.

  19. Subthreshold neutron interrogator for detection of radioactive materials

    DOEpatents

    Evans, Michael L.; Menlove, Howard O.; Baker, Michael P.

    1980-01-01

    A device for detecting fissionable material such as uranium in low concentrations by interrogating with photoneutrons at energy levels below 500 keV, and typically about 26 keV. Induced fast neutrons having energies above 500 keV by the interrogated fissionable material are detected by a liquid scintillator or recoil proportional counter which is sensitive to the induced fast neutrons. Since the induced fast neutrons are proportional to the concentration of fissionable material, detection of induced fast neutrons indicate concentration of the fissionable material.

  20. Nuclear material detection apparatus and method

    DOEpatents

    Jones, James L.; Hoggan, Jerry M.; Harker, Yale D.; Yoon, Woo Y.; Johnson, Larry O.

    2006-11-28

    A device for detecting photonuclear-induced neutrons is described herein. One embodiment of the device may comprise a neutron detector and a detection circuit. The neutron detector may comprise a detector output. The detection circuit may be operatively connected to the detector output and may comprise an amplifier, a low-pass filter, and a high pass filter. The amplifier may comprise an amplifier input and an amplifier output. The amplifier input may be being operatively connected to the detector output. The low-pass filter may comprise a low-pass filter input and a low-pass filter output. The low-pass filter input may be operatively connected to the amplifier output. The high-pass filter may comprise a high-pass filter input and a high-pass filter output. The high-pass filter input may be operatively connected to the amplifier output.

  1. Optical detection of cracks in translucent materials

    SciTech Connect

    Petrosky, E.J.; Meeks, R.F.

    1982-03-30

    The qualitative determination of macroscopic and microscopic cracking in ferroelectric ceramics and other translucent materials is achieved by observing the attenuation of light across internal fracture planes within the material. The study was performed on ferroelectric and ceramic disks up to 0.5 in. thick. The microscopic equipment used was an Olympus Vanox Microscope fitted with a vertical brightfield illuminator, polarizer, rotatable analyzer and a quartz-halogen light source. Macroscopic inspection was made with a typical laboratory quartz-halogen illuminator equipped with a fiber-optic light guide. It is shown that inspection by internal lighting using polarized light is a highly effective means for the nondestructive determination of microscopic and macroscopic cracking in translucent materials.

  2. Research Concerning Detection of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Grady, Maxwell; Cunningham, John; Kuhlmann, Steve; Spinka, Hal; Underwood, Dave; Hammergren, Mark

    2010-02-01

    Throughout my academic career at Loyola I have carried out research with the Loyola University Cosmic Event Detection System concerning the possibility of detection of ultra high energy cosmic rays (UHECRs) based on radio meteor scattering methods. This research was furthered through summer internships and research fellowships at Adler Planetarium Chicago and Stony Brook University in New York. At Adler Planetarium we used a helium balloon carrying a Geiger counter and other equipment to record the cosmic ray flux at various points in the atmosphere. The results clearly show the flux depends on the atmospheric density. At Stony Brook University I studied their advanced system for detecting cosmic rays in similar manner to radio meteor scattering principles. Research there focused on detection algorithms and also on the possibility of utilizing Digital Tv (DTv) signals for further research. Through the research a solid understanding of cosmic rays was formed including topics such as origins and energy scales of cosmic rays, both of which pose unanswered questions. )

  3. Sensor Detects Overheating Of Perishable Material

    NASA Technical Reports Server (NTRS)

    Dordick, Jonathan S.; Klibanov, Alexander

    1990-01-01

    Experimental temperature sensor changes color rapidly and irreversibly when temperature rises above pre-determined level. Based on reactions of enzymes in paraffins, blended so mixture melts at temperature considered maximum safe value. Similar devices used to detect temperature abuse, whether foods or medicines refrigerated exposed to excessive temperatures during shipment and storage. By viewing sensor, receiving clerk tells immediately whether product maintained at safe temperatures and acceptable.

  4. Weapons and Materials Research Directorate (WMRD) Laboratory Demonstration Study

    DTIC Science & Technology

    2015-02-01

    Weapons and Materials Research Directorate (WMRD) Laboratory Demonstration Study by Nora M Eldredge ARL-SR-0311 February 2015...Weapons and Materials Research Directorate (WMRD) Laboratory Demonstration Study Nora M Eldredge Weapons and Materials Research Directorate, ARL...September 2014 4. TITLE AND SUBTITLE Weapons and Materials Research Directorate (WMRD) Laboratory Demonstration Study 5a. CONTRACT NUMBER 5b

  5. [Research progress of dental machinable materials].

    PubMed

    Liu, Xiao Zhou; Lu, Pei Jun; Wang, Yong

    2008-12-18

    The concept of computer-aided design/computer aided manufacturing (CAD/CAM) was first mentioned decades ago in the field of dentistry. The technology to make dental restorations has found wide application recently and developed rapidly in prosthodontics and oral implantology, for it could save patients' time and manpower, have precision on prostheses' edging, etc. Until now there are several commercial CAD/CAM systems on market. With the use of CAD/CAM technology in dentistry, it has broken the traditional pattern of making dentures manually. Meanwhile, it brings opportunity for material science. The machinable/milled materials in dentistry should have not only excellent biocompatibility, but also machining and physical properties. Both of them are important. Nowadays, a great number of blocks are made from feldspar ceramics, glass-ceramics, alumina oxide, zirconium oxide, titanium, composite materials, wax and so on. Lots of researchers have had their focus on metal-free materials, because it can make the restorations look more natural and not show the inside metal color. However, strength like feldspar ceramics has its own disadvantages. It has strict indications, otherwise the restoration may fail. The technique called In-Ceram has been used long time ago. It also has long clinical experience and excellent long-term prognosis. People have explored this technique in CAD/CAM restorations. Studies have manifested that it can be utilized this way. At first, alumina was milled with pores; then, glass was infiltrated to the milled material. After zirconia had its success used in orthopedics, it became more and more popular to investigate whether this stuff was suitable in dentistry or not. Luckily, it has been proved adaptable for making single crown in posterior area, fixed partial dentures, in particular, and milling it using CAM equipment, due to the partially sintered block's hardness like chalk. Several milled polymer materials are made for temporary crowns or

  6. Organic materials able to detect analytes

    NASA Technical Reports Server (NTRS)

    Rose, Aimee (Inventor); Swager, Timothy M. (Inventor); Zhu, Zhengguo (Inventor); Bulovic, Vladimir (Inventor); Madigan, Conor Francis (Inventor)

    2012-01-01

    The present invention generally relates to polymers with lasing characteristics that allow the polymers to be useful in detecting analytes. In one aspect, the polymer, upon an interaction with an analyte, may exhibit a change in a lasing characteristic that can be determined in some fashion. For example, interaction of an analyte with the polymer may affect the ability of the polymer to reach an excited state that allows stimulated emission of photons to occur, which may be determined, thereby determining the analyte. In another aspect, the polymer, upon interaction with an analyte, may exhibit a change in stimulated emission that is at least 10 times greater with respect to a change in the spontaneous emission of the polymer upon interaction with the analyte. The polymer may be a conjugated polymer in some cases. In one set of embodiments, the polymer includes one or more hydrocarbon side chains, which may be parallel to the polymer backbone in some instances. In another set of embodiments, the polymer may include one or more pendant aromatic rings. In yet another set of embodiments, the polymer may be substantially encapsulated in a hydrocarbon. In still another set of embodiments, the polymer may be substantially resistant to photobleaching. In certain aspects, the polymer may be useful in the detection of explosive agents, such as 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (DNT).

  7. Material degradation detection by magnetic method

    SciTech Connect

    Yamaguchi, A.; Maeda, N.; Sugibayashi, T.

    1995-08-01

    To be able to evaluate the life of nuclear power plant becomes inevitable as the plant operating period extends. So, magnetic methods using Barkhausen noise (BHN) and B-H curve were applied to detect the degradation by fatigue and thermal aging. Low alloy steel (SA 508 cl.2) was fatigued, and duplex stainless steel (SCS 14A) was aged at 400 C. For the degradation by thermal aging, BHN and B-H curve were measured and good correlations between magnetic properties and aging time were obtained. For fatigue, BHN was measured at predetermined loading cycles and, at each predetermined cycle, the effect of stress or strain condition in the measurement was evaluated. The results showed that BHN was affected by the stress or strain condition in the measurement, the cause of which seemed to be the change of internal stress condition, and by identifying the measuring condition, good correlation between BHN and fatigue damage was obtained.

  8. Covariance Spectroscopy for Fissile Material Detection

    SciTech Connect

    Rusty Trainham, Jim Tinsley, Paul Hurley, Ray Keegan

    2009-06-02

    Nuclear fission produces multiple prompt neutrons and gammas at each fission event. The resulting daughter nuclei continue to emit delayed radiation as neutrons boil off, beta decay occurs, etc. All of the radiations are causally connected, and therefore correlated. The correlations are generally positive, but when different decay channels compete, so that some radiations tend to exclude others, negative correlations could also be observed. A similar problem of reduced complexity is that of cascades radiation, whereby a simple radioactive decay produces two or more correlated gamma rays at each decay. Covariance is the usual means for measuring correlation, and techniques of covariance mapping may be useful to produce distinct signatures of special nuclear materials (SNM). A covariance measurement can also be used to filter data streams because uncorrelated signals are largely rejected. The technique is generally more effective than a coincidence measurement. In this poster, we concentrate on cascades and the covariance filtering problem.

  9. Research on high energy density capacitor materials

    NASA Technical Reports Server (NTRS)

    Somoano, Robert

    1988-01-01

    The Pulsed Plasma thruster is the simplest of all electric propulsion devices. It is a pulsed device which stores energy in capacitors for each pulse. The lifetimes and energy densities of these capacitors are critical parameters to the continued use of these thrusters. This report presents the result of a research effort conducted by JPL into the materials used in capacitors and the modes of failure. The dominant failure mechanism was determined to be material breakdown precipitated by heat build-up within the capacitors. The presence of unwanted gas was identified as the source of the heat. An aging phenomena was discovered in polycarbonate based capacitors. CO build-up was noted to increase with the number of times the capacitor had been discharged. Improved quality control was cited as being essential for the improvement of capacitor lifetimes.

  10. Materials dispersion and biodynamics project research

    NASA Technical Reports Server (NTRS)

    Lewis, Marian L.

    1992-01-01

    The Materials Dispersion and Biodynamics Project (MDBP) focuses on dispersion and mixing of various biological materials and the dynamics of cell-to-cell communication and intracellular molecular trafficking in microgravity. Research activities encompass biomedical applications, basic cell biology, biotechnology (products from cells), protein crystal development, ecological life support systems (involving algae and bacteria), drug delivery (microencapsulation), biofilm deposition by living organisms, and hardware development to support living cells on Space Station Freedom (SSF). Project goals are to expand the existing microgravity science database through experiments on sounding rockets, the Shuttle, and COMET program orbiters and to evolve,through current database acquisition and feasibility testing, to more mature and larger-scale commercial operations on SSF. Maximized utilization of SSF for these science applications will mean that service companies will have a role in providing equipment for use by a number of different customers. An example of a potential forerunner of such a service for SSF is the Materials Dispersion Apparatus (MDA) 'mini lab' of Instrumentation Technology Associates, Inc. (ITA) in use on the Shuttle for the Commercial MDAITA Experiments (CMIX) Project. The MDA wells provide the capability for a number of investigators to perform mixing and bioprocessing experiments in space. In the area of human adaptation to microgravity, a significant database has been obtained over the past three decades. Some low-g effects are similar to Earth-based disorders (anemia, osteoporosis, neuromuscular diseases, and immune system disorders). As new information targets potential profit-making processes, services and products from microgravity, commercial space ventures are expected to expand accordingly. Cooperative CCDS research in the above mentioned areas is essential for maturing SSF biotechnology and to ensure U.S. leadership in space technology

  11. 2010 Membranes: Materials & Processes Gordon Research Conference

    SciTech Connect

    Jerry Lin

    2010-07-30

    The GRC series on Membranes: Materials and Processes have gained significant international recognition, attracting leading experts on membranes and other related areas from around the world. It is now known for being an interdisciplinary and synergistic meeting. The next summer's edition will keep with the past tradition and include new, exciting aspects of material science, chemistry, chemical engineering, computer simulation with participants from academia, industry and national laboratories. This edition will focus on cutting edge topics of membranes for addressing several grand challenges facing our society, in particular, energy, water, health and more generally sustainability. During the technical program, we want to discuss new membrane structure and characterization techniques, the role of advanced membranes and membrane-based processes in sustainability/environment (including carbon dioxide capture), membranes in water processes, and membranes for biological and life support applications. As usual, the informal nature of the meeting, excellent quality of the oral presentations and posters, and ample opportunity to meet many outstanding colleagues make this an excellent conference for established scientists as well as for students. A Gordon Research Seminar (GRS) on the weekend prior to the GRC meeting will provide young researchers an opportunity to present their work and network with outstanding experts. It will also be a right warm-up for the conference participants to join and enjoy the main conference.

  12. Detection of fissionable materials in cargoes using monochromatic photon radiography

    NASA Astrophysics Data System (ADS)

    Danagoulian, Areg; Lanza, Richard; O'Day, Buckley; LNSP Team

    2015-04-01

    The detection of Special Nuclear Materials (e.g. Pu and U) and nuclear devices in the commercial cargo traffic is one of the challenges posed by the threat of nuclear terrorism. Radiography and active interrogation of heavily loaded cargoes require ~ 1 - 10MeV photons for penetration. In a proof-of-concept system under development at MIT, the interrogating monochromatic photon beam is produced via a 11B(d , nγ) 12C reaction. To achieve this, a boron target is used along with the 3 MeV d+ RFQ accelerator at MIT-Bates. The reactions results in the emission of very narrow 4.4 MeV and 15.1 MeV gammas lines. The photons, after traversing the cargo, are detected by an array of NaI(Tl) detectors. A spectral analysis of the transmitted gammas allows to independently determine the areal density and the atomic number (Z) of the cargo. The proposed approach could revolutionize cargo inspection, which, in its current fielded form has to rely on simple but high dose bremsstrahlung sources. Use of monochromatic sources would significantly reduce the necessary dose and allow for better determination of the cargo's atomic number. The general methodology will be described and the preliminary results from the proof-of-concept system will be presented and discussed. Supported by NSF/DNDO Collaborative Research ARI-LA Award ECCS-1348328.

  13. Radioactive Material Used In Research | RadTown USA | US ...

    EPA Pesticide Factsheets

    2016-12-09

    Some laboratories use radioactive material to assist their research. Radioactive materials are used in research settings to help researchers create and test new medicines, technologies and procedures for plants, animals and people. Research laboratories must follow strict rules to order, store, use and dispose of radioactive material.

  14. Apparatus and method for detecting flaws in conductive material

    SciTech Connect

    Hockey, Ronald L.; Riechers, Douglas M.

    1999-01-01

    The present invention is an improved sensing unit for detecting flaws in conductive material wherein the sensing coil is positioned away from a datum of either the datum point, the datum orientation, or a combination thereof. Position of the sensing coil away from a datum increases sensitivity for detecting flaws having a characteristic volume less than about 1 mm.sup.3, and further permits detection of subsurface flaws. Use of multiple sensing coils permits quantification of flaw area or volume.

  15. Apparatus and method for detecting flaws in conductive material

    SciTech Connect

    Hockey, R.L.; Riechers, D.M.

    1999-11-16

    The present invention is an improved sensing unit for detecting flaws in conductive material wherein the sensing coil is positioned away from a datum of either the datum point, the datum orientation, or a combination thereof. Position of the sensing coil away from a datum increases sensitivity for detecting flaws having a characteristic volume less than about 1 mm{sup 3}, and further permits detection of subsurface flaws. Use of multiple sensing coils permits quantification of flaw area or volume.

  16. The materials processing research base of the Materials Processing Center

    NASA Technical Reports Server (NTRS)

    Flemings, M. C.; Bowen, H. K.; Kenney, G. B.

    1980-01-01

    The goals and activities of the center are discussed. The center activities encompass all engineering materials including metals, ceramics, polymers, electronic materials, composites, superconductors, and thin films. Processes include crystallization, solidification, nucleation, and polymer synthesis.

  17. Proof of Principle for Active Detection of Fissionable Material Using Intense, Pulsed-Bremsstrahlung-Induced Photofission

    DTIC Science & Technology

    2014-10-07

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6770--14-9554 Proof of Principle for Active Detection of Fissionable Material Using...of Fissionable Material Using Intense, Pulsed-Bremsstrahlung-Induced Photofission R.J. Commisso, J.W. Schumer, R.J. Allen, D.D. Hinshelwood, S.L...induce photofission in fissile material . We are investigating the applicability of this mechanism, using photons from bremsstrahlung, for long-range

  18. Organic materials and devices for detecting ionizing radiation

    DOEpatents

    Doty, F. Patrick; Chinn, Douglas A.

    2007-03-06

    A .pi.-conjugated organic material for detecting ionizing radiation, and particularly for detecting low energy fission neutrons. The .pi.-conjugated materials comprise a class of organic materials whose members are intrinsic semiconducting materials. Included in this class are .pi.-conjugated polymers, polyaromatic hydrocarbon molecules, and quinolates. Because of their high resistivities (.gtoreq.10.sup.9 ohmcm), these .pi.-conjugated organic materials exhibit very low leakage currents. A device for detecting and measuring ionizing radiation can be made by applying an electric field to a layer of the .pi.-conjugated polymer material to measure electron/hole pair formation. A layer of the .pi.-conjugated polymer material can be made by conventional polymer fabrication methods and can be cast into sheets capable of covering large areas. These sheets of polymer radiation detector material can be deposited between flexible electrodes and rolled up to form a radiation detector occupying a small volume but having a large surface area. The semiconducting polymer material can be easily fabricated in layers about 10 .mu.m to 100 .mu.m thick. These thin polymer layers and their associated electrodes can be stacked to form unique multi-layer detector arrangements that occupy small volume.

  19. Noncontacting thermoelectric detection of material imperfections in metals

    SciTech Connect

    Peter B. Nagy; Adnan H. Nayfeh; Waseem I. Faidi; Hector Carreon; Balachander Lakshminaraya; Feng Yu; Bassam Abu-Nabah

    2005-06-17

    This project was aimed at developing a new noncontacting thermoelectric method for nondestructive detection of material imperfections in metals. The method is based on magnetic sensing of local thermoelectric currents around imperfections when a temperature gradient is established throughout a conducting specimen by external heating and cooling. The surrounding intact material serves as the reference electrode therefore the detection sensitivity could be very high if a sufficiently sensitive magnetometer is used in the measurements. This self-referencing, noncontacting, nondestructive inspection technique offers the following distinct advantages over conventional methods: high sensitivity to subtle variations in material properties, unique insensitivity to the size, shape, and other geometrical features of the specimen, noncontacting nature with a substantial stand-off distance, and the ability to probe relatively deep into the material. The potential applications of this method cover a very wide range from detection metallic inclusions and segregations, inhomogeneities, and tight cracks to characterization of hardening, embrittlement, fatigue, texture, and residual stresses.

  20. Indentation Methods in Advanced Materials Research Introduction

    SciTech Connect

    Pharr, George Mathews; Cheng, Yang-Tse; Hutchings, Ian; Sakai, Mototsugu; Moody, Neville; Sundararajan, G.; Swain, Michael V.

    2009-01-01

    Since its commercialization early in the 20th century, indentation testing has played a key role in the development of new materials and understanding their mechanical behavior. Progr3ess in the field has relied on a close marriage between research in the mechanical behavior of materials and contact mechanics. The seminal work of Hertz laid the foundations for bringing these two together, with his contributions still widely utilized today in examining elastic behavior and the physics of fracture. Later, the pioneering work of Tabor, as published in his classic text 'The Hardness of Metals', exapdned this understanding to address the complexities of plasticity. Enormous progress in the field has been achieved in the last decade, made possible both by advances in instrumentation, for example, load and depth-sensing indentation and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) based in situ testing, as well as improved modeling capabilities that use computationally intensive techniques such as finite element analysis and molecular dynamics simulation. The purpose of this special focus issue is to present recent state of the art developments in the field.

  1. Functional ceramic materials database: an online resource for materials research.

    PubMed

    Scott, D J; Manos, S; Coveney, P V; Rossiny, J C H; Fearn, S; Kilner, J A; Pullar, R C; Alford, N Mc N; Axelsson, A-K; Zhang, Y; Chen, L; Yang, S; Evans, J R G; Sebastian, M T

    2008-02-01

    We present work on the creation of a ceramic materials database which contains data gleaned from literature data sets as well as new data obtained from combinatorial experiments on the London University Search Instrument. At the time of this writing, the database contains data related to two main groups of materials, mainly in the perovskite family. Permittivity measurements of electroceramic materials are the first area of interest, while ion diffusion measurements of oxygen ion conductors are the second. The nature of the database design does not restrict the type of measurements which can be stored; as the available data increase, the database may become a generic, publicly available ceramic materials resource.

  2. Process Diagnostics: Materials, Combustion Fusion. Volume 117. Materials Research Society

    DTIC Science & Technology

    reference volume for professionals working in the area of materials process control as well as a graduate level textbook for a course in applied ... spectroscopy or process engineering that might be given as part of a chemistry, physics, chemical or materials engineering curriculum.

  3. Heat induced damage detection in composite materials by terahertz radiation

    NASA Astrophysics Data System (ADS)

    Radzieński, Maciej; Mieloszyk, Magdalena; Rahani, Ehsan Kabiri; Kundu, Tribikram; Ostachowicz, Wiesław

    2015-03-01

    In recent years electromagnetic Terahertz (THz) radiation or T-ray has been increasingly used for nondestructive evaluation of various materials such as polymer composites and porous foam tiles in which ultrasonic waves cannot penetrate but T-ray can. Most of these investigations have been limited to mechanical damage detection like inclusions, cracks, delaminations etc. So far only a few investigations have been reported on heat induced damage detection. Unlike mechanical damage the heat induced damage does not have a clear interface between the damaged part and the surrounding intact material from which electromagnetic waves can be reflected back. Difficulties associated with the heat induced damage detection in composite materials using T-ray are discussed in detail in this paper. T-ray measurements are compared for different levels of heat exposure of composite specimens.

  4. Proceedings of the symposium on Nuclear Radiation Detection Materials

    SciTech Connect

    Perry, D.L.; Burger, A.; Franks, L.; Schieber, M.

    2008-07-01

    This symposium provides a venue for the presentation of the latest results and discussion of radiation detection materials from both experimental and theoretical standpoints. As advances are made in this area of materials, additional experimental and theoretical approaches are used to both guide the growth of materials and to characterize the materials that have a wide array of applications for detecting different types of radiation. The types of detector materials for semiconductors and scintillators include a variety of molecular compounds such as lanthanum halides (LaX{sub 3}), zinc oxide (ZnO), lead iodide (PbI{sub 2}), cadmium telluride (CdTe), mercuric iodide (HgI{sub 2}), thallium bromide (TlBr), as well as others, such as cadmium zinc telluride (CZT). An additional class of scintillators includes those based on organic compounds and glasses. Ideally, desired materials used for radiation detection have attributes such as appropriate-range band-gaps, high atomic numbers of the central element, high densities, performance at room temperature, and strong mechanical properties, and are low cost in terms of their production. There are significant gaps in the knowledge related to these materials that are very important in making radiation detector materials that are higher quality in terms of their reproducible purity, homogeneity, and mechanical integrity. The topics that are the focal point of this symposium address these issues so that much better detectors may be made in the future. Topics cover the following areas: - Material growth: on-going developments regarding cadmium telluride (CdTe), cadmium zinc telluride (CZT), mercuric iodide (HgI{sub 2}), cadmium manganese telluride (CMT), LaX{sub 3}, and all other detector materials; new materials with potential for radiation detection (II-VI, III-VI, III-VII compounds, neutron detectors, nano-materials, and ceramic scintillators); purification techniques; and growth methods; - Characterization: experimental

  5. Nuclear materials detection using high-energy γ-rays

    NASA Astrophysics Data System (ADS)

    Micklich, Bradley J.; Smith, Donald L.

    2005-12-01

    The FIGARO technique uses 6-7 MeV γ-rays produced in the 19F(p, αγ)16O reaction to detect materials used in nuclear weapons or associated with their production. These γ-rays induce neutron emission via the photoneutron and photofission processes in nuclear materials. Previous experiments have shown that FIGARO gives responses specific to nuclear materials with little or no response to common benign materials. The technique is also resistant to both photon and neutron shielding countermeasures. We present preliminary results from modeling studies of neutron detection rates with simulated air cargo and intermodal shipping containers. A general methodology to compare operating performance based on receiver-operator-characteristic curves is also discussed.

  6. Functionalized apertures for the detection of chemical and biological materials

    DOEpatents

    Letant, Sonia E.; van Buuren, Anthony W.; Terminello, Louis J.; Thelen, Michael P.; Hope-Weeks, Louisa J.; Hart, Bradley R.

    2010-12-14

    Disclosed are nanometer to micron scale functionalized apertures constructed on a substrate made of glass, carbon, semiconductors or polymeric materials that allow for the real time detection of biological materials or chemical moieties. Many apertures can exist on one substrate allowing for the simultaneous detection of numerous chemical and biological molecules. One embodiment features a macrocyclic ring attached to cross-linkers, wherein the macrocyclic ring has a biological or chemical probe extending through the aperture. Another embodiment achieves functionalization by attaching chemical or biological anchors directly to the walls of the apertures via cross-linkers.

  7. Miscellaneous radioactive materials detected during uranium mill tailings surveys

    SciTech Connect

    Wilson, M.J.

    1993-10-01

    The Department of Energy`s (DOE) Office of Environmental Restoration and Waste Management directed the Oak Ridge National Laboratory Pollutant Assessments Group in the conduct of radiological surveys on properties in Monticello, Utah, associated with the Mendaciously millsite National Priority List site. During these surveys, various radioactive materials were detected that were unrelated to the Monticello millsite. The existence and descriptions of these materials were recorded in survey reports and are condensed in this report. The radioactive materials detected are either naturally occurring radioactive material, such as rock and mineral collections, uranium ore, and radioactive coal or manmade radioactive material consisting of tailings from other millsites, mining equipment, radium dials, mill building scraps, building materials, such as brick and cinderblock, and other miscellaneous sources. Awareness of the miscellaneous and naturally occurring material is essential to allow DOE to forecast the additional costs and schedule changes associated with remediation activities. Also, material that may pose a health hazard to the public should be revealed to other regulatory agencies for consideration.

  8. Detection of Nuclear Weapons and Materials: Science, Technologies, Observations

    DTIC Science & Technology

    2008-11-06

    purposes of this report, a signature is a property by which a substance (in particular, SNM) may be detected or identified. This section presents...atom’s nucleus. It is a property of individual atoms. In contrast, density is a bulk property , expressed as mass per unit volume. In general, the...densest materials are those of high Z. These properties may be used to detect uranium and plutonium. Uranium is the densest and highest-Z element

  9. Thermal Infrared Spectral Band Detection Limits for Unidentified Surface Materials

    NASA Technical Reports Server (NTRS)

    Kirkland, Laurel E.; Herr, Kenneth C.; Salisbury, John W.

    2001-01-01

    Infrared emission spectra recorded by airborne or satellite spectrometers can be searched for spectral features to determine the composition of rocks on planetary surfaces. Surface materials are identified by detections of characteristic spectral bands. We show how to define whether to accept an observed spectral feature as a detection when the target material is unknown. We also use remotely sensed spectra measured by the Thermal Emission Spectrometer (TES) and the Spatially Enhanced Broadband Array Spectrograph System to illustrate the importance of instrument parameters and surface properties on band detection limits and how the variation in signal-to-noise ratio with wavelength affects the bands that are most detectable for a given instrument. The spectrometer's sampling interval, spectral resolution, signal-to-noise ratio as a function of wavelength, and the sample's surface properties influence whether the instrument can detect a spectral feature exhibited by a material. As an example, in the 6-13 micrometer wavelength region, massive carbonates exhibit two bands: a very strong, broad feature at approximately 6.5 micrometers and a less intense, sharper band at approximately 11.25 micrometers. Although the 6.5-micrometer band is stronger and broader in laboratory-measured spectra, the 11.25-micrometer band will cause a more detectable feature in TES spectra.

  10. Solid oxide materials research accelerated electrochemical testing

    SciTech Connect

    Windisch, C.; Arey, B.

    1995-08-01

    The objectives of this work were to develop methods for accelerated testing of cathode materials for solid oxide fuel cells under selected operating conditions. The methods would be used to evaluate the performance of LSM cathode material.

  11. RESEARCH ON RELAXATION PROCESSES IN MAGNETIC MATERIALS.

    DTIC Science & Technology

    MAGNETIC PROPERTIES, DIELECTRIC PROPERTIES, FERROMAGNETIC MATERIALS, FERRITES , EUROPIUM COMPOUNDS, GALLIUM COMPOUNDS, OXIDES, DYSPROSIUM, HOLMIUM...GARNET), (* MAGNETIC PROPERTIES, YTTRIUM, CRYSTALS, IRON COMPOUNDS, POROSITY, THEORY, MATHEMATICAL ANALYSIS, SINGLE CRYSTALS, MAGNETIC MATERIALS

  12. Modular Detection System for Special Nuclear Material (MODES_SNM)

    NASA Astrophysics Data System (ADS)

    Christodoulou, Georgios

    2014-02-01

    The MODES_SNM project, funded by the European Community within the scope of the FP7 security theme, explores new techniques for the design and demonstration of novel technologies for the detection of dangerous radioactive materials. Noble gas pressurized detectors are developed and optimized to build a human portable modular detector system to detect and identify illicit SNM. Since masked or shielded SNM is hard to detect, the MODES_SNM detector system will be sensitive to both fast and thermal neutrons and to photons emitted by the SNM. Thus, the project aims to increase the detection sensitivity of shielded SNM, to reduce the false alarm rate and to provide a mobile system to be used by both experts and non-experts in the field of radiation detection. The project now enters into its final phase towards the construction and characterization of a working prototype to be tested under laboratory conditions and in a real world environment.

  13. Securing Special Nuclear Material: Recent Advances in Neutron Detection and Their Role in Nonproliferation

    SciTech Connect

    Runkle, Robert C.; Bernstein, A.; Vanier, Peter

    2010-12-01

    Neutron detection is an integral part of the global effort to prevent the proliferation of special nuclear material (SNM). Applications relying on neutron-detection technology range from traditional nuclear non-proliferation objectives, such as safeguarding nuclear material and verifying stockpile reductions, to the interdiction of SNM—a goal that has recently risen in priority to a level on par with traditional applications. Large multi-national programs targeting detection and safeguards have deployed radiation-detection assets across the globe. Alongside these deployments of commercially available technology, significant research and development efforts have been directed towards the creation of next-generation assets. While much of this development has focused on gamma-ray spectrometers, neutron-detection technology remains an important component of the global strategy because of the capability of neutrons to penetrate materials that readily absorb gamma rays and the unique multiplicity signatures offered by neutrons. One particularly acute technology-development challenge results from dwindling supplies of 3He, partially triggered by widespread deployment of high-efficiency systems for portal monitoring. Other emerging missions, such as the desire to detect SNM at greater standoff distances, have also stimulated neutron-detection technology development. In light of these needs for novel neutron-detection technologies, this manuscript reviews the signatures of neutrons emitted by SNM, the principles of neutron detection, and various strategies under investigation for detection in the context of nonproliferation.

  14. Protective materials with real-time puncture detection capability

    SciTech Connect

    Hermes, R.E.; Stampfer, J.F.; Valdez-Boyle, L.S.; Ramsey, D.R.

    1996-08-01

    The protection of workers from chemical, biological, or radiological hazards requires the use of protective materials that can maintain their integrity during use. An accidental puncture in the protective material can result in a significant exposure to the worker. A five ply material has been developed that incorporates two layers of an electrically conductive polymer sandwiched between three layers of a nonconductive polymer. A normally open circuit that is connected between the conductive layers will be closed by puncturing the material with either a conductive or nonconductive object. This can be used to activate an audible alarm or visual beacon to warn the worker of a breach in the integrity of the material. The worker is not connected to the circuit, and the puncture can be detected in real-time, even when caused by a nonconductor.

  15. Colorectal cancer screening with odour material by canine scent detection

    PubMed Central

    Kohnoe, Shunji; Yamazato, Tetsuro; Satoh, Yuji; Morizono, Gouki; Shikata, Kentaro; Morita, Makoto; Watanabe, Akihiro; Morita, Masaru; Kakeji, Yoshihiro; Inoue, Fumio; Maehara, Yoshihiko

    2011-01-01

    Objective Early detection and early treatment are of vital importance to the successful treatment of various cancers. The development of a novel screening method that is as economical and non-invasive as the faecal occult blood test (FOBT) for early detection of colorectal cancer (CRC) is needed. A study was undertaken using canine scent detection to determine whether odour material can become an effective tool in CRC screening. Design Exhaled breath and watery stool samples were obtained from patients with CRC and from healthy controls prior to colonoscopy. Each test group consisted of one sample from a patient with CRC and four control samples from volunteers without cancer. These five samples were randomly and separately placed into five boxes. A Labrador retriever specially trained in scent detection of cancer and a handler cooperated in the tests. The dog first smelled a standard breath sample from a patient with CRC, then smelled each sample station and sat down in front of the station in which a cancer scent was detected. Results 33 and 37 groups of breath and watery stool samples, respectively, were tested. Among patients with CRC and controls, the sensitivity of canine scent detection of breath samples compared with conventional diagnosis by colonoscopy was 0.91 and the specificity was 0.99. The sensitivity of canine scent detection of stool samples was 0.97 and the specificity was 0.99. The accuracy of canine scent detection was high even for early cancer. Canine scent detection was not confounded by current smoking, benign colorectal disease or inflammatory disease. Conclusions This study shows that a specific cancer scent does indeed exist and that cancer-specific chemical compounds may be circulating throughout the body. These odour materials may become effective tools in CRC screening. In the future, studies designed to identify cancer-specific volatile organic compounds will be important for the development of new methods for early detection of CRC

  16. Quantitation and detection of vanadium in biologic and pollution materials

    NASA Technical Reports Server (NTRS)

    Gordon, W. A.

    1974-01-01

    A review is presented of special considerations and methodology for determining vanadium in biological and air pollution materials. In addition to descriptions of specific analysis procedures, general sections are included on quantitation of analysis procedures, sample preparation, blanks, and methods of detection of vanadium. Most of the information presented is applicable to the determination of other trace elements in addition to vanadium.

  17. Electronic detection of ultra-heavy nuclei by pyroelectric materials

    NASA Technical Reports Server (NTRS)

    Simpson, J. A.; Tuzzolino, A. J.

    1983-01-01

    A recent prediction by the authors that pyroelectric materials may be capable of detecting ultra-heavy nuclei has been confirmed. Charge pulse signals from pyroelectric crystals of lithium tantalate exposed to Au ions and a pulsed beam of Ni-58 ions, and from pyroelectric films of polyvinylidene fluoride exposed to a pulsed beam of Ni-58 ions, have been measured using pulse electronics with time constants in the microsecond range. These studies show that pyroelectric materials, in general, are capable of detecting incident nuclei having very high mass and charge. In particular, pyroelectric polymers, such as polyvinylidene fluoride, are readily available as inexpensive flexible films. This new class of charged particle detector could eventually find applications in large-area experiments for detection and trajectory determination of low-energy, ultra-heavy nuclei.

  18. Dredged Material Research: Notes, News, Reviews, etc

    DTIC Science & Technology

    1976-02-01

    MARRIAGE OF MARICULTURE AND MATERIAL (DREDGED THAT IS!) In August 1974 the Dow Chemical Company submitted an unsolicited proposal to the DMRP for an...34Investigation of Mariculture as an Alternative Use of Dredged Material Containment Areas." Since the unique, innovative approach proposed was...advantages and disadvantages for the landowners and the Government f80880 of combining dredged material disposal with mariculture , and evaluate

  19. About the Early Detection Research Group | Division of Cancer Prevention

    Cancer.gov

    The Early Detection Research Group supports research that seeks to determine the effectiveness, operating characteristics and clinical impact (harms as well as benefits) of cancer early detection technologies and practices, such as imaging and molecular biomarker approaches.   The group ran two large-scale early detection trials for which data and biospecimens are available for additional research: |

  20. Cooperative Materials Research Projects - Student Research Program III. Student Research Program to AFRL/RX: A Summary of Various Materials Research Projects

    DTIC Science & Technology

    2015-05-27

    TITANIUM ALLOYS USING LINEAR ELASTIC FRACTURE MECHANICS... NANO -PARTICLES: GENERAL BRUSH ARCHITECTURE ................235 0172 COMPOSITE MATERIALS SUPPORTABILITY...band of frequencies. This research will continue to investigate shielding capabilities of nano -enabled materials. The next stage includes

  1. Neutron detection using boron gallium nitride semiconductor material

    SciTech Connect

    Atsumi, Katsuhiro; Inoue, Yoku; Nakano, Takayuki; Mimura, Hidenori; Aoki, Toru

    2014-03-01

    In this study, we developed a new neutron-detection device using a boron gallium nitride (BGaN) semiconductor in which the B atom acts as a neutron converter. BGaN and gallium nitride (GaN) samples were grown by metal organic vapor phase epitaxy, and their radiation detection properties were evaluated. GaN exhibited good sensitivity to α-rays but poor sensitivity to γ-rays. Moreover, we confirmed that electrons were generated in the depletion layer under neutron irradiation. This resulted in a neutron-detection signal after α-rays were generated by the capture of neutrons by the B atoms. These results prove that BGaN is useful as a neutron-detecting semiconductor material.

  2. Detection of circumstellar material in a normal type Ia supernova.

    PubMed

    Patat, F; Chandra, P; Chevalier, R; Justham, S; Podsiadlowski, Ph; Wolf, C; Gal-Yam, A; Pasquini, L; Crawford, I A; Mazzali, P A; Pauldrach, A W A; Nomoto, K; Benetti, S; Cappellaro, E; Elias-Rosa, N; Hillebrandt, W; Leonard, D C; Pastorello, A; Renzini, A; Sabbadin, F; Simon, J D; Turatto, M

    2007-08-17

    Type Ia supernovae are important cosmological distance indicators. Each of these bright supernovae supposedly results from the thermonuclear explosion of a white dwarf star that, after accreting material from a companion star, exceeds some mass limit, but the true nature of the progenitor star system remains controversial. Here we report the spectroscopic detection of circumstellar material in a normal type Ia supernova explosion. The expansion velocities, densities, and dimensions of the circumstellar envelope indicate that this material was ejected from the progenitor system. In particular, the relatively low expansion velocities suggest that the white dwarf was accreting material from a companion star that was in the red-giant phase at the time of the explosion.

  3. 7 CFR 3406.17 - Program application materials-research.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Program application materials-research. 3406.17... FOOD AND AGRICULTURE 1890 INSTITUTION CAPACITY BUILDING GRANTS PROGRAM Preparation of a Research Proposal § 3406.17 Program application materials—research. Program application materials in an...

  4. 7 CFR 3406.17 - Program application materials-research.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Program application materials-research. 3406.17... FOOD AND AGRICULTURE 1890 INSTITUTION CAPACITY BUILDING GRANTS PROGRAM Preparation of a Research Proposal § 3406.17 Program application materials—research. Program application materials in an...

  5. Fissile Material Detection by Differential Die Away Analysis

    NASA Astrophysics Data System (ADS)

    Shaw, Timothy J.; Strellis, Dan A.; Stevenson, John; Keeley, Doug; Gozani, Tsahi

    2009-03-01

    Detection and interdiction of Special Nuclear Material (SNM) in transportation is one of the most critical security issues facing the United States. Active inspection by inducing fission in fissile nuclear materials, such as 235U and 239Pu, provides several strong and unique signatures that make the detection of concealed nuclear materials technically very feasible. Differential Die-Away Analysis (DDAA) is a very efficient, active neutron-based technique that uses the abundant prompt fission neutrons signature. It benefits from high penetrability of the probing and signature neutrons, high fission cross section, high detection sensitivity, ease of deployment and relatively low cost. DDAA can use any neutron source or energy as long as it can be suitably pulsed. The neutron generator produces pulses of neutrons that are directed into a cargo. As each pulse passes through the cargo, the neutrons are thermalized and absorbed. If SNM is present, the thermalized neutrons create a new source of (fission) neutrons with a distinctive time profile. An efficient laboratory system was designed, fabricated and tested under a US Government DHS DNDO contract. It was shown that a small uranium sample can be detected in a large variety of cargo types and configurations within practical measurement times using commercial compact (d,T) sources. Using stronger sources and wider detector distribution will further cut inspection time. The system can validate or clear alarms from a primary inspection system such as an automated x-ray system.

  6. Fissile Material Detection by Differential Die Away Analysis

    SciTech Connect

    Shaw, Timothy J.; Strellis, Dan A.; Stevenson, John; Keeley, Doug; Gozani, Tsahi

    2009-03-10

    Detection and interdiction of Special Nuclear Material (SNM) in transportation is one of the most critical security issues facing the United States. Active inspection by inducing fission in fissile nuclear materials, such as {sup 235}U and {sup 239}Pu, provides several strong and unique signatures that make the detection of concealed nuclear materials technically very feasible. Differential Die-Away Analysis (DDAA) is a very efficient, active neutron-based technique that uses the abundant prompt fission neutrons signature. It benefits from high penetrability of the probing and signature neutrons, high fission cross section, high detection sensitivity, ease of deployment and relatively low cost. DDAA can use any neutron source or energy as long as it can be suitably pulsed. The neutron generator produces pulses of neutrons that are directed into a cargo. As each pulse passes through the cargo, the neutrons are thermalized and absorbed. If SNM is present, the thermalized neutrons create a new source of (fission) neutrons with a distinctive time profile. An efficient laboratory system was designed, fabricated and tested under a US Government DHS DNDO contract. It was shown that a small uranium sample can be detected in a large variety of cargo types and configurations within practical measurement times using commercial compact (d,T) sources. Using stronger sources and wider detector distribution will further cut inspection time. The system can validate or clear alarms from a primary inspection system such as an automated x-ray system.

  7. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn E.; Lehman, John R.; Frazier, Natalie C.

    2014-01-01

    The Materials Science Research Rack (MSRR) is a highly automated facility developed in a joint venture/partnership between NASA and ESA center dot Allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses onboard the International Space Station (ISS) center dot Multi-user facility for high temperature materials science research center dot Launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module ?Research goals center dot Provide means of studying materials processing in space to develop a better understanding of the chemical and physical mechanisms involved center dot Benefit materials science research via the microgravity environment of space where the researcher can better isolate the effects of gravity during solidification on the properties of materials center dot Use the knowledge gained from experiments to make reliable predictions about conditions required on Earth to achieve improved materials

  8. Metrology For Emerging Research Materials And Devices

    NASA Astrophysics Data System (ADS)

    Garner, C. Michael; Herr, Dan

    2007-09-01

    The International Technology Roadmap for Semiconductors (ITRS) [1] identifies a number of potentially enabling device and materials technologies to extend and compliment CMOS. These emerging memory and logic devices employ alternate "states" including 1D charge state, molecular state, polarization, material phase, and spin. The improvement of these materials and devices depends on utilizing existing and new metrology methods to characterize their structure, composition and emerging critical properties at the nanometer scale. The metrology required to characterize nanomaterials, interfaces, and device structures will include existing structural metrology, such as TEM, SEM, and others, as well as metrology to characterize new "state" properties of the materials. The characterization of properties and correlations to nanostructure and composition are critical for these new devices and materials. Characterizing the properties of emerging logic technologies will be very difficult, as an applied stimulus is required to probe dynamic state changes. In many cases, it will be important simultaneously to measure the spatial variation of multiple state properties, such as charge and spin, as a function of time at high frequencies to develop an understanding of the interactions occurring in the materials and at interfaces. Furthermore, the challenge of characterizing interface structure/composition and "state" interactions likely will increase with device scaling. New metrology capabilities are needed to study the static and dynamic properties of potential alternate "state" materials and devices at small dimensions.

  9. Cascaded image analysis for dynamic crack detection in material testing

    NASA Astrophysics Data System (ADS)

    Hampel, U.; Maas, H.-G.

    Concrete probes in civil engineering material testing often show fissures or hairline-cracks. These cracks develop dynamically. Starting at a width of a few microns, they usually cannot be detected visually or in an image of a camera imaging the whole probe. Conventional image analysis techniques will detect fissures only if they show a width in the order of one pixel. To be able to detect and measure fissures with a width of a fraction of a pixel at an early stage of their development, a cascaded image analysis approach has been developed, implemented and tested. The basic idea of the approach is to detect discontinuities in dense surface deformation vector fields. These deformation vector fields between consecutive stereo image pairs, which are generated by cross correlation or least squares matching, show a precision in the order of 1/50 pixel. Hairline-cracks can be detected and measured by applying edge detection techniques such as a Sobel operator to the results of the image matching process. Cracks will show up as linear discontinuities in the deformation vector field and can be vectorized by edge chaining. In practical tests of the method, cracks with a width of 1/20 pixel could be detected, and their width could be determined at a precision of 1/50 pixel.

  10. Evolutionary Design of a Robotic Material Defect Detection System

    NASA Technical Reports Server (NTRS)

    Ballard, Gary; Howsman, Tom; Craft, Mike; ONeil, Daniel; Steincamp, Jim; Howell, Joe T. (Technical Monitor)

    2002-01-01

    During the post-flight inspection of SSME engines, several inaccessible regions must be disassembled to inspect for defects such as cracks, scratches, gouges, etc. An improvement to the inspection process would be the design and development of very small robots capable of penetrating these inaccessible regions and detecting the defects. The goal of this research was to utilize an evolutionary design approach for the robotic detection of these types of defects. A simulation and visualization tool was developed prior to receiving the hardware as a development test bed. A small, commercial off-the-shelf (COTS) robot was selected from several candidates as the proof of concept robot. The basic approach to detect the defects was to utilize Cadmium Sulfide (CdS) sensors to detect changes in contrast of an illuminated surface. A neural network, optimally designed utilizing a genetic algorithm, was employed to detect the presence of the defects (cracks). By utilization of the COTS robot and US sensors, the research successfully demonstrated that an evolutionarily designed neural network can detect the presence of surface defects.

  11. Fatigue and fracture research in composite materials

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.

    1982-01-01

    The fatigue, fracture, and impact behavior of composite materials are investigated. Bolted and bonded joints are included. The solutions developed are generic in scope and are useful for a wide variety of structural applications. The analytical tools developed are used to demonstrate the damage tolerance, impact resistance, and useful fatigue life of structural composite components. Standard tests for screening improvements in materials and constituents are developed.

  12. Materials Research Center, University of Pittsburgh

    DTIC Science & Technology

    1994-04-29

    High Performance Structural Materials 9 IVA.1 Oxidation Behavior of Selected 9 Aluminides and Silicides IVA.2 Coatings for Protection Against High...Titania, for Oxidative Catalytic Decomposition of Toxic Nerve Gas Agents I IVD. Biotechnology 276 IVD.1 Acetylcholine Biosensor Manufacture 276 IVD.2...Materials. an important advance in understanding and control of the high-temperature oxidation of nickel-based superalioys has been achieved. It was

  13. Report of the Materials Research Council (1975)

    DTIC Science & Technology

    1975-10-01

    Joe Moore Professor, W. M. Keck Laboratory California Institute of Technology Pasadena, California 91109 Group Leader, Metals Processing Air Porce...Materials Laboratory AFML/LLM Wright Patterson Air Force Base Ohio 45433 Air Force Materials Laboratory AFML/LLM Wright Patterson Air Force...of 3-5ii powder with a present capacity of about 300 KG/hr. Attwell Adair outlined the Air Force programs now under- way toward cost reduction in

  14. [PCR detection of transgenic elements in feed raw material].

    PubMed

    Wang, Ying; Yu, Dao-Jian; Kang, Lin; Zhang, Gui-Ming; Jin, Xian-Zhong; Yang, Wei-Dong; Huang, Pei-Qing; Wu, Qiong; Chen, Zhi-Nan; Chu, Cheng-Cai; Cheng, Ying-Hui

    2002-05-01

    Based on the heterogeneous genes usually used in transgenic crops, the PCR technique was performed with primers derived from CaMV 35S promoter (35S-promoter,originated from cauliflower mosaic virus), NOS terminator (nopaline synthase-terminator,derived from Agrobacterium tumefaciens), EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) gene, and CryIA(b) (delta-endotoxin,evolved from Bacillus thuringiensis subsp. kurstaki) gene to detect transgenic agents from feed raw materials of soybean dregs and corn gluten meal, respectively. Endogenous corn Zein (a protein extracted from corn gluten) gene, soybean Lectin (chitin-binding protein) gene and negative, positive control were applied for avoiding false results. The method established here has been successfully applied in detecting transgenic elements in imported feed raw material.

  15. Detection of Nuclear Weapons and Materials: Science, Technologies, Observations

    DTIC Science & Technology

    2010-06-04

    What signatures show the presence of nuclear weapons and SNM? For purposes of this report, a signature is a property by which a substance (in...density Atomic number, abbreviated “Z,” is the number of protons in an atom’s nucleus. It is a property of individual atoms. In contrast, density is a...bulk property , expressed as mass per unit volume. In general, the densest materials are those of high Z. These properties may be used to detect

  16. Advanced Materials and Solids Analysis Research Core (AMSARC)

    EPA Science Inventory

    The Advanced Materials and Solids Analysis Research Core (AMSARC), centered at the U.S. Environmental Protection Agency's (EPA) Andrew W. Breidenbach Environmental Research Center in Cincinnati, Ohio, is the foundation for the Agency's solids and surfaces analysis capabilities. ...

  17. Fast Detection of Material Deformation through Structural Dissimilarity

    SciTech Connect

    Ushizima, Daniela; Perciano, Talita; Parkinson, Dilworth

    2015-10-29

    Designing materials that are resistant to extreme temperatures and brittleness relies on assessing structural dynamics of samples. Algorithms are critically important to characterize material deformation under stress conditions. Here, we report on our design of coarse-grain parallel algorithms for image quality assessment based on structural information and on crack detection of gigabyte-scale experimental datasets. We show how key steps can be decomposed into distinct processing flows, one based on structural similarity (SSIM) quality measure, and another on spectral content. These algorithms act upon image blocks that fit into memory, and can execute independently. We discuss the scientific relevance of the problem, key developments, and decomposition of complementary tasks into separate executions. We show how to apply SSIM to detect material degradation, and illustrate how this metric can be allied to spectral analysis for structure probing, while using tiled multi-resolution pyramids stored in HDF5 chunked multi-dimensional arrays. Results show that the proposed experimental data representation supports an average compression rate of 10X, and data compression scales linearly with the data size. We also illustrate how to correlate SSIM to crack formation, and how to use our numerical schemes to enable fast detection of deformation from 3D datasets evolving in time.

  18. Anomaly detection applied to a materials control and accounting database

    SciTech Connect

    Whiteson, R.; Spanks, L.; Yarbro, T.

    1995-09-01

    An important component of the national mission of reducing the nuclear danger includes accurate recording of the processing and transportation of nuclear materials. Nuclear material storage facilities, nuclear chemical processing plants, and nuclear fuel fabrication facilities collect and store large amounts of data describing transactions that involve nuclear materials. To maintain confidence in the integrity of these data, it is essential to identify anomalies in the databases. Anomalous data could indicate error, theft, or diversion of material. Yet, because of the complex and diverse nature of the data, analysis and evaluation are extremely tedious. This paper describes the authors work in the development of analysis tools to automate the anomaly detection process for the Material Accountability and Safeguards System (MASS) that tracks and records the activities associated with accountable quantities of nuclear material at Los Alamos National Laboratory. Using existing guidelines that describe valid transactions, the authors have created an expert system that identifies transactions that do not conform to the guidelines. Thus, this expert system can be used to focus the attention of the expert or inspector directly on significant phenomena.

  19. Gas sensitive materials for gas detection and methods of making

    DOEpatents

    Trakhtenberg, Leonid Israilevich; Gerasimov, Genrikh Nikolaevich; Gromov, Vladimir Fedorovich; Rozenberg, Valeriya Isaakovna

    2014-07-15

    A gas sensitive material comprising SnO.sub.2 nanocrystals doped with In.sub.2O.sub.3 and an oxide of a platinum group metal, and a method of making the same. The platinum group metal is preferably Pd, but also may include Pt, Ru, Ir, and combinations thereof. The SnO.sub.2 nanocrystals have a specific surface of 7 or greater, preferably about 20 m2/g, and a mean particle size of between about 10 nm and about 100 nm, preferably about 40 nm. A gas detection device made from the gas sensitive material deposited on a substrate, the gas sensitive material configured as a part of a current measuring circuit in communication with a heat source.

  20. Gas sensitive materials for gas detection and method of making

    DOEpatents

    Trakhtenberg, Leonid Israilevich; Gerasimov, Genrikh Nikolaevich; Gromov, Vladimir Fedorovich; Rozenberg, Valeriya Isaakovna

    2012-12-25

    A gas sensitive material comprising SnO2 nanocrystals doped with In2O3 and an oxide of a platinum group metal, and a method of making the same. The platinum group metal is preferably Pd, but also may include Pt, Ru, Ir, and combinations thereof. The SnO2 nanocrystals have a specific surface of 7 or greater, preferably about 20 m2/g, and a mean particle size of between about 10 nm and about 100 nm, preferably about 40 nm. A gas detection device made from the gas sensitive material deposited on a substrate, the gas sensitive material configured as a part of a current measuring circuit in communication with a heat source.

  1. Research into Practice: How Research Appears in Pronunciation Teaching Materials

    ERIC Educational Resources Information Center

    Levis, John M.

    2016-01-01

    Research into pronunciation has often disregarded its potential to inform pedagogy. This is due partly to the historical development of pronunciation teaching and research, but its effect is that there is often a mismatch between research and teaching. This paper looks at four areas in which the (mis)match is imperfect but in which a greater…

  2. Materials Compatibility and Lubricants Research (MCLR) Program

    SciTech Connect

    Szymurski, S.R.

    1994-12-01

    Objective is to accelerate phaseout of CFC refrigerants. Since its start in 1991, the MCLR program has initiated twenty-five research projects and the ARTI Refrigerant Database. The MCLR program is now entering its final phase. This phase will include over a dozen new research projects which will be completed in the next two years. This presentation highlights accomplishments of the MCLR program and outlines new projects to be conducted in the final phase.

  3. A Compton imaging device for radioactive material detection

    SciTech Connect

    Hoover, A. S.; Baird, W.; Kippen, R. Marc; Rawool-Sullivan, Mohini; Sullivan, J. P.

    2004-01-01

    The most serious terrorist threat we face today may come from radiological dispersion devices and unsecured nuclear weapons. It is imperative for national security that we develop and implement radiation detection technology capable of locating and tracking nuclear material moving across and within our borders. Many radionuclides emit gamma rays in the 0.2-3 MeV range. Unfortunately, current gamma ray detection technology is inadequate for providing precise and efficient measurements of localized radioactive sources. Common detectors available today suffer from large background rates and have only minimal ability to localize the position of the source without the use of mechanical collimators, which reduces efficiency. Imaging detectors using the Compton scattering process have the potential to provide greatly improved sensitivity through their ability to reject off-source background. We are developing a prototype device to demonstrate the Compton imaging technology. The detector consists of several layers of pixelated silicon detectors followed by an array of CsI crystals coupled to photodiodes. Here we present the concept of our detector design and results from Monte Carlo simulations of our prototype detector. Development of technologies for detecting and characterizing radiation from various nuclear materials is important for many fields, including homeland security, astrophysics, and medical imaging. Unfortunately, in many cases we now largely use detection technologies that were developed in the 1960s. While sufficient for some purposes, these technologies have proved inadequate for remote sensing of radioactive nuclear materials - a crucial capability required for enhanced homeland security. Passive gamma ray detection is the most direct means of providing this capability, but current detectors are severely limited in sensitivity and detection range due to confusion from off-source backgrounds, and they cannot precisely localize sources when they are

  4. Creep and fatigue research efforts on advanced materials

    NASA Technical Reports Server (NTRS)

    Gayda, John

    1990-01-01

    Two of the more important materials problems encountered in turbine blades of aircraft engines are creep and fatigue. To withstand these high-temperature phenomena, modern engines utilize single-crystal, nickel-base superalloys as the material of choice in critical applications. This paper will present recent research activities at NASA's Lewis Research Center on single-crystal blading material, related to creep and fatique. The goal of these research efforts is to improve the understanding of microstructure-property relationships and thereby guide material development.

  5. Creep and fatigue research efforts on advanced materials

    NASA Technical Reports Server (NTRS)

    Gayda, John

    1987-01-01

    Two of the more important materials problems encountered in turbine blades of aircraft engines are creep and fatigue. To withstand these high-temperature phenomena modern engines utilize single-crystal, nickel-based superalloys as the material of choice in critical applications. Recent research activities at Lewis on single-crystal blading material as well as future research initiatives on metal matrix composites related to creep and fatigue are discussed. The goal of these research efforts is improving the understanding of microstructure-property relationships and thereby guide material development.

  6. Fluorescent Silicate Materials for the Detection of Paraoxon

    PubMed Central

    Johnson, Brandy J.; Melde, Brian J.; Thomas, Cassandra; Malanoski, Anthony P.; Leska, Iwona A.; Charles, Paul T.; Parrish, Damon A.; Deschamps, Jeffrey R.

    2010-01-01

    Porphyrins are a family of highly conjugated molecules that strongly absorb visible light and fluoresce intensely. These molecules are sensitive to changes in their immediate environment and have been widely described for optical detection applications. Surfactant-templated organosilicate materials have been described for the semi-selective adsorption of small molecule contaminants. These structures offer high surface areas and large pore volumes within an organized framework. The organic bridging groups in the materials can be altered to provide varied binding characteristics. This effort seeks to utilize the tunable binding selectivity, high surface area, and low materials density of these highly ordered pore networks and to combine them with the unique spectrophotometric properties of porphyrins. In the porphyrin-embedded materials (PEMs), the organosilicate scaffold stabilizes the porphyrin and facilitates optimal orientation of porphyrin and target. The materials can be stored under ambient conditions and offer exceptional shelf-life. Here, we report on the design of PEMs with specificity for organophosphates and compounds of similar structure. PMID:22294928

  7. Advanced materials research for long-haul aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.; Blankenship, C. P.

    1978-01-01

    The status of research efforts to apply low to intermediate temperature composite materials and advanced high temperature materials to engine components is reviewed. Emerging materials technologies and their potential benefits to aircraft gas turbines were emphasized. The problems were identified, and the general state of the technology for near term use was assessed.

  8. 2013 Materials Research Society Fall Meeting

    DTIC Science & Technology

    2014-06-18

    National University), who showed breakthrough results in nanowire solar cells and lasers. Tsenunobu Kimoto (Kyoto University) presented a comprehensive...band alignment between rutile and anatase TiO2 [D. O. Scanlon, et al., Nature Materials 12, 798 (2013)]. The photolysis of water on the surface of... TiO2 was first demonstrated in 1972, but the origin of the superior performance of mixed polymorph samples has remained elusive. Here state-of-the-art

  9. Materials research in Europe: Mapping excellence and looking ahead

    NASA Astrophysics Data System (ADS)

    Schumacher, Gerd; Tunger, Dirk; Smith, Alan; Preston, Stuart; Knott, Brian

    2007-03-01

    The European Research Area has been established to coordinate national research policies and to encourage shared objectives, expertise, and resources throughout the European Union. To accomplish these goals, the European Research Area first needs knowledge of existing resources, fields of excellence, and potential for improvements as well as an idea of the direction of future research. This article describes the SMART project, established by the European Commission to identify important research topics for the future in the field of materials technology and to map materials research regions of excellence.

  10. Microwave nondestructive detection of chloride in cement based materials

    NASA Astrophysics Data System (ADS)

    Benally, Aaron D.; Bois, Karl J.; Nowak, Paul S.; Zoughi, Reza

    1999-12-01

    Preliminary results pertaining to the near-field microwave nondestructive detection and evaluation of chloride in cement paste and mortar specimens are presented. The technique used for this purpose utilizes an open-ended rectangular waveguide at the aperture of which the reflection properties of the specimens are measured. It is shown that the magnitude of reflection coefficient is a useful parameter for detecting chloride in these specimens. Furthermore, the difference in the amount of chloride present in these various specimens, at the time of mixing, can also be determined. Reflection property measurements were conducted in S-band (2.6 GHz-3.95 GHz) and X-band (8.2-12.4 GHz) for two sets of four mortar specimens with 0.50 and 0.60 water-to-cement ratio and varying salt (NaCl) contents added to the mixing water used in producing these specimens. It is shown that the reflection properties of these materials vary considerably as a function of their chloride content. Also, by monitoring the daily variation in the reflection coefficient of each specimen during the curing period, the effect of chloride on curing can be nondestructively ascertained. Finally, it is shown that the detection and evaluation of chloride content in cement based materials can be performed using a simple comparative process with respect to a non-contaminated specimen.

  11. Microwave nondestructive detection of chloride in cement based materials

    SciTech Connect

    Benally, Aaron D.; Bois, Karl J.; Zoughi, Reza; Nowak, Paul S.

    1999-12-02

    Preliminary results pertaining to the near-field microwave nondestructive detection and evaluation of chloride in cement paste and mortar specimens are presented. The technique used for this purpose utilizes an open-ended rectangular waveguide at the aperture of which the reflection properties of the specimens are measured. It is shown that the magnitude of reflection coefficient is a useful parameter for detecting chloride in these specimens. Furthermore, the difference in the amount of chloride present in these various specimens, at the time of mixing, can also be determined. Reflection property measurements were conducted in S-band (2.6 GHz-3.95 GHz) and X-band (8.2-12.4 GHz) for two sets of four mortar specimens with 0.50 and 0.60 water-to-cement ratio and varying salt (NaCl) contents added to the mixing water used in producing these specimens. It is shown that the reflection properties of these materials vary considerably as a function of their chloride content. Also, by monitoring the daily variation in the reflection coefficient of each specimen during the curing period, the effect of chloride on curing can be nondestructively ascertained. Finally, it is shown that the detection and evaluation of chloride content in cement based materials can be performed using a simple comparative process with respect to a non-contaminated specimen.

  12. Process Research on Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.; Wrigley, C. Y.

    1985-01-01

    Results of hydrogen-passivated polycrysalline silicon solar cell research are summarized. The short-circuit current of solar cells fabricated from large-grain cast polycrystalline silicon is nearly equivalent to that of single-crystal cells, which indicates long bulk minority-carrier diffusion length. Treatments with molecular hydrogen showed no effect on large-grain cast polycrystalline silicon solar cells.

  13. Planning Document for Hazardous Materials Research

    DTIC Science & Technology

    1980-07-01

    with mercury might not be that harmful, the inhalation of mercury vapors, or consumption through other pathways (as in the Minamata case in Kyushu... Japan ) is known to have disastrous health effects. In the case of radionuclides, extensive research has been done on maximum permissible concentrations

  14. Governing the postmortem procurement of human body material for research.

    PubMed

    Van Assche, Kristof; Capitaine, Laura; Pennings, Guido; Sterckx, Sigrid

    2015-03-01

    Human body material removed post mortem is a particularly valuable resource for research. Considering the efforts that are currently being made to study the biochemical processes and possible genetic causes that underlie cancer and cardiovascular and neurodegenerative diseases, it is likely that this type of research will continue to gain in importance. However, post mortem procurement of human body material for research raises specific ethical concerns, more in particular with regard to the consent of the research participant. In this paper, we attempt to determine which consent regime should govern the post mortem procurement of body material for research. In order to do so, we assess the various arguments that could be put forward in support of a duty to make body material available for research purposes after death. We argue that this duty does in practice not support conscription but is sufficiently strong to defend a policy of presumed rather than explicit consent.

  15. Basic and Applied Research in Materials

    DTIC Science & Technology

    1977-06-01

    heterogeneous catalysis and materials for energy storage. In the first project, standard batches of Pt/ SiO2 catalysts were prepared and characterized utilizing a variety of techniques, e.g., x-ray diffraction, isotopic exchange between deuterium and cyclopentane, etc. The purpose of these studies is to elucidate information on the nature of the catalyst crystallites, the effect of the support upon the catalyst behavior, the effect of metallic particle size on catalytic characteristics and the effect of the method of catalyst preparation upon catalytic activity. The

  16. New radiological material detection technologies for nuclear forensics: Remote optical imaging and graphene-based sensors.

    SciTech Connect

    Harrison, Richard Karl; Martin, Jeffrey B.; Wiemann, Dora K.; Choi, Junoh; Howell, Stephen W.

    2015-09-01

    We developed new detector technologies to identify the presence of radioactive materials for nuclear forensics applications. First, we investigated an optical radiation detection technique based on imaging nitrogen fluorescence excited by ionizing radiation. We demonstrated optical detection in air under indoor and outdoor conditions for alpha particles and gamma radiation at distances up to 75 meters. We also contributed to the development of next generation systems and concepts that could enable remote detection at distances greater than 1 km, and originated a concept that could enable daytime operation of the technique. A second area of research was the development of room-temperature graphene-based sensors for radiation detection and measurement. In this project, we observed tunable optical and charged particle detection, and developed improved devices. With further development, the advancements described in this report could enable new capabilities for nuclear forensics applications.

  17. [Problems in medicinal materials research of new traditional Chinese medicine].

    PubMed

    Zhou, Gang; Wang, Ting; He, Yan-Ping

    2014-08-01

    Medicinal materials research and development of new drug of traditional Chinese medicine (TCM) research is the premise and foundation of new drug research and development, it throughout the whole process of new drug research. Medicinal materials research is one of the main content of the pharmaceutical research of new drug of TCM, and it is also the focus of the new medicine pharmaceutical evaluation content. This article through the analysis of the present problems existing in the development of TCM research of new drug of TCM, from medicine research concept, quality stability, quality standard, etc are expounded, including medicine research idea value medicine study should focus on the important role and from the purpose for the top-level design of new drug research problem. Medicinal materials quality stability should pay attention to the original, medicinal part, origin, processing, storage, planting (breeding), and other aspects. Aspect of quality standard of medicinal materials should pay attention to establish the quality standards of conform to the characteristics of new drug of TCM. As the instruction of TCM new drug research and development and the scientific nature of the review, and provide the basis for medicinal material standards.

  18. TERA-MIR radiation: materials, generation, detection and applications III (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pereira, Mauro F.

    2016-10-01

    This talk summarizes the achievements of COST ACTION MP1204 during the last four years. [M.F. Pereira, Opt Quant Electron 47, 815-820 (2015).]. TERA-MIR main objectives are to advance novel materials, concepts and device designs for generating and detecting THz and Mid Infrared radiation using semiconductor, superconductor, metamaterials and lasers and to beneficially exploit their common aspects within a synergetic approach. We used the unique networking and capacity-building capabilities provided by the COST framework to unify these two spectral domains from their common aspects of sources, detectors, materials and applications. We created a platform to investigate interdisciplinary topics in Physics, Electrical Engineering and Technology, Applied Chemistry, Materials Sciences and Biology and Radio Astronomy. The main emphasis has been on new fundamental material properties, concepts and device designs that are likely to open the way to new products or to the exploitation of new technologies in the fields of sensing, healthcare, biology, and industrial applications. End users are: research centres, academic, well-established and start-up Companies and hospitals. Results are presented along our main lines of research: Intersubband materials and devices with applications to fingerprint spectroscopy; Metamaterials, photonic crystals and new functionalities; Nonlinearities and interaction of radiation with matter including biomaterials; Generation and Detection based on Nitrides and Bismides. The talk is closed by indicating the future direction of the network that will remain active beyond the funding period and our expectations for future joint research.

  19. Code System to Detect Recurring Loss of Special Nuclear Materials.

    SciTech Connect

    PICARD, R. R.

    2001-08-23

    Version 00 NRCPAGE is used in safeguards applications to detect a recurring loss of special nuclear material by frequent evaluation (sequential analysis) of accountability data. Standard sequential testing procedures are traditionally based on sequences of independent and normally distributed measurements. This same approach can be applied to materials balance (MB) data. Here, the term materials balance has a meaning similar to inventory difference and represents a materials loss indicator localized in time and space. However, distinct Mbs cannot be reasonably treated as statistically independent and may not always be reasonably treated as normally distributed. Furthermore, the covariance structure associated with a given MB sequence is not known and must be estimated. Nonindependence is treated by converting the MB sequence to the innovation sequence, sometimes called the ITMUF sequence or the sequence of MUF residuals, which are statistically independent and amenable to sequential test procedures. A one-sided page's test, effective for a wide range of recurring loss scenarios, is applied to the standardized innovation sequence. The program can be easily modified to suit particular needs; the models for the assumption of multivariate normality for MBs when computing the innovation sequence or the test procedure can be changed as can the input/output format, dimensioning, local error checking, and simulation work. Input files can be sequentially constructed using local text editors to update existing files. Output files can be read by graphics, report writer, or other stand-alone utility routines.

  20. Process Research of Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1984-01-01

    A passivation process (hydrogenation) that will improve the power generation of solar cells fabricated from presently produced, large grain, cast polycrystalline silicon (Semix), a potentially low cost material are developed. The first objective is to verify the operation of a DC plasma hydrogenation system and to investigate the effect of hydrogen on the electrical performance of a variety of polycrystalline silicon solar cells. The second objective is to parameterize and optimize a hydrogenation process for cast polycrystalline silicon, and will include a process sensitivity analysis. The sample preparation for the first phase is outlined. The hydrogenation system is described, and some early results that were obtained using the hydrogenation system without a plasma are summarized. Light beam induced current (LBIC) measurements of minicell samples, and their correlation to dark current voltage characteristics, are discussed.

  1. Fullerene-based materials research and development

    NASA Astrophysics Data System (ADS)

    Cahill, P. A.; Henderson, C. C.; Rohlfing, C. M.; Loy, D. A.; Assink, R. A.; Gillen, K. T.; Jacobs, S. J.; Dugger, M. T.

    1995-05-01

    The chemistry and physical properties of fullerenes, the third, molecular allotrope of carbon, have been studied using both experimental and computational techniques. Early computational work investigated the stability of fullerene isomers and oxides, which was followed by extensive work on hydrogenated fullerenes. Our work led to the first synthesis of a polymer containing C60 and the synthesis of the simplest hydrocarbon derivatives of C60 and C70. The excellent agreement between theory and experiment ((plus minus) 0.1 kcal/mol in the relative stability of isomers) has provided insight into the chemical nature of fullerenes and has yielded a sound basis for prediction of the structure of derivatized fullerenes. Such derivatives are the key to the preparation of fullerene-based materials.

  2. Challenges and Opportunities in Interdisciplinary Materials Research Experiences for Undergraduates

    NASA Astrophysics Data System (ADS)

    Vohra, Yogesh; Nordlund, Thomas

    2009-03-01

    The University of Alabama at Birmingham (UAB) offer a broad range of interdisciplinary materials research experiences to undergraduate students with diverse backgrounds in physics, chemistry, applied mathematics, and engineering. The research projects offered cover a broad range of topics including high pressure physics, microelectronic materials, nano-materials, laser materials, bioceramics and biopolymers, cell-biomaterials interactions, planetary materials, and computer simulation of materials. The students welcome the opportunity to work with an interdisciplinary team of basic science, engineering, and biomedical faculty but the challenge is in learning the key vocabulary for interdisciplinary collaborations, experimental tools, and working in an independent capacity. The career development workshops dealing with the graduate school application process and the entrepreneurial business activities were found to be most effective. The interdisciplinary university wide poster session helped student broaden their horizons in research careers. The synergy of the REU program with other concurrently running high school summer programs on UAB campus will also be discussed.

  3. 7 CFR 3406.17 - Program application materials-research.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Program application materials-research. 3406.17... RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE 1890 INSTITUTION CAPACITY BUILDING GRANTS PROGRAM Preparation of a Research Proposal § 3406.17 Program application...

  4. 2003 research briefs : Materials and Process Sciences Center.

    SciTech Connect

    Cieslak, Michael J.

    2003-08-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems and Materials Modeling and Computational Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  5. 2004 research briefs :Materials and Process Sciences Center.

    SciTech Connect

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  6. 2005 Research Briefs : Materials and Process Sciences Center.

    SciTech Connect

    Cieslak, Michael J.

    2005-05-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  7. Material research for environmental sustainability in Thailand: current trends

    PubMed Central

    Niranatlumpong, Panadda; Ramangul, Nudjarin; Dulyaprapan, Pongsak; Nivitchanyong, Siriluck; Udomkitdecha, Werasak

    2015-01-01

    This article covers recent developments of material research in Thailand with a focus on environmental sustainability. Data on Thailand’s consumption and economic growth are briefly discussed to present a relevant snapshot of its economy. A selection of research work is classified into three topics, namely, (a) resource utilization, (b) material engineering and manufacturing, and (c) life cycle efficiency. Material technologies have been developed and implemented to reduce the consumption of materials, energy, and other valuable resources, thus reducing the burden we place on our ecological system. At the same time, product life cycle study allows us to understand the extent of the environmental impact we impart to our planet. PMID:27877788

  8. Material research for environmental sustainability in Thailand: current trends

    NASA Astrophysics Data System (ADS)

    Niranatlumpong, Panadda; Ramangul, Nudjarin; Dulyaprapan, Pongsak; Nivitchanyong, Siriluck; Udomkitdecha, Werasak

    2015-06-01

    This article covers recent developments of material research in Thailand with a focus on environmental sustainability. Data on Thailand’s consumption and economic growth are briefly discussed to present a relevant snapshot of its economy. A selection of research work is classified into three topics, namely, (a) resource utilization, (b) material engineering and manufacturing, and (c) life cycle efficiency. Material technologies have been developed and implemented to reduce the consumption of materials, energy, and other valuable resources, thus reducing the burden we place on our ecological system. At the same time, product life cycle study allows us to understand the extent of the environmental impact we impart to our planet.

  9. Process Research on Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.; Wrigley, C. Y.

    1984-01-01

    Results of hydrogen-passivated polycrystalline silicon solar cells are summarized. Very small grain or short minority-carrier diffusion length silicon was used. Hydrogenated solar cells fabricated from this material appear to have effective minority-carrier diffusion lengths that are still not very long, as shown by the open-circuit voltages of passivated cells that are still significantly less than those of single-crystal solar cells. The short-circuit current of solar cells fabricated from large-grain cast polycrystalline silicon is nearly equivalent to that of single-crystal cells, which indicates long bulk minority-carrier diffusion length. However, the open-circuit voltage, which is sensitive to grain boundary recombination, is sometimes 20 to 40 mV less. The goal was to minimize variations in open-circuit voltage and fill-factor caused by defects by passivating these defects using a hydrogenation process. Treatments with molecular hydrogen showed no effect on large-grain cast polycrystaline silicon solar cells.

  10. Research Plan for Fire Signatures and Detection

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Viewgraphs on the prevention, suppression, and detection of fires aboard a spacecraft is presented. The topics include: 1) Fire Prevention, Detection, and Suppression Sub-Element Products; 2) FPDS Organizing Questions; 3) FPDS Organizing Questions; 4) Signatures, Sensors, and Simulations; 5) Quantification of Fire and Pre-Fire Signatures; 6) Smoke; 7) DAFT Hardware; 8) Additional Benefits of DAFT; 9) Development and Characterization of Sensors 10) Simulation of the Transport of Smoke and Fire Precursors; and 11) FPDS Organizing Questions.

  11. Rapid test for the detection of hazardous microbiological material

    NASA Astrophysics Data System (ADS)

    Mordmueller, Mario; Bohling, Christian; John, Andreas; Schade, Wolfgang

    2009-09-01

    After attacks with anthrax pathogens have been committed since 2001 all over the world the fast detection and determination of biological samples has attracted interest. A very promising method for a rapid test is Laser Induced Breakdown Spectroscopy (LIBS). LIBS is an optical method which uses time-resolved or time-integrated spectral analysis of optical plasma emission after pulsed laser excitation. Even though LIBS is well established for the determination of metals and other inorganic materials the analysis of microbiological organisms is difficult due to their very similar stoichiometric composition. To analyze similar LIBS-spectra computer assisted chemometrics is a very useful approach. In this paper we report on first results of developing a compact and fully automated rapid test for the detection of hazardous microbiological material. Experiments have been carried out with two setups: A bulky one which is composed of standard laboratory components and a compact one consisting of miniaturized industrial components. Both setups work at an excitation wavelength of λ=1064nm (Nd:YAG). Data analysis is done by Principal Component Analysis (PCA) with an adjacent neural network for fully automated sample identification.

  12. Damage detection in composite materials using Lamb wave methods

    NASA Astrophysics Data System (ADS)

    Kessler, Seth S.; Spearing, S. Mark; Soutis, Constantinos

    2002-04-01

    Cost-effective and reliable damage detection is critical for the utilization of composite materials. This paper presents part of an experimental and analytical survey of candidate methods for in situ damage detection of composite materials. Experimental results are presented for the application of Lamb wave techniques to quasi-isotropic graphite/epoxy test specimens containing representative damage modes, including delamination, transverse ply cracks and through-holes. Linear wave scans were performed on narrow laminated specimens and sandwich beams with various cores by monitoring the transmitted waves with piezoceramic sensors. Optimal actuator and sensor configurations were devised through experimentation, and various types of driving signal were explored. These experiments provided a procedure capable of easily and accurately determining the time of flight of a Lamb wave pulse between an actuator and sensor. Lamb wave techniques provide more information about damage presence and severity than previously tested methods (frequency response techniques), and provide the possibility of determining damage location due to their local response nature. These methods may prove suitable for structural health monitoring applications since they travel long distances and can be applied with conformable piezoelectric actuators and sensors that require little power.

  13. Detecting superlight dark matter with Fermi-degenerate materials

    NASA Astrophysics Data System (ADS)

    Hochberg, Yonit; Pyle, Matt; Zhao, Yue; Zurek, Kathryn M.

    2016-08-01

    We examine in greater detail the recent proposal of using superconductors for detecting dark matter as light as the warm dark matter limit of O (keV). Detection of suc light dark matter is possible if the entire kinetic energy of the dark matter is extracted in the scattering, and if the experiment is sensitive to O (meV) energy depositions. This is the case for Fermi-degenerate materials in which the Fermi velocity exceeds the dark matter velocity dispersion in the Milky Way of ˜ 10-3. We focus on a concrete experimental proposal using a superconducting target with a transition edge sensor in order to detect the small energy deposits from the dark matter scatterings. Considering a wide variety of constraints, from dark matter self-interactions to the cosmic microwave background, we show that models consistent with cosmological/astrophysical and terrestrial constraints are observable with such detectors. A wider range of viable models with dark matter mass below an MeV is available if dark matter or mediator properties (such as couplings or masses) differ at BBN epoch or in stellar interiors from those in superconductors. We also show that metal targets pay a strong in-medium suppression for kinetically mixed mediators; this suppression is alleviated with insulating targets.

  14. Review of Physics Related Research and Development Activities in Nondestructive Characterization of Solid Rocket Motor Materials

    NASA Astrophysics Data System (ADS)

    Pearson, Lee H.

    1998-10-01

    The perception that solid rocket motors (srm) are of relatively simple mechanical construction with a long history in private, military, and NASA applications may lead some to believe that little is left to be done in terms of basic and applied research and development in support of this technology. The fact is that srm?s are very complicated primarily because of the complexity of the materials from which they are built. The reliability and performance of srm?s are determined by the ballistic and mechanical properties of each individual material component, and by the manufacturing processes that conjoin these materials. In order to insure reliability and good performance, there are on-going materials research and development activities in the srm community. Included are activities involving the development of nondestructive evaluation (NDE) methods used for materials and processes characterization. Typical applications include: detection and characterization of defects in fiber reinforced composite materials, detection of weak bonds and debonds, verification of surface cleanliness prior to bonding, characterization of aging materials and bondlines, measurement of elastic properties in filled polymeric materials, monitoring of cure in polymeric materials, and measurement of film or coating thicknesses. NDE methods and physics principles upon which they are based will be described. Challenges and future research and development directions will be identified.

  15. Research and Design of Rootkit Detection Method

    NASA Astrophysics Data System (ADS)

    Liu, Leian; Yin, Zuanxing; Shen, Yuli; Lin, Haitao; Wang, Hongjiang

    Rootkit is one of the most important issues of network communication systems, which is related to the security and privacy of Internet users. Because of the existence of the back door of the operating system, a hacker can use rootkit to attack and invade other people's computers and thus he can capture passwords and message traffic to and from these computers easily. With the development of the rootkit technology, its applications are more and more extensive and it becomes increasingly difficult to detect it. In addition, for various reasons such as trade secrets, being difficult to be developed, and so on, the rootkit detection technology information and effective tools are still relatively scarce. In this paper, based on the in-depth analysis of the rootkit detection technology, a new kind of the rootkit detection structure is designed and a new method (software), X-Anti, is proposed. Test results show that software designed based on structure proposed is much more efficient than any other rootkit detection software.

  16. Solution-processed hybrid materials for light detection

    NASA Astrophysics Data System (ADS)

    Adinolfi, Valerio

    Inorganic semiconductors form the foundation of modern electronics and optoelectronics. These materials benefit from excellent optoelectronic properties, but applications are generally limited due to high cost of fabrication. More recently, organic semiconductors have emerged as a low-cost alternative for light emitting devices. Organic materials benefit from facile, low temperature fabrication and offer attractive features such as flexibility and transparency. However, these materials are inherently limited by poor electronic transport. In recent years, new materials have been developed to overcome the dichotomy between performance and the cost. Hybrid organic--inorganic semiconductors combine the superior electronic properties of inorganic materials with the facile assembly of organic systems to yield high-performance, low-cost electronics. This dissertation focuses on the development of solution-processed light detectors using hybrid material systems, particularly colloidal quantum dots (CQDs) and hybrid perovskites. First, advanced architectures for colloidal quantum dot light detectors are presented. These devices overcome the responsivity--speed--dark current trade-off that has limited past reports of CQD-based devices. The photo-junction field effect transistors presented in this work decrease the dark current of CQD detectors by two orders of magnitude, ultimately reducing power consumption (100x) and noise current (10x). The detector simultaneously benefits from high gain (˜10 electrons/photon) and fast time response (˜ 10 mus). This represents the first CQD-based three-terminal-junction device reported in the literature. Building on this success, hybrid perovskite devices are then presented. This material system has become a focal point of the semiconductor research community due to its relatively unexplored nature and attractive optoelectronic properties. Herein we present the first extensive electronic characterization of single crystal organolead

  17. Development of reference materials to detect 15 different human papillomavirus genotypes.

    PubMed

    Rhee, Jee Eun; Kang, Young Soon; Seo, Hyun Hee; Choi, Ju-yeon; Kee, Mee-Kyung; Kim, Tae-Jin; Hong, Sung Ran; Kim, Sung Soon

    2014-06-10

    Accurate human papillomavirus (HPV) typing is essential for evaluating and monitoring HPV vaccines in cervical cancer screening and in epidemiological surveys. In our country, different HPV DNA detection and genotyping methodologies have been established for diagnosing and monitoring HPV-related disease in clinical practice and for research. However, there is a lack of reference materials to standardize the methods for HPV detection and genotyping. In this study, we constructed candidate reference materials comprising 15 targets (13 types of high-risk HPV, two types of low-risk HPV). We evaluated whether the candidate reference materials could be used as the reference for HPV detection and genotyping using quantitative real-time polymerase chain reaction. Standard curves for the wide linear range (10(1)-10(6)copies/μL) produced high correlation regression coefficient R(2) of 0.99. The reaction efficiencies were 96.3% to 101.2% for the standard curves, indicating highly efficient reactions. Specific genotypes were detected in single or multiple mixed samples. Our results suggest that these reference materials may provide useful standards for standardizing quality assurance for different HPV-typing assays and for proficiency testing in diagnostic laboratories.

  18. Fossil Energy Advanced Research and Technology Development Materials Program

    SciTech Connect

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  19. Research and Development in the Educational Materials Industries.

    ERIC Educational Resources Information Center

    Carnegie Corp. of New York, NY.

    Under the sponsorship of the Carnegie Corporation and the Ford Foundation, a study was instituted to examine research and development in the educational materials industry. Using the open-ended interview method, data was collected from executives of major book publishers and their subsidiaries, and producers of materials other than books.…

  20. Materials and Molecular Research Division annual report 1980

    SciTech Connect

    Not Available

    1981-06-01

    Progress made in the following research areas is reported: materials sciences (metallurgy and ceramics, solid state physics, materials chemistry); chemical sciences (fundamental interactions, processes and techniques); nuclear sciences; fossil energy; advanced isotope separation technology; energy storage; magnetic fusion energy; and nuclear waste management.

  1. Development and evaluation of novel sensing materials for detecting food contamination

    NASA Astrophysics Data System (ADS)

    Sankaran, Sindhuja

    evaluated as sensor material for the detection of alcohols at low concentrations. The results indicated that the QCM sensors exhibited a good sensitivity to 1-hexanol and 1-pentanol with the estimated LDLs in the range of 2-3 ppm and 3-5 ppm, respectively. This research work was successful in developing multiple novel sensing materials to detect alcohols and acid associated with meat contaminations at low concentrations.

  2. Progress of applied superconductivity research at Materials Research Laboratories, ITRI (Taiwan)

    NASA Technical Reports Server (NTRS)

    Liu, R. S.; Wang, C. M.

    1995-01-01

    A status report based on the applied high temperature superconductivity (HTS) research at Materials Research Laboratories (MRL), Industrial Technology Research Institute (ITRI) is given. The aim is to develop fabrication technologies for the high-TC materials appropriate to the industrial application requirements. To date, the majorities of works have been undertaken in the areas of new materials, wires/tapes with long length, prototypes of magnets, large-area thin films, SQUID's and microwave applications.

  3. PREFACE: 7th EEIGM International Conference on Advanced Materials Research

    NASA Astrophysics Data System (ADS)

    Joffe, Roberts

    2013-12-01

    The 7th EEIGM Conference on Advanced Materials Research (AMR 2013) was held at Luleå University of Technology on the 21-22 March 2013 in Luleå, SWEDEN. This conference is intended as a meeting place for researchers involved in the EEIGM programme, in the 'Erasmus Mundus' Advanced Materials Science and Engineering Master programme (AMASE) and the 'Erasmus Mundus' Doctoral Programme in Materials Science and Engineering (DocMASE). This is great opportunity to present their on-going research in the various fields of Materials Science and Engineering, exchange ideas, strengthen co-operation as well as establish new contacts. More than 60 participants representing six countries attended the meeting, in total 26 oral talks and 19 posters were presented during two days. This issue of IOP Conference Series: Materials Science and Engineering presents a selection of articles from EEIGM-7 conference. Following tradition from previous EEIGM conferences, it represents the interdisciplinary nature of Materials Science and Engineering. The papers presented in this issue deal not only with basic research but also with applied problems of materials science. The presented topics include theoretical and experimental investigations on polymer composite materials (synthetic and bio-based), metallic materials and ceramics, as well as nano-materials of different kind. Special thanks should be directed to the senior staff of Division of Materials Science at LTU who agreed to review submitted papers and thus ensured high scientific level of content of this collection of papers. The following colleagues participated in the review process: Professor Lennart Walström, Professor Roberts Joffe, Professor Janis Varna, Associate Professor Marta-Lena Antti, Dr Esa Vuorinen, Professor Aji Mathew, Professor Alexander Soldatov, Dr Andrejs Purpurs, Dr Yvonne Aitomäki, Dr Robert Pederson. Roberts Joffe October 2013, Luleå Conference photograph EEIGM7 conference participants, 22 March 2013 The PDF

  4. Breast Self-Examination: Programs and Materials Available for Teaching and Research

    PubMed Central

    Greco, Linda Del; Desmeules, Louise

    1985-01-01

    There is an abundance of information of breast self-examination (BSE) as a method of detecting breast cancer. This article describes the various teaching programs and sources of information available to physician, nurse and patient. Materials featuring old, young, black or white women are available; many can be obtained in English, French, Spanish and Braille. These materials range from annotated bibliographies, pamphlets and research reports to programs of continuing education for physicians, nurses and patients. PMID:21274089

  5. DOE Automotive Composite Materials Research: Present and Future Efforts

    SciTech Connect

    Warren, C.D.

    1999-08-10

    One method of increasing automotive energy efficiency is through mass reduction of structural components by the incorporation of composite materials. Significant use of glass reinforced polymers as structural components could yield a 20--30% reduction in vehicle weight while the use of carbon fiber reinforced materials could yield a 40--60% reduction in mass. Specific areas of research for lightweighting automotive components are listed, along with research needs for each of these categories: (1) low mass metals; (2) polymer composites; and (3) ceramic materials.

  6. Interdisciplinary research concerning the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    Mueller, J. I.

    1973-01-01

    Research projects involving the development of ceramic materials are discussed. The following areas of research are reported: (1) refractory structural ceramics, (2) solid electrolyte ceramics, and (3) ceramic processing. The laboratory equipment used and the procedures followed for various development and evaluation techniques are described.

  7. First Materials Science Research Rack Capabilities and Design Features

    NASA Technical Reports Server (NTRS)

    Schaefer, D.; King, R.; Cobb, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The first Materials Science Research Rack (MSRR-1) will accommodate dual Experiment Modules (EM's) and provide simultaneous on-orbit processing operations capability. The first international Materials Science Experiment Module for the MSRR-1 is an international cooperative research activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center. (ESTEC). This International Standard Payload Rack (ISPR) will contain the Materials Science Laboratory (MSL) developed by ESA as an Experiment Module. The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts. Module Inserts currently planned are a Quench Module Insert, Low Gradient Furnace, Solidification with Quench Furnace, and Diffusion Module Insert. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Department (SPD). It includes capabilities for vapor transport processes and liquid metal sintering. This Experiment Module will be replaced on-orbit with other NASA Materials Science EMs.

  8. Materials Compatibility and Lubricants Research on CFC-refrigerant substitutes

    SciTech Connect

    Godwin, D.A.; Hourahan, G.C.; Szymurski, S.R.

    1993-04-01

    The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC-refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. The work is guided by an Advisory Committee consisting of technical experts from the refrigeration and air-conditioning industry and government agencies. Under the current MCLR program the Air-Conditioning and Refrigeration Technology Institute, Inc., (ARTI) is contracting and managing multiple research projects and a data collection and dissemination effort. Detailed results from these projects are reported in technical reports prepared by each researcher.

  9. Materials Compatibility and Lubricants Research on CFC-refrigerant substitutes

    SciTech Connect

    Hourahan, G.C.; Szymurski, S.R.

    1992-10-01

    The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC-refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. The work is guided by an Advisory Committee consisting of technical experts from the refrigeration and air-conditioning industry and government agencies. Under the current MCLR pregrain the Air-Conditioning and Refrigeration Technology Institute, Inc., (ARTI) is contracting and managing several research projects and a data collection and dissemination effort. Preliminary results is from these projects are reported in technical progress reports prepared by each researcher.

  10. Materials compatibility and lubricants research on CFC-refrigerant substitutes

    SciTech Connect

    Hourahan, G.C.; Szymurski, S.R.

    1993-01-01

    The materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC-refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. The work is guided by an Advisory committee consisting of technical experts from the refrigeration and air-conditioning industry and government agencies. Under the current MCLR program the Air-Conditioning and Refrigeration Technology Institute, Inc., (ARTI) is contracting and managing multiple research projects and a data collection and dissemination effort. Preliminary results from these projects are reported in technical progress reports prepared by each researcher.

  11. Water detection in thermal insulating materials by high resolution imaging with holographic radar

    NASA Astrophysics Data System (ADS)

    Capineri, L.; Falorni, P.; Becthel, T.; Ivashov, S.; Razevig, V.; Zhuravlev, A.

    2017-01-01

    The present research is aimed at the application of high resolution holographic images for the detection and characterization of low water content (0.2-1 g) water patches in insulating materials. The images acquired with manual scanning with high frequency (7 GHz) holographic radar with I/Q outputs are compared with a high speed electromechanical scanner with 4 GHz holographic radar. Small patches of the order of 22 mm  ×  22 mm buried at 18 mm into insulating materials with a low dielectric constant, have been accurately reconstructed with the high frequency holographic radar but they can also be detected with the lower frequency holographic radar at even greater depths.

  12. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn; Frazier, Natalie; Lehman, John; Aicher, Winfried

    2013-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1000 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  13. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, S. E.; Lehman, J. R.; Frazier, N. C.

    2016-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1400 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400degC. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  14. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn; Frazier, Natalie; Lehman, John

    2016-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1400 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400?C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  15. Life Science Research Facility materials management requirements and concepts

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine C.

    1986-01-01

    The Advanced Programs Office at NASA Ames Research Center has defined hypothetical experiments for a 90-day mission on Space Station to allow analysis of the materials necessary to conduct the experiments and to assess the impact on waste processing of recyclable materials and storage requirements of samples to be returned to earth for analysis as well as of nonrecyclable materials. The materials include the specimens themselves, the food, water, and gases necessary to maintain them, the expendables necessary to conduct the experiments, and the metabolic products of the specimens. This study defines the volumes, flow rates, and states of these materials. Process concepts for materials handling will include a cage cleaner, trash compactor, biological stabilizer, and various recycling devices.

  16. Nuclear Industry Support Services by the Buffalo Materials Research Center

    SciTech Connect

    Henry, L.G. )

    1993-01-01

    The Buffalo Materials Research Center (BMRC) is located on the campus of the State University of New York at Buffalo, Principal facilities within BMRC include a 2-MW PULSTAR, low-enrichment reactor, an electron accelerator, and irradiated materials remote testing facilities. The reactor and the materials testing facilities have been utilized extensively in support of the power reactor community since 1961. This paper briefly highlights the nature and scope of this service. The BMRC is operated for the university by Buffalo Materials Research, Inc., a private for-profit company, which is a subsidiary of Materials Engineering Associates, Inc. (MEA), a Maryland-based materials testing company. A primary mission of MEA has been research on the effects of neutron irradiation on reactor structural materials, including those used for pressure vessel and piping systems. The combined resources of MEA and BMRC have played a pivotal role in the assessment of reactor pressure vessel safety both in the United States and abroad and in the development of new radiation-resistant steels.

  17. Molecularly Engineered Energy Materials, an Energy Frontier Research Center

    SciTech Connect

    Ozolins, Vidvuds

    2016-09-28

    Molecularly Engineered Energy Materials (MEEM) was established as an interdisciplinary cutting-edge UCLA-based research center uniquely equipped to attack the challenge of rationally designing, synthesizing and testing revolutionary new energy materials. Our mission was to achieve transformational improvements in the performance of materials via controlling the nano-and mesoscale structure using selectively designed, earth-abundant, inexpensive molecular building blocks. MEEM has focused on materials that are inherently abundant, can be easily assembled from intelligently designed building blocks (molecules, nanoparticles), and have the potential to deliver transformative economic benefits in comparison with the current crystalline-and polycrystalline-based energy technologies. MEEM addressed basic science issues related to the fundamental mechanisms of carrier generation, energy conversion, as well as transport and storage of charge and mass in tunable, architectonically complex materials. Fundamental understanding of these processes will enable rational design, efficient synthesis and effective deployment of novel three-dimensional material architectures for energy applications. Three interrelated research directions were initially identified where these novel architectures hold great promise for high-reward research: solar energy generation, electrochemical energy storage, and materials for CO2 capture. Of these, the first two remained throughout the project performance period, while carbon capture was been phased out in consultation and with approval from BES program manager.

  18. Physics Education in a Multidisciplinary Materials Research Environment

    NASA Astrophysics Data System (ADS)

    Doyle, W. D.

    1997-03-01

    The MINT Center, an NSF Materials Research Science and Engineering Center, is a multidisciplinary research program focusing on materials information storage. It involves 17 faculty, 10 post-doctoral fellows and 25 graduate students from six academic programs including Physics, Chemistry, Materials Science, Metallurgical and Materials Engineering, Electric al Engineering and Chemical Engineering, whose research is supported by university, federal and industrial funds. The research facilities (15,000 ft^2) which include faculty and student offices are located in one building and are maintained by the university and the Center at no cost to participating faculty. The academic requirements for the students are determined by the individual departments along relatively rigid, traditional grounds although several materials and device courses are offered for students from all departments. Within the Center, participants work in teams assigning responsibilities and sharing results at regularly scheduled meetings. Bi-weekly research seminars for all participants provide excellent opportunities for students to improve their communication skills and to receive critical input from a large, diverse audience. Strong collaboration with industrial partners in the storage industry supported by workshops, research reviews, internships, industrial visitors and participation in industry consortia give students a broader criteria for self-evaluation, higher motivation and excellent career opportunities. Physics students, because of their rigorous basic training, are an important element in a strong materials sciences program, but they often are deficient in the behavior and characterization of real materials. The curriculum for physics students should be broadened to prepare them fully for a rewarding career in this emerging discipline.

  19. Development Approach for the Accommodation of Materials Science Research for the Materials Science Research Facility on the International Space Station

    NASA Technical Reports Server (NTRS)

    Schaefer, D. A.; Cobb, S. D.; Szofran, F. R.

    2000-01-01

    The Materials Science Research Facility (MSRF) is a modular facility comprised of autonomous Materials Science Research Racks (MSRR's) for research in the microgravity environment afforded by the International Space Station (ISS). The initial MSRF concept consists of three Materials Science Research Racks (MSRR-1, MSRR-2, and MSRR-3) which will be developed for a phased deployment beginning on the third Utilization Flight (UF-3). The facility will house materials processing apparatus and common subsystems required for operating each device. Each MSRR is a stand alone autonomous rack and will be comprised of either on-orbit replaceable Experiment Modules, Module Inserts, investigation unique apparatus, and/or multiuser generic processing apparatus. Each MSRR will support a wide range of materials science themes in the NASA research program and will use the ISS Active Rack Isolation System (ARIS). MSRF is being developed for the United States Laboratory Module and will provide the apparatus for satisfying near-term and long-range Materials Science Discipline goals and objectives.

  20. SAW/GC detection of taggants and other volatile compounds associated with contraband materials

    NASA Astrophysics Data System (ADS)

    Staples, Edward J.; Watson, Gary W.; McGuirre, David S.; Williams, Dudley

    1997-02-01

    Research on a Surface Acoustic Wave (SAW) Gas Chromatography (GC) non-intrusive inspection system has demonstrated the ability to identify and quantify the presence of non- volatile contraband vapors in less than 10 seconds. The technique can be used to detect volatile compounds associated with the contraband compound as well. This is important because volatile taggants in explosives make them easy to detect and volatile organic compounds are routinely used in the manufacturing of illicit drugs. The results of tests with volatile organic compounds associated with drugs of abuse, and volatile taggants for explosives are presented. The latter materials are particularly useful in detecting plastic explosives and results for Semtex and C-4 spiked with a taggant show that detectability is improved. Similar testing protocols and methods for drugs, currency, organo-phosphate agents, and taggant compounds have also been demonstrated. The SAW/GC method needs no high voltages, utilizes essentially all solid state devices, and involves no radioactive or hazardous materials SAW detection systems have demonstrated dynamic ranges greater than 1,000,000 and the ability to selectively screen for vapors from explosive and drugs of abuse at the part per billion level with little or no interference. Most important for law-enforcement, SAW/GC devices can be produced in small packages at low cost.

  1. PREFACE: 6th EEIGM International Conference on Advanced Materials Research

    NASA Astrophysics Data System (ADS)

    Horwat, David; Ayadi, Zoubir; Jamart, Brigitte

    2012-02-01

    The 6th EEIGM Conference on Advanced Materials Research (AMR 2011) was held at the European School of Materials Engineering (EEIGM) on the 7-8 November 2011 in Nancy, France. This biennial conference organized by the EEIGM is a wonderful opportunity for all scientists involved in the EEIGM programme, in the 'Erasmus Mundus' Advanced Materials Science and Engineering Master programme (AMASE) and the 'Erasmus Mundus' Doctoral Programme in Materials Science and Engineering (DocMASE), to present their research in the various fields of Materials Science and Engineering. This conference is also open to other universities who have strong links with the EEIGM and provides a forum for the exchange of ideas, co-operation and future orientations by means of regular presentations, posters and a round-table discussion. This edition of the conference included a round-table discussion on composite materials within the Interreg IVA project '+Composite'. Following the publication of the proceedings of AMR 2009 in Volume 5 of this journal, it is with great pleasure that we present this selection of articles to the readers of IOP Conference Series: Materials Science and Engineering. Once again it represents the interdisciplinary nature of Materials Science and Engineering, covering basic and applicative research on organic and composite materials, metallic materials and ceramics, and characterization methods. The editors are indebted to all the reviewers for reviewing the papers at very short notice. Special thanks are offered to the sponsors of the conference including EEIGM-Université de Lorraine, AMASE, DocMASE, Grand Nancy, Ville de Nancy, Region Lorraine, Fédération Jacques Villermaux, Conseil Général de Meurthe et Moselle, Casden and '+Composite'. Zoubir Ayadi, David Horwat and Brigitte Jamart

  2. NASA Lewis Research Center's Preheated Combustor and Materials Test Facility

    NASA Technical Reports Server (NTRS)

    Nemets, Steve A.; Ehlers, Robert C.; Parrott, Edith

    1995-01-01

    The Preheated Combustor and Materials Test Facility (PCMTF) in the Engine Research Building (ERB) at the NASA Lewis Research Center is one of two unique combustor facilities that provide a nonvitiated air supply to two test stands, where the air can be used for research combustor testing and high-temperature materials testing. Stand A is used as a research combustor stand, whereas stand B is used for cyclic and survivability tests of aerospace materials at high temperatures. Both stands can accommodate in-house and private industry research programs. The PCMTF is capable of providing up to 30 lb/s (pps) of nonvitiated, 450 psig combustion air at temperatures ranging from 850 to 1150 g F. A 5000 gal tank located outdoors adjacent to the test facility can provide jet fuel at a pressure of 900 psig and a flow rate of 11 gal/min (gpm). Gaseous hydrogen from a 70,000 cu ft (CF) tuber is also available as a fuel. Approximately 500 gpm of cooling water cools the research hardware and exhaust gases. Such cooling is necessary because the air stream reaches temperatures as high as 3000 deg F. The PCMTF provides industry and Government with a facility for studying the combustion process and for obtaining valuable test information on advanced materials. This report describes the facility's support systems and unique capabilities.

  3. Type-II superlattice materials for mid-infrared detection

    NASA Astrophysics Data System (ADS)

    Brown, Gail J.; Haugan, Heather; Szmulowicz, Frank; Mahalingam, Krishnamur; Grazulis, L.; Houston, Shanee

    2005-03-01

    Type-II superlattices composed of alternating thin layers of InAs and GaSb, have been shown to be a highly flexible infrared materials system in which the energy band gap can be adjusted anywhere between 360 meV and 40 meV. These superlattices (SLs) are the III-V equivalent to the well established HgxCd1-xTe alloys used for infrared detection in the short, mid and long wavelength bands of the infrared spectrum. There are many possible designs for these superlattices that will produce the same narrow band gap by adjusting individual layer thicknesses and interface composition. Systematic growth and characterization studies were performed to determine optimum superlattice designs suitable for infrared detection in the 3 to 5 μm wavelength band. For these studies the individual layer thicknesses were less than 35Å. The effects of adding different thickness InSb-like interfaces were also studied. Through precision molecular beam epitaxy, design changes as small as 3Å to the SL layers could be studied. Significant changes were observed in the infrared photoresponse spectra of the various SL samples. The infrared properties of the various designs of these type-II superlattices were modeled using an 8-band Envelope Function Approximation. The infrared photoresponse spectra, combined with quantum mechanical modeling of predicted absorption spectra, were a key factor in the design optimization of the InAs/GaSb superlattices with band gaps in the range of 200 to 360 meV.

  4. Materials and Components Technology Division research summary, 1992

    SciTech Connect

    Not Available

    1992-11-01

    The Materials and Components Technology Division (MCT) provides a research and development capability for the design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs related to nuclear energy support the development of the Integral Fast Reactor (IFR): life extension and accident analyses for light water reactors (LWRs); fuels development for research and test reactors; fusion reactor first-wall and blanket technology; and safe shipment of hazardous materials. MCT Conservation and Renewables programs include major efforts in high-temperature superconductivity, tribology, nondestructive evaluation (NDE), and thermal sciences. Fossil Energy Programs in MCT include materials development, NDE technology, and Instrumentation design. The division also has a complementary instrumentation effort in support of Arms Control Technology. Individual abstracts have been prepared for the database.

  5. Metrology and Characterization Challenges for Emerging Research Materials and Devices

    SciTech Connect

    Garner, C. Michael; Herr, Dan; Obeng, Yaw

    2011-11-10

    The International Technology Roadmap for Semiconductors (ITRS) Emerging Research Materials (ERM) and Emerging Research Devices (ERD) Technology Workgroups have identified materials and devices that could enable continued increases in the density and performance of future integrated circuit (IC) technologies and the challenges that must be overcome; however, this will require significant advances in metrology and characterization to enable progress. New memory devices and beyond CMOS logic devices operate with new state variables (e.g., spin, redox state, etc.) and metrology and characterization techniques are needed to verify their switching mechanisms and scalability, and enable improvement of operation of these devices. Similarly, new materials and processes are needed to enable these new devices. Additionally, characterization is needed to verify that the materials and their interfaces have been fabricated with required quality and performance.

  6. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Frazier, Natalie C.; Johnson, Jimmie; Aicher, Winfried

    2011-01-01

    The Materials Science Research Rack (MSRR) allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses onboard the International Space Station (ISS). MSRR was launched on STS-128 in August 2009, and is currently installed in the U. S. Destiny Laboratory Module. Since that time, MSRR has performed virtually flawlessly logging more than 550 hours of operating time. Materials science is an integral part of development of new materials for everyday life here on Earth. The goal of studying materials processing in space is to develop a better understanding of the chemical and physical mechanisms involved. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility containing two furnace inserts in which Sample Cartridge Assemblies (SCAs), each containing one material sample, can be processed up to temperatures of 1400C. Once an SCA is installed by a Crew Member, the experiment can be run by automatic command or science conducted via telemetry commands from the ground. Initially, 12 SCAs were processed in the first furnace insert for a team of European and US investigators. The processed samples have been returned to Earth for evaluation and comparison of their properties to samples similarly processed on the ground. A preliminary examination of the samples indicates that the majority of the desired science objectives have been successfully met leading to significant improvements in the understanding of alloy solidification processes. The second furnace insert will be installed in the facility in January 2011 for processing the remaining SCA currently on orbit. Six SCAs are planned for launch summer 2011, and additional batches are

  7. Automated Guided-Wave Scanning Developed to Characterize Materials and Detect Defects

    NASA Technical Reports Server (NTRS)

    Martin, Richard E.; Gyekenyeski, Andrew L.; Roth, Don J.

    2004-01-01

    The Nondestructive Evaluation (NDE) Group of the Optical Instrumentation Technology Branch at the NASA Glenn Research Center has developed a scanning system that uses guided waves to characterize materials and detect defects. The technique uses two ultrasonic transducers to interrogate the condition of a material. The sending transducer introduces an ultrasonic pulse at a point on the surface of the specimen, and the receiving transducer detects the signal after it has passed through the material. The aim of the method is to correlate certain parameters in both the time and frequency domains of the detected waveform to characteristics of the material between the two transducers. The scanning system is shown. The waveform parameters of interest include the attenuation due to internal damping, waveform shape parameters, and frequency shifts due to material changes. For the most part, guided waves are used to gauge the damage state and defect growth of materials subjected to various mechanical or environmental loads. The technique has been applied to polymer matrix composites, ceramic matrix composites, and metal matrix composites as well as metallic alloys. Historically, guided wave analysis has been a point-by-point, manual technique with waveforms collected at discrete locations and postprocessed. Data collection and analysis of this type limits the amount of detail that can be obtained. Also, the manual movement of the sensors is prone to user error and is time consuming. The development of an automated guided-wave scanning system has allowed the method to be applied to a wide variety of materials in a consistent, repeatable manner. Experimental studies have been conducted to determine the repeatability of the system as well as compare the results obtained using more traditional NDE methods. The following screen capture shows guided-wave scan results for a ceramic matrix composite plate, including images for each of nine calculated parameters. The system can

  8. Ground-Based Research within NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Ground-based research in Materials Science for NASA's Microgravity program serves several purposes, and includes approximately four Principal Investigators for every one in the flight program. While exact classification is difficult. the ground program falls roughly into the following categories: (1) Intellectual Underpinning of the Flight Program - Theoretical Studies; (2) Intellectual Underpinning of the Flight Program - Bringing to Maturity New Research; (3) Intellectual Underpinning of the Flight Program - Enabling Characterization; (4) Intellectual Underpinning of the Flight Program - Thermophysical Property Determination; (5) Radiation Shielding; (6) Preliminary In Situ Resource Utilization; (7) Biomaterials; (8) Nanostructured Materials; (9) Materials Science for Advanced Space Propulsion. It must be noted that while the first four categories are aimed at using long duration low gravity conditions, the other categories pertain more to more recent NASA initiatives in materials science. These new initiatives address NASA's future materials science needs in the realms of crew health and safety, and exploration, and have been included in the most recent NASA Research Announcements (NRA). A description of each of these nine categories will be given together with examples of the kinds of research being undertaken.

  9. Graphdiyne as a promising material for detecting amino acids

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Gao, Pengfei; Guo, Lei; Zhang, Shengli

    2015-11-01

    The adsorption of glycine, glutamic acid, histidine and phenylalanine on single-layer graphdiyne/ graphene is investigated by ab initio calculations. The results show that for each amino acid molecule, the adsorption energy on graphdiyne is larger than the adsorption energy on graphene and dispersion interactions predominate in the adsorption. Molecular dynamics simulations reveal that at room temperature the amino acid molecules keep migrating and rotating on graphdiyne surface and induce fluctuation in graphdiyne bandgap. Additionally, the photon absorption spectra of graphdiyne-amino-acid systems are investigated. We uncover that the presence of amino acid molecules makes the photon absorption peaks of graphdiyne significantly depressed and shifted. Finally, quantum electronic transport properties of graphdiyne-amino-acid systems are compared with the transport properties of pure graphdiyne. We reveal that the amino acid molecules induce distinct changes in the electronic conductivity of graphdiyne. The results in this paper reveal that graphdiyne is a promising two-dimensional material for sensitively detecting amino acids and may potentially be used in biosensors.

  10. Special Nuclear Material Detection with a Water Cherenkov based Detector

    SciTech Connect

    Sweany, M; Bernstein, A; Bowden, N; Dazeley, S; Svoboda, R

    2008-11-10

    Fission events from Special Nuclear Material (SNM), such as highly enriched uranium or plutonium, produce a number of neutrons and high energy gamma-rays. Assuming the neutron multiplicity is approximately Poissonian with an average of 2 to 3, the observation of time correlations between these particles from a cargo container would constitute a robust signature of the presence of SNM inside. However, in order to be sensitive to the multiplicity, one would require a high total efficiency. There are two approaches to maximize the total efficiency; maximizing the detector efficiency or maximizing the detector solid angle coverage. The advanced detector group at LLNL is investigating one way to maximize the detector size. We are designing and building a water Cerenkov based gamma and neutron detector for the purpose of developing an efficient and cost effective way to deploy a large solid angle car wash style detector. We report on our progress in constructing a larger detector and also present preliminary results from our prototype detector that indicates detection of neutrons.

  11. Long range view of materials research for civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Waters, M. H.

    1973-01-01

    The impact of various material technology advancements on the economics of civil transport aircraft is investigated. Benefits of advances in both airframe and engine materials are considered. Benefits are measured primarily by improvements in return on investment for an operator. Materials research and development programs which lead to the greatest benefits are assessed with regards to cost, risk, and commonality with other programs. Emphasis of the paper is on advanced technology subsonic/transonic transports (ATT type aircraft) since these are likely to be the next generation of commercial transports.

  12. Long range view of materials research for civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Waters, M. H.

    1974-01-01

    The impact of various material technology advancements on the economics of civil transport aircraft is investigated. Benefits of advances in both airframe and engine materials are considered. Benefits are measured primarily by improvements in return on investment for an operator. Materials research and development programs which lead to the greatest benefits are assessed with regards to cost, risk, and commonality with other programs. Emphasis of the paper is on advanced technology subsonic/transonic transports (ATT type aircraft) since these are likely to be the next generation of commercial transports.

  13. Materials and Components Technology Division research summary, 1991

    SciTech Connect

    Not Available

    1991-04-01

    This division has the purpose of providing a R and D capability for design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs are in support of the Integral Fast Reactor, life extension for light water reactors, fuels development for the new production reactor and research and test reactors, fusion reactor first-wall and blanket technology, safe shipment of hazardous materials, fluid mechanics/materials/instrumentation for fossile energy systems, and energy conservation and renewables (including tribology, high- temperature superconductivity). Separate abstracts have been prepared for the data base.

  14. Systems and methods for neutron detection using scintillator nano-materials

    DOEpatents

    Letant, Sonia Edith; Wang, Tzu-Fang

    2016-03-08

    In one embodiment, a neutron detector includes a three dimensional matrix, having nanocomposite materials and a substantially transparent film material for suspending the nanocomposite materials, a detector coupled to the three dimensional matrix adapted for detecting a change in the nanocomposite materials, and an analyzer coupled to the detector adapted for analyzing the change detected by the detector. In another embodiment, a method for detecting neutrons includes receiving radiation from a source, converting neutrons in the radiation into alpha particles using converter material, converting the alpha particles into photons using quantum dot emitters, detecting the photons, and analyzing the photons to determine neutrons in the radiation.

  15. Single molecule detection with graphene and other two-dimensional materials: nanopores and beyond

    PubMed Central

    Arjmandi-Tash, Hadi; Belyaeva, Liubov A.

    2016-01-01

    Graphene and other two dimensional (2D) materials are currently integrated into nanoscaled devices that may – one day – sequence genomes. The challenge to solve is conceptually straightforward: cut a sheet out of a 2D material and use the edge of the sheet to scan an unfolded biomolecule from head to tail. As the scan proceeds – and because 2D materials are atomically thin – the information provided by the edge might be used to identify different segments – ideally single nucleotides – in the biomolecular strand. So far, the most efficient approach was to drill a nano-sized pore in the sheet and use this pore as a channel to guide and detect individual molecules by measuring the electrochemical ionic current. Nanoscaled gaps between two electrodes in 2D materials recently emerged as powerful alternatives to nanopores. This article reviews the current status and prospects of integrating 2D materials in nanopores, nanogaps and similar devices for single molecule biosensing applications. We discuss the pros and cons, the challenges, and the latest achievements in the field. To achieve high-throughput sequencing with 2D materials, interdisciplinary research is essential. PMID:26612268

  16. Detection of material property errors in handbooks and databases using artificial neural networks with hidden correlations

    NASA Astrophysics Data System (ADS)

    Zhang, Y. M.; Evans, J. R. G.; Yang, S. F.

    2010-11-01

    The authors have discovered a systematic, intelligent and potentially automatic method to detect errors in handbooks and stop their transmission using unrecognised relationships between materials properties. The scientific community relies on the veracity of scientific data in handbooks and databases, some of which have a long pedigree covering several decades. Although various outlier-detection procedures are employed to detect and, where appropriate, remove contaminated data, errors, which had not been discovered by established methods, were easily detected by our artificial neural network in tables of properties of the elements. We started using neural networks to discover unrecognised relationships between materials properties and quickly found that they were very good at finding inconsistencies in groups of data. They reveal variations from 10 to 900% in tables of property data for the elements and point out those that are most probably correct. Compared with the statistical method adopted by Ashby and co-workers [Proc. R. Soc. Lond. Ser. A 454 (1998) p. 1301, 1323], this method locates more inconsistencies and could be embedded in database software for automatic self-checking. We anticipate that our suggestion will be a starting point to deal with this basic problem that affects researchers in every field. The authors believe it may eventually moderate the current expectation that data field error rates will persist at between 1 and 5%.

  17. Electromagnetic material changes for remote detection and monitoring: a feasibility study: Progress report

    SciTech Connect

    McCloy, John S.; Jordan, David V.; Kelly, James F.; McMakin, Douglas L.; Johnson, Bradley R.; Campbell, Luke W.

    2009-09-01

    A new concept for radiation detection is proposed, allowing a decoupling of the sensing medium and the readout. An electromagnetic material, such as a magnetic ceramic ferrite, is placed near a source to be tracked such as a shipping container. The electromagnetic material changes its properties, in this case its magnetic permeability, as a function of radiation. This change is evident as a change in reflection frequency and magnitude when probed using a microwave/millimeter-wave source. This brief report discusses modeling of radiation interaction of various candidate materials using a radiation detector modeling code Geant4, system design considerations for the remote readout, and some theory of the material interaction physics. The theory of radiation change in doped magnetic insulator ferrites such as yttrium iron garnet (YIG) seems well founded based on literature documentation of the photomagnetic effect. The literature also suggests sensitivity of permittivity to neutrons in some ferroelectrics. Research to date indicates that experimental demonstration of these effects in the context of radiation detection is warranted.

  18. Methods of detection and identificationoc carbon- and nitrogen-containing materials

    SciTech Connect

    Karev, Alexander Ivanovich; Raevsky, Valery Georgievich; Dzhalivyan, Leonid Zavenovich; Brothers, Louis Joseph; Wilhide, Larry K

    2013-11-12

    Methods for detecting and identifying carbon- and/or nitrogen-containing materials are disclosed. The methods may comprise detection of photo-nuclear reaction products of nitrogen and carbon to detect and identify the carbon- and/or nitrogen-containing materials.

  19. Device for detection and identification of carbon- and nitrogen-containing materials

    DOEpatents

    Karev, Alexander Ivanovich; Raevsky, Valery Georgievich; Dzhilavyan, Leonid Zavenovich; Laptev, Valery Dmitrievich; Pakhomov, Nikolay Ivanovich; Shvedunov, Vasily Ivanovich; Rykalin, Vladimir Ivanovich; Brothers, Louis Joseph; Wilhide, Larry K

    2014-03-25

    A device for detection and identification of carbon- and nitrogen-containing materials is described. In particular, the device performs the detection and identification of carbon- and nitrogen-containing materials by photo-nuclear detection. The device may comprise a race-track microtron, a breaking target, and a water-filled Cherenkov radiation counter.

  20. Capability of Thermographic Imaging Defined for Detection in High-Temperature Composite Materials

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    1997-01-01

    Significant effort and resources are being expended to develop ceramic matrix (CMC), metal matrix (MMC), and polymer matrix (PMC) composites for high-temperature engine components and other parts in advanced aircraft. The objective of this NASA Lewis Research Center study was to evaluate the ability of a thermographic imaging technique for detecting artificially created defects (flat-bottom holes) of various diameters and depths in four composite systems (two CMC's, one MMC, and one PMC) of interest as high-temperature structural materials.

  1. Action Research to Support Teachers' Classroom Materials Development

    ERIC Educational Resources Information Center

    Edwards, Emily; Burns, Anne

    2016-01-01

    Language teachers constantly create, adapt and evaluate classroom materials to develop new curricula and meet their learners' needs. It has long been argued (e.g. by Stenhouse, L. [1975]. "An Introduction to Curriculum Research and Development." London: Heinemann) that teachers themselves, as opposed to managers or course book writers,…

  2. The Bias of Materiality in Sociocultural Research: Reconceiving Embodiment

    ERIC Educational Resources Information Center

    Cheville, Julie

    2006-01-01

    Although language practices must obviously be an empirical focus in sociocultural research, this article suggests that emphasis on the human body's material aspect has not revealed how, in particular communicative contexts, its ideational influence surpasses that of language. This article suggests that in the "social" semiotic, the body's function…

  3. Broadband Impedance Microscopy for Research on Complex Quantum Materials

    DTIC Science & Technology

    2016-02-08

    Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Broadband impedance microscopy, nanoscale electrical imaging, collective behavior ...materials, showing the typical dielectric relaxation and resonant behaviors [5-7]. Little is known, however, on the microscopic details of these

  4. Development of an Extreme Environment Materials Research Facility at Princeton

    SciTech Connect

    Cohen, A B; Tully, C G; Austin, R; Calaprice, F; McDonald, K; Ascione, G; Baker, G; Davidson, R; Dudek, L; Grisham, L; Kugel, H; Pagdon, K; Stevenson, T; Woolley, R; Zwicker, A

    2010-11-17

    The need for a fundamental understanding of material response to a neutron and/or high heat flux environment can yield development of improved materials and operations with existing materials. Such understanding has numerous applications in fields such as nuclear power (for the current fleet and future fission and fusion reactors), aerospace, and other research fields (e.g., high-intensity proton accelerator facilities for high energy physics research). A proposal has been advanced to develop a facility for testing various materials under extreme heat and neutron exposure conditions at Princeton. The Extreme Environment Materials Research Facility comprises an environmentally controlled chamber (48 m^3) capable of high vacuum conditions, with extreme flux beams and probe beams accessing a central, large volume target. The facility will have the capability to expose large surface areas (1 m^2) to 14 MeV neutrons at a fluence in excess of 10^13 n/s. Depending on the operating mode. Additionally beam line power on the order of 15-75 MW/m2 for durations of 1-15 seconds are planned... The multi-second duration of exposure can be repeated every 2-10 minutes for periods of 10-12 hours. The facility will be housed in the test cell that held the Tokamak Fusion Test Reactor (TFTR), which has the desired radiation and safety controls as well as the necessary loading and assembly infrastructure. The facility will allow testing of various materials to their physical limit of thermal endurance and allow for exploring the interplay between radiation-induced embrittlement, swelling and deformation of materials, and the fatigue and fracturing that occur in response to thermal shocks. The combination of high neutron energies and intense fluences will enable accelerated time scale studies. The results will make contributions for refining predictive failure modes (modeling) in extreme environments, as well as providing a technical platform for the development of new alloys, new

  5. Neutron Scattering for Materials Science. Materials Research Society Symposium Proceedings, Volume 166

    DTIC Science & Technology

    1990-01-01

    liquids. The use of neutron scattering methods in materials science research has in turn increased dramatically in recent years. The symposiuam was...NEUTRON SCATTERING *NEUTRONS: THE KINDER, GENTLER PROBE OF CONDENSED MATTER 3 John D. Axe *NEUTRON SCATTERING METHODS FOR MATERIAL SCIENCE 15 Roger...DIFFUSE SCATTERING IN NEUTRON TIME-OF-FLIGHT POWDER PATTERNS 67 Michael J. Radler REAL SPACE METHOD OF POWDER DIFFRACTION FOR NON-PERIODIC AND NEARLY

  6. Metallic and Ceramic Materials Research. Task Order 0005: Metallic, Materials, Methods, Characterization and Testing Research

    DTIC Science & Technology

    2015-10-01

    two specimens and orientation imaging microscopy (OIM) maps were plotted based on the inverse pole figure (IPF) as well as the Schmid factors for...Energy Technology IPF Inverse Pole Figure LSHR Low Solvus High Refractory OIM Orientation Imaging Microscopy R&D Research and Development SEM

  7. Left Handed Materials Research for Air Force Applications

    DTIC Science & Technology

    2011-08-31

    a high Tc superconducting material, such as YBCO , with mixed results. 3. After optimizing the key figures of merit of our single frequency (~3...amplification, our microwave spectrometer has the potential to detect superconducting grains of YBCO weighing as little as 1 microgram, or nanometer...thickness YBCO superconducting films with mass as low as 10 nanograms. We designed and built our system to operate at temperatures between 4K and 400K. A

  8. Basic Research in Materials Science and Economic Sustainable Growth

    NASA Astrophysics Data System (ADS)

    Habermeier, H.-U.

    2000-09-01

    The necessity of public funding of basic research has been proclaimed by V. Bush 1945 in the `social contract for science' and this concept has been unanimously accepted as a vital prerequisite for the wealth of nations during the past 50 years. Recent developments gave rise to a paradigm shift away from the Bush's concept. In this paper this development is critically explored and the economical impact of research is discussed. Current evolution in knowledge generation and a change of the political boundary conditions require a new concept for an integrated research system. Examples taken from the semiconductor industry serve as an indicator of the enabling importance of materials science and condensed matter physics in the past. Basic research in materials science of functional ceramics generated new developments that are believed to have similar impact in the future. Already appearing and in the years ahead more emphasized nature of materials science as an multidisciplinary activity serves a model for the proposal of the vision of an integrated system of basic research and education. This is a prerequisite to master the challenges we are facind in the next century. A science based winning culture is the model for the future.

  9. The changing role of the National Laboratories in materials research

    SciTech Connect

    Wadsworth, J.; Fluss, M.

    1995-06-02

    The role of the National Laboratories is summarized from the era of post World War II to the present time. The U.S. federal government policy for the National Laboratories and its influence on their materials science infrastructure is reviewed with respect to: determining overall research strategies, various initiatives to interact with industry (especially in recent years), building facilities that serve the nation, and developing leading edge research in the materials sciences. Despite reductions in support for research in the U.S. in recent years, and uncertainties regarding the specific policies for R&D in the U.S., there are strong roles for materials research at the National Laboratories. These roles will be centered on the abilities of the National Laboratories to field multidisciplinary teams, the use of unique cutting edge facilities, a focus on areas of strength within each of the labs, increased teaming and partnerships, and the selection of motivated research areas. It is hoped that such teaming opportunities will include new alliances with China, in a manner similar, perhaps, to those recently achieved between the U.S. and other countries.

  10. Research on gradient index material containing silver ions

    NASA Astrophysics Data System (ADS)

    Su, Zhimei; Liu, Tong; Kang, Lijun; Li, Yulin; Wang, Lili; Kong, Yu'e.; Li, Tonghai

    2006-01-01

    Since the gradient index material has important applications at photoelectric system, imaging system, and integrated-optical system. Now, researches on gradient index material containing silver ions are more popular, it is difficult to get glass with high silver content as silver ion is extruded from molten glass at the molten temperature. Two-step ion-exchange process including Ag +- Na + and Na + - Ag + ion-exchange is used to get gradient index. This paper is based on the research in our lab, by adjusting the glass composition to get a series of sodium-rich glass then drawing the fusioned glass into fiber with diameter of 1mm used for ion-exchange. We used mixed molten salt for ion- exchange, then we researched on the choice of silver salt, the advantage and disadvantage of mixed molten salt and single molten salt, and the coloring up problem after ion-exchange.

  11. Some applications of microanalytical electron microscopy in materials research

    SciTech Connect

    Thomas, G.

    1985-10-01

    Electron microscopy has made extraordinary progress over the past 30 years and has become an indispensible tool for research in materials science. In this paper a review is given of some applications of microdiffraction and microanalysis in our current materials science research projects at the University of California, Berkeley. The topics discussed include: (1) The problem of solute atom partitioning in steels; this includes the difficulties of measuring carbon contents and methods of utilizing diffraction, lattice imaging, energy dispersive x-ray (EDXS) and electron energy loss (EELS) spectroscopies and atom probe analysis will be illustrated. (2) Utilization of CBED and EDXS techniques in zirconia ceramics research. (3) Applications of CBED to the study of el-Fe2O3 particles used in magnetic recording systems. (4) Applications of CBED and EDXS to rare earth permanent magnets. (5) Channelling enhanced microanalysis. 50 refs., 21 figs.

  12. Associated-particle sealed-tube neutron probe: Detection of explosives, contraband, and nuclear materials

    SciTech Connect

    Rhodes, E.; Dickerman, C.E.

    1996-05-01

    Continued research and development of the APSTNG shows the potential for practical field use of this technology for detection of explosives, contraband, and nuclear materials. The APSTNG (associated-particle sealed-tube generator) inspects the item to be examined using penetrating 14-MeV neutrons generated by the deuterium-tritium reaction inside a compact accelerator tube. An alpha detector built into the sealed tube detects the alpha-particle associated with each neutron emitted in a cone encompassing the volume to be inspected. Penetrating high-energy gamma-rays from the resulting neutron reactions identify specific nuclides inside the volume. Flight-times determined from the detection times of gamma-rays and alpha-particles separate the prompt and delayed gamma-ray spectra and allow a coarse 3-D image to be obtained of nuclides identified in the prompt spectrum. The generator and detectors can be on the same side of the inspected object, on opposite sides, or with intermediate orientations. Thus, spaces behind walls and other confined regions can be inspected. Signals from container walls can be discriminated against using the flight-time technique. No collimators or shielding are required, the neutron generator is relatively small, and commercial-grade electronics are employed. The use of 14-MeV neutrons yields a much higher cross-section for detecting nitrogen than that for systems based on thermal-neutron reactions alone, and the broad range of elements with significant 14-MeV neutron cross-sections extends explosives detection to other elements including low-nitrogen compounds, and allows detection of many other substances. Proof-of-concept experiments have been successfully performed for conventional explosives, chemical warfare agents, cocaine, and fissionable materials.

  13. Method and apparatus for detection of fluorescently labeled materials

    DOEpatents

    Stern, David; Fiekowsky, Peter

    2004-05-25

    Fluorescently marked targets bind to a substrate 230 synthesized with polymer sequences at known locations. The targets are detected by exposing selected regions of the substrate 230 to light from a light source 100 and detecting the photons from the light fluoresced therefrom, and repeating the steps of exposure and detection until the substrate 230 is completely examined. The resulting data can be used to determine binding affinity of the targets to specific polymer sequences.

  14. Method and apparatus for detection of fluorescently labeled materials

    DOEpatents

    Stern, David; Fiekowsky, Peter

    1997-01-01

    Fluorescently marked targets bind to a substrate 230 synthesized with polymer sequences at known locations. The targets are detected by exposing selected regions of the substrate 230 to light from a light source 100 and detecting the photons from the light fluoresced therefrom, and repeating the steps of exposure and detection until the substrate 230 is completely examined. The resulting data can be used to determine binding affinity of the targets to specific polymer sequences.

  15. Detecting Shielded Special Nuclear Materials Using Multi-Dimensional Neutron Source and Detector Geometries

    NASA Astrophysics Data System (ADS)

    Santarius, John; Navarro, Marcos; Michalak, Matthew; Fancher, Aaron; Kulcinski, Gerald; Bonomo, Richard

    2016-10-01

    A newly initiated research project will be described that investigates methods for detecting shielded special nuclear materials by combining multi-dimensional neutron sources, forward/adjoint calculations modeling neutron and gamma transport, and sparse data analysis of detector signals. The key tasks for this project are: (1) developing a radiation transport capability for use in optimizing adaptive-geometry, inertial-electrostatic confinement (IEC) neutron source/detector configurations for neutron pulses distributed in space and/or phased in time; (2) creating distributed-geometry, gas-target, IEC fusion neutron sources; (3) applying sparse data and noise reduction algorithms, such as principal component analysis (PCA) and wavelet transform analysis, to enhance detection fidelity; and (4) educating graduate and undergraduate students. Funded by DHS DNDO Project 2015-DN-077-ARI095.

  16. Detecting strain in birefringent materials using spectral polarimetry

    NASA Technical Reports Server (NTRS)

    Ragucci, Anthony J. (Inventor); Cisar, Alan J. (Inventor); Huebschman, Michael L. (Inventor); Garner, Harold R. (Inventor)

    2010-01-01

    A method, computer program product and system for analyzing multispectral images from a plurality of regions of birefringent material, such as a polymer film, using polarized light and a corresponding polar analyzer to identify differential strain in the birefringent material. For example, the birefringement material may be low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene, polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyvinylidene chloride, polyester, nylon, or cellophane film. Optionally, the method includes generating a real-time quantitative strain map.

  17. First Materials Science Research Facility Rack Capabilities and Design Features

    NASA Technical Reports Server (NTRS)

    Cobb, S.; Higgins, D.; Kitchens, L.; Curreri, Peter (Technical Monitor)

    2002-01-01

    The first Materials Science Research Rack (MSRR-1) is the primary facility for U.S. sponsored materials science research on the International Space Station. MSRR-1 is contained in an International Standard Payload Rack (ISPR) equipped with the Active Rack Isolation System (ARIS) for the best possible microgravity environment. MSRR-1 will accommodate dual Experiment Modules and provide simultaneous on-orbit processing operations capability. The first Experiment Module for the MSRR-1, the Materials Science Laboratory (MSL), is an international cooperative activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center (ESTEC). The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts which provide distinct thermal processing capabilities. Module Inserts currently planned for the MSL are a Quench Module Insert, Low Gradient Furnace, and a Solidification with Quench Furnace. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Development (SPD) Group. Transparent furnace assemblies include capabilities for vapor transport processes and annealing of glass fiber preforms. This Experiment Module is replaceable on-orbit. This paper will describe facility capabilities, schedule to flight and research opportunities.

  18. Silicon carbide alloys: Research reports in materials science

    SciTech Connect

    Dobson, M.M.

    1986-01-01

    The book draws from work done on other silicon materials, silicon nitrides and sialons, to emphasize the importance of the SiC system. A comprehensive treatment of non-oxide silicon ceramics, this work is of special interest to researchers involved in ceramics, materials science, and high-temperature technology. This book covers the alloys of silicon carbide with aluminum nitride. Crystallography and experimental methods including sample preparation, furnace methods, X-ray and electron diffraction, optical and electron microscopy and chemical analysis are covered.

  19. Method and apparatus for detecting flaws in conductive material

    DOEpatents

    Hockey, Ronald L.; Riechers, Douglas M.

    1998-01-01

    The present invention uses a magnet in relative motion to a conductive material, and a coil that is stationary with respect to the magnet to measure perturbation or variation in the magnetic field in the presence of an inclusion. The magnet and coil sensor may be on the same side of the conductive material.

  20. Method and apparatus for detecting flaws in conductive material

    DOEpatents

    Hockey, R.L.; Riechers, D.M.

    1998-07-07

    The present invention uses a magnet in relative motion to a conductive material, and a coil that is stationary with respect to the magnet to measure perturbation or variation in the magnetic field in the presence of an inclusion. The magnet and coil sensor may be on the same side of the conductive material. 18 figs.

  1. Technical Education Outreach in Materials Science and Technology Based on NASA's Materials Research

    NASA Technical Reports Server (NTRS)

    Jacobs, James A.

    2003-01-01

    The grant NAG-1 -2125, Technical Education Outreach in Materials Science and Technology, based on NASA s Materials Research, involves collaborative effort among the National Aeronautics and Space Administration s Langley Research Center (NASA-LaRC), Norfolk State University (NSU), national research centers, private industry, technical societies, colleges and universities. The collaboration aims to strengthen math, science and technology education by providing outreach related to materials science and technology (MST). The goal of the project is to transfer new developments from LaRC s Center for Excellence for Structures and Materials and other NASA materials research into technical education across the nation to provide educational outreach and strengthen technical education. To achieve this goal we are employing two main strategies: 1) development of the gateway website and 2) using the National Educators Workshop: Update in Engineering Materials, Science and Technology (NEW:Updates). We have also participated in a number of national projects, presented talks at technical meetings and published articles aimed at improving k-12 technical education. Through the three years of this project the NSU team developed the successful MST-Online site and continued to upgrade and update it as our limited resources permitted. Three annual NEW:Updates conducted from 2000 though 2002 overcame the challenges presented first by the September 11,2001 terrorist attacks and the slow U.S. economy and still managed to conduct very effective workshops and expand our outreach efforts. Plans began on NEW:Update 2003 to be hosted by NASA Langley as a part of the celebration of the Centennial of Controlled Flight.

  2. Analytical SuperSTEM for extraterrestrial materials research

    SciTech Connect

    Bradley, J P; Dai, Z R

    2009-09-08

    Electron-beam studies of extraterrestrial materials with significantly improved spatial resolution, energy resolution and sensitivity are enabled using a 300 keV SuperSTEM scanning transmission electron microscope with a monochromator and two spherical aberration correctors. The improved technical capabilities enable analyses previously not possible. Mineral structures can be directly imaged and analyzed with single-atomic-column resolution, liquids and implanted gases can be detected, and UV-VIS optical properties can be measured. Detection limits for minor/trace elements in thin (<100 nm thick) specimens are improved such that quantitative measurements of some extend to the sub-500 ppm level. Electron energy-loss spectroscopy (EELS) can be carried out with 0.10-0.20 eV energy resolution and atomic-scale spatial resolution such that variations in oxidation state from one atomic column to another can be detected. Petrographic mapping is extended down to the atomic scale using energy-dispersive x-ray spectroscopy (EDS) and energy-filtered transmission electron microscopy (EFTEM) imaging. Technical capabilities and examples of the applications of SuperSTEM to extraterrestrial materials are presented, including the UV spectral properties and organic carbon K-edge fine structure of carbonaceous matter in interplanetary dust particles (IDPs), x-ray elemental maps showing the nanometer-scale distribution of carbon within GEMS (glass with embedded metal and sulfides), the first detection and quantification of trace Ti in GEMS using EDS, and detection of molecular H{sub 2}O in vesicles and implanted H{sub 2} and He in irradiated mineral and glass grains.

  3. The Materials Data Facility: Data Services to Advance Materials Science Research

    NASA Astrophysics Data System (ADS)

    Blaiszik, B.; Chard, K.; Pruyne, J.; Ananthakrishnan, R.; Tuecke, S.; Foster, I.

    2016-08-01

    With increasingly strict data management requirements from funding agencies and institutions, expanding focus on the challenges of research replicability, and growing data sizes and heterogeneity, new data needs are emerging in the materials community. The materials data facility (MDF) operates two cloud-hosted services, data publication and data discovery, with features to promote open data sharing, self-service data publication and curation, and encourage data reuse, layered with powerful data discovery tools. The data publication service simplifies the process of copying data to a secure storage location, assigning data a citable persistent identifier, and recording custom (e.g., material, technique, or instrument specific) and automatically-extracted metadata in a registry while the data discovery service will provide advanced search capabilities (e.g., faceting, free text range querying, and full text search) against the registered data and metadata. The MDF services empower individual researchers, research projects, and institutions to (I) publish research datasets, regardless of size, from local storage, institutional data stores, or cloud storage, without involvement of third-party publishers; (II) build, share, and enforce extensible domain-specific custom metadata schemas; (III) interact with published data and metadata via representational state transfer (REST) application program interfaces (APIs) to facilitate automation, analysis, and feedback; and (IV) access a data discovery model that allows researchers to search, interrogate, and eventually build on existing published data. We describe MDF's design, current status, and future plans.

  4. New Recommendation on Biological Materials Could Hamper Muscular Dystrophy Research

    PubMed Central

    McCormack, Pauline; Woods, Simon

    2016-01-01

    The new ‘Recommendation of the Committee of Ministers to member States on research on biological materials of human origin’, adopted in Europe in May 2016 is confusing and lacks specificity on the research use of biomaterials taken from persons not able to consent. It is possible to interpret the relevant clauses in a restrictive manner and doing so would hamper biobank research, by requiring researchers or biobank curators to examine individual records in detail, to check they are adhering to the Recommendation. This would be particularly problematic for muscular dystrophy and other rare disease research, the progress of which relies increasingly on the sharing of biomaterials and data internationally, as it will add complexity to the logistics of biomaterials and data sharing and introduce barriers for researchers preparing biomaterials for sharing. Such barriers are contradictory to EC policies on promoting and funding rare disease research and removing barriers to better care and treatment. Such policies work in concert with international progress in rare disease research, in particular the NIH’s Rare Diseases Clinical Research Network and Genetic and Rare Diseases Information Centre. The rare disease community has in recent years worked to create a common framework of harmonised approaches to enable the responsible, voluntary, and secure sharing of biomaterials and data. These efforts are supported by the European Commission in such moves as FP7 funding to advance rare disease research and the introduction of National Plans for rare disease; and are bolstered by similar efforts in the USA via the Clinical and Translational Science Awards Program and the NIH/NCATS Patient Registry developments. Introducing Recommendations from the Committee of Ministers, containing clauses which are incompatible to the efforts to advance rare disease research, seems counter-productive. PMID:28133562

  5. Electrostatic Levitation: A Tool to Support Materials Research in Microgravity

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; SanSoucie, Mike

    2012-01-01

    Containerless processing represents an important topic for materials research in microgravity. Levitated specimens are free from contact with a container, which permits studies of deeply undercooled melts, and high-temperature, highly reactive materials. Containerless processing provides data for studies of thermophysical properties, phase equilibria, metastable state formation, microstructure formation, undercooling, and nucleation. The European Space Agency (ESA) and the German Aerospace Center (DLR) jointly developed an electromagnetic levitator facility (MSL-EML) for containerless materials processing in space. The electrostatic levitator (ESL) facility at the Marshall Space Flight Center provides support for the development of containerless processing studies for the ISS. Apparatus and techniques have been developed to use the ESL to provide data for phase diagram determination, creep resistance, emissivity, specific heat, density/thermal expansion, viscosity, surface tension and triggered nucleation of melts. The capabilities and results from selected ESL-based characterization studies performed at NASA's Marshall Space Flight Center will be presented.

  6. Sodium fast reactor fuels and materials : research needs.

    SciTech Connect

    Denman, Matthew R.; Porter, Douglas; Wright, Art; Lambert, John; Hayes, Steven; Natesan, Ken; Ott, Larry J.; Garner, Frank; Walters, Leon; Yacout, Abdellatif

    2011-09-01

    An expert panel was assembled to identify gaps in fuels and materials research prior to licensing sodium cooled fast reactor (SFR) design. The expert panel considered both metal and oxide fuels, various cladding and duct materials, structural materials, fuel performance codes, fabrication capability and records, and transient behavior of fuel types. A methodology was developed to rate the relative importance of phenomena and properties both as to importance to a regulatory body and the maturity of the technology base. The technology base for fuels and cladding was divided into three regimes: information of high maturity under conservative operating conditions, information of low maturity under more aggressive operating conditions, and future design expectations where meager data exist.

  7. Editorial - Proceedings on Basic Research on Ionic-Covalent Materials

    NASA Astrophysics Data System (ADS)

    2016-05-01

    The third symposium on Basic Research on Ionic-Covalent Materials for Nuclear Applications, originally initiated at the EMRS in Nice (May 2011), attracted 80 registered participants. During 4 days, 54 oral talks and 22 posters were presented. The overall high quality of the majority of the contributions was appreciated, in particular the great efforts of the invited speakers to convey their expertise in an excellent tutorial way.

  8. MicroRNA Detection: Current Technology and Research Strategies

    NASA Astrophysics Data System (ADS)

    Hunt, Eric A.; Broyles, David; Head, Trajen; Deo, Sapna K.

    2015-07-01

    The relatively new field of microRNA (miR) has experienced rapid growth in methodology associated with its detection and bioanalysis as well as with its role in -omics research, clinical diagnostics, and new therapeutic strategies. The breadth of this area of research and the seemingly exponential increase in number of publications on the subject can present scientists new to the field with a daunting amount of information to evaluate. This review aims to provide a collective overview of miR detection methods by relating conventional, established techniques [such as quantitative reverse transcription polymerase chain reaction (RT-qPCR), microarray, and Northern blotting (NB)] and relatively recent advancements [such as next-generation sequencing (NGS), highly sensitive biosensors, and computational prediction of microRNA/targets] to common miR research strategies. This should guide interested readers toward a more focused study of miR research and the surrounding technology.

  9. Materials research for passive solar systems: solid-state phase-change materials

    SciTech Connect

    Benson, D.K.; Webb, J.D.; Burrows, R.W.; McFadden, J.D.O.; Christensen, C.

    1985-03-01

    A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C/sub 5/H/sub 12/O/sub 4/), pentaglycerinve (C/sub 5/H/sub 12/O/sub 3/), and neopentyl glycol (C/sub 5/H/sub 12/O/sub 2/). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature betweeen 25/sup 0/C and 188/sup 0/C, and have latent heats of transformation between 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier. Nevertheless, a higher cost of the phase-change materials (approx. =$0.70 per pound) is likely to limit their applicability in passive solar systems unless their performance can be significantly improved through further research.

  10. Advances in Materials Research: An Internship at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Barrios, Elizabeth A.; Roberson, Luke B.

    2011-01-01

    My time at Kennedy Space Center. was spent immersing myself in research performed in the Materials Science Division of the Engineering Directorate. My Chemical Engineering background provided me the ability to assist in many different projects ranging from tensile testing of composite materials to making tape via an extrusion process. However, I spent the majority of my time on the following three projects: (1) testing three different materials to determine antimicrobial properties; (2) fabricating and analyzing hydrogen sensing tapes that were placed at the launch pad for STS-133 launch; and (3) researching molten regolith electrolysis at KSC to prepare me for my summer internship at MSFC on a closely related topic. This paper aims to explain, in detail, what I have learned about these three main projects. It will explain why this research is happening and what we are currently doing to resolve the issues. This paper will also explain how the hard work and experiences that I have gained as an intern have provided me with the next big step towards my career at NASA.

  11. Area Reports. Advanced materials and devices research area. Silicon materials research task, and advanced silicon sheet task

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The objectives of the Silicon Materials Task and the Advanced Silicon Sheet Task are to identify the critical technical barriers to low-cost silicon purification and sheet growth that must be overcome to produce a PV cell substrate material at a price consistent with Flat-plate Solar Array (FSA) Project objectives and to overcome these barriers by performing and supporting appropriate R&D. Progress reports are given on silicon refinement using silane, a chemical vapor transport process for purifying metallurgical grade silicon, silicon particle growth research, and modeling of silane pyrolysis in fluidized-bed reactors.

  12. Neuromorphic Computing – From Materials Research to Systems Architecture Roundtable

    SciTech Connect

    Schuller, Ivan K.; Stevens, Rick; Pino, Robinson; Pechan, Michael

    2015-10-29

    Computation in its many forms is the engine that fuels our modern civilization. Modern computation—based on the von Neumann architecture—has allowed, until now, the development of continuous improvements, as predicted by Moore’s law. However, computation using current architectures and materials will inevitably—within the next 10 years—reach a limit because of fundamental scientific reasons. DOE convened a roundtable of experts in neuromorphic computing systems, materials science, and computer science in Washington on October 29-30, 2015 to address the following basic questions: Can brain-like (“neuromorphic”) computing devices based on new material concepts and systems be developed to dramatically outperform conventional CMOS based technology? If so, what are the basic research challenges for materials sicence and computing? The overarching answer that emerged was: The development of novel functional materials and devices incorporated into unique architectures will allow a revolutionary technological leap toward the implementation of a fully “neuromorphic” computer. To address this challenge, the following issues were considered: The main differences between neuromorphic and conventional computing as related to: signaling models, timing/clock, non-volatile memory, architecture, fault tolerance, integrated memory and compute, noise tolerance, analog vs. digital, and in situ learning New neuromorphic architectures needed to: produce lower energy consumption, potential novel nanostructured materials, and enhanced computation Device and materials properties needed to implement functions such as: hysteresis, stability, and fault tolerance Comparisons of different implementations: spin torque, memristors, resistive switching, phase change, and optical schemes for enhanced breakthroughs in performance, cost, fault tolerance, and/or manufacturability.

  13. Earth materials research: Report of a Workshop on Physics and Chemistry of Earth Materials

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The report concludes that an enhanced effort of earth materials research is necessary to advance the understanding of the processes that shape the planet. In support of such an effort, there are new classes of experiments, new levels of analytical sensitivity and precision, and new levels of theory that are now applicable in understanding the physical and chemical properties of geological materials. The application of these capabilities involves the need to upgrade and make greater use of existing facilities as well as the development of new techniques. A concomitant need is for a sample program involving their collection, synthesis, distribution, and analysis.

  14. Guidelines for composite materials research related to general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Dow, N. F.; Humphreys, E. A.; Rosen, B. W.

    1983-01-01

    Guidelines for research on composite materials directed toward the improvement of all aspects of their applicability for general aviation aircraft were developed from extensive studies of their performance, manufacturability, and cost effectiveness. Specific areas for research and for manufacturing development were identified and evaluated. Inputs developed from visits to manufacturers were used in part to guide these evaluations, particularly in the area of cost effectiveness. Throughout the emphasis was to direct the research toward the requirements of general aviation aircraft, for which relatively low load intensities are encountered, economy of production is a prime requirement, and yet performance still commands a premium. A number of implications regarding further directions for developments in composites to meet these requirements also emerged from the studies. Chief among these is the need for an integrated (computer program) aerodynamic/structures approach to aircraft design.

  15. Present and Future Automotive Composite Materials Research Efforts at DOE

    SciTech Connect

    Warren, C.D.

    1999-07-03

    Automobiles of the future will be forced to travel fi.uther on a tank of fuel while discharging lower levels of pollutants. Currently, the United States uses in excess of 16.4 million barrels of petroleum per day. Sixty-six percent of that petroleum is used in the transportation of people and goods. Automobiles currently account for just under two-thirds of the nation's gasoline consumptio~ and about one-third of the total United States energy usage. [1] By improving transportation related fiel efficiency, the United States can lessen the impact that emissions have on our environment and provide a cleaner environment for fiture generations. In 1992, The Department of Energy's (DOE) Office of Transportation Materials completed a comprehensive program plan entitled, The Lightweight MateriaIs (LWko Multi-Year Program Plan, for the development of technologies aimed at reducing vehicle mass [2]. This plan was followed in 1997 by the more comprehensive Office of Advanced Automotive Technologies research and development plan titled, Energy Eficient Vehicles for a Cleaner Environment [3] which outlines the department's plans for developing more efficient vehicles during the next ~een years. Both plans identi~ potential applications, technology needs, and R&D priorities. The goal of the Lightweight Materials Program is to develop materials and primary processing methods for the fabrication of lighter weight components which can be incorporated into automotive systems. These technologies are intended to reduce vehicle weight, increase fuel efficiency and decrease emissions. The Lightweight Materials program is jointly managed by the Department of Energy(DOE) and the United States Automotive Materials Partnership (USAMP). Composite materiak program work is coordinated by cooperative research efforts between the DOE and the Automotive Composites Consortium (ACC).

  16. Low Gravity Materials Science Research for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Semmes, Edmund B.; Schlagheck, Ronald A.; Bassler, Julie A.; Cook, Mary Beth; Wargo, Michael J.; Sanders, Gerald B.; Marzwell, Neville I.

    2004-01-01

    On January 14, 2004, the President of the United States announced a new vision for the United States civil space program. The Administrator of the National Aeronautics and Space Administration (NASA) has the responsibility to implement this new vision. The President also created a Presidential Commission 'to obtain recommendations concerning implementation of the new vision for space exploration.' The President's Commission recognized that achieving the exploration objectives would require significant technical innovation, research, and development in focal areas defined as 'enabling technologies.' Among the 17 enabling technologies identified for initial focus were advanced structures; advanced power and propulsion; closed-loop life support and habitability; extravehicular activity system; autonomous systems and robotics; scientific data collection and analysis; biomedical risk mitigation; and planetary in situ resource utilization. The Commission also recommended realignment of NASA Headquarters organizations to support the vision for space exploration. NASA has aggressively responded in its planning to support the vision for space exploration and with the current considerations of the findings and recommendations from the Presidential Commission. This presentation will examine the transformation and realignment activities to support the vision for space exploration that are underway in the microgravity materials science program. The heritage of the microgravity materials science program, in the context of residence within the organizational structure of the Office of Biological and Physical Research, and thematic and sub-discipline based research content areas, will be briefly examined as the starting point for the ongoing transformation. Overviews of future research directions will be presented and the status of organizational restructuring at NASA Headquarters, with respect to influences on the microgravity materials science program, will be discussed

  17. Effects of antenna length and material on output power and detection of miniature radio transmitters

    USGS Publications Warehouse

    Beeman, J.W.; Bower, N.; Juhnke, S.; Dingmon, L.; Van Den, Tillaart; Thomas, T.

    2007-01-01

    The optimal antenna of transmitters used in small aquatic animals is often a compromise between efficient radio wave propagation and effects on animal behavior. Radio transmission efficiency generally increases with diameter and length of the conductor, but increased antenna length or weight can adversely affect animal behavior. We evaluated the effects of changing antenna length and material on the subsequent tag output power, reception, and detection of tagged fish. In a laboratory, we compared the relative signal strengths in water of 150 MHz transmitters over a range of antenna lengths (from 6 to 30 cm) and materials (one weighing about half of the other). The peak relative signal strengths were at 20 and 22 cm, which are approximately one wavelength underwater at the test frequency. The peak relative signal strengths at these lengths were approximately 50% greater than those of 30 cm antennas, a length commonly used in fisheries research. Few significant differences were present in distances for the operator to hear or the telemetry receiver to decode transmitters from a boat-mounted receiving system based on antenna length, but the percent of tagged fish detected passing a hydroelectric dam fitted with an array of receiving systems was significantly greater at the antenna length with peak output power in laboratory tests. This study indicates careful choice of antenna length and material of small transmitters can be used to reduce weight and possible antenna effects on animal behavior, to maximize tag output power and detection, or to balance these factors based on the needs of the application. ?? 2007 Springer Science+Business Media B.V.

  18. Detecting special nuclear material using muon-induced neutron emission

    NASA Astrophysics Data System (ADS)

    Guardincerri, Elena; Bacon, Jeffrey; Borozdin, Konstantin; Matthew Durham, J.; Fabritius, Joseph, II; Hecht, Adam; Milner, Edward C.; Miyadera, Haruo; Morris, Christopher L.; Perry, John; Poulson, Daniel

    2015-07-01

    The penetrating ability of cosmic ray muons makes them an attractive probe for imaging dense materials. Here, we describe experimental results from a new technique that uses neutrons generated by cosmic-ray muons to identify the presence of special nuclear material (SNM). Neutrons emitted from SNM are used to tag muon-induced fission events in actinides and laminography is used to form images of the stopping material. This technique allows the imaging of SNM-bearing objects tagged using muon tracking detectors located above or to the side of the objects, and may have potential applications in warhead verification scenarios. During the experiment described here we did not attempt to distinguish the type or grade of the SNM.

  19. Detection of covered materials in the TDS-THz setup

    NASA Astrophysics Data System (ADS)

    Palka, Norbert

    2013-05-01

    We report on a new method for extracting the characteristic features of covered materials, including Hexogen, in the range 0.5-1.8 THz. This time domain spectroscopy-based technique takes into account only part of the signal reflected from a covered sample, and analyzes it by Fourier transform. The obtained power spectrum has distinctive peaks that correspond to peaks measured in the transmission configuration and can be applied for further identification. We showed results obtained for the samples of hexogen, lactose, and tartaric acid covered with commonly used packaging materials such as plastic, foil, paper and cotton.

  20. Materials Degradation and Detection (MD2): Deep Dive Final Report

    SciTech Connect

    McCloy, John S.; Montgomery, Robert O.; Ramuhalli, Pradeep; Meyer, Ryan M.; Hu, Shenyang Y.; Li, Yulan; Henager, Charles H.; Johnson, Bradley R.

    2013-02-01

    An effort is underway at Pacific Northwest National Laboratory (PNNL) to develop a fundamental and general framework to foster the science and technology needed to support real-time monitoring of early degradation in materials used in the production of nuclear power. The development of such a capability would represent a timely solution to the mounting issues operators face with materials degradation in nuclear power plants. The envisioned framework consists of three primary and interconnected “thrust” areas including 1) microstructural science, 2) behavior assessment, and 3) monitoring and predictive capabilities. A brief state-of-the-art assessment for each of these core technology areas is discussed in the paper.

  1. The materials processing research base of the Materials Processing Center. Report for FY 1982

    NASA Technical Reports Server (NTRS)

    Flemings, M. C.

    1983-01-01

    The work described, while involving research in the broad field of materials processing, has two common features: the problems are closed related to space precessing of materials and have both practical and fundamental significance. An interesting and important feature of many of the projects is that the interdisciplinary nature of the problem mandates complementary analytical modeling/experimental approaches. An other important aspect of many of the projects is the increasing use of mathematical modeling techniques as one of the research tools. The predictive capability of these models, when tested against measurements, plays a very important role in both the planning of experimental programs and in the rational interpretation of the results. Many of the projects described have a space experiment as their ultimate objective. Mathematical models are proving to be extremely valuable in projecting the findings of ground - based experiments to microgravity conditions.

  2. Inorganic/organic doped carbon aerogels as biosensing materials for the detection of hydrogen peroxide.

    PubMed

    Dong, Sheying; Li, Nan; Suo, Gaochao; Huang, Tinglin

    2013-12-17

    In this article, three different inorganic/organic doped carbon aerogel (CA) materials (Ni-CA, Pd-CA, and Ppy-CA) were, respectively, mixed with ionic liquid (IL) to form three stable composite films, which were used as enhanced elements for an integrated sensing platform to increase the surface area and to improve the electronic transmission rate. Subsequently, the effect of the materials performances such as adsorption, specific surface area and conductivity on electrochemistry for myoglobin (Mb) was discussed using N2 adsorption-desorption isotherm measurements, scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). Moreover, they could act as sensors toward the detection of hydrogen peroxide (H2O2) with lower detection limits (1.68 μM, 1.02 μM, and 0.85 μM, for Ni-CA/IL/Mb-CPE, Pd-CA/IL/Mb-CPE, and Ppy-CA/IL/Mb-CPE, respectively) and smaller apparent Michaelis-Menten constants KM. The results indicated that the electroconductibility of the doped CA materials would become dominant, thus playing an important role in facilitating the electron transfer. Meanwhile, the synergetic effect with [BMIm]BF4 IL improved the capability of the composite inorganic/organic doped CA/IL matrix for protein immobilization. This work demonstrates the feasibility and the potential of a series of CA-based hybrid materials as biosensors, and further research and development are required to prepare other functional CAs and make them valuable for more extensive application in biosensing.

  3. Fissile and Non-Fissile Material Detection Using Nuclear Acoustic Resonance Signatures

    SciTech Connect

    Bernhard R. Tittmann; P.M. Lenahan; David Spears; Rhys Williams

    2008-11-25

    The objective of this project is to develop anovel technique for remote, non-destructive, non-radiation-based detection of materials of interest to Nonproliferation Programs. We propse the development of a detection system based on magnetic resonance principles (NAR), which would work where radiation detection is not possible. The approach would be non-intrusive, penetrating, applicable to many materials of interest for Nonproliferation, and be able to identify the nuclear samples under investigation.

  4. Simulation of Neutron Backscattering applied to organic material detection

    SciTech Connect

    Forero, N. C.; Cruz, A. H.; Cristancho, F.

    2007-10-26

    The Neutron Backscattering technique is tested when performing the task of localizing hydrogenated explosives hidden in soil. Detector system, landmine, soil and neutron source are simulated with Geant4 in order to obtain the number of neutrons detected when several parameters like mine composition, relative position mine-source and soil moisture are varied.0.

  5. [The gas chromatographic detection of acetylene in cadaveric material].

    PubMed

    Iablochkin, V D

    1999-01-01

    Acetylene traces were detected by gas chromatography in the cadaveric right crural muscle of a 30-year-old man dead from an explosion of an acetylene reservoir at a plant. Acetylene was identified using the absolute calibration method on 3 standard gas chromatographic columns, reaction gas chromatography, and acetylene "deduction" by silver sulfate on silicagel.

  6. Research needs for material mixing at extremes: workshop overview & charge

    SciTech Connect

    Andrews, Malcolm John

    2011-01-06

    Workshop goals are: (1) Raise the general awareness of material mixing problems in extreme conditions; (2) Peer into the future (15 years) for mixing experiments/diagnostics, theory/modeling and simulation/predictions in relation to material mixing; (3) Identify priority research directions, capability opportunities (especially with respect to MaRIE), and projected capability needs (not just MaRIE); and (4) The production of a MaRIE report, a peer reviewed journal paper, and a proposal for a decadal study. The last 25 years has seen substantial progress with understanding material mixing in low energy environments, particularly with the development of high fidelity experimental multi-probe diagnostics, direct numerical simulations, and science based theories and mathematical models. We now need to move such advances to the high energy environment with a goal to increase our understanding and predictability, and raise our confidence in scientifically informed decision making. Thus, this workshop is charged to look to the future ({approx} 15 years), and explore opportunities to advance our current understanding of material mixing in extreme conditions.

  7. Neutron interrogation system using high gamma ray signature to detect contraband special nuclear materials in cargo

    DOEpatents

    Slaughter, Dennis R.; Pohl, Bertram A.; Dougan, Arden D.; Bernstein, Adam; Prussin, Stanley G.; Norman, Eric B.

    2008-04-15

    A system for inspecting cargo for the presence of special nuclear material. The cargo is irradiated with neutrons. The neutrons produce fission products in the special nuclear material which generate gamma rays. The gamma rays are detecting indicating the presence of the special nuclear material.

  8. Contributive research in compound semiconductor material and related devices

    NASA Astrophysics Data System (ADS)

    Twist, James R.

    1988-05-01

    The objective of this program was to provide the Electronic Device Branch (AFWAL/AADR) with the support needed to perform state of the art electronic device research. In the process of managing and performing on the project, UES has provided a wide variety of scientific and engineering talent who worked in-house for the Avionics Laboratory. These personnel worked on many different types of research programs from gas phase microwave driven lasers, CVD and MOCVD of electronic materials to Electronic Device Technology for new devices. The fields of research included MBE and theoretical research in this novel growth technique. Much of the work was slanted towards the rapidly developing technology of GaAs and the general thrust of the research that these tasks started has remained constant. This work was started because the Avionics Laboratory saw a chance to advance the knowledge and level of the current device technology by working in the compounds semiconductor field. UES is pleased to have had the opportunity to perform on this program and is looking forward to future efforts with the Avionics Laboratory.

  9. Process research on non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    1982-01-01

    High risk, high payoff research areas associated with he process for producing photovoltaic modules using non-CZ sheet material are investigated. All investigations are being performed using dendritic web silicon, but all processes are directly applicable to other ribbon forms of sheet material. The technical feasibility of forming front and back junctions in non-CZ silicon using liquid dopant techniques was determined. Numerous commercially available liquid phosphorus and boron dopant solutions are investigated. Temperature-time profiles to achieve N(+) and P(+) sheet resistivities of 60 + or - 10 and 40 + or - s10 ohms per square centimeter respectively are established. A study of the optimal method of liquid dopant application is performed. The technical feasibility of forming a liquid applied diffusion mask to replace the more costly chemical vapor deposited SiO2 diffusion mask was also determined.

  10. Electrical research on solar cells and photovoltaic materials

    NASA Technical Reports Server (NTRS)

    Orehotsky, J.

    1985-01-01

    A systematic study of the properties of various polymer pottant materials and of the electrochemical corrosion mechanisms in solar cell materials is required for advancing the technology of terrestrial photovoltaic modules. The items of specific concern in this sponsored research activity involve: (1) kinetics of plasticizer loss in PVB, (2) kinetics of water absorption and desorption in PVB, (3) kinetics of water absorption and desorption in EVA, (4) the electrical properties at PVB as a function of temperature and humidity, (5) the electrical properties of EVA as a function of temperature and humidity, (6) solar cell corrosion characteristics, (7) water absorption effects in PVB and EVA, and (8) ion implantation and radiation effects in PVB and EVA.

  11. Materials processing research opportunities in powder injection molding

    SciTech Connect

    German, R.M.

    1995-12-31

    Materials processing is an active area with many research opportunities for advanced instrumentation, control, and modeling. Among new materials processing routes, powder injection molding (PIM) has rapidly grown from a curiosity to a viable production technique over just a few years. This manufacturing technique is applicable to all materials, and is the preferred fabrication route for many complex-shaped, high-performance components for surgical tools, computer hardware, automotive systems, consumer products, and turbine components. This presentation introduces the use of a computer controlled injection molding machine to shape powders (metal, carbide, composite, and ceramic) in a high productivity setting. After molding the organic is extracted and the powder structure is sintered to full density. Much research is needed in process modeling, control, inspection, and optimization. This presentation summarizes the basic technology and several important factors relevant to manufacturing. An important development is in minimization of molding defects via closed-loop feedback control using pressure, temperature, and optical sensors. Recent progress has occurred using in situ guided waves for ultrasonic inspection of the molded part. Neural networks are being generated to allow assessment of processing changes as required from the integrated robot, visual imaging, pressure, and ultrasonic sensors. Similar, but less refined efforts are occurring in die compaction technology. As another example, computer simulation of heat transfer is needed during sintering to understand sources of component warpage during densification. A furnace equipped with visual imaging and residual gas analysis is being used to assist in verification of such computer simulations. These tools are still in the research stage, so future integration into the manufacturing environment will bring new challenges.

  12. Fault detection system for Argentine Research Reactor instrumentation

    SciTech Connect

    Polenta, H.P. ); Bernard, J.A. ); Ray, A. )

    1993-01-20

    The design and implementation of a redundancy management scheme for the on-line detection and isolation of faulty sensors is presented. Such a device is potentially useful in reactor-powered spacecraft for enhancing the processing capabilities of the main computer. The fault detection device can be used as an integral part of intelligent instrumentation systems. The device has been built using an 8-bit microcontroller and commercially available electronic hardware. The software is completely portable. The operation of this device has been successfully demonstrated for real-time validation of sensor data on Argentina's RA-1 Research Reactor.

  13. Detecting Defects in Aircraft Materials by Nuclear Technique (pas)

    NASA Astrophysics Data System (ADS)

    Badawi, Emad. A.

    Positron annihilation spectroscopy (PAS) is one of the nuclear techniques used in material science. The present measurements are used to study the behavior of defect concentration in one of the most important materials aluminum alloys which is the 7075 alloy. It has been shown that positrons can become trapped at imperfect locations in solids and their mean lifetime can be influenced by changes in the concentration of such defects. No changes have been observed in the mean lifetime values after the saturation of defect concentration. The mean lifetime and trapping rates are studied for samples deformed up to 58.3%. The concentration of defect range vary from 1015 to 1018cm-3 at the thickness reduction from 2.3 to 58.3%. The dislocation density varies from 108 to 1011cm/cm3.

  14. Detecting Defects in Aircraft Materials by Nuclear Technique (pas)

    NASA Astrophysics Data System (ADS)

    Badawi, Emad. A.

    Positron annihilation spectroscopy (PAS) is one of the nuclear techniques used in material science. The present measurements are used to study the behavior of defect concentration in one of the most important materials — aluminum alloy — which is a 7075 alloy. It has been shown that positrons can become trapped in imperfect locations in solids and their mean lifetime can be influenced by changes in the concentration of such defects. No changes have been observed in the mean lifetime values after the saturation of defect concentration. The mean lifetime and trapping rates were studied for samples deformed up to 58.3%. The concentration of defect range varies (from 1015 to 1018 cm-3) at the thickness reduction, (from 2.3 to 58.3%). The range of the dislocation density varies (from 108 to 1011 cm/cm3).

  15. Nanoindentation in Materials Research: Past, Present, and Future

    SciTech Connect

    Oliver, Warren; Pharr, George Mathews

    2010-01-01

    The method we introduced in 1992 for measuring hardness and elastic modulus by nanoindentation testing has been widely adopted and used in the characterization of mechanical behavior at small scales. Since its original development, the method has undergone numerous refinements and changes brought about by improvements to testing equipment and techniques, as well as advances in our understanding of the mechanics of elastic-plastic contact. In this article, we briefly review the history of the method, comment on its capabilities and limitations, and discuss some of the emerging areas in materials research where it has played, or promises to play, an important role.

  16. Detection of ultraviolet radiation using tissue equivalent radiochromic gel materials

    NASA Astrophysics Data System (ADS)

    Bero, M. A.; Abukassem, I.

    2009-05-01

    Ferrous Xylenol-orange Gelatin gel (FXG) is known to be sensitive to ionising radiation such as γ and X-rays. The effect of ionising radiation is to produce an increase in the absorption over a wide region of the visible spectrum, which is proportional to the absorbed dose. This study demonstrates that FXG gel is sensitive to ultraviolet radiation and therefore it could functions as UV detector. Short exposure to UV radiation produces linear increase in absorption measured at 550nm, however high doses of UV cause the ion indicator colour to fad away in a manner proportional to the incident UV energy. Light absorbance increase at the rate of 1.1% per minute of irradiation was monitored. The exposure level at which the detector has linear response is comparable to the natural summer UV radiation. Evaluating the UV ability to pass through tissue equivalent gel materials shows that most of the UV gets absorbed in the first 5mm of the gel materials, which demonstrate the damaging effects of this radiation type on human skin and eyes. It was concluded that FXG gel dosimeter has the potential to offer a simple, passive ultraviolet radiation detector with sensitivity suitable to measure and visualises the natural sunlight UV exposure directly by watching the materials colour changes.

  17. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for

  18. Materials processing in space programs tasks. [NASA research tasks

    NASA Technical Reports Server (NTRS)

    Pentecost, E.

    1981-01-01

    Active research tasks as of the end of fiscal year 1981 of the materials processing in space program, NASA Office of Space and Terrestrial Applications are summarized to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The program, its history, strategy, and overall goal are described the organizational structures and people involved are identified and a list of recent publications is given for each research task. Four categories: Crystal Growth; Solidification of Metals, Alloys, and Composites; Fluids, Transports, and Chemical Processes, and Ultrahigh Vacuum and Containerless Processing Technologies are used to group the tasks. Some tasks are placed in more than one category to insure complete coverage of each category.

  19. EDITORIAL: Combinatorial and High-Throughput Materials Research

    NASA Astrophysics Data System (ADS)

    Potyrailo, Radislav A.; Takeuchi, Ichiro

    2005-01-01

    The success of combinatorial and high-throughput methodologies relies greatly on the availability of various characterization tools with new and improved capabilities [1]. Indeed, how useful can a combinatorial library of 250, 400, 25 000 or 2 000 000 compounds be [2-5] if one is unable to characterize its properties of interest fairly quickly? How useful can a set of thousands of spectra or chromatograms be if one is unable to analyse them in a timely manner? For these reasons, the development of new approaches for materials characterization is one of the most active areas in combinatorial materials science. The importance of this aspect of research in the field has been discussed in numerous conferences including the Pittsburgh Conferences, the American Chemical Society Meetings, the American Physical Society Meetings, the Materials Research Society Symposia and various Gordon Research Conferences. Naturally, the development of new measurement instrumentation attracts the attention not only of practitioners of combinatorial materials science but also of those who design new software for data manipulation and mining. Experimental designs of combinatorial libraries are pursued with available and realistic synthetic and characterization capabilities in mind. It is becoming increasingly critical to link the design of new equipment for high-throughput parallel materials synthesis with integrated measurement tools in order to enhance the efficacy of the overall experimental strategy. We have received an overwhelming response to our proposal and call for papers for this Special Issue on Combinatorial Materials Science. The papers in this issue of Measurement Science and Technology are a very timely collection that captures the state of modern combinatorial materials science. They demonstrate the significant advances that are taking place in the field. In some cases, characterization tools are now being operated in the factory mode. At the same time, major challenges

  20. Air-coupled detection of nonlinear Rayleigh surface waves to assess material nonlinearity.

    PubMed

    Thiele, Sebastian; Kim, Jin-Yeon; Qu, Jianmin; Jacobs, Laurence J

    2014-08-01

    This research presents a new technique for nonlinear Rayleigh surface wave measurements that uses a non-contact, air-coupled ultrasonic transducer; this receiver is less dependent on surface conditions than laser-based detection, and is much more accurate and efficient than detection with a contact wedge transducer. A viable experimental setup is presented that enables the robust, non-contact measurement of nonlinear Rayleigh surface waves over a range of propagation distances. The relative nonlinearity parameter is obtained as the slope of the normalized second harmonic amplitudes plotted versus propagation distance. This experimental setup is then used to assess the relative nonlinearity parameters of two aluminum alloy specimens (Al 2024-T351 and Al 7075-T651). These results demonstrate the effectiveness of the proposed technique - the average standard deviation of the normalized second harmonic amplitudes, measured at locations along the propagation path, is below 2%. Experimental validation is provided by a comparison of the ratio of the measured nonlinearity parameters of these specimens with ratios from the absolute nonlinearity parameters for the same materials measured by capacitive detection of nonlinear longitudinal waves.

  1. Early detection of critical material degradation by means of electromagnetic multi-parametric NDE

    NASA Astrophysics Data System (ADS)

    Szielasko, Klaus; Tschuncky, Ralf; Rabung, Madalina; Seiler, Georg; Altpeter, Iris; Dobmann, Gerd; Herrmann, Hans-Georg; Boller, Christian

    2014-02-01

    With an increasing number of power plants operated in excess of their original design service life an early recognition of critical material degradation in components will gain importance. Many years of reactor safety research allowed for the identification and development of electromagnetic NDE methods which detect precursors of imminent damage with high sensitivity, at elevated temperatures and in a radiation environment. Regarding low-alloy heat-resistant steel grade WB 36 (1.6368, 15NiCuMoNb5), effects of thermal and thermo-mechanical aging on mechanical-technological properties and several micromagnetic parameters have been thoroughly studied. In particular knowledge regarding the process of copper precipitation and its acceleration under thermo-mechanical load has been enhanced. Whilst the Cu-rich WB 36 steel is an excellent model material to study and understand aging effects related to neutron radiation without the challenge of handling radioactive specimens in a hot cell, actually neutron-irradiated reactor pressure vessel materials were investigated as well. The neutron fluence experienced and the resulting shift of the ductile-brittle transition temperature were determined electromagnetically, and it was shown that weld and base material can be distinguished from the cladded side of the RPV wall. Low-cycle fatigue of the austenitic stainless steel AISI 347 (1.4550, X6CrNiNb18-10) has been characterized with electromagnetic acoustic transducers (EMATs) at temperatures of up to 300 °C. Time-of-flight and amplitude of the transmitted ultrasound signal were evaluated against the number of load cycles applied and observed as an indication of the imminent material failure significantly earlier than monitoring stresses or strains.

  2. Early detection of critical material degradation by means of electromagnetic multi-parametric NDE

    SciTech Connect

    Szielasko, Klaus; Tschuncky, Ralf; Rabung, Madalina; Altpeter, Iris; Dobmann, Gerd; Seiler, Georg; Herrmann, Hans-Georg; Boller, Christian

    2014-02-18

    With an increasing number of power plants operated in excess of their original design service life an early recognition of critical material degradation in components will gain importance. Many years of reactor safety research allowed for the identification and development of electromagnetic NDE methods which detect precursors of imminent damage with high sensitivity, at elevated temperatures and in a radiation environment. Regarding low-alloy heat-resistant steel grade WB 36 (1.6368, 15NiCuMoNb5), effects of thermal and thermo-mechanical aging on mechanical-technological properties and several micromagnetic parameters have been thoroughly studied. In particular knowledge regarding the process of copper precipitation and its acceleration under thermo-mechanical load has been enhanced. Whilst the Cu-rich WB 36 steel is an excellent model material to study and understand aging effects related to neutron radiation without the challenge of handling radioactive specimens in a hot cell, actually neutron-irradiated reactor pressure vessel materials were investigated as well. The neutron fluence experienced and the resulting shift of the ductile-brittle transition temperature were determined electromagnetically, and it was shown that weld and base material can be distinguished from the cladded side of the RPV wall. Low-cycle fatigue of the austenitic stainless steel AISI 347 (1.4550, X6CrNiNb18-10) has been characterized with electromagnetic acoustic transducers (EMATs) at temperatures of up to 300 °C. Time-of-flight and amplitude of the transmitted ultrasound signal were evaluated against the number of load cycles applied and observed as an indication of the imminent material failure significantly earlier than monitoring stresses or strains.

  3. Materials research and beam line operation utilizing NSLS. Progress report

    SciTech Connect

    Liedl, G.L.

    1993-06-01

    MATRIX, a participating research team of Midwest x-ray scattering specialists, continues to operate beam line X-18A at NSLS. Operations of this line now provides state-of-the-art capabilities to a wide range of people in the Materials Science and Engineering research community. Improvements of the beam line continue to be a focus of MATRIX. Throughout this past year the emphasis has been shifting towards improvement in ``user friendly`` aspects. Simplified control operations and a shift to single-user personal computer has been a major part of the effort. Over the past year all 232 operational days were fully utilized. Beam line tests coupled with MATRIX members combined to use 284 days. General user demand for use of the beam line continues to be strong and four groups were provided 48 operating days. Research production has been growing as NSLS and the beam line become a more stable type of operation. For 1992 the MATRIX group published six articles. To date, for 1993 the same group has published, submitted, or has in preparation nine articles. Recent research milestones include: the first quantitative structural information on the as-quenched and early stages of decomposition of supersaturated Al-Li alloys; the first quantitative diffuse scattering measurements on a complex system (Co substitute for Cu YBCO superconductor); demonstration of capabilities of a new UHV surface diffraction chamber with in-situ characterization and temperature control (30-1300K); feasibility of phasing structure factors in a quasicrystal using multiple Bragg scattering.

  4. Detecting psychological phenomena: taking bottom-up research seriously.

    PubMed

    Haig, Brian D

    2013-01-01

    For more than 50 years, psychology has been dominated by a top-down research strategy in which a simplistic account of the hypothetico-deductive method is paired with null hypothesis testing in order to test hypotheses and theories. As a consequence of this focus on testing, psychologists have failed to pay sufficient attention to a complementary, bottom-up research strategy in which data-to-theory research is properly pursued.This bottom-up strategy has 2 primary aspects: the detection of phenomena, mostly in the form of empirical generalizations, and the subsequent understanding of those phenomena through the abductive generation of explanatory theories. This article provides a methodologically informative account of phenomena detection with reference to psychology. It begins by presenting the important distinctions between data, phenomena, and theory. It then identifies a number of different methodological strategies that are used to identify empirical phenomena. Thereafter, it discusses aspects of the nature of science that are prompted by a consideration of the distinction between data, phenomena, and explanatory theory. Taken together, these considerations press for significant changes in the way we think about and practice psychological research. The adoption of these changes would help psychology correct a number of its major current research deficiencies.

  5. Detection of explosive materials by differential reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Hummel, Rolf E.; Fuller, Anna M.; Schöllhorn, Claus; Holloway, Paul H.

    2006-06-01

    It is shown that traces of 2,4,6-trinitrotoluene (TNT) display strong and distinct structures in differential reflectograms, near 420 and 250nm. These characteristic peaks are not observed from moth balls, nail polish, polyvinyl chloride, starch, soap, paper, epoxy, aspirin, polycarbonate, aspartame, polystyrene, polyester, fertilizer, or sugar, to mention a few substances which may be in or on a suitcase. The described technique for detection of TNT is fast, inexpensive, reliable, and portable and does not require contact with the surveyed substance. Moreover, we have developed a curve recognition program for field applications of the technique. The origin of the spectra is discussed.

  6. Detection of Nuclear Weapons and Materials: Science, Technologies, Observations

    DTIC Science & Technology

    2009-08-04

    like gamma rays. What signatures show the presence of nuclear weapons and SNM? For purposes of this report, a signature is a property by which a...number and density Atomic number, abbreviated “Z,” is the number of protons in an atom’s nucleus. It is a property of individual atoms. In contrast...density is a bulk property , expressed as mass per unit volume. In general, the densest materials are those of high Z. These properties may be used

  7. Radiation sensitive devices and systems for detection of radioactive materials and related methods

    DOEpatents

    Kotter, Dale K

    2014-12-02

    Radiation sensitive devices include a substrate comprising a radiation sensitive material and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to resonate responsive to non-ionizing incident radiation. Systems for detecting radiation from a special nuclear material include a radiation sensitive device and a sensor located remotely from the radiation sensitive device and configured to measure an output signal from the radiation sensitive device. In such systems, the radiation sensitive device includes a radiation sensitive material and a plurality of resonance elements positioned on the radiation sensitive material. Methods for detecting a presence of a special nuclear material include positioning a radiation sensitive device in a location where special nuclear materials are to be detected and remotely interrogating the radiation sensitive device with a sensor.

  8. NASA Sponsored Research Involving Crystallization of Biological Materials

    NASA Technical Reports Server (NTRS)

    Downey, James Patton

    2000-01-01

    An overview of NASA's plans for the performing experiments involving the crystallization of biological materials on the International Space Station (ISS) is presented. In addition, a brief overview of past work is provided as background. Descriptions of flight hardware currently available for use on the ISS are given and projections of future developments are discussed. In addition, experiment selection and funding is described. As of the flight of STS-95, these crystallization projects have proven to be some of the most successful in the history of microgravity research. The NASA Microgravity Research Division alone has flown 185 different proteins, nucleic acids, viruses, and complexes on 43 different missions. 37 of the 185 have resulted, in, diffraction patterns with higher resolution than was obtained in all previous ground based experiments. This occurred despite the fact that an average of only 41 samples per protein were flown. A number of other samples have shown improved signal to noise characteristics, i.e. relative Wilson plots, when compared to the best ground experiments. In addition, a number of experiments investigating the effects of microgravity conditions on the crystallization of biological material have been conducted.

  9. Novel High Efficient Organic Photovoltaic Materials: Final Summary of Research

    NASA Technical Reports Server (NTRS)

    Sun, Sam

    2002-01-01

    The objectives and goals of this project were to investigate and develop high efficient, lightweight, and cost effective materials for potential photovoltaic applications, such as solar energy conversion or photo detector devices. Specifically, as described in the original project proposal, the target material to be developed was a block copolymer system containing an electron donating (or p-type) conjugated polymer block coupled to an electron withdrawing (or n-type) conjugated polymer block through a non-conjugated bridge unit. Due to several special requirements of the targeted block copolymer systems, such as electron donating and withdrawing substituents, conjugated block structures, processing requirement, stability requirement, size controllability, phase separation and self ordering requirement, etc., many traditional or commonly used block copolymer synthetic schemes are not suitable for this system. Therefore, the investigation and development of applicable and effective synthetic protocols became the most critical and challenging part of this project. During the entire project period, and despite the lack of a proposed synthetic polymer postdoctoral research associate due to severe shortage of qualified personnel in the field, several important accomplishments were achieved in this project and are briefly listed and elaborated. A more detailed research and experimental data is listed in the Appendix.

  10. Research activity with different types of scintillation materials

    NASA Astrophysics Data System (ADS)

    Brinkmann, K.-T.; Borisevich, A.; Diehl, S.; Dormenev, V.; Houzvicka, J.; Korjik, M.; Novotny, R. W.; Zaunick, H.-G.; Zimmermann, S.

    2016-10-01

    Nowadays there is a growing interest and demand in the development of new types of scintillation materials for experimental high energy physics. Future detector developments will focus on cheap, fast, and radiation hard materials, especially for application in collider experiments. The most recent results obtained by the Giessen group in close cooperation with colleagues from different institutes will be presented. The new start of the mass production of high quality lead tungstate crystals (PbWO4, PWO) for electromagnetic calorimetry was started by the company CRYTUR (Turnov, Czech Republic). We will present a detailed progress report on the research program of lead tungstate performed in the last two years. The latest results in the development of LuAG:Ce, YAG:Ce and LYSO:Ce inorganic fibers, grown by the micro pulling down method and cut with the heated wire technique as well as new glass ceramics material BaO*2SiO2 (DSB) doped by Ce and Gd will be presented. In addition, different samples of the organic plastic scintillator EJ-260 produced by the company Eljen Technology (Sweetwater, USA) have been characterized. The study has focused on the change of performance after irradiation with 150 MeV protons up to an integral fluence of 5-1013 protons/cm2 as well as with a strong 60Co gamma-source accumulating an integral dose of 100 Gy.

  11. Water Level Detection in Silty Materials Using Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Halabe, Udaya B.; Siriwardane, Hema J.; Pyakurel, Sandeep; Kiriakidis, Ricardo; Ingram, Ronald

    2007-03-01

    Detection of water level in silty soils can be complicated because of capillary action. In this study, the water level in a silty soil sample was detected using Ground Penetrating Radar (GPR) technique in the laboratory. The soil sample has dimensions of 62 cm × 48 cm × 46 cm and was kept in a clear Plexiglas container which facilitated water level measurements. Two ground-coupled antennas with frequencies of 900 MHz and 1,500 MHz were used in this study. The soil sample was dry at the beginning of the experiment. The water level in the soil sample was raised to a pre-determined level and radar readings were taken at different times over 24 hours. The moisture content in the soil sample above the water level increased with time due to capillary action. At the end of the experiment, the variation of moisture content with depth of the sample was experimentally determined. The GPR observations were compared with measured water depth in the soil sample. The paper presents the comparison of water level as determined by GPR with the variation of experimentally determined moisture content in the silty soil sample. This study includes an investigation on the effects of capillary action on GPR measurements.

  12. Conveyor apparatus for detecting radioactive material in garments

    SciTech Connect

    Johnson, A.N.; Humphrey, M.D.

    1989-09-12

    This patent describes an apparatus for detecting radioactive particles in garments. It comprises a conveyor assembly for receiving, moving and discharging garments; and a radiation detector assembly including first and second radiation detector means, each of which includes a face that is primarily sensitive to beta radiation throughout its entire area, a shield means for shielding the first detector means from ambient radiation, and a height adjustable mounting means for mounting the first radiation detector means and the shield means over the conveyor assembly and for adjusting the distance between the detector means and the top side of the garments moved by the conveyor assembly while maintaining the shield means in the same shielding orientation relative to the detector means. The second radiation detector means being disposed under the conveyor assembly so that the first radiation detector means detects beta radiation emitted substantially from the top side of the garments while the second radiation detector means beta radiation emitted substantially from the bottom side of the garments.

  13. Detecting special nuclear materials in containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B.; Prussin, Stanley G.

    2007-10-02

    A method and a system for detecting the presence of special nuclear materials in a container. The system and its method include irradiating the container with an energetic beam, so as to induce a fission in the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  14. Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection

    NASA Astrophysics Data System (ADS)

    Gottfried, Jennifer L.; De Lucia, Frank C.; Munson, Chase A.; Miziolek, Andrzej W.

    2007-12-01

    We have developed a double-pulse standoff laser-induced breakdown spectroscopy (ST-LIBS) system capable of detecting a variety of hazardous materials at tens of meters. The use of a double-pulse laser improves the sensitivity and selectivity of ST-LIBS, especially for the detection of energetic materials. In addition to various metallic and plastic materials, the system has been used to detect bulk explosives RDX and Composition-B, explosive residues, biological species such as the anthrax surrogate Bacillus subtilis, and chemical warfare simulants at 20 m. We have also demonstrated the discrimination of explosive residues from various interferents on an aluminum substrate.

  15. Nondestructive image detection of surface and sub-surface defects of solid materials by OBD

    NASA Astrophysics Data System (ADS)

    Shi, Baixuan; Gong, Jian

    1996-09-01

    The measurement principle for detecting surface and sub-surface defects in solid materials by the optical beam deflection method (OBD) is described. The detectable depth of sub-surface defects is predicted through calculating the dependence of the surface temperature distribution of a solid sample, typically metal Al, on the thickness of the solid material and modulation frequencies of a pump laser. The defects in surface and sub-surface of some samples such as carbon film coated on glass, C/C composite material and metallic Al, etc., experimentally detected and directly displayed by grey image or 3D image.

  16. Administering and Detecting Protein Marks on Arthropods for Dispersal Research.

    PubMed

    Hagler, James R; Machtley, Scott A

    2016-01-28

    Monitoring arthropod movement is often required to better understand associated population dynamics, dispersal patterns, host plant preferences, and other ecological interactions. Arthropods are usually tracked in nature by tagging them with a unique mark and then re-collecting them over time and space to determine their dispersal capabilities. In addition to actual physical tags, such as colored dust or paint, various types of proteins have proven very effective for marking arthropods for ecological research. Proteins can be administered internally and/or externally. The proteins can then be detected on recaptured arthropods with a protein-specific enzyme-linked immunosorbent assay (ELISA). Here we describe protocols for externally and internally tagging arthropods with protein. Two simple experimental examples are demonstrated: (1) an internal protein mark introduced to an insect by providing a protein-enriched diet and (2) an external protein mark topically applied to an insect using a medical nebulizer. We then relate a step-by-step guide of the sandwich and indirect ELISA methods used to detect protein marks on the insects. In this demonstration, various aspects of the acquisition and detection of protein markers on arthropods for mark-release-recapture, mark-capture, and self-mark-capture types of research are discussed, along with the various ways that the immunomarking procedure has been adapted to suit a wide variety of research objectives.

  17. Focused Research Group in Correlated Electron and Complex Materials

    SciTech Connect

    Wang, Ziqiang

    2016-02-17

    While the remarkable physical properties of correlated and complex electronic materials hold great promise for technological applications, one of the key values of the research in this field is its profound impact on fundamental physics. The transition metal oxides, pnictides, and chalcogenides play a key role and occupy an especially important place in this field. The basic reason is that the outer shell of transition metals contains the atomic d-orbitals that have small spatial extent, but not too small to behave as localized orbtials. These d-electrons therefore have a small wave function overlap in a solid, e.g. in an octahedral environment, and form energy bands that are relatively narrow and on the scale of the short-range intra-atomic Coulomb repulsion (Hubbard U). In this intermediate correlation regime lies the challenge of the many-body physics responsible for new and unconventional physical properties. The study of correlated electron and complex materials represents both the challenge and the vitality of condensed matter and materials physics and often demands close collaborations among theoretical and experimental groups with complementary techniques. Our team has a track record and a long-term research goal of studying the unusual complexities and emergent behaviors in the charge, spin, and orbital sectors of the transition metal compounds in order to gain basic knowledge of the quantum electronic states of matter. During the funding period of this grant, the team continued their close collaborations between theory, angle-resolved photoemission spectroscopy, and scanning tunneling microscopy and made significant progress and contributions to the field of iron-based superconductors, copper-oxide high-temperature superconductors, triangular lattice transition metal oxide cobaltates, strontium ruthenates, spin orbital coupled iridates, as well as topological insulators and other topological quantum states of matter. These results include both new

  18. Raman detection of improvised explosive device (IED) material fabricated using drop-on-demand inkjet technology on several real world surfaces

    NASA Astrophysics Data System (ADS)

    Farrell, Mikella E.; Holthoff, Ellen L.; Pellegrino, Paul M.

    2015-05-01

    The requirement to detect hazardous materials (i.e., chemical, biological, and explosive) on a host of materials has led to the development of hazard detection systems. These new technologies and their capabilities could have immediate uses for the US military, national security agencies, and environmental response teams in efforts to keep people secure and safe. In particular, due to the increasing use by terrorists, the detection of common explosives and improvised explosive device (IED) materials have motivated research efforts toward detecting trace (i.e., particle level) quantities on multiple commonly encountered surfaces (e.g., textiles, metals, plastics, natural products, and even people). Non-destructive detection techniques can detect trace quantities of explosive materials; however, it can be challenging in the presence of a complex chemical background. One spectroscopic technique gaining increased attention for detection is Raman. One popular explosive precursor material is ammonium nitrate (AN). The material AN has many agricultural applications, however it can also be used in the fabrication of IEDs or homemade explosives (HMEs). In this paper, known amounts of AN will be deposited using an inkjet printer into several different common material surfaces (e.g., wood, human hair, textiles, metals, plastics). The materials are characterized with microscope images and by collecting Raman spectral data. In this report the detection and identification of AN will be demonstrated.

  19. [Participant research in reference to historical and dialectical materialism: a contribution to nursing research].

    PubMed

    Oliveira, M A

    1991-07-01

    Based upon the studies of Castellanos e Salum (1988) and Egry et al (1991), the author makes a theoretical approach of the participant research as an strategy related to the dialectical and historical materialism, emphasizing its in two main lines: - the dialectical method of exposition and the process of becoming aware.

  20. Shearographic and holographic defect detection for composite materials

    NASA Astrophysics Data System (ADS)

    Schnack, Eckart; Klumpp, Peter A.

    1992-01-01

    Presence and growth of edge delaminations in carbon-fiber/epoxy (CFRP) tensile specimens can be detected by shearography and by holographic interferometry. The in-plane component of the displacement field on the object surface lowers the contrast in the interferogram for either technique. This effect is analyzed quantitatively. The comparison shows that both techniques have about the same sensitivity against in-plane object movements. The influence of object creep motions and of mechanical setup vibrations is also compared. Our experiments have shown that the main advantage of shearography in this application is the intrinsic differentiation of the measured out-of-plane displacement field; it allows clear contour identification of the defective regions in the CFRP specimens.

  1. Detection of Biological Materials Using Ion Mobility Spectroscopy

    SciTech Connect

    Rodacy, P.J.; Sterling, J.P.; Butler, M.A.

    1999-03-01

    Traditionally, Ion Mobility Spectroscopy has been used to examine ions of relatively low molecular weight and high ion mobility. In recent years, however, biomolecules such as bradykinin, cytochrome c, bovine pancreatic trypsin inhibitor (BPTI), apomyoglobin, and lysozyme, have been successfully analyzed, but studies of whole bio-organisms have not been performed. In this study an attempt was made to detect and measure the mobility of two bacteriophages, {lambda}-phage and MS2 using electrospray methods to inject the viruses into the ion mobility spectrometer. Using data from Yeh, et al., which makes a comparison between the diameter of non-biologic particles and the specific particle mobility, the particle mobility for the MS2 virus was estimated to be 10{sup {minus}2} cm{sup 2}/volt-sec. From this mobility the drift time of these particles in our spectrometer was calculated to be approximately 65 msec. The particle mobility for the {lambda}-phage virus was estimated to be 10{sup {minus}3} cm{sup 2}/volt-sec. which would result in a drift time of 0.7 sec. Spectra showing the presence of a viral peak at the expected drift time were not observed. However, changes in the reactant ion peak that could be directly attributed to the presence of the viruses were observed. Virus clustering, excessive collisions, and the electrospray injection method limited the performance of this IMS. However, we believe that an instrument specifically designed to analyze such bioagents and utilizing other injection and ionization methods will succeed in directly detecting viruses and bacteria.

  2. Infrared spectroscopy for chemical agent detection using tailored hypersorbent materials

    NASA Astrophysics Data System (ADS)

    Kozak, Dmitry A.; McGill, R. Andrew; Stievater, Todd H.; Furstenberg, Robert; Pruessner, Marcel W.; Nguyen, Viet

    2015-06-01

    We report long-wave infrared (LWIR, 5-15 μm) and mid-wave infrared (MWIR, 2.5 - 5 μm) differential absorption spectra of different nerve agent simulants and common solutes sorbed to poly(methyldi(1,1,1-trifluoro-2-trifluoromethyl- 2-hydroxypent-4-enyl)silane, HCSFA2, an NRL developed hypersorbent polymer. HCSFA2 is a strong hydrogen-bond acidic polymer which exhibits large gas-polymer partitions for a variety of hazardous chemicals with hydrogen-bond basic properties such as the phosphonate ester G-nerve agents or their simulants. The measured ATR-FTIR differential absorption spectra show complex fingerprint signal changes in the resonances for the sorbent material itself, as well as new resonances arising from chemical bonding between the solute or analyte and the sorbent or the solute itself being present in the sorbent.

  3. Bias detection and certified reference materials for random measurands

    NASA Astrophysics Data System (ADS)

    Rukhin, Andrew L.

    2015-12-01

    A problem that frequently occurs in metrology is the bias checking of data obtained by a laboratory against the specified value and uncertainty estimate given in the certificate of analysis. The measurand—a property of a certified reference material (CRM)—is supposed to be random with a normal distribution whose parameters are given by the certificate specifications. The laboratory’s data from subsequent measurements of the CRM (a CRM experiment) are summarized by the sample mean value and its uncertainty which is commonly based on a repeatability standard deviation. New confidence intervals for the lab’s bias are derived. Although they may lack intuitive appeal, those obtained by using higher order asymptotic methods, compared and contrasted in this paper, are recommended.

  4. SQUID-amplified photon detection: from cosmology to material science

    NASA Astrophysics Data System (ADS)

    Irwin, Kent

    2014-03-01

    Superconducting photon detectors amplified by SQUIDs are playing an increasingly important role in science ranging from cosmology to materials characterization. The most widely used superconducting photon detector uses a superconducting transition-edge sensor (TES), which is a superconducting film biased in the narrow transition region between the normal and superconducting state. The film is voltage biased, and the current flowing through it is measured with a SQUID. An incident photon increases the resistance of the TES, which reduces the current through the SQUID. Large arrays of SQUID-coupled TES detectors are read out by cryogenic multiplexing of the SQUIDs with a time-division, frequency-division, or code-division multiplexing scheme. SQUID-coupled TES detectors are now widely deployed in ground- and balloon-borne observatories to measure the cosmic microwave background (CMB) radiation. By measuring the power and the polarization of the CMB, new constraints have been placed on cosmological parameters, as well as the absolute masses and number of neutrino species. Experiments are now being conducted to search for the signature of gravitational waves in the polarization of the cosmic microwave background, which would provide strong evidence of inflation at GUT energy scales. Remarkably, very similar sensor arrays to those developed for CMB measurements can also be used for spectroscopic measurements at synchrotron and free-electron laser x-ray light sources. SQUID-coupled TES sensors provide spectroscopic resolution previously only achieved with dispersive detectors based on gratings and crystal diffraction, but with the high efficiency of semiconductor x-ray detectors. I will describe experiments using SQUID-coupled TES arrays for x-ray emission and x-ray absorption spectroscopy of materials, and plans to develop much larger arrays for next-generation light sources.

  5. Research of the chemiluminescence detection apparatus for nutrients

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyi; Wang, Yu; Ni, Xuxiang; Yan, Huimin

    2016-10-01

    The multifunctional nutrition analyzer, which integrates four detection functions, can make fast, accurate, quantitative analysis for a variety of nutrients. In this article we focus on researching the luminescence detection system. Compared with other means, luminescence detection needs no excitation light, and the detection sensitivity is improved due to the reduction of the background light. The apparatus consists of an displacement platform, a microporous plate, a combination of an aspheric lens and a plano-convex lens, an optical fiber and a photon counter connected with a computer. A theoretical light intensity formula is established as a reference and a comparison of the experimental data. In the experiment we applies ATP detection reagent as the experimental reagent, whose magnitudes of concentration are from 10-6 mol/L to 10-12 mol/L. The sensitivity of the apparatus could reach a magnitude of concentration of 0.1nmol/L, and it is estimated to be further improved by at least two magnitudes in theory with the system and the reagent optimized.

  6. Research of the fluorescence detection apparatus for nutrients

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Yan, Huimin; Ni, Xuxiang; Xu, Xiaoyi; Chen, Shibing

    2015-10-01

    The research of the multifunctional analyzer of Clinical Nutrition, which integrates the absorbance, luminescence, fluorescence and other optical detection methods, can overcome the functional limitations of a single technology on human nutrition analysis, and realize a rapid and accurate analysis of the nutrients. This article focuses on the design of fluorescence detection module that uses a photomultiplier tube(PMT) to detect weak fluorescence, and utilizes the single photon counting method to measure the fluorescence intensity, and then according to the relationship between the fluorescent marker and fluorescence intensity, the concentration of the analyte can be derived. Using fluorescein isothiocyanate(FITC, the most widely used fluorescein currently)to mark antibodies in the experiment, therefore, according to the maximum absorption wavelength and the maximum emission wavelength of the fluorescein isothiocyanate, to select the appropriate filters to set up the optical path. In addition, the fluorescence detection apparatus proposed in this paper uses an aspherical lens with large numerical aperture, in order to improve the capacity of signal acquisition more effectively, and the selective adoption of flexible optical fiber can realize a compact opto-mechanical structure, which is also conducive to the miniaturization of the device. The experimental results show that this apparatus has a high sensitivity, can be used for the detection and analysis of human nutrition.

  7. Requirements for the Development of Bacillus Anthracis Spore Reference Materials Used to Test Detection Systems

    PubMed Central

    Almeida, Jamie L.; Wang, Lili; Morrow, Jayne B.; Cole, Kenneth D.

    2006-01-01

    Bacillus anthracis spores have been used as biological weapons and the possibility of their further use requires surveillance systems that can accurately and reliably detect their presence in the environment. These systems must collect samples from a variety of matrices, process the samples, and detect the spores. The processing of the sample may include removal of inhibitors, concentration of the target, and extraction of the target in a form suitable for detection. Suitable reference materials will allow the testing of each of these steps to determine the sensitivity and specificity of the detection systems. The development of uniform and well-characterized reference materials will allow the comparison of different devices and technologies as well as assure the continued performance of detection systems. This paper discusses the special requirements of reference materials for Bacillus anthracis spores that could be used for testing detection systems. The detection of Bacillus anthracis spores is based on recognition of specific characteristics (markers) on either the spore surface or in the nucleic acids (DNA). We have reviewed the specific markers and their relevance to characterization of reference materials. We have also included the approach for the characterization of candidate reference materials that we are developing at the NIST laboratories. Additional applications of spore reference materials would include testing sporicidal treatments, techniques for sampling the environment, and remediation of spore-contaminated environments. PMID:27274929

  8. Research of radiation resistant Er doped fiber for space detection

    NASA Astrophysics Data System (ADS)

    Huang, Jian-ping; Zhang, Ge; Wang, Pu-pu; Li, Run-dong; Jiang, Cong; Xiao, Chun

    2016-11-01

    In this paper, erbium doped fibers for space detection are researched for feature of radiation resistance. Fibers with different coated carbon are hydrogen loaded and radiated, and too thick of carbon layer around fiber would not bring best radiation-resistant performance, since thick carbon layer would make the entering of hydrogen difficult. We also research the duration of saturated hydrogen loading under the high and low temperature respectively, and it's found that the fibers' photo sensitivities tend to be flat after some days. Hydrogen is reloaded into the fibers which have been loaded once, this help us to deep understand the mechanism of hydrogen loading for the fiber gratings. Loss and wave width changes are also researched under different radiation dose.

  9. Additive Manufacturing Materials Study for Gaseous Radiation Detection

    SciTech Connect

    Steer, C.A.; Durose, A.; Boakes, J.

    2015-07-01

    Additive manufacturing (AM) techniques may lead to improvements in many areas of radiation detector construction; notably the rapid manufacturing time allows for a reduced time between prototype iterations. The additive nature of the technique results in a granular microstructure which may be permeable to ingress by atmospheric gases and make it unsuitable for gaseous radiation detector development. In this study we consider the application of AM to the construction of enclosures and frames for wire-based gaseous radiation tracking detectors. We have focussed on oxygen impurity ingress as a measure of the permeability of the enclosure, and the gas charging and discharging curves of several simplistic enclosure shapes are reported. A prototype wire-frame is also presented to examine structural strength and positional accuracy of an AM produced frame. We lastly discuss the implications of this study for AM based radiation detection technology as a diagnostic tool for incident response scenarios, such as the interrogation of a suspect radiation-emitting package. (authors)

  10. Next Generation Detection Systems for Radioactive Material Analysis

    NASA Astrophysics Data System (ADS)

    Britton, R.; Regan, P. H.; Burnett, J. L.; Davies, A. V.

    2014-05-01

    Compton Suppression techniques have been widely used to reduce the Minimum Detectable Activity of various radionuclides when performing gamma spectroscopy of environmental samples. This is achieved by utilising multiple detectors to reduce the contribution of photons that Compton Scatter out the detector crystal, only partially depositing their energy. Photons that are Compton Scattered out of the primary detector are captured by a surrounding detector, and the corresponding events vetoed from the final dataset using coincidence based fast-timing electronics. The current work presents the use of a LynxTM data acquisition module from Canberra Industries (USA) to collect data in 'List-Mode', where each event is time stamped for offline analysis. A post-processor developed to analyse such datasets allows the optimisation of the coincidence delay, and then identifies and suppresses events within this time window. This is the same process used in conventional systems with fast-timing electronics, however, in the work presented, data can be re-analysed using multiple time and energy windows. All data is also preserved and recorded (in traditional systems, coincident events are lost as they are vetoed in real time), and the results are achieved with a greatly simplified experimental setup. Monte-Carlo simulations of Compton Suppression systems have been completed to support the optimisation work, and are also presented here.

  11. Cross-validated detection of crack initiation in aerospace materials

    NASA Astrophysics Data System (ADS)

    Vanniamparambil, Prashanth A.; Cuadra, Jefferson; Guclu, Utku; Bartoli, Ivan; Kontsos, Antonios

    2014-03-01

    A cross-validated nondestructive evaluation approach was employed to in situ detect the onset of damage in an Aluminum alloy compact tension specimen. The approach consisted of the coordinated use primarily the acoustic emission, combined with the infrared thermography and digital image correlation methods. Both tensile loads were applied and the specimen was continuously monitored using the nondestructive approach. Crack initiation was witnessed visually and was confirmed by the characteristic load drop accompanying the ductile fracture process. The full field deformation map provided by the nondestructive approach validated the formation of a pronounced plasticity zone near the crack tip. At the time of crack initiation, a burst in the temperature field ahead of the crack tip as well as a sudden increase of the acoustic recordings were observed. Although such experiments have been attempted and reported before in the literature, the presented approach provides for the first time a cross-validated nondestructive dataset that can be used for quantitative analyses of the crack initiation information content. It further allows future development of automated procedures for real-time identification of damage precursors including the rarely explored crack incubation stage in fatigue conditions.

  12. Large Area Imaging Detector for Long-Range, Passive Detection of Fissile Material

    SciTech Connect

    Ziock, K P; Craig, W W; Fabris, L; Lanza, R C; Gallagher, S; Horn, B P; Madden, N W

    2003-10-29

    Recent events highlight the increased risk of a terrorist attack using either a nuclear or a radiological weapon. One of the key needs to counter such a threat is long-range detection of nuclear material. Theoretically, gamma-ray emissions from such material should allow passive detection to distances greater than 100 m. However, detection at this range has long been thought impractical due to fluctuating levels of natural background radiation. These fluctuations are the major source of uncertainty in detection and mean that sensitivity cannot be increased simply by increasing detector size. Recent work has shown that this problem can be overcome through the use of imaging techniques. In this paper we describe the background problems, the advantages of imaging and the construction of a prototype, large-area (0.57 m{sup 2}) gamma-ray imager to detect nuclear materials at distances of {approx}100 m.

  13. Large Area Imaging Detector for Long-Range, Passive Detection Of Fissile Material

    SciTech Connect

    Ziock, K P; Craig, W W; Fabris, L; Lanza, R C; Gallagher, S; Horn, B P; Madden, N W

    2004-07-30

    Recent events highlight the increased risk of a terrorist attack using either a nuclear or a radiological weapon. One of the key needs to counter such a threat is long-range detection of nuclear material. Theoretically, gamma-ray emissions from such material should allow passive detection to distances greater than 100 m. However, detection at this range has long been thought impractical due to fluctuating levels of natural background radiation. These fluctuations are the major source of uncertainty in detection and mean that sensitivity cannot be increased simply by increasing detector size. Recent work has shown that this problem can be overcome through the use of imaging techniques. In this paper we describe the background problems, the advantages of imaging and the construction of a prototype, large-area (0.57 m{sup 2}) gamma-ray imager to detect nuclear materials at distances of {approx}100 m.

  14. Commissioning and field tests of a van-mounted system for the detection of radioactive sources and Special Nuclear Material

    SciTech Connect

    Cester, D.; Lunardon, M.; Stevanato, L.; Viesti, G.; Chandra, R.; Davatz, G.; Friederich, H.; Gendotti, U.; Murer, D.; Swiderski, L.; Moszynski, M.; Resnati, F.; Rubbia, A.; Iovene, A.; Petrucci, S.; Tintori, C.; Caccia, M.; Chmill, V.; Santoro, R.; Martemyianov, A.; Doherty, M.; Christodoulou, G.; Stainer, T.; Touramanis, C.

    2015-07-01

    MODES SNM project aimed to carry out technical research in order to develop a prototype for a mobile, modular detection system for radioactive sources and Special Nuclear Materials (SNM). Its main goal was to deliver a tested prototype of a modular mobile system capable of passively detecting weak or shielded radioactive sources with accuracy higher than that of currently available systems. By the end of the project all the objectives have been successfully achieved. Results from the laboratory commissioning and the field tests will be presented. (authors)

  15. Material Property Estimation for Direct Detection of DNAPL using Integrated Ground-Penetrating Radar Velocity, Imaging and Attribute Analysis

    SciTech Connect

    John H. Bradford; Stephen Holbrook; Scott B. Smithson

    2004-12-09

    The focus of this project is direct detection of DNAPL's specifically chlorinated solvents, via material property estimation from multi-fold surface ground-penetrating radar (GPR) data. We combine state-of-the-art GPR processing methodology with quantitative attribute analysis and material property estimation to determine the location and extent of residual and/or pooled DNAPL in both the vadose and saturated zones. An important byproduct of our research is state-of-the-art imaging which allows us to pinpoint attribute anomalies, characterize stratigraphy, identify fracture zones, and locate buried objects.

  16. Research on lunar materials. [optical, chemical, and electrical properties

    NASA Technical Reports Server (NTRS)

    Gold, T.

    1978-01-01

    Abstracts of 14 research reports relating to investigations of lunar samples are presented. The principal topics covered include: (1) optical properties of surface and core samples; (2) chemical composition of the surface layers of lunar grains: Auger electron spectroscopy of lunar soil and ground rock samples; (3) high frequency electrical properties of lunar soil and rock samples and their relevance for the interpretation of lunar radar observations; (4) the electrostatic dust transport process; (5) secondary electron emission characteristics of lunar soil samples and their relevance to the dust transportation process; (6) grain size distribution in surface soil and core samples; and (7) the optical and chemical effects of simulated solar wind (2keV proton and a particle radiation) on lunar material.

  17. Process research of non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    1983-01-01

    High risk, high payoff research areas associated with the Westinghouse process for producing photovoltaic modules using non- CZ sheet material were investigated. All work was performed using dendritic web silicon. The following tasks are discussed and associated technical results are given: (1) determining the technical feasibility of forming front and back junctions in non-CT silicon using dopant techniques; (2) determining the feasibility of forming a liquid applied diffusion mask to replace the more costly chemical vapor deposited SiO2 diffusion mask; (3) determining the feasibility of applying liquid anti-reflective solutions using meniscus coating equipment; (4) studying the production of uniform, high efficiency solar cells using ion implanation junction formation techniques; and (5) quantifying cost improvements associated with process improvements.

  18. Application of pristine and doped SnO2 nanoparticles as a matrix for agro-hazardous material (organophosphate) detection

    NASA Astrophysics Data System (ADS)

    Khan, Naushad; Athar, Taimur; Fouad, H.; Umar, Ahmad; Ansari, Z. A.; Ansari, S. G.

    2017-02-01

    With an increasing focus on applied research, series of single/composite materials are being investigated for device development to detect several hazardous, dangerous, and toxic molecules. Here, we report a preliminary attempt of an electrochemical sensor fabricated using pristine Ni and Cr–doped nano tin oxide material (SnO2) as a tool to detect agro-hazardous material, i.e. Organophosphate (OP, chlorpyrifos). The nanomaterial was synthesized using the solution method. Nickel and chromium were used as dopant during synthesis. The synthesized material was calcined at 1000 °C and characterized for morphological, structural, and elemental analysis that showed the formation of agglomerated nanosized particles of crystalline nature. Screen-printed films of powder obtained were used as a matrix for working electrodes in a cyclic voltammogram (CV) at various concentrations of organophosphates (0.01 to 100 ppm). The CV curves were obtained before and after the immobilization of acetylcholinesterase (AChE) on the nanomaterial matrix. An interference study was also conducted with hydroquinone to ascertain the selectivity. The preliminary study indicated that such material can be used as suitable matrix for a device that can easily detect OP to a level of 10 ppb and thus contributes to progress in terms of desired device technology for the food and agricultural-industries.

  19. Application of pristine and doped SnO2 nanoparticles as a matrix for agro-hazardous material (organophosphate) detection

    PubMed Central

    Khan, Naushad; Athar, Taimur; Fouad, H.; Umar, Ahmad; Ansari, Z. A.; Ansari, S. G.

    2017-01-01

    With an increasing focus on applied research, series of single/composite materials are being investigated for device development to detect several hazardous, dangerous, and toxic molecules. Here, we report a preliminary attempt of an electrochemical sensor fabricated using pristine Ni and Cr–doped nano tin oxide material (SnO2) as a tool to detect agro-hazardous material, i.e. Organophosphate (OP, chlorpyrifos). The nanomaterial was synthesized using the solution method. Nickel and chromium were used as dopant during synthesis. The synthesized material was calcined at 1000 °C and characterized for morphological, structural, and elemental analysis that showed the formation of agglomerated nanosized particles of crystalline nature. Screen-printed films of powder obtained were used as a matrix for working electrodes in a cyclic voltammogram (CV) at various concentrations of organophosphates (0.01 to 100 ppm). The CV curves were obtained before and after the immobilization of acetylcholinesterase (AChE) on the nanomaterial matrix. An interference study was also conducted with hydroquinone to ascertain the selectivity. The preliminary study indicated that such material can be used as suitable matrix for a device that can easily detect OP to a level of 10 ppb and thus contributes to progress in terms of desired device technology for the food and agricultural-industries. PMID:28195202

  20. Interdisciplinary research on the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The advancement of material performance and design methodology as related to brittle materials was investigated. The processing and properties of ceramic materials as related to design requirements was also studied.

  1. Detecting submerged bodies: controlled research using side-scan sonar to detect submerged proxy cadavers.

    PubMed

    Healy, Carrie A; Schultz, John J; Parker, Kenneth; Lowers, Bim

    2015-05-01

    Forensic investigators routinely deploy side-scan sonar for submerged body searches. This study adds to the limited body of literature by undertaking a controlled project to understand how variables affect detection of submerged bodies using side-scan sonar. Research consisted of two phases using small and medium-sized pig (Sus scrofa) carcasses as proxies for human bodies to investigate the effects of terrain, body size, frequency, swath width, and state of decomposition. Results demonstrated that a clear, flat, sandy pond floor terrain was optimal for detection of the target as irregular terrain and/or vegetation are major limitations that can obscure the target. A higher frequency towfish was preferred for small bodies, and a 20 m swath width allowed greater visibility and easier maneuverability of the boat in this environment. Also, the medium-sized carcasses were discernable throughout the 81-day study period, indicating that it is possible to detect bodies undergoing decomposition with side-scan sonar.

  2. Method and system based on pulsed neutron generator for fissile material detection in luggage

    NASA Astrophysics Data System (ADS)

    Bogolubov, Ye. P.; Korotkov, S. A.; Korytko, L. A.; Morukov, V. G.; Nazarov, V. I.; Polkanov, Yu. G.; Khasaev, T. O.

    2004-01-01

    The paper discusses the problem of fissile material (FM) detection in passenger luggage. Different methods of control of unauthorized FM movement were analyzed. Application of differential die-away technique was substantiated. Experimental prototype with sensitivity of uranium-235 detection equal to 5 g during 5 s was described. A method for revealing deliberate FM masking by neutron-absorbing shields is suggested.

  3. Application research of the balance detector on coherent detection techniques

    NASA Astrophysics Data System (ADS)

    Wang, Gaixia; Huang, Yongmei

    2016-09-01

    The principles of coherent detection and balanced detectors are analyzed respectively in this article. It mainly talked about the balance detector applications in coherent detection. Obtained by the theoretical analysis that we can not only make full use of the local oscillator optical power but also eliminate the noise of the LO light more effectively by using the balanced detector. The most important is that it can improve the SNR of the system. This paper also makes a research on the factors that affect the performance of the balanced detector. The simulation results show that the response of the photo-diode consistency should be gain at least 90% in order to improve the SNR effectively. It further validates that the laser intensity noise indeed declined by using the balanced detector.

  4. Research on the detection technology to dim and small target

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Chen, Feng; Huang, Jianming; Wei, Xiangquan

    2015-03-01

    With the development of Space Technology, the demand to Space Surveillance System is more urgent than before. The paper studies the dim and small target of long range. Firstly, it describes the research status of dim and small target abroad and the two detection principle of DBT and TBD. Secondly, it focuses on the higher-order correlation method, dynamic programming method and projection transformation method of TBD. Finally, it studies the image sequence simulation of different signal to noise ratio (SNR) with the real-time data from the aircraft in orbit. The image sequence is used to experimental verification. The test results show the dim and small target detection capability and applicable occasion of different methods. At the same time, it provides a new idea to the development of long-distance optical detector.

  5. Technologies for Fissile Material Detection and Prevention of Fissile Material Introduction into International Shipping

    SciTech Connect

    Richardson, J

    2003-07-01

    Prevention of the introduction of fissile materials into international shipping, and hence into a given country, is a complex problem. Some pieces of the solution to the puzzle are conceptually well defined, but lack definition of a technical pathway and/or operational implementation. Other elements are a little more fuzzy, and some elements are probably undefined at this point in time. This paper reviews the status of the more well-defined elements, and suggests needed additional measures to enhance the probability that fissile materials are not illicitly introduced into distant countries. International commerce proceeds through a number of steps from point of origin to final destination. Each step offers the possibility of a well-defined choke point to monitor and interdict the illicit shipment of fissile materials. However, because there are so many potential points and venues of entry into a large country such as the United States (e.g., air cargo, shipping containers, truck and rail transport, private vehicles, boats and planes, commercial passenger travel), it behooves the world to ensure that fissile material does not illicitly leave its point of origin.

  6. Development of stimulus material for research in alcohol use disorders.

    PubMed

    Fey, Werner; Moggi, Franz; Rohde, Kristina B; Michel, Chantal; Seitz, Andrea; Stein, Maria

    2017-03-01

    The availability of appropriate stimulus material is a key concern for an experimental approach to research on alcohol use disorders (AUDs). A large number of such stimuli are necessary to evoke relevant alcohol-related associations. We report the development of a large stimulus database consisting of 457 pictures of alcoholic beverages and 398 pictures of neutral objects. These stimuli were rated by 18 inpatients hospitalized due to severe AUD and 18 healthy controls along four dimensions: arousal, valence, alcohol-relatedness, and craving. Physical parameters of the pictures were assessed. After outlier removal, 831 stimuli that were characterized as either alcohol-related or neutral were retained in the final stimulus pool. Alcohol-related pictures (versus neutral pictures) evoked higher arousal, more craving and were judged to have higher alcohol-relatedness and a more negative valence. Group comparisons indicated that in patients, neutral pictures evoked more craving and had higher alcohol-relatedness than they did in controls. Physical parameters such as visual complexity, luminance, and color were extracted from these pictures, and extreme values were normalized to minimize mean differences between alcoholic and neutral stimuli. The pictures met the qualitative requirements for (neurophysiological) research. A data file containing rating values and physical parameters will be provided upon request.

  7. The Role of Materials Research in Ceramics and ARCHAEOLOGY1

    NASA Astrophysics Data System (ADS)

    Vandiver, Pamela

    2001-08-01

    Materials research has been applied successfully to the study of archaeological ceramics for the last fifty years. To learn about our history and the human condition is not just to analyze and preserve the objects but also to investigate and understand the knowledge and skills used to produce and use them. Many researchers have probed the limits and methods of such studies, always mindful that a glimpse at ancient reality lies in the details of time and place, context of finds, and experimentally produced data, usually compared with standards that were collected in an equivalent ethnographic setting or that were fabricated in a laboratory in order to elucidate the critical questions in a technology that could be understood in no other way. The basis of most studies of ancient technology has been established as microstructure; composition and firing; methods and sequence of manufacture; differentiation of use; use-wear and post-depositional processes; technological variability that can be interpreted as a pattern of stasis or innovation, which can be related to cultural continuity or change; and interpretation that can involve technology, subsistence trade, organization, and symbolic group- and self-definition.

  8. 36 CFR 1254.1 - What kinds of archival materials may I use for research?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... electronic records. The majority of these materials are housed at the National Archives at College Park, 8601... materials may I use for research? 1254.1 Section 1254.1 Parks, Forests, and Public Property NATIONAL... MATERIALS General Information § 1254.1 What kinds of archival materials may I use for research? (a)...

  9. High-power, photofission-inducing bremsstrahlung source for intense pulsed active detection of fissile material

    NASA Astrophysics Data System (ADS)

    Zier, J. C.; Mosher, D.; Allen, R. J.; Commisso, R. J.; Cooperstein, G.; Hinshelwood, D. D.; Jackson, S. L.; Murphy, D. P.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Swanekamp, S. B.; Weber, B. V.

    2014-06-01

    Intense pulsed active detection (IPAD) is a promising technique for detecting fissile material to prevent the proliferation of special nuclear materials. With IPAD, fissions are induced in a brief, intense radiation burst and the resulting gamma ray or neutron signals are acquired during a short period of elevated signal-to-noise ratio. The 8 MV, 200 kA Mercury pulsed-power generator at the Naval Research Laboratory coupled to a high-power vacuum diode produces an intense 30 ns bremsstrahlung beam to study this approach. The work presented here reports on Mercury experiments designed to maximize the photofission yield in a depleted-uranium (DU) object in the bremsstrahlung far field by varying the anode-cathode (AK) diode gap spacing and by adding an inner-diameter-reducing insert in the outer conductor wall. An extensive suite of diagnostics was fielded to measure the bremsstrahlung beam and DU fission yield as functions of diode geometry. Delayed fission neutrons from the DU proved to be a valuable diagnostic for measuring bremsstrahlung photons above 5 MeV. The measurements are in broad agreement with particle-in-cell and Monte Carlo simulations of electron dynamics and radiation transport. These show that with increasing AK gap, electron losses to the insert and outer conductor wall increase and that the electron angles impacting the bremsstrahlung converter approach normal incidence. The diode conditions for maximum fission yield occur when the gap is large enough to produce electron angles close to normal, yet small enough to limit electron losses.

  10. 77 FR 57161 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... Proposal Review Panel for Materials Research; Notice of Meeting In accordance with the Federal Advisory...: Name: Site visit review of the Materials Research Science and Engineering Center (MRSEC) at Brandeis University by the Division of Materials Research (DMR) 1203. Dates & Times: Oct 11, 2012; 7:15 a.m.--8:30...

  11. 77 FR 57162 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... Proposal Review Panel for Materials Research; Notice of Meeting In accordance with the Federal Advisory...: Name: Site visit review of the Materials Research Science and Engineering Center (MRSEC) at The Ohio State University (OSU) by the Division of Materials Research (DMR) 1203. Dates & Times: Oct 22, 2012,...

  12. 78 FR 40519 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ... Proposal Review Panel for Materials Research; Notice of Meeting In accordance with the Federal Advisory...: Name: Site visit review of the Materials Research Science and Engineering Center (MRSEC) at the University of Utah by the Division of Materials Research (DMR) 1203 Dates & Times: July 12, 2013, 7:15...

  13. Nanostructured materials detect epidermal growth factor receptor, neuron specific enolase and carcinoembryonic antigen

    NASA Astrophysics Data System (ADS)

    Stefan-van Staden, Raluca-Ioana; Comnea-Stancu, Ionela Raluca; Surdu-Bob, Carmen Cristina; Badulescu, Marius

    2015-09-01

    New nanostructured materials based on thin films of Cu and Ni deposited on textile material (veil), as well as gold nanostructured microspheres were used for the design of new stochastic sensors. The stochastic sensors were able to detect simultaneously a panel of biomarkers comprising epidermal growth factor receptor, neuron specific enolase, and carcinoembryonic antigen from whole blood samples with high reliabilities - recovery tests higher than 97.00%, with a RSD (%) lower than 0.1%. The stochastic sensors had shown high sensitivities and low determination levels for the detection of the proposed panel of biomarkers making early detection of lung cancer possible by fast screening of whole blood.

  14. An Overview of Mesoscale Modeling Software for Energetic Materials Research

    DTIC Science & Technology

    2010-03-01

    areas of primary interest with regard to mesoscale modeling software are: • Soft materials, such as polymers , melts, blends, surfactants, complex...materials: Processing of materials requires an understanding of how polycrystalline materials interact with polymer binders. Mesoscale modeling...Mesocale modeling software summary. Software Algorithms Applications/Properties MesoDyn Dynamic Density Field Soft matter, polymers , melts, blends

  15. Optical detection of special nuclear materials: an alternative approach for standoff and remote sensing

    NASA Astrophysics Data System (ADS)

    Johnson, J. Bruce; Reeve, S. W.; Burns, W. A.; Allen, Susan D.

    2010-04-01

    Termed Special Nuclear Material (SNM) by the Atomic Energy Act of 1954, fissile materials, such as 235U and 239Pu, are the primary components used to construct modern nuclear weapons. Detecting the clandestine presence of SNM represents an important capability for Homeland Security. An ideal SNM sensor must be able to detect fissile materials present at ppb levels, be able to distinguish between the source of the detected fissile material, i.e., 235U, 239Pu, 233U or other fission source, and be able to perform the discrimination in near real time. A sensor with such capabilities would provide not only rapid identification of a threat but, ultimately, information on the potential source of the threat. For example, current detection schemes for monitoring clandestine nuclear testing and nuclear fuel reprocessing to provide weapons grade fissile material rely largely on passive air sampling combined with a subsequent instrumental analysis or some type of wet chemical analysis of the collected material. It would be highly useful to have a noncontact method of measuring isotopes capable of providing forensic information rapidly at ppb levels of detection. Here we compare the use of Kr, Xe and I as "canary" species for distinguishing between 235U and 239Pu fission sources by spectroscopic methods.

  16. Improved explosive collection and detection with rationally assembled surface sampling materials

    SciTech Connect

    Chouyyok, Wilaiwan; Bays, J. Timothy; Gerasimenko, Aleksandr A.; Cinson, Anthony D.; Ewing, Robert G.; Atkinson, David A.; Addleman, R. Shane

    2016-01-01

    Sampling and detection of trace explosives is a key analytical process in modern transportation safety. In this work we have explored some of the fundamental analytical processes for collection and detection of trace level explosive on surfaces with the most widely utilized system, thermal desorption IMS. The performance of the standard muslin swipe material was compared with chemically modified fiberglass cloth. The fiberglass surface was modified to include phenyl functional groups. When compared to standard muslin, the phenyl functionalized fiberglass sampling material showed better analyte release from the sampling material as well as improved response and repeatability from multiple uses of the same swipe. The improved sample release of the functionalized fiberglass swipes resulted in a significant increase in sensitivity. Various physical and chemical properties were systematically explored to determine optimal performance. The results herein have relevance to improving the detection of other explosive compounds and potentially to a wide range of other chemical sampling and field detection challenges.

  17. The research of weld defect detection based on high precision displacement sensor

    NASA Astrophysics Data System (ADS)

    Hu, Kelin; Gao, Chao

    2016-11-01

    Welding is one of the very common process in industrial production. It is a kind of manufacturing process and technology which joint mental or other thermoplastic materials by heating, high temperature or high pressure. Welding quality will directly affect the final quality of workpiece. So during the welding process, each links have strict standard and welding quality evaluation has different indicators. Therefore, how to make a rapid detection to weld defect has become a valuable research. This topic is aimed at weld defect detection of small workpiece. The study contains the selection of sensor, design of detection system, hardware platform, software design, user interface design, etc. In the end, a set of high accuracy detector of weld defect will be designed.

  18. Advanced Materials Research Status and Requirements. Volume 1. Technical Summary.

    DTIC Science & Technology

    1986-03-01

    systems. 1.2 Applications. This document provides a review of several of the mast prominent metal matrix and polymer matrix composite materials. The...Candidate Materials. This document provides a review of some of the most prominent metal matrix and polymer matrix composite materials. The material...of the most prominent metal matrix and polymer matrix composite materials. * As seen in Figures 3-2 and 3-3, the polymer matrix composites such as

  19. Research progress of Si-based germanium materials and devices

    NASA Astrophysics Data System (ADS)

    Buwen, Cheng; Cheng, Li; Zhi, Liu; Chunlai, Xue

    2016-08-01

    Si-based germanium is considered to be a promising platform for the integration of electronic and photonic devices due to its high carrier mobility, good optical properties, and compatibility with Si CMOS technology. However, some great challenges have to be confronted, such as: (1) the nature of indirect band gap of Ge; (2) the epitaxy of dislocation-free Ge layers on Si substrate; and (3) the immature technology for Ge devices. The aim of this paper is to give a review of the recent progress made in the field of epitaxy and optical properties of Ge heterostructures on Si substrate, as well as some key technologies on Ge devices. High crystal quality Ge epilayers, as well as Ge/SiGe multiple quantum wells with high Ge content, were successfully grown on Si substrate with a low-temperature Ge buffer layer. A local Ge condensation technique was proposed to prepare germanium-on-insulator (GOI) materials with high tensile strain for enhanced Ge direct band photoluminescence. The advances in formation of Ge n+p shallow junctions and the modulation of Schottky barrier height of metal/Ge contacts were a significant progress in Ge technology. Finally, the progress of Si-based Ge light emitters, photodetectors, and MOSFETs was briefly introduced. These results show that Si-based Ge heterostructure materials are promising for use in the next-generation of integrated circuits and optoelectronic circuits. Project supported in part by the National Natural Science Foundation (Nos. 61036003, 61435013) and the Major State Basic Research Development Program of China (No. 2013CB632103).

  20. Sustainable exposure prevention through innovative detection and remediation technologies from the NIEHS Superfund Research Program.

    PubMed

    Henry, Heather F; Suk, William A

    2017-03-01

    Innovative devices and tools for exposure assessment and remediation play an integral role in preventing exposure to hazardous substances. New solutions for detecting and remediating organic, inorganic, and mixtures of contaminants can improve public health as a means of primary prevention. Using a public health prevention model, detection and remediation technologies contribute to primary prevention as tools to identify areas of high risk (e.g. contamination hotspots), to recognize hazards (bioassay tests), and to prevent exposure through contaminant cleanups. Primary prevention success is ultimately governed by the widespread acceptance of the prevention tool. And, in like fashion, detection and remediation technologies must convey technical and sustainability advantages to be adopted for use. Hence, sustainability - economic, environmental, and societal - drives innovation in detection and remediation technology. The National Institute of Health (NIH) National Institute of Environmental Health Sciences (NIEHS) Superfund Research Program (SRP) is mandated to advance innovative detection, remediation, and toxicity screening technology development through grants to universities and small businesses. SRP recognizes the importance of fast, accurate, robust, and advanced detection technologies that allow for portable real-time, on-site characterization, monitoring, and assessment of contaminant concentration and/or toxicity. Advances in non-targeted screening, biological-based assays, passive sampling devices (PSDs), sophisticated modeling approaches, and precision-based analytical tools are making it easier to quickly identify hazardous "hotspots" and, therefore, prevent exposures. Innovation in sustainable remediation uses a variety of approaches: in situ remediation; harnessing the natural catalytic properties of biological processes (such as bioremediation and phytotechnologies); and application of novel materials science (such as nanotechnology, advanced

  1. Overview of DOE-NE Structural Materials Research, Materials Challenges and Operating Conditions

    SciTech Connect

    Maloy, Stuart A.; Busby, Jeremy T.

    2012-06-12

    This presentation summarized materials conditions for application of nanomaterials to reactor components. Material performance is essential to reactor performance, economics, and safety. A modern reactor design utilizes many different materials and material systems to achieve safe and reliable performance. Material performance in these harsh environments is very complex and many different forms of degradation may occur (often together in synergistic fashions). New materials science techniques may also help understand degradation modes and develop new manufacturing and fabrication techniques.

  2. Material Aging and Degradation Detection and Remaining Life Assessment for Plant Life Management

    SciTech Connect

    Ramuhalli, Pradeep; Henager, Charles H.; Griffin, Jeffrey W.; Meyer, Ryan M.; Coble, Jamie B.; Pitman, Stan G.; Bond, Leonard J.

    2012-12-31

    One of the major factors that may impact long term operations is structural material degradation, Detecting materials degradation, estimating the remaining useful life (RUL) of the component, and determining approaches to mitigating the degradation are important from the perspective of long term operations. In this study, multiple nondestructive measurement and monitoring methods were evaluated for their ability to assess the material degradation state. Metrics quantifying the level of damage from these measurements were defined, and evaluated for their ability to provide estimates of remaining life of the component. An example of estimating the RUL from nondestructive measurements of material degradation condition is provided.

  3. Using Electronic Neutron Generators in Active Interrogation to Detect Shielded Fissionable Material

    SciTech Connect

    D. L. Chichester; E. H. Seabury

    2008-10-01

    Experiments have been performed at Idaho National Laboratory to study methodology and instrumentation for performing neutron active interrogation die-away analyses for the purpose of detecting shielded fissionable material. Here we report initial work using a portable DT electronic neutron generator with a He-3 fast neutron detector to detect shielded fissionable material including >2 kg quantities of enriched uranium and plutonium. Measurements have been taken of bare material as well as of material hidden within a large plywood cube. Results from this work have demonstrated the efficacy of the die-away neutron measurement technique for quickly detecting the presence of special nuclear material hidden within plywood shields by analyzing the time dependent neutron signals in-between neutron generator pulses. Using a DT electronic neutron generator operating at 300 Hz with a yield of approximately 0.36 x 10**8 neutrons per second, 2.2 kg of enriched uranium hidden within a 0.60 m x 0.60 m x 0.70 m volume of plywood was positively detected with a measurement signal 2-sigma above the passive background within 1 second. Similarly, for a 500 second measurement period a lower detection limit of approaching the gram level could be expected with the same simple set-up.

  4. Interdisciplinary research on the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Several investigations concerning the properties and processing of brittle ceramic materials as related to design considerations are briefly described. Surface characterization techniques, fractography, high purity materials, creep properties, impact and thermal shock resistance, and reaction bonding are discussed.

  5. Energetic Material Detection by Laser Photofragmentation-Fragment Detection (PF-FD) Spectroscopy

    DTIC Science & Technology

    2010-08-01

    their profilometer, and Mr. Donovan Harris for the use of his imaging microscope. Support from the National Research Council Postdoctoral Research... mJ /pulse at 454 nm and 20−50 µJ at 226 nm. Both lasers systems operate at a repetition rate of 10 pulses per second (pps) and each pulse is about 6...They claim that the NO temperature depends somewhat on morphology and laser 9 fluence (1−60 mJ /cm2), with larger fluencies yielding hotter NO

  6. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1991

    SciTech Connect

    Not Available

    1991-10-01

    The Materials Research Laboratory at the University of Illinois is an interdisciplinary laboratory operated in the College of Engineering. Its focus is the science of materials and it supports research in the areas of condensed matter physics, solid state chemistry, and materials science. This report addresses topics such as: an MRL overview; budget; general programmatic and institutional issues; new programs; research summaries for metallurgy, ceramics, solid state physics, and materials chemistry.

  7. Materials and Molecular Research Division annual report 1983

    SciTech Connect

    Searcy, A.W.; Muller, R.H.; Peterson, C.V.

    1984-07-01

    Progress is reported in the following fields: materials sciences (metallurgy and ceramics, solid-state physics, materials chemistry), chemical sciences (fundamental interactions, processes and techniques), actinide chemistry, fossil energy, electrochemical energy storage systems, superconducting magnets, semiconductor materials and devices, and work for others. (DLC)

  8. Detection of Energetic Materials by Laser Photofragmentation/Fragment Detection and Pyrolysis/Laser-Induced Fluorescence

    DTIC Science & Technology

    2001-02-01

    Analysis." Applied Spectroscopy Reviews, vol. 31, pp. 1-72, 1996. 4. Huang, S. D., L. Kolaitis, and D. M. Lubman. "Detection Of Explosives Using Laser...Desorption/Mass Spectrometry." Applied Spectroscopy , vol. 41, pp. 137 1-1376, 1987. 5. Riris, H., C. B. Carisle, D. F. McMillen, and D. E. Cooper...Photofragmentation/Ionization Spectrometry." Applied Spectroscopy , vol. 47, no. 11, pp. 1907-1912, 1993. 10. Wu, D., J. Singh, F. Yueh, and D. Monts. Ŗ,4,6

  9. New Optical Sensing Materials for Application in Marine Research

    NASA Astrophysics Data System (ADS)

    Borisov, S.; Klimant, I.

    2012-04-01

    Optical chemosensors are versatile analytical tools which find application in numerous fields of science and technology. They proved to be a promising alternative to electrochemical methods and are applied increasingly often in marine research. However, not all state-of-the- art optical chemosensors are suitable for these demanding applications since they do not fully fulfil the requirements of high luminescence brightness, high chemical- and photochemical stability or their spectral properties are not adequate. Therefore, development of new advanced sensing materials is still of utmost importance. Here we present a set of novel optical sensing materials recently developed in the Institute of Analytical Chemistry and Food Chemistry which are optimized for marine applications. Particularly, we present new NIR indicators and sensors for oxygen and pH which feature high brightness and low level of autofluorescence. The oxygen sensors rely on highly photostable metal complexes of benzoporphyrins and azabenzoporphyrins and enable several important applications such as simultaneous monitoring of oxygen and chlorophyll or ultra-fast oxygen monitoring (Eddy correlation). We also developed ulta-sensitive oxygen optodes which enable monitoring in nM range and are primary designed for investigation of oxygen minimum zones. The dynamic range of our new NIR pH indicators based on aza-BODIPY dyes is optimized for the marine environment. A highly sensitive NIR luminescent phosphor (chromium(III) doped yttrium aluminium borate) can be used for non-invasive temperature measurements. Notably, the oxygen, pH sensors and temperature sensors are fully compatible with the commercially available fiber-optic readers (Firesting from PyroScience). An optical CO2 sensor for marine applications employs novel diketopyrrolopyrrol indicators and enables ratiometric imaging using a CCD camera. Oxygen, pH and temperature sensors suitable for lifetime and ratiometric imaging of analytes

  10. 3D polypyrrole structures as a sensing material for glucose detection

    NASA Astrophysics Data System (ADS)

    Cysewska, Karolina; Szymańska, Magdalena; Jasiński, Piotr

    2016-11-01

    In this work, 3D polypyrrole (PPy) structures as material for glucose detection is proposed. Polypyrrole was electrochemically polymerized on platinum screen-printed electrode from an aqueous solution of lithium perchlorate and pyrrole. The growth mechanism of such PPy structures was studied by ex-situ scanning electron microscopy. Preliminary studies show that studied here PPy film is a good candidate as a sensing material for glucose biosensor. It exhibits very high sensitivity (28.5 mA·mM-1·cm-2) and can work without any additional dopants, mediators or enzymes. It was also shown that glucose detection depends on the PPy morphology. The same PPy material was immobilized with the glucose oxidase enzyme. Such material exhibited higher signal response, however it lost its stability very fast.

  11. Further Development of Selective Dyeing Method for Detecting Chrysotile Asbestos in Building Materials

    NASA Astrophysics Data System (ADS)

    Oke, Y.; Yamasaki, N.; Maeta, N.; Fujimaki, H.; Hashida, T.

    2008-02-01

    Extensive usage of chrysotile asbestos has resulted in the remains of large numbers of chrysotile asbestos-containing buildings to be surveyed. We have recently developed a simple dyeing method for detecting chrysotile asbestos in building materials, which involves pretreatment with calcium-chelating agent and dyeing treatment with magnesium-chelating organic dyes. In this study, we further developed a method which eliminates dyed asbestos substitutes containing magnesium, potentially present in building materials. In the new method, post-treatment with formic acid was conducted to dissolve the non-chrysotile asbestos materials in order to delineate dyed chrysotile asbestos. The calcium-masking process was also shown to be an essential process even when the post-treatment was conducted. It was shown that the new method developed in this study may enable us to dye chrysotile asbestos only without detecting asbestos substitutes in building materials.

  12. Materials Science Research Rack-1 Fire Suppressant Distribution Test Report

    NASA Technical Reports Server (NTRS)

    Wieland, P. O.

    2002-01-01

    Fire suppressant distribution testing was performed on the Materials Science Research Rack-1 (MSRR-1), a furnace facility payload that will be installed in the U.S. Lab module of the International Space Station. Unlike racks that were tested previously, the MSRR-1 uses the Active Rack Isolation System (ARIS) to reduce vibration on experiments, so the effects of ARIS on fire suppressant distribution were unknown. Two tests were performed to map the distribution of CO2 fire suppressant throughout a mockup of the MSRR-1 designed to have the same component volumes and flowpath restrictions as the flight rack. For the first test, the average maximum CO2 concentration for the rack was 60 percent, achieved within 45 s of discharge initiation, meeting the requirement to reach 50 percent throughout the rack within 1 min. For the second test, one of the experiment mockups was removed to provide a worst-case configuration, and the average maximum CO2 concentration for the rack was 58 percent. Comparing the results of this testing with results from previous testing leads to several general conclusions that can be used to evaluate future racks. The MSRR-1 will meet the requirements for fire suppressant distribution. Primary factors that affect the ability to meet the CO2 distribution requirements are the free air volume in the rack and the total area and distribution of openings in the rack shell. The length of the suppressant flowpath and degree of tortuousness has little correlation with CO2 concentration. The total area of holes in the rack shell could be significantly increased. The free air volume could be significantly increased. To ensure the highest maximum CO2 concentration, the PFE nozzle should be inserted to the stop on the nozzle.

  13. Abstracts of Instructional and Research Materials in Vocational and Technical Education. Vol. 7, No. 2.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    The publication is presented with the purpose of providing educators easy access to current materials relevant to vocational-technical instruction and research. The document has three major sections: Instructional Materials, Research Materials, and Projects in Progress. The first two sections have three subsections: abstracts, subject index, and…

  14. Abstracts of Instructional and Research Materials in Vocational and Technical Education Volume 7, Number 1.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    The publication is presented with the purpose of providing educators easy access to current materials relevant to vocational-technical instruction and research. The document has three major sections: Instructional Materials, Research Materials, and Projects in Progress. The first two sections have three subsections: abstracts, subject index, and…

  15. Abstracts of Instructional and Research Materials in Vocational and Technical Education. Volume 8, Number 3.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    The publication is presented with the purpose of providing educators easy access to current materials relevant to vocational-technical instruction and research. In the abstract section instructional materials (30 items) are followed by research materials (168 items) with the subject and author indexes providing access to both categories. The…

  16. Abstracts of Instructional and Research Materials in Vocational and Technical Education. Volume 8, Number 4.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    The publication is presented with the purpose of providing educators easy access to current materials relevant to vocational-technical instruction and research. In the abstract section instructional materials (75 items) are followed by research materials (75 items) with the subject and author indexes providing access to both categories. The…

  17. Abstracts of Instructional and Research Materials in Vocational and Technical Education. Volume 8, Number 2.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    The publication is presented with the purpose of providing educators easy access to current materials relevant to vocational-technical instruction and research. In the abstract section instructional materials (97 items) are followed by research materials (103 items) with the subject and author indexes providing access to both categories. The…

  18. 36 CFR 1254.1 - What kinds of archival materials may I use for research?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false What kinds of archival materials may I use for research? 1254.1 Section 1254.1 Parks, Forests, and Public Property NATIONAL... MATERIALS General Information § 1254.1 What kinds of archival materials may I use for research? (a)...

  19. Detection of delamination defects in CFRP materials using ultrasonic signal processing.

    PubMed

    Benammar, Abdessalem; Drai, Redouane; Guessoum, Abderrezak

    2008-12-01

    In this paper, signal processing techniques are tested for their ability to resolve echoes associated with delaminations in carbon fiber-reinforced polymer multi-layered composite materials (CFRP) detected by ultrasonic methods. These methods include split spectrum processing (SSP) and the expectation-maximization (EM) algorithm. A simulation study on defect detection was performed, and results were validated experimentally on CFRP with and without delamination defects taken from aircraft. Comparison of the methods for their ability to resolve echoes are made.

  20. Ionic liquid-kaolinite nanohybrid materials for the amperometric detection of trace levels of iodide.

    PubMed

    Dedzo, Gustave Kenne; Detellier, Christian

    2013-02-21

    A nanohybrid kaolinite material with anion exchange properties was obtained by the grafting of an ionic liquid in the interlayer spaces of kaolinite. It was used successfully for the amperometric detection of iodide in aqueous solution and tap water after a pre-concentration step, with a detection limit of 1.5 × 10(-7) M. This electrode has an excellent stability. Its selectivity was tested in the presence of several anions.

  1. Scientific Applications of Optical Instruments to Materials Research

    NASA Technical Reports Server (NTRS)

    Witherow, William K.

    1997-01-01

    Microgravity is a unique environment for materials and biotechnology processing. Microgravity minimizes or eliminates some of the effects that occur in one g. This can lead to the production of new materials or crystal structures. It is important to understand the processes that create these new materials. Thus, experiments are designed so that optical data collection can take place during the formation of the material. This presentation will discuss scientific application of optical instruments at MSFC. These instruments include a near-field scanning optical microscope, a miniaturized holographic system, and a phase-shifting interferometer.

  2. Quantitative Phase Fraction Detection in Organic Photovoltaic Materials through EELS Imaging

    SciTech Connect

    Dyck, Ondrej; Hu, Sheng; Das, Sanjib; Keum, Jong; Xiao, Kai; Khomami, Bamin; Duscher, Gerd

    2015-11-24

    Organic photovoltaic materials have recently seen intense interest from the research community. Improvements in device performance are occurring at an impressive rate; however, visualization of the active layer phase separation still remains a challenge. Our paper outlines the application of two electron energy-loss spectroscopic (EELS) imaging techniques that can complement and enhance current phase detection techniques. Specifically, the bulk plasmon peak position, often used to produce contrast between phases in energy filtered transmission electron microscopy (EFTEM), is quantitatively mapped across a sample cross section. One complementary spectrum image capturing the carbon and sulfur core loss edges is compared with the plasmon peak map and found to agree quite well, indicating that carbon and sulfur density differences between the two phases also allows phase discrimination. Additionally, an analytical technique for determining absolute atomic areal density is used to produce an absolute carbon and sulfur areal density map. We also show how these maps may be re-interpreted as a phase ratio map, giving quantitative information about the purity of the phases within the junction.

  3. Quantitative Phase Fraction Detection in Organic Photovoltaic Materials through EELS Imaging

    DOE PAGES

    Dyck, Ondrej; Hu, Sheng; Das, Sanjib; ...

    2015-11-24

    Organic photovoltaic materials have recently seen intense interest from the research community. Improvements in device performance are occurring at an impressive rate; however, visualization of the active layer phase separation still remains a challenge. Our paper outlines the application of two electron energy-loss spectroscopic (EELS) imaging techniques that can complement and enhance current phase detection techniques. Specifically, the bulk plasmon peak position, often used to produce contrast between phases in energy filtered transmission electron microscopy (EFTEM), is quantitatively mapped across a sample cross section. One complementary spectrum image capturing the carbon and sulfur core loss edges is compared with themore » plasmon peak map and found to agree quite well, indicating that carbon and sulfur density differences between the two phases also allows phase discrimination. Additionally, an analytical technique for determining absolute atomic areal density is used to produce an absolute carbon and sulfur areal density map. We also show how these maps may be re-interpreted as a phase ratio map, giving quantitative information about the purity of the phases within the junction.« less

  4. ``Standoff Biofinder'' for Fast, Noncontact, Nondestructive, Large-Area Detection of Biological Materials for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Misra, Anupam K.; Acosta-Maeda, Tayro E.; Sharma, Shiv K.; McKay, Christopher P.; Gasda, Patrick J.; Taylor, G. Jeffrey; Lucey, Paul G.; Flynn, Luke; Nurul Abedin, M.; Clegg, Samuel M.; Wiens, Roger

    2016-09-01

    We developed a prototype instrument called the Standoff Biofinder, which can quickly locate biological material in a 500 cm2 area from a 2 m standoff distance with a detection time of 0.1 s. All biogenic materials give strong fluorescence signals when excited with UV and visible lasers. In addition, the luminescence decay time of biogenic compounds is much shorter (<100 ns) than the micro- to millisecond decay time of transition metal ions and rare-earth ions in minerals and rocks. The Standoff Biofinder takes advantage of the short lifetime of biofluorescent materials to obtain real-time fluorescence images that show the locations of biological materials among luminescent minerals in a geological context. The Standoff Biofinder instrument will be useful for locating biological material during future NASA rover, lander, and crewed missions. Additionally, the instrument can be used for nondestructive detection of biological materials in unique samples, such as those obtained by sample return missions from the outer planets and asteroids. The Standoff Biofinder also has the capacity to detect microbes and bacteria on space instruments for planetary protection purposes.

  5. Review of the National Research Council report ''Major Facilities for Materials Research and Related Disciplines''

    SciTech Connect

    Not Available

    1985-06-01

    The National Research Council-National Academy of Sciences report on ''Major Facilities for Materials Research and Related Disciplines'' recommends that new facilities and upgrades of existing facilities are very important to the nation. At the request of the Secretary of Energy, the Energy Research Advisory Board has reviewed this report and finds that the Department of Energy is responsible for the majority of these projects to carry out its missions in energy, national defense, and science and technology. Therefore, we recommend that the Department should place a high priority on requesting the new funds necessary to fulfill these responsibilities in the next decade. The energy and defense missions of the Department will be best served by this approach. This responsibility requires strong coordination with other funding agencies through a shared advisory and decision-making process. The review recommends immediate implementation of new capabilities at existing DOE facilities (the neutron experimental halls at Brookhaven and Los Alamos and the new synchrotron insertion devices at Stanford and Brookhaven) as a cost effective way of maintaining the Nation's leading role in neutron scattering and synchrotron radiation research. It also recommends the immediate initiation of non-site-specific research and development for the proposed 6 GeV synchrotron and advanced steady state neutron source. This pre-construction work should be sufficient to ensure that these facilities will be constructed in a timely fashion at design goals and with well identified costs. Other recommendations concern advancing the Nation's leading capabilities in synchrotron produced ultraviolet radiation and spallation neutron research. A budget scenario is developed.

  6. Research on medium and high temperature solar heat storage materials

    NASA Technical Reports Server (NTRS)

    Heine, D.; Jucker, J.; Koch, D.; Krahling, H.; Supper, W.

    1979-01-01

    Characteristics of solar heat storage materials, preliminary tests in which melting and solidification characteristics are tested, and service life and cycling tests are reported. Various aspects of corrosion are discussed as well as decision about ultimate selection of materials. A program for storage and evaluation of data is included.

  7. Basic Study of Detecting Defects in Solid Materials Using High-Intensity Aerial Ultrasonic Waves

    NASA Astrophysics Data System (ADS)

    Osumi, Ayumu; Kobayashi, Hiromasa; Ito, Youichi

    2012-07-01

    Recently, developments have improved methods employing aerial ultrasonic waves for detecting defects in solid materials such as metals, pipe walls, and fiber-reinforced plastics. These methods can be performed using a noncontacting aerial ultrasonic probe. In a previous study, we developed a new method using high-intensity aerial ultrasonic waves to successfully detect peeling, artificially created by inserting an air gap between tiles and concrete plates. In the present study, we use the same method to detect the depth and size of defects in a homogeneous medium.

  8. Isotope-specific detection of low density materials with mono-energetic (gamma)-rays

    SciTech Connect

    Albert, F; Anderson, S G; Gibson, D J; Hagmann, C A; Johnson, M S; Messerly, M J; Semenov, V A; Shverdin, M Y; Tremaine, A M; Hartemann, F V; Siders, C W; McNabb, D P; Barty, C J

    2009-03-16

    The first demonstration of isotope-specific detection of a low-Z, low density object, shielded by a high-Z and high density material using mono-energetic gamma-rays is reported. Isotope-specific detection of LiH shielded by Pb and Al is accomplished using the nuclear resonance fluorescence line of {sup 7}Li at 0.478 MeV. Resonant photons are produced via laser-based Compton scattering. The detection techniques are general and the confidence level obtained is shown to be superior to that yielded by conventional x-ray/{gamma}-ray techniques in these situations.

  9. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992

    SciTech Connect

    Not Available

    1992-07-01

    This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

  10. Innovations in thermoelectric materials research: Compound agglomeration, testing and preselection

    NASA Astrophysics Data System (ADS)

    Lopez de Cardenas, Hugo Francisco Lopez

    Thermoelectric materials have the capacity to convert a temperature differential into electrical power and vice versa. They will represent the next revolution in alternative energies once their efficiencies are enhanced so they can complement other forms of green energies that depend on sources other than a temperature differential. Progress in materials science depends on the ability to discover new materials to eventually understand them and to finally improve their properties. The work presented here is aimed at dynamizing the screening of materials of thermoelectric interest. The results of this project will enable: theoretical preselection of thermoelectric compounds based on their bandgap and a rapid agglomeration method that does not require melting or sintering. A special interest will be given to Iodine-doped TiSe2 that generated extraordinary results and a new set of equations are proposed to accurately describe the dependence of the power factor and the figure of merit on the intrinsic properties of the materials.

  11. Multi-physics modeling of multifunctional composite materials for damage detection

    NASA Astrophysics Data System (ADS)

    Sujidkul, Thanyawalai

    This study presents a modeling of multifunction composite materials for damage detection with its verification and validation to mechanical behavior predictions of Carbon Fibre Reinforced Polymer composites (CFRPs), CFRPs laminated composites, and woven SiC/SiC matrix composites that are subjected to fracture damage. Advantages of those materials are low cost, low density, high strength-to-weight ratio, and comparable specific tensile properties, the special of SiC/SiC is good environmental stability at high temperature. Resulting in, the composite has been used for many important structures such as helicopter rotors, aerojet engines, gas turbines, hot control surfaces, sporting goods, and windmill blades. Damage or material defect detection in a mechanical component can provide vital information for the prediction of remaining useful life, which will result in the prevention of catastrophic failures. Thus the understanding of the mechanical behavior have been challenge to the prevent damage and failure of composites in different scales. The damage detection methods in composites have been investigated widely in recent years. Non-destructive techniques are the traditional methods to detect the damage such as X-ray, acoustic emission and thermography. However, due to the invisible damage in composite can be occurred, to prevent the failure in composites. The developments of damage detection methods have been considered. Due to carbon fibers are conductive materials, in resulting CFRPs can be self-sensing to detect damage. As is well known, the electrical resistance has been shown to be a sensitive measure of internal damage, and also this work study in thermal resistance can detect damage in composites. However, there is a few number of different micromechanical modeling schemes has been proposed in the published literature for various types of composites. This works will provide with a numerical, analytical, and theoretical failure models in different damages to

  12. Classroom Teachers and Classroom Research. JALT Applied Materials.

    ERIC Educational Resources Information Center

    Griffee, Dale T., Ed.; Nunan, David, Ed.

    This collection of papers leads classroom language teachers through the process of developing and completing a classroom research project. Arranged in four sections, they include: "Language Teaching and Research" (David Nunan); "Where Are We Now? Trends, Teachers, and Classroom Research" (Dale T. Griffee); "First Things First: Writing the Research…

  13. SNM Movement Detection/Radiation Sensors and Advanced Materials Portfolio Review, CdMnTe (CMT) Gamma Ray Detectors

    SciTech Connect

    Bolotnikov,A.

    2009-06-02

    The project goals are: (1) Develop CMT radiation detectors - Demonstrate feasibility (Phase 1 is complete) and Improve material properties and device performance; (2) This project will lead to novel radiation detectors - high detection efficiency, high energy-resolution, ambient-temperature operation, and low production cost; and (3) Such detectors are needed in areas of nonproliferation and national security for detection of SNM. Research highlights are: (1) We achieved our Phase-I goal - Demonstration of CMT detector performance approaching that of CZT detectors; (2) Demonstrated that In-doped CMT is much closer to its anticipated performance as radiation detectors than other alternative materials, TlBr and HgI{sub 2} - Large crystal volumes, 10{sup 10}{Omega}{center_dot}cm, 3 x 10{sup -3}cm{sup 2}/V, and stable response; and (3) Conducted material and device characterization experiments - Detectors: I-V, {mu}{sub e}, ({mu}{tau}){sub e}, internal E fields, energy spectra, and high-resolution x-ray response mapping data and Materials - DLTS, TCT, PL, EPDs, XRD, PCD and IR transmission.

  14. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2016

    SciTech Connect

    Wiffen, Frederick W; Katoh, Yutai; Melton, Stephanie G.

    2016-12-01

    This document summarizes FY2016 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for MFE carried out by ORNL. The organization of the report is mainly by material type, with sections on specific technical activities.

  15. Detection of inhomogeneities in semi-solid materials using pulsed digital holography

    NASA Astrophysics Data System (ADS)

    Hernandez-Montes, Maria del Socorro; Mendoza Santoyo, Fernando; Perez-Lopez, Carlos

    2004-08-01

    An out of plane optical sensitive configuration for pulsed digital holography was used to detect inhomogeneities inside semi solid organic materials. A loud speaker was employed to produce a mechanical wave that propagates through the material in such a way that it generates vibrational resonant modes and transient events on the material surface. Surface micro displacements were observed between the firing of two consecutive laser pulses, both for a steady resonant mode and for different times during the transient event. Two kinds of inhomogeneities were inserted approximately 2 cm inside the material diffracting the original mechanical wave and thus changing the resonant mode pattern or the transient wave on the surface. Comparison of phase unwrapped patterns, with and without inhomogeneities allows the rapid identification of their existence. The results for the resonant and transient conditions show that the method may be reliably used to study, compare and distinguish data from inside homogeneous and in-homogeneous organic materials.

  16. A New Direction for the NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human

  17. A New Direction for the NASA Materials Science Research using the International Space Station

    NASA Astrophysics Data System (ADS)

    Schlagheck, R.

    2002-01-01

    In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human

  18. A study of single-beam femtosecond MCARS in trace material detection

    NASA Astrophysics Data System (ADS)

    Roberson, Stephen D.; Bowman, Sherrie S.; Pellegrino, Paul M.

    2015-05-01

    There is a need for rapid and accurate detection and identification of complex aerosol particles in a number of fields for countless applications. Full identification of these particles has been hampered by the inability to use an information-rich spectroscopic method such as Raman scattering in a flowing aerosol environment due to the time needed to generate a Raman spectrum. Multiplex coherent anti-Stokes Raman spectroscopy (MCARS) has been shown to generate a complete Raman spectrum from the material of interest using a single ultrabroadband pulse to coherently drive multiple molecular vibrations simultaneously. When used in conjunction with a narrow probe pulse, a complete Raman spectrum is created that can be detected in milliseconds. We will report on the MCARS spectra obtained from materials of interest at a distance of 1 m from the sample location. A limit of detection study of the MCARS spectrum of various materials of interest will be also reported in with the nonresonant background both present and removed. Additionally, a limit of detection study as a function of the number of pulses used to comprise the CARS spectrum of the materials of interest will be presented.

  19. Compact Detection System for High Sensitivity Hydrogen Profiling of Materials by Nuclear Reaction Analysis

    SciTech Connect

    Marble, Daniel Keith; Urban, Ben; Pacheco, Jose

    2009-03-10

    Hydrogen is a ubiquitous contaminant that is known to have dramatic effects on the electrical, chemical, and mechanical properties of many types of materials in even minute quantities. Thus, the detection of hydrogen in materials is of major importance. Nuclear Reaction Analysis (NRA) is a powerful technique for nondestructive profiling hydrogen in materials. However, NRA has found only limited use in many applications because of poor sensitivity due to cosmic ray background (CSRB). Most attempts to eliminate CSRB to achieve ppm detection levels using higher energy nuclear reactions or tons of passive shielding are not compatible with commercial ion beam analysis space and equipment requirements Zimmerman, et al. have previously reported upon a coincidence detector that meets IBA space requirements and reduces the cosmic ray background, but the detector suffers from lower detection efficiency and small sample size. We have replaced the BGO well detector in the Zimmerman coincidence detection scheme with a larger Nal well detector and used faster timing electronics to produce a detector that can handle larger samples with higher detection efficiency, and still eliminate cosmic ray background.

  20. Vanderbilt free electron laser project in biomedical and materials research

    NASA Astrophysics Data System (ADS)

    Haglund, Richard F.; Tolk, N. H.

    1988-06-01

    The Medical Free Electron Laser Program was awarded to develop, construct and operate a free-electron laser facility dedicated to biomedical and materials studies, with particular emphases on: fundamental studies of absorption and localization of electromagnetic energy on and near material surfaces, especially through electronic and other selective, non-statistical processes; non-thermal photon-materials interactions (e.g., electronic bond-breaking or vibrational energy transfer) in physical and biological materials as well as in long-wavelength biopolymer dynamics; development of FEL-based methods to study drug action and to characterize biomolecular properties and metabolic processes in biomembranes; clinical applications in otolaryngology, neurosurgery, ophthalmology and radiology stressing the use of the laser for selective laser-tissue, laser-cellular and laser-molecule interactions in both therapeutic and diagnostic modalities.

  1. Management of Biological Materials in Wastewater from Research & Development Facilities

    SciTech Connect

    Raney, Elizabeth A.; Moon, Thomas W.; Ballinger, Marcel Y.

    2011-04-01

    PNNL has developed and instituted a systematic approach to managing work with biological material that begins in the project planning phase and carries through implementation to waste disposal. This paper describes two major processes used at PNNL to analyze and mitigate the hazards associated with working with biological materials and evaluate them for disposal to the sewer, ground, or surface water in a manner that protects human health and the environment. The first of these processes is the Biological Work Permit which is used to identify requirements for handling, storing, and working with biological materials and the second is the Sewer Approval process which is used to evaluate discharges of wastewaters containing biological materials to assure they meet industrial wastewater permits and other environmental regulations and requirements.

  2. Interdisciplinary research concerning the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The nature and properties of ceramic materials as they relate to solid state physics and metallurgy are studied. Special attention was given to the applications of ceramics to NASA programs and national needs.

  3. LDHs as electrode materials for electrochemical detection and energy storage: supercapacitor, battery and (bio)-sensor.

    PubMed

    Mousty, Christine; Leroux, Fabrice

    2012-11-01

    From an exhaustive overview based on applicative academic literature and patent domain, the relevance of Layered Double Hydroxide (LDHs) as electrode materials for electrochemical detection of organic molecules having environmental or health impact and energy storage is evaluated. Specifically the focus is driven on their application as supercapacitor, alkaline or lithium battery and (bio)-sensor. Inherent to the high versatility of their chemical composition, charge density, anion exchange capability, LDH-based materials are extensively studied and their performances for such applications are reported. Indeed the analytical characteristics (sensitivity and detection limit) of LDH-based electrodes are scrutinized, and their specific capacity or capacitance as electrode battery or supercapacitor materials, are detailed.

  4. The sonographic appearance and detectability of nonopaque and semiopaque materials of military origin.

    PubMed

    Harcke, H Theodore; Levy, Angela D; Lonergan, Gael J

    2002-06-01

    The objective of our study was to characterize the sonographic appearance and detectability of nonopaque and semiopaque materials of military origin in soft tissue. Representative materials were obtained from combat boots used in land mine tests and from military-issue clothing and equipment. Sixty fragments from 3 to 30 mm were embedded in an in vitro tissue model (thawed turkey breasts). Real-time ultrasonography was used to search for the fragments and to characterize their sonographic qualities (surface echoes, acoustic shadowing) when visible. Fifty-eight fragments were identified successfully. Two 5-mm fragments in the group of smallest size were missed. All types of material tested were visible. Nonopaque fragments of military origin should be detectable by sonography when present as foreign bodies in soft tissue. This represents a potential application for sonography in military hospitals.

  5. Chemistry {ampersand} Materials Science progress report summary of selected research and development topics, FY97

    SciTech Connect

    Newkirk, L.

    1997-12-01

    This report contains summaries of research performed in the Chemistry and Materials Science division. Topics include Metals and Ceramics, High Explosives, Organic Synthesis, Instrument Development, and other topics.

  6. A New Direction for NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)

    2001-01-01

    NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be

  7. Research on MEMS sensor in hydraulic system flow detection

    NASA Astrophysics Data System (ADS)

    Zhang, Hongpeng; Zhang, Yindong; Liu, Dong; Ji, Yulong; Jiang, Jihai; Sun, Yuqing

    2010-12-01

    With the development of mechatronics technology and fault diagnosis theory, people regard flow information much more than before. Cheap, fast and accurate flow sensors are urgently needed by hydraulic industry. So MEMS sensor, which is small, low cost, well performed and easy to integrate, will surely play an important role in this field. Based on the new method of flow measurement which was put forward by our research group, this paper completed the measurement of flow rate in hydraulic system by setting up the mathematical model, using numerical simulation method and doing physical experiment. Based on viscous fluid flow equations we deduced differential pressure-velocity model of this new sensor and did optimization on parameters. Then, we designed and manufactured the throttle and studied the velocity and pressure field inside the sensor by FLUENT. Also in simulation we get the differential pressure-velocity curve .The model machine was simulated too to direct experiment. In the static experiments we calibrated the MEMS sensing element and built some sample sensors. Then in a hydraulic testing system we compared the sensor signal with a turbine meter. It presented good linearity and could meet general hydraulic system use. Based on the CFD curves, we analyzed the error reasons and made some suggestion to improve. In the dynamic test, we confirmed this sensor can realize high frequency flow detection by a 7 piston-pump.

  8. Research on MEMS sensor in hydraulic system flow detection

    NASA Astrophysics Data System (ADS)

    Zhang, Hongpeng; Zhang, Yindong; Liu, Dong; Ji, Yulong; Jiang, Jihai; Sun, Yuqing

    2011-05-01

    With the development of mechatronics technology and fault diagnosis theory, people regard flow information much more than before. Cheap, fast and accurate flow sensors are urgently needed by hydraulic industry. So MEMS sensor, which is small, low cost, well performed and easy to integrate, will surely play an important role in this field. Based on the new method of flow measurement which was put forward by our research group, this paper completed the measurement of flow rate in hydraulic system by setting up the mathematical model, using numerical simulation method and doing physical experiment. Based on viscous fluid flow equations we deduced differential pressure-velocity model of this new sensor and did optimization on parameters. Then, we designed and manufactured the throttle and studied the velocity and pressure field inside the sensor by FLUENT. Also in simulation we get the differential pressure-velocity curve .The model machine was simulated too to direct experiment. In the static experiments we calibrated the MEMS sensing element and built some sample sensors. Then in a hydraulic testing system we compared the sensor signal with a turbine meter. It presented good linearity and could meet general hydraulic system use. Based on the CFD curves, we analyzed the error reasons and made some suggestion to improve. In the dynamic test, we confirmed this sensor can realize high frequency flow detection by a 7 piston-pump.

  9. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    SciTech Connect

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  10. Research on infrared imaging illumination model based on materials

    NASA Astrophysics Data System (ADS)

    Hu, Hai-he; Feng, Chao-yin; Guo, Chang-geng; Zheng, Hai-jing; Han, Qiang; Hu, Hai-yan

    2013-09-01

    In order to effectively simulate infrared features of the scene and infrared high light phenomenon, Based on the visual light illumination model, according to the optical property of all material types in the scene, the infrared imaging illumination models are proposed to fulfill different materials: to the smooth material with specular characteristic, adopting the infrared imaging illumination model based on Blinn-Phone reflection model and introducing the self emission; to the ordinary material which is similar to black body without highlight feature, ignoring the computation of its high light reflection feature, calculating simply the material's self emission and its reflection to the surrounding as its infrared imaging illumination model, the radiation energy under zero range of visibility can be obtained according to the above two models. The OpenGl rendering technology is used to construct infrared scene simulation system which can also simulate infrared electro-optical imaging system, then gets the synthetic infrared images from any angle of view of the 3D scenes. To validate the infrared imaging illumination model, two typical 3D scenes are made, and their infrared images are calculated to compare and contrast with the real collected infrared images obtained by a long wave infrared band imaging camera. There are two major points in the paper according to the experiment results: firstly, the infrared imaging illumination models are capable of producing infrared images which are very similar to those received by thermal infrared camera; secondly, the infrared imaging illumination models can simulate the infrared specular feature of relative materials and common infrared features of general materials, which shows the validation of the infrared imaging illumination models. Quantitative analysis shows that the simulation images are similar to the collected images in the aspects of main features, but their histogram distribution does not match very well, the

  11. Elastomeric optical fiber sensors and method for detecting and measuring events occurring in elastic materials

    DOEpatents

    Muhs, Jeffrey D.; Capps, Gary J.; Smith, David B.; White, Clifford P.

    1994-01-01

    Fiber optic sensing means for the detection and measurement of events such as dynamic loadings imposed upon elastic materials including cementitious materials, elastomers, and animal body components and/or the attrition of such elastic materials are provided. One or more optical fibers each having a deformable core and cladding formed of an elastomeric material such as silicone rubber are embedded in the elastic material. Changes in light transmission through any of the optical fibers due the deformation of the optical fiber by the application of dynamic loads such as compression, tension, or bending loadings imposed on the elastic material or by the attrition of the elastic material such as by cracking, deterioration, aggregate break-up, and muscle, tendon, or organ atrophy provide a measurement of the dynamic loadings and attrition. The fiber optic sensors can be embedded in elastomers subject to dynamic loadings and attrition such as commonly used automobiles and in shoes for determining the amount and frequency of the dynamic loadings and the extent of attrition. The fiber optic sensors are also useable in cementitious material for determining the maturation thereof.

  12. Materials Research in Support of Superconducting Machinery V

    DTIC Science & Technology

    1976-04-01

    D. T. Reed, R. P. Tobler, R. L. Magnetotherraal Conductivity Sparks, L. L. Thermal Conductivity Hust, J. H. WESTINGHOUSE ELECTRIC CORPORATION ...Electric Corporation , Research & Development Center, Beulah Road, Pittsburgh, Pennsylvania 15235 Program Manager Joining & Processing Fracture...Carbide Plastics Co Emery Industries, Inc Minnesota Mining & Manufacturing Co AVCO Corporation Contractor: Research Facility: Directorate of

  13. Recent progress in injectable bone repair materials research

    NASA Astrophysics Data System (ADS)

    Chen, Zonggang; Zhang, Xiuli; Kang, Lingzhi; Xu, Fei; Wang, Zhaoling; Cui, Fu-Zhai; Guo, Zhongwu

    2015-12-01

    Minimally invasive injectable self-setting materials are useful for bone repairs and for bone tissue regeneration in situ. Due to the potential advantages of these materials, such as causing minimal tissue injury, nearly no influence on blood supply, easy operation and negligible postoperative pain, they have shown great promises and successes in clinical applications. It has been proposed that an ideal injectable bone repair material should have features similar to that of natural bones, in terms of both the microstructure and the composition, so that it not only provides adequate stimulus to facilitate cell adhesion, proliferation and differentiation but also offers a satisfactory biological environment for new bone to grow at the implantation site. This article reviews the properties and applications of injectable bone repair materials, including those that are based on natural and synthetic polymers, calcium phosphate, calcium phosphate/polymer composites and calcium sulfate, to orthopedics and bone tissue repairs, as well as the progress made in biomimetic fabrication of injectable bone repair materials.

  14. Module Design, Materials, and Packaging Research Team: Activities and Capabilities

    SciTech Connect

    McMahon, T. J.; del Cueto, J.; Glick, S.; Jorgensen, G.; Kempe, M.; Kennedy, C.; Pern, J.; Terwilliger, K

    2005-01-01

    Our team activities are directed at improving PV module reliability by incorporating new, more effective, and less expensive packaging materials and techniques. New and existing materials or designs are evaluated before and during accelerated environmental exposure for the following properties: (1) Adhesion and cohesion: peel strength and lap shear. (2) Electrical conductivity: surface, bulk, interface and transients. (3) Water vapor transmission: solubility and diffusivity. (4) Accelerated weathering: ultraviolet, temperature, and damp heat tests. (5) Module and cell failure diagnostics: infrared imaging, individual cell shunt characterization, coring. (6) Fabrication improvements: SiOxNy barrier coatings and enhanced wet adhesion. (7) Numerical modeling: Moisture ingress/egress, module and cell performance, and cell-to-frame leakage current. (8) Rheological properties of polymer encapsulant and sheeting materials. Specific examples will be described.

  15. Research Update: Computational materials discovery in soft matter

    NASA Astrophysics Data System (ADS)

    Bereau, Tristan; Andrienko, Denis; Kremer, Kurt

    2016-05-01

    Soft matter embodies a wide range of materials, which all share the common characteristics of weak interaction energies determining their supramolecular structure. This complicates structure-property predictions and hampers the direct application of data-driven approaches to their modeling. We present several aspects in which these methods play a role in designing soft-matter materials: drug design as well as information-driven computer simulations, e.g., histogram reweighting. We also discuss recent examples of rational design of soft-matter materials fostered by physical insight and assisted by data-driven approaches. We foresee the combination of data-driven and physical approaches a promising strategy to move the field forward.

  16. Energy and materials conservation: applying pioneering research and techniques to current non-energy materials conservation issues.

    PubMed

    Hannon, Bruce

    2013-03-13

    The research of the Energy Research Group (ERG) at the University of Illinois at Urbana-Champaign through the 1970s and early 1980s has recurring bouts of popularity. That research traced the flow of various energy types from nature to the final product or service, using modified economic input-output analysis. That information allowed for a comparison of alternative uses of products and services that delivered the same demand. The goal of the study was to identify the energy-conserving potential of the alternatives. Interest in that research has risen and fallen with the price of energy through three cycles now, with the current interest also encompassing materials conservation. Although the specific numerical results of this work are dated, the process by which the analysis was conducted creates, at least, a suggestion for future analysis in the arena of materials research. A review of the ERG history, including techniques pioneered for investigating the potential for energy conservation and some of the ancillary lessons learned along the way, may be of some use to those working on issues of materials conservation today. In the coming years, the most relevant research will include assessment of the socio-economic-ecological impact of technological materials conservation policies.

  17. Heterogeneity evaluation of research materials for microanalysis standards certification.

    PubMed

    Marinenko, Ryna; Leigh, Stefan

    2004-08-01

    Electron microprobe testing and evaluation procedures to determine the extent of within- and between-specimen heterogeneity of reference materials and the experimental uncertainty are described. These procedures have been developed and used at NIST in the certification of several NIST Standard Reference Materials (SRMs). In this article, they have been simplified and updated for general use. Suggestions for experimental testing of specimens are described and a detailed description of the statistical evaluation process is included with an example of a data spreadsheet and instructions for its preparation.

  18. Potential Application of Fabricated Sulfide-Based Scintillation Materials for Radiation Detection

    SciTech Connect

    Im, Hee-Jung; Dai, Sheng; Pawel, Michelle D; Brown, Suree

    2010-01-01

    In our laboratories, we have produced ZnS(Ag)/{sup 6}Li sol-gel scintillation materials which produce an excellent light output with an alpha radiation (compared to commercial high temperature lithiated glass; KG-2 and a plastic scintillator; BC-400). However, when tested with a neutron radiation, the opacity of the ZnS(Ag)/{sup 6}Li sol-gel scintillation materials, which were composed of a homogeneous micron-sized ZnS(Ag), prevented a clear neutron energy peak formation, thus making it difficult to set a threshold for neutron-gamma discrimination. In an effort to increase the transparency of the scintillation materials and to develop new technologies to fabricate sulfide-based scintillation materials for neutron detection, we turned to the methods of a chemical bath deposition (CBD) and a nano-particle synthesis for possible solutions.

  19. Lamb wave detection in prepreg composite materials with fibre Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Miesen, Nick; Mizutani, Yoshihiro; Groves, Roger M.; Sinke, Jos; Benedictus, Rinze

    2011-04-01

    This paper demonstrates that existing Structural Health Monitoring (SHM) techniques have potential during the production phase in addition to their application for maintenance and for in-flight monitoring. Flaws occur during composite fabrication in industry, due to an imperfect process control and human errors. This decreases production efficiency and increases costs. In this paper, the monitoring of Lamb waves in unidirectional carbon fibre (UD-CFRP) prepreg material is demonstrated using both Fibre Bragg Gratings (FBG)s and piezolectric acoustic sensors, and that these SHM sensors may be used for flaw detection and production monitoring. The detection of Lamb waves in a one ply thick sheet of prepreg UD-CFRP material is demonstrated for an FBG sensor aligned with the carbon fibre orientation and bonded to the surface of the prepreg, Furthermore, the velocity of Lamb waves in prepreg UD-CFRP in different orientations is investigated. Finally the successful detection of a material crack in a prepreg UD-CFRP sheet using the Lamb wave detection method is demonstrated.

  20. Fluorometric detection and estimation of fungal biomass on cultural heritage materials.

    PubMed

    Konkol, Nick; McNamara, Christopher J; Mitchell, Ralph

    2010-02-01

    A wide variety of cultural heritage materials are susceptible to fungal deterioration. The paper, canvas, and stone constituents of our cultural heritage are subjected to harmful physical and chemical processes as they are slowly consumed by fungi. Remediation of fungal contamination can be costly and risk further damage to cultural artifacts. Early detection of fungal growth would permit the use of relatively noninvasive treatments to remediate fungal contamination before visible or lasting damage to the object has occurred. Current methods used for the detection and measurement of microbial biomass, such as colony counts, microscopic biovolume estimation, and ergosterol analysis are expensive and time consuming, or are inappropriate for use with fungi. Beta-N-acetylhexosaminidase (3.2.1.52) activity provides a reliable estimation of fungal biomass in soil and on building materials. Adapted for use on cultural heritage materials' fluorogenic 4-methylumbelliferyl (MUF) labeled substrate N-acetyl-beta-d-glucosaminide (NAG) was used to detect beta-N-acetylhexosaminidase activity in the fungus Aspergillus niger. Fluorescence increased linearly with fungal biomass and the sensitivity of the assay was comparable to other biochemical techniques. The fluorometric assay was used to monitor fungal biomass on a variety of cultural heritage materials non-destructively, and without the introduction of chemicals or solvents to the surfaces.

  1. Trace material detection of surfaces via single-beam femtosecond MCARS

    NASA Astrophysics Data System (ADS)

    Bowman Pilkington, Sherrie S.; Roberson, Stephen D.; Pellegrino, Paul M.

    2016-05-01

    There is a significant need for the development of optical diagnostics for rapid and accurate detection of chemical species in convoluted systems. In particular, chemical warfare agents and explosive materials are of interest, however, identification of these species is difficult for a wide variety of reasons. Low vapor pressures, for example, cause traditional Raman scattering to be ineffective due to the incredibly long signal collection times that are required. Multiplex Coherent Anti-Stokes Raman Scattering (MCARS) spectroscopy generates a complete Raman spectrum from the material of interest using a combination of a broadband pulse which drives multiple molecular vibrations simultaneously and a narrow band probe pulse. For most species, the complete Raman spectrum can be detected in milliseconds; this makes MCARS an excellent technique for trace material detection in complex systems. In this paper, we present experimental MCARS results on solid state chemical species in complex systems. The 40fs Ti:Sapphire laser used in this study has sufficient output power to produce both the broadband continuum pulse and narrow band probe pulse simultaneously. A series of explosive materials of interest have been identified and compared with spontaneous Raman spectra, showing the specificity and stability of this system.

  2. The Science of Nuclear Materials Detection using gamma-ray beams: Nuclear Resonance Fluorescence

    NASA Astrophysics Data System (ADS)

    Ohgaki, Hideaki

    2014-09-01

    An atomic nucleus is excited by absorption of incident photons with an energy the same as the excitation energy of the level, and subsequently a gamma-ray is emitted as it de-excites. This phenomenon is called Nuclear Resonance Fluorescence and mostly used for studies on Nuclear Physics field. By measuring the NRF gamma-rays, we can identify nuclear species in any materials because the energies of the NRF gamma-rays uniquely depend on the nuclear species. For example, 235U has an excitation level at 1733 keV. If we irradiate a material including 235U with a gamma-ray tuned at this excitation level, the material absorbs the gamma-ray and re-emits another gamma-ray immediately to move back towards the ground state. Therefore we can detect the 235U by measuring the re-emitted (NRF) gamma-rays. Several inspection methods using gamma-rays, which can penetrate a thick shielding have been proposed and examined. Bertozzi and Ledoux have proposed an application of nuclear resonance fluorescence (NRF) by using bremsstrahlung radiations. However the signal-to-noise (SN) ratio of the NRF measurement with the bremsstrahlung radiation is, in general, low. Only a part of the incident photons makes NRF with a narrow resonant band (meV-eV) whereas most of incident radiation is scattered by atomic processes in which the reaction rate is higher than that of NRF by several orders of magnitudes and causes a background. Thus, the NRF with a gamma-ray quasi-monochromatic radiation beam is proposed. The monochromatic gamma-rays are generated by using laser Compton scattering (LCS) of electrons and intense laser photons by putting a collimator to restrict the gamma-ray divergence downstream. The LCS gamma-ray, which is energy-tunable and monochromatic, is an optimum apparatus for NRF measurements We have been conducted NRF experiment for nuclear research, especially with high linear polarized gamma-ray generated by LCS, to survey the distribution of M1 strength in MeV region in LCS

  3. Detection of special nuclear material in hydrogenous cargo using differential die-away analysis

    NASA Astrophysics Data System (ADS)

    Jordan, Kelly Alexander

    Differential Die Away Analysis is a sensitive technique to detect presence of fissile materials like 235U and 239Pu. In DDAA, a neutron generator produces repetitive pulses of neutrons which are directed into a cargo being inspected. As each pulse passes through the cargo, the neutrons are thermalized and absorbed. The thermalization process is very rapid and the population of all neutrons from source to epithermal neutrons decays away within microseconds. The population of thermal neutrons however decays much slower with the diffusion decay time of the inspected medium (thermal neutron die-away time), on the order of hundreds of microseconds. If special nuclear material (SNM) is present, the thermalized neutrons from the source will cause fissions that produce a new source of neutrons. These fast fission neutrons decay with a time very similar to that of the thermal neutron die away of the surrounding cargo. Improvement of DDAA sensitivity can be obtained by advanced knowledge of the thermal-neutron kinetic properties of the inspected medium. The standard way to obtain such information is by measuring thermal neutron die-away by a detector inside of the medium. Since this is not practical in a real system, a method of determining information about thermal die-away properties of a medium from external measurements is examined. This method allows inspected media to be grossly characterized by their neutron moderating and attenuating characteristics. The DDAA method provides a binary decision regarding the presence or absence of special nuclear material in an inspection medium. A detection algorithm was developed that utilizes advance knowledge of detector response to improve the decision quality. The sensitivity of DDAA, for a given source of neutrons, critically depends on optimizing the fast and epithermal neutron detection system. The optimization involves both time response and detection efficiency. The optimized detectors were able to detect fissile material

  4. Instructional Materials in Australian Education. A Review and Annotated Bibliography of Articles on Research.

    ERIC Educational Resources Information Center

    Watt, Michael G.

    This report on a master's project begins with a review of the research literature on instructional materials in Australia which emphasizes Australian research and how it compares with a similar body of research published by American scholars. It is noted that the intent of this comparison is to identify where research in Australia can be applied…

  5. Research in Structures, Structural Dynamics and Materials, 1990

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M. (Compiler); Noor, Ahmed K. (Compiler)

    1990-01-01

    The Structural Dynamics and Materials (SDM) Conference was held on April 2 to 4, 1990 in Long Beach, California. This publication is a compilation of presentations of the work-in-progress sessions and does not contain papers from the regular sessions since those papers are published by AIAA in the conference proceedings.

  6. Materials and Molecular Research Division. Annual report 1981

    SciTech Connect

    Not Available

    1982-08-01

    Progress is reported in the areas of materials sciences, chemical sciences, nuclear sciences, fossil energy, advanced (laser) isotope separation technology, energy storage, superconducting magnets, and nuclear waste management. Work for others included phase equilibria for coal gasification products and ..beta..-alumina electrolytes for storage batteries. (DLC)

  7. Materials and Molecular Research Division annual report 1982

    SciTech Connect

    Not Available

    1983-05-01

    This report is divided into: materials sciences, chemical sciences, nuclear sciences, fossil energy, advanced isotope separation technology (AISI), energy storage, magnetic fusion energy (MFE), nuclear waste management, and work for others (WFO). Separate abstracts have been prepared for all except AIST, MFE, and WFO. (DLC)

  8. NSF: A "Populist" Pattern in Metallurgy, Materials Research?

    ERIC Educational Resources Information Center

    Shapley, Deborah

    1975-01-01

    Describes the testimony of a University of Virginia professor of applied science, who charged that the National Science Foundation grants disproportionately small funds to the best university departments in the field of metallurgy and materials, while preferentially funding middle-ranked departments. (MLH)

  9. Research and Development on Laser, Semiconducting and Magnetic Materials

    DTIC Science & Technology

    studied included YAl 03:Er(3+), SrF2 :(Gd(3+), and Ce(3+), CdF2: (Gd(3+), Ce(3+)) . High-resolution optical spectroscopy and EPR studies were carried...system. Extensive theoretical and computational studies were carried out on the YAl03 and SrF2 doped materials. An experimental facility for the

  10. Research Perspectives for Material Requirements Planning Systems. Paper No. 434.

    ERIC Educational Resources Information Center

    Berry, W. L.; Whybark, D. Clay

    Material requirements planning (MRP) systems are described as management tools for planning and controlling production operations. A wide variety of industries and production organizations are credited as reporting significant operating improvements in such areas as inventory control, production scheduling, delivery performance, and production…

  11. ASBESTOS EXPOSURE RESEARCH - AIR, SOIL AND BULK MATERIAL SCENARIOS

    EPA Science Inventory

    Presently, asbestos and other mineral fibers are monitored in the workplace and in the environment using several basic analytical techniques, based primarily upon observing the fiber by either optical or electron microscopy. EPA is conducting research to determine which sampling ...

  12. Research on moving object detection based on frog's eyes

    NASA Astrophysics Data System (ADS)

    Fu, Hongwei; Li, Dongguang; Zhang, Xinyuan

    2008-12-01

    On the basis of object's information processing mechanism with frog's eyes, this paper discussed a bionic detection technology which suitable for object's information processing based on frog's vision. First, the bionics detection theory by imitating frog vision is established, it is an parallel processing mechanism which including pick-up and pretreatment of object's information, parallel separating of digital image, parallel processing, and information synthesis. The computer vision detection system is described to detect moving objects which has special color, special shape, the experiment indicates that it can scheme out the detecting result in the certain interfered background can be detected. A moving objects detection electro-model by imitating biologic vision based on frog's eyes is established, the video simulative signal is digital firstly in this system, then the digital signal is parallel separated by FPGA. IN the parallel processing, the video information can be caught, processed and displayed in the same time, the information fusion is taken by DSP HPI ports, in order to transmit the data which processed by DSP. This system can watch the bigger visual field and get higher image resolution than ordinary monitor systems. In summary, simulative experiments for edge detection of moving object with canny algorithm based on this system indicate that this system can detect the edge of moving objects in real time, the feasibility of bionic model was fully demonstrated in the engineering system, and it laid a solid foundation for the future study of detection technology by imitating biologic vision.

  13. Development of PCR-based technique for detection of purity of Pashmina fiber from textile materials.

    PubMed

    Kumar, Rajiv; Shakyawar, D B; Pareek, P K; Raja, A S M; Prince, L L L; Kumar, Satish; Naqvi, S M K

    2015-04-01

    Pashmina fiber is one of major specialty animal fiber in India. The quality of Pashmina obtained from Changthangi and Chegu goats in India is very good. Due to restricted availability and high prices, adulteration of natural prized fibers is becoming a common practice by the manufacturers. Sheep wool is a cheap substitute, which is usually used for adulteration and false declaration of Pashmina-based products. Presently, there is lack of cost-effective and readily available methodology to identify the adulteration of Pashmina products from other similar looking substitutes like sheep wool. Polymerase chain reaction (PCR)-based detection method can be used to identify origin of animal fiber. Extraction of quality DNA from dyed and processed animal fiber and textile materials is a limiting factor in the development of such detection methods. In the present study, quality DNA was extracted from textile materials, and PCR-based technique using mitochondrial gene (12S rRNA) specific primers was developed for detection of the Pashmina in textile blends. This technique has been used for detection of the adulteration of the Pashmina products with sheep wool. The technique can detect adulteration level up to 10 % of sheep/goat fibers in textile blends.

  14. FIGARO : detecting nuclear materials using high-energy gamma rays for oxygen.

    SciTech Connect

    Michlich, B. J.; Smith, D. L.; Massey, T. N.; Ingram, D.; Fessler, A.

    2000-10-10

    Potential diversion of nuclear materials is a major international concern. Fissile (e.g., U, Pu) and other nuclear materials (e.g., D, Be) can be detected using 6-7 MeV gamma rays produced in the {sup 19}F(p,{alpha}{gamma}){sup 16}O reaction. These gamma rays will induce neutron emission via the photoneutron and photofission processes in nuclear materials. However, they are not energetic enough to generate significant numbers of neutrons from most common benign materials, thereby reducing the false alarm rate. Neutrons are counted using an array of BF3 counters in a polyethylene moderator. Experiments have shown a strong increase in neutron count rates for depleted uranium, Be, D{sub 2}O, and {sup 6}Li, and little or no increase for other materials (e.g., H{sub 2}O, SS, Cu, Al, C, {sup 7}Li). Gamma source measurements using solid targets of CaF{sub 2} and MgF{sub 2} and a SF{sub 6} gas target show that proton accelerator of 3 MeV and 10-100 microampere average current could lead to acceptable detection sensitivity.

  15. Thermal depth profiling of materials for defect detection using hot disk technique

    NASA Astrophysics Data System (ADS)

    Mihiretie, B. M.; Cederkrantz, D.; Sundin, M.; Rosén, A.; Otterberg, H.; Hinton, Å.; Berg, B.; Karlsteen, M.

    2016-08-01

    A novel application of the hot disk transient plane source technique is described. The new application yields the thermal conductivity of materials as a function of the thermal penetration depth which opens up opportunities in nondestructive testing of inhomogeneous materials. The system uses the hot disk sensor placed on the material surface to create a time varying temperature field. The thermal conductivity is then deduced from temperature evolution of the sensor, whereas the probing depth (the distance the heat front advanced away from the source) is related to the product of measurement time and thermal diffusivity. The presence of inhomogeneity in the structure is manifested in thermal conductivity versus probing depth plot. Such a plot for homogeneous materials provides fairly constant value. The deviation from the homogeneous curve caused by defects in the structure is used for inhomogeneity detection. The size and location of the defect in the structure determines the sensitivity and possibility of detection. In addition, a complementary finite element numerical simulation through COMSOL Multiphysics is employed to solve the heat transfer equation. Temperature field profile of a model material is obtained from these simulations. The average rise in temperature of the heat source is calculated and used to demonstrate the effect of the presence of inhomogeneity in the system.

  16. A binned clustering algorithm to detect high-Z material using cosmic muons

    NASA Astrophysics Data System (ADS)

    Thomay, C.; Velthuis, J. J.; Baesso, P.; Cussans, D.; Morris, P. A. W.; Steer, C.; Burns, J.; Quillin, S.; Stapleton, M.

    2013-10-01

    We present a novel approach to the detection of special nuclear material using cosmic rays. Muon Scattering Tomography (MST) is a method for using cosmic muons to scan cargo containers and vehicles for special nuclear material. Cosmic muons are abundant, highly penetrating, not harmful for organic tissue, cannot be screened against, and can easily be detected, which makes them highly suited to the use of cargo scanning. Muons undergo multiple Coulomb scattering when passing through material, and the amount of scattering is roughly proportional to the square of the atomic number Z of the material. By reconstructing incoming and outgoing tracks, we can obtain variables to identify high-Z material. In a real life application, this has to happen on a timescale of 1 min and thus with small numbers of muons. We have built a detector system using resistive plate chambers (RPCs): 12 layers of RPCs allow for the readout of 6 x and 6 y positions, by which we can reconstruct incoming and outgoing tracks. In this work we detail the performance of an algorithm by which we separate high-Z targets from low-Z background, both for real data from our prototype setup and for MC simulation of a cargo container-sized setup. (c) British Crown Owned Copyright 2013/AWE

  17. Materials, methods and devices to detect and quantify water vapor concentrations in an atmosphere

    DOEpatents

    Allendorf, Mark D; Robinson, Alex L

    2014-12-09

    We have demonstrated that a surface acoustic wave (SAW) sensor coated with a nanoporous framework material (NFM) film can perform ultrasensitive water vapor detection at concentrations in air from 0.05 to 12,000 ppmv at 1 atmosphere pressure. The method is extendable to other MEMS-based sensors, such as microcantilevers, or to quartz crystal microbalance sensors. We identify a specific NFM that provides high sensitivity and selectivity to water vapor. However, our approach is generalizable to detection of other species using NFM to provide sensitivity and selectivity.

  18. Materials Research for Advanced Inertial Instrumentation. Task 1. Dimensional Stability of Gyro Structural Materials

    DTIC Science & Technology

    1980-06-01

    instrument. The most common sources of such dimensional instability in instruments are: phase trans- formation, relief of resiiual stress, and microplastic ...the stress or by increasing the resistance of the material to microplastic deformation. Section 3 of this report is concerned with an investigation of...hot isostatically pressed (HIP) beryllium as a material with potentially greater resistance to microplastic deformation than the grades of beryllium

  19. Thermal imaging measurement of lateral diffusivity and non-invasive material defect detection

    DOEpatents

    Sun, Jiangang; Deemer, Chris

    2003-01-01

    A system and method for determining lateral thermal diffusivity of a material sample using a heat pulse; a sample oriented within an orthogonal coordinate system; an infrared camera; and a computer that has a digital frame grabber, and data acquisition and processing software. The mathematical model used within the data processing software is capable of determining the lateral thermal diffusivity of a sample of finite boundaries. The system and method may also be used as a nondestructive method for detecting and locating cracks within the material sample.

  20. ORNL actinide materials and a new detection system for superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Krzysztof P.; Roberto, James B.; Brewer, Nathan T.; Utyonkov, Vladimir K.

    2016-12-01

    The actinide resources and production capabilities at Oak Ridge National Laboratory (ORNL) are reviewed, including potential electromagnetic separation of rare radioactive materials. The first experiments at the Dubna Gas Filled Recoil Separator (DGFRS) with a new digital detection system developed at ORNL and University of Tennessee Knoxville (UTK) are presented. These studies used 240Pu material provided by ORNL and mixed-Cf targets made at ORNL. The proposal to use an enriched 251Cf target and a large dose of 58Fe beam to reach the N = 184 shell closure and to observe new elements with Z = 124, 122 and 120 is discussed.

  1. 34 CFR 98.3 - Access to instructional material used in a research or experimentation program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... designed to explore or develop new or unproven teaching methods or techniques. (c) For the purpose of the... 34 Education 1 2010-07-01 2010-07-01 false Access to instructional material used in a research or... RIGHTS IN RESEARCH, EXPERIMENTAL PROGRAMS, AND TESTING § 98.3 Access to instructional material used in...

  2. 34 CFR 98.3 - Access to instructional material used in a research or experimentation program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 1 2011-07-01 2011-07-01 false Access to instructional material used in a research or experimentation program. 98.3 Section 98.3 Education Office of the Secretary, Department of Education STUDENT RIGHTS IN RESEARCH, EXPERIMENTAL PROGRAMS, AND TESTING § 98.3 Access to instructional material used in...

  3. 75 FR 34769 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... Proposal Review Panel for Materials Research; Notice of Meeting In accordance with the Federal Advisory... Materials Research, Room 1065, National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230... concerning individuals associated with the proposals. These matters are exempt under 5 U.S.C. 552 b(c),...

  4. 77 FR 21592 - Proposal Review Panel for Materials Research; Notice of Meeting: Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... From the Federal Register Online via the Government Publishing Office NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting: Correction SUMMARY: The National Science... for the Proposal Review Panel for Materials Research, 1203. This notice is to correct the ending...

  5. Research about Memory Detection Based on the Embedded Platform

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Chu, Jian

    As is known to us all, the resources of memory detection of the embedded systems are very limited. Taking the Linux-based embedded arm as platform, this article puts forward two efficient memory detection technologies according to the characteristics of the embedded software. Especially for the programs which need specific libraries, the article puts forwards portable memory detection methods to help program designers to reduce human errors,improve programming quality and therefore make better use of the valuable embedded memory resource.

  6. ACEE Composite Structures Technology: Review of selected NASA research on composite materials and structures

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program was designed to develop technology for advanced composites in commercial aircraft. Research on composite materials, aircraft structures, and aircraft design is presented herein. The following parameters of composite materials were addressed: residual strength, damage tolerance, toughness, tensile strength, impact resistance, buckling, and noise transmission within composite materials structures.

  7. A Call for Improvement: The Need for Research-Based Materials in American Sign Language Education

    ERIC Educational Resources Information Center

    Thoryk, Robertta

    2010-01-01

    Educational reform and financial considerations have emphasized accountability and use of research-based materials and strategies in education. Simultaneously, with growing enrollment in elementary, secondary, and postsecondary ASL programs, the number of commercially marketed materials has grown. Do such materials stand up under scrutiny when…

  8. Investigation of composite materials property requirements for sonic fatigue research

    NASA Technical Reports Server (NTRS)

    Patrick, H. V. L.

    1985-01-01

    Experimental techniques for determining the extensional and bending stiffness characteristics for symmetric laminates are presented. Vibrational test techniques for determining the dynamic modulus and material damping are also discussed. Partial extensional stiffness results intially indicate that the laminate theory used for predicting stiffness is accurate. It is clearly shown that the laminate theory can only be as accurate as the physical characteristics describing the lamina, which may vary significantly. It is recommended that all of the stiffness characteristics in both extension and bending be experimentally determined to fully verify the laminate theory. Dynamic modulus should be experimentally evaluated to determine if static data adequately predicts dynamic behavior. Material damping should also be ascertained because laminate damping is an order of magnitude greater than found in common metals and can significantly effect the displacement response of composite panels.

  9. Research and development on materials for the SPES target

    NASA Astrophysics Data System (ADS)

    Corradetti, Stefano; Andrighetto, Alberto; Manzolaro, Mattia; Scarpa, Daniele; Vasquez, Jesus; Rossignoli, Massimo; Monetti, Alberto; Calderolla, Michele; Prete, Gianfranco

    2014-03-01

    The SPES project at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro) is focused on the production of radioactive ion beams. The core of the SPES facility is constituted by the target, which will be irradiated with a 40 MeV, 200 µA proton beam in order to produce radioactive species. In order to efficiently produce and release isotopes, the material constituting the target should be able to work under extreme conditions (high vacuum and temperatures up to 2000 °C). Both neutron-rich and proton-rich isotopes will be produced; in the first case, carbon dispersed uranium carbide (UCx) will be used as a target, whereas to produce p-rich isotopes, several types of targets will have to be irradiated. The synthesis and characterization of different types of material will be reported. Moreover, the results of irradiation and isotopes release tests on different uranium carbide target prototypes will be discussed.

  10. Research on 3-D device for infrared temperature detection

    NASA Astrophysics Data System (ADS)

    Chen, Shuxin; Jiang, Shaohua; Hou, Jie; Chen, Shuwang

    2007-12-01

    In a certain field, it is important to measure temperature information in variable direction at the same time. However, there are few instruments to accomplish the function now. To implement the measure in 3 dimensions, an experimental table of temperature detection by infrared is designed. It is the integration of detection, control and monitor. The infrared device in the table can detect and measure temperature in real time, and the three dimension electric motional device can adjust the detection distance by the user. The mechanical bar for displacement is controlled by a circuit with the control button. The infrared temperature sensor is fixed on the bar, so it can move along with the bar controlled by the circuit. The method of temperature detection is untouched, so it can detect small object and its tiny variable temperature, which can not be detected by the thermometer or the electronic temperature sensor. In terms of the 3-D parallel motion control, the device can implement temperature measurement in variable directions. According to the results of the temperature values, the 3-D temperature distributed curve can be described. By using of the detection device, temperature of some special objects can be detected, such as the live anatomical animal, small sensor, nondestructive object, and so on.

  11. JTDE I XTE34 Materials Research and Development Report,

    DTIC Science & Technology

    1988-01-15

    excess of the design level. In Figure 11 the microstructure of the single-crystal MAR - M247 blades is shown in the area adjacent to the fracture face...from the tip shroud rupture failure. The metallographic structures shown in these photos is indicative of acceptably processed MAR - M247 mate- rial. As...treatments, they would be expected in MAR - M247 material which is limited by incipient melting to solution treatments of approximately 2250F. This

  12. Materials for Spectral Hole Burning Research. Phase 1

    DTIC Science & Technology

    1994-03-22

    furnace causing the furnace to melt. This problem occurs occassionally in the growth of other crystals . 4 Figure 2 Verneuil (Flame Fusion) I...SB1 1 ,1 11 ) Ia ght L tion r .9,Gi stributin uniitd Approved for public release; 13. ABSTRACT (Maximum 200 wordt)I Work on the crystal growth and...multiple hosts. In the work on this program, Scientific Materials Corporation grew crystals of the following compositions. Dopant Growth Method 1.0

  13. Research on the icephobic properties of fluoropolymer-based materials

    NASA Astrophysics Data System (ADS)

    Yang, Shuqing; Xia, Qiang; Zhu, Lin; Xue, Jian; Wang, Qingjun; Chen, Qing-min

    2011-03-01

    Fluoropolymer, because of the extremely low surface energy, could be non-stick to water and thus could be a good candidate as anti-icing materials. In this paper, the icephobic properties of a series of fluoropolymer materials including pristine PTFE plates (P-PTFE), sandblasted PTFE plates (SB-PTFE), two PTFE coatings (SNF-1 and SNF-CO1), a fluorinated room-temperature vulcanized silicone rubber coating (F-RTV) and a fluorinated polyurethane coating (F-PU) have been investigated by using SEM, XPS, ice adhesion strength (tensile and shear) tests, and static and dynamic water contact angle analysis. Results show that the fluoropolymer material with a smooth surface can significantly reduce ice adhesion strength but do not show obvious effect in reducing ice accretion at -8 °C. Fluoropolymers with sub-micron surface structures can improve the hydrophobicity at normal temperature. It leads to an efficient reduction in the ice accretion on the surface at -8 °C, due to the superhydrophobicity of the materials. But the hydrophobicity of this surface descends at a low temperature with high humidity. Consequently, once ice layer formed on the surface, the ice adhesion strength enhanced rapidly due to the existence of the sub-micron structures. Ice adhesion strength of fluoropolymers is highly correlated to CA reduction observed when the temperature was changed from 20 °C to -8 °C. This property is associated with the submicron structure on the surface, which allows water condensed in the interspace between the sub-micron protrudes at a low temperature, and leads to a reduced contact angle, as well as a significantly increased ice adhesion strength.

  14. Electrical research on solar cells and photovoltaic materials

    NASA Technical Reports Server (NTRS)

    Orehotsky, J.

    1984-01-01

    The flat-plate solar cell array program which increases the service lifetime of the photovoltaic modules used for terrestrial energy applications is discussed. The current-voltage response characteristics of the solar cells encapsulated in the modules degrade with service time and this degradation places a limitation on the useful lifetime of the modules. The most desirable flat-plate array system involves solar cells consisting of highly polarizable materials with similar electrochemical potentials where the cells are encapsulated in polymers in which ionic concentrations and mobilities are negligibly small. Another possible mechanism limiting the service lifetime of the photovoltaic modules is the gradual loss of the electrical insulation characteristics of the polymer pottant due to water absorption or due to polymer degradation from light or heat effects. The mechanical properties of various polymer pottant materials and of electrochemical corrosion mechanisms in solar cell material are as follows: (1) electrical and ionic resistivity; (2) water absorption kinetics and water solubility limits; and (3) corrosion characterization of various metallization systems used in solar cell construction.

  15. Basic research needs and opportunities on interfaces in solar materials

    SciTech Connect

    Czanderna, A. W.; Gottschall, R. J.

    1981-04-01

    The workshop on research needs and recommended research programs on interfaces in solar energy conversion devices was held June 30-July 3, 1980. The papers deal mainly with solid-solid, solid-liquid, and solid-gas interfaces, sometimes involving multilayer solid-solid interfaces. They deal mainly with instrumental techniques of studying these interfaces so they can be optimized, so they can be fabricated with quality control and so changes with time can be forecast. The latter is required because a long lifetime (20 yrs is suggested) is necessary for economic reasons. Fifteen papers have been entered individually into EDB and ERA. (LTN)

  16. Analytical ultrasonics for evaluation of composite materials response. Part 2: Generation and detection

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II

    1986-01-01

    To evaluate the response of composite materials, it is imperative that the input excitation as well as the observed output be well characterized. This characterization ideally should be in terms of displacements as a function of time with high spatial resolution. Additionally, the ability to prescribe these features for the excitation is highly desirable. Various methods for generating and detecting ultrasound in advanced composite materials are examined. Characterization and tailoring of input excitation is considered for contact and noncontact, mechanical, and electromechanical devices. Type of response as well as temporal and spatial resolution of detection methods are discussed as well. Results of investigations at Virginia Tech in application of these techniques to characterizing the response of advanced composites are presented.

  17. Fissile and Non-Fissile Material Detection using Nuclear Acoustic Resonance Signatures

    SciTech Connect

    Herberg, J; Maxwell, R; Tittmann, B R; Lenahan, P M; Yerkes, S; Jayaraman, S

    2005-10-04

    This report reviews progress made on NA22 project LL251DP to develop a novel technique, Nuclear Acoustic Resonance (NAR), for remote, non-destructive, nonradiation-based detection of materials of interest to Nonproliferation Programs, including {sup 235}U and {sup 239}Pu. We have met all milestones and deliverables for FY05, as shown in Table 1. In short, we have developed a magnetic shield chamber and magnetic field, develop a digital lock-in amplifier computer to integrate both the ultrasound radiation with the detector, developed strain measurements, and begin to perform initial measurements to obtain a NAR signal from aluminum at room temperature and near the earth's magnetic field. The results obtained in FY05 further support the feasibility of successful demonstration of an NAR experiment for remote, non-destructive, non-radiation-based detection of materials of interest to Nonproliferation Programs.

  18. A room-temperature X-ray-induced photochromic material for X-ray detection.

    PubMed

    Wang, Ming-Sheng; Yang, Chen; Wang, Guan-E; Xu, Gang; Lv, Xiang-Ying; Xu, Zhong-Ning; Lin, Rong-Guang; Cai, Li-Zhen; Guo, Guo-Cong

    2012-04-02

    A color change: X-ray-induced photochromic species are rare and can be used for detection of X-rays. A highly robust X-ray-sensitive material with the discrete structure of a metal-organic complex has been found to show both soft and hard X-ray-induced photochromism at room temperature. A new ligand-to-ligand electron-transfer mechanism was proposed to elucidate this photochromic phenomenon.

  19. Detection of Threat Materials Using Terahertz Waveguides and Long Pathlength Terahertz Spectroscopy

    DTIC Science & Technology

    2015-05-01

    measurement methods to improve the resolution, detection sensitivity, and fundamental understanding of THz vibrational fingerprint resonances in threat...order to resolve the underlying THz vibrational spectra explosives related materials. This ability to resolve underlying fingerprint resonances had not...Technical Digest (Optical Society of America, Washington, D.C., 2011), CThEE7. 4. “Guided wave terahertz characterization of fingerprint lines in threat

  20. Applications of positron annihilation spectroscopy in materials research

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.

    1988-01-01

    Positron Annihilation Spectroscopy (PAS) has emerged as a powerful technique for research in condensed matter. It has been used extensively in the study of metals, ionic crystals, glasses and polymers. The present review concentrates on applications of positron lifetime measurements for elucidation of the physicochemical structure of polymers.

  1. EPA Materials Submitted to the National Research Council

    EPA Pesticide Factsheets

    This is a 2-part report submitted to the National Research Council in response to a review of the EPA IRIS assessment development program. It includes the preamble to the assessment as well as a handbook for the development of new re-assessments.

  2. Bibliographic Control of Large Quantities of Research Material.

    ERIC Educational Resources Information Center

    Evans, Martha M.

    1983-01-01

    Guidelines for individual researcher describe bibliographic methods for achieving high standards of quality while maintaining maximum efficiency in each step of all necessary procedures involved in the construction of a bibliography ranging from several hundred to several thousand items. Ways to minimize waste motion and duplication of effort are…

  3. Biological material detection identification and monitoring: combining point and standoff sensors technologies

    NASA Astrophysics Data System (ADS)

    Buteau, Sylvie; Rowsell, Susan

    2016-10-01

    Detection, Identification and Monitoring (DIM) of biological material is critical to enhancing Situational Awareness (SA) in a timely manner, supporting decisions, and enabling the endangered force to take the most appropriate actions in a recognized CB environment. An optimum Bio DIM capability would include both point sensors to provide local monitoring and sampling for confirmatory ID of the material, and standoff sensors to provide wide-area monitoring from a distance, increasing available response time and enhancing SA. In June 2015, a Canadian team co-deployed a point (VPBio) and a standoff (BioSense) bio sensor during the international S/K Challenge II event, at Dugway Proving Ground (DPG), USA. The co-deployment of the point and standoff sensors allowed the assessment of their respective strengths and limitations with regards to Bio DIM and SA in a realistic CB environment. Moreover, the initial hypothesis stating the existence of valuable leverages between the two sensors in a context of Bio DIM was confirmed. Indeed, the spatial limitation of the point sensor was overcome with the wide area coverage of the standoff technology. In contrast, the sampling capability of the point sensor can allow confirmatory identification of the detected material. Additionally, in most scenarios, the combined results allowed an increase in detection confidence. In conclusion, the demonstration of valuable leverages between point and standoff sensors in a context of Bio DIM was made, confirming the mitigation effect of co-deploying these systems for bio surveillance.

  4. Fabrication and characterization of radio-frequency sensors for liquid material detection

    NASA Astrophysics Data System (ADS)

    He, Yuxi

    This thesis presents a series of studies on fabrication and characterization of radio-frequency (RF) sensors. In the light of Electromagnetics and Transmission Line Theory, we designed multiple RF sensors with different detection capability emphasis and used them to detect various materials, especially liquid samples and materials in solutions such as dielectric thin films, confined liquids, red blood cells, and malarial pigments (hemozoin). Most sensors were fabricated under clean room environment following the standard process protocols. Proper process developments were also made to achieve special structures and functionalities of our novel sensors. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were used to inspect and control fabrication quality. The main characterization techniques we applied include on-chip interference process, RF signal cancellation, micro/nanofluidics, single cell manipulation, and electron paramagnetic resonance (EPR). Through the whole process, sensors and measurement systems have been adjusted constantly and the characterization capabilities have been optimized. Our measurements and analysis have proved that RF sensors based on transmission lines could be very powerful detection tools comparing with other approaches currently in use for chemical and biomedical materials on both bulk and molecular levels. The main strength of RF sensors resides in the fact that they are able to work cost-efficiently, non-invasively and fast without involving powerful microscopy tools. Meanwhile, they promise to provide large amount of information with high sensitivity and resolution. Further work is needed to enhance the sensors' capabilities quantitatively and expand the usage to additional applications.

  5. Thresholding for biological material detection in real-time multispectral imaging

    NASA Astrophysics Data System (ADS)

    Yoon, Seung Chul; Park, Bosoon; Lawrence, Kurt C.; Windham, William R.

    2005-09-01

    Recently, hyperspectral image analysis has proved successful for a target detection problem encountered in remote sensing as well as near sensing utilizing in situ instrumentation. The conventional global bi-level thresholding for target detection, such as the clustering-based Otsu's method, has been inadequate for the detection of biologically harmful material on foods that has a large degree of variability in size, location, color, shape, texture, and occurrence time. This paper presents multistep-like thresholding based on kernel density estimation for the real-time detection of harmful contaminants on a food product presented in multispectral images. We are particularly concerned with the detection of fecal contaminants on poultry carcasses in real-time. In the past, we identified 2 optimal wavelength bands and developed a real-time multispectral imaging system using a common aperture camera and a globally optimized thresholding method from a ratio of the optimal bands. This work extends our previous study by introducing a new decision rule to detect fecal contaminants on a single bird level. The underlying idea is to search for statistical separability along the two directions defined by the global optimal threshold vector and its orthogonal vector. Experimental results with real birds and fecal samples in different amounts are provided.

  6. High Pressure Materials Research: Novel Extended Phases of Molecular Triatomics

    SciTech Connect

    Yoo, C

    2004-05-26

    Application of high pressure significantly alters the interatomic distance and thus the nature of intermolecular interaction, chemical bonding, molecular configuration, crystal structure, and stability of solid [1]. With modern advances in high-pressure technologies [2], it is feasible to achieve a large (often up to a several-fold) compression of lattice, at which condition material can be easily forced into a new physical and chemical configuration [3]. The high-pressure thus offers enhanced opportunities to discover new phases, both stable and metastable ones, and to tune exotic properties in a wide-range of atomistic length scale, substantially greater than (often being several orders of) those achieved by other thermal (varying temperatures) and chemical (varying composition or making alloys) means. Simple molecular solids like H{sub 2}, C, CO{sub 2}, N{sub 2}, O{sub 2}, H{sub 2}O, CO, NH{sub 3}, and CH{sub 4} are bounded by strong covalent intramolecular bonds, yet relatively weak intermolecular bonds of van der Waals and/or hydrogen bonds. The weak intermolecular bonds make these solids highly compressible (i.e., low bulk moduli typically less than 10 GPa), while the strong covalent bonds make them chemically inert at least initially at low pressures. Carbon-carbon single bonds, carbon-oxygen double bonds and nitrogen-nitrogen triple bonds, for example, are among the strongest. These molecular forms are, thus, often considered to remain stable in an extended region of high pressures and high temperatures. High stabilities of these covalent molecules are also the basis of which their mixtures are often presumed to be the major detonation products of energetic materials as well as the major constituents of giant planets. However, their physical/chemical stabilities are not truly understood at those extreme pressure-temperature conditions. In fact, an increasing amount of experimental evidences contradict the assumed stability of these materials at high

  7. Research & Development on Superconducting Niobium Materials via Magnetic Measurements

    SciTech Connect

    S. B. Roy, V. C. Sahni, and G. R. Myneni

    2011-03-01

    We present a study of superconducting properties of both large grain (1 mm average grain size) and small grain (50 micron average grain size) Niobium materials containing varying amounts of Tantalum impurities that have been used in the fabrication of high accelerating gradient superconducting radio frequency cavities. We found that a buffered chemical polishing of these Niobium samples causes a distinct reduction in the superconducting parameters like TC, wt- ppm to 1300 wt-ppm. Implications of these results on the performance of niobium superconducting radio frequency cavities are discussed, especially the anomalous high field RF losses that have been reported in the literature.

  8. Research study on materials processing in space, experiment M512

    NASA Technical Reports Server (NTRS)

    Rubenstein, M.; Hopkins, R. H.; Kim, H. B.

    1973-01-01

    Gallium arsenide, a commercially valuable semiconductor, has been prepared from the melt (M.P. 1237C), by vapor growth, and by growth from metallic solutions. It has been established that growth from metallic solution can produce material with high, and perhaps with the highest possible, chemical homogeneity and crystalline perfection. Growth of GaAs from metallic solution can be performed at relatively low temperatures (about 600C) and is relatively insensitive to temperature fluctuations. However, this type of crystal growth is subject to the decided disadvantage that density induced convection currents may produce variations in rates of growth at a growing surface. This problem would be minimized under reduced gravity conditions.

  9. High Pressure Materials Research: Novel Extended Phases of Molecular Triatomics

    SciTech Connect

    Yoo, Choong-Shik

    2006-01-27

    Application of high pressure significantly alters the interatomic distance and thus the nature of intermolecular interaction, chemical bonding, molecular configuration, crystal structure, and stability of solid. With modern advances in high-pressure technologies, it is feasible to achieve a large (often up to a several-fold) compression of lattice, at which condition material can be easily forced into a new physical and chemical configuration. The high-pressure thus offers enhanced opportunities to discover new phases, both stable and metastable ones, and to tune exotic properties in a wide-range of atomistic length scale, substantially greater than (often being several orders of) those achieved by other thermal (varing temperatures) and chemical (varying composition or making alloys) means. Simple molecular solids like H{sub 2}, C, CO{sub 2}, N{sub 2}, O{sub 2}, H{sub 2}O, CO, NH{sub 3}, and CH{sub 4} are bounded by strong covalent intramolecular bonds, yet relatively weak intermolecular bonds of van der Waals and/or hydrogen bonds. The weak intermolecular bonds make these solids highly compressible (i.e., low bulk moduli typically less than 10 GPa), while the strong covalent bonds make them chemically inert at least initially at low pressures. Carboncarbon single bonds, carbon-oxygen double bonds and nitrogen-nitrogen triple bonds, for example, are among the strongest. These molecular forms are, thus, often considered to remain stable in an extended region of high pressures and high temperatures. High stabilities of these covalent molecules are also the basis of which their mixtures are often presumed to be the major detonation products of energetic materials as well as the major constituents of giant planets. However, their physical/chemical stabilities are not truly understood at those extreme pressure-temperature conditions. In fact, an increasing amount of experimental evidences contradict the assumed stability of these materials at high pressures and

  10. [Research progress of Chinese herbal medicine raw materials in cosmetics].

    PubMed

    Xie, Yan-jun; Kong, Wei-jun; Yang, Mei-hua; Yang, Shi-hai

    2015-10-01

    Advocating green, nature, environmental protection, safety and the pursuit of efficacy are the trends of cosmetics in the world. In recent years, more and more Chinese herbal extracts with mild, high safety and small irritation are applied to cosmetics as the natural additives. This has become a new hot spot. The recent application advances of Chinese medicine raw materials in cosmetics are overviewed according to their main functions. This review will provide useful references for the future development and application of Chinese medicinal herbs cosmetics.

  11. Development of the new generation of glass-based neutron detection materials

    NASA Astrophysics Data System (ADS)

    Dosovitskiy, Alexey E.; Dosovitskiy, Georgy A.; Korjik, Mikhail V.

    2012-10-01

    Approach to obtaining of neutron detector material alternative to 3He containing ionization gas detectors is proposed. Recently, a severe deficit of the 3He has pushed its price up strongly, so alternative cheaper detecting materials are demanded. Possible alternatives to 3He are materials containing 10B and 6Li isotopes. These two elements form many inorganic materials, either crystalline or amorphous. Glass scintillators look very advantageous as detector materials, especially for large area detectors, as their manufacturing could be cheaper and easier-to-scale, compared to single crystals and ceramics. A poor exciton transport, which is a fundamental feature of glass scintillators, limits their light yield and, therefore, practical use. Here we discuss a possibility to improve energy transfer to luminescent centers by creation of high concentration of crystalline luminophore particles in the glass matrix. This could be achieved through the controlled crystallization of the glass. We demonstrate how this approach works in well known Li-Al-Si (LAS) glass system. Partially crystallized Ce3+-doped glass with nanocrystalline inclusions is obtained, which shows the superior scintillation properties compared to amorphous glass. The material is characterized by an emission spectrum shift towards shorter wavelengths, which provides low light self-absorption.

  12. Hollow graphitic nanocapsules as efficient electrode materials for sensitive hydrogen peroxide detection.

    PubMed

    Liu, Wei-Na; Ding, Ding; Song, Zhi-Ling; Bian, Xia; Nie, Xiang-Kun; Zhang, Xiao-Bing; Chen, Zhuo; Tan, Weihong

    2014-02-15

    Carbon nanomaterials are typically used in electrochemical biosensing applications for their unique properties. We report a hollow graphitic nanocapsule (HGN) utilized as an efficient electrode material for sensitive hydrogen peroxide detection. Methylene blue (MB) molecules could be efficiently adsorbed on the HGN surfaces, and this adsorption capability remained very stable under different pH regimes. HGNs were used as three-dimensional matrices for coimmobilization of MB electron mediators and horseradish peroxidase (HRP) to build an HGN-HRP-MB reagentless amperometric sensing platform to detect hydrogen peroxide. This simple HGN-HRP-MB complex demonstrated very sensitive and selective hydrogen peroxide detection capability, as well as high reproducibility and stability. The HGNs could also be utilized as matrices for immobilization of other enzymes, proteins or small molecules and for different biomedical applications.

  13. Remote monostatic detection of radioactive material by laser-induced breakdown

    NASA Astrophysics Data System (ADS)

    Isaacs, Joshua; Miao, Chenlong; Sprangle, Phillip

    2016-03-01

    This paper analyzes and evaluates a concept for remotely detecting the presence of radioactivity using electromagnetic signatures. The detection concept is based on the use of laser beams and the resulting electromagnetic signatures near the radioactive material. Free electrons, generated from ionizing radiation associated with the radioactive material, cascade down to low energies and attach to molecular oxygen. The resulting ion density depends on the level of radioactivity and can be readily photo-ionized by a low-intensity laser beam. This process provides a controllable source of seed electrons for the further collisional ionization (breakdown) of the air using a high-power, focused, CO2 laser pulse. When the air breakdown process saturates, the ionizing CO2 radiation reflects off the plasma region and can be detected. The time required for this to occur is a function of the level of radioactivity. This monostatic detection arrangement has the advantage that both the photo-ionizing and avalanche laser beams and the detector can be co-located.

  14. Detecting errors and anomalies in computerized materials control and accountability databases

    SciTech Connect

    Whiteson, R.; Hench, K.; Yarbro, T.; Baumgart, C.

    1998-12-31

    The Automated MC and A Database Assessment project is aimed at improving anomaly and error detection in materials control and accountability (MC and A) databases and increasing confidence in the data that they contain. Anomalous data resulting in poor categorization of nuclear material inventories greatly reduces the value of the database information to users. Therefore it is essential that MC and A data be assessed periodically for anomalies or errors. Anomaly detection can identify errors in databases and thus provide assurance of the integrity of data. An expert system has been developed at Los Alamos National Laboratory that examines these large databases for anomalous or erroneous data. For several years, MC and A subject matter experts at Los Alamos have been using this automated system to examine the large amounts of accountability data that the Los Alamos Plutonium Facility generates. These data are collected and managed by the Material Accountability and Safeguards System, a near-real-time computerized nuclear material accountability and safeguards system. This year they have expanded the user base, customizing the anomaly detector for the varying requirements of different groups of users. This paper describes the progress in customizing the expert systems to the needs of the users of the data and reports on their results.

  15. Terahertz imaging devices and systems, and related methods, for detection of materials

    SciTech Connect

    Kotter, Dale K.

    2016-11-15

    Terahertz imaging devices may comprise a focal plane array including a substrate and a plurality of resonance elements. The plurality of resonance elements may comprise a conductive material coupled to the substrate. Each resonance element of the plurality of resonance elements may be configured to resonate and produce an output signal responsive to incident radiation having a frequency between about a 0.1 THz and 4 THz range. A method of detecting a hazardous material may comprise receiving incident radiation by a focal plane array having a plurality of discrete pixels including a resonance element configured to absorb the incident radiation at a resonant frequency in the THz, generating an output signal from each of the discrete pixels, and determining a presence of a hazardous material by interpreting spectral information from the output signal.

  16. Digital lock-in detection of site-specific magnetism in magnetic materials

    DOEpatents

    Haskel, Daniel; Lang, Jonathan C.; Srajer, George

    2008-07-22

    The polarization and diffraction characteristics of x-rays incident upon a magnetic material are manipulated to provide a desired magnetic sensitivity in the material. The contrast in diffracted intensity of opposite helicities of circularly polarized x-rays is measured to permit separation of magnetic signals by element type and by atomic environment. This allows for the direct probing of magnetic signals from elements of the same species in nonequivalent atomic environments to better understand the behavior and characteristics of permanent magnetic materials. By using known crystallographic information together with manipulation of the polarization of x-rays having energies tuned near element-specific electronic excitations and by detecting and comparing the incident and diffracted photons at the same frequency, more accurate magnetic measurements can be made over shorter observation periods.

  17. Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging

    NASA Astrophysics Data System (ADS)

    Barty, C. P. J.

    2015-10-01

    Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.

  18. Multi-resolution X-ray CT research applied on geo-materials

    NASA Astrophysics Data System (ADS)

    Cnudde, Dr.

    2009-04-01

    Many research topics in geology concern the study of internal processes of geo-materials on a pore-scale level in order to estimate their macroscopic behaviour. The microstructure of a porous medium and the physical characteristics of the solids and the fluids that occupy the pore space determine several macroscopic transport properties of the medium. Understanding the relationship between microstructure and transport is therefore of great theoretical and practical interest in many fields of technology. High resolution X-ray CT is becoming a widely used technique to study geo-materials in 3D at a pore-scale level. To be able to distinguish between the different components of a sample on a pore-scale level, it is important to obtain a high resolution, good contrast and a low noise level. The resolution that can be reached not only depends on the sample size and composition, but also on the specifications of the used X-ray source and X-ray detector and on the geometry of the system. An estimate of the achievable resolution with a certain setup can be derived by dividing the diameter of the sample by the number of pixel columns in the detector. For higher resolutions, the resolution is mainly limited by the focal spot size of the X-ray tube. Other factors like sample movement and deformation by thermal or mechanical effects also have a negative influence on the system's resolution, but they can usually be suppressed by a well-considered positioning of the sample and by monitoring its environment. Image contrast is subject to the amount of X-ray absorption by the sample. It depends both on the energy of the X-rays and on the density and atomic number of the present components. Contrast can be improved by carefully selecting the main X-ray energy level, which depends both on the X-ray source and the used detector. In some cases, it can be enhanced by doping the sample with a contrast agent. Both contrast and noise level depend on the detectability of the transmitted X

  19. Nuclear-Fuel-Cycle Research Program: availability of geotoxic material

    SciTech Connect

    Wachter, B.G.; Kresan, P.L.

    1982-09-01

    This report represents an analog approach to the characterization of the environmental behavior of geotoxic waste materials (toxic material emplaced in the earth's crust) as drawn from literature on the Oklo natural fission reactors and uranium ore deposits relative to radioactive wastes, and hydrothermal metal ore deposits relative to stable toxic wastes. The natural analog data were examined in terms of mobility and immobility of selected radioactive or stable waste elements and are presented in matrix relationship with their prime geochemical variables. A numerical system of ranking those relationships for purposes of hazard-indexing is proposed. Geochemical parameters (especially oxidation/reduction potential) are apparently more potent mobilizers/immobilizers than geological or hydrological conditions in many, if not most, geologic environments for most radioactive waste elements. Heavy metal wastes, by analogy to hydrothermal ore systems and geothermal systems, are less clear in their behavior but similar geochemical patterns do apply. Depth relationships between geochemical variables and waste element behavior show some surprises. It is significantly indicated that for waste isolation, deeper is not necessarily better geochemically. Relatively shallow isolation in host rocks such as shale could offer maximum immobility. This paper provides a geochemical outline for examining analog models as well as a departure point for improved quantification of geological and geochemical indexing of toxic waste hazards.

  20. Materials research and development for fusion energy applications

    SciTech Connect

    Zinkle, S.J.; Snead, L.L.

    1998-11-01

    Some of the critical issues associated with materials selection for proposed magnetic fusion reactors are reviewed, with a brief overview of refractory alloys (vanadium, tantalum, molybdenum, tungsten) and primary emphasis on ceramic materials. SiC/SiC composites are under consideration for the first wall and blanket structure, and dielectric insulators will be used for the heating, control and diagnostic measurement of the fusion plasma. Key issues for SiC/SiC composites include radiation-induced degradation in the strength and thermal conductivity. Recent work has focused on the development of radiation-resistant fibers and fiber/matrix interfaces (porous SiC, SiC multilayers) which would also produce improved SiC/SiC performance for applications such as heat engines and aerospace components. The key physical parameters for dielectrics include electrical conductivity, dielectric loss tangent and thermal conductivity. Ionizing radiation can increase the electrical conductivity of insulators by many orders of magnitude, and surface leakage currents can compromise the performance of some fusion energy components. Irradiation can cause a pronounced degradation in the loss tangent and thermal conductivity. Fundamental physical parameter measurements on ceramics which are of interest for both fusion and non-fusion applications are discussed.

  1. Research of carbon composite material for nonlinear finite element method

    NASA Astrophysics Data System (ADS)

    Kim, Jung Ho; Garg, Mohit; Kim, Ji Hoon

    2012-04-01

    Works on the absorption of collision energy in the structural members are carried out widely with various material and cross-sections. And, with ever increasing safety concerns, they are presently applied in various fields including railroad trains, air crafts and automobiles. In addition to this, problem of lighting structural members became important subject by control of exhaust gas emission, fuel economy and energy efficiency. CFRP(Carbon Fiber Reinforced Plastics) usually is applying the two primary structural members because of different result each design parameter as like stacking thickness, stacking angle, moisture absorption ect. We have to secure the data for applying primary structural members. But it always happens to test design parameters each for securing the data. So, it has much more money and time. We can reduce the money and the time, if can ensure the CFRP material properties each design parameters. In this study, we experiment the coupon test each tension, compression and shear using CFRP prepreg sheet and simulate non-linear analyze at the sources - test result, Caron longitudinal modulus and matrix poisson's ratio using GENOAMQC is specialized at Composite analysis. And then we predict the result that specimen manufacture changing stacking angle and experiment in such a way of test method using GENOA-MCQ.

  2. Research of carbon composite material for nonlinear finite element method

    NASA Astrophysics Data System (ADS)

    Kim, Jung Ho; Garg, Mohit; Kim, Ji Hoon

    2011-11-01

    Works on the absorption of collision energy in the structural members are carried out widely with various material and cross-sections. And, with ever increasing safety concerns, they are presently applied in various fields including railroad trains, air crafts and automobiles. In addition to this, problem of lighting structural members became important subject by control of exhaust gas emission, fuel economy and energy efficiency. CFRP(Carbon Fiber Reinforced Plastics) usually is applying the two primary structural members because of different result each design parameter as like stacking thickness, stacking angle, moisture absorption ect. We have to secure the data for applying primary structural members. But it always happens to test design parameters each for securing the data. So, it has much more money and time. We can reduce the money and the time, if can ensure the CFRP material properties each design parameters. In this study, we experiment the coupon test each tension, compression and shear using CFRP prepreg sheet and simulate non-linear analyze at the sources - test result, Caron longitudinal modulus and matrix poisson's ratio using GENOAMQC is specialized at Composite analysis. And then we predict the result that specimen manufacture changing stacking angle and experiment in such a way of test method using GENOA-MCQ.

  3. Experimental Research in Advanced Concepts for Novel Reactive Materials

    DTIC Science & Technology

    2013-04-01

    Sand casting with pre-cast heating of tungsten elements  Induction casting with applied pressure II.A.2.a Experimental Furnace Casting The...such an experiment was completed during the research period. These experiments involved the electronic spectrum in the vacuum ultraviolet of the...methods used to create the casings include the following, each of which is outlined below:  Experimental casting in a small furnace  Sand casting

  4. Research in Materials Science: Superconducting Transition Metal Alloys

    DTIC Science & Technology

    1975-07-31

    phonon deconvolu’ion programming. The results of this research may enable us to set- up guidelines and pro- cedures for judging the extent to which the...inconsistdc gap structure superimposed on ehe desired characteristic. In addition, all_ the junctions had fragile barriers that could not stand up to...niobium and then react to produce a Nb3Sn layer several microns thick ( up to % 4y). The reacted cylinde; are then removed from the .mpule and

  5. JPRS Report, Science & Technology, Japan, STA Research on Superconducting Materials

    DTIC Science & Technology

    2007-11-02

    1986 Laboratory Niobium/ 2 wo0 germanium20 t’ ’’ -- 260 10 • Niobiumltin 1911 - 00Interalloy metal Liquid1911 -- S °mD°und <-Ihel~iu m 0 Mercury J...Toichi Okada Professor Industrial Science Research Laboratory, Osaka University Koichi Kitazawa Professor Engineering, University of Tokyo Ken Sugiura...0 . Crystal structure 0 Nagnetism Thermodynamic property Optical property Ov Basic property experiment si . 0 04 ’ s Liquid •Jnitrogeno ’ tempera- W o

  6. Materials Research for Advanced Inertial Instrumentation. Task 2. Gas Bearing Material Development.

    DTIC Science & Technology

    1980-12-01

    interest as wear- resistant coatings will generally have such high melting temperatures as to require special methods of application. Two methods...defined and reproducible conditions. Perhaps because of the absence of any lubricating film, in many instances the steel pin material " crayoned " itself

  7. Research on fiber diameter automatic measurement based on image detection

    NASA Astrophysics Data System (ADS)

    Chen, Xiaogang; Jiang, Yu; Shen, Wen; Han, Guangjie

    2010-10-01

    In this paper, we present a method of Fiber Diameter Automatic Measurement(FDAM). This design is based on image detection technology in order to provide a rapid and accurate measurement of average fiber diameter. Firstly, a preprocessing mechanism is proposed to the sample fiber image by using improved median filtering algorithm, then we introduce edge detection with Sobel operator to detect target fiber, finally diameter of random point and average diameter of the fiber can be measured precisely with searching shortest path algorithm. Experiments are conducted to prove the accuracy of the measurement, and simulations show that measurement errors caused by human factors could be eliminated to a desirable level.

  8. Thermal Insulation Properties Research of the Composite Material "Water Glass - Graphite Microparticles"

    NASA Astrophysics Data System (ADS)

    Gostev, V. A.; Pitukhin, E. A.; Ustinov, A. S.; Shelestov, A. S.

    2016-04-01

    Research results for the composite material (CM) "water glass - graphite microparticles" with high thermal stability and thermal insulation properties are given. A composition is proposed consisting of graphite (42 % by weight), water glass Na2O(SiO2)n (50% by weight) and the hardener - sodium silicofluoride Na2SiF6 (8% by weight). Processing technology of such composition is suggested. Experimental samples of the CM with filler particles (graphite) of a few microns in size were obtained. This is confirmed by a study of samples using X-ray diffraction analysis and electron microscopy. The qualitative and quantitative phase analysis of the CM structure was done. Values of limit load causing destruction of the CM were identified. The character of the rupture surface was detected. Numerical values of the specific heat and thermal conductivity were defined. Dependence of the specific heat capacity and thermal conductivity on temperature during monotonic heating was obtained experimentally. Studies have confirmed the increased thermal insulation properties of the proposed composition. The CM with such properties can be recommended as a coating designed to reduce heat losses and resistant to high temperatures. Due to accessibility and low cost of its components the proposed material can be produced on an industrial scale.

  9. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  10. DCP's Early Detection Research Guides Future Science | Division of Cancer Prevention

    Cancer.gov

    Early detection research funded by the NCI's Division of Cancer Prevention has positively steered both public health and clinical outcomes, and set the stage for findings in the next generation of research. |

  11. Fullerene-based materials research and development. LDRD final report

    SciTech Connect

    Cahill, P A; Henderson, C C; Rohlfing, C M; Loy, D A; Assink, R A; Gillen, K T; Jacobs, S J; Dugger, M T

    1995-05-01

    The chemistry and physical properties of fullerenes, the third, molecular allotrope of carbon, have been studied using both experimental and computational techniques. Early computational work investigated the stability of fullerene isomers and oxides, which was followed by extensive work on hydrogenated fullerenes. Our work led to the first synthesis of a polymer containing C{sub 60} and the synthesis of the simplest hydrocarbon derivatives of C{sub 60} and C{sub 70}. The excellent agreement between theory and experiment ({plus_minus} 0.1 kcal/mol in the relative stability of isomers) has provided insight into the chemical nature of fullerenes and has yielded a sound basis for prediction of the structure of derivatized fullerenes. Such derivatives are the key to the preparation of fullerene-based materials.

  12. Early Detection Research Network (EDRN) | Division of Cancer Prevention

    Cancer.gov

    http://edrn.nci.nih.gov/EDRN is a collaborative network that maintains comprehensive infrastructure and resources critical to the discovery, development and validation of biomarkers for cancer risk and early detection. The program comprises a public/private sector consortium to accelerate the development of biomarkers that will change medical practice, ensure data reproducibility, and adapt to the changing landscape of biomarker science. | Comprehensive infrastructure and resources critical to discovery, development and validation of biomarkers for cancer risk and early detection.

  13. Use and Misuse of Material Transfer Agreements: Lessons in Proportionality from Research, Repositories, and Litigation

    PubMed Central

    Bubela, Tania; Guebert, Jenilee; Mishra, Amrita

    2015-01-01

    Material transfer agreements exist to facilitate the exchange of materials and associated data between researchers as well as to protect the interests of the researchers and their institutions. But this dual mandate can be a source of frustration for researchers, creating administrative burdens and slowing down collaborations. We argue here that in most cases in pre-competitive research, a simple agreement would suffice; the more complex agreements and mechanisms for their negotiation should be reserved for cases where the risks posed to the institution and the potential commercial value of the research reagents is high. PMID:25646804

  14. Advanced computational research in materials processing for design and manufacturing

    SciTech Connect

    Zacharia, T.

    1994-12-31

    The computational requirements for design and manufacture of automotive components have seen dramatic increases for producing automobiles with three times the mileage. Automotive component design systems are becoming increasingly reliant on structural analysis requiring both overall larger analysis and more complex analyses, more three-dimensional analyses, larger model sizes, and routine consideration of transient and non-linear effects. Such analyses must be performed rapidly to minimize delays in the design and development process, which drives the need for parallel computing. This paper briefly describes advanced computational research in superplastic forming and automotive crash worthiness.

  15. A Place for Materials Science: Laboratory Buildings and Interdisciplinary Research at the University of Pennsylvania

    ERIC Educational Resources Information Center

    Choi, Hyungsub; Shields, Brit

    2015-01-01

    The Laboratory for Research on the Structure of Matter (LRSM), University of Pennsylvania, was built in 1965 as part of the Advanced Research Projects Agency's (ARPA) Interdisciplinary Laboratories (IDL) program intended to foster interdisciplinary research and training in materials science. The process that led to the construction of the…

  16. Collaborative Relationships in Dental Materials Research: Measuring the Volume and Outcomes.

    ERIC Educational Resources Information Center

    Garrison, Howard H.; And Others

    1992-01-01

    Collaborative relationships between researchers and resources from government, industry, and academia were studied through a survey of research into dental materials. The outcomes of research conducted under various arrangements by 386 targeted respondents were reviewed. Implications of the high rate of collaboration for both industry and academia…

  17. The Influence of Materials Science and Engineering Undergraduate Research Experiences on Public Communication Skills

    ERIC Educational Resources Information Center

    Ing, Marsha; Fung, Wenson W.; Kisailus, David

    2013-01-01

    Communicating research findings with others is a skill essential to the success of future STEM professionals. However, little is known about how this skill can be nurtured through participating in undergraduate research. The purpose of this study is to quantify undergraduate participation in research in a materials science and engineering…

  18. Nonlinear Optics at the U.S. Army Research Laboratory’s Weapons and Materials Research Directorate

    DTIC Science & Technology

    2011-03-01

    kick-off to the FY10 Multidisciplinary University Research Initiative “ Propagation of Ultrashort Laser Pulses Through Transparent Media.” The slides...13. SUPPLEMENTARY NOTES 14. ABSTRACT We provide an overview of efforts and interest in studying directed energy and ultrashort pulse lasers in... ultrashort pulse laser efforts at the U.S. Army Research Laboratory’s Weapons and Materials Research Directorate. The goal is to encourage sharing of

  19. Detection of exposure damage in composite materials using Fourier transform infrared technology.

    SciTech Connect

    Roach, Dennis Patrick; Duvall, Randy L.

    2010-09-01

    Goal: to detect the subtle changes in laminate composite structures brought about by thermal, chemical, ultraviolet, and moisture exposure. Compare sensitivity of an array of NDI methods, including Fourier Transform Infrared Spectroscopy (FTIR), to detect subtle differences in composite materials due to deterioration. Inspection methods applied: ultrasonic pulse echo, through transmission ultrasonics, thermography, resonance testing, mechanical impedance analysis, eddy current, low frequency bond testing & FTIR. Comparisons between the NDI methods are being used to establish the potential of FTIR to provide the necessary sensitivity to non-visible, yet significant, damage in the resin and fiber matrix of composite structures. Comparison of NDI results with short beam shear tests are being used to relate NDI sensitivity to reduction in structural performance. Chemical analyses technique, which measures the infrared intensity versus wavelength of light reflected on the surface of a structure (chemical and physical information via this signature). Advances in instrumentation have resulted in hand-held portable devices that allow for field use (few seconds per scan). Shows promise for production quality assurance and in-service applications on composite aircraft structures (scarfed repairs). Statistical analysis on frequency spectrums produced by FTIR interrogations are being used to produce an NDI technique for assessing material integrity. Conclusions are: (1) Use of NDI to assess loss of composite laminate integrity brought about by thermal, chemical, ultraviolet, and moisture exposure. (2) Degradation trends between SBS strength and exposure levels (temperature and time) have been established for different materials. (3) Various NDI methods have been applied to evaluate damage and relate this to loss of integrity - PE UT shows greatest sensitivity. (4) FTIR shows promise for damage detection and calibration to predict structural integrity (short beam shear). (5

  20. Active millimeter-wave imaging system for material analysis and object detection

    NASA Astrophysics Data System (ADS)

    Zech, Christian; Hülsmann, Axel; Kallfass, Ingmar; Tessmann, Axel; Zink, Martin; Schlechtweg, Michael; Leuther, Arnulf; Ambacher, Oliver

    2011-11-01

    The use of millimeter-waves for imaging purposes is becoming increasingly important, as millimeter-waves can penetrate most clothing and packaging materials, so that the detector does not require physical contact with the object. This will offer a view to the hidden content of e.g. packets or bags without the need to open them, whereby packaging and content will not be damaged. Nowadays X-ray is used, but as the millimeter-wave quantum energy is far below the ionization energy, it is less harmful for the human health. In this paper we report an active millimeter-wave imaging tomograph for material analysis and concealed object detection purposes. The system is build using in-house W-band components. The object is illuminated with low-power millimeter-waves in the frequency range between 89 and 96GHz; mirrors are used to guide and focus the beam. The object is moved through the focus point to scan the object pixel by pixel. Depending on the actual material some parts of the waves are reflected, the other parts penetrate the object. A single-antenna transmit and receive module is used for illumination and measurement of the material-specific reflected power. A second receiver module is used to measure the transmitted wave. All information is processed for amplitude and phase images by a computer algorithm. The system can be used for security, such as detecting concealed weapons, explosives or contrabands at airports and other safety areas, but also quality assurance applications, e.g. during production to detect defects. Some imaging results will be presented in this paper.

  1. Materials Research for Advanced Inertial Instrumentation. Task 2. Gas Bearing Material Development.

    DTIC Science & Technology

    1984-02-01

    shoving (a) etcing of ample RIM 40-VI from the Implantation process, Nomarska., and (3) polarized light micrograph of the same region showing grain...were lost when the sample was examined using *- the more conventional procedure of polarized light microscopy (Flqure 48). The latter is the widely used...Bearing Material Development, Technical Report R-1647, The Charles Stark Draper Laboratory, Inc., December 1982. 7. McEwen, J., and R. Schluntz, History and

  2. Investigation of Active Interrogation Techniques to Detect Special Nuclear Material in Maritime Environments

    SciTech Connect

    Miller, Thomas Martin; Patton, Bruce W

    2010-01-01

    The detection and interdiction of special nuclear material (SNM) is still a high-priority focus area for many organizations around the world. One method that is commonly considered a leading candidate in the detection of SNM is active interrogation (AI). AI is different from its close relative, passive interrogation, in that an active source is used to enhance or create a detectable signal (usually fission) from SNM, particularly in shielded scenarios or scenarios where the SNM has a low activity. The use of AI thus makes the detection of SNM easier or, in some scenarios, even enables previously impossible detection. In this work the signal from prompt neutrons and photons as well as delayed neutrons and photons will be combined, as is typically done in AI. In previous work AI has been evaluated experimentally and computationally. However, for the purposes of this work, past scenarios are considered lightly shielded and tightly coupled spatially. At most, the previous work interrogated the contents of one standard cargo container (2.44 x 2.60 x 6.10 m) and the source and detector were both within a few meters of the object being interrogated. A few examples of this type of previous work can be found in references 1 and 2. Obviously, more heavily shielded AI scenarios will require larger source intensities, larger detector surface areas (larger detectors or more detectors), greater detector efficiencies, longer count times, or some combination of these.

  3. Evaluation of two surface sampling methods for detection of Erwinia herbicola on a variety of materials by culture and quantitative PCR.

    PubMed

    Buttner, Mark P; Cruz, Patricia; Stetzenbach, Linda D; Cronin, Tracy

    2007-06-01

    This research was designed to evaluate surface sampling protocols for use with culture and quantitative PCR (QPCR) amplification assay for detection of the gram-negative bacterial biothreat simulant Erwinia herbicola on a variety of surface materials. Surfaces selected for evaluation were wood laminate, glass and computer monitor screens, metal file cabinets, plastic arena seats, nylon seat cushions, finished concrete flooring, and vinyl tile flooring. Laboratory and test chamber studies were performed to evaluate two sampling methods, a sponge and a macrofoam swab, for detection of E. herbicola on surface materials. In laboratory trials, seven materials were inoculated with a known concentration of E. herbicola cells and samples were collected from the surfaces of the materials to determine sampling efficiencies. Culture analysis was ineffective for assessing E. herbicola collection efficiency because very few culturable cells were obtained from surface samples. QPCR demonstrated that E. herbicola DNA was present in high concentrations on all of the surface samples, and sampling efficiencies ranged from 0.7 to 52.2%, depending on the sampling method and the surface material. The swab was generally more efficient than the sponge for collection of E. herbicola from surfaces. Test chamber trials were also performed in which E. herbicola was aerosolized into the chamber and allowed to settle onto test materials. Surface sampling results supported those obtained in laboratory trials. The results of this study demonstrate the capabilities of QPCR to enhance the detection and enumeration of biocontaminants on surface materials and provide information on the comparability of sampling methods.

  4. Research and latest development of materials for shotcreting

    SciTech Connect

    Schmidt, M.

    1995-12-31

    In tunnelling procedures employing the New Austria Tunnelling Technique, the tunnel walls are shotcreted immediately after excavation of the rock with a concrete setting within a few seconds. Its function is to preserve the stability of the rock until the final tunnel lining has been put in place and to protect the workers and machines operating at the site from the danger of rockfall. The objectives of a material orientated development of shotcrete were thus: to improve its properties of strength, density, water impermeability and durability in such a manner that shotcrete could be used as a long-term load-bearing tunnel lining; to provide for the environmental and health protection measures necessary during the production and application of shotcrete; and to make the shotcrete application procedure more cost-effective and economical. The cost-effectiveness results from a balancing of all the factors involved: on the one hand, necessarily higher costs for shotcrete and on the other, a smaller amount of rebound, a simpler and speedier application technique, lower costs for environmental and health protection measures, and possibly also smaller cross-section sizes of the tunnel lining and operational advantages for tunnel drainage.

  5. [Application of lysosomal detection in marine pollution monitoring: research progress].

    PubMed

    Weng, You-Zhu; Fang, Yong-Qiang; Zhang, Yu-Sheng

    2013-11-01

    Lysosome is an important organelle existing in eukaryotic cells. With the development of the study on the structure and function of lysosome in recent years, lysosome is considered as a target of toxic substances on subcellular level, and has been widely applied abroad in marine pollution monitoring. This paper summarized the biological characteristics of lysosomal marker enzyme, lysosome-autophagy system, and lysosomal membrane, and introduced the principles and methods of applying lysosomal detection in marine pollution monitoring. Bivalve shellfish digestive gland and fish liver are the most sensitive organs for lysosomal detection. By adopting the lysosomal detection techniques such as lysosomal membrane stability (LMS) test, neutral red retention time (NRRT) assay, morphological measurement (MM) of lysosome, immunohistochemical (Ih) assay of lysosomal marker enzyme, and electron microscopy (EM), the status of marine pollution can be evaluated. It was suggested that the lysosome could be used as a biomarker for monitoring marine environmental pollution. The advantages and disadvantages of lysosomal detection and some problems worthy of attention were analyzed, and the application prospects of lysosomal detection were discussed.

  6. Materials Research for Advanced Inertial Instrumentation. Task 2. Gas Bearing Material Development.

    DTIC Science & Technology

    1981-12-01

    to the substrate is an important con- sideration in wear performance. The forces that give rise to adhesion in films made from both these proceses can...22314 12 ATTN: Library Office of Naval Research Naval Construction Batallion Department of the Navy Civil Engineering Laboratory 800 N. Quincy Street

  7. APSTNG: neutron interrogation for detection of explosives, drugs, and nuclear and chemical warfare materials

    NASA Astrophysics Data System (ADS)

    Rhodes, Edgar A.; Peters, Charles W.

    1993-02-01

    A recently developed neutron diagnostic probe system has the potential to satisfy a significant number of van-mobile and fixed-portal requirements for nondestructive detection, including monitoring of contraband explosives, drugs, and weapon materials, and treaty verification of sealed munitions. The probe is based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14- MeV neutrons generated from the deuterium-tritium reaction and that detects the alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron reactions identify nuclides associated with all major chemicals in explosives, drugs, and chemical warfare agents, as well as many pollutants and fissile and fertile special nuclear material. Flight times determined from detection times of the gamma-rays and alpha-particles yield a separate coarse tomographic image of each identified nuclide. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system that can be used along with or instead of the emission imaging system. Proof-of-concept experiments have been performed under laboratory conditions for simulated nuclear and chemical warfare munitions and for explosives and drugs. The small and relatively inexpensive APSTNG exhibits high reliability and can be quickly replaced. Surveillance systems based on APSTNG technology can avoid the large physical size, high capital and operating expenses, and reliability problems associated with complex accelerators.

  8. Detecting anomalous nuclear materials accounting transactions: Applying machine learning to plutonium processing facilities

    SciTech Connect

    Vaccaro, H.S. )

    1989-01-01

    Nuclear materials accountancy is the only safeguards measure that provides direct evidence of the status of nuclear materials. Of the six categories that gives rise to inventory differences, the technical capability is now in place to implement the technical innovations necessary to reduce the human error categories. There are really three main approaches to detecting anomalies in materials control and accountability (MC A) data: (1) Statistical: numeric methods such as the Page's Test, CUSUM, CUMUF, SITMUF, etc., can detect anomalies in metric (numeric) data. (2) Expert systems: Human expert's rules can be encoded into software systems such as ART, KEE, or Prolog. (3) Machine learning: Training data, such as historical MC A records, can be fed to a classifier program or neutral net or other machine learning algorithm. The Wisdom Sense (W S) software is a combination of approaches 2 and 3. The W S program includes full features for adding administrative rules and expert judgment rules to the rule base. if desired, the software can enforce consistency among all rules in the rule base.

  9. Advanced Materials Research Status and Requirements. Volume 2. Appendix: Material Properties Data Review

    DTIC Science & Technology

    1986-03-01

    APPENDIX: MATERIAL PROPERTIES DATA REVIEW FINAL REPORT CONTRACT DASG60-85-C-0087 SPONSORED BY: U.S. ARMY STRATEGIC DEFENSE COMMAND DTIC c. ELECTE... properties of general interest advanced metal matrix and polymer matrix systems. qa .1 ./’r ;) 20. ;is,-icI.rON/AIAiLAS16iT’fr. ASSTRACT 1.AaSTRAZT "C...thermal, and physical properties of general interest advanced metal matrix and polymer matrix composites. 4. .Accession For r., ~~NTIS ... I By-4

  10. Using materials research results in new regulations -- The Swedish approach

    SciTech Connect

    Gott, K.

    1995-12-31

    Swedish regulations are normally divided into two sections: the first part is the compulsory text and the second part explains very briefly the ideas behind the regulations and section consists of an interpretive text. This second part explains very briefly the ideas behind the regulations and gives advice as to how to apply the regulations, acceptable testing and analysis methods, and references to other standards and relevant documents. In the new regulations, which were approved by the Board of SKI in September 1994 and are effective from 1st January 1995, a number of innovations have been included concerning chemistry and environmental degradation of the primary pressure boundary in Light Water Reactors. With regard to chemistry SKI will no longer approve the various parameters in the technical specifications (such as conductivity and impurity concentrations) but will require that the utilities have a chemistry control program in place which ensures the integrity of the primary pressure boundary and does not expose it to environments (such as impurities and decontamination chemicals) for which it was not designed. SKI can at any time control that such a program exists and assess its compatibility with these goals, either during routine inspections or as part of special theme inspections. Crack growth rates have been specified for different materials stainless steels, and the nickel base alloy types 600 and 182. Different environments have also been specified: water chemistry within and outside plant specifications as well as normal and hydrogen water chemistry conditions. Stress corrosion cracking in pressurized water reactor systems is also treated separately in the regulations, but not discussed specifically here.

  11. Muscular mechanical energy expenditure as a process for detecting potential risks in manual materials handling.

    PubMed

    Gagnon, M; Smyth, G

    1991-01-01

    The problem of injuries in manual materials handling remains a big concern in industrialized countries. It has become imperative in occupational biomechanics to extend the analyses to all pertinent factors involved in working tasks and to adopt an experimental approach leading to the understanding of the relative demands imposed simultaneously on all body joints. The evaluation of joint muscular work and the processes of energy generation, absorption and transfer appears promising as a tool in the detection of risk factors in working tasks. The present study consisted of evaluating two tasks (lifting and lowering) performed at five different heights (from 15 to 185 cm) with five different loads (from 3.3 to 22.0 kg). The subjects were eight experienced workers from a food product warehouse. Cinematography techniques and two AMTI force platforms were used to collect the data. Dynamic and planar segmental analyses were performed to calculate the net muscular moments at the joints, and work was calculated from the integration of muscular power. Factorial analyses of variance with repeated measures were performed on the dependent variables to evaluate the main effects of tasks, loads, and heights (for lifting and for lowering) and the interactions. The results revealed the adoption of different movement strategies in the handling of heavier loads. In the first, a larger emphasis of energy transfer and movement economy; in the second, a reduction in the relative contribution of the shoulders to the detriment of an increased participation of the lower back and hips was found. The comparison between lifting and lowering tasks indicated that lifting was only slightly more demanding than lowering for maximum muscular moments (about 15%) but much more so for mechanical work (about 40%); however, the nature of the efforts in eccentric contractions suggests that the lowering of heavy loads may be risky. Finally, the results revealed the deviation of height of handling from the

  12. The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stagg, Elizabeth

    2004-01-01

    In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned

  13. Materials Research for Advanced Inertial Instrumentation. Task 1. Dimensional Stability of Gyroscope Structural Materials.

    DTIC Science & Technology

    1981-12-01

    treatments on X-520 samples were also performed after sealing themi under an argon partial pressure inside stainless steel containers. This avoided both a... Maringer , Dimensional Instability - An Introduction, Pergamon Press, 1977, p. 66. 3 35 BASIC DISTRIBUTION LIST ORGANIZATION COPIES ORGANIZATION COPIES...8217Naval Sea System Command 1 Lewis Research Center Washington, DC 20362 21000 Brookpark Road ATTN: Code 035 Cleveland, 0OR 44135 ATTN: Library Naval

  14. RESEARCH PROGRAM FOR ALERTING DETECTION AND IDENTIFICATION OF PATHOGENS.

    DTIC Science & Technology

    and Proteus vulgaris could be detected in growth medium within 2 hours incubation. The use of cometabilizable substrates, halogen substituted acids...examination of the sera of dogs infected with infectious hepatitus, herpes, and distemper viruses showed a specific response to each virus. The use of

  15. Experimental High Energy Physics Research: Direct Detection of Dark Matter

    SciTech Connect

    Witherell, Michael S.

    2014-10-02

    The grant supported research on an experimental search for evidence of dark matter interactions with normal matter. The PI carried out the research as a member of the LUX and LZ collaborations. The LUX research team collected a first data set with the LUX experiment, a large liquid xenon detector installed in the Sanford Underground Research Facility (SURF). The first results were published in Physical Review Letters on March 4, 2014. The journal Nature named the LUX result a scientific highlight of the year for 2013. In addition, the LZ collaboration submitted the full proposal for the Lux Zeplin experiment, which has since been approved by DOE-HEP as a second-generation dark matter experiment. Witherell is the Level 2 manager for the Outer Detector System on the LUX-Zeplin experiment.

  16. Safety issues and new rapid detection methods in traditional Chinese medicinal materials

    PubMed Central

    Wang, Lili; Kong, Weijun; Yang, Meihua; Han, Jianping; Chen, Shilin

    2015-01-01

    The safety of traditional Chinese medicine (TCM) is a major strategic issue that involves human health. With the continuous improvement in disease prevention and treatment, the export of TCM and its related products has increased dramatically in China. However, the frequent safety issues of Chinese medicine have become the ‘bottleneck’ impeding the modernization of TCM. It was proved that mycotoxins seriously affect TCM safety; the pesticide residues of TCM are a key problem in TCM international trade; adulterants have also been detected, which is related to market circulation. These three factors have greatly affected TCM safety. In this study, fast, highly effective, economically-feasible and accurate detection methods concerning TCM safety issues were reviewed, especially on the authenticity, mycotoxins and pesticide residues of medicinal materials. PMID:26579423

  17. Detection of fast neutrons from shielded nuclear materials using a semiconductor alpha detector.

    PubMed

    Pöllänen, R; Siiskonen, T

    2014-08-01

    The response of a semiconductor alpha detector to fast (>1 MeV) neutrons was investigated by using measurements and simulations. A polyethylene converter was placed in front of the detector to register recoil protons generated by elastic collisions between neutrons and hydrogen nuclei of the converter. The developed prototype equipment was tested with shielded radiation sources. The low background of the detector and insensitivity to high-energy gamma rays above 1 MeV are advantages when the detection of neutron-emitting nuclear materials is of importance. In the case of a (252)Cf neutron spectrum, the intrinsic efficiency of fast neutron detection was determined to be 2.5×10(-4), whereas three-fold greater efficiency was obtained for a (241)AmBe neutron spectrum.

  18. 77 FR 61432 - Proposal Review for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... From the Federal Register Online via the Government Publishing Office NATIONAL SCIENCE FOUNDATION... Act (Pub. L. 92- 463 as amended), the National Science Foundation announces the following meeting... Engineering Centers Program, Division of Materials Research, Room 1065, National Science Foundation,...

  19. IRIDIUM LINER FOR NASA 5 LBF CLASS MATERIAL TEST CHAMBER IRIDIUM LINER FOR ATLANTIC RESEARCH CORPORA

    NASA Technical Reports Server (NTRS)

    1995-01-01

    IRIDIUM LINER FOR NASA 5 LBF CLASS MATERIAL TEST CHAMBER IRIDIUM LINER FOR ATLANTIC RESEARCH CORPORATION 5 LBF CLASS ROCKET CHAMBER 25 LBF CLASS 75 HFC 25 TAC CERAMIC COMPOSITE ROCKET CHAMBER FROM REFRACTURY COMPOSITES INC. PURCHASE ORDER C-551941-

  20. Preliminary Concepts for the Materials Science Research Facility on the International Space Station

    NASA Technical Reports Server (NTRS)

    Cobb, S.D.; Szofran, F. R.; Schaefer, D. A.

    1999-01-01

    The Materials Science Research Facility (MSRF) is designed to accommodate the current and evolving cadre of peer-reviewed materials science investigations selected to conduct research in the microgravity environment of the International Space Station (ISS). The MSRF consists of modular autonomous Materials Science Research Racks (MSRR's). The initial MSRF concept consists of three Materials Science Research Racks (MSRR-1, MSRR-2, and MSRR-3) which will be developed for a phased deployment beginning on Utilization Flight 3. Each MSRR is a stand-alone autonomous rack and will be comprised of either on-orbit replaceable Experiment Modules, Module Inserts, investigation unique apparatus, or multi-user generic processing apparatus Each MSRR will support a wide variety of scientific investigations.