NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Wong, Terry T.
2011-01-01
It would be hard to argue against the fact that Integrated Computational Materials Engineering (ICME) is a fast growing discipline within material science and engineering. A quick scan of the proceedings from conferences such as Aeromat, Material Science and Technology, and the TMS Annual Meeting clearly shows it. What began a few years ago as one symposium has grown into multiple ICME related symposia at each of these conferences. As encouraging as the number of symposia being offered is the attendance at the symposia. For example, one of the ICME symposia at MS&T 10, the symposium in which this book is based, had five sessions which culminated in a panel discussion that was standing room only. In addition to the large, annual materials science and engineering conferences, smaller 1 to 2-day conferences/workshops sponsored by government agencies (e.g. AFRL and NIST) on specific aspects of ICME and by universities promoting their ICME work are regularly offered. And arguably the most significant news with regards to ICME and conferences is the July 2011 First World Congress on ICME. This five day TMS sponsored conference, specifically focused on ICME with an international advisory board of ICME leaders, shows how far ICME has spread across the globe. Evidence for the growth of ICME can also be found in Academia. The University Materials Council (UMC) is composed of department heads for material science and engineering from major U.S. and Canadian universities. Meeting twice a year to share best practices in order to strengthen both the engineering content [1] and the educational process, the UMC s agenda for their Spring 2010 meeting was dedicated to ICME [2]. This meeting was held in response to the growing awareness that the universities play a major role in the success of ICME and therefore need to develop ICME curriculum in order to meet that need. To aid educators in the development of ICME courses, NSF is funding a "Summer School" on ICME to be held at the University of Michigan in 2011 [3]. Northwestern University recently announced a MS Certificate Program in ICME [4]. Course work for this certificate begins in the Fall of 2011. Other signs that ICME is growing comes from the formation of ICME initiatives from work that did not start off with ICME in mind. One of the committees in ASM International is the Materials Properties Database Committee (MPDC). In the 2010 meeting of the MPDC, based on a study by ASM, the committee decided that it would create an ICME sub-committee in order to determine how ASM can meet the growing needs of the ICME community [5]. In 1999, the Air Force Research Laboratory (AFRL) created a consortium, the Metals Affordability Initiative (MAI), with members from both industry and government with a goal of reducing the cost and time to market of producing metal parts for aerospace applications [6].
The development of the ICME supply-chain: Route to ICME implementation and sustainment
NASA Astrophysics Data System (ADS)
Furrer, David; Schirra, John
2011-04-01
Over the past twenty years, integrated computational materials engineering (ICME) has emerged as a key engineering field with great promise. Models simulating materials-related phenomena have been developed and are being validated for industrial application. The integration of computational methods into material, process and component design has been a challenge, however, in part due to the complexities in the development of an ICME "supply-chain" that supports, sustains and delivers this emerging technology. ICME touches many disciplines, which results in a requirement for many types of computational-based technology organizations to be involved to provide tools that can be rapidly developed, validated, deployed and maintained for industrial applications. The need for, and the current state of an ICME supply-chain along with development and future requirements for the continued pace of introduction of ICME into industrial design practices will be reviewed within this article.
Integrated computational materials engineering: Tools, simulations and new applications
Madison, Jonathan D.
2016-03-30
Here, Integrated Computational Materials Engineering (ICME) is a relatively new methodology full of tremendous potential to revolutionize how science, engineering and manufacturing work together. ICME was motivated by the desire to derive greater understanding throughout each portion of the development life cycle of materials, while simultaneously reducing the time between discovery to implementation [1,2].
Evolution of a Materials Data Infrastructure
NASA Astrophysics Data System (ADS)
Warren, James A.; Ward, Charles H.
2018-06-01
The field of materials science and engineering is writing a new chapter in its evolution, one of digitally empowered materials discovery, development, and deployment. The 2008 Integrated Computational Materials Engineering (ICME) study report helped usher in this paradigm shift, making a compelling case and strong recommendations for an infrastructure supporting ICME that would enable access to precompetitive materials data for both scientific and engineering applications. With the launch of the Materials Genome Initiative in 2011, which drew substantial inspiration from the ICME study, digital data was highlighted as a core component of a Materials Innovation Infrastructure, along with experimental and computational tools. Over the past 10 years, our understanding of what it takes to provide accessible materials data has matured and rapid progress has been made in establishing a Materials Data Infrastructure (MDI). We are learning that the MDI is essential to eliminating the seams between experiment and computation by providing a means for them to connect effortlessly. Additionally, the MDI is becoming an enabler, allowing materials engineering to tie into a much broader model-based engineering enterprise for product design.
High-Throughput Thermodynamic Modeling and Uncertainty Quantification for ICME
NASA Astrophysics Data System (ADS)
Otis, Richard A.; Liu, Zi-Kui
2017-05-01
One foundational component of the integrated computational materials engineering (ICME) and Materials Genome Initiative is the computational thermodynamics based on the calculation of phase diagrams (CALPHAD) method. The CALPHAD method pioneered by Kaufman has enabled the development of thermodynamic, atomic mobility, and molar volume databases of individual phases in the full space of temperature, composition, and sometimes pressure for technologically important multicomponent engineering materials, along with sophisticated computational tools for using the databases. In this article, our recent efforts will be presented in terms of developing new computational tools for high-throughput modeling and uncertainty quantification based on high-throughput, first-principles calculations and the CALPHAD method along with their potential propagations to downstream ICME modeling and simulations.
ICME — A Mere Coupling of Models or a Discipline of Its Own?
NASA Astrophysics Data System (ADS)
Bambach, Markus; Schmitz, Georg J.; Prahl, Ulrich
Technically, ICME — Integrated computational materials engineering — is an approach for solving advanced engineering problems related to the design of new materials and processes by combining individual materials and process models. The combination of models by now is mainly achieved by manual transformation of the output of a simulation to form the input to a subsequent one. This subsequent simulation is either performed at a different length scale or constitutes a subsequent step along the process chain. Is ICME thus just a synonym for the coupling of simulations? In fact, most ICME publications up to now are examples of the joint application of selected models and software codes to a specific problem. However, from a systems point of view, the coupling of individual models and/or software codes across length scales and along material processing chains leads to highly complex meta-models. Their viability has to be ensured by joint efforts from science, industry, software developers and independent organizations. This paper identifies some developments that seem necessary to make future ICME simulations viable, sustainable and broadly accessible and accepted. The main conclusion is that ICME is more than a multi-disciplinary subject but a discipline of its own, for which a generic structural framework has to be elaborated and established.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kornreich, Drew E; Vaidya, Rajendra U; Ammerman, Curtt N
Integrated Computational Materials Engineering (ICME) is a novel overarching approach to bridge length and time scales in computational materials science and engineering. This approach integrates all elements of multi-scale modeling (including various empirical and science-based models) with materials informatics to provide users the opportunity to tailor material selections based on stringent application needs. Typically, materials engineering has focused on structural requirements (stress, strain, modulus, fracture toughness etc.) while multi-scale modeling has been science focused (mechanical threshold strength model, grain-size models, solid-solution strengthening models etc.). Materials informatics (mechanical property inventories) on the other hand, is extensively data focused. All of thesemore » elements are combined within the framework of ICME to create architecture for the development, selection and design new composite materials for challenging environments. We propose development of the foundations for applying ICME to composite materials development for nuclear and high-radiation environments (including nuclear-fusion energy reactors, nuclear-fission reactors, and accelerators). We expect to combine all elements of current material models (including thermo-mechanical and finite-element models) into the ICME framework. This will be accomplished through the use of a various mathematical modeling constructs. These constructs will allow the integration of constituent models, which in tum would allow us to use the adaptive strengths of using a combinatorial scheme (fabrication and computational) for creating new composite materials. A sample problem where these concepts are used is provided in this summary.« less
2010-03-01
of sub-routines Thermal history • Abaqus FEM engine mature applied within ABAQUS Residual stress & Distortion • Unknown maturity for HTC • Focused...investment. The committee’s ICME vision is comprehensive, expansive , and involves the entire materials community. The scope of this white paper is...Software • Continuum FEM for fluid flow, heat Mold Fill • FEM implementation mature flow and stress analysis Thermal & mushy zone history • Needs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hector, Jr., Louis G.; McCarty, Eric D.
The goal of the ICME 3GAHSS project was to successfully demonstrate the applicability of Integrated Computational Materials Engineering (ICME) for the development and deployment of third generation advanced high strength steels (3GAHSS) for immediate weight reduction in passenger vehicles. The ICME approach integrated results from well-established computational and experimental methodologies to develop a suite of material constitutive models (deformation and failure), manufacturing process and performance simulation modules, a properties database, as well as the computational environment linking them together for both performance prediction and material optimization. This is the Final Report for the ICME 3GAHSS project, which achieved the fol-lowingmore » objectives: 1) Developed a 3GAHSS ICME model, which includes atomistic, crystal plasticity, state variable and forming models. The 3GAHSS model was implemented in commercially available LS-DYNA and a user guide was developed to facilitate use of the model. 2) Developed and produced two 3GAHSS alloys using two different chemistries and manufacturing processes, for use in calibrating and validating the 3GAHSS ICME Model. 3) Optimized the design of an automotive subassembly by substituting 3GAHSS for AHSS yielding a design that met or exceeded all baseline performance requirements with a 30% mass savings. A technical cost model was also developed to estimate the cost per pound of weight saved when substituting 3GAHSS for AHSS. The project demonstrated the potential for 3GAHSS to achieve up to 30% weight savings in an automotive structure at a cost penalty of up to $0.32 to $1.26 per pound of weight saved. The 3GAHSS ICME Model enables the user to design 3GAHSS to desired mechanical properties in terms of strength and ductility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savic, Vesna; Hector, Louis G.; Ezzat, Hesham
This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980 grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching andmore » partitioning (Q&P) heat treatment, as an example.« less
Information Management Workflow and Tools Enabling Multiscale Modeling Within ICME Paradigm
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Bednarcyk, Brett A.; Austin, Nic; Terentjev, Igor; Cebon, Dave; Marsden, Will
2016-01-01
With the increased emphasis on reducing the cost and time to market of new materials, the need for analytical tools that enable the virtual design and optimization of materials throughout their processing - internal structure - property - performance envelope, along with the capturing and storing of the associated material and model information across its lifecycle, has become critical. This need is also fueled by the demands for higher efficiency in material testing; consistency, quality and traceability of data; product design; engineering analysis; as well as control of access to proprietary or sensitive information. Fortunately, material information management systems and physics-based multiscale modeling methods have kept pace with the growing user demands. Herein, recent efforts to establish workflow for and demonstrate a unique set of web application tools for linking NASA GRC's Integrated Computational Materials Engineering (ICME) Granta MI database schema and NASA GRC's Integrated multiscale Micromechanics Analysis Code (ImMAC) software toolset are presented. The goal is to enable seamless coupling between both test data and simulation data, which is captured and tracked automatically within Granta MI®, with full model pedigree information. These tools, and this type of linkage, are foundational to realizing the full potential of ICME, in which materials processing, microstructure, properties, and performance are coupled to enable application-driven design and optimization of materials and structures.
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Wong, Terry T.
2011-01-01
This compilation of papers in this book represents approximately half of the works discussed at the MS&T 2010 symposium entitled Tools, Models, Databases, and Simulation Tools Developed and Needed to Realize the Vision of Integrated Computational Materials Engineering at Materials Science & Technology wherein five sessions comprised of 33 presentations was organized. The goal of the symposium was two fold To provide a forum in which current state-of-the-art methods for ICME (e.g., information informatics, experimentation, and modeling) could be openly discussed and critiqued by not only materials scientist but also structural engineers/researchers, component designers, industrial leaders and government program managers. To leave the symposium and in particular the panel discussion with a clear idea of the gaps and barriers (both technical, cultural and economical) that must be addressed in order for ICME to fully succeed. The organizers felt that these goals were met, as particularly evident by the standing room only attendance during a lively panel discussion session at the end of the Symposium. However it is the firm belief of the editors of this book that this symposium was merely a start in the right direction, and that subsequent conferences/symposium (e.g., First World Congress on Integrated Computational Materials Engineering to be held July 10-14, 2011 at Seven Springs Mountain Resort in Pennsylvania) must work hard to ensure that a truly diverse, multidisciplinary, community of researchers and practitioners are present and have ample opportunity for interaction. This will ensure that a proper balance between push and pull disciplines and technologies is maintained so that this emerging focus area, Integrated Computational Materials Engineering (ICME), has the greatest potential for success and impact on "system-level" payoffs. Similarly, a pro-active approach is required to reform historical modes of operation in industry, government and the academic sectors so as to facilitate multidisciplinary collaboration and to clearly articulate the vision and scope of ICME.
Development of High-Performance Cast Crankshafts. Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Mark E
The objective of this project was to develop technologies that would enable the production of cast crankshafts that can replace high performance forged steel crankshafts. To achieve this, the Ultimate Tensile Strength (UTS) of the new material needs to be 850 MPa with a desired minimum Yield Strength (YS; 0.2% offset) of 615 MPa and at least 10% elongation. Perhaps more challenging, the cast material needs to be able to achieve sufficient local fatigue properties to satisfy the durability requirements in today’s high performance gasoline and diesel engine applications. The project team focused on the development of cast steel alloysmore » for application in crankshafts to take advantage of the higher stiffness over other potential material choices. The material and process developed should be able to produce high-performance crankshafts at no more than 110% of the cost of current production cast units, perhaps the most difficult objective to achieve. To minimize costs, the primary alloy design strategy was to design compositions that can achieve the required properties with minimal alloying and post-casting heat treatments. An Integrated Computational Materials Engineering (ICME) based approach was utilized, rather than relying only on traditional trial-and-error methods, which has been proven to accelerate alloy development time. Prototype melt chemistries designed using ICME were cast as test specimens and characterized iteratively to develop an alloy design within a stage-gate process. Standard characterization and material testing was done to validate the alloy performance against design targets and provide feedback to material design and manufacturing process models. Finally, the project called for Caterpillar and General Motors (GM) to develop optimized crankshaft designs using the final material and manufacturing processing path developed. A multi-disciplinary effort was to integrate finite element analyses by engine designers and geometry-specific casting simulations with existing materials models to optimize crankshaft cost and performance. Prototype crankshafts of the final design were to be produced and validated using laboratory bench testing and on-engine durability testing. ICME process simulation tools were used to investigate a broad range of processing concepts. These concepts included casting orientation, various mold and core materials, and various filling and feeding strategies. Each crankshaft was first simulated without gating and risers, which is termed natural solidification. The natural solidification results were used as a baseline for strategy development of each concept. Casting process simulations and ICME tools were proven to be reasonable predictors of real world results. Potential alloys were developed that could meet the project material property goals with appropriate normalization and temper treatments. For the alloys considered, post-normalization temper treatments proved to be necessary to achieve the desired yield strengths and elongations and appropriate heat treatments were designed using ICME tools. The experimental data of all the alloys were analyzed in combination with ICME tools to establish chemistry-process-structure relations. Several GM small gas engine (SGE) crankshafts were successfully cast in sand molds using two different sprue, runner, gate, riser, chill designs. These crankshafts were cast in two different steel alloys developed during the project, but casting finishing (e.g. riser removal) remains a cost challenge. A long list of future work was left unfinished when this project was unexpectedly terminated.« less
ICME for Crashworthiness of TWIP Steels: From Ab Initio to the Crash Performance
NASA Astrophysics Data System (ADS)
Güvenç, O.; Roters, F.; Hickel, T.; Bambach, M.
2015-01-01
During the last decade, integrated computational materials engineering (ICME) emerged as a field which aims to promote synergetic usage of formerly isolated simulation models, data and knowledge in materials science and engineering, in order to solve complex engineering problems. In our work, we applied the ICME approach to a crash box, a common automobile component crucial to passenger safety. A newly developed high manganese steel was selected as the material of the component and its crashworthiness was assessed by simulated and real drop tower tests. The crashworthiness of twinning-induced plasticity (TWIP) steel is intrinsically related to the strain hardening behavior caused by the combination of dislocation glide and deformation twinning. The relative contributions of those to the overall hardening behavior depend on the stacking fault energy (SFE) of the selected material. Both the deformation twinning mechanism and the stacking fault energy are individually well-researched topics, but especially for high-manganese steels, the determination of the stacking-fault energy and the occurrence of deformation twinning as a function of the SFE are crucial to understand the strain hardening behavior. We applied ab initio methods to calculate the stacking fault energy of the selected steel composition as an input to a recently developed strain hardening model which models deformation twinning based on the SFE-dependent dislocation mechanisms. This physically based material model is then applied to simulate a drop tower test in order to calculate the energy absorption capacity of the designed component. The results are in good agreement with experiments. The model chain links the crash performance to the SFE and hence to the chemical composition, which paves the way for computational materials design for crashworthiness.
Robust Informatics Infrastructure Required For ICME: Combining Virtual and Experimental Data
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Holland, Frederic A. Jr.; Bednarcyk, Brett A.
2014-01-01
With the increased emphasis on reducing the cost and time to market of new materials, the need for robust automated materials information management system(s) enabling sophisticated data mining tools is increasing, as evidenced by the emphasis on Integrated Computational Materials Engineering (ICME) and the recent establishment of the Materials Genome Initiative (MGI). This need is also fueled by the demands for higher efficiency in material testing; consistency, quality and traceability of data; product design; engineering analysis; as well as control of access to proprietary or sensitive information. Further, the use of increasingly sophisticated nonlinear, anisotropic and or multi-scale models requires both the processing of large volumes of test data and complex materials data necessary to establish processing-microstructure-property-performance relationships. Fortunately, material information management systems have kept pace with the growing user demands and evolved to enable: (i) the capture of both point wise data and full spectra of raw data curves, (ii) data management functions such as access, version, and quality controls;(iii) a wide range of data import, export and analysis capabilities; (iv) data pedigree traceability mechanisms; (v) data searching, reporting and viewing tools; and (vi) access to the information via a wide range of interfaces. This paper discusses key principles for the development of a robust materials information management system to enable the connections at various length scales to be made between experimental data and corresponding multiscale modeling toolsets to enable ICME. In particular, NASA Glenn's efforts towards establishing such a database for capturing constitutive modeling behavior for both monolithic and composites materials
Root-cause estimation of ultrasonic scattering signatures within a complex textured titanium
NASA Astrophysics Data System (ADS)
Blackshire, James L.; Na, Jeong K.; Freed, Shaun
2016-02-01
The nondestructive evaluation of polycrystalline materials has been an active area of research for many decades, and continues to be an area of growth in recent years. Titanium alloys in particular have become a critical material system used in modern turbine engine applications, where an evaluation of the local microstructure properties of engine disk/blade components is desired for performance and remaining life assessments. Current NDE methods are often limited to estimating ensemble material properties or detecting localized voids, inclusions, or damage features within a material. Recent advances in computational NDE and material science characterization methods are providing new and unprecedented access to heterogeneous material properties, which permits microstructure-sensing interactions to be studied in detail. In the present research, Integrated Computational Materials Engineering (ICME) methods and tools are being leveraged to gain a comprehensive understanding of root-cause ultrasonic scattering processes occurring within a textured titanium aerospace material. A combination of destructive, nondestructive, and computational methods are combined within the ICME framework to collect, holistically integrate, and study complex ultrasound scattering using realistic 2-dimensional representations of the microstructure properties. Progress towards validating the computational sensing methods are discussed, along with insight into the key scattering processes occurring within the bulk microstructure, and how they manifest in pulse-echo immersion ultrasound measurements.
Xu, Hongyi; Li, Yang; Zeng, Danielle
2017-01-02
Process integration and optimization is the key enabler of the Integrated Computational Materials Engineering (ICME) of carbon fiber composites. In this paper, automated workflows are developed for two types of composites: Sheet Molding Compounds (SMC) short fiber composites, and multi-layer unidirectional (UD) composites. For SMC, the proposed workflow integrates material processing simulation, microstructure representation volume element (RVE) models, material property prediction and structure preformation simulation to enable multiscale, multidisciplinary analysis and design. Processing parameters, microstructure parameters and vehicle subframe geometry parameters are defined as the design variables; the stiffness and weight of the structure are defined as the responses. Formore » multi-layer UD structure, this work focuses on the discussion of different design representation methods and their impacts on the optimization performance. Challenges in ICME process integration and optimization are also summarized and highlighted. Two case studies are conducted to demonstrate the integrated process and its application in optimization.« less
NASA Technical Reports Server (NTRS)
Arnold, Steven M. (Editor); Wong, Terry T. (Editor)
2011-01-01
Topics covered include: An Annotative Review of Multiscale Modeling and its Application to Scales Inherent in the Field of ICME; and A Multiscale, Nonlinear, Modeling Framework Enabling the Design and Analysis of Composite Materials and Structures.
Wanjare, Maureen; Hou, Luqia; Nakayama, Karina H; Kim, Joseph J; Mezak, Nicholas P; Abilez, Oscar J; Tzatzalos, Evangeline; Wu, Joseph C; Huang, Ngan F
2017-07-25
Engineering of myocardial tissue constructs is a promising approach for treatment of coronary heart disease. To engineer myocardial tissues that better mimic the highly ordered physiological arrangement and function of native cardiomyocytes, we generated electrospun microfibrous polycaprolactone scaffolds with either randomly oriented (14 μm fiber diameter) or parallel-aligned (7 μm fiber diameter) microfiber arrangement and co-seeded the scaffolds with human induced pluripotent stem cell-derived cardiomyocytes (iCMs) and endothelial cells (iECs) for up to 12 days after iCM seeding. Here we demonstrated that aligned microfibrous scaffolds induced iCM alignment along the direction of the aligned microfibers after 2 days of iCM seeding, as well as promoted greater iCM maturation by increasing the sarcomeric length and gene expression of myosin heavy chain adult isoform (MYH7), in comparison to randomly oriented scaffolds. Furthermore, the benefit of scaffold anisotropy was evident in the significantly higher maximum contraction velocity of iCMs on the aligned scaffolds, compared to randomly oriented scaffolds, at 12 days of culture. Co-seeding of iCMs with iECs led to reduced contractility, compared to when iCMs were seeded alone. These findings demonstrate a dominant role of scaffold anisotropy in engineering cardiovascular tissues that maintain iCM organization and contractile function.
Advances in Integrated Computational Materials Engineering "ICME"
NASA Astrophysics Data System (ADS)
Hirsch, Jürgen
The methods of Integrated Computational Materials Engineering that were developed and successfully applied for Aluminium have been constantly improved. The main aspects and recent advances of integrated material and process modeling are simulations of material properties like strength and forming properties and for the specific microstructure evolution during processing (rolling, extrusion, annealing) under the influence of material constitution and process variations through the production process down to the final application. Examples are discussed for the through-process simulation of microstructures and related properties of Aluminium sheet, including DC ingot casting, pre-heating and homogenization, hot and cold rolling, final annealing. New results are included of simulation solution annealing and age hardening of 6xxx alloys for automotive applications. Physically based quantitative descriptions and computer assisted evaluation methods are new ICME methods of integrating new simulation tools also for customer applications, like heat affected zones in welding of age hardening alloys. The aspects of estimating the effect of specific elements due to growing recycling volumes requested also for high end Aluminium products are also discussed, being of special interest in the Aluminium producing industries.
NASA Technical Reports Server (NTRS)
Pineda, Evan Jorge; Bednarcyk, Brett A.; Arnold, Steven M.
2014-01-01
Integrated computational materials engineering (ICME) is a useful approach for tailoring the performance of a material. For fiber-reinforced composites, not only do the properties of the constituents of the composite affect the performance, but so does the architecture (or microstructure) of the constituents. The generalized method of cells is demonstrated to be a viable micromechanics tool for determining the effects of the microstructure on the performance of laminates. The micromechanics is used to predict the inputs for a macroscale model for a variety of different fiber volume fractions, and fiber architectures. Using this technique, the material performance can be tailored for specific applications by judicious selection of constituents, volume fraction, and architectural arrangement given a particular manufacturing scenario
NASA Astrophysics Data System (ADS)
Joost, William J.
2012-09-01
Transportation accounts for approximately 28% of U.S. energy consumption with the majority of transportation energy derived from petroleum sources. Many technologies such as vehicle electrification, advanced combustion, and advanced fuels can reduce transportation energy consumption by improving the efficiency of cars and trucks. Lightweight materials are another important technology that can improve passenger vehicle fuel efficiency by 6-8% for each 10% reduction in weight while also making electric and alternative vehicles more competitive. Despite the opportunities for improved efficiency, widespread deployment of lightweight materials for automotive structures is hampered by technology gaps most often associated with performance, manufacturability, and cost. In this report, the impact of reduced vehicle weight on energy efficiency is discussed with a particular emphasis on quantitative relationships determined by several researchers. The most promising lightweight materials systems are described along with a brief review of the most significant technical barriers to their implementation. For each material system, the development of accurate material models is critical to support simulation-intensive processing and structural design for vehicles; improved models also contribute to an integrated computational materials engineering (ICME) approach for addressing technical barriers and accelerating deployment. The value of computational techniques is described by considering recent ICME and computational materials science success stories with an emphasis on applying problem-specific methods.
NASA Astrophysics Data System (ADS)
Wang, Xiaowo; Xu, Zhijie; Soulami, Ayoub; Hu, Xiaohua; Lavender, Curt; Joshi, Vineet
2017-12-01
Low-enriched uranium alloyed with 10 wt.% molybdenum (U-10Mo) has been identified as a promising alternative to high-enriched uranium. Manufacturing U-10Mo alloy involves multiple complex thermomechanical processes that pose challenges for computational modeling. This paper describes the application of integrated computational materials engineering (ICME) concepts to integrate three individual modeling components, viz. homogenization, microstructure-based finite element method for hot rolling, and carbide particle distribution, to simulate the early-stage processes of U-10Mo alloy manufacture. The resulting integrated model enables information to be passed between different model components and leads to improved understanding of the evolution of the microstructure. This ICME approach is then used to predict the variation in the thickness of the Zircaloy-2 barrier as a function of the degree of homogenization and to analyze the carbide distribution, which can affect the recrystallization, hardness, and fracture properties of U-10Mo in subsequent processes.
NASA Astrophysics Data System (ADS)
Arróyave, Raymundo; Talapatra, Anjana; Johnson, Luke; Singh, Navdeep; Ma, Ji; Karaman, Ibrahim
2015-11-01
Over the last decade, considerable interest in the development of High-Temperature Shape Memory Alloys (HTSMAs) for solid-state actuation has increased dramatically as key applications in the aerospace and automotive industry demand actuation temperatures well above those of conventional SMAs. Most of the research to date has focused on establishing the (forward) connections between chemistry, processing, (micro)structure, properties, and performance. Much less work has been dedicated to the development of frameworks capable of addressing the inverse problem of establishing necessary chemistry and processing schedules to achieve specific performance goals. Integrated Computational Materials Engineering (ICME) has emerged as a powerful framework to address this problem, although it has yet to be applied to the development of HTSMAs. In this paper, the contributions of computational thermodynamics and kinetics to ICME of HTSMAs are described. Some representative examples of the use of computational thermodynamics and kinetics to understand the phase stability and microstructural evolution in HTSMAs are discussed. Some very recent efforts at combining both to assist in the design of HTSMAs and limitations to the full implementation of ICME frameworks for HTSMA development are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Hongyi; Li, Yang; Zeng, Danielle
Process integration and optimization is the key enabler of the Integrated Computational Materials Engineering (ICME) of carbon fiber composites. In this paper, automated workflows are developed for two types of composites: Sheet Molding Compounds (SMC) short fiber composites, and multi-layer unidirectional (UD) composites. For SMC, the proposed workflow integrates material processing simulation, microstructure representation volume element (RVE) models, material property prediction and structure preformation simulation to enable multiscale, multidisciplinary analysis and design. Processing parameters, microstructure parameters and vehicle subframe geometry parameters are defined as the design variables; the stiffness and weight of the structure are defined as the responses. Formore » multi-layer UD structure, this work focuses on the discussion of different design representation methods and their impacts on the optimization performance. Challenges in ICME process integration and optimization are also summarized and highlighted. Two case studies are conducted to demonstrate the integrated process and its application in optimization.« less
Validating a Model for Welding Induced Residual Stress Using High-Energy X-ray Diffraction
NASA Astrophysics Data System (ADS)
Mach, J. C.; Budrow, C. J.; Pagan, D. C.; Ruff, J. P. C.; Park, J.-S.; Okasinski, J.; Beaudoin, A. J.; Miller, M. P.
2017-05-01
Integrated computational materials engineering (ICME) provides a pathway to advance performance in structures through the use of physically-based models to better understand how manufacturing processes influence product performance. As one particular challenge, consider that residual stresses induced in fabrication are pervasive and directly impact the life of structures. For ICME to be an effective strategy, it is essential that predictive capability be developed in conjunction with critical experiments. In the present work, simulation results from a multi-physics model for gas metal arc welding are evaluated through x-ray diffraction using synchrotron radiation. A test component was designed with intent to develop significant gradients in residual stress, be representative of real-world engineering application, yet remain tractable for finely spaced strain measurements with positioning equipment available at synchrotron facilities. The experimental validation lends confidence to model predictions, facilitating the explicit consideration of residual stress distribution in prediction of fatigue life.
Validating a Model for Welding Induced Residual Stress Using High-Energy X-ray Diffraction
Mach, J. C.; Budrow, C. J.; Pagan, D. C.; ...
2017-03-15
Integrated computational materials engineering (ICME) provides a pathway to advance performance in structures through the use of physically-based models to better understand how manufacturing processes influence product performance. As one particular challenge, consider that residual stresses induced in fabrication are pervasive and directly impact the life of structures. For ICME to be an effective strategy, it is essential that predictive capability be developed in conjunction with critical experiments. In the present paper, simulation results from a multi-physics model for gas metal arc welding are evaluated through x-ray diffraction using synchrotron radiation. A test component was designed with intent to developmore » significant gradients in residual stress, be representative of real-world engineering application, yet remain tractable for finely spaced strain measurements with positioning equipment available at synchrotron facilities. Finally, the experimental validation lends confidence to model predictions, facilitating the explicit consideration of residual stress distribution in prediction of fatigue life.« less
Validating a Model for Welding Induced Residual Stress Using High-Energy X-ray Diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mach, J. C.; Budrow, C. J.; Pagan, D. C.
Integrated computational materials engineering (ICME) provides a pathway to advance performance in structures through the use of physically-based models to better understand how manufacturing processes influence product performance. As one particular challenge, consider that residual stresses induced in fabrication are pervasive and directly impact the life of structures. For ICME to be an effective strategy, it is essential that predictive capability be developed in conjunction with critical experiments. In the present paper, simulation results from a multi-physics model for gas metal arc welding are evaluated through x-ray diffraction using synchrotron radiation. A test component was designed with intent to developmore » significant gradients in residual stress, be representative of real-world engineering application, yet remain tractable for finely spaced strain measurements with positioning equipment available at synchrotron facilities. Finally, the experimental validation lends confidence to model predictions, facilitating the explicit consideration of residual stress distribution in prediction of fatigue life.« less
Desai, Nina; Xu, Jing; Tsulaia, Tamara; Szeptycki-Lawson, Julia; AbdelHafez, Faten; Goldfarb, James; Falcone, Tommaso
2011-02-01
Vitrification technology presents new opportunities for preservation of embryo derived stem cells without first establishing a viable ESC line. This study tests the feasibility of cryopreserving ICM cells using vitrification. ICMs from mouse embryos were isolated and vitrified in HSV straws or on cryoloops. Upon warming, the vitrified ICMs were cultured and observed for attachment and morphology. Colonies were passaged every 3-6 days. ICMs and ICM-derived ESC colonies were tested for expression of stem cell specific markers. ICMs vitrified on both the cryoloop and the HSV straw had high survival rates. ICM derived ESCs remained undifferentiated for several passages and demonstrated expression of typical stem cell markers; SSEA-1, Sox-2, Oct 4 and alkaline phosphatase. This is the first report on successful vitrification of isolated ICMs and the subsequent derivation of ESC colonies. Vitrification of isolated ICMs is a novel approach for preservation of the "stem cell source" material.
3-D model of ICME in the interplanetary medium
NASA Astrophysics Data System (ADS)
Borgazzi, A.; Lara, A.; Niembro, T.
2011-12-01
We developed a method that describes with simply geometry the coordinates of intersection between the leading edge of an ICME and the position of an arbitrary satellite. When a fast CME is ejected from the Sun to the interplanetary space in most of the cases drives a shock. As the CME moves in the corona and later in the interplanetary space more material is stacking in the front and edges of the ejecta. In a first approximation, it is possible to assume the shape of these structures, the CME and the stacked material as a cone of revolution, (the ice-cream model [Schwenn et al., (2005)]). The interface may change due to the interaction of the structure and the non-shocked material in front of the ICME but the original shape of a cone of revolution is preserved. We assume, in a three dimensional geometry, an ice-cream cone shape for the ICME and apply an analytical model for its transport in the interplanetary medium. The goal of the present method is to give the time and the intersection coordinates between the leading edge of the ICME and any satellite that may be in the path of the ICME. With this information we can modelate the travel of the ICME in the interplanetary space using STEREO data.
DOT National Transportation Integrated Search
2010-12-01
The purpose of the Dallas ICM System is to implement a multi-modal operations decision support tool enabled by real-time data pertaining to the operation of freeways, arterials, and public transit. The system will be shared between information system...
NASA Astrophysics Data System (ADS)
Labarta, Amilcar; Vazquez, Manuel; Fontcuberta, Josep; Schuller, Ivan; Rivas, José; Givord, Dominique
2016-02-01
The International Conference on Magnetism (ICM), organized under the auspices of the International Union of Pure and Applied Physics (IUPAP), takes place every three years. It gathers scientists and engineers involved in magnetism research, from the most fundamental aspects to the most applied ones. ICM 2015, the 20th conference in the series, took place in Barcelona, from 5th to 10th July 2015, organized by a broadly international magnetics community with special commitment from the Spanish community. Almost 2200 delegates took part to ICM 2015, placing this conference amongst those with highest attendance in the series (see Table 1).
Intelligent Chemistry Management System (ICMS)--A new approach to steam generator chemistry control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barto, R.J.; Farrell, D.M.; Noto, F.A.
1986-04-01
The Intelligent Chemistry Management System (ICMS) is a new tool which assists in steam generator chemistry control. Utilizing diagnostic capabilities, the ICMS will provide utility and industrial boiler operators, system chemists, and plant engineers with a tool for monitoring, diagnosing, and controlling steam generator system chemistry. By reducing the number of forced outages through early identification of potentially detrimental conditions, suggestion of possible causes, and execution of corrective actions, improvements in unit availability and reliability will result. The system monitors water and steam quality at a number of critical locations in the plant.
ic-cmtp3: 3rd International Conference on Competitive Materials and Technology Processes
NASA Astrophysics Data System (ADS)
2016-04-01
Competitiveness is one of the most important factors in our lives and it plays a key role in the efficiency both of organizations and societies. The more scientifically advanced and prepared organizations develop more competitive materials with better physical, chemical, and biological properties, and the leading companies apply more competitive equipment and technological processes. The aims of the 3rd International Conference on Competitive Materials and Technology Processes (ic-cmtp3), and the 1st International Symposium on Innovative Carbons and Carbon Based Materials (is-icbm1) and the 1st International Symposium on Innovative Construction Materials (is-icm1) organized alongside are the following: —Promote new methods and results of scientific research in the fields of material, biological, environmental and technological sciences; —Exchange information between the theoretical and applied sciences as well as technical and technological implementations; —Promote communication and collaboration between the scientists, researchers and engineers of different nations, countries and continents. Among the major fields of interest are advanced and innovative materials with competitive characteristics, including mechanical, physical, chemical, biological, medical and thermal, properties and extreme dynamic strength. Their crystalline, nano - and micro-structures, phase transformations as well as details of their technological processes, tests and measurements are also in the focus of the ic-cmtp3 conference and the is-scbm1 and is-icm1 symposia. Multidisciplinary applications of material science and the technological problems encountered in sectors like ceramics, glasses, thin films, aerospace, automotive and marine industries, electronics, energy, construction materials, medicine, biosciences and environmental sciences are of particular interest. In accordance with the program of the ic-cmtp3 conference and is-icbm1 and is-icm1 symposia we have received more than 350 enquiries and registrations from different organizations. More than 240 abstracts were accepted for presentation. From them 12 were plenary lectures and 112 oral presentations. Researchers from 41 countries in Asia, Europe, Africa, North and South America travelled to Miskolc-Lillafüred (Hungary) and participated in the conference events. Including co-authors, the research work of more than 700 scientists were presented in the sessions and symposia of the ic-cmtp3 conference.
Interactive chemistry management system (ICMS); Field demonstration results at United Illuminating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noto, F.A.; Farrell, D.M.; Lombard, E.V.
1988-01-01
The authors report on a field demonstration of the interactive chemistry management system (ICMS) performed in the late summer of 1987 at the New Haven Harbor Station of United Illuminating Co. This demonstration was the first installation of the ICMS at an actual plant site. The ICMS is a computer-based system designed to monitor, diagnose, and provide optional automatic control of water and steam chemistry throughout the steam generator cycle. It is one of the diagnostic modules that comprises CE-TOPS (combustion engineering total on-line performance system), which continuously monitors operating conditions and suggests priority actions to increase operation efficiency, extendmore » the performance life of boiler components and reduce maintenance costs. By reducing the number of forced outages through early identification of potentially detrimental conditions, diagnosis of possible causes, and execution of corrective actions, improvements in unit availability and reliability will result.« less
Cascioli, Vincenzo; Liu, Zhuofu; Heusch, Andrew; McCarthy, Peter W
2016-05-01
This study presents a method for objectively measuring in-chair movement (ICM) that shows correlation with subjective ratings of comfort and discomfort. Employing a cross-over controlled, single blind design, healthy young subjects (n = 21) sat for 18 min on each of the following surfaces: contoured foam, straight foam and wood. Force sensitive resistors attached to the sitting interface measured the relative movements of the subjects during sitting. The purpose of this study was to determine whether ICM could statistically distinguish between each seat material, including two with subtle design differences. In addition, this study investigated methodological considerations, in particular appropriate threshold selection and sitting duration, when analysing objective movement data. ICM appears to be able to statistically distinguish between similar foam surfaces, as long as appropriate ICM thresholds and sufficient sitting durations are present. A relationship between greater ICM and increased discomfort, and lesser ICM and increased comfort was also found. Copyright © 2016. Published by Elsevier Ltd.
Simulation of Magnetic Cloud Erosion and Deformation During Propagation
NASA Astrophysics Data System (ADS)
Manchester, W.; Kozyra, J. U.; Lepri, S. T.; Lavraud, B.; Jackson, B. V.
2013-12-01
We examine a three-dimensional (3-D) numerical magnetohydrodynamic (MHD) simulation describing a very fast interplanetary coronal mass ejection (ICME) propagating from the solar corona to 1 AU. In conjunction with it's high speed, the ICME evolves in ways that give it a unique appearance at 1AU that does not resemble a typical ICME. First, as the ICME decelerates in the solar wind, filament material at the back of the flux rope pushes its way forward through the flux rope. Second, diverging nonradial flows in front of the filament transport azimuthal flux of the rope to the sides of the ICME. Third, the magnetic flux rope reconnects with the interplanetary magnetic field (IMF). As a consequence of these processes, the flux rope partially unravels and appears to evolve to an entirely open configuration near its nose. At the same time, filament material at the base of the flux rope moves forward and comes in direct contact with the shocked plasma in the CME sheath. We find evidence such remarkable behavior has occurred when we examine a very fast CME that erupted from the Sun on 2005 January 20. In situ observations of this event near 1 AU show very dense cold material impacting the Earth following immediately behind the CME sheath. Charge state analysis shows this dense plasma is filament material, and the analysis of SMEI data provides the trajectory of this dense plasma from the Sun. Consistent with the simulation, we find the azimuthal flux (Bz) to be entirely unbalanced giving the appearance that the flux rope has completely eroded on the anti-sunward side.
2016-06-28
Springs, Colorado from May 31- June 4, 2015. ONR support in the an1otmt of$15,000 was provided to support the planning , execution , and dissemination of...held in Colorado Springs, Colorado from May 31- June 4, 2015. ONR support in the amount of $15,000 was provided to support the planning , execution ...support to assist TMS in carrying out the various necessary phases of the planning , execution , and result- dissemination efforts of the Congress. In
Incessant formation of chain-like mesoporous silica with a superior binding capacity for mercury.
Ravi, S; Selvaraj, M
2014-04-14
A novel incessant formation of chain like mesoporous silica (ICMS) has been easily materialized using a mixed surfactant (Pluronic P123 and FC-4) as a structuring reagent in conjunction with a thiol precursor (3-MPS) through a one-pot synthetic method. A particular thiol concentration facilitated the interaction of the micelle head groups to form long-chain micelles, where FC-4 enhanced further growth. The rapid interactions of the micelles and the condensation of silicic acid and its oligomeric derivatives by coordinating 3-MPS through hydrogen bonding interactions leads to form ICMS. The characterization results for the ICMS illustrated that it has an ordered hexagonal pore geometry. The capability of the ICMS for Hg(2+) adsorption was extensively studied under different optimal parameters and the adsorption isothermal values clearly fit with the Langmuir and Freundlich isothermal plots. This novel material exhibited an unprecedentedly high binding affinity toward even microgram levels of mercury ions in wastewater, compared to other thiol-based mesoporous silica.
Virtual aluminum castings: An industrial application of ICME
NASA Astrophysics Data System (ADS)
Allison, John; Li, Mei; Wolverton, C.; Su, Xuming
2006-11-01
The automotive product design and manufacturing community is continually besieged by Hercule an engineering, timing, and cost challenges. Nowhere is this more evident than in the development of designs and manufacturing processes for cast aluminum engine blocks and cylinder heads. Increasing engine performance requirements coupled with stringent weight and packaging constraints are pushing aluminum alloys to the limits of their capabilities. To provide high-quality blocks and heads at the lowest possible cost, manufacturing process engineers are required to find increasingly innovative ways to cast and heat treat components. Additionally, to remain competitive, products and manufacturing methods must be developed and implemented in record time. To bridge the gaps between program needs and engineering reality, the use of robust computational models in up-front analysis will take on an increasingly important role. This article describes just such a computational approach, the Virtual Aluminum Castings methodology, which was developed and implemented at Ford Motor Company and demonstrates the feasibility and benefits of integrated computational materials engineering.
Effect of Zingiber officinale and propolis on microorganisms and endotoxins in root canals
MAEKAWA, Lilian Eiko; VALERA, Marcia Carneiro; de OLIVEIRA, Luciane Dias; CARVALHO, Cláudio Antonio Talge; CAMARGO, Carlos Henrique Ribeiro; JORGE, Antonio Olavo Cardoso
2013-01-01
The purpose of this study was to evaluate the effectiveness of glycolic propolis (PRO) and ginger (GIN) extracts, calcium hydroxide (CH), chlorhexidine (CLX) gel and their combinations as ICMs (ICMs) against Candida albicans, Enterococcus faecalis, Escherichia coli and endotoxins in root canals. Material and Methods: After 28 days of contamination with microorganisms, the canals were instrumented and then divided according to the ICM: CH+saline; CLX, CH+CLX, PRO, PRO+CH; GIN; GIN+CH; saline. The antimicrobial activity and quantification of endotoxins by the chromogenic test of Limulus amebocyte lysate were evaluated after contamination and instrumentation at 14 days of ICM application and 7 days after ICM removal. Results and Conclusion: After analysis of results and application of the Kruskal-Wallis and Dunn statistical tests at 5% significance level, it was concluded that all ICMs were able to eliminate the microorganisms in the root canals and reduce their amount of endotoxins; however, CH was more effective in neutralizing endotoxins and less effective against C. albicans and E. faecalis, requiring the use of medication combinations to obtain higher success. PMID:23559108
X-ray simulation for structural integrity for aerospace components - A case study
NASA Astrophysics Data System (ADS)
Singh, Surendra; Gray, Joseph
2016-02-01
The use of Integrated Computational Materials Engineering (ICME) has rapidly evolved from an emerging technology to the industry standards in Materials, Manufacturing, Chemical, Civil, and Aerospace engineering. Despite this the recognition of the ICME merits has been somewhat lacking within NDE community. This is due in part to the makeup of NDE practitioners. They are a very diverse but regimented group. More than 80% of NDE experts are trained and certified as NDT Level 3's and auditors in order to perform their daily inspection jobs. These jobs involve detection of attribute of interest, which may be a defect or condition or both, in a material. These jobs are performed in strict compliance with procedures that have been developed over many years by trial-and-error with minimal understanding of the underlying physics and interplay between the NDE methods setup parameters. It is not in the nature of these trained Level 3's experts to look for alternate or out-of-the box, solutions. Instead, they follow the procedures for compliance as required by regulatory agencies. This approach is time-consuming, subjective, and is treated as a bottleneck in today's manufacturing environments. As such, there is a need for new NDE tools that provide rapid, high quality solutions for studying structural and dimensional integrity in parts at a reduced cost. NDE simulations offer such options by a shortening NDE technique development-time, attaining a new level in the scientific understanding of physics of interactions between interrogating energy and materials, and reducing costs. In this paper, we apply NDE simulation (XRSIM as an example) for simulating X-Ray techniques for studying aerospace components. These results show that NDE simulations help: 1) significantly shorten NDE technique development-time, 2) assist in training NDE experts, by facilitating the understanding of the underlying physics, and 3) improve both capability and reliability of NDE methods in terms of coverage maps.
Advances in multi-scale modeling of solidification and casting processes
NASA Astrophysics Data System (ADS)
Liu, Baicheng; Xu, Qingyan; Jing, Tao; Shen, Houfa; Han, Zhiqiang
2011-04-01
The development of the aviation, energy and automobile industries requires an advanced integrated product/process R&D systems which could optimize the product and the process design as well. Integrated computational materials engineering (ICME) is a promising approach to fulfill this requirement and make the product and process development efficient, economic, and environmentally friendly. Advances in multi-scale modeling of solidification and casting processes, including mathematical models as well as engineering applications are presented in the paper. Dendrite morphology of magnesium and aluminum alloy of solidification process by using phase field and cellular automaton methods, mathematical models of segregation of large steel ingot, and microstructure models of unidirectionally solidified turbine blade casting are studied and discussed. In addition, some engineering case studies, including microstructure simulation of aluminum casting for automobile industry, segregation of large steel ingot for energy industry, and microstructure simulation of unidirectionally solidified turbine blade castings for aviation industry are discussed.
Li, Yang; Chen, Zhangxing; Xu, Hongyi; ...
2017-01-02
Compression molded SMC composed of chopped carbon fiber and resin polymer which balances the mechanical performance and manufacturing cost presents a promising solution for vehicle lightweight strategy. However, the performance of the SMC molded parts highly depends on the compression molding process and local microstructure, which greatly increases the cost for the part level performance testing and elongates the design cycle. ICME (Integrated Computational Material Engineering) approaches are thus necessary tools to reduce the number of experiments required during part design and speed up the deployment of the SMC materials. As the fundamental stage of the ICME workflow, commercial softwaremore » packages for SMC compression molding exist yet remain not fully validated especially for chopped fiber systems. In this study, SMC plaques are prepared through compression molding process. The corresponding simulation models are built in Autodesk Moldflow with the same part geometry and processing conditions as in the molding tests. The output variables of the compression molding simulations, including press force history and fiber orientation of the part, are compared with experimental data. Influence of the processing conditions to the fiber orientation of the SMC plaque is also discussed. It is found that generally Autodesk Moldflow can achieve a good simulation of the compression molding process for chopped carbon fiber SMC, yet quantitative discrepancies still remain between predicted variables and experimental results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Chen, Zhangxing; Xu, Hongyi
Compression molded SMC composed of chopped carbon fiber and resin polymer which balances the mechanical performance and manufacturing cost presents a promising solution for vehicle lightweight strategy. However, the performance of the SMC molded parts highly depends on the compression molding process and local microstructure, which greatly increases the cost for the part level performance testing and elongates the design cycle. ICME (Integrated Computational Material Engineering) approaches are thus necessary tools to reduce the number of experiments required during part design and speed up the deployment of the SMC materials. As the fundamental stage of the ICME workflow, commercial softwaremore » packages for SMC compression molding exist yet remain not fully validated especially for chopped fiber systems. In this study, SMC plaques are prepared through compression molding process. The corresponding simulation models are built in Autodesk Moldflow with the same part geometry and processing conditions as in the molding tests. The output variables of the compression molding simulations, including press force history and fiber orientation of the part, are compared with experimental data. Influence of the processing conditions to the fiber orientation of the SMC plaque is also discussed. It is found that generally Autodesk Moldflow can achieve a good simulation of the compression molding process for chopped carbon fiber SMC, yet quantitative discrepancies still remain between predicted variables and experimental results.« less
Xu, Jianpo; Xu, Dandan; Wan, Muyang; Yin, Li; Wang, Xiaofei; Wu, Lijie; Liu, Yanhua; Liu, Xiaoyun; Zhou, Yan; Zhu, Yongqun
2017-12-19
The type IVb secretion system (T4BSS) of Legionella pneumophila is a multiple-component apparatus that delivers ∼300 virulent effector proteins into host cells. The injected effectors modulate host cellular processes to promote bacterial infection and proliferation. IcmS and IcmW are two conserved small, acidic adaptor proteins that form a binary complex to interact with many effectors and facilitate their translocation. IcmS and IcmW can also interact with DotL, an ATPase of the type IV coupling protein complex (T4CP). However, how IcmS-IcmW recognizes effectors, and what the roles of IcmS-IcmW are in T4BSSs are unclear. In this study, we found that IcmS and IcmW form a 1:1 heterodimeric complex to bind effector substrates. Both IcmS and IcmW adopt new structural folds and have no structural similarities with known effector chaperones. IcmS has a compact global structure with an α/β fold, while IcmW adopts a fully α-folded, relatively loose architecture. IcmS stabilizes IcmW by binding to its two C-terminal α-helices. Photocrosslinking assays revealed that the IcmS-IcmW complex binds its cognate effectors via an extended hydrophobic surface, which can also interact with the C terminus of DotL. A crystal structure of the DotL-IcmS-IcmW complex reveals extensive and highly stable interactions between DotL and IcmS-IcmW. Moreover, IcmS-IcmW recruits LvgA to DotL and assembles a unique T4CP. These data suggest that IcmS-IcmW also functions as an inseparable integral component of the DotL-T4CP complex in the bacterial inner membrane. This study provides molecular insights into the dual roles of the IcmS-IcmW complex in T4BSSs.
A synthetic aperture radio telescope for ICME observations as a potential payload of SPORT
NASA Astrophysics Data System (ADS)
Zhang, C.; Sun, W.; Liu, H.; Xiong, M.; Liu, Y. D.; Wu, J.
2013-12-01
We introduce a potential payload for the Solar Polar ORbit Telescope (SPORT), a space weather mission proposed by the National Space Science Center, Chinese Academy of Sciences. This is a synthetic aperture radio imager designed to detect radio emissions from interplanetary coronal mass ejections (ICMEs), which is expected to be an important instrument to monitor the propagation and evolution of ICMEs. The radio telescope applies a synthetic aperture interferometric technique to measure the brightness temperature of ICMEs. Theoretical calculations of the brightness temperature utilizing statistical properties of ICMEs and the background solar wind indicate that ICMEs within 0.35 AU from the Sun are detectable by a radio telescope at a frequency <= 150 MHz with a sensitivity of <=1 K. The telescope employs a time shared double rotation scan (also called a clock scan), where two coplanar antennas revolve around a fixed axis at different radius and speed, to fulfill sampling of the brightness temperature. An array of 4+4 elements with opposite scanning directions are developed for the radio telescope to achieve the required sensitivity (<=1K) within the imaging refreshing time (~30 minutes). This scan scheme is appropriate for a three-axis stabilized spacecraft platform while keeping a good sampling pattern. We also discuss how we select the operating frequency, which involves a trade-off between the engineering feasibility and the scientific goal. Our preliminary results indicate that the central frequency of 150 MHz with a bandwidth of 20 MHz, which requires arm lengths of the two groups of 14m and 16m, respectively, gives an angular resolution of 2°, a field of view of ×25° around the Sun, and a time resolution of 30 minutes.
The flaw-detected coating and its applications in R&M of aircrafts
NASA Astrophysics Data System (ADS)
Hu, Feng; Liu, Mabao; Lü, Zhigang
2009-07-01
A monitoring method called ICM (Intelligent Coating Monitoring), which is based mainly on the intelligent coating sensors, has the capability to monitor crack initiation and growth in fatigue test coupons has been suggested in this study. The intelligent coating sensor is normally consisted of three layers: driving layer, sensing layer and protective layer where necessary. Fatigue tests with ICM for various materials demonstrate the capability to detect cracks with l<300μm, corresponding to the increment of the sensing layer's resistance at the level of 0.05Ω. Also, ICM resistance measurements correlate with crack length, permitting crack length monitoring. Numerous applications are under evaluation for ICM in difficult-to-access locations on commercial and military aircrafts. The motivation for the permanently flaw-detected coating monitoring is either (i) to replace an existing inspection that requires substantial disassembly and surface preparation (e.g. inside the fuel tank of an aircraft), or (ii) to take advantage of early detection and apply less invasive life-extension repairs, as well as reduce interruption of service when flaws are detected. Implementation of ICM is expected to improve fleet management practices and modify damage tolerance assumptions.
The Legionella IcmS-IcmW protein complex is important for Dot/Icm-mediated protein translocation.
Ninio, Shira; Zuckman-Cholon, Deborah M; Cambronne, Eric D; Roy, Craig R
2005-02-01
The intracellular pathogen Legionella pneumophila can infect and replicate within macrophages of a human host. To establish infection, Legionella require the Dot/Icm secretion system to inject protein substrates directly into the host cell cytoplasm. The mechanism by which substrate proteins are engaged and translocated by the Dot/Icm system is not well understood. Here we show that two cytosolic components of the Dot/Icm secretion machinery, the proteins IcmS and IcmW, play an important role in substrate translocation. Biochemical analysis indicates that IcmS and IcmW form a stable protein complex. In Legionella, the IcmW protein is rapidly degraded in the absence of the IcmS protein. Substrate proteins translocated into mammalian host cells by the Dot/Icm system were identified using the IcmW protein as bait in a yeast two-hybrid screen. It was determined that the IcmS-IcmW complex interacts with these substrates and plays an important role in translocation of these proteins into mammalian cells. These data are consistent with the IcmS-IcmW complex being involved in the recognition and Dot/Icm-dependent translocation of substrate proteins during Legionella infection of host cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, I.; et al.
2017-11-02
We estimate total mass (more » $$M_{500}$$), intracluster medium (ICM) mass ($$M_{\\mathrm{ICM}}$$) and stellar mass ($$M_{\\star}$$) in a Sunyaev-Zel'dovich effect (SZE) selected sample of 91 galaxy clusters with masses $$M_{500}\\gtrsim2.5\\times10^{14}M_{\\odot}$$ and redshift $0.2 < z < 1.25$ from the 2500 deg$^2$ South Pole Telescope SPT-SZ survey. The total masses $$M_{500}$$ are estimated from the SZE observable, the ICM masses $$M_{\\mathrm{ICM}}$$ are obtained from the analysis of $Chandra$ X-ray observations, and the stellar masses $$M_{\\star}$$ are derived by fitting spectral energy distribution templates to Dark Energy Survey (DES) $griz$ optical photometry and $WISE$ or $Spitzer$ near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass and the cold baryonic fraction with cluster mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past $$\\approx9$$ Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the measured mass trends without strong redshift trends in the stellar mass scaling relation could be explained by a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called "missing baryons" outside cluster virial regions.« less
Chiu, I.; Mohr, J. J.; McDonald, M.; ...
2018-05-16
Here, we estimate total mass (more » $$M_{500}$$), intracluster medium (ICM) mass ($$M_{\\mathrm{ICM}}$$) and stellar mass ($$M_{\\star}$$) in a Sunyaev-Zel'dovich effect (SZE) selected sample of 91 galaxy clusters with masses $$M_{500}\\gtrsim2.5\\times10^{14}M_{\\odot}$$ and redshift $0.2 < z < 1.25$ from the 2500 deg$^2$ South Pole Telescope SPT-SZ survey. The total masses $$M_{500}$$ are estimated from the SZE observable, the ICM masses $$M_{\\mathrm{ICM}}$$ are obtained from the analysis of $Chandra$ X-ray observations, and the stellar masses $$M_{\\star}$$ are derived by fitting spectral energy distribution templates to Dark Energy Survey (DES) $griz$ optical photometry and $WISE$ or $Spitzer$ near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass and the cold baryonic fraction with cluster mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past $$\\approx9$$ Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the measured mass trends without strong redshift trends in the stellar mass scaling relation could be explained by a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called "missing baryons" outside cluster virial regions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, I.; et al.
2017-11-02
We estimate total mass (more » $$M_{500}$$), intracluster medium (ICM) mass ($$M_{\\mathrm{ICM}}$$) and stellar mass ($$M_{\\star}$$) in a Sunyaev-Zel'dovich effect (SZE) selected sample of 91 galaxy clusters with masses $$M_{500}\\gtrsim2.5\\times10^{14}M_{\\odot}$$ and redshift $0.2 < z < 1.25$ from the 2500 deg$^2$ South Pole Telescope SPT-SZ survey. The total masses $$M_{500}$$ are estimated from the SZE observable, the ICM masses $$M_{\\mathrm{ICM}}$$ are obtained from the analysis of $Chandra$ X-ray observations, and the stellar masses $$M_{\\star}$$ are derived by fitting spectral energy distribution templates to Dark Energy Survey (DES) $griz$ optical photometry and $WISE$ or $Spitzer$ near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass and the cold baryonic fraction with cluster mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past $$\\approx9$$ Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the strong mass and weak redshift trends in the stellar mass scaling relation suggest a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called 'missing baryons' outside cluster virial regions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, I.; Mohr, J. J.; McDonald, M.
Here, we estimate total mass (more » $$M_{500}$$), intracluster medium (ICM) mass ($$M_{\\mathrm{ICM}}$$) and stellar mass ($$M_{\\star}$$) in a Sunyaev-Zel'dovich effect (SZE) selected sample of 91 galaxy clusters with masses $$M_{500}\\gtrsim2.5\\times10^{14}M_{\\odot}$$ and redshift $0.2 < z < 1.25$ from the 2500 deg$^2$ South Pole Telescope SPT-SZ survey. The total masses $$M_{500}$$ are estimated from the SZE observable, the ICM masses $$M_{\\mathrm{ICM}}$$ are obtained from the analysis of $Chandra$ X-ray observations, and the stellar masses $$M_{\\star}$$ are derived by fitting spectral energy distribution templates to Dark Energy Survey (DES) $griz$ optical photometry and $WISE$ or $Spitzer$ near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass and the cold baryonic fraction with cluster mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past $$\\approx9$$ Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the measured mass trends without strong redshift trends in the stellar mass scaling relation could be explained by a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called "missing baryons" outside cluster virial regions.« less
Anomaly detection of microstructural defects in continuous fiber reinforced composites
NASA Astrophysics Data System (ADS)
Bricker, Stephen; Simmons, J. P.; Przybyla, Craig; Hardie, Russell
2015-03-01
Ceramic matrix composites (CMC) with continuous fiber reinforcements have the potential to enable the next generation of high speed hypersonic vehicles and/or significant improvements in gas turbine engine performance due to their exhibited toughness when subjected to high mechanical loads at extreme temperatures (2200F+). Reinforced fiber composites (RFC) provide increased fracture toughness, crack growth resistance, and strength, though little is known about how stochastic variation and imperfections in the material effect material properties. In this work, tools are developed for quantifying anomalies within the microstructure at several scales. The detection and characterization of anomalous microstructure is a critical step in linking production techniques to properties, as well as in accurate material simulation and property prediction for the integrated computation materials engineering (ICME) of RFC based components. It is desired to find statistical outliers for any number of material characteristics such as fibers, fiber coatings, and pores. Here, fiber orientation, or `velocity', and `velocity' gradient are developed and examined for anomalous behavior. Categorizing anomalous behavior in the CMC is approached by multivariate Gaussian mixture modeling. A Gaussian mixture is employed to estimate the probability density function (PDF) of the features in question, and anomalies are classified by their likelihood of belonging to the statistical normal behavior for that feature.
Barysheva, Oksana V; Fujii, Jun; Takaesu, Giichi; Yoshida, Shin-ichi
2008-04-01
An unstable type of green fluorescent protein (Gfp) tagged with a C-terminal extension, which is a target for tail-specific protease, was used as a reporter gene in Legionella pneumophila. To analyse Gfp expression in legionellae, transcriptional fusions of unstable gfp with the Legionella-specific icm (intracellular multiplication) promoters (P(icmS), P(icmT) and P(icmQ)) were constructed. Infection studies using J774.1 macrophages as the host, and L. pneumophila strains carrying P(icmS)-gfp, P(icmT)-gfp and P(icmQ)-gfp fusions, indicated that the icmS, icmT and icmQ genes could be expressed intracellularly. Expression of icmS, icmT and icmQ genes in infected cells was examined by flow cytometry. Furthermore, fluorescent intracellular legionellae were detected directly by confocal microscopy. Real-time quantitative RT-PCR revealed the differences in the gene expression of icmS, and that of icmT and icmQ, during infection. Expression of icmS was high in the late stage of infection, while that of icmT and icmQ was high in the early phase only. We show that unstable gfp is a useful reporter gene whose expression in legionellae can be followed in real-time, and that it allows analysis of promoter activities in legionellae and monitoring of the infection process.
The Geoeffectiveness of ICMEs from 1996 to 2013
NASA Astrophysics Data System (ADS)
Shen, C.; Chi, Y.; Wang, Y.; Wang, S.; Ye, P.
2015-12-01
In a previous study (Chi et al. (2015)), we have established interplanetary coronal mass ejections (ICMEs) catalogue in the near earth solar wind from 1996 to 2013. ICMEs are the predominant drivers of intense geomagnetic storms. In this paper we study the geoeffectiveness of ICMEs based on the ICME catalogue and the Dst indices the geoeffectiveness of ICMEs during 1996-2013. Based on the different in situ observation signatures, all ICMEs (338 events) are divided into three types of: isolated ICMEs (I-ICMEs), multiple ICMEs (M-ICMEs) and shock-embedded ICMEs (S-ICMEs). We find that about 58% of ICMEs caused geomagnetic storms with Dst_min <-30nT. Meanwhile, about 21% of ICMEs caused intense geomagnetic storms and almost all the intense geomagnetic storms are caused by the ICMEs. It also find that the south component of the magnetic field (Bs), the solar wind velocity (V) and the dawn-dust electric field Ey=VxBs are most important parameters in determine the geoeffectiveness of the ICMEs. We further get the critical values of these parameters of the ICMEs which can be used to determine whether a ICME can cause a geomagnetic storm. During solar cycle 24th, there are extremely low number of geomagnetic storms by the reason that the number of strong ICMEs arrived at the Earth is small. The S-ICMEs structures can cause the geomagnetic storms especially intense geomagnetic storms with high possibility. It statistically show the result that the S-ICMEs are important sources of the geomagnetic storms especially for intense storms.
Kumar, R; Ahlawat, S P S; Sharma, M; Verma, O P; Sai Kumar, G; Taru Sharma, G
2014-03-01
The efficiency of embryonic stem cell (ESC) derivation from all species except for rodents and primates is very low. There are however, multiple interests in obtaining pluripotent cells from these animals with main expectations in the fields of transgenesis, cloning, regenerative medicine and tissue engineering. Researches are being carried out in laboratories throughout the world to increase the efficiency of ESC isolation for their downstream applications. Thus, the present study was undertaken to study the effect of different isolation methods based on the morphology of blastocyst for efficient derivation of buffalo ESCs. Embryos were produced in vitro through the procedures of maturation, fertilization and culture. Hatched blastocysts or isolated inner cell masses (ICMs) were seeded on mitomycin-C inactivated buffalo fetal fibroblast monolayer for the development of ESC colonies. The ESCs were analyzed for alkaline phosphatase activity, expression of pluripotency markers and karyotypic stability. Primary ESC colonies were obtained after 2-5 days of seeding hatched blastocysts or isolated ICMs on mitomycin-C inactivated feeder layer. Mechanically isolated ICMs attached and formed primary cell colonies more efficiently than ICMs isolated enzymatically. For derivation of ESCs from poorly defined ICMs intact hatched blastocyst culture was the most successful method. Results of this study implied that although ESCs can be obtained using all three methods used in this study, efficiency varies depending upon the morphology of blastocyst and isolation method used. So, appropriate isolation method must be selected depending on the quality of blastocyst for efficient derivation of ESCs.
Plasma Heating inside ICMEs by Alfvenic Fluctuations Dissipation
NASA Astrophysics Data System (ADS)
Li, H.; Wang, C.; He, J.; Zhang, L.; Richardson, J. D.; Belcher, J. W.; Tu, C.
2017-12-01
Nonlinear cascade of low-frequency Alfvenic fluctuations (AFs) is regarded as one of the candidate energy sources that heat plasma during the non-adiabatic expansion of interplanetary coronal mass ejections (ICMEs). However, AFs inside ICMEs were seldom reported in the literature. In this study, we investigate AFs inside ICMEs using observations from Voyager 2 between 1 and 6 au. It has been found that AFs with a high degree of Alfvenicity frequently occurred inside ICMEs for almost all of the identified ICMEs (30 out of 33 ICMEs) and for 12.6% of the ICME time interval. As ICMEs expand and move outward, the percentage of AF duration decays linearly in general. The occurrence rate of AFs inside ICMEs is much less than that in ambient solar wind, especially within 4.75 au. AFs inside ICMEs are more frequently presented in the center and at the boundaries of ICMEs. In addition, the proton temperature inside ICME has a similar "W"-shaped distribution. These findings suggest significant contribution of AFs on local plasma heating inside ICMEs.
Preference and usage of intracanal medications during endodontic treatment.
Madarati, Ahmad A; Zafar, Muhammad S; Sammani, Aya M N; Mandorah, Ayman O; Bani-Younes, Hamzah A
2017-07-01
To investigate the preferences of general dental practitioners (GDPs) and endodontists in using endodontic intra-canal medications (ICMs). This observational and descriptive study was conducted in 2014 in the western province of Saudi Arabia. Following ethical clearance and 2 pilot studies, a web-based questionnaire was electronically sent to 375 randomly and systematically selected GDPs and all endodontists in the western province (n=49). An accompanying e-mail explained the study's aims and confirmed that the data yielded would remain confidential. The responses were collected, and the data was analyzed using the Chi-square test at p=0.05. Significantly, the highest proportion of respondents (53.7%) reported disinfection of the root canals as the main function of ICMs. Calcium hydroxide (CH) was the preferred material of the majority of those who used the same ICM in all cases (85.7%). While the vast majority of all endodontists (87.5%) used CH after pulp extirpation, 48.5% of GDPs used formocresol (p less than 0.001). Almost 30% of those who used ICMs after pulp extirpation did not do so after cleaning and shaping of vital cases. Most endodontists used CH (62.5%) and antibiotics (37.5%) in necrotic pulp cases without apical lesions, which were significantly greater than those of GDPs who did the same (43.8% and 17.2%). Participants were aware that the main function of ICMs is disinfection of the root canal system. However, it is clear that GDPs should reduce their reliance on phenol- and formaldehyde-based medications. There was a distinct trend toward the use of ICMs, especially CH, in necrotic pulp cases.
Integrated Computational Materials Engineering for Magnesium in Automotive Body Applications
NASA Astrophysics Data System (ADS)
Allison, John E.; Liu, Baicheng; Boyle, Kevin P.; Hector, Lou; McCune, Robert
This paper provides an overview and progress report for an international collaborative project which aims to develop an ICME infrastructure for magnesium for use in automotive body applications. Quantitative processing-micro structure-property relationships are being developed for extruded Mg alloys, sheet-formed Mg alloys and high pressure die cast Mg alloys. These relationships are captured in computational models which are then linked with manufacturing process simulation and used to provide constitutive models for component performance analysis. The long term goal is to capture this information in efficient computational models and in a web-centered knowledge base. The work is being conducted at leading universities, national labs and industrial research facilities in the US, China and Canada. This project is sponsored by the U.S. Department of Energy, the U.S. Automotive Materials Partnership (USAMP), Chinese Ministry of Science and Technology (MOST) and Natural Resources Canada (NRCan).
Vincent, Carr D; Vogel, Joseph P
2006-08-01
Many bacterial pathogens require a functional type IV secretion system (T4SS) for virulence. Legionella pneumophila, the causative agent of Legionnaires' disease, employs the Dot/Icm T4SS to inject a large number of protein substrates into its host, thereby altering phagosome trafficking. The L. pneumophila T4SS substrate SdeA has been shown to require the accessory factor IcmS for its export. IcmS, defined as a type IV adaptor, exists as a heterodimer with IcmW and this complex functions in a manner similar to a type III secretion chaperone. Here we report an interaction between IcmS and the previously identified virulence factor LvgA. Similar to the icmS mutant, the lvgA mutant appears to assemble a fully functional Dot/Icm complex. Both LvgA and IcmS are small, acidic proteins localized to the cytoplasm and are not exported by the Dot/Icm system, suggesting they form a novel type IV adaptor complex. Inactivation of lvgA causes a minimal defect in growth in the human monocytic cell line U937 and the environmental host Acanthamoeba castellanii. However, the lvgA mutant was severely attenuated for intracellular growth of L. pneumophila in mouse macrophages, suggesting LvgA may be a critical factor that confers host specificity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raychaudhury, S.; Farelli, J; Montminy, T
2009-01-01
During infection, Legionella pneumophila creates a replication vacuole within eukaryotic cells and this requires a Type IVb secretion system (T4bSS). IcmQ plays a critical role in the translocase and associates with IcmR. In this paper, we show that the N-terminal domain of IcmQ (Qn) mediates self-dimerization, whereas the C-terminal domain with a basic linker promotes membrane association. In addition, the binding of IcmR to IcmQ prevents self-dimerization and also blocks membrane permeabilization. However, IcmR does not completely block membrane binding by IcmQ. We then determined crystal structures of Qn with the interacting region of IcmR. In this complex, each proteinmore » forms an ?-helical hairpin within a parallel four-helix bundle. The amphipathic nature of helices in Qn suggests two possible models for membrane permeabilization by IcmQ. The Rm-Qn structure also suggests how IcmR-like proteins in other L. pneumophila species may interact with their IcmQ partners.« less
Vincent, Carr D.; Friedman, Jonathan R.; Jeong, Kwang Cheol; Sutherland, Molly C.; Vogel, Joseph P.
2012-01-01
Summary Legionella pneumophila, the causative agent of Legionnaires’ disease, survives in macrophages by altering the endocytic pathway of its host cell. To accomplish this, the bacterium utilizes a type IVB secretion system to deliver effector molecules into the host cell cytoplasm. In a previous report, we performed an extensive characterization of the L. pneumophila type IVB secretion system that resulted in the identification of a critical five-protein subcomplex that forms the core of the secretion apparatus. Here we describe a second Dot/Icm protein subassembly composed of the type IV coupling protein DotL, the apparatus proteins DotM and DotN, and the secretion adaptor proteins IcmS and IcmW. In the absence of IcmS or IcmW, DotL becomes destabilized at the transition from the exponential to stationary phases of growth, concurrent with the expression of many secreted substrates. Loss of DotL is dependent on ClpA, a regulator of the cytoplasmic protease ClpP. The resulting decreased levels of DotL in the icmS and icmW mutants exacerbates the intracellular defects of these strains and can be partially suppressed by overproduction of DotL. Thus, in addition to their role as chaperones for Legionella T4SS substrates, IcmS and IcmW perform a second function as part of the Dot/Icm type IV coupling protein subcomplex. PMID:22694730
Magnesium Front End Research and Development: A Canada-China-USA Collaboration
NASA Astrophysics Data System (ADS)
Luo, Alan A.; Nyberg, Eric A.; Sadayappan, Kumar; Shi, Wenfang
The Magnesium Front End Research & Development (MFERD) project is an effort jointly sponsored by the United States Department of Energy, the United States Automotive Materials Partnership (USAMP), the Chinese Ministry of Science and Technology and Natural Resources Canada (NRCan) to demonstrate the technical and economic feasibility of a magnesium-intensive automotive front end body structure which offers improved fuel economy and performance benefits in a multi-material automotive structure. The project examines novel magnesium automotive body applications and processes, beyond conventional die castings, including wrought components (sheet or extrusions) and high-integrity body castings. This paper outlines the scope of work and organization for the collaborative (tri-country) task teams. The project has the goals of developing key enabling technologies and knowledge base for increased magnesium automotive body applications. The MFERD project began in early 2007 by initiating R&D in the following areas: crashworthiness, NVH, fatigue and durability, corrosion and surface finishing, extrusion and forming, sheet and forming, high-integrity body casting, as well as joining and assembly. Additionally, the MFERD project is also linked to the Integrated Computational Materials Engineering (ICME) project that will investigate the processing/structure/properties relations for various magnesium alloys and manufacturing processes utilizing advanced computer-aided engineering and modeling tools.
Preference and usage of intracanal medications during endodontic treatment
Madarati, Ahmad A.; Zafar, Muhammad S.; Sammani, Aya M.N.; Mandorah, Ayman O.; Bani-Younes, Hamzah A.
2017-01-01
Objectives: To investigate the preferences of general dental practitioners (GDPs) and endodontists in using endodontic intra-canal medications (ICMs). Methods: This observational and descriptive study was conducted in 2014 in the western province of Saudi Arabia. Following ethical clearance and 2 pilot studies, a web-based questionnaire was electronically sent to 375 randomly and systematically selected GDPs and all endodontists in the western province (n=49). An accompanying e-mail explained the study’s aims and confirmed that the data yielded would remain confidential. The responses were collected, and the data was analyzed using the Chi-square test at p=0.05. Results: Significantly, the highest proportion of respondents (53.7%) reported disinfection of the root canals as the main function of ICMs. Calcium hydroxide (CH) was the preferred material of the majority of those who used the same ICM in all cases (85.7%). While the vast majority of all endodontists (87.5%) used CH after pulp extirpation, 48.5% of GDPs used formocresol (p<0.001). Almost 30% of those who used ICMs after pulp extirpation did not do so after cleaning and shaping of vital cases. Most endodontists used CH (62.5%) and antibiotics (37.5%) in necrotic pulp cases without apical lesions, which were significantly greater than those of GDPs who did the same (43.8% and 17.2%). Conclusions: Participants were aware that the main function of ICMs is disinfection of the root canal system. However, it is clear that GDPs should reduce their reliance on phenol- and formaldehyde-based medications. There was a distinct trend toward the use of ICMs, especially CH, in necrotic pulp cases. PMID:28674723
Multi-scale Material Parameter Identification Using LS-DYNA® and LS-OPT®
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stander, Nielen; Basudhar, Anirban; Basu, Ushnish
2015-09-14
Ever-tightening regulations on fuel economy, and the likely future regulation of carbon emissions, demand persistent innovation in vehicle design to reduce vehicle mass. Classical methods for computational mass reduction include sizing, shape and topology optimization. One of the few remaining options for weight reduction can be found in materials engineering and material design optimization. Apart from considering different types of materials, by adding material diversity and composite materials, an appealing option in automotive design is to engineer steel alloys for the purpose of reducing plate thickness while retaining sufficient strength and ductility required for durability and safety. A project tomore » develop computational material models for advanced high strength steel is currently being executed under the auspices of the United States Automotive Materials Partnership (USAMP) funded by the US Department of Energy. Under this program, new Third Generation Advanced High Strength Steel (i.e., 3GAHSS) are being designed, tested and integrated with the remaining design variables of a benchmark vehicle Finite Element model. The objectives of the project are to integrate atomistic, microstructural, forming and performance models to create an integrated computational materials engineering (ICME) toolkit for 3GAHSS. The mechanical properties of Advanced High Strength Steels (AHSS) are controlled by many factors, including phase composition and distribution in the overall microstructure, volume fraction, size and morphology of phase constituents as well as stability of the metastable retained austenite phase. The complex phase transformation and deformation mechanisms in these steels make the well-established traditional techniques obsolete, and a multi-scale microstructure-based modeling approach following the ICME [0]strategy was therefore chosen in this project. Multi-scale modeling as a major area of research and development is an outgrowth of the Comprehensive Test Ban Treaty of 1996 which banned surface testing of nuclear devices [1]. This had the effect that experimental work was reduced from large scale tests to multiscale experiments to provide material models with validation at different length scales. In the subsequent years industry realized that multi-scale modeling and simulation-based design were transferable to the design optimization of any structural system. Horstemeyer [1] lists a number of advantages of the use of multiscale modeling. Among these are: the reduction of product development time by alleviating costly trial-and-error iterations as well as the reduction of product costs through innovations in material, product and process designs. Multi-scale modeling can reduce the number of costly large scale experiments and can increase product quality by providing more accurate predictions. Research tends to be focussed on each particular length scale, which enhances accuracy in the long term. This paper serves as an introduction to the LS-OPT and LS-DYNA methodology for multi-scale modeling. It mainly focuses on an approach to integrate material identification using material models of different length scales. As an example, a multi-scale material identification strategy, consisting of a Crystal Plasticity (CP) material model and a homogenized State Variable (SV) model, is discussed and the parameter identification of the individual material models of different length scales is demonstrated. The paper concludes with thoughts on integrating the multi-scale methodology into the overall vehicle design.« less
Vincent, Carr D; Friedman, Jonathan R; Jeong, Kwang Cheol; Sutherland, Molly C; Vogel, Joseph P
2012-07-01
Legionella pneumophila, the causative agent of Legionnaires' disease, survives in macrophages by altering the endocytic pathway of its host cell. To accomplish this, the bacterium utilizes a type IVB secretion system to deliver effector molecules into the host cell cytoplasm. In a previous report, we performed an extensive characterization of the L. pneumophila type IVB secretion system that resulted in the identification of a critical five-protein subcomplex that forms the core of the secretion apparatus. Here we describe a second Dot/Icm protein subassembly composed of the type IV coupling protein DotL, the apparatus proteins DotM and DotN, and the secretion adaptor proteins IcmS and IcmW. In the absence of IcmS or IcmW, DotL becomes destabilized at the transition from the exponential to stationary phases of growth, concurrent with the expression of many secreted substrates. Loss of DotL is dependent on ClpA, a regulator of the cytoplasmic protease ClpP. The resulting decreased levels of DotL in the icmS and icmW mutants exacerbates the intracellular defects of these strains and can be partially suppressed by overproduction of DotL. Thus, in addition to their role as chaperones for Legionella type IV secretion system substrates, IcmS and IcmW perform a second function as part of the Dot/Icm type IV coupling protein subcomplex. © 2012 Blackwell Publishing Ltd.
Quantitative grading of a human blastocyst: optimal inner cell mass size and shape.
Richter, K S; Harris, D C; Daneshmand, S T; Shapiro, B S
2001-12-01
To investigate the predictive value of quantitative measurements of blastocyst morphology on subsequent implantation rates after transfer. Prospective observational study. Private assisted reproductive technology center. One hundred seventy-four IVF patients receiving transfers of expanded blastocyst-stage embryos on day 5 (n = 112) or day 6 (n = 62) after oocyte retrieval. None. Blastocyst diameter, number of trophectoderm cells, inner cell mass (ICM) size, ICM shape, and implantation and pregnancy rates. Blastocyst diameter and trophectoderm cell numbers were unrelated to implantation rates. Day 5 expanded blastocysts with ICMs of >4,500 microm(2) implanted at a higher rate than did those with smaller ICMs (55% vs. 31%). Day 5 expanded blastocysts with slightly oval ICMs implanted at a higher rate (58%) compared with those with either rounder ICMs (7%) or more elongated ICMs (33%). Implantation rates were highest (71%) for embryos with both optimal ICM size and shape. Pregnancy rates were higher for day 5 transfers of optimally shaped ICMs compared with day 5 transfers of optimally sized ICMs. Quantitative measurements of the inner cell mass are highly indicative of blastocyst implantation potential. Blastocysts with relatively large and/or slightly oval ICMs are more likely to implant than other blastocysts.
Ahn, Young-Hwan; Koh, Young-Il; Kim, Joo-Hee; Ban, Ga-Young; Lee, Yeon-Kyung; Hong, Ga-Na; Jin, U-Ram; Choi, Byung-Joo; Shin, Yoo-Seob; Park, Hae-Sim; Ye, Young-Min
2015-03-01
Both immediate and delayed hypersensitivity reactions to iodinated contrast media (ICM) are relatively common. However, there are few data to determine the clinical utility of immunologic evaluation of ICM. To evaluate the utility of ICM skin testing in patients with ICM hypersensitivity, 23 patients (17 immediate and 6 delayed reactions) were enrolled from 3 university hospitals in Korea. With 6 commonly used ICM including iopromide, iohexol, ioversol, iomeprol, iopamidol and iodixanol, skin prick (SPT), intradermal (IDT) and patch tests were performed. Of 10 patients with anaphylaxis, 3 (30.0%) and 6 (60.0%) were positive respectively on SPTs and IDTs with the culprit ICM. Three of 6 patients with urticaria showed positive IDTs. In total, 11 (64.7%) had positive on either SPT or IDT. Three of 6 patients with delayed rashes had positive response to patch test and/or delayed IDT. Among 5 patients (3 anaphylaxis, 1 urticaria and 1 delayed rash) taken subsequent radiological examinations, 3 patients administered safe alternatives according to the results of skin testing had no adverse reaction. However, anaphylaxis developed in the other 2 patients administered the culprit ICM again. With 64.7% (11/17) and 50% (3/6) of the sensitivities of corresponding allergic skin tests with culprit ICM for immediate and delayed hypersensitivity reactions, the present study suggests that skin tests is useful for the diagnosis of ICM hypersensitivity and for selecting safe ICM and preventing a recurrence of anaphylaxis caused by the same ICM.
Gal-Mor, Ohad; Segal, Gil
2003-08-01
To date, 24 Legionella pneumophila genes (icm and dot genes) have been shown to be required for intercellular growth and host cell killing. A previous report indicated that the regulation of these genes is complicated and probably involves several regulatory proteins. In this study, a genetic screen performed in Escherichia coli identified the CpxR response regulator as an activator of the L. pneumophila icmR gene. Construction of an L. pneumophila cpxR insertion mutant showed that the expression of icmR is regulated by CpxR. In addition, a conserved CpxR binding site (GTAAA) was identified in the icmR regulatory region and L. pneumophila His-tagged CpxR protein was shown to bind to the icmR regulatory region using a mobility shift assay. Besides its dramatic effect on the icmR level of expression, the CpxR regulator was also found to affect the expression of the icmV-dotA and icmW-icmX operons, but to a lesser extent. The role of CpxA, the cognate sensor kinase of CpxR, was also examined and its effect on the icmR level of expression was found to be less pronounced than the effect of CpxR. The RpoE sigma factor, which was shown to coregulate genes together with CpxR, was examined as well, but it did not influence icm and dot gene expression. In addition, when the cpxR mutant strain, in which the expression of the icmR gene was dramatically reduced, and the cpxA and rpoE mutant strains were examined for their ability to grow inside Acanthamoeba castellanii and HL-60-derived human macrophages, no intracellular growth defect was observed. This study presents the first evidence for a direct regulator (CpxR) of an icm-dot virulence gene (icmR). The CpxR regulator together with other regulatory factors probably concerts with the expression of icm and dot genes to result in successful infection.
Do, Dang Vinh; Ueda, Jun; Messerschmidt, Daniel M.; Lorthongpanich, Chanchao; Zhou, Yi; Feng, Bo; Guo, Guoji; Lin, Peiyu J.; Hossain, Md Zakir; Zhang, Wenjun; Moh, Akira; Wu, Qiang; Robson, Paul; Ng, Huck Hui; Poellinger, Lorenz; Knowles, Barbara B.; Solter, Davor; Fu, Xin-Yuan
2013-01-01
Although it is known that OCT4–NANOG are required for maintenance of pluripotent cells in vitro, the upstream signals that regulate this circuit during early development in vivo have not been identified. Here we demonstrate, for the first time, signal transducers and activators of transcription 3 (STAT3)-dependent regulation of the OCT4–NANOG circuitry necessary to maintain the pluripotent inner cell mass (ICM), the source of in vitro-derived embryonic stem cells (ESCs). We show that STAT3 is highly expressed in mouse oocytes and becomes phosphorylated and translocates to the nucleus in the four-cell and later stage embryos. Using leukemia inhibitory factor (Lif)-null embryos, we found that STAT3 phosphorylation is dependent on LIF in four-cell stage embryos. In blastocysts, interleukin 6 (IL-6) acts in an autocrine fashion to ensure STAT3 phosphorylation, mediated by janus kinase 1 (JAK1), a LIF- and IL-6-dependent kinase. Using genetically engineered mouse strains to eliminate Stat3 in oocytes and embryos, we firmly establish that STAT3 is essential for maintenance of ICM lineages but not for ICM and trophectoderm formation. Indeed, STAT3 directly binds to the Oct4 and Nanog distal enhancers, modulating their expression to maintain pluripotency of mouse embryonic and induced pluripotent stem cells. These results provide a novel genetic model of cell fate determination operating through STAT3 in the preimplantation embryo and pluripotent stem cells in vivo. PMID:23788624
Transit Time and Normal Orientation of ICME-driven Shocks
NASA Astrophysics Data System (ADS)
Case, A. W.; Spence, H.; Owens, M.; Riley, P.; Linker, J.; Odstrcil, D.
2006-12-01
Interplanetary Coronal Mass Ejections (ICMEs) can drive shocks that accelerate particles to great energies. It is important to understand the acceleration, transport, and spectra of these particles in order to quantify this fundamental physical process operating throughout the cosmos. This understanding also helps to better protect astronauts and spacecraft in upcoming missions. We show that the ambient solar wind is crucial in determining characteristics of ICME-driven shocks, which in turn affect energetic particle production. We use a coupled 3-D MHD code of the corona and heliosphere to simulate ICME propagation from 30 solar radii to 1AU. ICMEs of different velocities are injected into a realistic solar wind to determine how the initial speed affects the shape and deceleration of the ICME-driven shock. We use shock transit time and shock normal orientation to quantify these dependencies. We also inject identical ICMEs into different ambient solar winds to quantify the effective drag force on an ICME.
NASA Technical Reports Server (NTRS)
Richardson, I. G.; Cane, H. V.
2011-01-01
We summarize the geoeffectiveness (based on the Dst and Kp indices) of the more than 300 interplanetary coronal mass ejections (ICMEs) that passed the Earth during 1996-2009, encompassing solar cycle 23. We subsequently estimate the probability that an ICME will generate geomagnetic activity that exceeds certain thresholds of Dst or Kp, including the NOAA "G" storm scale, based on maximum values of the southward magnetic field component (Bs), the solar wind speed (V), and the y component (Ey) of the solar wind convective electric field E = -V x B, in the ICME or sheath ahead of the ICME. Consistent with previous studies, the geoeffectiveness of an ICME is correlated with Bs or Ey approx.= VBs in the ICME or sheath, indicating that observations from a solar wind monitor upstream of the Earth are likely to provide the most reliable forecasts of the activity associated with an approaching ICME. There is also a general increase in geoeffectiveness with ICME speed, though the overall event-to-event correlation is weaker than for Bs and Ey. Nevertheless, using these results, we suggest that the speed of an ICME approaching the Earth inferred, for example, from routine remote sensing by coronagraphs on spacecraft well separated from the Earth or by all-sky imagers, could be used to estimate the likely geoeffectiveness of the ICME (our "comprehensive" ICME database provides a proxy for ICMEs identified in this way) with a longer lead time than may be possible using an upstream monitor
Coronal mass ejections and their sheath regions in interplanetary space
NASA Astrophysics Data System (ADS)
Kilpua, Emilia; Koskinen, Hannu E. J.; Pulkkinen, Tuija I.
2017-11-01
Interplanetary coronal mass ejections (ICMEs) are large-scale heliospheric transients that originate from the Sun. When an ICME is sufficiently faster than the preceding solar wind, a shock wave develops ahead of the ICME. The turbulent region between the shock and the ICME is called the sheath region. ICMEs and their sheaths and shocks are all interesting structures from the fundamental plasma physics viewpoint. They are also key drivers of space weather disturbances in the heliosphere and planetary environments. ICME-driven shock waves can accelerate charged particles to high energies. Sheaths and ICMEs drive practically all intense geospace storms at the Earth, and they can also affect dramatically the planetary radiation environments and atmospheres. This review focuses on the current understanding of observational signatures and properties of ICMEs and the associated sheath regions based on five decades of studies. In addition, we discuss modelling of ICMEs and many fundamental outstanding questions on their origin, evolution and effects, largely due to the limitations of single spacecraft observations of these macro-scale structures. We also present current understanding of space weather consequences of these large-scale solar wind structures, including effects at the other Solar System planets and exoplanets. We specially emphasize the different origin, properties and consequences of the sheaths and ICMEs.
DOT National Transportation Integrated Search
2013-06-01
This System Design document for the US-75 Integrated Corridor Management (ICM) Program has been developed as part of the US Department of Transportation Integrated Corridor Management Initiative. The basic premise behind the ICM initiative is that in...
Sutherland, Molly C.; Nguyen, Thuy Linh; Tseng, Victor; Vogel, Joseph P.
2012-01-01
Legionella pneumophila is a Gram-negative bacterium that replicates within human alveolar macrophages by evasion of the host endocytic pathway through the formation of a replicative vacuole. Generation of this vacuole is dependent upon the secretion of over 275 effector proteins into the host cell via the Dot/Icm type IVB secretion system (T4SS). The type IV coupling protein (T4CP) subcomplex, consisting of DotL, DotM, DotN, IcmS and IcmW, was recently defined. DotL is proposed to be the T4CP of the L. pneumophila T4SS based on its homology to known T4CPs, which function as inner-membrane receptors for substrates. As a result, DotL is hypothesized to play an integral role(s) in the L. pneumophila T4SS for the engagement and translocation of substrates. To elucidate this role, a genetic approach was taken to screen for dotL mutants that were unable to survive inside host cells. One mutant, dotLY725Stop, did not interact with the type IV adaptor proteins IcmS/IcmW (IcmSW) leading to the identification of an IcmSW-binding domain on DotL. Interestingly, the dotLY725Stop mutant was competent for export of one class of secreted effectors, the IcmSW-independent substrates, but exhibited a specific defect in secretion of IcmSW-dependent substrates. This differential secretion illustrates that DotL requires a direct interaction with the type IV adaptor proteins for the secretion of a major class of substrates. Thus, by identifying a new target for IcmSW, we have discovered that the type IV adaptors perform an additional role in the export of substrates by the L. pneumophila Dot/Icm T4SS. PMID:23028312
DOT National Transportation Integrated Search
2015-05-01
This As-Built document for the US-75 Integrated Corridor Management (ICM) Program has been developed as part of the US Department of Transportation Integrated Corridor Management Initiative. The basic premise behind the ICM initiative is that indepen...
Mace, John H
2009-01-01
Recent studies have shown that conscious recollection of the past occurs spontaneously when subjects voluntarily recall their own past experiences or a list of previously studied words. Naturalistic diary studies and laboratory studies of this phenomenon, often called involuntary conscious memory (ICM), show that it occurs in 2 ways. One is direct ICM retrieval, which occurs when a cue spontaneously triggers a conscious memory; the other is chained ICM retrieval, which occurs when a retrieved conscious memory spontaneously triggers another. Laboratory studies investigating ICM show that chained ICM retrieval occurs on voluntary autobiographical memory tasks. The present results show that chained ICM retrieval also occurs on a voluntary word list memory task (cued recall). These results are among a handful suggesting that ICM retrieval routinely occurs during voluntary recall.
Matrices. New Topics for Secondary School Mathematics: Materials and Software.
ERIC Educational Resources Information Center
North Carolina School of Science and Mathematics. Dept. of Mathematics and Computer Science.
This material on matrices is part of "Introduction to College Mathematics" (ICM), designed to prepare high school students who have students who have completed algebra II for the variety of mathematics they will encounter in college and beyond. The concept goals of this unit are to use matrices to model real-world phenomena, to use matrices as…
Yokota, R; Takahashi, H; Funamizu, A; Uchihara, M; Suzurikawa, J; Kanzaki, R
2006-01-01
Electrical stimulation that can reorganize our neural system has a potential for promising neurorehabilitation. We previously demonstrated that temporally controlled intracortical microstimulation (ICMS) could induce the spike time-dependant plasticity and modify tuning properties of cortical neurons as desired. A 'pairing' ICMS following tone-induced excitatory post-synaptic potentials (EPSPs) produced potentiation in response to the paired tones, while an 'anti-pairing' ICMS preceding the tone-induced EPSPs resulted in depression. However, the conventional ICMS affected both excitatory and inhibitory synapses, and thereby could not quantify net excitatory synaptic effects. In the present work, we evaluated the ICMS effects under a pharmacological blockage of inhibitory inputs. The pharmacological blockage enhanced the ICMS effects, suggesting that inhibitory inputs determine a plastic degree of the neural system. Alternatively, the conventional ICMS had an inadequate timing to control excitatory synaptic inputs, because inhibitory synapse determined the latency of total neural inputs.
Rescuing the intracluster medium of NGC 5813
NASA Astrophysics Data System (ADS)
Soker, Noam; Hillel, Shlomi; Sternberg, Assaf
2016-06-01
We use recent X-ray observations of the intracluster medium (ICM) of the galaxy group NGC 5813 to confront theoretical studies of ICM thermal evolution with the newly derived ICM properties. We argue that the ICM of the cooling flow in the galaxy group NGC 5813 is more likely to be heated by mixing of post-shock gas from jets residing in hot bubbles with the ICM, than by shocks or turbulent-heating. Shocks thermalize only a small fraction of their energy in the inner regions of the cooling flow; in order to adequately heat the inner part of the ICM, they would overheat the outer regions by a large factor, leading to its ejection from the group. Heating by mixing, which was found to be much more efficient than turbulent-heating and shocks-heating, hence, rescues the outer ICM of NGC 5813 from its predestined fate according to cooling flow feedback scenarios that are based on heating by shocks.
Heterogeneous distributed databases: A case study
NASA Technical Reports Server (NTRS)
Stewart, Tracy R.; Mukkamala, Ravi
1991-01-01
Alternatives are reviewed for accessing distributed heterogeneous databases and a recommended solution is proposed. The current study is limited to the Automated Information Systems Center at the Naval Sea Combat Systems Engineering Station at Norfolk, VA. This center maintains two databases located on Digital Equipment Corporation's VAX computers running under the VMS operating system. The first data base, ICMS, resides on a VAX11/780 and has been implemented using VAX DBMS, a CODASYL based system. The second database, CSA, resides on a VAX 6460 and has been implemented using the ORACLE relational database management system (RDBMS). Both databases are used for configuration management within the U.S. Navy. Different customer bases are supported by each database. ICMS tracks U.S. Navy ships and major systems (anti-sub, sonar, etc.). Even though the major systems on ships and submarines have totally different functions, some of the equipment within the major systems are common to both ships and submarines.
Chen, Chih-Kuang; Lin, Wei-Jen; Hsia, Yu; Lo, Leu-Wei
2017-03-01
Well-defined poly(ethylene glycol)-b-allyl functional polylactide-b-polylactides (PEG-APLA-PLAs) are synthesized through sequential ring-opening polymerization. PEG-APLA-PLAs that have amphiphilic properties and reactive allyl side chains on their intermediate blocks are successfully transferred to core-shell interface cross-linked micelles (ICMs) by micellization and UV-initiated irradiation. ICMs have demonstrated enhanced colloidal stability in physiological-mimicking media. Hydrophobic molecules such as Nile Red or doxorubicin (Dox) are readily loaded into ICMs; the resulting drug-ICM formulations possess slow and sustained drug release profiles under physiological-mimicking conditions. ICMs exhibit negligible cytotoxicity in human uterine sarcoma cancer cells by using biodegradable aliphatic polyester as the hydrophobic segments. Relative to free Dox, Dox-loaded ICMs show a reduced cytotoxicity due to the late intracellular release of Dox from ICMs. Overall, ICMs represent a new type of biodegradable cross-linked micelle and can be employed as a promising platform for delivering a broad variety of hydrophobic drugs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SPATIALLY DEPENDENT HEATING AND IONIZATION IN AN ICME OBSERVED BY BOTH ACE AND ULYSSES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepri, Susan T.; Laming, J. Martin; Rakowski, Cara E.
2012-12-01
The 2005 January 21 interplanetary coronal mass ejection (ICME) observed by multiple spacecraft at L1 was also observed from January 21-February 4 at Ulysses (5.3 AU). Previous studies of this ICME have found evidence suggesting that the flanks of a magnetic cloud like structure associated with this ICME were observed at L1 while a more central cut through the associated magnetic cloud was observed at Ulysses. This event allows us to study spatial variation across the ICME and relate it to the eruption at the Sun. In order to examine the spatial dependence of the heating in this ICME, wemore » present an analysis and comparison of the heavy ion composition observed during the passage of the ICME at L1 and at Ulysses. Using SWICS, we compare the heavy ion composition across the two different observation cuts through the ICME and compare it with predictions for heating during the eruption based on models of the time-dependent ionization balance throughout the event.« less
Sesé, L; Gaouar, H; Autegarden, J-E; Alari, A; Amsler, E; Vial-Dupuy, A; Pecquet, C; Francès, C; Soria, A
2016-03-01
The diagnosis of HSR to iodinated contrast media (ICM) is challenging based on clinical history and skin tests. This study evaluates the negative predictive value (NPV) of skin tests and intravenous provocation test (IPT) with low-dose ICM in patients with suspected immediate hypersensitivity reaction (HSR) to ICM. Thirty-seven patients with suspected immediate hypersensitivity reaction to ICM were included retrospectively. Skin tests and a single-blind placebo-controlled intravenous provocation test (IPT) with low-dose iodinated contrast media (ICM) were performed. Skin tests with ICM were positive in five cases (one skin prick test and five intradermal test). Thirty-six patients were challenged successfully by IPT, and only one patient had a positive challenge result, with a grade I reaction by the Ring and Messmer classification. Ten of 23 patients followed up by telephone were re-exposed to a negative tested ICM during radiologic examination; two experienced a grade I immediate reaction. For immediate hypersensitivity reaction to ICM, the NPV for skin tests and IPT with low dose was 80% (95% CI 44-97%). © 2016 John Wiley & Sons Ltd.
Baldwin, Mary K L; Cooke, Dylan F; Krubitzer, Leah
2017-02-01
Long-train intracortical microstimulation (LT-ICMS) is a popular method for studying the organization of motor and posterior parietal cortex (PPC) in mammals. In primates, LT-ICMS evokes both multijoint and multiple-body-part movements in primary motor, premotor, and PPC. In rodents, LT-ICMS evokes complex movements of a single limb in motor cortex. Unfortunately, very little is known about motor/PPC organization in other mammals. Tree shrews are closely related to both primates and rodents and could provide insights into the evolution of complex movement domains in primates. The present study investigated the extent of cortex in which movements could be evoked with ICMS and the characteristics of movements elicited using both short train (ST) and LT-ICMS in tree shrews. We demonstrate that LT-ICMS and ST-ICMS maps are similar, with the movements elicited with ST-ICMS being truncated versions of those elicited with LT-ICMS. In addition, LT-ICMS-evoked complex movements within motor cortex similar to those in rodents. More complex movements involving multiple body parts such as the hand and mouth were also elicited in motor cortex and PPC, as in primates. Our results suggest that complex movement networks present in PPC and motor cortex were present in mammals prior to the emergence of primates. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Direct Cardiac Reprogramming as a Novel Therapeutic Strategy for Treatment of Myocardial Infarction.
Ma, Hong; Wang, Li; Liu, Jiandong; Qian, Li
2017-01-01
Direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs) holds great promise as a novel therapy for the treatment of heart failure, a common and morbid disease that is usually caused by irreversible loss of functional cardiomyocytes (CMs). Recently, we and others showed that in a murine model of acute myocardial infarction, delivery of three transcription factors, Gata4, Mef2c, and Tbx5 converted endogenous cardiac fibroblasts into functional iCMs. These iCMs integrated electrically and mechanically with surrounding myocardium, resulting in a reduction in scar size and an improvement in heart function. Our findings suggest that iCM reprogramming may be a means of regenerating functional CMs in vivo for patients with heart disease. However, because relatively little is known about the factors that regulate iCM reprogramming, the applicability of iCM reprogramming is currently limited to the experimental settings in which it has been attempted. Specific hurdles include the relatively low conversion rate of iCMs and the need for reprogramming to occur in the context of acute injury. Therefore, before this treatment can become a viable therapy for human heart disease, the optimal condition for efficient iCM generation must be determined. Here, we provide a detailed protocol for both in vitro and in vivo iCM generation that has been optimized so far in our lab. We hope that this protocol will lay a foundation for future further improvement of iCM generation and provide a platform for mechanistic studies.
NASA Astrophysics Data System (ADS)
Devecioğlu, İsmail; Güçlü, Burak
2017-02-01
Objective. Recent studies showed that intracortical microstimulation (ICMS) generates artificial sensations which can be utilized as somatosensory feedback in cortical neuroprostheses. To mimic the natural psychophysical response, ICMS parameters are modulated according to psychometric equivalence functions (PEFs). PEFs match the intensity levels of ICMS and mechanical stimuli, which elicit equal detection probabilities, but they typically do not include the frequency as a control variable. We aimed to establish frequency-dependent PEFs for vibrotactile stimulation of the glabrous skin and ICMS in the primary somatosensory cortex of awake freely behaving rats. Approach. We collected psychometric data for vibrotactile and ICMS detection at three stimulation frequencies (40, 60 and 80 Hz). The psychometric data were fitted with a model equation of two independent variables (stimulus intensity and frequency) and four subject-dependent parameters. For each rat, we constructed a separate PEF which was used to estimate the ICMS current amplitude for a given displacement amplitude and frequency. The ICMS frequency was set equal to the vibrotactile frequency. We validated the PEFs in a modified task which included randomly selected probe trials presented either with a vibrotactile or an ICMS stimulus, and also at frequencies and intensity levels not tested before. Main results. The PEFs were generally successful in estimating the ICMS current intensities (no significant differences between vibrotactile and ICMS trials in Kolmogorov-Smirnov tests). Specifically, hit rates from both trial conditions were significantly correlated in 86% of the cases, and 52% of all data had perfect match in linear regression. Significance. The psychometric correspondence model presented in this study was constructed based on surface functions which define psychophysical detection probability as a function of stimulus intensity and frequency. Therefore, it may be used for the real-time modulation of the frequency and intensity of ICMS pulses in somatosensory neuroprostheses.
Devecioğlu, İsmail; Güçlü, Burak
2017-02-01
Recent studies showed that intracortical microstimulation (ICMS) generates artificial sensations which can be utilized as somatosensory feedback in cortical neuroprostheses. To mimic the natural psychophysical response, ICMS parameters are modulated according to psychometric equivalence functions (PEFs). PEFs match the intensity levels of ICMS and mechanical stimuli, which elicit equal detection probabilities, but they typically do not include the frequency as a control variable. We aimed to establish frequency-dependent PEFs for vibrotactile stimulation of the glabrous skin and ICMS in the primary somatosensory cortex of awake freely behaving rats. We collected psychometric data for vibrotactile and ICMS detection at three stimulation frequencies (40, 60 and 80 Hz). The psychometric data were fitted with a model equation of two independent variables (stimulus intensity and frequency) and four subject-dependent parameters. For each rat, we constructed a separate PEF which was used to estimate the ICMS current amplitude for a given displacement amplitude and frequency. The ICMS frequency was set equal to the vibrotactile frequency. We validated the PEFs in a modified task which included randomly selected probe trials presented either with a vibrotactile or an ICMS stimulus, and also at frequencies and intensity levels not tested before. The PEFs were generally successful in estimating the ICMS current intensities (no significant differences between vibrotactile and ICMS trials in Kolmogorov-Smirnov tests). Specifically, hit rates from both trial conditions were significantly correlated in 86% of the cases, and 52% of all data had perfect match in linear regression. The psychometric correspondence model presented in this study was constructed based on surface functions which define psychophysical detection probability as a function of stimulus intensity and frequency. Therefore, it may be used for the real-time modulation of the frequency and intensity of ICMS pulses in somatosensory neuroprostheses.
NASA Technical Reports Server (NTRS)
Richardson, I. G.; Cane, H. V.
2004-01-01
We investigate the use of multiple simultaneous solar wind plasma compositional anomalies, relative to the composition of the ambient solar wind, for identifying interplanetary coronal mass ejection (ICME) plasma. We first summarize the characteristics of several solar wind plasma composition signatures (O(+7)/O(+6), Mg/O, Ne/O, Fe charge states, He/p) observed by the ACE and WIND spacecraft within the ICMEs during 1996 - 2002 identsed by Cane and Richardson. We then develop a set of simple criteria that may be used to identify such compositional anomalies, and hence potential ICMEs. To distinguish these anomalies from the normal variations seen in ambient solar wind composition, which depend on the wind speed, we compare observed compositional signatures with those 'expected' in ambient solar wind with the same solar wind speed. This method identifies anomalies more effectively than the use of fixed thresholds. The occurrence rates of individual composition anomalies within ICMEs range from approx. 70% for enhanced iron and oxygen charge states to approx. 30% for enhanced He/p (> 0.06) and Ne/O, and are generally higher in magnetic clouds than other ICMEs. Intervals of multiple anomalies are usually associated with ICMEs, and provide a basis for the identification of the majority of ICMEs. We estimate that Cane and Richardson, who did not refer to composition data, probably identitied approx. 90% of the ICMEs present. However, around 10% of their ICMEs have weak compositional anomalies, suggesting that the presence of such signatures does not provide a necessary requirement for an ICME. We note a remarkably similar correlation between the Mg/O and O(7)/O(6) ratios in hourly-averaged data both within ICMEs and the ambient solar wind. This 'universal' relationship suggests that a similar process (such as minor ion heating by waves inside coronal magnetic field loops) produces the first-ionization potential bias and ion freezing-in temperatures in the source regions of both ICMEs and the ambient solar wind.
DOT National Transportation Integrated Search
2008-03-31
This document summarizes the efforts conducted by the I-880 ICM team for the development of the system requirements for the I-880 Integrated Corridor Management System (ICMS). It describes the approach that the I-880 team took in defining the ICMS an...
Yoo, Junsang; Chang, Yujung; Kim, Hongwon; Baek, Soonbong; Choi, Hwan; Jeong, Gun-Jae; Shin, Jaein; Kim, Hongnam; Kim, Byung-Soo; Kim, Jongpil
2017-03-01
Induced cardiomyocytes (iCMs) generated via direct lineage reprogramming offer a novel therapeutic target for the study and treatment of cardiac diseases. However, the efficiency of iCM generation is significantly low for therapeutic applications. Here, we show an efficient direct conversion of somatic fibroblasts into iCMs using nanotopographic cues. Compared with flat substrates, the direct conversion of fibroblasts into iCMs on nanopatterned substrates resulted in a dramatic increase in the reprogramming efficiency and maturation of iCM phenotypes. Additionally, enhanced reprogramming by substrate nanotopography was due to changes in the activation of focal adhesion kinase and specific histone modifications. Taken together, these results suggest that nanotopographic cues can serve as an efficient stimulant for direct lineage reprogramming into iCMs.
Encoding and Decoding of Multi-Channel ICMS in Macaque Somatosensory Cortex.
Dadarlat, Maria C; Sabes, Philip N
2016-01-01
Naturalistic control of brain-machine interfaces will require artificial proprioception, potentially delivered via intracortical microstimulation (ICMS). We have previously shown that multi-channel ICMS can guide a monkey reaching to unseen targets in a planar workspace. Here, we expand on that work, asking how ICMS is decoded into target angle and distance by analyzing the performance of a monkey when ICMS feedback was degraded. From the resulting pattern of errors, we found that the animal's estimate of target direction was consistent with a weighted circular-mean strategy-close to the optimal decoding strategy given the ICMS encoding. These results support our previous finding that animals can learn to use this artificial sensory feedback in an efficient and naturalistic manner.
NASA Astrophysics Data System (ADS)
Chiu, I.; Mohr, J. J.; McDonald, M.; Bocquet, S.; Desai, S.; Klein, M.; Israel, H.; Ashby, M. L. N.; Stanford, A.; Benson, B. A.; Brodwin, M.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bayliss, M.; Benoit-Lévy, A.; Bertin, E.; Bleem, L.; Brooks, D.; Buckley-Geer, E.; Bulbul, E.; Capasso, R.; Carlstrom, J. E.; Rosell, A. Carnero; Carretero, J.; Castander, F. J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Drlica-Wagner, A.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; García-Bellido, J.; Garmire, G.; Gaztanaga, E.; Gerdes, D. W.; Gonzalez, A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gupta, N.; Gutierrez, G.; Hlavacek-L, J.; Honscheid, K.; James, D. J.; Jeltema, T.; Kraft, R.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Murray, S.; Nord, B.; Ogando, R. L. C.; Plazas, A. A.; Rapetti, D.; Reichardt, C. L.; Romer, A. K.; Roodman, A.; Sanchez, E.; Saro, A.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sharon, K.; Smith, R. C.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Stalder, B.; Stern, C.; Strazzullo, V.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Vikram, V.; Walker, A. R.; Weller, J.; Zhang, Y.
2018-05-01
We estimate total mass (M500), intracluster medium (ICM) mass (MICM) and stellar mass (M⋆) in a Sunyaev-Zel'dovich effect (SZE) selected sample of 91 galaxy clusters with masses M500 ≳ 2.5 × 1014M⊙ and redshift 0.2 < z < 1.25 from the 2500 ° ^2 South Pole Telescope SPT-SZ survey. The total masses M500 are estimated from the SZE observable, the ICM masses MICM are obtained from the analysis of Chandra X-ray observations, and the stellar masses M⋆ are derived by fitting spectral energy distribution templates to Dark Energy Survey (DES) griz optical photometry and WISE or Spitzer near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass and the cold baryonic fraction with cluster halo mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past ≈9 Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the measured mass trends without strong redshift trends in the stellar mass scaling relation could be explained by a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called "missing baryons" outside cluster virial regions.
Shafik, Ahmed; Shafik, Ismail; El-Sibai, Olfat; Shafik, Ali A
2006-01-01
Whereas the bulbocavernosus muscle shares its contractile activity with the external anal sphincter (EAS), the response of the ischiocavernosus muscle (ICM) to EAS contraction could not be traced in the literature. We investigated the hypothesis that the ICM contracts reflexly upon EAS contraction. The response of the ICM to EAS squeeze and stimulation was recorded in 21 healthy volunteers (13 men, 8 women, age 36.8 +/- 10.7 [SD] years). An electromyographic (EMG) needle (stimulating) electrode was introduced into the EAS and another (recording) one was inserted into the ICM. The test was repeated after individual anesthetization of the EAS and ICM and after muscle infiltration with normal saline instead of lidocaine. EAS electrostimulation (10 stimuli, 200 micros duration, 0.2 Hz frequency, 0-100 mA intensity) produced an increase of ICM EMG activity to a mean of 267.8 +/- 42.7 microV, whereas anal squeeze effected an increase to a mean of 224.5 +/- 45.3 microV. The ICM did not respond to stimulation of the EAS after individual anesthetization of the ICM and EAS, but it did after saline infiltration. The results were reproducible. ICM contracted upon EAS contraction. This effect seems to be mediated through a reflex that we call "anocavernosal excitatory reflex." The ICM lever action is suggested to share in the erectile mechanism by elevating the penile shaft to above the horizontal level. The reflex may prove of diagnostic significance in sexual function disorders, a point that needs further study.
Burkowitz, Jörg; Merzenich, Carina; Grassme, Kathrin; Brüggenjürgen, Bernd
2016-08-01
Insertable or implantable cardiac monitors (ICMs) continuously monitor the heart rhythm and record irregularities over 3 years, enabling the diagnosis of infrequent rhythm abnormalities associated with syncope and stroke. The enhanced recognition capabilities of recent ICM models are able to accurately detect atrial fibrillation (AF) and have led to new applications of ICMs for the detection and monitoring of AF. Based on a systematic literature search, two indications were identified for ICMs for which considerable evidence, including randomized studies, exists: diagnosing the underlying cardiac cause of unexplained recurrent syncope and detecting AF in patients after cryptogenic stroke (CS). Three randomized controlled trials (RCTs) were identified that compared the effectiveness of ICMs in diagnosing patients with unexplained syncope (n = 556) to standard of care. A meta-analysis was conducted in order to generate an overall effect size and confidence interval of the diagnostic yield of ICMs versus conventional monitoring. In the indication CS, one RCT and five observational studies were included in order to assess the performance of ICMs in diagnosing patients with AF (n = 1129). Based on these studies, there is strong evidence that ICMs provide a higher diagnostic yield for detecting arrhythmias in patients with unexplained syncope and for detection of AF in patients after CS compared to conventional monitoring. Prolonged monitoring with ICMs is an effective tool for diagnosing the underlying cardiac cause of unexplained syncope and for detecting AF in patients with CS. In all RCTs, ICMs have a superior diagnostic yield compared to conventional monitoring. © The European Society of Cardiology 2016.
Barker, Christopher A.; Mutter, Robert W.; Shapiro, Lauren Q.; Zhang, Zhigang; Wolden, Suzanne L.; Yahalom, Joachim
2016-01-01
Purpose Intravenous contrast media (ICM) administration is recommended as part of radiation therapy (RT) simulation in a variety of clinical scenarios, but can cause adverse events. We sought to assess radiation oncology resident knowledge about ICM, and to determine if an educational intervention (EI) could improve this level of knowledge. In conjunction, we retrospectively analyzed risk factors and adverse events related to ICM use before and after the EI to determine whether any improvements in patient outcomes could be realized. Methods Over 2 years, 21 residents in radiation oncology at Memorial Sloan-Kettering Cancer Center (MSKCC) participated in a pretest-EI-posttest study based on the ACR’s Manual on Contrast Media. Medical and RT records were reviewed, and ICM use, risk factors and adverse events were recorded. Results There was no significant difference in resident understanding of ICM use in residents of different years of training (p=0.85). Understanding of ICM use increased in residents that attended the EI (p<0.05), but this was not sustained 1 year after the EI (p=0.48). Of the 6852 RT simulations that were performed at MSKCC, 1350 (19.7%) involved ICM. Mild adverse events occurred in a few patients (<5%) simulated with ICM, but there was no difference in the number of risk factors or adverse events before and after the EI. Conclusions The EI effectively improved short-term understanding of ICM use. However, the effect was not sustained. The frequency of adverse events related to ICM use was small and not significantly impacted by the EI. PMID:21129689
Statistical Study of ICMEs and Their Sheaths During Solar Cycle 23 (1996 - 2008)
NASA Astrophysics Data System (ADS)
Mitsakou, E.; Moussas, X.
2014-08-01
We have created a new catalog of 325 interplanetary coronal mass ejections (ICMEs) using their in-situ plasma signatures from 1996 to 2008; this time period includes Solar Cycle 23. The data set came from the OMNI near-Earth database. The one-minute resolution data that we used include magnetic-field strength, solar-wind speed, proton density, proton temperature, and plasma β. We compared this new catalog with other published catalogs. For every event, we indicated the presence of an ICME-driven shock. We identified the boundaries of ICMEs and their sheaths, and examined the statistical properties of characteristic parameters. We derived the duration and radial width of ICMEs and sheaths in the region near Earth. The statistical analysis of all events shows that, on average, sheaths travel faster than ICMEs, which indicates the expansion of CMEs in the interplanetary medium. They have higher mean magnetic-field strength values than ICMEs, and they are denser. They have higher mean proton temperature and plasma β than ICMEs, but they are smaller than ICMEs and last for a shorter time. The events were divided into different categories according to whether they included a shock and according to the phase of Solar Cycle 23 in which they are observed, i.e. ascending, maximum, or descending phase. We compared the different categories. We present a catalog of events available to the scientific community that studies ICMEs, and show the distribution and statistical properties of various parameters during these phenomena that govern the solar wind, the interplanetary medium, and space weather.
Labra, Álvaro; Arredondo-Zelada, Oscar; Flores-Herrera, Patricio; Marshall, Sergio H; Gómez, Fernando A
2016-03-01
Piscirickettsia salmonis seriously affects the Chilean salmon industry. The bacterium is phylogenetically related to Legionella pneumophila and Coxiella burnetii, sharing a Dot/Icm secretion system with them. Although it is well documented that L. pneumophila and C. burnetii secrete different virulence effectors via this Dot/Icm system in order to attenuate host cell responses, to date there have been no reported virulence effectors secreted by the Dot/Icm system of P. salmonis. Using several annotations of P. salmonis genome, here we report an in silico analyses of 4 putative Dot/Icm effectors. Three of them contain ankyrin repeat domains and the typical conserved 3D structures of this protein family. The fourth one is highly similar to one of the Dot/Icm-dependent effectors of L. pneumophila. Additionally, all the potential P. salmonis effectors contain a classical Dot/Icm secretion signal in their C-terminus, consisting of: an E-Block, a hydrophobic residue in -3 or -4 and an electronegative charge. Finally, qPCR analysis demonstrated that these proteins are overexpressed early in infection, perhaps contributing to the generation of a replicative vacuole, a key step in the neutralizing strategy proposed for the Dot/Icm system. In summary, this report identifies four Dot/Icm-dependent effectors in P. salmonis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Virtual active touch using randomly patterned intracortical microstimulation.
O'Doherty, Joseph E; Lebedev, Mikhail A; Li, Zheng; Nicolelis, Miguel A L
2012-01-01
Intracortical microstimulation (ICMS) has promise as a means for delivering somatosensory feedback in neuroprosthetic systems. Various tactile sensations could be encoded by temporal, spatial, or spatiotemporal patterns of ICMS. However, the applicability of temporal patterns of ICMS to artificial tactile sensation during active exploration is unknown, as is the minimum discriminable difference between temporally modulated ICMS patterns. We trained rhesus monkeys in an active exploration task in which they discriminated periodic pulse-trains of ICMS (200 Hz bursts at a 10 Hz secondary frequency) from pulse trains with the same average pulse rate, but distorted periodicity (200 Hz bursts at a variable instantaneous secondary frequency). The statistics of the aperiodic pulse trains were drawn from a gamma distribution with mean inter-burst intervals equal to those of the periodic pulse trains. The monkeys distinguished periodic pulse trains from aperiodic pulse trains with coefficients of variation 0.25 or greater. Reconstruction of movement kinematics, extracted from the activity of neuronal populations recorded in the sensorimotor cortex concurrent with the delivery of ICMS feedback, improved when the recording intervals affected by ICMS artifacts were removed from analysis. These results add to the growing evidence that temporally patterned ICMS can be used to simulate a tactile sense for neuroprosthetic devices.
Development to term of sheep embryos reconstructed after inner cell mass/trophoblast exchange.
Loi, Pasqualino; Galli, Cesare; Lazzari, Giovanna; Matsukawa, Kazutsugu; Fulka, Josef; Goeritz, Frank; Hildebrandt, Thomas B
2018-04-13
Here we report in vitro and term development of sheep embryos after the inner cell mass (ICM) from one set of sheep blastocysts were injected into the trophoblast vesicles of another set. We also observed successful in vitro development of chimeric blastocysts made from sheep trophoblast vesicles injected with bovine ICM. First, we dissected ICMs from 35 sheep blastocysts using a stainless steel microblade and injected them into 29 re-expanded sheep trophoblastic vesicles. Of the 25 successfully micromanipulated trophoblastic vesicles, 15 (51.7%) re-expanded normally and showed proper ICM integration. The seven most well reconstructed embryos were transferred for development to term. Three ewes receiving manipulated blastocysts were pregnant at day 45 (42.8%), and all delivered normal offspring (singletons, two females and one male, average weight: 3.54 ± 0.358 kg). Next, we monitored in vitro development of sheep trophoblasts injected with bovine ICMs. Of 17 injected trophoblastic vesicles, 10 (58.8%) re-expanded after 4 h in culture, and four (40%) exhibited integrated bovine ICM. Our results indicate that ICM/trophoblast exchange is feasible, allowing full term development with satisfactory lambing rate. Therefore, ICM exchange is a promising approach for endangered species conservation.
Development to term of sheep embryos reconstructed after inner cell mass/trophoblast exchange
LOI, Pasqualino; GALLI, Cesare; LAZZARI, Giovanna; MATSUKAWA, Kazutsugu; FULKA, Josef; GOERITZ, Frank; HILDEBRANDT, Thomas B.
2018-01-01
Here we report in vitro and term development of sheep embryos after the inner cell mass (ICM) from one set of sheep blastocysts were injected into the trophoblast vesicles of another set. We also observed successful in vitro development of chimeric blastocysts made from sheep trophoblast vesicles injected with bovine ICM. First, we dissected ICMs from 35 sheep blastocysts using a stainless steel microblade and injected them into 29 re-expanded sheep trophoblastic vesicles. Of the 25 successfully micromanipulated trophoblastic vesicles, 15 (51.7%) re-expanded normally and showed proper ICM integration. The seven most well reconstructed embryos were transferred for development to term. Three ewes receiving manipulated blastocysts were pregnant at day 45 (42.8%), and all delivered normal offspring (singletons, two females and one male, average weight: 3.54 ± 0.358 kg). Next, we monitored in vitro development of sheep trophoblasts injected with bovine ICMs. Of 17 injected trophoblastic vesicles, 10 (58.8%) re-expanded after 4 h in culture, and four (40%) exhibited integrated bovine ICM. Our results indicate that ICM/trophoblast exchange is feasible, allowing full term development with satisfactory lambing rate. Therefore, ICM exchange is a promising approach for endangered species conservation. PMID:29445070
Constrained Kinematics of ICMEs from Multi-point in Situ and Heliospheric Imaging Data
NASA Astrophysics Data System (ADS)
Rollett, T.; Temmer, M.; Moestl, C.; Veronig, A. M.; Lugaz, N.; Vrsnak, B.; Farrugia, C. J.; Amerstorfer, U.
2013-12-01
The constrained harmonic mean (CHM) method is used to calculate the direction of motion of ICMEs and their kinematical profiles. Combining single spacecraft white-light observations from STEREO/HI with supplementary in situ data, it is possible to derive the propagation speed varying with heliocentric distance. This is a big advantage against other single-viewpoint methods, i.e. fitting methods, which assume a constant propagation speed. We show two different applications for the CHM method: first, an analysis of the interaction between the solar wind and ICMEs, and second, the interaction between two ICMEs. For analyzing interaction processes it is crucial to use a method that has the ability to investigate the corresponding effects on ICME kinematics. Additionally, we show the analysis of an outstanding fast ICME event of March 2012, which was detected in situ by Venus Express, Messenger and Wind and also observed by STEREO-A/HI. Due to these multiple in situ measurements it was possible to constrain the ICME kinematics by three different boundary values. These studies are fundamental in order to deepen the understanding of ICME evolution and to enhance existing forecasting methods. This work has received funding from the European Commission FP7 Project COMESEP (263252).
Gentle Heating by Mixing in Cooling Flow Clusters
NASA Astrophysics Data System (ADS)
Hillel, Shlomi; Soker, Noam
2017-08-01
We analyze 3D hydrodynamical simulations of the interaction of jets and the bubbles they inflate with the intracluster medium (ICM) and show that the heating of the ICM by mixing hot bubble gas with the ICM operates over tens of millions of years and hence can smooth the sporadic activity of the jets. The inflation process of hot bubbles by propagating jets forms many vortices, and these vortices mix the hot bubble gas with the ICM. The mixing, and hence the heating of the ICM, starts immediately after the jets are launched, but continues for tens of millions of years. We suggest that the smoothing of the active galactic nucleus (AGN) sporadic activity by the long-lived vortices accounts for the recent finding of a gentle energy coupling between AGN heating and the ICM.
Intensive case management for severe mental illness
Dieterich, Marina; Irving, Claire B; Park, Bert; Marshall, Max
2014-01-01
Background Intensive Case Management (ICM) is a community based package of care, aiming to provide long term care for severely mentally ill people who do not require immediate admission. ICM evolved from two original community models of care, Assertive Community Treatment (ACT) and Case Management (CM), where ICM emphasises the importance of small caseload (less than 20) and high intensity input. Objectives To assess the effects of Intensive Case Management (caseload <20) in comparison with non-Intensive Case Management (caseload > 20) and with standard community care in people with severe mental illness. To evaluate whether the effect of ICM on hospitalisation depends on its fidelity to the ACT model and on the setting. Search methods For the current update of this review we searched the Cochrane Schizophrenia Group Trials Register (February 2009), which is compiled by systematic searches of major databases, hand searches and conference proceedings. Selection criteria All relevant randomised clinical trials focusing on people with severe mental illness, aged 18 to 65 years and treated in the community-care setting, where Intensive Case Management, non-Intensive Case Management or standard care were compared. Outcomes such as service use, adverse effects, global state, social functioning, mental state, behaviour, quality of life, satisfaction and costs were sought. Data collection and analysis We extracted data independently. For binary outcomes we calculated relative risk (RR) and its 95% confidence interval (CI), on an intention-to-treat basis. For continuous data we estimated mean difference (MD) between groups and its 95% confidence interval (CI). We employed a random-effects model for analyses. We performed a random-effects meta-regression analysis to examine the association of the intervention’s fidelity to the ACT model and the rate of hospital use in the setting where the trial was conducted with the treatment effect. Main results We included 38 trials (7328 participants) in this review. The trials provided data for two comparisons: 1. ICM versus standard care, 2. ICM versus non-ICM. 1. ICM versus standard care Twenty-four trials provided data on length of hospitalisation, and results favoured Intensive Case Management (n=3595, 24 RCTs, MD −0.86 CI −1.37 to −0.34). There was a high level of heterogeneity, but this significance still remained when the outlier studies were excluded from the analysis (n=3143, 20 RCTs, MD −0.62 CI −1.00 to −0.23). Nine studies found participants in the ICM group were less likely to be lost to psychiatric services (n=1633, 9 RCTs, RR 0.43 CI 0.30 to 0.61, I2=49%, p=0.05). One global state scale did show an Improvement in global state for those receiving ICM, the GAF scale (n=818, 5 RCTs, MD 3.41 CI 1.66 to 5.16). Results for mental state as measured through various rating scales, however, were equivocal, with no compelling evidence that ICM was really any better than standard care in improving mental state. No differences in mortality between ICM and standard care groups occurred, either due to ’all causes’ (n=1456, 9 RCTs, RR 0.84 CI 0.48 to 1.47) or to ’suicide’ (n=1456, 9 RCTs, RR 0.68 CI 0.31 to 1.51). Social functioning results varied, no differences were found in terms of contact with the legal system and with employment status, whereas significant improvement in accommodation status was found, as was the incidence of not living independently, which was lower in the ICM group (n=1185, 4 RCTs, RR 0.65 CI 0.49 to 0.88). Quality of life data found no significant difference between groups, but data were weak. CSQ scores showed a greater participant satisfaction in the ICM group (n=423, 2 RCTs, MD 3.23 CI 2.31 to 4.14). 2. ICM versus non-ICM The included studies failed to show a significant advantage of ICM in reducing the average length of hospitalisation (n=2220, 21 RCTs, MD −0.08 CI −0.37 to 0.21). They did find ICM to be more advantageous than non-ICM in reducing rate of lost to follow-up (n= 2195, 9 RCTs, RR 0.72 CI 0.52 to 0.99), although data showed a substantial level of heterogeneity (I2=59%, p=0.01). Overall, no significant differences were found in the effects of ICM compared to non-ICM for broad outcomes such as service use, mortality, social functioning, mental state, behaviour, quality of life, satisfaction and costs. 3. Fidelity to ACT Within the meta-regression we found that i. the more ICM is adherent to the ACT model, the better it is at decreasing time in hospital (’organisation fidelity’ variable coefficient −0.36 CI −0.66 to −0.07); and ii. the higher the baseline hospital use in the population, the better ICM is at decreasing time in hospital (’baseline hospital use’ variable coefficient −0.20 CI −0.32 to −0.10). Combining both these variables within the model, ’organisation fidelity’ is no longer significant, but ’baseline hospital use’ result is still significantly influencing time in hospital (regression coefficient −0.18 CI −0.29 to −0.07, p=0.0027). Authors’ conclusions ICM was found effective in ameliorating many outcomes relevant to people with severe mental illnesses. Compared to standard care ICM was shown to reduce hospitalisation and increase retention in care. It also globally improved social functioning, although ICM’s effect on mental state and quality of life remains unclear. ICM is of value at least to people with severe mental illnesses who are in the sub-group of those with a high level of hospitalisation (about 4 days/month in past 2 years) and the intervention should be performed close to the original model. It is not clear, however, what gain ICM provides on top of a less formal non-ICM approach. We do not think that more trials comparing current ICM with standard care or non-ICM are justified, but currently we know of no review comparing non-ICM with standard care and this should be undertaken. PMID:20927766
NASA Astrophysics Data System (ADS)
Winslow, R. M.; Lugaz, N.; Schwadron, N.; Farrugia, C. J.; Guo, J.; Wimmer-Schweingruber, R. F.; Wilson, J. K.; Joyce, C.; Jordan, A.; Lawrence, D. J.
2017-12-01
We use multipoint spacecraft observations to study interplanetary coronal mass ejection (ICME) evolution and subsequent galactic cosmic ray (GCR) modulation during propagation in the inner heliosphere. We illustrate ICME propagation effects through two different case studies. The first ICME was launched from the Sun on 29 December 2011 and was observed in near-perfect longitudinal conjunction at MESSENGER and STEREO A. Despite the close longitudinal alignment, we infer from force-free field modeling that the orientation of the underlying flux rope rotated ˜80o in latitude and ˜65o in longitude. Based on both spacecraft measurements as well as ENLIL model simulations of the steady state solar wind, we find that interactions involving magnetic reconnection with corotating structures in the solar wind dramatically alter the ICME magnetic field. In particular, we observed at STEREO A a highly turbulent region with distinct properties within the flux rope that was not observed at MESSENGER; we attribute this region to interaction between the ICME and a heliospheric plasma sheet/current sheet. This is a concrete example of a sequence of events that can increase the complexity of ICMEs during propagation and should serve as a caution on using very distant observations to predict the geoeffectiveness of large interplanetary transients. Our second case study investigates changes with heliospheric distance in GCR modulation by an ICME event (launched on 12 February 2014) observed in near-conjunction at all four of the inner solar system planets. The ICME caused Forbush decreases (FDs) in the GCR count rates at Mercury (MESSENGER), Earth/Moon (ACE/LRO), and Mars (MSL). At all three locations, the pre-ICME background GCR rate was well-matched, but the depth of the FD of GCR fluxes with similar energy ranges diminished with distance from the Sun. A larger difference in FD size was observed between Mercury and Earth than between Earth and Mars, partly owing to the much larger drop in the ICME magnetic field magnitude between Mercury and Earth, and to the faster ICME speed decrease closer to the Sun. The results from these case studies give both a direct and indirect view of how ICMEs evolve during propagation as well as a glimpse of the inner heliosphere environment about to be explored by the Parker Solar Probe and Solar Orbiter.
Bagheri-Hanson, Azadeh; Nedwed, Sebastian; Rueckes-Nilges, Claudia; Naehrlich, Lutz
2014-10-04
Nasal potential difference (NPD) and intestinal current measurement (ICM) are functional CFTR tests that are used as adjunctive diagnostic tools for cystic fibrosis (CF). Smoking has a systemic negative impact on CFTR function. A diagnostic comparison between NPD and ICM and the impact of smoking on both CFTR tests has not been done. The sweat chloride test, NPD, and ICM were performed in 18 patients with CF (sweat chloride >60 mmol/l), including 6 pancreatic sufficient (PS) patients, and 13 healthy controls, including 8 smokers. The NPD CFTR response to Cl-free and isoproterenol perfusion (Δ0Cl- + Iso) was compared to the ICM CFTR response to forskolin/IBMX, carbachol, and histamine (ΔIsc, forskolin/IBMX+ carbachol+histamine). The mean NPD CFTR response and ICM CFTR response between patients with CF and healthy controls was significantly different (p <0.001), but not between patients with CF who were PS and those who were pancreatic insufficient (PI). Smokers have a decreased CFTR response measured by NPD (p = 0.049). For ICM there is a trend towards decreased CFTR response (NS). Three healthy control smokers had NPD responses within the CF-range. In contrast to NPD, there was no overlap of the ICM response between patients with CF and controls. ICM is superior to NPD in distinguishing between patients with CF who have a sweat chloride > 60 mmol/l and healthy controls, including smokers. Neither NPD nor ICM differentiated between patients with CF who were PS from those who were PI. Smoking has a negative impact on CFTR function in healthy controls measured by NPD and challenges the diagnostic interpretation of NPD, but not ICM.
Laeno, Arlene May A; Tamashiro, Dana Ann A; Alarcon, Vernadeth B
2013-11-01
The blastocyst consists of the outer layer of trophectoderm and pluripotent inner cell mass (ICM), the precursor of the placenta and fetus, respectively. During blastocyst expansion, the ICM adopts a compact, ovoidal shape, whose proper morphology is crucial for normal embryogenesis. Rho-associated kinase (ROCK), an effector of small GTPase RHO signaling, mediates the diverse cellular processes of morphogenesis, but its role in ICM morphogenesis is unclear. Here, we demonstrate that ROCK is required for cohesion of ICM cells and formation of segregated tissues called primitive endoderm (PrE) and epiblast (Epi) in the ICM of the mouse blastocyst. Blastocyst treatment with ROCK inhibitors Y-27632 and Fasudil caused widening or spreading of the ICM, and intermingling of PrE and Epi. Widening of ICM was independent of trophectoderm because isolated ICMs as well as colonies of mouse embryonic stem cells (mESC) also spread upon Y-27632 treatment. PrE, Epi, and trophectoderm cell numbers were similar between control and treated blastocysts, suggesting that ROCK inhibition affected ICM morphology but not lineage differentiation. Rock1 and Rock2 knockdown via RNA interference in mESC also induced spreading, supporting the conclusion that morphological defects caused by the pharmacological inhibitors were due to ROCK inactivation. When blastocysts were transferred into surrogates, implantation efficiencies were unaffected by ROCK inhibition, but treated blastocysts yielded greater fetal loss. These results show that proper ICM morphology is dependent on ROCK activity and is crucial for fetal development. Our studies have wider implication for improving efficiencies of human assisted reproductive technologies that diminish pregnancy loss and promote successful births.
Xu, Zhifa; Li, Xia; Hu, Xialin; Yin, Daqiang
2017-10-01
Distribution and relevance of iodinated X-ray contrast media (ICM) and iodinated disinfection byproducts (I-DBPs) in a real aquatic environment have been rarely documented. In this paper, some ICM were proven to be strongly correlated with I-DBPs through investigation of five ICM and five iodinated trihalomethanes (I-THMs) in surface water and two drinking water treatment plants (DWTPs) of the Yangtze River Delta, China. The total ICM concentrations in Taihu Lake and the Huangpu River ranged from 88.7 to 131 ng L -1 and 102-252 ng L -1 , respectively. While the total I-THM concentrations ranged from 128 to 967 ng L -1 in Taihu Lake and 267-680 ng L -1 in the Huangpu River. Iohexol, the dominant ICM, showed significant positive correlation (p < 0.01) with CHClI 2 in Taihu Lake. Iopamidol and iomeprol correlated positively (p < 0.01) with some I-THMs in the Huangpu River. The observed pronounced correlations between ICM and I-THMs indicated that ICM play an important role in the formation of I-THMs in a real aquatic environment. Characteristics of the I-THM species distributions indicated that I-THMs may be transformed by natural conditions. Both DWTPs showed negligible removal efficiencies for total ICM (<20%). Strikingly high concentrations of total I-THMs were observed in the finished water (2848 ng L -1 in conventional DWTP and 356 ng L -1 in advanced DWTP). Obvious transformation of ICM to I-THMs was observed during the chlorination and ozonization processes in DWTPs. We suggest that ICM is an important source for I-DBP formation in the real aquatic environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Valentine, Pamela A; Eggermont, Jos J
2003-09-01
Intracortical microstimulation (ICMS), consisting of a 40 ms burst (rate 300 Hz) of 10 microA pulses, repetitively administered once per second, for a total duration of 1 h, induced cortical reorganization in the primary auditory cortical field of the anesthetized cat. Multiple single-unit activity was simultaneously recorded from three to nine microelectrodes. Spiking activity was recorded from the same units prior to and following the application of ICMS in conjunction with tone pips at the characteristic frequency (CF) of the stimulus electrode. ICMS produced a significant increase in the mean firing rate, and in the occurrence of burst activity. There was an increase in the cross-correlation coefficient (R) for unit pairs recorded from sites distant from the ICMS site, and a decrease in R for unit pairs that were recorded at the stimulation site. ICMS induced a shift in the CF, dependent on the difference between the baseline CF and the ICMS-paired tone pip frequency. ICMS also resulted in broader tuning curves, increased driven peak firing rate and reduced response latency. This suggests a lasting reduction in inhibition in a small region surrounding the ICMS site that allows expansion of the frequency range normally represented in the vicinity of the stimulation electrode.
Virtual Active Touch Using Randomly Patterned Intracortical Microstimulation
O’Doherty, Joseph E.; Lebedev, Mikhail A.; Li, Zheng; Nicolelis, Miguel A.L.
2012-01-01
Intracortical microstimulation (ICMS) has promise as a means for delivering somatosensory feedback in neuroprosthetic systems. Various tactile sensations could be encoded by temporal, spatial, or spatiotemporal patterns of ICMS. However, the applicability of temporal patterns of ICMS to artificial tactile sensation during active exploration is unknown, as is the minimum discriminable difference between temporally modulated ICMS patterns. We trained rhesus monkeys in an active exploration task in which they discriminated periodic pulse-trains of ICMS (200 Hz bursts at a 10 Hz secondary frequency) from pulse trains with the same average pulse rate, but distorted periodicity (200 Hz bursts at a variable instantaneous secondary frequency). The statistics of the aperiodic pulse trains were drawn from a gamma distribution with mean inter-burst intervals equal to those of the periodic pulse trains. The monkeys distinguished periodic pulse trains from aperiodic pulse trains with coefficients of variation 0.25 or greater. Reconstruction of movement kinematics, extracted from the activity of neuronal populations recorded in the sensorimotor cortex concurrent with the delivery of ICMS feedback, improved when the recording intervals affected by ICMS artifacts were removed from analysis. These results add to the growing evidence that temporally patterned ICMS can be used to simulate a tactile sense for neuroprosthetic devices. PMID:22207642
Bardill, J Patrick; Miller, Jennifer L; Vogel, Joseph P
2005-04-01
Legionella pneumophila replicates inside alveolar macrophages and causes an acute, potentially fatal pneumonia called Legionnaires' disease. The ability of this bacterium to grow inside of macrophages is dependent on the presence of a functional dot/icm type IV secretion system (T4SS). Proteins secreted by the Dot/Icm T4SS are presumed to alter the host endocytic pathway, allowing L. pneumophila to establish a replicative niche within the host cell. Here we show that a member of the SidE family of proteins interacts with IcmS and is required for full virulence in the protozoan host Acanthamoeba castellanii. Using immunofluorescence microscopy and adenylate cyclase fusions, we show that SdeA is secreted into host cells by L. pneumophila in an IcmS-dependent manner. The SidE-like proteins are secreted very early during macrophage infection, suggesting that they are important in the initial formation of the replicative phagosome. Secreted SidE family members show a similar localization to other Dot/Icm substrates, specifically, to the poles of the replicative phagosome. This common localization of secreted substrates of the Dot/Icm system may indicate the formation of a multiprotein complex on the cytoplasmic face of the replicative phagosome.
2014-10-01
offer a practical solution to calculating the grain -scale hetero- geneity present in the deformation field. Consequently, crystal plasticity models...process/performance simulation codes (e.g., crystal plasticity finite element method). 15. SUBJECT TERMS ICME; microstructure informatics; higher...iii) protocols for direct and efficient linking of materials models/databases into process/performance simulation codes (e.g., crystal plasticity
Integrated corridor management (ICM) knowledge and technology transfer (KTT).
DOT National Transportation Integrated Search
2014-01-01
The ICM approach involves aggressive, proactive integration of infrastructure along major corridors so that transportation professionals can fully leverage all existing modal choices and assets. ICM helps transportation leaders improve travel time re...
Zhou, Yang; Wang, Li; Liu, Ziqing; Alimohamadi, Sahar; Yin, Chaoying; Liu, Jiandong; Qian, Li
2017-09-26
Cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) or directly reprogrammed from non-myocytes (induced cardiomyocytes [iCMs]) are promising sources for heart regeneration or disease modeling. However, the similarities and differences between iPSC-CMs and iCMs are still unknown. Here, we performed transcriptome analyses of beating iPSC-CMs and iCMs generated from cardiac fibroblasts (CFs) of the same origin. Although both iPSC-CMs and iCMs establish CM-like molecular features globally, iPSC-CMs exhibit a relatively hyperdynamic epigenetic status, whereas iCMs exhibit a maturation status that more closely resembles that of adult CMs. Based on gene expression of metabolic enzymes, iPSC-CMs primarily employ glycolysis, whereas iCMs utilize fatty acid oxidation as the main pathway. Importantly, iPSC-CMs and iCMs exhibit different cell-cycle status, alteration of which influenced their maturation. Therefore, our study provides a foundation for understanding the pros and cons of different reprogramming approaches. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Using numerical simulations to study the ICM metallicity fields in clusters and groups
NASA Astrophysics Data System (ADS)
Mazzei, Renato; Vijayaraghavan, Rukmani; Sarazin, Craig L.
2018-01-01
Most baryonic matter in clusters resides in the intracluster medium (ICM) as hot and diffuse gas. The metal content of this gas is deposited from dying stars, typically synthesized in type Ia or core-collapse supernovae. The ICM gas traces the formation history of the cluster and the compositional signature of its constituent galaxies as a function of time. Studying the metallicity content thus aids in understanding the gradual evolution of the cluster as it is constructed. Within this framework, galaxy and star formation and evolution can be studied by tracing metals in the ICM. In this work we use numerical simulations to study the evolution of ICM metallicity due to the stripping of galaxies’ gas. We model metallicity fields using cloud-in-cell techniques, to determine the ratio between the mass of particles tracing galaxy outflows and the mass of ICM gas at different spatial locations in each simulation time step. Integrated abundance maps are produced. We then project photons and construct mock X-ray images to investigate the relationship between ICM metallicity and observable information.
Use of antithrombotic agents in patients with intracerebral cavernous malformations.
Flemming, Kelly D; Link, Michael J; Christianson, Teresa J H; Brown, Robert D
2013-01-01
The goal of this study was to determine the risk of using antithrombotic agents in patients with established intracerebral cavernous malformations (ICMs). From a previously described cohort of 292 patients with radiographically defined ICMs, 40 required an antithrombotic after the ICM was diagnosed. Patients underwent follow-up to determine the incidence of hemorrhage. The mean age of these 40 patients was 62.4 years; there were 21 male and 19 female patients. Five (12.5%) of the 40 patients initially presented with hemorrhage and 4 (10%) had multiple ICMs. Of these patients, 32 were placed on an antiplatelet agent alone, 6 on an anticoagulant alone, and 2 were placed on both. In patients necessitating any antithrombotic agent, 1 patient developed a prospective hemorrhage over the 258 person-years of follow-up (prospective hemorrhage rate 0.41% per person-year). Antithrombotics likely do not precipitate hemorrhage in patients with known ICMs. However, caution should be exercised in the use of antithrombotics in patients with ICMs at high risk for hemorrhage. The risks and benefits of antithrombotics in each situation should be carefully weighed against the natural history of ICM.
Hills, Nancy; Roddy, Erika; Randazzo, Dominica; Chettout, Nassim; Hess, Christopher; Cotter, Jennifer; Haas-Kogan, Daphne A.; Fullerton, Heather; Mueller, Sabine
2014-01-01
Rates and characteristics of intracerebral cavernous malformations (ICMs) after cranial radiation therapy (CRT) remain poorly understood. Herein we report on ICMs detected on follow+up imaging in pediatric cancer patients who received CRT at age ≤ 18 years from 1980 to 2009. Through chart reviews (n=362) and phone interviews (n=104) of a retrospective cohort we identified 10 patients with ICMs. The median latency time for detection of ICMs after CRT was 12 years (range 1+24 years) at a median age of 21.4 years (IQR 15+28). The cumulative incidence was 3% (95% CI 1+8%) at 10 years post CRT and 14% (95% CI 7+26%) at 15 years. Three patients underwent surgical resection. Two surgical specimens were pathologically similar to sporadically occurring ICMs; one was consistent with capillary telangiectasia. ICMs are common after CRT and can show a spectrum of histological features. PMID:25122111
Heusler, P; Cebulla, B; Boehmer, G; Dinse, H R
2000-12-01
Repetitive intracortical microstimulation (ICMS) applied to the rat primary somatosensory cortex (SI) in vivo was reported to induce reorganization of receptive fields and cortical maps. The present study was designed to examine the effect of such an ICMS pattern applied to layer IV of brain slices containing SI on the efficacy of synaptic input to layer II/III. Effects of ICMS on the synaptic strength was quantified for the first synaptic component (s1) of cortical field potentials (FPs) recorded from layer II/III of SI. FPs were evoked by stimulation in layer IV. The pattern of ICMS was identical to that used in vivo. However, stimulation intensity had to be raised to induce an alteration of synaptic strength. In brain slices superfused with standard ACSF, repetitive ICMS induced a short-lasting (60 min) reduction of the amplitude (-37%) and the slope (-61%) of s1 evoked from the ICMS site, while the amplitude and the slope of s1 evoked from a control stimulation site in cortical layer IV underwent a slow onset increase (13% and 50%, respectively). In brain slices superfused with ACSF containing 1.25 microM bicuculline, ICMS induced an initial strong reduction of the amplitude (-50%) and the slope (-79%) of s1 evoked from the ICMS site. These effects decayed to a sustained level of depression by -30% (amplitude) and -60% (slope). In contrast to experiments using standard ACSF, s1 evoked from the control site was not affected by ICMS. The presynaptic volley was not affected in either of the two groups of experiments. A conventional high frequency stimulation (HFS) protocol induced input-specific long-term potentiation (LTP) of the amplitude and slope of s1 (25% and 76%, respectively). Low frequency stimulation (LFS) induced input-specific long-term depression (LTD) of the amplitude and slope of s1 (24% and 30%, respectively). Application of common forms of conditioning stimulation (HFS and LFS) resulted in LTP or LTD of s1, indicating normal susceptibility of the brain slices studied to the induction of common forms of synaptic plasticity. Therefore, the effects of repetitive ICMS on synaptic FP components were considered ICMS-specific forms of short-lasting (standard ACSF) or long-lasting synaptic depression (ACSF containing bicuculline), the latter resembling neocortical LTD. Results of this study suggest that synaptic depression of excitatory mechanisms are involved in the cortical reorganization induced by repetitive ICMS in vivo. An additional contribution of an ICMS-induced modification of inhibitory mechanisms to cortical reorganization is discussed.
STEREO Observations of Interplanetary Coronal Mass Ejections in 2007–2016
NASA Astrophysics Data System (ADS)
Jian, L. K.; Russell, C. T.; Luhmann, J. G.; Galvin, A. B.
2018-03-01
We have conducted a survey of 341 interplanetary coronal mass ejections (ICMEs) using STEREO A/B data, analyzing their properties while extending a Level 3 product through 2016. Among the 192 ICMEs with distinguishable sheath region and magnetic obstacle, the magnetic field maxima in the two regions are comparable, and the dynamic pressure peaks mostly in the sheath. The north/south direction of the magnetic field does not present any clear relationship between the sheath region and the magnetic obstacle. About 71% of ICMEs are expanding at 1 au, and their expansion speed varies roughly linearly with their maximum speed except for ICMEs faster than 700 km s‑1. The total pressure generally peaks near the middle of the well-defined magnetic cloud (MC) passage, while it often declines along with the non-MC ICME passage, consistent with our previous interpretation concerning the effects of sampling geometry on what is observed. The hourly average iron charge state reaches above 12+ ∼31% of the time for MCs, ∼16% of the time for non-MC ICMEs, and ∼1% of the time for non-ICME solar wind. In four ICMEs abrupt deviations of the magnetic field from the nominal field rotations occur in the magnetic obstacles, coincident with a brief drop or increase in field strength—features could be related to the interaction with dust. In comparison with the similar phases of solar cycle 23, the STEREO ICMEs in this cycle occur less often and are generally weaker and slower, although their field and pressure compressions weaken less than the background solar wind.
Deliano, Matthias; Scheich, Henning; Ohl, Frank W
2009-12-16
Several studies have shown that animals can learn to make specific use of intracortical microstimulation (ICMS) of sensory cortex within behavioral tasks. Here, we investigate how the focal, artificial activation by ICMS leads to a meaningful, behaviorally interpretable signal. In natural learning, this involves large-scale activity patterns in widespread brain-networks. We therefore trained gerbils to discriminate closely neighboring ICMS sites within primary auditory cortex producing evoked responses largely overlapping in space. In parallel, during training, we recorded electrocorticograms (ECoGs) at high spatial resolution. Applying a multivariate classification procedure, we identified late spatial patterns that emerged with discrimination learning from the ongoing poststimulus ECoG. These patterns contained information about the preceding conditioned stimulus, and were associated with a subsequent correct behavioral response by the animal. Thereby, relevant pattern information was mainly carried by neuron populations outside the range of the lateral spatial spread of ICMS-evoked cortical activation (approximately 1.2 mm). This demonstrates that the stimulated cortical area not only encoded information about the stimulation sites by its focal, stimulus-driven activation, but also provided meaningful signals in its ongoing activity related to the interpretation of ICMS learned by the animal. This involved the stimulated area as a whole, and apparently required large-scale integration in the brain. However, ICMS locally interfered with the ongoing cortical dynamics by suppressing pattern formation near the stimulation sites. The interaction between ICMS and ongoing cortical activity has several implications for the design of ICMS protocols and cortical neuroprostheses, since the meaningful interpretation of ICMS depends on this interaction.
Otsuki, Junko; Iwasaki, Toshiroh; Katada, Yuya; Sato, Haruka; Furuhashi, Kohyu; Tsuji, Yuta; Matsumoto, Yukiko; Shiotani, Masahide
2016-09-01
To examine the relationship between the inner cell mass (ICM) grade and its morphological configuration on the occurrence of monochorionic diamniotic (M-D) twinning. Retrospective embryo cohort study. Private IVF clinic. Evaluation of frozen-thawed single blastocyst transfers with hormone replacement treatment in 8,435. This cohort included 71 blastocysts and their ICMs observed by time-lapse photography. Any changes in configuration of the ICMs observed by time-lapse photography were analyzed retrospectively. The amount of loosening of blastomeres within the ICM was evaluated by time-lapse observations. The number of cells that were involved in the loosening process was also assessed. Both of these parameters were correlated with the type of monozygotic twinning that eventuated. The M-D twinning incidence resulting from blastocysts with a high grade ICM (grade A) were transferred was 0.38% (3/796), whereas it was significantly higher, 1.38% (34/2,463), when blastocysts with a poorer (B and C) grade ICM were transferred. Among 71 transferred frozen-thawed blastocysts that were studied with time-lapse photography, there were two dichorionic diamniotic and one M-D twins. Careful observations of the embryo that resulted in the one M-D case, revealed that the ICM acquired a looser appearance due to decompaction of at least eight cells. This type of decompaction was not observed in the ICMs of other transferred blastocysts. The occurrence of M-D twinning may be avoided by excluding blastocysts that contain decompacting ICMs. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
The location of “8”-shaped hatching influences inner cell mass formation in mouse blastocysts
Takahashi, Kazumasa; Goto, Mayumi; Anzai, Mibuki; Ono, Natsuki; Shirasawa, Hiromitsu; Sato, Wataru; Miura, Hiroshi; Sato, Naoki; Sato, Akira; Kumazawa, Yukiyo; Terada, Yukihiro
2017-01-01
The hatching of a blastocyst where the blastocyst portions on the inside and the outside of the zona pellucida feature a figure-of-eight shape is termed “8”-shaped hatching; this type of hatching has been reported to affect the proper presentation of the inner cell mass (ICM) in both human and mouse embryos. Here, our aim was to investigate the factors that affect ICM presentation during “8”-shaped hatching. We performed IVF by using B6D2F1 female mice and ICR male mice, and used the 104 captured blastocysts. Embryos were maintained in KSOM at 37°C in a 5% CO2, 5% O2, and 90% N2 environment, and their growth behavior was monitored individually and continuously using time-lapse cinematography. At 120 h after insemination, embryos were immunostained and examined under a confocal microscope. We used the hatching form to identify “8”-shaped hatching, and we classified the “8”-shaped-hatching blastocysts into two groups, one in which the hatching site was near the ICM center, and the other in which the hatching site was far from the ICM center. We measured each group for ICM size and the number of Oct3/4-positive cells. Of the 95 hatching or hatched embryos, 74 were “8”-shaped-hatching blastocysts, and in these embryos, the ICM was significantly wider when the hatching site was near the ICM than when the hatching site was far from the ICM (P = 0.0091). Moreover, in the “8”-shaped-hatching blastocysts in which the ICM was included in the blastocyst portion outside the zona pellucida―the portion defined as the “outside blastocyst”―after the collapse of this outside blastocyst, the ICM adhered to the trophectoderm of the outside blastocyst, opposite the hatching site. Our results indicate that in “8”-shaped-hatching blastocysts, the hatching site and the collapse of outside blastocyst affect ICM formation. Thus, the assessment of “8”-shaped hatching behaviors could yield indices for accurately evaluating embryo quality. PMID:28384351
DOT National Transportation Integrated Search
2008-10-01
The primary objective of the ICM Initiative is to demonstrate how Intelligent Transportation System (ITS) technologies can efficiently and proactively facilitate the movement of people and goods through major transportation corridors that comprise a ...
Quoß, Maximilian; Rüttermann, Stefan; Gerhardt-Szep, Susanne
2017-10-01
The inverted classroom model (ICM) represents a special combination of online and attendance learning. The implementation of the didactic concept of "peer-assisted learning" (PAL) within an ICM design has not yet been described in the literature for the field of restorative dentistry. It was the goal of the present study to develop an ICM offering in a cross-year PAL format (ICM-cyPAL), and then introduce and evaluate it. The pilot project was conducted at the dental clinic at the Goethe University of Frankfurt/Main, where following its conceptual development and implementation with three consecutive cohorts of students in their first clinical semester (the sixth semester at university) the ICM-cyPAL offering was evaluated. Data on acceptance, tutor effectiveness, group interaction models and learning strategies were collected using an evaluative instrument. 121 students (tutees) participated in three cohorts. The response rate reached 98.3 %. In total, the offering was given an average rating of 6.97±1.93 (from 1 = unsatisfactory to 10 = excellent). As the tutees explained the attention that the tutors employed gave to the group was "just right" (4.65±1.04; where 1 = too controlling and 4 = just right to 7 = left the group on their own too long) and talked "just the right amount" (4.54±0.95; where 1 = too much and 4 = just right to 7 = talked too little). The results for tutor effectiveness reached values between 3.26±0.94 and 3.78±0.87; for the evaluation of group interaction models average values were obtained from 3.41±0.98 to 3.89±0.73 (on a Likert scale of 1 = do not at all agree to 5 = completely agree). Concerning the surveyed learning strategies, the dimensions of "resource management" and "implementation of the learning materials" were given the highest and lowest rankings, respectively. The tutees' ratings of the newly developed and implemented ICM-cyPAL offering in the dental context were mainly positive. The thematic orientation of the structured training program needs to be optimized. The offering itself requires both a high degree of organization and solid financial and staffing resources. Copyright © 2017. Published by Elsevier GmbH.
NASA Astrophysics Data System (ADS)
Mernier, F.; de Plaa, J.; Pinto, C.; Kaastra, J. S.; Kosec, P.; Zhang, Y.-Y.; Mao, J.; Werner, N.; Pols, O. R.; Vink, J.
2016-11-01
The hot intra-cluster medium (ICM) is rich in metals, which are synthesised by supernovae (SNe) and accumulate over time into the deep gravitational potential well of clusters of galaxies. Since most of the elements visible in X-rays are formed by type Ia (SNIa) and/or core-collapse (SNcc) supernovae, measuring their abundances gives us direct information on the nucleosynthesis products of billions of SNe since the epoch of the star formation peak (z 2-3). In this study, we compare the most accurate average X/Fe abundance ratios (compiled in a previous work from XMM-Newton EPIC and RGS observations of 44 galaxy clusters, groups, and ellipticals), representative of the chemical enrichment in the nearby ICM, to various SNIa and SNcc nucleosynthesis models found in the literature. The use of a SNcc model combined to any favoured standard SNIa model (deflagration or delayed-detonation) fails to reproduce our abundance pattern. In particular, the Ca/Fe and Ni/Fe ratios are significantly underestimated by the models. We show that the Ca/Fe ratio can be reproduced better, either by taking a SNIa delayed-detonation model that matches the observations of the Tycho supernova remnant, or by adding a contribution from the "Ca-rich gap transient" SNe, whose material should easily mix into the hot ICM. On the other hand, the Ni/Fe ratio can be reproduced better by assuming that both deflagration and delayed-detonation SNIa contribute in similar proportions to the ICM enrichment. In either case, the fraction of SNIa over the total number of SNe (SNIa+SNcc) contributing to the ICM enrichment ranges within 29-45%. This fraction is found to be systematically higher than the corresponding SNIa/(SNIa+SNcc) fraction contributing to the enrichment of the proto-solar environnement (15-25%). We also discuss and quantify two useful constraints on both SNIa (I.e. the initial metallicity on SNIa progenitors and the fraction of low-mass stars that result in SNIa) and SNcc (I.e. the effect of the IMF and the possible contribution of pair-instability SNe to the enrichment) that can be inferred from the ICM abundance ratios. Finally, we show that detonative sub-Chandrasekhar WD explosions (resulting, for example, from violent WD mergers) cannot be a dominant channel for SNIa progenitors in galaxy clusters.
Correlation of ICME Magnetic Fields at Radially Aligned Spacecraft
NASA Astrophysics Data System (ADS)
Good, S. W.; Forsyth, R. J.; Eastwood, J. P.; Möstl, C.
2018-03-01
The magnetic field structures of two interplanetary coronal mass ejections (ICMEs), each observed by a pair of spacecraft close to radial alignment, have been analysed. The ICMEs were observed in situ by MESSENGER and STEREO-B in November 2010 and November 2011, while the spacecraft were separated by more than 0.6 AU in heliocentric distance, less than 4° in heliographic longitude, and less than 7° in heliographic latitude. Both ICMEs took approximately two days to travel between the spacecraft. The ICME magnetic field profiles observed at MESSENGER have been mapped to the heliocentric distance of STEREO-B and compared directly to the profiles observed by STEREO-B. Figures that result from this mapping allow for easy qualitative assessment of similarity in the profiles. Macroscale features in the profiles that varied on timescales of one hour, and which corresponded to the underlying flux rope structure of the ICMEs, were well correlated in the solar east-west and north-south directed components, with Pearson's correlation coefficients of approximately 0.85 and 0.95, respectively; microscale features with timescales of one minute were uncorrelated. Overall correlation values in the profiles of one ICME were increased when an apparent change in the flux rope axis direction between the observing spacecraft was taken into account. The high degree of similarity seen in the magnetic field profiles may be interpreted in two ways. If the spacecraft sampled the same region of each ICME ( i.e. if the spacecraft angular separations are neglected), the similarity indicates that there was little evolution in the underlying structure of the sampled region during propagation. Alternatively, if the spacecraft observed different, nearby regions within the ICMEs, it indicates that there was spatial homogeneity across those different regions. The field structure similarity observed in these ICMEs points to the value of placing in situ space weather monitors well upstream of the Earth.
Implementing an Integrated Commitment Management System at the Savannah River Site Tank Farms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, A.
1999-06-16
Recently, the Savannah River Site Tank Farms have been transitioning from pre-1990 Authorization Basis requirements to new 5480.22/.23 requirements. Implementation of the new Authorization Basis has resulted in more detailed requirements, a completely new set of implementing procedures, and the expectation of even more disciplined operations. Key to the success of this implementation has been the development of an Integrated Commitment Management System (ICMS) by Westinghouse Safety Management Solutions. The ICMS has two elements: the Authorization Commitment Matrix (ACM), and a Procedure Consistency Review methodology. The Authorization Commitment Matrix is a linking database, which ties requirements and implementing documents together.more » The associated Procedure Consistency Review process ensures that the procedures to be credited in the ACM do in fact correctly and completely meet all intended commitments. This Integrated Commitment Management System helps Westinghouse Safety Management Solutions and the facility operations and engineering organizations take ownership in the implementation of the requirements that have been developed.« less
Overstreet, Cynthia K.; Hellman, Randall B.; Ponce Wong, Ruben D.; Santos, Veronica J.; Helms Tillery, Stephen I.
2016-01-01
The addition of tactile and proprioceptive feedback to neuroprosthetic limbs is expected to significantly improve the control of these devices. Intracortical microstimulation (ICMS) of somatosensory cortex is a promising method of delivering this sensory feedback. To date, the main focus of somatosensory ICMS studies has been to deliver discriminable signals, corresponding to varying intensity, to a single location in cortex. However, multiple independent and simultaneous streams of sensory information will need to be encoded by ICMS to provide functionally relevant feedback for a neuroprosthetic limb (e.g., encoding contact events and pressure on multiple digits). In this study, we evaluated the ability of an awake, behaving non-human primate (Macaca mulatta) to discriminate ICMS stimuli delivered on multiple electrodes spaced within somatosensory cortex. We delivered serial stimulation on single electrodes to evaluate the discriminability of sensations corresponding to ICMS of distinct cortical locations. Additionally, we delivered trains of multichannel stimulation, derived from a tactile sensor, synchronously across multiple electrodes. Our results indicate that discrimination of multiple ICMS stimuli is a challenging task, but that discriminable sensory percepts can be elicited by both single and multichannel ICMS on electrodes spaced within somatosensory cortex. PMID:27995126
A computational model that predicts behavioral sensitivity to intracortical microstimulation
Kim, Sungshin; Callier, Thierri; Bensmaia, Sliman J.
2016-01-01
Objective Intracortical microstimulation (ICMS) is a powerful tool to investigate the neural mechanisms of perception and can be used to restore sensation for patients who have lost it. While sensitivity to ICMS has previously been characterized, no systematic framework has been developed to summarize the detectability of individual ICMS pulse trains or the discriminability of pairs of pulse trains. Approach We develop a simple simulation that describes the responses of a population of neurons to a train of electrical pulses delivered through a microelectrode. We then perform an ideal observer analysis on the simulated population responses to predict the behavioral performance of non-human primates in ICMS detection and discrimination tasks. Main results Our computational model can predict behavioral performance across a wide range of stimulation conditions with high accuracy (R2 = 0.97) and generalizes to novel ICMS pulse trains that were not used to fit its parameters. Furthermore, the model provides a theoretical basis for the finding that amplitude discrimination based on ICMS violates Weber's law. Significance The model can be used to characterize the sensitivity to ICMS across the range of perceptible and safe stimulation regimes. As such, it will be a useful tool for both neuroscience and neuroprosthetics. PMID:27977419
A computational model that predicts behavioral sensitivity to intracortical microstimulation.
Kim, Sungshin; Callier, Thierri; Bensmaia, Sliman J
2017-02-01
Intracortical microstimulation (ICMS) is a powerful tool to investigate the neural mechanisms of perception and can be used to restore sensation for patients who have lost it. While sensitivity to ICMS has previously been characterized, no systematic framework has been developed to summarize the detectability of individual ICMS pulse trains or the discriminability of pairs of pulse trains. We develop a simple simulation that describes the responses of a population of neurons to a train of electrical pulses delivered through a microelectrode. We then perform an ideal observer analysis on the simulated population responses to predict the behavioral performance of non-human primates in ICMS detection and discrimination tasks. Our computational model can predict behavioral performance across a wide range of stimulation conditions with high accuracy (R 2 = 0.97) and generalizes to novel ICMS pulse trains that were not used to fit its parameters. Furthermore, the model provides a theoretical basis for the finding that amplitude discrimination based on ICMS violates Weber's law. The model can be used to characterize the sensitivity to ICMS across the range of perceptible and safe stimulation regimes. As such, it will be a useful tool for both neuroscience and neuroprosthetics.
Tomson, Todd T; Passman, Rod
Insertable cardiac monitors (ICMs) have provided clinicians with a superb tool for assessing infrequent or potentially asymptomatic arrhythmias. ICMs have shown their usefulness in the evaluation of unexplained syncope, providing high diagnostic yields in a cost-effective manner. While unexplained syncope continues to be the most common reason for their use, ICMs are increasingly being used for the monitoring of atrial fibrillation (AF). Recent trials have demonstrated that a substantial proportion of patients with cryptogenic stroke have AF detected only by the prolonged monitoring provided by ICMs. A particularly promising and emerging use for ICMs is in the management of anticoagulation in patients with known paroxysmal AF. The introduction in recent years of ICMs with automatic AF detection algorithms and continuous remote monitoring in combination with novel oral anticoagulants have opened the door for targeted anticoagulation guided by remote monitoring, a strategy that has recently shown promise in pilot studies of this technique. While further research is needed before official recommendations can be given, this use of ICMs opens exciting new possibilities for personalized medicine that could potentially reduce bleeding risk and improve quality of life in patients with atrial fibrillation.
A computational model that predicts behavioral sensitivity to intracortical microstimulation
NASA Astrophysics Data System (ADS)
Kim, Sungshin; Callier, Thierri; Bensmaia, Sliman J.
2017-02-01
Objective. Intracortical microstimulation (ICMS) is a powerful tool to investigate the neural mechanisms of perception and can be used to restore sensation for patients who have lost it. While sensitivity to ICMS has previously been characterized, no systematic framework has been developed to summarize the detectability of individual ICMS pulse trains or the discriminability of pairs of pulse trains. Approach. We develop a simple simulation that describes the responses of a population of neurons to a train of electrical pulses delivered through a microelectrode. We then perform an ideal observer analysis on the simulated population responses to predict the behavioral performance of non-human primates in ICMS detection and discrimination tasks. Main results. Our computational model can predict behavioral performance across a wide range of stimulation conditions with high accuracy (R 2 = 0.97) and generalizes to novel ICMS pulse trains that were not used to fit its parameters. Furthermore, the model provides a theoretical basis for the finding that amplitude discrimination based on ICMS violates Weber’s law. Significance. The model can be used to characterize the sensitivity to ICMS across the range of perceptible and safe stimulation regimes. As such, it will be a useful tool for both neuroscience and neuroprosthetics.
Overstreet, Cynthia K; Hellman, Randall B; Ponce Wong, Ruben D; Santos, Veronica J; Helms Tillery, Stephen I
2016-01-01
The addition of tactile and proprioceptive feedback to neuroprosthetic limbs is expected to significantly improve the control of these devices. Intracortical microstimulation (ICMS) of somatosensory cortex is a promising method of delivering this sensory feedback. To date, the main focus of somatosensory ICMS studies has been to deliver discriminable signals, corresponding to varying intensity, to a single location in cortex. However, multiple independent and simultaneous streams of sensory information will need to be encoded by ICMS to provide functionally relevant feedback for a neuroprosthetic limb (e.g., encoding contact events and pressure on multiple digits). In this study, we evaluated the ability of an awake, behaving non-human primate ( Macaca mulatta ) to discriminate ICMS stimuli delivered on multiple electrodes spaced within somatosensory cortex. We delivered serial stimulation on single electrodes to evaluate the discriminability of sensations corresponding to ICMS of distinct cortical locations. Additionally, we delivered trains of multichannel stimulation, derived from a tactile sensor, synchronously across multiple electrodes. Our results indicate that discrimination of multiple ICMS stimuli is a challenging task, but that discriminable sensory percepts can be elicited by both single and multichannel ICMS on electrodes spaced within somatosensory cortex.
SWSA 6 interim corrective measures environmental monitoring: FY 1991 results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clapp, R.B.; Marshall, D.S.
1992-06-01
In 1988, interim corrective measures (ICMs) were implemented at Solid Waste Storage Area (SWSA) 6 at Oak Ridge National Laboratory. The SWSA 6 site was regulated under the Resource Conservation and Recovery Act (RCRA). The ICMs consist of eight large high-density polyethylene sheets placed as temporary caps to cover trenches known to contain RCRA-regulated materials. Environmental monitoring for FY 1991 consisted of collecting water levels at 13 groundwater wells outside the capped areas and 44 wells in or near the capped areas in order to identify any significant loss of hydrologic isolation of the wastes. Past annual reports show thatmore » the caps are only partially effective in keeping the waste trenches dry and that many trenches consistently or intermittently contain water.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clapp, R.B.; Marshall, D.S.
1992-06-01
In 1988, interim corrective measures (ICMs) were implemented at Solid Waste Storage Area (SWSA) 6 at Oak Ridge National Laboratory. The SWSA 6 site was regulated under the Resource Conservation and Recovery Act (RCRA). The ICMs consist of eight large high-density polyethylene sheets placed as temporary caps to cover trenches known to contain RCRA-regulated materials. Environmental monitoring for FY 1991 consisted of collecting water levels at 13 groundwater wells outside the capped areas and 44 wells in or near the capped areas in order to identify any significant loss of hydrologic isolation of the wastes. Past annual reports show thatmore » the caps are only partially effective in keeping the waste trenches dry and that many trenches consistently or intermittently contain water.« less
Towards a metadata scheme for the description of materials - the description of microstructures
NASA Astrophysics Data System (ADS)
Schmitz, Georg J.; Böttger, Bernd; Apel, Markus; Eiken, Janin; Laschet, Gottfried; Altenfeld, Ralph; Berger, Ralf; Boussinot, Guillaume; Viardin, Alexandre
2016-01-01
The property of any material is essentially determined by its microstructure. Numerical models are increasingly the focus of modern engineering as helpful tools for tailoring and optimization of custom-designed microstructures by suitable processing and alloy design. A huge variety of software tools is available to predict various microstructural aspects for different materials. In the general frame of an integrated computational materials engineering (ICME) approach, these microstructure models provide the link between models operating at the atomistic or electronic scales, and models operating on the macroscopic scale of the component and its processing. In view of an improved interoperability of all these different tools it is highly desirable to establish a standardized nomenclature and methodology for the exchange of microstructure data. The scope of this article is to provide a comprehensive system of metadata descriptors for the description of a 3D microstructure. The presented descriptors are limited to a mere geometric description of a static microstructure and have to be complemented by further descriptors, e.g. for properties, numerical representations, kinetic data, and others in the future. Further attributes to each descriptor, e.g. on data origin, data uncertainty, and data validity range are being defined in ongoing work. The proposed descriptors are intended to be independent of any specific numerical representation. The descriptors defined in this article may serve as a first basis for standardization and will simplify the data exchange between different numerical models, as well as promote the integration of experimental data into numerical models of microstructures. An HDF5 template data file for a simple, three phase Al-Cu microstructure being based on the defined descriptors complements this article.
Towards a metadata scheme for the description of materials - the description of microstructures.
Schmitz, Georg J; Böttger, Bernd; Apel, Markus; Eiken, Janin; Laschet, Gottfried; Altenfeld, Ralph; Berger, Ralf; Boussinot, Guillaume; Viardin, Alexandre
2016-01-01
The property of any material is essentially determined by its microstructure. Numerical models are increasingly the focus of modern engineering as helpful tools for tailoring and optimization of custom-designed microstructures by suitable processing and alloy design. A huge variety of software tools is available to predict various microstructural aspects for different materials. In the general frame of an integrated computational materials engineering (ICME) approach, these microstructure models provide the link between models operating at the atomistic or electronic scales, and models operating on the macroscopic scale of the component and its processing. In view of an improved interoperability of all these different tools it is highly desirable to establish a standardized nomenclature and methodology for the exchange of microstructure data. The scope of this article is to provide a comprehensive system of metadata descriptors for the description of a 3D microstructure. The presented descriptors are limited to a mere geometric description of a static microstructure and have to be complemented by further descriptors, e.g. for properties, numerical representations, kinetic data, and others in the future. Further attributes to each descriptor, e.g. on data origin, data uncertainty, and data validity range are being defined in ongoing work. The proposed descriptors are intended to be independent of any specific numerical representation. The descriptors defined in this article may serve as a first basis for standardization and will simplify the data exchange between different numerical models, as well as promote the integration of experimental data into numerical models of microstructures. An HDF5 template data file for a simple, three phase Al-Cu microstructure being based on the defined descriptors complements this article.
DOT National Transportation Integrated Search
2008-11-01
The primary objective of the ICM Initiative is to demonstrate how Intelligent Transportation System (ITS) technologies can efficiently and proactively facilitate the movement of people and goods through major transportation corridors that comprise a ...
DOT National Transportation Integrated Search
2008-11-01
The primary objective of the ICM Initiative is to demonstrate how Intelligent Transportation System (ITS) technologies can efficiently and proactively facilitate the movement of people and goods through major transportation corridors that comprise a ...
US-75 ICM system requirements : Dallas Integrated Corridor Management (ICM) demonstration project.
DOT National Transportation Integrated Search
2010-12-01
This document is intended as a listing and discussion of the Requirements for the US-75 Integrated Corridor Management System (ICMS) Demonstration Project in Dallas. This document describes what the system is to do (the functional requirements), how ...
Bektik, Emre; Dennis, Adrienne; Prasanna, Prateek; Madabhushi, Anant
2017-01-01
The direct reprogramming of cardiac fibroblasts into induced cardiomyocyte (CM)-like cells (iCMs) holds great promise in restoring heart function. We previously found that human fibroblasts could be reprogrammed toward CM-like cells by 7 reprogramming factors; however, iCM reprogramming in human fibroblasts is both more difficult and more time-intensive than that in mouse cells. In this study, we investigated if additional reprogramming factors could quantitatively and/or qualitatively improve 7-factor-mediated human iCM reprogramming by single-cell quantitative PCR. We first validated 46 pairs of TaqMan® primers/probes that had sufficient efficiency and sensitivity to detect the significant difference of gene expression between individual H9 human embryonic stem cell (ESC)-differentiated CMs (H9CMs) and human fibroblasts. The expression profile of these 46 genes revealed an improved reprogramming in 12-week iCMs compared to 4-week iCMs reprogrammed by 7 factors, indicating a prolonged stochastic phase during human iCM reprogramming. Although none of additional one reprogramming factor yielded a greater number of iCMs, our single-cell qPCR revealed that additional HAND2 or microRNA-1 could facilitate the silencing of fibroblast genes and yield a better degree of reprogramming in more reprogrammed iCMs. Noticeably, the more HAND2 expressed, the higher-level were cardiac genes activated in 7Fs+HAND2-reprogrammed iCMs. In conclusion, HAND2 and microRNA-1 could help 7 factors to facilitate the early progress of iCM-reprogramming from human fibroblasts. Our study provides valuable information to further optimize a method of direct iCM-reprogramming in human cells. PMID:28796841
Zhao, Zhenling; Liu, Yongchun; Ma, Lanlan; Sato, Yu; Qin, Ling
2015-01-01
Although neural responses to sound stimuli have been thoroughly investigated in various areas of the auditory cortex, the results electrophysiological recordings cannot establish a causal link between neural activation and brain function. Electrical microstimulation, which can selectively perturb neural activity in specific parts of the nervous system, is an important tool for exploring the organization and function of brain circuitry. To date, the studies describing the behavioral effects of electrical stimulation have largely been conducted in the primary auditory cortex. In this study, to investigate the potential differences in the effects of electrical stimulation on different cortical areas, we measured the behavioral performance of cats in detecting intra-cortical microstimulation (ICMS) delivered in the primary and secondary auditory fields (A1 and A2, respectively). After being trained to perform a Go/No-Go task cued by sounds, we found that cats could also learn to perform the task cued by ICMS; furthermore, the detection of the ICMS was similarly sensitive in A1 and A2. Presenting wideband noise together with ICMS substantially decreased the performance of cats in detecting ICMS in A1 and A2, consistent with a noise masking effect on the sensation elicited by the ICMS. In contrast, presenting ICMS with pure-tones in the spectral receptive field of the electrode-implanted cortical site reduced ICMS detection performance in A1 but not A2. Therefore, activation of A1 and A2 neurons may produce different qualities of sensation. Overall, our study revealed that ICMS-induced neural activity could be easily integrated into an animal’s behavioral decision process and had an implication for the development of cortical auditory prosthetics. PMID:25964744
Bektik, Emre; Dennis, Adrienne; Prasanna, Prateek; Madabhushi, Anant; Fu, Ji-Dong
2017-01-01
The direct reprogramming of cardiac fibroblasts into induced cardiomyocyte (CM)-like cells (iCMs) holds great promise in restoring heart function. We previously found that human fibroblasts could be reprogrammed toward CM-like cells by 7 reprogramming factors; however, iCM reprogramming in human fibroblasts is both more difficult and more time-intensive than that in mouse cells. In this study, we investigated if additional reprogramming factors could quantitatively and/or qualitatively improve 7-factor-mediated human iCM reprogramming by single-cell quantitative PCR. We first validated 46 pairs of TaqMan® primers/probes that had sufficient efficiency and sensitivity to detect the significant difference of gene expression between individual H9 human embryonic stem cell (ESC)-differentiated CMs (H9CMs) and human fibroblasts. The expression profile of these 46 genes revealed an improved reprogramming in 12-week iCMs compared to 4-week iCMs reprogrammed by 7 factors, indicating a prolonged stochastic phase during human iCM reprogramming. Although none of additional one reprogramming factor yielded a greater number of iCMs, our single-cell qPCR revealed that additional HAND2 or microRNA-1 could facilitate the silencing of fibroblast genes and yield a better degree of reprogramming in more reprogrammed iCMs. Noticeably, the more HAND2 expressed, the higher-level were cardiac genes activated in 7Fs+HAND2-reprogrammed iCMs. In conclusion, HAND2 and microRNA-1 could help 7 factors to facilitate the early progress of iCM-reprogramming from human fibroblasts. Our study provides valuable information to further optimize a method of direct iCM-reprogramming in human cells.
Zhao, Zhenling; Liu, Yongchun; Ma, Lanlan; Sato, Yu; Qin, Ling
2015-01-01
Although neural responses to sound stimuli have been thoroughly investigated in various areas of the auditory cortex, the results electrophysiological recordings cannot establish a causal link between neural activation and brain function. Electrical microstimulation, which can selectively perturb neural activity in specific parts of the nervous system, is an important tool for exploring the organization and function of brain circuitry. To date, the studies describing the behavioral effects of electrical stimulation have largely been conducted in the primary auditory cortex. In this study, to investigate the potential differences in the effects of electrical stimulation on different cortical areas, we measured the behavioral performance of cats in detecting intra-cortical microstimulation (ICMS) delivered in the primary and secondary auditory fields (A1 and A2, respectively). After being trained to perform a Go/No-Go task cued by sounds, we found that cats could also learn to perform the task cued by ICMS; furthermore, the detection of the ICMS was similarly sensitive in A1 and A2. Presenting wideband noise together with ICMS substantially decreased the performance of cats in detecting ICMS in A1 and A2, consistent with a noise masking effect on the sensation elicited by the ICMS. In contrast, presenting ICMS with pure-tones in the spectral receptive field of the electrode-implanted cortical site reduced ICMS detection performance in A1 but not A2. Therefore, activation of A1 and A2 neurons may produce different qualities of sensation. Overall, our study revealed that ICMS-induced neural activity could be easily integrated into an animal's behavioral decision process and had an implication for the development of cortical auditory prosthetics.
Kuerbis, Alexis N; Neighbors, Charles J; Morgenstern, Jon
2011-03-01
Intensive case management (ICM) is effective for facilitating entry into and retention in outpatient substance use disorder treatment (OSUDT) for low-income substance-dependent women; however, no studies have specifically examined the moderating impact of depressive symptoms on ICM. The purpose of this study was to investigate whether depressive symptoms moderated ICM's effect on OSUDT engagement, attendance, and outcomes for substance-dependent women on Temporary Assistance for Needy Families (TANF). It was hypothesized that highly depressed women would demonstrate worse outcomes on all indicators. Logistic regression and generalized estimating equations were used to determine depression's moderating impact on ICM in a secondary analysis of data from a randomized controlled trial comparing the effectiveness of ICM to usual care provided by local public assistance offices in Essex County, NJ. Substance-dependent women (N = 294) were recruited while being screened for TANF eligibility and were followed for 24 months. Findings revealed that high levels of depressive symptoms moderated the effectiveness of ICM in unexpected directions for two outcome variables. Subjects with high levels of depressive symptoms in ICM were (a) significantly more likely to engage in at least one treatment program than those in usual care and (b) associated with the fewest mean drinks per drinking day across the 24-month follow-up period. Independent effects for high levels of depressive symptoms and ICM were also found to positively influence engagement, attendance, and percentage days abstinent. ICM is effective for substance-dependent women with a broad spectrum of depressive symptoms in enhancing OSUDT utilization and outcomes.
Marsh, Herbert W; Lüdtke, Oliver; Nagengast, Benjamin; Morin, Alexandre J S; Von Davier, Matthias
2013-09-01
The present investigation has a dual focus: to evaluate problematic practice in the use of item parcels and to suggest exploratory structural equation models (ESEMs) as a viable alternative to the traditional independent clusters confirmatory factor analysis (ICM-CFA) model (with no cross-loadings, subsidiary factors, or correlated uniquenesses). Typically, it is ill-advised to (a) use item parcels when ICM-CFA models do not fit the data, and (b) retain ICM-CFA models when items cross-load on multiple factors. However, the combined use of (a) and (b) is widespread and often provides such misleadingly good fit indexes that applied researchers might believe that misspecification problems are resolved--that 2 wrongs really do make a right. Taking a pragmatist perspective, in 4 studies we demonstrate with responses to the Rosenberg Self-Esteem Inventory (Rosenberg, 1965), Big Five personality factors, and simulated data that even small cross-loadings seriously distort relations among ICM-CFA constructs or even decisions on the number of factors; although obvious in item-level analyses, this is camouflaged by the use of parcels. ESEMs provide a viable alternative to ICM-CFAs and a test for the appropriateness of parcels. The use of parcels with an ICM-CFA model is most justifiable when the fit of both ICM-CFA and ESEM models is acceptable and equally good, and when substantively important interpretations are similar. However, if the ESEM model fits the data better than the ICM-CFA model, then the use of parcels with an ICM-CFA model typically is ill-advised--particularly in studies that are also interested in scale development, latent means, and measurement invariance.
Della-Torre, E; Berti, A; Yacoub, M R; Guglielmi, B; Tombetti, E; Sabbadini, M G; Voltolini, S; Colombo, G
2015-05-01
The purpose of the present work is to evaluate the efficacy of an approach that combines clinical history, skin tests results, and premedication, in preventing recurrent hypersensitivity reactions to iodinated contrast media (ICM). Skin Prick tests, Intradermal tests, and Patch tests were performed in 36 patients with a previous reaction to ICM. All patients underwent a second contrast enhanced radiological procedure with an alternative ICM selected on the basis of the proposed approach. After alternative ICM re-injection, only one patient presented a mild NIR. The proposed algorithm, validated in clinical settings where repeated radiological exams are needed, offers a safe and practical approach for protecting patients from recurrent hypersensitivity reactions to ICM.
DOT National Transportation Integrated Search
2008-03-31
This document presents a System Requirement Specification for an Integrated Corridor Management System (ICMS) in the I-15 Corridor in San Diego, California. The ICMS will consist of two major subsystems: the existing Intermodal Transportation Managem...
The influence of early embryo traits on human embryonic stem cell derivation efficiency.
O'Leary, Thomas; Heindryckx, Björn; Lierman, Sylvie; Van der Jeught, Margot; Menten, Björn; Deforce, Dieter; Cornelissen, Ria; de Sousa Lopes, Susana Chuva; De Sutter, Petra
2011-05-01
Despite its prognostic value in in vitro fertilization, early embryo morphology is not reported on in the derivation of human embryonic stem cell (hESC) lines. Standard hESC derivation does rely on blastocyst development and its efficiency is highly correlated to inner cell mass (ICM) quality. Poor-quality embryos (PQEs) donated for hESC derivation may have a range of cleavage-stage abnormalities that are known to compromise further development. This study was implemented to determine whether specific PQEs traits influence the efficiency of good-quality ICMs to derive new hESC lines. We found that although the types of PQEs investigated were all able to make blastocysts with good-quality ICMs, the ICMs were unequal in their ability to derive hESCs. Good-quality ICMs from embryos with multiple poor-quality traits were unable to generate hESC lines, in contrast to good-quality ICMs from embryos with a single poor-quality trait. In addition, our data suggest a direct correlation between the number of ICM cells present in the blastocyst and its capacity to derive new hESC lines. This study is the first to demonstrate that ICM quality alone is an incomplete indicator of hESC derivation and that application of in vitro fertilization-based early embryo scoring can help predict hESC derivation efficiency. Experiments aiming to quantify, improve upon, or compare hESC derivation efficiency should thus take into consideration early embryo morphology scoring for the comparison of groups with equal developmental competence.
The effects of chronic intracortical microstimulation on neural tissue and fine motor behavior.
Rajan, Alexander T; Boback, Jessica L; Dammann, John F; Tenore, Francesco V; Wester, Brock A; Otto, Kevin J; Gaunt, Robert A; Bensmaia, Sliman J
2015-12-01
One approach to conveying sensory feedback in neuroprostheses is to electrically stimulate sensory neurons in the cortex. For this approach to be viable, it is critical that intracortical microstimulation (ICMS) causes minimal damage to the brain. Here, we investigate the effects of chronic ICMS on the neuronal tissue across a variety of stimulation regimes in non-human primates. We also examine each animal's ability to use their hand--the cortical representation of which is targeted by the ICMS--as a further assay of possible neuronal damage. We implanted electrode arrays in the primary somatosensory cortex of three Rhesus macaques and delivered ICMS four hours per day, five days per week, for six months. Multiple regimes of ICMS were delivered to investigate the effects of stimulation parameters on the tissue and behavior. Parameters included current amplitude (10-100 μA), pulse train duration (1, 5 s), and duty cycle (1/1, 1/3). We then performed a range of histopathological assays on tissue near the tips of both stimulated and unstimulated electrodes to assess the effects of chronic ICMS on the tissue and their dependence on stimulation parameters. While the implantation and residence of the arrays in the cortical tissue did cause significant damage, chronic ICMS had no detectable additional effect; furthermore, the animals exhibited no impairments in fine motor control. Chronic ICMS may be a viable means to convey sensory feedback in neuroprostheses as it does not cause significant damage to the stimulated tissue.
Berghmans, T; Paesmans, M; Sculier, J P
2004-04-01
To evaluate the effectiveness of a specific oncologic scoring system-the ICU Cancer Mortality model (ICM)-in predicting hospital mortality in comparison to two general severity scores-the Acute Physiology and Chronic Health Evaluation (APACHE II) and the Simplified Acute Physiology Score (SAPS II). All 247 patients admitted for a medical acute complication over an 18-month period in an oncological medical intensive care unit were prospectively registered. Their data, including type of complication, vital status at discharge and cancer characteristics as well as other variables necessary to calculate the three scoring systems were retrospectively assessed. Observed in-hospital mortality was 34%. The predicted in-hospital mortality rate for APACHE II was 32%; SAPS II, 24%; and ICM, 28%. The goodness of fit was inadequate except for the ICM score. Comparison of the area under the ROC curves revealed a better fit for ICM (area 0.79). The maximum correct classification rate was 72% for APACHE II, 74% for SAPS II and 77% for ICM. APACHE II and SAPS II were better at predicting outcome for survivors to hospital discharge, although ICM was better for non-survivors. Two variables were independently predicting the risk of death during hospitalisation: ICM (OR=2.31) and SAPS II (OR=1.05). Gravity scores were the single independent predictors for hospital mortality, and ICM was equivalent to APACHE II and SAPS II.
Interplanetary Coronal Mass Ejections in the Near-Earth Solar Wind During 1996-2002
NASA Technical Reports Server (NTRS)
Cane, H. V.; Richardson, I. G.
2003-01-01
We summarize the occurrence of interplanetary coronal mass injections (ICMEs) in the near-Earth solar wind during 1996-2002, corresponding to the increasing and maximum phases of solar cycle 23. In particular, we give a detailed list of such events. This list, based on in-situ observations, is not confined to subsets of ICMEs, such as magnetic clouds or those preceded by halo CMEs observed by the SOHO/LASCO coronagraph, and provides an overview of 214 ICMEs in the near-Earth solar wind during this period. The ICME rate increases by about an order of magnitude from solar minimum to solar maximum (when the rate is approximately 3 ICMEs/solar rotation period). The rate also shows a temporary reduction during 1999, and another brief, deeper reduction in late 2000-early 2001, which only approximately track variations in the solar 10 cm flux. In addition, there are occasional periods of several rotations duration when the ICME rate is enhanced in association with high solar activity levels. We find an indication of a periodic variation in the ICME rate, with a prominent period of approximately 165 days similar to that previously reported in various solar phenomena. It is found that the fraction of ICMEs that are magnetic clouds has a solar cycle variation, the fraction being larger near solar minimum. For the subset of events that we could associate with a CME at the Sun, the transit speeds from the Sun to the Earth were highest after solar maximum.
Geometric effects of ICMEs on geomagnetic storms
NASA Astrophysics Data System (ADS)
Cho, KyungSuk; Lee, Jae-Ok
2017-04-01
It has been known that the geomagnetic storm is occurred by the interaction between the Interplanetary Coronal Mass Ejection (ICME) and the Earth's magnetosphere; especially, the southward Bz component of ICME is thought as the main trigger. In this study, we investigate the relationship between Dst index and solar wind conditions; which are the southward Bz, electric field (VBz), and time integral of electric field as well as ICME parameters derived from toroidal fitting model in order to find what is main factor to the geomagnetic storm. We also inspect locations of Earth in ICMEs to understand the geometric effects of the Interplanetary Flux Ropes (IFRs) on the geomagnetic storms. Among 59 CDAW ICME lists, we select 30 IFR events that are available by the toroidal fitting model and classify them into two sub-groups: geomagnetic storms associated with the Magnetic Clouds (MCs) and the compression regions ahead of the MCs (sheath). The main results are as follows: (1) The time integral of electric field has a higher correlation coefficient (cc) with Dst index than the other parameters: cc=0.85 for 25 MC events and cc=0.99 for 5 sheath events. (2) The sheath associated intense storms (Dst ≤-100nT) having usually occur at flank regions of ICMEs while the MC associated intense storms occur regardless of the locations of the Earth in ICMEs. The strength of a geomagnetic storm strongly depends on electric field of IFR and durations of the IFR passages through the Earth.
de Vera, Luis; Pereda, Ernesto; Santana, Alejandro; González, Julián J
2005-03-01
Electroencephalograms of medial cortex and electromyograms of intercostal muscles (EMG-icm) were simultaneously recorded in the lizard, Gallotia galloti, during two daily time periods (at daytime, DTP: 1200-1600 h; by night, NTP: 0000-0400 h), to investigate whether a relationship exists between the respiratory and cortical electrical activity of reptiles, and, if so, how this relationship changes during the night rest period. Testing was carried out by studying interdependence between cortical electrical and respiratory activities, by means of linear and nonlinear signal analysis techniques. Both physiological activities were evaluated through simultaneous power signals, derived from the power of the low-frequency band of the electroencephalogram (pEEG-LF), and from the power of the EMG-icm (pEMG-icm), respectively. During both DTP and NTP, there was a significant coherence between both signals in the main frequency band of pEMG-icm. During both DTP and NTP, the nonlinear index N measured significant linear asymmetric interdependence between pEEG-LF and pEMG-icm. The N value obtained between pEEG-LF vs. pEMG-icm was greater than the one between pEMG-icm vs. pEEG-LF. This means that the system that generates the pEEG-LF is more complex than the one that generates the pEMG-icm, and suggests that the temporal variability of power in the low-frequency cortical electrical activity is driven by the power of the respiratory activity.
Refinement of detecting atrial fibrillation in stroke patients: results from the TRACK-AF Study.
Reinke, F; Bettin, M; Ross, L S; Kochhäuser, S; Kleffner, I; Ritter, M; Minnerup, J; Dechering, D; Eckardt, L; Dittrich, R
2018-04-01
Detection of occult atrial fibrillation (AF) is crucial for optimal secondary prevention in stroke patients. The AF detection rate was determined by implantable cardiac monitor (ICM) and compared to the prediction rate of the probability of incident AF by software based analysis of a continuously monitored electrocardiogram at follow-up (stroke risk analysis, SRA); an optimized AF detection algorithm is proposed by combining both tools. In a monocentric prospective study 105 out of 389 patients with cryptogenic stroke despite extensive diagnostic workup were investigated with two additional cardiac monitoring tools: (a) 20 months' monitoring by ICM and (b) SRA during hospitalization at the stroke unit. The detection rate of occult AF was 18% by ICM (n = 19) (range 6-575 days) and 62% (n = 65) had an increased risk for AF predicted by SRA. When comparing the predictive accuracy of SRA to ICM, the sensitivity was 95%, specificity 35%, positive predictive value 27% and negative predictive value 96%. In 18 patients with AF detected by ICM, SRA also showed a medium risk for AF. Only one patient with a very low risk predicted by SRA developed AF revealed by ICM after 417 days. A combination of SRA and ICM is a promising strategy to detect occult AF. SRA is reliable in predicting incident AF with a high negative predictive value. Thus, SRA may serve as a cost-effective pre-selection tool identifying patients at risk for AF who may benefit from further cardiac monitoring by ICM. © 2017 EAN.
Phase field benchmark problems for dendritic growth and linear elasticity
Jokisaari, Andrea M.; Voorhees, P. W.; Guyer, Jonathan E.; ...
2018-03-26
We present the second set of benchmark problems for phase field models that are being jointly developed by the Center for Hierarchical Materials Design (CHiMaD) and the National Institute of Standards and Technology (NIST) along with input from other members in the phase field community. As the integrated computational materials engineering (ICME) approach to materials design has gained traction, there is an increasing need for quantitative phase field results. New algorithms and numerical implementations increase computational capabilities, necessitating standard problems to evaluate their impact on simulated microstructure evolution as well as their computational performance. We propose one benchmark problem formore » solidifiication and dendritic growth in a single-component system, and one problem for linear elasticity via the shape evolution of an elastically constrained precipitate. We demonstrate the utility and sensitivity of the benchmark problems by comparing the results of 1) dendritic growth simulations performed with different time integrators and 2) elastically constrained precipitate simulations with different precipitate sizes, initial conditions, and elastic moduli. As a result, these numerical benchmark problems will provide a consistent basis for evaluating different algorithms, both existing and those to be developed in the future, for accuracy and computational efficiency when applied to simulate physics often incorporated in phase field models.« less
Phase field benchmark problems for dendritic growth and linear elasticity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jokisaari, Andrea M.; Voorhees, P. W.; Guyer, Jonathan E.
We present the second set of benchmark problems for phase field models that are being jointly developed by the Center for Hierarchical Materials Design (CHiMaD) and the National Institute of Standards and Technology (NIST) along with input from other members in the phase field community. As the integrated computational materials engineering (ICME) approach to materials design has gained traction, there is an increasing need for quantitative phase field results. New algorithms and numerical implementations increase computational capabilities, necessitating standard problems to evaluate their impact on simulated microstructure evolution as well as their computational performance. We propose one benchmark problem formore » solidifiication and dendritic growth in a single-component system, and one problem for linear elasticity via the shape evolution of an elastically constrained precipitate. We demonstrate the utility and sensitivity of the benchmark problems by comparing the results of 1) dendritic growth simulations performed with different time integrators and 2) elastically constrained precipitate simulations with different precipitate sizes, initial conditions, and elastic moduli. As a result, these numerical benchmark problems will provide a consistent basis for evaluating different algorithms, both existing and those to be developed in the future, for accuracy and computational efficiency when applied to simulate physics often incorporated in phase field models.« less
The geoeffectiveness of CIRs and ICMEs
NASA Astrophysics Data System (ADS)
Shen, C.; Chi, Y.; Wang, Y.
2017-12-01
The corotation rotation regions (CIRs) and interplanetary coronal mass ejections (CMEs) are two typical large scale structures in interplanetary space and also important sources of geomagnetic storms. Using the WIND observations from 1995, the CIRs and ICMEs have been identified manually. Totally, there are 800 CIRs and 500 ICMEs during this period. Based on these catalogues, the properties and geoeffectiveness of CIRs and ICMEs have been carefully studied. In the presentation, we will introduce the properties of these structures first. Then, the detailed comparison between these two structures will also be addressed.
Kumagai, Hiroyuki; Someno, Tetsuya; Dobashi, Kazuyuki; Isshiki, Kunio; Ishizuka, Masaaki; Ikeda, Daishiro
2004-02-01
In the course of screening program for inhibitors of angiogenesis, novel substances designated as ICM0301A approximately H (1 approximately 8) were isolated from the culture broth of Aspergillus sp. F-1491. ICM0301s inhibited the growth of human umbilical vein endothelial cells (HUVECs) induced by basic fibroblast growth factor (bFGF) with IC50 values of 2.2 approximately 9.3 microg/ml. ICM0301A (1) showed significant anti-angiogenic activity at lower than 10 microg/ml in the angiogenesis model using rat aorta cultured in fibrin gel. ICM0301s showed very low cytotoxicity against various tumor cells. Furthermore, 1CM0301A did not show any toxic symptom in mice by intraperitoneal injection at 100 mg/kg.
Composition of Coronal Mass Ejections
NASA Technical Reports Server (NTRS)
Zurbuchen, T. H.; Weberg, M.; von Steiger, R.; Mewaldt, R. A.; Lepri, S. T.; Antiochos, S. K.
2016-01-01
We analyze the physical origin of plasmas that are ejected from the solar corona. To address this issue, we perform a comprehensive analysis of the elemental composition of interplanetary coronal mass ejections (ICMEs) using recently released elemental composition data for Fe, Mg, Si, S, C, N, Ne, and He as compared to O and H. We find that ICMEs exhibit a systematic abundance increase of elements with first ionization potential (FIP) less than 10 electronvolts, as well as a significant increase of Ne as compared to quasi-stationary solar wind. ICME plasmas have a stronger FIP effect than slow wind, which indicates either that an FIP process is active during the ICME ejection or that a different type of solar plasma is injected into ICMEs. The observed FIP fractionation is largest during times when the Fe ionic charge states are elevated above Q (sub Fe) is greater than 12.0. For ICMEs with elevated charge states, the FIP effect is enhanced by 70 percent over that of the slow wind. We argue that the compositionally hot parts of ICMEs are active region loops that do not normally have access to the heliosphere through the processes that give rise to solar wind. We also discuss the implications of this result for solar energetic particles accelerated during solar eruptions and for the origin of the slow wind itself.
Composition of Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Zurbuchen, T. H.; Weberg, M.; von Steiger, R.; Mewaldt, R. A.; Lepri, S. T.; Antiochos, S. K.
2016-07-01
We analyze the physical origin of plasmas that are ejected from the solar corona. To address this issue, we perform a comprehensive analysis of the elemental composition of interplanetary coronal mass ejections (ICMEs) using recently released elemental composition data for Fe, Mg, Si, S, C, N, Ne, and He as compared to O and H. We find that ICMEs exhibit a systematic abundance increase of elements with first ionization potential (FIP) < 10 eV, as well as a significant increase of Ne as compared to quasi-stationary solar wind. ICME plasmas have a stronger FIP effect than slow wind, which indicates either that an FIP process is active during the ICME ejection or that a different type of solar plasma is injected into ICMEs. The observed FIP fractionation is largest during times when the Fe ionic charge states are elevated above Q Fe > 12.0. For ICMEs with elevated charge states, the FIP effect is enhanced by 70% over that of the slow wind. We argue that the compositionally hot parts of ICMEs are active region loops that do not normally have access to the heliosphere through the processes that give rise to solar wind. We also discuss the implications of this result for solar energetic particles accelerated during solar eruptions and for the origin of the slow wind itself.
Ranking ICME's efficiency for geomagnetic and ionospheric storms and risk of false alarms
NASA Astrophysics Data System (ADS)
Gulyaeva, T. L.
2017-11-01
A statistical analysis is undertaken on ICME's efficiency in producing the geomagnetic and ionospheric storms. The mutually-consistent thresholds for the intense, moderate and weak space weather storms and quiet conditions are introduced with an analytical model based on relations between the equatorial Dst index and geomagnetic indices AE, aa, ap, ap(τ) and the ionospheric Vσ indices. The ionosphere variability Vσ index is expressed in terms of the total electron content (TEC) deviation from the -15-day sliding median normalized by the standard deviation for the 15 preceding days. The intensity of global positive ionospheric storm, Vσp, and negative storm, Vσn, is represented by the relative density of anomalous ±Vσ index occurrence derived from the global ionospheric maps GIM-TEC for 1999-2016. An impact of total 421 ICME events for 1999-2016 on the geomagnetic and ionospheric storms expressed by AE, Dst, aa, ap, ap(τ), Vσp, Vσn indices and their superposition is analyzed using ICME catalogue by Richardson and Cane (2010) during 24 h after the ICME start time t0. Hierarchy of efficiency of ICME → storm relation is established. The ICMEs have a higher probability (22-25%) to be followed by the intense ionospheric and auroral electrojet storms at global and high latitudes as compared to the intense storms at middle and low latitudes (18-20%) and to moderate and weak storms at high latitudes (5-17%). At the same time ICMEs are more effective in producing the moderate storms (24-28%) at the middle and low latitudes as compared to the intense and weak storms at these latitudes (13-22%) and to moderate storms at high latitudes (8-17%). The remaining cases when quiet conditions are observed after ICMEs present higher chance for a false alarm. The risk factor for a false alarm can vary from 18% if the superposition of all indices is considered, to 51-64% for individual AE, Vσp and Vσn indices. The analysis indicates that the mutually-consistent thresholds can be successfully applied to the external sources of the geomagnetic and ionospheric storms other than ICME which present challenge for the further investigation.
Hussin, Ahmed T; Boychuk, Jeffery A; Brown, Andrew R; Pittman, Quentin J; Teskey, G Campbell
2015-01-01
Intracortical microstimulation (ICMS) is a technique used for a number of purposes including the derivation of cortical movement representations (motor maps). Its application can activate the output layer 5 of motor cortex and can result in the elicitation of body movements depending upon the stimulus parameters used. The extent to which pyramidal tract projection neurons of the motor cortex are activated transsynaptically or directly by ICMS remains an open question. Given this uncertainty in the mode of activation, we used a preparation that combined patch clamp whole-cell recordings from single layer 5 pyramidal neurons and extracellular ICMS in slices of motor cortex as well as a standard in vivo mapping technique to ask how ICMS activated motor cortex pyramidal neurons. We measured changes in synaptic spike threshold and spiking rate to ICMS in vitro and movement threshold in vivo in the presence or absence of specific pharmacological blockers of glutamatergic (AMPA, NMDA and Kainate) receptors and GABAA receptors. With major excitatory and inhibitory synaptic transmission blocked (with DNQX, APV and bicuculline methiodide), we observed a significant increase in the ICMS current intensity required to elicit a movement in vivo as well as to the first spike and an 85% reduction in spiking responses in vitro. Subsets of neurons were still responsive after the synaptic block, especially at higher current intensities, suggesting a modest direct activation. Taken together our data indicate a mainly synaptic mode of activation to ICMS in layer 5 of rat motor cortex. Copyright © 2015 Elsevier Inc. All rights reserved.
Griffin, Darcy M; Hudson, Heather M; Belhaj-Saïf, Abderraouf; Cheney, Paul D
2014-01-29
The delivery of high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) to primary motor cortex (M1) in primates produces hand movements to a common final end-point regardless of the starting hand position (Graziano et al., 2002). We have confirmed this general conclusion. We further investigated the extent to which the (1) temporal pattern, (2) magnitude, and (3) latency of electromyographic (EMG) activation associated with HFLD-ICMS-evoked movements are dependent on task conditions, including limb posture. HFLD-ICMS was applied to layer V sites in M1 cortex. EMG activation with HFLD-ICMS was evaluated while two male rhesus macaques performed a number of tasks in which the starting position of the hand could be varied throughout the workspace. HFLD-ICMS-evoked EMG activity was largely stable across all parameters tested independent of starting hand position. The most common temporal pattern of HFLD-ICMS-evoked EMG activity (58% of responses) was a sharp rise to a plateau. The plateau level was maintained essentially constant for the entire duration of the stimulus train. The plateau pattern is qualitatively different from the largely bell-shaped patterns typical of EMG activity associated with natural goal directed movements (Brown and Cooke, 1990; Hoffman and Strick, 1999). HFLD-ICMS produces relatively fixed parameters of muscle activation independent of limb position. We conclude that joint movement associated with HFLD-ICMS occurs as a function of the length-tension properties of stimulus-activated muscles until an equilibrium between agonist and antagonist muscle force is achieved.
Griffin, Darcy M.; Hudson, Heather M.; Belhaj-Saïf, Abderraouf
2014-01-01
The delivery of high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) to primary motor cortex (M1) in primates produces hand movements to a common final end-point regardless of the starting hand position (Graziano et al., 2002). We have confirmed this general conclusion. We further investigated the extent to which the (1) temporal pattern, (2) magnitude, and (3) latency of electromyographic (EMG) activation associated with HFLD-ICMS-evoked movements are dependent on task conditions, including limb posture. HFLD-ICMS was applied to layer V sites in M1 cortex. EMG activation with HFLD-ICMS was evaluated while two male rhesus macaques performed a number of tasks in which the starting position of the hand could be varied throughout the workspace. HFLD-ICMS-evoked EMG activity was largely stable across all parameters tested independent of starting hand position. The most common temporal pattern of HFLD-ICMS-evoked EMG activity (58% of responses) was a sharp rise to a plateau. The plateau level was maintained essentially constant for the entire duration of the stimulus train. The plateau pattern is qualitatively different from the largely bell-shaped patterns typical of EMG activity associated with natural goal directed movements (Brown and Cooke, 1990; Hoffman and Strick, 1999). HFLD-ICMS produces relatively fixed parameters of muscle activation independent of limb position. We conclude that joint movement associated with HFLD-ICMS occurs as a function of the length–tension properties of stimulus-activated muscles until an equilibrium between agonist and antagonist muscle force is achieved. PMID:24478348
Sensitivity of early mouse embryos to (/sup 3/H)thymidine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spindle, A.; Wu, K.; Pedersen, R.A.
1982-12-01
Effects of intranuclear radiation on the developmental capacity of early mouse embryos were studied by exposing embryos to (/sup 3/H)thymidine and counting the number of embryos forming blastocysts, trophoblast outgrowths, inner cell masses (ICMs), and two-layer ICMs (differentiated into primary endoderm and ectoderm). When embryos were cultured from the 2-cell stage for 8 days in the continuous presence of (/sup 3/H)thymidine, concentrations as low as 0.2 nCi/ml reduced the number of embryos forming two-layer ICMs. At 1 nCi/ml, the number of both ICMs and two-layer ICMs were reduced, and at 10 nCi/ml the number of embryos developing to all threemore » post-blastocyst endpoints was reduced. Blastocyst formation was not affected even at the highst concentration (/sup 3/H)thymidine and then cultured further in unlabelled medium, the effects were similar to those of 8-day exposure. When embryos were exposed to (/sup 3/H)thymidine for 24 h at various developmental stages, effects were less severe than when they were exposed continuously for 3 or 8 days, and the sensitivity of embryos differed between stages. The 24-h exposure of immunosurgically isolated ICMS to (/sup 3/H)thymidine revealed that the high sensitivity of the ICM to (/sup 3/H)thymidine persists through the late blastocyst stage and declines progressively thereafter. Autoradiography indicated that the change in radiosensitivity of embryos or ICMs is generally related to their ability to incorporate (/sup 3/H)thymidine into the DNA.« less
NASA Astrophysics Data System (ADS)
Rout, Diptiranjan; Chakrabarty, D.; Sarkhel, S.; Sekar, R.; Fejer, B. G.; Reeves, G. D.; Kulkarni, Atul S.; Aponte, Nestor; Sulzer, Mike; Mathews, John D.; Kerr, Robert B.; Noto, John
2018-05-01
On 13 April 2013, the ACE spacecraft detected arrival of an interplanetary shock at 2250 UT, which is followed by the passage of the sheath region of an interplanetary coronal mass ejection (ICME) for a prolonged (18-hr) period. The polarity of interplanetary magnetic field Bz was northward inside the magnetic cloud region of the ICME. The ring current (SYM-H) index did not go below -7 nT during this event suggesting the absence of a typical geomagnetic storm. The responses of the global ionospheric electric field associated with the passage of the ICME sheath region have been investigated using incoherent scatter radar measurements of Jicamarca and Arecibo (postmidnight sector) along with the variations of equatorial electrojet strength over India (day sector). It is found that westward and eastward prompt penetration (PP) electric fields affected ionosphere over Jicamarca/Arecibo and Indian sectors, respectively, during 0545-0800 UT. The polarities of the PP electric field perturbations over the day/night sectors are consistent with model predictions. In fact, DP2-type electric field perturbations with ˜40-min periodicity are found to affect the ionosphere over both the sectors for about 2.25 hr during the passage of the ICME sheath region. This result shows that SYM-H index may not capture the full geoeffectivenss of the ICME sheath-driven storms and suggests that the PP electric field perturbations should be evaluated for geoeffectiveness of ICME when the polarity of interplanetary magnetic field Bz is northward inside the magnetic cloud region of the ICME.
On the Rates of Coronal Mass Ejections: Remote Solar and In Situ Observations
NASA Technical Reports Server (NTRS)
Riley, Pete; Schatzman, C.; Cane, H. V.; Richardson, I. G.; Gopalswamy, N.
2006-01-01
We compare the rates of coronal mass ejections (CMEs) as inferred from remote solar observations and interplanetary CMEs (ICMEs) as inferred from in situ observations at both 1 AU and Ulyssses from 1996 through 2004. We also distinguish between those ICMEs that contain a magnetic cloud (MC) and those that do not. While the rates of CMEs and ICMEs track each other well at solar minimum, they diverge significantly in early 1998, during the ascending phase of the solar cycle, with the remote solar observations yielding approximately 20 times more events than are seen at 1 AU. This divergence persists through 2004. A similar divergence occurs between MCs and non-MC ICMEs. We argue that these divergences are due to the birth of midlatitude active regions, which are the sites of a distinct population of CMEs, only partially intercepted by Earth, and we present a simple geometric argument showing that the CME and ICME rates are consistent with one another. We also acknowledge contributions from (1) an increased rate of high-latitude CMEs and (2) focusing effects from the global solar field. While our analysis, coupled with numerical modeling results, generally supports the interpretation that whether one observes a MC within an ICME is sensitive to the trajectory of the spacecraft through the ICME (i.e., an observational selection effect), one result directly contradicts it. Specifically, we find no systematic offset between the latitudinal origin of ICMEs that contain MCs at 1 AU in the ecliptic plane and that of those that do not.
Iodinated Contrast Media Allergy in Patients Hospitalized for Investigation of Chest Pain.
Topaz, Guy; Karas, Adi; Kassem, Nuha; Kitay-Cohen, Yona; Pereg, David; Shilo, Lotan; Zoref-Lorenz, Adi; Hershko, Alon Y
2018-04-12
Iodinated contrast media (ICM) allergy may entail severe adverse events in patients who undergo percutaneous coronary intervention (PCI). Premedication protocols and low-osmolality contrast media have been thought to improve the outcomes of these individuals. The objective of this study was to assess the prevalence and severity of allergic reactions during PCI in patients admitted for investigation of chest pain. This is a retrospective analysis of 13,652 patients who were hospitalized with chest pain during the years 2010-2016, at the Department of Internal Medicine, Meir Medical Center. Patient records were screened for diagnosis of prior ICM allergy. Primary outcomes were: (1) records of previous allergy to ICM, (2) administration of antiallergic premedication, and (3) allergic reactions to the ICM during the procedure. Nine hundred thirty-one individuals without prior ICM allergy were referred for PCI, of whom 2 had minor allergic reactions. Previously diagnosed ICM allergy was recorded for 216 subjects (mean age 65.5 ± 10 years, 42% males). Of these, 32 were referred to in-hospital PCI. Premedication was administered in 10 cases only with no documented rationale for not treating the other 22. Only one of the pretreated patients experienced a reaction attributed to allergy, showing no statistical advantage for premedication. No mortality was documented in the 30 days after PCI among the patients with known ICM allergy. PCI did not induce substantial allergic reactions to ICM in patients with a previously diagnosed allergy. This study did not demonstrate an advantage for premedication. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. All rights reserved.
American Perspectives on the Seventh International Congress on Mathematical Education.
ERIC Educational Resources Information Center
Dossey, John A., Ed.
This publication is a collection of papers portraying an American view of the happenings of the Seventh International Congress on Mathematical Education (ICME-7). Papers included: (1) "ICME-7 and Tertiary Level Mathematics: Une Petite Affaire" (Shirley Hill); (2) "Technology and Mathematics Education at ICME-7" (James T. Fey); (3) "Assessment in…
Iodinated X-ray contrast media (ICMs), used in medical imaging, are poorly metabolized by humans and enter wastewater. As they are incompletely removed during wastewater treatment, ICMs are released to the aquatic environment and have been detected in drinking water sources. ICMs...
An end-to-end X-IFU simulator: constraints on ICM kinematics
NASA Astrophysics Data System (ADS)
Roncarelli, M.; Gaspari, M.; Ettori, S.; Brighenti, F.
2017-10-01
In the next years the study of ICM physics will benefit from a completely new type of oservations made available by the X-IFU microcalorimeter of the ATHENA X-ray telescope. X-IFU will combine energy and spatial resolution (2.5 eV and 5 arcsec) allowing to map line emission and, potentially, to characterise the ICM dynamics with an unprecedented detail. I will present an end-to-end simulator aimed at describing the ability of X-IFU to characterise ICM velocity features. Starting from hydrodynamical simulations of ICM turbulence (Gaspari et al. 2013) we went through a detailed and realistic spectral analysis of simulated observations to derive mapped quantities of gas density, temperature, metallicity and, most notably, centroid shift and velocity broadening of the emission lines, with relative errors. Our results show that X-IFU will be able to map in great detail the ICM velocity features and provide precise measurements of the broadening power spectrum. This will provide interesting constraints on the characteristics of turbulent motions, both on large and small scales.
Kunori, Nobuo; Kajiwara, Riichi; Takashima, Ichiro
2016-03-11
Intracortical microstimulation (ICMS)-evoked neural activity combined with ventral tegmental area (VTA) stimulation was studied in rat primary motor cortex (M1). We used voltage-sensitive dye (VSD) imaging to analyze the spatiotemporal dynamics of M1 activity following VTA-M1 paired stimulation. VTA stimulation was preceded by M1 ICMS at inter-stimulus intervals (ISIs) of 15-350ms. VSD imaging showed an excitatory-inhibitory sequence of neural activity after composing VTA stimulus- and ICMS-induced M1 neural activity. To evaluate the net ICMS M1 response, the optical response to unpaired VTA stimulation was subtracted from the VTA-M1 paired response. This revealed that the net ICMS-evoked M1 neural activity was inhibited when the ISI was 30-50ms, but highly facilitated when the ISI was 100-350ms. These results suggest that VTA modulates M1 excitability in the order of tens to hundreds of milliseconds and might directly affect the motor command generation process in the M1. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Cofactor Editing by the G-protein Metallochaperone Domain Regulates the Radical B12 Enzyme IcmF.
Li, Zhu; Kitanishi, Kenichi; Twahir, Umar T; Cracan, Valentin; Chapman, Derrell; Warncke, Kurt; Banerjee, Ruma
2017-03-10
IcmF is a 5'-deoxyadenosylcobalamin (AdoCbl)-dependent enzyme that catalyzes the carbon skeleton rearrangement of isobutyryl-CoA to butyryl-CoA. It is a bifunctional protein resulting from the fusion of a G-protein chaperone with GTPase activity and the cofactor- and substrate-binding mutase domains with isomerase activity. IcmF is prone to inactivation during catalytic turnover, thus setting up its dependence on a cofactor repair system. Herein, we demonstrate that the GTPase activity of IcmF powers the ejection of the inactive cob(II)alamin cofactor and requires the presence of an acceptor protein, adenosyltransferase, for receiving it. Adenosyltransferase in turn converts cob(II)alamin to AdoCbl in the presence of ATP and a reductant. The repaired cofactor is then reloaded onto IcmF in a GTPase-gated step. The mechanistic details of cofactor loading and offloading from the AdoCbl-dependent IcmF are distinct from those of the better characterized and homologous methylmalonyl-CoA mutase/G-protein chaperone system. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Interplanetary Coronal Mass Ejections During 1996 - 2007
NASA Technical Reports Server (NTRS)
Richardson, I. G.; Cane, H. V.
2007-01-01
Interplanetary coronal mass ejections, the interplanetary counterparts of coronal mass ejections at the Sun, are the major drivers of interplanetary shocks in the heliosphere, and are associated with modulations of the galactic cosmic ray intensity, both short term (Forbush decreases caused by the passage of the shock, post-shock sheath, and ICME), and possibly with longer term modulation. Using several in-situ signatures of ICMEs, including plasma temperature, and composition, magnetic fields, and cosmic ray modulations, made by near-Earth spacecraft, we have compiled a "comprehensive" list of ICMEs passing the Earth since 1996, encompassing solar cycle 23. We summarize the properties of these ICMEs, such as their occurrence rate, speeds and other parameters, the fraction of ICMEs that are classic magnetic clouds, and their association with solar energetic particle events, halo CMEs, interplanetary shocks, geomagnetic storms, shocks and cosmic ray decreases.
GALAXY INFALL BY INTERACTING WITH ITS ENVIRONMENT: A COMPREHENSIVE STUDY OF 340 GALAXY CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Liyi; Wen, Zhonglue; Gandhi, Poshak
To study systematically the evolution of the angular extents of the galaxy, intracluster medium (ICM), and dark matter components in galaxy clusters, we compiled the optical and X-ray properties of a sample of 340 clusters with redshifts <0.5, based on all the available data from the Sloan Digital Sky Survey and Chandra / XMM-Newton . For each cluster, the member galaxies were determined primarily with photometric redshift measurements. The radial ICM mass distribution, as well as the total gravitational mass distribution, was derived from a spatially resolved spectral analysis of the X-ray data. When normalizing the radial profile of galaxymore » number to that of the ICM mass, the relative curve was found to depend significantly on the cluster redshift; it drops more steeply toward the outside in lower-redshift subsamples. The same evolution is found in the galaxy-to-total mass profile, while the ICM-to-total mass profile varies in an opposite way. The behavior of the galaxy-to-ICM distribution does not depend on the cluster mass, suggesting that the detected redshift dependence is not due to mass-related effects, such as sample selection bias. Also, it cannot be ascribed to various redshift-dependent systematic errors. We interpret that the galaxies, the ICM, and the dark matter components had similar angular distributions when a cluster was formed, while the galaxies traveling in the interior of the cluster have continuously fallen toward the center relative to the other components, and the ICM has slightly expanded relative to the dark matter although it suffers strong radiative loss. This cosmological galaxy infall, accompanied by an ICM expansion, can be explained by considering that the galaxies interact strongly with the ICM while they are moving through it. The interaction is considered to create a large energy flow of 10{sup 4445} erg s{sup 1} per cluster from the member galaxies to their environment, which is expected to continue over cosmological timescales.« less
Galaxy Infall by Interacting with Its Environment: A Comprehensive Study of 340 Galaxy Clusters
NASA Astrophysics Data System (ADS)
Gu, Liyi; Wen, Zhonglue; Gandhi, Poshak; Inada, Naohisa; Kawaharada, Madoka; Kodama, Tadayuki; Konami, Saori; Nakazawa, Kazuhiro; Xu, Haiguang; Makishima, Kazuo
2016-07-01
To study systematically the evolution of the angular extents of the galaxy, intracluster medium (ICM), and dark matter components in galaxy clusters, we compiled the optical and X-ray properties of a sample of 340 clusters with redshifts <0.5, based on all the available data from the Sloan Digital Sky Survey and Chandra/XMM-Newton. For each cluster, the member galaxies were determined primarily with photometric redshift measurements. The radial ICM mass distribution, as well as the total gravitational mass distribution, was derived from a spatially resolved spectral analysis of the X-ray data. When normalizing the radial profile of galaxy number to that of the ICM mass, the relative curve was found to depend significantly on the cluster redshift; it drops more steeply toward the outside in lower-redshift subsamples. The same evolution is found in the galaxy-to-total mass profile, while the ICM-to-total mass profile varies in an opposite way. The behavior of the galaxy-to-ICM distribution does not depend on the cluster mass, suggesting that the detected redshift dependence is not due to mass-related effects, such as sample selection bias. Also, it cannot be ascribed to various redshift-dependent systematic errors. We interpret that the galaxies, the ICM, and the dark matter components had similar angular distributions when a cluster was formed, while the galaxies traveling in the interior of the cluster have continuously fallen toward the center relative to the other components, and the ICM has slightly expanded relative to the dark matter although it suffers strong radiative loss. This cosmological galaxy infall, accompanied by an ICM expansion, can be explained by considering that the galaxies interact strongly with the ICM while they are moving through it. The interaction is considered to create a large energy flow of 1044-45 erg s-1 per cluster from the member galaxies to their environment, which is expected to continue over cosmological timescales.
Brightness field distributions of microlens arrays using micro molding.
Cheng, Hsin-Chung; Huang, Chiung-Fang; Lin, Yi; Shen, Yung-Kang
2010-12-20
This study describes the brightness field distributions of microlens arrays fabricated by micro injection molding (μIM) and micro injection-compression molding (μICM). The process for fabricating microlens arrays used room-temperature imprint lithography, photoresist reflow, electroforming, μIM, μICM, and optical properties measurement. Analytical results indicate that the brightness field distribution of the molded microlens arrays generated by μICM is better than those made using μIM. Our results further demonstrate that mold temperature is the most important processing parameter for brightness field distribution of molded microlens arrays made by μIM or μICM.
Radio jet propagation and wide-angle tailed radio sources in merging galaxy cluster environments
NASA Technical Reports Server (NTRS)
Loken, Chris; Roettiger, Kurt; Burns, Jack O.; Norman, Michael
1995-01-01
The intracluster medium (ICM) within merging clusters of galaxies is likely to be in a violent or turbulent dynamical state which may have a significant effect on the evolution of cluster radio sources. We present results from a recent gas + N-body simulation of a cluster merger, suggesting that mergers can result in long-lived, supersonic bulk flows, as well as shocks, within a few hundred kiloparsecs of the core of the dominant cluster. These results have motivated our new two-dimensional and three-dimensional simulations of jet propagation in such environments. The first set of simulations models the ISM/ICM transition as a contact discontinuity with a strong velocity shear. A supersonic (M(sub j) = 6) jet crossing this discontinuity into an ICM with a transverse, supersonic wind bends continuously, becomes 'naked' on the upwind side, and forms a distended cocoon on the downwind side. In the case of a mildly supersonic jet (M(sub j) = 3), however, a shock is driven into the ISM and ISM material is pulled along with the jet into the ICM. Instabilities excited at the ISM/ICM interface result in the jet repeatedly pinching off and reestablishing itself in a series of 'disconnection events.' The second set of simulations deals with a jet encountering a shock in the merging cluster environment. A series of relatively high-resolution two-dimensional calculations is used to confirm earlier analysis predicting that the jet will not disrupt when the jet Mach number is greater than the shock Mach number. A jet which survives the encounter with the shock will decrease in radius and disrupt shortly thereafter as a result of the growth of Kelvin-Helmholtz instabilities. We also find, in disagreement with predictions, that the jet flaring angle decreases with increasing jet density. Finally, a three-dimensional simulation of a jet crossing an oblique shock gives rise to a morphology which resembles a wide-angle tailed radio source with the jet flaring at the shock and disrupting to form a long, turbulent tail which is dragged downstream by the preshock wind.
Gas stripping in galaxy clusters: a new SPH simulation approach
NASA Astrophysics Data System (ADS)
Jáchym, P.; Palouš, J.; Köppen, J.; Combes, F.
2007-09-01
Aims:The influence of a time-varying ram pressure on spiral galaxies in clusters is explored with a new simulation method based on the N-body SPH/tree code GADGET. Methods: We have adapted the code to describe the interaction of two different gas phases, the diffuse hot intracluster medium (ICM) and the denser and colder interstellar medium (ISM). Both the ICM and ISM components are introduced as SPH particles. As a galaxy arrives on a highly radial orbit from outskirts to cluster center, it crosses the ICM density peak and experiences a time-varying wind. Results: Depending on the duration and intensity of the ISM-ICM interaction, early and late type galaxies in galaxy clusters with either a large or small ICM distribution are found to show different stripping efficiencies, amounts of reaccretion of the extra-planar ISM, and final masses. We compare the numerical results with analytical approximations of different complexity and indicate the limits of the Gunn & Gott simple stripping formula. Conclusions: Our investigations emphasize the role of the galactic orbital history to the stripping amount. We discuss the contribution of ram pressure stripping to the origin of the ICM and its metallicity. We propose gas accumulations like tails, filaments, or ripples to be responsible for stripping in regions with low overall ICM occurrence. Appendix A is only available in electronic form at http://www.aanda.org
ICM: a web server for integrated clustering of multi-dimensional biomedical data.
He, Song; He, Haochen; Xu, Wenjian; Huang, Xin; Jiang, Shuai; Li, Fei; He, Fuchu; Bo, Xiaochen
2016-07-08
Large-scale efforts for parallel acquisition of multi-omics profiling continue to generate extensive amounts of multi-dimensional biomedical data. Thus, integrated clustering of multiple types of omics data is essential for developing individual-based treatments and precision medicine. However, while rapid progress has been made, methods for integrated clustering are lacking an intuitive web interface that facilitates the biomedical researchers without sufficient programming skills. Here, we present a web tool, named Integrated Clustering of Multi-dimensional biomedical data (ICM), that provides an interface from which to fuse, cluster and visualize multi-dimensional biomedical data and knowledge. With ICM, users can explore the heterogeneity of a disease or a biological process by identifying subgroups of patients. The results obtained can then be interactively modified by using an intuitive user interface. Researchers can also exchange the results from ICM with collaborators via a web link containing a Project ID number that will directly pull up the analysis results being shared. ICM also support incremental clustering that allows users to add new sample data into the data of a previous study to obtain a clustering result. Currently, the ICM web server is available with no login requirement and at no cost at http://biotech.bmi.ac.cn/icm/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Helmel, Michaela; Marchetti-Deschmann, Martina; Raus, Martin; Posch, Andreas E; Herwig, Christoph; Šebela, Marek; Allmaier, Günter
2015-02-01
Penicillin production during a fermentation process using industrial strains of Penicillium chrysogenum is a research topic permanently discussed since the accidental discovery of the antibiotic. Intact cell mass spectrometry (ICMS) can be a fast and novel monitoring tool for the fermentation progress during penicillin V production in a nearly real-time fashion. This method is already used for the characterization of microorganisms and the differentiation of fungal strains; therefore, the application of ICMS to samples directly harvested from a fermenter is a promising possibility to get fast information about the progress of fungal growth. After the optimization of the ICMS method to penicillin V fermentation broth samples, the obtained ICMS data were evaluated by hierarchical cluster analysis or an in-house software solution written especially for ICMS data comparison. Growth stages of a batch and fed-batch fermentation of Penicillium chrysogenum are differentiated by one of those statistical approaches. The application of two matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) instruments in the linear positive ion mode from different vendors demonstrated the universal applicability of the developed ICMS method. The base for a fast and easy-to-use method for monitoring the fermentation progress of P. chrysogenum is created with this ICMS method developed especially for fermentation broth samples. Copyright © 2014 Elsevier Inc. All rights reserved.
Derivation and characterization of human embryonic stem cell lines from poor quality embryos.
Liu, Weiqiang; Yin, Yifei; Long, Xiaolin; Luo, Yumei; Jiang, Yonghua; Zhang, Wenhong; Du, Hongzi; Li, Shaoying; Zheng, Yuhong; Li, Qing; Chen, Xinjie; Liao, Baoping; Xiao, Guohong; Wang, Weihua; Sun, Xiaofang
2009-04-01
Poor quality embryos discarded from in vitro fertilization (IVF) laboratories are good sources for deriving human embryonic stem cell (hESC) lines. In this study, 166 poor quality embryos donated from IVF centers on day 3 were cultured in a blastocyst medium for 2 days, and 32 early blastocysts were further cultured in a blastocyst optimum culture medium for additional 2 days so that the inner cell masses (ICMs) could be identified and isolated easily. The ICMs of 17 blastocysts were isolated by a mechanical method, while those of the other 15 blastocysts were isolated by immunosurgery. All isolated ICMs were inoculated onto a feeder layer for subcultivation. The rates of ICM attachment, primary ICM colony formation and the efficiency of hESC derivation were similar between the ICMs isolated by the two methods (P>0.05). As a result, four new hESC lines were established. Three cell lines had normal karyotypes and one had an unbalanced Robertsonian translocation. All cell lines showed normal hESC characteristics and had the differentiation ability. In conclusion, we established a stable and effective method for hESC isolation and culture, and it was confirmed that the mechanical isolation was an effective method to isolate ICMs from poor embryos. These results further indicate that hESC lines can be derived from poor quality embryos discarded by IVF laboratories.
Neighbors, Charles J.; Kuerbis, Alexis; Riordan, Annette; Blanchard, Kimberly A.; McVeigh, Katharine H.; Morgan, Thomas J.; McCrady, Barbara
2009-01-01
Objective. We examined abstinence rates among substance-dependent women receiving Temporary Assistance for Needy Families (TANF) in intensive case management (ICM) over 24 months and whether ICM yielded significantly better employment outcomes compared with a screen-and-refer program (i.e., usual care). Methods. Substance-dependent (n = 302) and non–substance dependent (n = 150) TANF applicants in Essex County, New Jersey, were recruited. We randomly assigned substance-dependent women to ICM or usual care. We interviewed all women at 3, 9, 15, and 24 months. Results. Abstinence rates were higher for the ICM group than for the usual care group through 24 months of follow-up (odds ratio [OR] = 2.11; 95% confidence interval [CI] = 1.36, 3.29). A statistically significant interaction between time and group on number of days employed indicated that the rate of improvement over time in employment was greater for the ICM group than for the usual care group (incidence rate ratio = 1.03; 95% CI = 1.02, 1.04). Additionally, there were greater odds of being employed full time for those in the ICM group (OR = 1.68; 95% CI = 1.12, 2.51). Conclusions. ICM is a promising intervention for managing substance dependence among women receiving TANF and for improving employment rates among this vulnerable population. PMID:19059855
The Co-Evolution of Galaxies, their ISM, and the ICM: The Hydrodynamics of Galaxy Transformation
NASA Astrophysics Data System (ADS)
Vijayaraghavan, Rukmani; Sarazin, Craig L.; Ricker, Paul M.
2017-01-01
Cluster of galaxies are hostile environments. Infalling cluster galaxies are stripped of their dark matter, stars, and hot and cold interstellar medium gas. The ISM, in addition to tidal and ram pressure stripping, can evaporate due to thermal conduction. Gas loss and the subsequent suppression of star formation is not straightforward: magnetic fields in the ISM and ICM shield galaxies and their stripped tails from shear instabilities and conduction, radiative cooling can inhibit gas loss, and feedback from stars and AGN can replenish the ISM. While there is observational evidence that these processes operate, a theoretical understanding of the physics controlling the energy cycle in cluster galaxies remains elusive. Additionally, galaxies have a significant impact on ICM evolution: orbiting galaxies stir up and stretch ICM magnetic field lines, inject turbulence into the ICM via their wakes and g-waves, and infuse metals into the ICM. Quantifying the balance between processes that remove, retain, and replenish the ISM, and the impact of galaxies on the ICM require specialized hydrodynamic simulations of the cluster environment and its galaxies. I will present results from some of these simulations that include ram pressure stripping of galaxies' hot ISM, the effect of magnetic fields on this process, and the effectiveness of isotropic and anisotropic thermal conduction in removing and retaining the ISM.
Overstreet, C K; Klein, J D; Helms Tillery, S I
2013-12-01
Electrical stimulation of cortical tissue could be used to deliver sensory information as part of a neuroprosthetic device, but current control of the location, resolution, quality, and intensity of sensations elicited by intracortical microstimulation (ICMS) remains inadequate for this purpose. One major obstacle to resolving this problem is the poor understanding of the neural activity induced by ICMS. Even with new imaging methods, quantifying the activity of many individual neurons within cortex is difficult. We used computational modeling to examine the response of somatosensory cortex to ICMS. We modeled the axonal arbors of eight distinct morphologies of interneurons and seven types of pyramidal neurons found in somatosensory cortex and identified their responses to extracellular stimulation. We then combined these axonal elements to form a multi-layered slab of simulated cortex and investigated the patterns of neural activity directly induced by ICMS. Specifically we estimated the number, location, and variety of neurons directly recruited by stimulation on a single penetrating microelectrode. The population of neurons activated by ICMS was dependent on both stimulation strength and the depth of the electrode within cortex. Strikingly, stimulation recruited interneurons and pyramidal neurons in very different patterns. Interneurons are primarily recruited within a dense, continuous region around the electrode, while pyramidal neurons were recruited in a sparse fashion both near the electrode and up to several millimeters away. Thus ICMS can lead to an unexpectedly complex spatial distribution of firing neurons. These results lend new insights to the complexity and range of neural activity that can be induced by ICMS. This work also suggests mechanisms potentially responsible for the inconsistency and unnatural quality of sensations initiated by ICMS. Understanding these mechanisms will aid in the design of stimulation that can be used to generate effective sensory feedback for neuroprosthetic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cid, C.; Palacios, J.; Saiz, E.
2016-09-01
On 2015 January 6–7, an interplanetary coronal mass ejection (ICME) was observed at L1. This event, which can be associated with a weak and slow coronal mass ejection, allows us to discuss the differences between the boundaries of the magnetic cloud and the compositional boundaries. A fast stream from a solar coronal hole surrounding this ICME offers a unique opportunity to check the boundaries’ process definition and to explain differences between them. Using Wind and ACE data, we perform a complementary analysis involving compositional, magnetic, and kinematic observations providing relevant information regarding the evolution of the ICME as travelling awaymore » from the Sun. We propose erosion, at least at the front boundary of the ICME, as the main reason for the difference between the boundaries, and compositional signatures as the most precise diagnostic tool for the boundaries of ICMEs.« less
Current and emerging indications for implantable cardiac monitors.
Giada, Franco; Bertaglia, Emanuele; Reimers, Bernhard; Noventa, Donatella; Raviele, Antonio
2012-09-01
Implantable cardiac monitors (ICMs) continuously monitor the patient's electrocardiogram and perform real-time analysis of the heart rhythm, for up to 36 months. The current clinical use of ICMs involves the evaluation of transitory symptoms of possible arrhythmic origin, such as unexplained syncope and palpitations. Moreover, ICMs can also be used for the evaluation of difficult cases of epilepsy and unexplained falls, though current indications for their application in these sectors are less clearly defined. Finally, the ability of new-generation ICMs to automatically record arrhythmic episodes suggests that these devices could also be used to study asymptomatic arrhythmias, and thus could be proposed for the long-term evaluation of the total (symptomatic and asymptomatic) arrhythmic burden in patients at risk of arrhythmic events. In particular, ICMs may have an emerging role in the management of patients with atrial fibrillation and in those at risk of ventricular arrhythmias. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.
Kim, Sungshin; Callier, Thierri; Tabot, Gregg A; Gaunt, Robert A; Tenore, Francesco V; Bensmaia, Sliman J
2015-12-08
Intracortical microstimulation (ICMS) is a powerful tool to investigate the functional role of neural circuits and may provide a means to restore sensation for patients for whom peripheral stimulation is not an option. In a series of psychophysical experiments with nonhuman primates, we investigate how stimulation parameters affect behavioral sensitivity to ICMS. Specifically, we deliver ICMS to primary somatosensory cortex through chronically implanted electrode arrays across a wide range of stimulation regimes. First, we investigate how the detectability of ICMS depends on stimulation parameters, including pulse width, frequency, amplitude, and pulse train duration. Then, we characterize the degree to which ICMS pulse trains that differ in amplitude lead to discriminable percepts across the range of perceptible and safe amplitudes. We also investigate how discriminability of pulse amplitude is modulated by other stimulation parameters-namely, frequency and duration. Perceptual judgments obtained across these various conditions will inform the design of stimulation regimes for neuroscience and neuroengineering applications.
Empirical estimation of the arrival time of ICME Shocks
NASA Astrophysics Data System (ADS)
Shaltout, Mosalam
Empirical estimation of the arrival time of ICME Shocks Mosalam Shaltout1 ,M.Youssef 1and R.Mawad2 1 National Research Institute of Astronomy and Geophysics (NRIAG) ,Helwan -Cairo-Egypt Email: mosalamshaltout@hotmail.com 2 Faculty of Science-Monifiia University-Physics Department-Shiben Al-Koum -Monifiia-Egypt We are got the Data of the SSC events from Preliminary Reports of the ISGI (Institut de Physique du Globe, France) .Also we are selected the same CME interval 1996-2005 from SOHO/LASCO/C2.We have estimated the arrival time of ICME shocks during solar cycle 23rd (1996-2005), we take the Sudden storm commencement SSC as a indicator of the arrival of CMEs at the Earth's Magnetosphere (ICME).Under our model ,we selected 203 ICME shock-SSC associated events, we got an imperial relation between CME velocity and their travel time, from which we obtained high correlation between them, R=0.75.
NASA Technical Reports Server (NTRS)
Ricks, Trenton M.; Lacy, Jr., Thomas E.; Bednarcyk, Brett A.; Arnold, Steven M.
2013-01-01
Continuous fiber unidirectional polymer matrix composites (PMCs) can exhibit significant local variations in fiber volume fraction as a result of processing conditions that can lead to further local differences in material properties and failure behavior. In this work, the coupled effects of both local variations in fiber volume fraction and the empirically-based statistical distribution of fiber strengths on the predicted longitudinal modulus and local tensile strength of a unidirectional AS4 carbon fiber/ Hercules 3502 epoxy composite were investigated using the special purpose NASA Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC); local effective composite properties were obtained by homogenizing the material behavior over repeating units cells (RUCs). The predicted effective longitudinal modulus was relatively insensitive to small (8%) variations in local fiber volume fraction. The composite tensile strength, however, was highly dependent on the local distribution in fiber strengths. The RUC-averaged constitutive response can be used to characterize lower length scale material behavior within a multiscale analysis framework that couples the NASA code FEAMAC and the ABAQUS finite element solver. Such an approach can be effectively used to analyze the progressive failure of PMC structures whose failure initiates at the RUC level. Consideration of the effect of local variations in constituent properties and morphologies on progressive failure of PMCs is a central aspect of the application of Integrated Computational Materials Engineering (ICME) principles for composite materials.
Models of community care for severe mental illness: a review of research on case management.
Mueser, K T; Bond, G R; Drake, R E; Resnick, S G
1998-01-01
We describe different models of community care for persons with severe mental illness and review the research literature on case management, including the results of 75 studies. Most research has been conducted on the assertive community treatment (ACT) or intensive case management (ICM) models. Controlled research on ACT and ICM indicates that these models reduce time in the hospital and improve housing stability, especially among patients who are high service users. ACT and ICM appear to have moderate effects on improving symptomatology and quality of life. Most studies suggest little effect of ACT and ICM on social functioning, arrests and time spent in jail, or vocational functioning. Studies on reducing or withdrawing ACT or ICM services suggest some deterioration in gains. Research on other models of community care is inconclusive. We discuss the implications of the findings in terms of the need for specialization of ACT or ICM teams to address social and vocational functioning and substance abuse. We suggest directions for future research on models of community care, including evaluating implementation fidelity, exploring patient predictors of improvement, and evaluating the role of the helping alliance in mediating outcome.
The 1.3 GHz SRF Injector Cryomodule for VECC - designed and manufactured at TRIUMF
NASA Astrophysics Data System (ADS)
Ahammed, M.; Harmer, P.; Kishi, D.; Kolb, P.; Koveshnikov, A.; Laxdal, R.; Ma, Y.; Mondal, M.; Muller, N.; Nagimov, R.; Naik, V.; Saha, S.; Zvyagintsev, V.
2017-02-01
The combined R&D efforts of engineers and scientists from both TRIUMF and VECC have resulted in production of a superconducting Injector Cryomodule operating at 1.3 GHz. The design utilizes a unique box cryomodule with a top-loading cold mass. Liquid helium supplied at 4.4 K is converted to superfluid helium-II on board the cryomodule. A 4 K phase separator, 4 K / 2 K heat exchanger and Joule-Thompson valve are installed on the cryomodule to produce 2 K liquid helium. Two identical (by their parameters) cryomodules have been manufactured at TRIUMF. The Injector Cryomodule (ICM) has been tested and commissioned in June of 2014 and is the first cryomodule for the ARIEL e-linac at TRIUMF. The Injector Cryomodule for VECC (VECC ICM) is currently at the finishing stage of its assembly and will undergo cryogenic tests in Q1 of 2016 followed by RF and beam tests at TRIUMF before being shipped to India. The particularities of the design as well as results of the cryogenic and RF performance are presented in this paper.
Inhibition of TGFβ signaling increases direct conversion of fibroblasts to induced cardiomyocytes.
Ifkovits, Jamie L; Addis, Russell C; Epstein, Jonathan A; Gearhart, John D
2014-01-01
Recent studies have been successful at utilizing ectopic expression of transcription factors to generate induced cardiomyocytes (iCMs) from fibroblasts, albeit at a low frequency in vitro. This work investigates the influence of small molecules that have been previously reported to improve differentiation to cardiomyocytes as well as reprogramming to iPSCs in conjunction with ectopic expression of the transcription factors Hand2, Nkx2.5, Gata4, Mef2C, and Tbx5 on the conversion to functional iCMs. We utilized a reporter system in which the calcium indicator GCaMP is driven by the cardiac Troponin T promoter to quantify iCM yield. The TGFβ inhibitor, SB431542 (SB), was identified as a small molecule capable of increasing the conversion of both mouse embryonic fibroblasts and adult cardiac fibroblasts to iCMs up to ∼5 fold. Further characterization revealed that inhibition of TGFβ by SB early in the reprogramming process led to the greatest increase in conversion of fibroblasts to iCMs in a dose-responsive manner. Global transcriptional analysis at Day 3 post-induction of the transcription factors revealed an increased expression of genes associated with the development of cardiac muscle in the presence of SB compared to the vehicle control. Incorporation of SB in the reprogramming process increases the efficiency of iCM generation, one of the major goals necessary to enable the use of iCMs for discovery-based applications and for the clinic.
Morphology of isolated mouse inner cell masses developing in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiley, L.M.; Spindle, A.I.; Pedersen, R.A.
1978-01-01
The purpose of this study was to examine the developmental capacity of the mouse inner cell mass (ICM) in the absence of the trophoblast. ICMs were isolated from blastocysts by immunosurgery and cultured under conditions that support egg cylinder formation by intact blastocysts. After 2 or 3 days of culture, the ICMs consisted of an outer layer of endoderm and an inner layer of ectoderm that had cavitated centrally. By 4 or 5 days of culture, 25 to 60% of these ICMs had developed into paired cysts, apparently by secondary cavity formation. The inner cell layer surrounding this secondary cavitymore » resembled the extraembryonic ectoderm of cultured egg cylinders. By 6 days of culture, 60% of the ICMs had expanded into yolk sac-like structures that subsequently produced capillaries containing blood cells. The ICMs appeared to develop mesoderm in two distinct ways. A few of them developed mesoderm as a third layer of cells in the cleft separating endoderm and ectoderm, presumably by migrating from the inner, ectodermal layer, through the primitive streak, as in the intact egg cylinder. In the rest of the ICMs the embryonic ectoderm gradually differentiated into mesoderm while still in the inner layer, without primitive streak formation. We suggest, therefore, that the continuous presence of the trophoblast or of its derivatives is not required for the cytodifferentiation of mesoderm although it may be important in establishing embryonic polarity or in providinginductive signals necessary for the morphogenetic aspects of mesoderm differentiation, specifically primitive streak formation.« less
Inhibition of TGFβ Signaling Increases Direct Conversion of Fibroblasts to Induced Cardiomyocytes
Ifkovits, Jamie L.; Addis, Russell C.; Epstein, Jonathan A.; Gearhart, John D.
2014-01-01
Recent studies have been successful at utilizing ectopic expression of transcription factors to generate induced cardiomyocytes (iCMs) from fibroblasts, albeit at a low frequency in vitro. This work investigates the influence of small molecules that have been previously reported to improve differentiation to cardiomyocytes as well as reprogramming to iPSCs in conjunction with ectopic expression of the transcription factors Hand2, Nkx2.5, Gata4, Mef2C, and Tbx5 on the conversion to functional iCMs. We utilized a reporter system in which the calcium indicator GCaMP is driven by the cardiac Troponin T promoter to quantify iCM yield. The TGFβ inhibitor, SB431542 (SB), was identified as a small molecule capable of increasing the conversion of both mouse embryonic fibroblasts and adult cardiac fibroblasts to iCMs up to ∼5 fold. Further characterization revealed that inhibition of TGFβ by SB early in the reprogramming process led to the greatest increase in conversion of fibroblasts to iCMs in a dose-responsive manner. Global transcriptional analysis at Day 3 post-induction of the transcription factors revealed an increased expression of genes associated with the development of cardiac muscle in the presence of SB compared to the vehicle control. Incorporation of SB in the reprogramming process increases the efficiency of iCM generation, one of the major goals necessary to enable the use of iCMs for discovery-based applications and for the clinic. PMID:24586958
Bae, Jong-Myon
2016-01-01
A common method for conducting a quantitative systematic review (QSR) for observational studies related to nutritional epidemiology is the "highest versus lowest intake" method (HLM), in which only the information concerning the effect size (ES) of the highest category of a food item is collected on the basis of its lowest category. However, in the interval collapsing method (ICM), a method suggested to enable a maximum utilization of all available information, the ES information is collected by collapsing all categories into a single category. This study aimed to compare the ES and summary effect size (SES) between the HLM and ICM. A QSR for evaluating the citrus fruit intake and risk of pancreatic cancer and calculating the SES by using the HLM was selected. The ES and SES were estimated by performing a meta-analysis using the fixed-effect model. The directionality and statistical significance of the ES and SES were used as criteria for determining the concordance between the HLM and ICM outcomes. No significant differences were observed in the directionality of SES extracted by using the HLM or ICM. The application of the ICM, which uses a broader information base, yielded more-consistent ES and SES, and narrower confidence intervals than the HLM. The ICM is advantageous over the HLM owing to its higher statistical accuracy in extracting information for QSR on nutritional epidemiology. The application of the ICM should hence be recommended for future studies.
The effects of chronic intracortical microstimulation on neural tissue and fine motor behavior
NASA Astrophysics Data System (ADS)
Rajan, Alexander T.; Boback, Jessica L.; Dammann, John F.; Tenore, Francesco V.; Wester, Brock A.; Otto, Kevin J.; Gaunt, Robert A.; Bensmaia, Sliman J.
2015-12-01
Objective. One approach to conveying sensory feedback in neuroprostheses is to electrically stimulate sensory neurons in the cortex. For this approach to be viable, it is critical that intracortical microstimulation (ICMS) causes minimal damage to the brain. Here, we investigate the effects of chronic ICMS on the neuronal tissue across a variety of stimulation regimes in non-human primates. We also examine each animal’s ability to use their hand—the cortical representation of which is targeted by the ICMS—as a further assay of possible neuronal damage. Approach. We implanted electrode arrays in the primary somatosensory cortex of three Rhesus macaques and delivered ICMS four hours per day, five days per week, for six months. Multiple regimes of ICMS were delivered to investigate the effects of stimulation parameters on the tissue and behavior. Parameters included current amplitude (10-100 μA), pulse train duration (1, 5 s), and duty cycle (1/1, 1/3). We then performed a range of histopathological assays on tissue near the tips of both stimulated and unstimulated electrodes to assess the effects of chronic ICMS on the tissue and their dependence on stimulation parameters. Main results. While the implantation and residence of the arrays in the cortical tissue did cause significant damage, chronic ICMS had no detectable additional effect; furthermore, the animals exhibited no impairments in fine motor control. Significance. Chronic ICMS may be a viable means to convey sensory feedback in neuroprostheses as it does not cause significant damage to the stimulated tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahler, S. W.; Haggerty, D. K.; Richardson, I. G., E-mail: AFRL.RVB.PA@hanscom.af.mil
About one quarter of the observed interplanetary coronal mass ejections (ICMEs) are characterized by enhanced magnetic fields that smoothly rotate in direction over timescales of about 10-50 hr. These ICMEs have the appearance of magnetic flux ropes and are known as 'magnetic clouds' (MCs). The total lengths of MC field lines can be determined using solar energetic particles of known speeds when the solar release times and the 1 AU onset times of the particles are known. A recent examination of about 30 near-relativistic (NR) electron events in and near 8 MCs showed no obvious indication that the field-line lengthsmore » were longest near the MC boundaries and shortest at the MC axes or outside the MCs, contrary to the expectations for a flux rope. Here we use the impulsive beamed NR electron events observed with the Electron Proton and Alpha Monitor instrument on the Advanced Composition Explorer spacecraft and type III radio bursts observed on the Wind spacecraft to determine the field-line lengths inside ICMEs included in the catalog of Richardson and Cane. In particular, we extend this technique to ICMEs that are not MCs and compare the field-line lengths inside MCs and non-MC ICMEs with those in the ambient solar wind outside the ICMEs. No significant differences of field-line lengths are found among MCs, ICMEs, and the ambient solar wind. The estimated number of ICME field-line turns is generally smaller than those deduced for flux-rope model fits to MCs. We also find cases in which the electron injections occur in solar active regions (ARs) distant from the source ARs of the ICMEs, supporting CME models that require extensive coronal magnetic reconnection with surrounding fields. The field-line lengths are found to be statistically longer for the NR electron events classified as ramps and interpreted as shock injections somewhat delayed from the type III bursts. The path lengths of the remaining spike and pulse electron events are compared with model calculations of solar wind field-line lengths resulting from turbulence and found to be in good agreement.« less
NASA Technical Reports Server (NTRS)
Kahler, S. W.; Haggerty, D. K.; Richardson, I. G.
2011-01-01
About one quarter of the observed interplanetary coronal mass ejections (ICMEs) are characterized by enhanced magnetic fields that smoothly rotate in direction over timescales of about 10-50 hr. These ICMEs have the appearance of magnetic flux ropes and are known as "magnetic clouds" (MCs). The total lengths of MC field lines can be determined using solar energetic particles of known speeds when the solar release times and the I AU onset times of the particles are known. A recent examination of about 30 near-relativistic (NR) electron events in and near 8 MCs showed no obvious indication that the field-line lengths were longest near the MC boundaries and shortest at the MC axes or outside the MCs, contrary to the expectations for a flux rope. Here we use the impulsive beamed NR electron events observed with the Electron Proton and Alpha Monitor instrument on the Advanced Composition Explorer spacecraft and type III radio bursts observed on the Wind spacecraft to determine the field-line lengths inside ICMEs included in the catalog of Richardson & Cane. In particular, we extend this technique to ICMEs that are not MCs and compare the field-line lengths inside MCs and non-MC ICMEs with those in the ambient solar wind outside the ICMEs. No significant differences of field-line lengths are found among MCs, ICMEs, and the ambient solar wind. The estimated number of ICME field-line turns is generally smaller than those deduced for flux-rope model fits to MCs. We also find cases in which the electron injections occur in solar active regions CARs) distant from the source ARs of the ICMEs, supporting CME models that require extensive coronal magnetic reconnection with surrounding fields. The field-line lengths are found to be statistically longer for the NR electron events classified as ramps and interpreted as shock injections somewhat delayed from the type III bursts. The path lengths of the remaining spike and pulse electron events are compared with model calculations of solar wind field-line lengths resulting from turbulence and found to be in good agreement.
Echeverría, S; Borrull, F; Fontanals, N; Pocurull, E
2013-11-15
A method for the quantitative determination of five iodinated X-ray contrast media (ICMs) in sewage was developed by solid-phase extraction and high-performance liquid chromatography-tandem mass spectrometry. A fused-core analytical column was successfully applied for the first time for the separation of ICMs. Oasis HLB was selected from the sorbents tested because of its higher recoveries. The optimized method allowed the determination of the ICMs at low ng/L levels in both influent and effluent sewage, with detection limits of 40 ng/L and 10 ng/L for most compounds in influent and effluent sewage, respectively. The five ICMs studied were determined in all samples analysed, with iopromide being the analyte found at the highest concentration (8.9 µg/L), while iopamidol was the analyte found at lowest concentration (1.3 µg/L) in influent sewage. Effluent sewage did not show a significant decrease in ICM concentrations. © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Tianyu; Xu, Hongyi; Chen, Wei
Fiber-reinforced polymer composites are strong candidates for structural materials to replace steel and light alloys in lightweight vehicle design because of their low density and relatively high strength. In the integrated computational materials engineering (ICME) development of carbon fiber composites, microstructure reconstruction algorithms are needed to generate material microstructure representative volume element (RVE) based on the material processing information. The microstructure RVE reconstruction enables the material property prediction by finite element analysis (FEA)This paper presents an algorithm to reconstruct the microstructure of a chopped carbon fiber/epoxy laminate material system produced by compression molding, normally known as sheet molding compounds (SMC).more » The algorithm takes the result from material’s manufacturing process as inputs, such as the orientation tensor of fibers, the chopped fiber sheet geometry, and the fiber volume fraction. The chopped fiber sheets are treated as deformable rectangle chips and a random packing algorithm is developed to pack these chips into a square plate. The RVE is built in a layer-by-layer fashion until the desired number of lamina is reached, then a fine tuning process is applied to finalize the reconstruction. Compared to the previous methods, this new approach has the ability to model bended fibers by allowing limited amount of overlaps of rectangle chips. Furthermore, the method does not need SMC microstructure images, for which the image-based characterization techniques have not been mature enough, as inputs. Case studies are performed and the results show that the statistics of the reconstructed microstructures generated by the algorithm matches well with the target input parameters from processing.« less
Bektik, Emre; Dennis, Adrienne; Pawlowski, Gary; Zhou, Chen; Maleski, Danielle; Takahashi, Satoru; Laurita, Kenneth R; Deschênes, Isabelle; Fu, Ji-Dong
2018-05-04
Direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs) holds a great promise for regenerative medicine and has been studied in several major directions. However, cell-cycle regulation, a fundamental biological process, has not been investigated during iCM-reprogramming. Here, our time-lapse imaging on iCMs, reprogrammed by Gata4, Mef2c, and Tbx5 (GMT) monocistronic retroviruses, revealed that iCM-reprogramming was majorly initiated at late-G1- or S-phase and nearly half of GMT-reprogrammed iCMs divided soon after reprogramming. iCMs exited cell cycle along the process of reprogramming with decreased percentage of 5-ethynyl-20-deoxyuridine (EdU)⁺/α-myosin heavy chain (αMHC)-GFP⁺ cells. S-phase synchronization post-GMT-infection could enhance cell-cycle exit of reprogrammed iCMs and yield more GFP high iCMs, which achieved an advanced reprogramming with more expression of cardiac genes than GFP low cells. However, S-phase synchronization did not enhance the reprogramming with a polycistronic-viral vector, in which cell-cycle exit had been accelerated. In conclusion, post-infection synchronization of S-phase facilitated the early progression of GMT-reprogramming through a mechanism of enhanced cell-cycle exit.
Wang, Li; Liu, Ziqing; Yin, Chaoying; Zhou, Yang; Liu, Jiandong; Qian, Li
2015-11-13
Direct conversion of cardiac fibroblasts (CFs) into induced cardiomyocytes (iCMs) holds great potential for regenerative medicine by offering alternative strategies for treatment of heart disease. This conversion has been achieved by forced expression of defined factors such as Gata4 (G), Mef2c (M) and Tbx5 (T). Traditionally, iCMs are generated by a cocktail of viruses expressing these individual factors. However, reprogramming efficiency is relatively low and most of the in vitro G,M,T-transduced fibroblasts do not become fully reprogrammed, making it difficult to study the reprogramming mechanisms. We recently have shown that the stoichiometry of G,M,T is crucial for efficient iCM reprogramming. An optimal stoichiometry of G,M,T with relative high level of M and low levels of G and T achieved by using our polycistronic MGT vector (hereafter referred to as MGT) significantly increased reprogramming efficiency and improved iCM quality in vitro. Here we provide a detailed description of the methodology used to generate iCMs with MGT construct from cardiac fibroblasts. Isolation of cardiac fibroblasts, generation of virus for reprogramming and evaluation of the reprogramming process are also included to provide a platform for efficient and reproducible generation of iCMs.
Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection
NASA Astrophysics Data System (ADS)
Takahashi, Takuya; Shibata, Kazunari
2017-03-01
Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.
NASA Astrophysics Data System (ADS)
Vijayaraghavan, Rukmani; Sarazin, Craig
2017-10-01
We simulate anisotropic thermal conduction between the intracluster medium (ICM) and the hot coronal interstellar medium (ISM) gas in cluster galaxies. In Paper I, we simulated the evaporation of the hot ISM due to isotropic (possibly saturated) conduction between the ISM and ICM. We found that hot coronae evaporate on ˜ {10}2 {Myr} timescales, significantly shorter than the ˜ {10}3 {Myr} gas loss times due to ram pressure stripping. No tails of stripped gas are formed. This is in tension with the observed ubiquity and implied longevity of compact X-ray coronae and stripped ISM tails, and requires the suppression of evaporation, possibly due to magnetic fields and anisotropic conduction. We perform a series of wind tunnel simulations similar to that in Paper I, now including ISM and ICM magnetic fields. We simulate the effect of anisotropic conduction for a range of extreme magnetic field configurations: parallel and perpendicular to the ICM wind, and continuous and completely disjointed between the ISM and ICM. We find that when conduction is anisotropic, gas loss due to evaporation is severely reduced; the overall gas loss rates with and without anisotropic conduction do not differ by more than 10%-20%. Magnetic fields also prevent stripped tails from evaporating in the ICM by shielding, and providing few pathways for heat transport between the ICM and ISM. The morphology of stripped tails and magnetic fields in the tails and wakes of galaxies are sensitive to the initial magnetic field configuration.
Ferroni, Carolina G.; Maranesi, Monica; Livi, Alessandro; Lanzilotto, Marco; Bonini, Luca
2017-01-01
Intracortical microstimulation (ICMS) is one of the most widely employed techniques for providing causal evidence of the relationship between neuronal activity and specific motor, perceptual, or even cognitive functions. In recent years, several new types of linear multielectrode silicon probes have been developed, allowing researchers to sample neuronal activity at different depths along the same cortical site simultaneously and with high spatial precision. Nevertheless, silicon multielectrode probes have been rarely employed for ICMS studies and, more importantly, it is unknown whether and to what extent they can be used for combined recording and stimulation experiments. Here, we addressed these issues during both acute and chronic conditions. First, we compared the behavioral outcomes of ICMS delivered to the hand region of a monkey's motor cortex with multielectrode silicon probes, commercially available multisite stainless-steel probes and single-tip glass-coated tungsten microelectrodes. The results for all three of the probes were reliable and similar. Furthermore, we tested the impact of long-train ICMS delivered through chronically implanted silicon probes at different time intervals, from 1 to 198 days after ICMS sessions, showing that although the number of recorded neurons decreased over time, in line with previous studies, ICMS did not alter silicon probes' recording capabilities. These findings indicate that in ICMS experiments, the performance of linear multielectrode silicon probes is comparable to that of both single-tip and multielectrode stainless-steel probes, suggesting that the silicon probes can be successfully used for combined recording and stimulation studies in chronic conditions. PMID:29187815
The effect of chronic intracortical microstimulation on the electrode-tissue interface.
Chen, Kevin H; Dammann, John F; Boback, Jessica L; Tenore, Francesco V; Otto, Kevin J; Gaunt, Robert A; Bensmaia, Sliman J
2014-04-01
Somatosensation is critical for effective object manipulation, but current upper limb prostheses do not provide such feedback to the user. For individuals who require use of prosthetic limbs, this lack of feedback transforms a mundane task into one that requires extreme concentration and effort. Although vibrotactile motors and sensory substitution devices can be used to convey gross sensations, a direct neural interface is required to provide detailed and intuitive sensory feedback. The viability of intracortical microstimulation (ICMS) as a method to deliver feedback depends in part on the long-term reliability of implanted electrodes used to deliver the stimulation. The objective of the present study is to investigate the effects of chronic ICMS on the electrode-tissue interface. We stimulate the primary somatosensory cortex of three Rhesus macaques through chronically implanted electrodes for 4 h per day over a period of six months, with different electrodes subjected to different regimes of stimulation. We measure the impedance and voltage excursion as a function of time and of ICMS parameters. We also test the sensorimotor consequences of chronic ICMS by having animals grasp and manipulate small treats. We show that impedance and voltage excursion both decay with time but stabilize after 10-12 weeks. The magnitude of this decay is dependent on the amplitude of the ICMS and, to a lesser degree, the duration of individual pulse trains. Furthermore, chronic ICMS does not produce any deficits in fine motor control. The results suggest that chronic ICMS has only a minor effect on the electrode-tissue interface and may thus be a viable means to convey sensory feedback in neuroprosthetics.
Sensitivity to microstimulation of somatosensory cortex distributed over multiple electrodes.
Kim, Sungshin; Callier, Thierri; Tabot, Gregg A; Tenore, Francesco V; Bensmaia, Sliman J
2015-01-01
Meaningful and repeatable tactile sensations can be evoked by electrically stimulating primary somatosensory cortex. Intracortical microstimulation (ICMS) may thus be a viable approach to restore the sense of touch in individuals who have lost it, for example tetraplegic patients. One of the potential limitations of this approach, however, is that high levels of current can damage the neuronal tissue if the resulting current densities are too high. The limited range of safe ICMS amplitudes thus limits the dynamic range of ICMS-evoked sensations. One way to get around this limitation would be to distribute the ICMS over multiple electrodes in the hopes of intensifying the resulting percept without increasing the current density experienced by the neuronal tissue. Here, we test whether stimulating through multiple electrodes is a viable solution to increase the dynamic range of ICMS-elicited sensations without increasing the peak current density. To this end, we compare the ability of non-human primates to detect ICMS delivered through one vs. multiple electrodes. We also compare their ability to discriminate pulse trains differing in amplitude when these are delivered through one or more electrodes. We find that increasing the number of electrodes through which ICMS is delivered only has a marginal effect on detectability or discriminability despite the fact that 2-4 times more current is delivered overall. Furthermore, the impact of multielectrode stimulation (or lack thereof) is found whether pulses are delivered synchronously or asynchronously, whether the leading phase of the pulses is cathodic or anodic, and regardless of the spatial configuration of the electrode groups.
Ferroni, Carolina G; Maranesi, Monica; Livi, Alessandro; Lanzilotto, Marco; Bonini, Luca
2017-01-01
Intracortical microstimulation (ICMS) is one of the most widely employed techniques for providing causal evidence of the relationship between neuronal activity and specific motor, perceptual, or even cognitive functions. In recent years, several new types of linear multielectrode silicon probes have been developed, allowing researchers to sample neuronal activity at different depths along the same cortical site simultaneously and with high spatial precision. Nevertheless, silicon multielectrode probes have been rarely employed for ICMS studies and, more importantly, it is unknown whether and to what extent they can be used for combined recording and stimulation experiments. Here, we addressed these issues during both acute and chronic conditions. First, we compared the behavioral outcomes of ICMS delivered to the hand region of a monkey's motor cortex with multielectrode silicon probes, commercially available multisite stainless-steel probes and single-tip glass-coated tungsten microelectrodes. The results for all three of the probes were reliable and similar. Furthermore, we tested the impact of long-train ICMS delivered through chronically implanted silicon probes at different time intervals, from 1 to 198 days after ICMS sessions, showing that although the number of recorded neurons decreased over time, in line with previous studies, ICMS did not alter silicon probes' recording capabilities. These findings indicate that in ICMS experiments, the performance of linear multielectrode silicon probes is comparable to that of both single-tip and multielectrode stainless-steel probes, suggesting that the silicon probes can be successfully used for combined recording and stimulation studies in chronic conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijayaraghavan, Rukmani; Sarazin, Craig, E-mail: rukmani@virginia.edu
We simulate the evolution of cluster galaxy hot interstellar medium (ISM) gas that is a result of the effects of ram pressure and thermal conduction in the intracluster medium (ICM). At the density and temperature of the ICM, the mean free paths of ICM electrons are comparable to the sizes of galaxies, therefore electrons can efficiently transport heat that is due to thermal conduction from the hot ICM to the cooler ISM. Galaxies consisting of dark matter halos and hot gas coronae are embedded in an ICM-like “wind tunnel” in our simulations. In this paper, we assume that thermal conductionmore » is isotropic and include the effects of saturation. We find that as heat is transferred from the ICM to the ISM, the cooler denser ISM expands and evaporates. This process is significantly faster than gas loss due to ram pressure stripping; for our standard model galaxy, the evaporation time is 160 Myr, while the ram pressure stripping timescale is 2.5 Gyr. Thermal conduction also suppresses the formation of shear instabilities, and there are no stripped ISM tails since the ISM evaporates before tails can form. Observations of long-lived X-ray emitting coronae and ram pressure stripped X-ray tails in galaxies in group and cluster environments therefore require that thermal conduction is suppressed or offset by some additional physical process. The most likely process is anisotropic thermal conduction that is due to magnetic fields in the ISM and ICM, which we simulate and study in the next paper in this series.« less
NASA Astrophysics Data System (ADS)
Vijayaraghavan, Rukmani; Sarazin, Craig
2017-05-01
We simulate the evolution of cluster galaxy hot interstellar medium (ISM) gas that is a result of the effects of ram pressure and thermal conduction in the intracluster medium (ICM). At the density and temperature of the ICM, the mean free paths of ICM electrons are comparable to the sizes of galaxies, therefore electrons can efficiently transport heat that is due to thermal conduction from the hot ICM to the cooler ISM. Galaxies consisting of dark matter halos and hot gas coronae are embedded in an ICM-like “wind tunnel” in our simulations. In this paper, we assume that thermal conduction is isotropic and include the effects of saturation. We find that as heat is transferred from the ICM to the ISM, the cooler denser ISM expands and evaporates. This process is significantly faster than gas loss due to ram pressure stripping; for our standard model galaxy, the evaporation time is 160 Myr, while the ram pressure stripping timescale is 2.5 Gyr. Thermal conduction also suppresses the formation of shear instabilities, and there are no stripped ISM tails since the ISM evaporates before tails can form. Observations of long-lived X-ray emitting coronae and ram pressure stripped X-ray tails in galaxies in group and cluster environments therefore require that thermal conduction is suppressed or offset by some additional physical process. The most likely process is anisotropic thermal conduction that is due to magnetic fields in the ISM and ICM, which we simulate and study in the next paper in this series.
Rosado Ingelmo, A; Doña Diaz, I; Cabañas Moreno, R; Moya Quesada, M C; García-Avilés, C; García Nuñez, I; Martínez Tadeo, J I; Mielgo Ballesteros, R; Ortega-Rodríguez, N; Padial Vilchez, M A; Sánchez-Morillas, L; Vila Albelda, C; Moreno Rodilla, E; Torres Jaén, M J
2016-01-01
The objective of these guidelines is to ensure efficient and effective clinical practice. The panel of experts who produced this consensus document developed a research protocol based on a review of the literature. The prevalence of allergic reactions to iodinated contrast media (ICM) is estimated to be 1:170 000, that is, 0.05%-0.1% of patients undergoing radiologic studies with ICM (more than 75 million examinations per year worldwide). Hypersensitivity reactions can appear within the first hour after administration (immediate reactions) or from more than 1 hour to several days after administration (nonimmediate or delayed reactions). The risk factors for immediate reactions include poorly controlled bronchial asthma, concomitant medication (eg, angiotensin-converting enzyme inhibitors, ß-blockers, and proton-pump inhibitors), rapid administration of the ICM, mastocytosis, autoimmune diseases, and viral infections. The most common symptoms of immediate reactions are erythema and urticaria with or without angioedema, which appear in more than 70% of patients. Maculopapular rash is the most common skin feature of nonimmediate reactions (30%-90%). Skin and in vitro tests should be performed for diagnosis of both immediate and nonimmediate reactions. The ICM to be administered will therefore be chosen depending on the results of these tests, the ICM that induced the reaction (when known), the severity of the reaction, the availability of alternative ICM, and the information available on potential ICM cross-reactivity. Another type of contrast media, gadolinium derivatives, is used used for magnetic resonance imaging. Although rare, IgE-mediated reactions to gadolinium derivatives have been reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, Christopher S.; Balbus, Steven A.; Schekochihin, Alexander A., E-mail: chris@astro.umd.edu
2015-12-10
Central jetted active galactic nuclei (AGNs) appear to heat the core regions of the intracluster medium (ICM) in cooling-core galaxy clusters and groups, thereby preventing a cooling catastrophe. However, the physical mechanism(s) by which the directed flow of kinetic energy is thermalized throughout the ICM core remains unclear. We examine one widely discussed mechanism whereby the AGN induces subsonic turbulence in the ambient medium, the dissipation of which provides the ICM heat source. Through controlled inviscid three-dimensional hydrodynamic simulations, we verify that explosive AGN-like events can launch gravity waves (g-modes) into the ambient ICM, which in turn decays to volume-fillingmore » turbulence. In our model, however, this process is found to be inefficient, with less than 1% of the energy injected by the AGN activity actually ending up in the turbulence of the ambient ICM. This efficiency is an order of magnitude or more too small to explain the observations of AGN-feedback in galaxy clusters and groups with short central cooling times. Atmospheres in which the g-modes are strongly trapped/confined have an even lower efficiency since, in these models, the excitation of turbulence relies on the g-modes’ ability to escape from the center of the cluster into the bulk ICM. Our results suggest that, if AGN-induced turbulence is indeed the mechanism by which the AGN heats the ICM core, its driving may rely on physics beyond that captured in our ideal hydrodynamic model.« less
Jankowski, M.D.; Russell, Robin E.; Franson, J. Christian; Dusek, Robert J.; Hines, M.K.; Gregg, M.; Hofmeister, Erik K.
2014-01-01
The sagebrush biome in the western United States is home to the imperiled greater sage-grouse (Centrocercus urophasianus) and encompasses rangelands used for cattle production. Cattle grazing activities have been implicated in the range-wide decline of the sage-grouse, but no studies have investigated the relationship between the physiological condition of sage-grouse and the presence of grazing cattle. We sampled 329 sage-grouse across four sites (two grazed and two ungrazed) encompassing 13 600 km2 during the spring and late summer–early autumn of 2005 to evaluate whether demographic factors, breeding status, plasma protein levels, and residence in a cattle-grazed habitat were associated with the stress hormone corticosterone. Corticosterone was measured in feces as immunoreactive corticosterone metabolites (ICM). Males captured during the lekking season exhibited higher ICM levels than all others. Prenesting female sage-grouse captured in a grazed site had higher ICM levels than those in ungrazed sites and prenesting female plasma protein levels were negatively correlated with ICM concentrations. With the use of a small-scale spatial model, we identified a positive correlation between cattle pat count and sage-grouse ICM levels. Our model indicated that ICM levels increased by 2.60 ng · g-1 dry feces for every increase in the number of cow pats found in the vicinity. Management practices will benefit from future research regarding the consistency and mechanism(s) responsible for this association and, importantly, how ICM levels and demographic rates are related in this species of conservation concern.
Mapping the filaments in NGC 1275
NASA Astrophysics Data System (ADS)
Cobos, Aracely Susan; Rich, Jeffrey; Great Observatories All-sky LIRG Survey (GOALS)
2018-01-01
The giant elliptical brightest cluster galaxies (BCGs) at the centers of many massive clusters are often surrounded by drawn-out forms of gaseous material. It is believed that this gaseous material is gas condensing from the intracluster medium (ICM) in a “cooling flow,” and it can directly impact the growth of the BCG. The galaxy NGC 1275 is one of the closest giant elliptical BCGs and lies at the center of the Perseus cluster. NGC 1275 has large filaments that are thought to be associated with a cooling flow, but they may also be affected by its AGN. To investigate the relationship between the AGN and the cooling flow we have mapped the filaments around NGC 1275 with the Cosmic Web Imager, an image-slicing integral field spectrograph at Palomar Observatories. We employ standard emission-line ratio diagnostics to determine the source of ionizing radiation. We use our analysis to investigate whether the formation of the extended filaments is a result of gas from the ICM collapsing onto the galaxy as it cools or if it is possible that the filaments are a result of the cluster’s interaction with the outflow driven by the AGN.
Boyle, Adrian; Abel, Gary; Raut, Pramin; Austin, Richard; Dhakshinamoorthy, Vijayasankar; Ayyamuthu, Ravi; Murdoch, Iona; Burton, Joel
2016-05-01
There is uncertainty about the best way to measure emergency department crowding. We have previously developed a consensus-based measure of crowding, the International Crowding Measure in Emergency Departments (ICMED). We aimed to obtain pilot data to evaluate the ability of a shortened form of the ICMED, the sICMED, to predict senior emergency department clinicians' concerns about crowding and danger compared with a very well-studied measure of emergency department crowding, the National Emergency Department Overcrowding Score (NEDOCS). We collected real-time observations of the sICMED and NEDOCS and compared these with clinicians' perceptions of crowding and danger on a visual analogue scale. Data were collected in four emergency departments in the East of England. Associations were explored using simple regression, random intercept models and models accounting for correlation between adjacent time points. We conducted 82 h of observation in 10 observation sets. Naive modelling suggested strong associations between sICMED and NEDOCS and clinician perceptions of crowding and danger. Further modelling showed that, due to clustering, the association between sICMED and danger persisted, but the association between these two measures and perception of crowding was no longer statistically significant. Both sICMED and NEDOCS can be collected easily in a variety of English hospitals. Further studies are required but initial results suggest both scores may have potential use for assessing crowding variation at long timescales, but are less sensitive to hour-by-hour variation. Correlation in time is an important methodological consideration which, if ignored, may lead to erroneous conclusions. Future studies should account for such correlation in both design and analysis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Bandyopadhyay, Purnima; Lang, Elza A S; Rasaputra, Komal S; Steinman, Howard M
2013-08-01
The genome of the Philadelphia-1 strain of Legionella pneumophila, the causative organism of Legionnaires' disease, encodes two virulence-associated type 4 secretion systems (T4SSs), the Dot/Icm type 4B (T4BSS) and the Lvh type 4A (T4ASS). Broth stationary-phase cultures of most dot/icm mutants are defective in entry and evasion of phagosome acidification. However, those virulence defects can be reversed by incubating broth cultures of dot/icm mutants in water, termed water stress (WS). WS reversal requires the lvh T4ASS locus, suggesting an interaction between the two T4SSs in producing Legionella virulence phenotypes. In the current work, the loss of WS reversal in a dotA Δlvh mutant of strain JR32 was shown to be attributable to loss of the lvh virD4 gene, encoding the putative coupling protein of the T4ASS. Transformation of a dotA Δlvh mutant with virD4 also reversed entry and phagosome acidification defects in broth cultures. In addition, broth cultures of Δlvh and ΔvirD4 mutants, which were dot/icm(+), showed 5-fold and >6-fold increases in translocation of the Dot/Icm translocation substrates, proteins RalF and SidD, respectively. These data demonstrate that the Lvh T4ASS functions in both broth stationary-phase cultures conventionally used for infection and cultures exposed to WS treatment. Our studies in a dotA Δlvh mutant and in a dot/icm(+) background establish that VirD4 and the Lvh T4ASS contribute to virulence phenotypes and are consistent with independent functioning of Dot/Icm and Lvh T4SSs or functional substitution of the Lvh VirD4 protein for a component(s) of the Dot/Icm T4BSS.
Bandyopadhyay, Purnima; Lang, Elza A. S.; Rasaputra, Komal S.
2013-01-01
The genome of the Philadelphia-1 strain of Legionella pneumophila, the causative organism of Legionnaires' disease, encodes two virulence-associated type 4 secretion systems (T4SSs), the Dot/Icm type 4B (T4BSS) and the Lvh type 4A (T4ASS). Broth stationary-phase cultures of most dot/icm mutants are defective in entry and evasion of phagosome acidification. However, those virulence defects can be reversed by incubating broth cultures of dot/icm mutants in water, termed water stress (WS). WS reversal requires the lvh T4ASS locus, suggesting an interaction between the two T4SSs in producing Legionella virulence phenotypes. In the current work, the loss of WS reversal in a dotA Δlvh mutant of strain JR32 was shown to be attributable to loss of the lvh virD4 gene, encoding the putative coupling protein of the T4ASS. Transformation of a dotA Δlvh mutant with virD4 also reversed entry and phagosome acidification defects in broth cultures. In addition, broth cultures of Δlvh and ΔvirD4 mutants, which were dot/icm+, showed 5-fold and >6-fold increases in translocation of the Dot/Icm translocation substrates, proteins RalF and SidD, respectively. These data demonstrate that the Lvh T4ASS functions in both broth stationary-phase cultures conventionally used for infection and cultures exposed to WS treatment. Our studies in a dotA Δlvh mutant and in a dot/icm+ background establish that VirD4 and the Lvh T4ASS contribute to virulence phenotypes and are consistent with independent functioning of Dot/Icm and Lvh T4SSs or functional substitution of the Lvh VirD4 protein for a component(s) of the Dot/Icm T4BSS. PMID:23729650
The impact of an ICME on the Jovian X-ray aurora.
Dunn, William R; Branduardi-Raymont, Graziella; Elsner, Ronald F; Vogt, Marissa F; Lamy, Laurent; Ford, Peter G; Coates, Andrew J; Gladstone, G Randall; Jackman, Caitriona M; Nichols, Jonathan D; Rae, I Jonathan; Varsani, Ali; Kimura, Tomoki; Hansen, Kenneth C; Jasinski, Jamie M
2016-03-01
We report the first Jupiter X-ray observations planned to coincide with an interplanetary coronal mass ejection (ICME). At the predicted ICME arrival time, we observed a factor of ∼8 enhancement in Jupiter's X-ray aurora. Within 1.5 h of this enhancement, intense bursts of non-Io decametric radio emission occurred. Spatial, spectral, and temporal characteristics also varied between ICME arrival and another X-ray observation two days later. Gladstone et al. (2002) discovered the polar X-ray hot spot and found it pulsed with 45 min quasiperiodicity. During the ICME arrival, the hot spot expanded and exhibited two periods: 26 min periodicity from sulfur ions and 12 min periodicity from a mixture of carbon/sulfur and oxygen ions. After the ICME, the dominant period became 42 min. By comparing Vogt et al. (2011) Jovian mapping models with spectral analysis, we found that during ICME arrival at least two distinct ion populations, from Jupiter's dayside, produced the X-ray aurora. Auroras mapping to magnetospheric field lines between 50 and 70 R J were dominated by emission from precipitating sulfur ions (S 7+,…,14+ ). Emissions mapping to closed field lines between 70 and 120 R J and to open field lines were generated by a mixture of precipitating oxygen (O 7+,8+ ) and sulfur/carbon ions, possibly implying some solar wind precipitation. We suggest that the best explanation for the X-ray hot spot is pulsed dayside reconnection perturbing magnetospheric downward currents, as proposed by Bunce et al. (2004). The auroral enhancement has different spectral, spatial, and temporal characteristics to the hot spot. By analyzing these characteristics and coincident radio emissions, we propose that the enhancement is driven directly by the ICME through Jovian magnetosphere compression and/or a large-scale dayside reconnection event.
Immediate reactions to iodinated contrast media.
Morales-Cabeza, Cristina; Roa-Medellín, Dasha; Torrado, Inés; De Barrio, Manuel; Fernández-Álvarez, Carmen; Montes-Aceñero, Juan Francisco; De La Riva, Inmaculada; Prieto-García, Alicia
2017-12-01
Immediate hypersensitivity reactions (IHRs) to iodinated contrast media (ICMs) remain a common clinical concern. Positive skin test and basophil activation test results suggest a specific IgE-mediated mechanism in some cases. Skin test and controlled challenge test (CCT) are useful to manage these patients. To study clinical and allergologic features of IHRs to ICMs in a Spanish tertiary hospital during a 7-year period. Demographic and clinical data concerning the reaction were recorded. Patients treated at the Allergy Department of Hospital General Universitario Gregorio Marañón, Madrid, Spain, underwent skin tests. In those with positive results, CCTs with an alternative skin-test-negative ICM was performed. Global reaction rate was calculated and compared for each ICM. A total of 342 reactions occurred in 329 patients. Cutaneous symptoms were the most common (87.7%). A total of 196 patients underwent an allergy workup, 15 (7.6%) of whom had positive skin test results. Reactions were more severe in patients with positive vs negative skin test results (grade 1, 46.7% vs 73.6%; grade 2, 33.3% vs 20.9%; grade 3, 20% vs 5.46%; P < .05). Three patients had cross-reactivity to 3 ICMs, all including ioversol and iomeprol. Six patients allergic to iopamidol tolerated ioversol and 1 tolerated iomeprol. Four patients allergic to ioversol and 1 allergic to iomeprol tolerated iopamidol. The global reaction rate was 0.2%, differing for each ICM (iopamidol, 0.14%; ioversol, 0.2%; and iomeprol, 0.4%; P < .001). Positive skin test results were found in a low percentage of patients in whom skin test-based CCT identified an alternative non-cross-reactive ICM. Low-grade cross-reactivity was found, especially between iopamidol and ioversol. Reactions were more severe in patients with positive skin test results. The reaction rate was greater for iomeprol compared with iopamidol (reaction rate, 2.8%) and ioversol (reaction rate, 2%). This study identified a possible underlying specific IgE-mediated mechanism by positive skin test result in a low percentage of patients with IHRs to ICMs. In these patients, the CCT based on skin test results was useful for identifying an alternative non-cross-reactive ICM. More studies are needed to investigate the underlying mechanism in patients with IHRs and negative skin test results. Copyright © 2017 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Iodinated X-ray contrast agents: Photoinduced transformation and monitoring in surface water.
Fabbri, D; Calza, P; Dalmasso, D; Chiarelli, P; Santoro, V; Medana, C
2016-12-01
Conventional wastewater treatment methods have shown to be unsuitable for a complete elimination of iodinated X-ray contrast agents (ICMs), which have thus been found in wastewater treatment plant (WWTP) effluent and in surface water. Once in the surface water, they could be transformed through different processes and form several transformation products that may need to be monitored as well. To this end, we studied the abatement and transformation of ICMs by combining laboratory experiments with in field analyses. We irradiated different aqueous solutions of the selected pollutants in the presence of TiO 2 as photocatalyst, aimed to promote ICMs degradation and to generate photoinduced transformation products (TPs) similar to those occurring in the environment and effluent wastewater. This experimental strategy has been applied to the study of three ICMs, namely iopromide, iopamidol and diatrizoate. A total of twenty-four, ten, and ten TPs were detected from iopamidol, diatrizoate and iopromide, respectively. The analyses were performed using a liquid chromatography-LTQ-FT-Orbitrap mass spectrometer. The mineralization process and acute toxicity evolution were assessed as well over time and revealed a lack of mineralization for all ICMs and the formation of harmful byproducts. After characterizing these transformation products, WWTP effluent and surface water taken from several branches of the Chicago River were analyzed for ICMs and their TPs. HRMS with MS/MS fragmentation was used as a confirmatory step for proper identification of compounds in water and wastewater samples. All three of ICM were detected in the effluent and surface water samples, while no significant amount of TPs were detected. Copyright © 2016 Elsevier B.V. All rights reserved.
Adachi, K; Murray, G M; Lee, J-C; Sessle, B J
2008-09-01
The mechanisms whereby orofacial pain affects motor function are poorly understood. The aims were to determine whether 1) lingual algesic chemical stimulation affected face primary motor cerebral cortex (face MI) excitability defined by intracortical microstimulation (ICMS); and 2) any such effects were limited to the motor efferent MI zones driving muscles in the vicinity of the noxious stimulus. Ketamine-anesthetized Sprague-Dawley male rats were implanted with electromyographic (EMG) electrodes into anterior digastric, masseter, and genioglossus muscles. In 38 rats, three microelectrodes were located in left face MI at ICMS-defined sites for evoking digastric and/or genioglossus responses. ICMS thresholds for evoking EMG activity from each site were determined every 15 min for 1 h, then the right anterior tongue was infused (20 microl, 120 microl/h) with glutamate (1.0 M, n = 18) or isotonic saline (n = 7). Subsequently, ICMS thresholds were determined every 15 min for 4 h. In intact control rats (n = 13), ICMS thresholds were recorded over 5 h. Only left and right genioglossus ICMS thresholds were significantly increased (< or =350%) in the glutamate infusion group compared with intact and isotonic saline groups (P < 0.05). These dramatic effects of glutamate on ICMS-evoked genioglossus activity contrast with its weak effects only on right genioglossus activity evoked from the internal capsule or hypoglossal nucleus. This is the first documentation that intraoral noxious stimulation results in prolonged neuroplastic changes manifested as a decrease in face MI excitability. These changes appear to occur predominantly in those parts of face MI that provide motor output to the orofacial region receiving the noxious stimulation.
Kim, D N; Schmee, J; Lee, K T; Thomas, W A
1985-05-01
The normal subendothelial intima of large arteries in man, swine and most other species is a variegated structure from birth onwards. In some regions it contains only a few scattered cells; in others there may be a continuous single layer of cells; and in still others the cells pile up to form what we have called intimal cell masses (ICM). The cells in the normal ICM are mostly smooth muscle cells although there is also a small resident population of monocyte-like cells. We have been studying the ICM in swine with emphasis on the abdominal aorta. We have found that atherosclerotic lesions in the abdominal aorta of swine induced by high-fat high-cholesterol diets begin by a hyperplastic reaction of the smooth muscle cells in the ICM and progress to form large lesions characterized by extensive regions of lipid-rich calcific necrotic debris similar to advanced lesions in man. Because of the putative key role of the ICM in atherogenesis we think that it is important to learn as much as possible about their natural history under conditions as normal as possible. In this report we present data on ICM in the abdominal aortas of 34 male and female Hormel miniature swine maintained on a low-fat low-cholesterol diet for up to 12 years of age. The ICM grow slowly with aging and in the distal portion of the aorta account for an average of 9% in the male and 15% in the female of the total cells in the aortic wall (intima + media).(ABSTRACT TRUNCATED AT 250 WORDS)
Solar Cycle Variation and Multipoint Studies of ICME Properties
NASA Technical Reports Server (NTRS)
Russell, C. T.
2005-01-01
The goal of the Living With a Star program is to understand the Sun-Earth connection sufficiently well that we can solve problems critical to life and society. This can most effectively be done in the short term using observations from our past and on-going programs. Not only can this approach solve some of the pressing issues but also it can provide ideas for the deployment of future spacecraft in the LWS program. The proposed effort uses data from NEAR, SOHO, Wind, ACE and Pioneer Venus in quadrature, multipoint, and solar cycle studies to study the interplanetary coronal mass ejection and its role in the magnetic flux cycle of the Sun. ICMEs are most important to the LWS objectives because the solar wind conditions associated with these structures are the most geoeffective of any solar wind phenomena. Their ability to produce strong geomagnetic disturbances arises first because of their high speed. This high speed overtakes the ambient solar wind producing a bow shock wave similar to the terrestrial bow shock. In the new techniques we develop as part of this effort we exploit this feature of ICMEs. This shocked plasma has a greater velocity, higher density and stronger magnetic field than the ambient solar wind, conditions that can enhance geomagnetic activity. The driving ICME is a large magnetic structure expanding outward in the solar wind [Gosling, 19961. The ICMEs magnetic field is generally much higher than that in the ambient solar wind and the velocity is high. The twisted nature of the magnetic field in an ICME almost ensures that sometime during the ICME conditions favorable for geomagnetic storm initiation will occur.
Bonelli, Nadia; Rossetto, Ruth; Castagno, Davide; Anselmino, Matteo; Vignolo, Francesca; Parasiliti Caprino, Mirko; Gaita, Fiorenzo; Ghigo, Ezio; Garberoglio, Roberto; Grimaldi, Roberto; Maccario, Mauro
2018-02-01
To study the effect of a iodine load on thyroid function of patients with ischaemic heart disease (IHD) and the long-term influence of unknown subclinical hyperthyroidism. Subclinical hyperthyroidism is considered an independent risk factors for cardiovascular morbidity of patients with IHD. They routinely undergo coronary angiography with iodine contrast media (ICM) which may induce or even worsen hyperthyroidism. A cross-sectional study followed by a longitudinal study on patients with subclinical hyperthyroidism. 810 consecutive IHD outpatients without known thyroid diseases or treatment with drugs influencing thyroid activity undergoing elective coronary angiography. We evaluated thyroid function either before and 1 month after ICM; patients with thyrotoxicosis at baseline or after ICM were then followed up for 1 year. 58 patients had hyperthyroidism at baseline (HB, 7.2%), independently associated to FT4 levels, thyroid nodules and family history of thyroid diseases. After ICM, the prevalence of hyperthyroidism was 81 (10%). Hyperthyroidism after ICM was positively predicted by baseline fT4 levels, thyroid nodules, age over 60, male gender, family history of thyroid diseases. Three months after ICM, 34 patients (4.2%) still showed hyperthyroidism (22 from HB, 13 treated with methimazole). One year after ICM, hyperthyroidism was still present in 20 patients (2.5%, all from HB, 13 treated). The prevalence of spontaneous subclinical hyperthyroidism in IHD is surprisingly elevated and is further increased by iodine load, particularly in patients with thyroid nodules and familial history of thyroid diseases, persisting in a not negligible number of them even after one year. © 2017 John Wiley & Sons Ltd.
Icm/Dot-Independent Entry of Legionella pneumophila into Amoeba and Macrophage Hosts
Bandyopadhyay, Purnima; Xiao, Huifang; Coleman, Hope A.; Price-Whelan, Alexa; Steinman, Howard M.
2004-01-01
Legionella pneumophila, the causative agent of Legionnaires' disease, expresses a type IVB secretion apparatus that translocates bacterial proteins into amoeba and macrophage hosts. When stationary-phase cultures are used to infect hosts, the type IVB apparatus encoded by the icm/dot genes is required for entry, delay of phagosome-lysosome fusion, and intracellular multiplication within host cells. Null mutants with mutations in icm/dot genes are defective in these phenotypes. Here a new model is described in which hosts are infected with stationary-phase cultures that have been incubated overnight in pH 6.5 buffer. This model is called Ers treatment because it enhances the resistance to acid, hydrogen peroxide, and antibiotic stress beyond that of stationary-phase cultures. Following Ers treatment entry into amoeba and macrophage hosts does not require dotA, which is essential for Legionella virulence phenotypes when hosts are infected with stationary-phase cultures, dotB, icmF, icmV, or icmX. Defective host entry is also suppressed for null mutants with mutations in the KatA and KatB catalase-peroxidase enzymes, which are required for proper intracellular growth in amoeba and macrophage hosts. Ers treatment-induced suppression of defective entry is not associated with increased bacterial adhesion to host cells or with morphological changes in the bacterial envelope but is dependent on protein expression during Ers treatment. By using proteomic analysis, Ers treatment was shown to induce a protein predicted to contain eight tetratricopeptide repeats, a motif previously implicated in enhanced entry of L. pneumophila. Characterization of Ers treatment-dependent changes in expression is proposed as an avenue for identifying icm/dot-independent factors that function in the entry of Legionella into amoeba and macrophage hosts. PMID:15271914
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, J.W.; Thacker, M.S.; DeWitt, C.B.
In the area of environmental restoration, one of the most challenging problems is the task of remediating mixed waste-contaminated sites. This paper discusses a successful Interim Corrective Measure (ICM) performed at a mixed waste-contaminated site on Kirtland Air Force Base (AFB) in Albuquerque, New Mexico. The site, known as RW-68, Cratering Area and Radium Dump/Slag Piles, was used during the late 1940s and early 1950s for the destruction and incineration of captured World War II aircraft. It contained 19 slag piles totaling approximately 150 tons of slag, ash, refractory brick, and metal debris. The piles were contaminated with radium-226 andmore » RCRA-characteristic levels of heavy metals. Therefore, the piles were considered mixed waste. To eliminate the threat to human health and the environment, an ICM of removal, segregation, stabilization, and disposal was conducted from October through December 1996. Approximately 120 cubic yards (cu yds) of mixed waste, 188 cu yds of low-level radioactive-contaminated soil, 1 cu yd of low-level radioactive-contaminated debris, 5 cu yds of RCRA-characteristic hazardous waste, and 45 tons of nonhazardous debris were stabilized and disposed of during the ICM. To render the RCRA metals and radionuclides insoluble, stabilization was performed on the mixed and RCRA-characteristic waste streams. All stabilized material was subjected to TCLP analysis to verify it no longer exhibited RCRA-characteristic properties. Radiological and geophysical surveys were conducted concurrently with site remediation activities. These surveys provided real-time documentation of site conditions during each phase of the ICM and confirmed successful cleanup of the site. The three radioactive waste streams, stabilized mixed waste, low-level radioactive-contaminated soil, and low-level radioactive-contaminated debris, were disposed of at the Envirocare low-level radioactive disposal facility.« less
Dong, Hongjuan; Marchetti-Deschmann, Martina; Allmaier, Günter
2014-01-01
Traditionally characterization of microbial proteins is performed by a complex sequence of steps with the final step to be either Edman sequencing or mass spectrometry, which generally takes several weeks or months to be complete. In this work, we proposed a strategy for the characterization of tryptic peptides derived from Giberella zeae (anamorph: Fusarium graminearum) proteins in parallel to intact cell mass spectrometry (ICMS) in which no complicated and time-consuming steps were needed. Experimentally, after a simple washing treatment of the spores, the aliquots of the intact G. zeae macro conidia spores solution, were deposited two times onto one MALDI (matrix-assisted laser desorption ionization) mass spectrometry (MS) target (two spots). One spot was used for ICMS and the second spot was subject to a brief on-target digestion with bead-immobilized or non-immobilized trypsin. Subsequently, one spot was analyzed immediately by MALDI MS in the linear mode (ICMS) whereas the second spot containing the digested material was investigated by MALDI MS in the reflectron mode ("peptide mass fingerprint") followed by protonated peptide selection for MS/MS (post source decay (PSD) fragment ion) analysis. Based on the formed fragment ions of selected tryptic peptides a complete or partial amino acid sequence was generated by manual de novo sequencing. These sequence data were used for homology search for protein identification. Finally four different peptides of varying abundances have been identified successfully allowing the verification that our desorbed/ionized surface compounds were indeed derived from proteins. The presence of three different proteins could be found unambiguously. Interestingly, one of these proteins is belonging to the ribosomal superfamily which indicates that not only surface-associated proteins were digested. This strategy minimized the amount of time and labor required for obtaining deeper information on spore preparations within the nowadays widely used ICMS approach. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Bo; Zhao, Guijie; Huang, Gang; Wang, Pengfei; Yan, Bangliang
2017-08-01
The authors present results for El Niño-Southern Oscillation (ENSO) and East Asian-western North Pacific climate variability simulated in a new version high-resolution coupled model (ICM.V2) developed at the Center for Monsoon System Research of the Institute of Atmospheric Physics (CMSR, IAP), Chinese Academy of Sciences. The analyses are based on the last 100-year output of a 1000-year simulation. Results are compared to an earlier version of the same coupled model (ICM.V1), reanalysis, and observations. The two versions of ICM have similar physics but different atmospheric resolution. The simulated climatological mean states show marked improvement over many regions, especially the tropics in ICM.V2 compared to those in ICM.V1. The common bias in the cold tongue has reduced, and the warm biases along the ocean boundaries have improved as well. With improved simulation of ENSO, including its period and strength, the ENSO-related western North Pacific summer climate variability becomes more realistic compared to the observations. The simulated East Asian summer monsoon anomalies in the El Niño decaying summer are substantially more realistic in ICM.V2, which might be related to a better simulation of the Indo-Pacific Ocean capacitor (IPOC) effect and Pacific decadal oscillation (PDO).
Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Takuya; Shibata, Kazunari, E-mail: takahasi@kusastro.kyoto-u.ac.jp
Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation”more » (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.« less
Implant Evaluation of an Insertable Cardiac Monitor Outside the Electrophysiology Lab Setting
Pachulski, Roman; Cockrell, James; Solomon, Hemant; Yang, Fang; Rogers, John
2013-01-01
Background To date, insertable cardiac monitors (ICM) have been implanted in the hospital without critical evaluation of other potential settings. Providing alternatives to in-hospital insertion may increase access to ICM, decrease waiting times for patients awaiting diagnosis, and reduce hospital resources. Methods This was a prospective, non-randomized, clinical trial involving nine clinical sites throughout the United States designed to assess the feasibility of ICM implants in a non-hospital setting. Other than the Reveal® ICM, implant supplies and techniques were left to physician discretion in patients who met indications. Patients were followed up to 90 days post-implant. The primary objective was to characterize the number of procedure-related adverse events that required surgical intervention within 90 days. Results Sixty-five patients were implanted at nine out-of-hospital sites. The insertion procedure was well tolerated by all patients. There were no deaths, systemic infections or endocarditis. There were two (3%) procedure-related adverse events requiring device explant and four (6%) adverse events not requiring explant. ICM use led to 16 diagnoses (24.6%) with 9 patients proceeding to alternate cardiac device implants during the course of the 90-day follow up. Conclusion Out-of-hospital ICM insertion can be accomplished with comparable procedural safety and represents a reasonable alternative to the in-hospital setting. Clinicaltrials.gov registration number: NCT01168427 PMID:23977071
ANATOMY OF DEPLETED INTERPLANETARY CORONAL MASS EJECTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocher, M.; Lepri, S. T.; Landi, E.
We report a subset of interplanetary coronal mass ejections (ICMEs) containing distinct periods of anomalous heavy-ion charge state composition and peculiar ion thermal properties measured by ACE /SWICS from 1998 to 2011. We label them “depleted ICMEs,” identified by the presence of intervals where C{sup 6+}/C{sup 5+} and O{sup 7+}/O{sup 6+} depart from the direct correlation expected after their freeze-in heights. These anomalous intervals within the depleted ICMEs are referred to as “Depletion Regions.” We find that a depleted ICME would be indistinguishable from all other ICMEs in the absence of the Depletion Region, which has the defining property ofmore » significantly low abundances of fully charged species of helium, carbon, oxygen, and nitrogen. Similar anomalies in the slow solar wind were discussed by Zhao et al. We explore two possibilities for the source of the Depletion Region associated with magnetic reconnection in the tail of a CME, using CME simulations of the evolution of two Earth-bound CMEs described by Manchester et al.« less
Enrichment and heating of the intracluster medium by ejection from galaxies
NASA Technical Reports Server (NTRS)
Metzler, Chris; Evrard, August
1993-01-01
Results of N-body + hydrodynamic simulations designed to model the formation and evolution of clusters of galaxies and intracluster gas are presented. Clusters of galaxies are the largest bound, relaxed objects in the universe. They are strong x-ray emitters; this radiation originates through thermal bremsstrahlung from a diffuse plasma filling the space between cluster galaxies, the intracluster medium or ICM. From observations, one can infer that the mass of the ICM is comparable to or greater than the mass of all the galaxies in the cluster, and that the ratio of mass in hot gas to mass in galaxies, M(sub ICM)/M(sub STARS), increases with the richness of the cluster. Spectroscopic studies of cluster x-ray emission show heavy element emission lines. While M(sub ICM)/M(sub STARS) is greater than or equal to 1 implies that most of the ICM is primordial in nature, the discovery of heavy elements indicates that some of the gas must have been processed through galaxies. Galaxy evolution thus directly impacts cluster evolution.
Effects of Solar Array Shadowing on the Power Capability of the Interim Control Module
NASA Technical Reports Server (NTRS)
Fincannon, James; Hojnicki, Jeffrey S.; Garner, James Christopher
1999-01-01
The Interim Control Module (ICM) is being built by the US Naval Research Laboratory (NRL) for NASA as a propulsion module for the International Space Station (ISS). Originally developed as a spinning spacecraft used to move payloads to their final orbit, for ISS, the ICM will be in a fixed orientation and location for long periods resulting in substantial solar panel shadowing. This paper describes the methods used to determine the incident energy incident energy on the ICM solar panels and the power capability of the electric power system (EPS). Applying this methodology has resulted in analyses and assessments used to identify ICM early design changes/options, placement and orientations that enable successful operation of the EPS under a wide variety of anticipated conditions.
Integrated corridor management : ICM implementation guide
DOT National Transportation Integrated Search
2006-04-12
This Implementation Guidance for Integrated Corridor Management (ICM) has been developed as part of Phase 1 (Foundational Research) for the Federal Highway Administration and the Federal Transit Administration Integrated Corridor Management Initiativ...
Turbulence measurements in clusters of galaxies with XMM-Newton
NASA Astrophysics Data System (ADS)
Pinto, C.; Fabian, A.; de Plaa, J.; Sanders, J.
2014-07-01
The kinematics structure of the intracluster medium (ICM) in clusters of galaxies is related to the their evolution. AGN feedback, sloshing of gas within the potential well, and galaxy mergers are thought to generate ICM velocity widths of several hundred km/s. Appropriate determinations of turbulent broadening are crucial not only to understand the effects of the central engine onto the evolution of the clusters, but are also mandatory to obtain realistic (emission) line fits and abundances estimate. We have analyzed the data from the CHEERS catalog which includes 1.5 Ms of new observations (PI: Jelle de Plaa) and archival data for a total of 29 clusters and groups of galaxies, and elliptical galaxies. This campaign provided us with a unique database that significantly improves the quality of the existing observations and the measurements of chemical abundances and turbulent broadening. We have applied the continuum-subtraction spectral-fitting method of Sanders and Fabian and measured turbulence, temperatures, and abundances for the sources in the catalog. For some sources we obtain tight estimates of velocity broadening which is related to the past AGN activity and mergers. We will show our results at the conference and their relevance in the context of future missions.
Origin and dynamics of emission line clouds in cooling flow environments
NASA Technical Reports Server (NTRS)
Loewenstein, Michael
1990-01-01
The author suggests that since clouds are born co-moving in a turbulent intra-cluster medium (ICM), the allowed parameter space can now be opened up to a more acceptable range. Large-scale motions can be driven in the central parts of cooling flows by a number of mechanisms including the motion of the central and other galaxies, and the dissipation of advected, focussed rotational and magnetic energy. In addition to the velocity width paradox, two other paradoxes (Heckman et al. 1989) can be solved if the ICM is turbulent. Firstly, the heating source for the emission line regions has always been puzzling - line luminosities are extremely high for a given (optical or radio) galaxy luminosity compared to those in non-cooling flow galaxies, therefore a mechanism peculiar to cooling flows must be at work. However most, if not all, previously suggested heating mechanisms either fail to provide enough ionization or give the wrong line ratios, or both. The kinetic energy in the turbulence provides a natural energy source if it can be efficiently converted to cloud heat. Researchers suggest that this can be done via magneto-hydrodynamic waves through plasma slip. Secondly, while the x ray observations indicate extended mass deposition, the optical line emission is more centrally concentrated. Since many of the turbulence-inducing mechanisms are strongest in the central regions of the ICM, so is the method of heating. In other words material is dropping out everywhere but only being lit up in the center.
Biometric identification standards research
DOT National Transportation Integrated Search
2012-08-01
This report presents the test plan for conducting the Air Quality Analysis for the United States Department of Transportation (U.S. DOT) evaluation of the San Diego Integrated Corridor Management (ICM) Initiative Demonstration. The ICM projects being...
Formation, Heating And Chemical Enrichment Of The Intracluster Medium
NASA Astrophysics Data System (ADS)
Eckert, Dominique
2017-07-01
The intracluster medium (ICM) contains the majority of the baryons (80-90%) of galaxy clusters and groups. It has been progressively heated up by gravitational and non-gravitational processes since the cluster formation epoch (z 2-3) until it reaches the very high temperatures we see today, i.e. between 10 and 100 million degrees. The global properties of the ICM follow tight scaling laws with halo mass which are shaped both by gravitational and non-gravitational effects (in particular gas cooling and AGN feedback). Finally, we also know that the ICM is enriched in metals which have been ejected from cluster galaxies throughout the cluster formation history. I will give a review of what is currently known about the formation and evolution of the ICM, focusing on the heating processes (shocks, turbulence) and the metal enrichment history of the gas.
Chang, Le; Baseggio, Oscar; Sementa, Luca; Cheng, Daojian; Fronzoni, Giovanna; Toffoli, Daniele; Aprà, Edoardo; Stener, Mauro; Fortunelli, Alessandro
2018-06-13
We introduce Individual Component Maps of Rotatory Strength (ICM-RS) and Rotatory Strength Density (RSD) plots as analysis tools of chiro-optical linear response spectra deriving from time-dependent density functional theory (TDDFT) simulations. ICM-RS and RSD allow one to visualize the origin of chiro-optical response in momentum or real space, including signed contributions and therefore highlighting cancellation terms that are ubiquitous in chirality phenomena, and should be especially useful in analyzing the spectra of complex systems. As test cases, we use ICM-RS and RSD to analyze circular dichroism spectra of selected (Ag-Au)30(SR)18 monolayer-protected metal nanoclusters, showing the potential of the proposed tools to derive insight and understanding, and eventually rational design, in chiro-optical studies of complex systems.
Cosmic-Ray Feedback Heating of the Intracluster Medium
NASA Astrophysics Data System (ADS)
Ruszkowski, Mateusz; Yang, H.-Y. Karen; Reynolds, Christopher S.
2017-07-01
Active galactic nuclei (AGNs) play a central role in solving the decades-old cooling-flow problem. Although there is consensus that AGNs provide the energy to prevent catastrophically large star formation, one major problem remains: How is the AGN energy thermalized in the intracluster medium (ICM)? We perform a suite of three-dimensional magnetohydrodynamical adaptive mesh refinement simulations of AGN feedback in a cool core cluster including cosmic rays (CRs). CRs are supplied to the ICM via collimated AGN jets and subsequently disperse in the magnetized ICM via streaming, and interact with the ICM via hadronic, Coulomb, and streaming instability heating. We find that CR transport is an essential model ingredient at least within the context of the physical model considered here. When streaming is included, (I) CRs come into contact with the ambient ICM and efficiently heat it, (II) streaming instability heating dominates over Coulomb and hadronic heating, (III) the AGN is variable and the atmosphere goes through low-/high-velocity dispersion cycles, and, importantly, (IV) CR pressure support in the cool core is very low and does not demonstrably violate observational constraints. However, when streaming is ignored, CR energy is not efficiently spent on the ICM heating and CR pressure builds up to a significant level, creating tension with the observations. Overall, we demonstrate that CR heating is a viable channel for the AGN energy thermalization in clusters and likely also in ellipticals, and that CRs play an important role in determining AGN intermittency and the dynamical state of cool cores.
The Hydrodynamics of Galaxy Transformation in Extreme Cluster Environments
NASA Astrophysics Data System (ADS)
Vijayaraghavan, Rukmani
2017-08-01
Cluster of galaxies are hostile environments. Infalling cluster galaxies are stripped of their dark matter, stars, and hot and cold interstellar medium gas. The ISM, in addition to tidal and ram pressure stripping, can evaporate due to thermal conduction. Gas loss and the subsequent suppression of star formation is not straightforward: magnetic fields in the ISM and ICM shield galaxies and their stripped tails from shear instabilities and conduction, radiative cooling can inhibit gas loss, and feedback from stars and AGN can replenish the ISM. While there is observational evidence that these processes operate, a theoretical understanding of the physics controlling the energy cycle in cluster galaxies remains elusive. Additionally, galaxies have a significant impact on ICM evolution: orbiting galaxies stir up and stretch ICM magnetic field lines, inject turbulence into the ICM via their wakes and g-waves, and infuse metals into the ICM. Quantifying the balance between processes that remove, retain, and replenish the ISM, and the impact of galaxies on the ICM require specialized hydrodynamic simulations of the cluster environment and its galaxies. I will present results from some of these simulations that include ram pressure stripping of galaxies' hot ISM, the effect of magnetic fields on this process, and the effectiveness of isotropic and anisotropic thermal conduction in removing and retaining the ISM. I will also quantify magnetic field amplification and turbulence injection due to orbiting galaxies, and implications for X-ray and radio observations and measurements of galactic coronae, tails, magnetic fields, and turbulence.
The use of MALDI-TOF ICMS as an alternative tool for Trichophyton rubrum identification and typing.
Pereira, Leonel; Dias, Nicolina; Santos, Cledir; Lima, Nelson
2014-01-01
In this study, the potential of matrix-assisted laser desorption/ionization time-of-flight intact cell mass spectrometry (MALDI-TOF ICMS) was investigated for the identification of clinical isolates. The isolates were analyzed at the species and strain level. Spectral identification by MALDI-TOF ICMS was performed for all strains, and compared with the results of sequencing of the internal transcribed spacers (ITS1 and ITS2), and the 5.8S rDNA region. PCR fingerprinting analysis using primers M13, (GACA)4, and (AC)10 was performed in order to assess the intra-specific variability of Trichophyton rubrum strains. The identification of strains at species level by MALDI-TOF ICMS was in agreement with the previously performed morphological and biochemical analysis. Sequence data confirmed spectral mass identification at species level. Intra-specific variability was assessed. Within the T. rubrum cluster, strains were distributed into smaller highly related sub-groups with a similarity values above 85%. MALDI-TOF ICMS was shown to be a rapid, low-cost and accurate alternative tool for the identification and strain typing of T. rubrum. Copyright © 2012 Elsevier España, S.L. All rights reserved.
NASA Astrophysics Data System (ADS)
Ala-Lahti, Matti M.; Kilpua, Emilia K. J.; Dimmock, Andrew P.; Osmane, Adnane; Pulkkinen, Tuija; Souček, Jan
2018-05-01
We present a comprehensive statistical analysis of mirror mode waves and the properties of their plasma surroundings in sheath regions driven by interplanetary coronal mass ejection (ICME). We have constructed a semi-automated method to identify mirror modes from the magnetic field data. We analyze 91 ICME sheath regions from January 1997 to April 2015 using data from the Wind spacecraft. The results imply that similarly to planetary magnetosheaths, mirror modes are also common structures in ICME sheaths. However, they occur almost exclusively as dip-like structures and in mirror stable plasma. We observe mirror modes throughout the sheath, from the bow shock to the ICME leading edge, but their amplitudes are largest closest to the shock. We also find that the shock strength (measured by Alfvén Mach number) is the most important parameter in controlling the occurrence of mirror modes. Our findings suggest that in ICME sheaths the dominant source of free energy for mirror mode generation is the shock compression. We also suggest that mirror modes that are found deeper in the sheath are remnants from earlier times of the sheath evolution, generated also in the vicinity of the shock.
NASA Technical Reports Server (NTRS)
Richardson, I. G.; Cane, H. V.
2011-01-01
We summarize the response of the galactic cosmic ray (CGR) intensity to the passage of the more than 300 interplanetary coronal mass ejections (ICMEs) and their associated shocks that passed the Earth during 1995-2009, a period that encompasses the whole of Solar Cycle 23. In approx.80% of cases, the GCR intensity decreased during the passage of these structures, i.e., a "Forbush decrease" occurred, while in approx.10% there was no significant change. In the remaining cases, the GCR intensity increased. Where there was an intensity decrease, minimum intensity was observed inside the ICME in approx.90% of these events. The observations confirm the role of both post-shock regions and ICMEs in the generation of these decreases, consistent with many previous studies, but contrary to the conclusion of Reames, Kahler, and Tylka (Astrophys. 1. Lett. 700, L199, 2009) who, from examining a subset of ICMEs with flux-rope-like magnetic fields (magnetic clouds) argued that these are "open structures" that allow free access of particles including GCRs to their interior. In fact, we find that magnetic clouds are more likely to participate in the deepest GCR decreases than ICMEs that are not magnetic clouds.
The challenge of turbulent acceleration of relativistic particles in the intra-cluster medium
NASA Astrophysics Data System (ADS)
Brunetti, Gianfranco
2016-01-01
Acceleration of cosmic-ray electrons (CRe) in the intra-cluster medium (ICM) is probed by radio observations that detect diffuse, megaparsec-scale, synchrotron sources in a fraction of galaxy clusters. Giant radio halos are the most spectacular manifestations of non-thermal activity in the ICM and are currently explained assuming that turbulence, driven during massive cluster-cluster mergers, reaccelerates CRe at several giga-electron volts. This scenario implies a hierarchy of complex mechanisms in the ICM that drain energy from large scales into electromagnetic fluctuations in the plasma and collisionless mechanisms of particle acceleration at much smaller scales. In this paper we focus on the physics of acceleration by compressible turbulence. The spectrum and damping mechanisms of the electromagnetic fluctuations, and the mean free path (mfp) of CRe, are the most relevant ingredients that determine the efficiency of acceleration. These ingredients in the ICM are, however, poorly known, and we show that calculations of turbulent acceleration are also sensitive to these uncertainties. On the other hand this fact implies that the non-thermal properties of galaxy clusters probe the complex microphysics and the weakly collisional nature of the ICM.
Opening a Window on ICME-driven GCR Modulation in the Inner Solar System
NASA Astrophysics Data System (ADS)
Winslow, Reka M.; Schwadron, Nathan A.; Lugaz, Noé; Guo, Jingnan; Joyce, Colin J.; Jordan, Andrew P.; Wilson, Jody K.; Spence, Harlan E.; Lawrence, David J.; Wimmer-Schweingruber, Robert F.; Mays, M. Leila
2018-04-01
Interplanetary coronal mass ejections (ICMEs) often cause Forbush decreases (Fds) in the flux of galactic cosmic rays (GCRs). We investigate how a single ICME, launched from the Sun on 2014 February 12, affected GCR fluxes at Mercury, Earth, and Mars. We use GCR observations from MESSENGER at Mercury, ACE/LRO at the Earth/Moon, and MSL at Mars. We find that Fds are steeper and deeper closer to the Sun, and that the magnitude of the magnetic field in the ICME magnetic ejecta as well as the “strength” of the ICME sheath both play a large role in modulating the depth of the Fd. Based on our results, we hypothesize that (1) the Fd size decreases exponentially with heliocentric distance, and (2) that two-step Fds are more common closer to the Sun. Both hypotheses will be directly verifiable by the upcoming Parker Solar Probe and Solar Orbiter missions. This investigation provides the first systematic study of the changes in GCR modulation as a function of distance from the Sun using nearly contemporaneous observations at Mercury, Earth/Moon, and Mars, which will be critical for validating our physical understanding of the modulation process throughout the heliosphere.
Oxygen Loss from Venus and the Influence of Extreme Solar Wind Conditions
NASA Astrophysics Data System (ADS)
McEnulty, Tess Rose
2012-06-01
The purpose of this dissertation is to expand our understanding of oxygen ion escape to space from Venus and its dependence on extreme solar wind conditions found during interplanetary coronal mass ejections (ICMEs). The solar wind dynamic pressure outside of the Venus bow shock did not exceed ˜12 nPa, during 2006-2009, while the solar wind dynamic pressure was higher than this for ˜10% of the time during the PVO mission. Oxygen ions escape Venus through multiple regions near the planet. One of these regions is the magnetosheath, where high energy pick-up ions are accelerated by the solar wind convection electric field. High energy (>1 keV) O+ pick-up ions within the Venus magnetosheath reached higher energy at lower altitude when the solar wind was disturbed by ICMEs compared to pick-up ions when the external solar wind was not disturbed, between 2006-2007. However, the count rate of O+ was not obviously affected by the ICMEs during this time period. In addition to high energy pick-up ions, VEX also detects low energy (˜10-100 eV) O+ within the ionosphere and wake of Venus. These low energy oxygen ions are difficult to interpret, because the spacecraft's relative velocity and potential can significantly affect the measured energy. If VEX ion data is not corrected for the spacecraft's relative velocity and potential, gravitationally bound O+ could be misinterpreted as escaping. These gravitationally bound oxygen ions can extend on the nightside to ˜-2 Venus radii and may even return to the planet after reaching high altitudes in the wake. Gravitationally bound ions will lower the total O+ escape estimated from Venus if total escape is calculated including these ions. However, if the return flux is low compared to the total escaping outflow, this effect is not significant. An ICME with a dynamic pressure of 17.6 nPa impacted Venus on November 11, 2011. During this ICME, the high energy pick-up O+ and the low energy O+ ions were affected. Oxygen ions in the magnetosheath, ionosphere, and tail had higher energies during the ICME, compared to O + energies when the external solar wind conditions were undisturbed. High energy ions were escaping within the dayside magnetosheath region when the ICME was passing as well as when the solar wind was undisturbed. However, during the ICME passage, these O+ ions had three orders of magnitude higher counts. The low energy O+ during the undisturbed days was gravitationally bound, while during the ICME a portion of the low energy ions were likely escaping. The most significant difference in O + during the ICME was high energy pickup ions measured in the wake on the outbound portion of the orbit. These ions had an escape flux of 2.5 X 108 O+cm-2sec-1, which is higher than the average escape flux in all regions of the wake. In addition, the interplanetary magnetic field (IMF) was in a configuration that may have rotated an even higher escape flux O+ away from the VEX orbit. This needs to be confirmed with sampling of other regions in the wake during large ICMEs. A lower bound on the total O+ escape during this event could be ˜2.8 X1026 to 6.5 X 1027 O +/sec, which is 2-3 orders of magnitude higher than the average escape flux measured by VEX. Hence, ICMEs could have played a major role in the total escape of O+ from Venus. The results presented in this dissertation can be used as a guide for future studies of O+ escape at Venus. As we move into solar maximum, Venus will likely be impacted by more large ICMEs. The ICME from the last study of this dissertation was the largest yet measured by VEX, but its 17.6 nPa dynamic pressure is lower than the largest ICMEs during the PVO time period (˜ 80 nPa). The work in this dissertation is also relevant to Mars, since Mars interacts with the solar wind in a similar manner and has analogous ion escape mechanisms. The upcoming MAVEN (Mars Atmosphere and Volatile Evolution) mission will launch at the end of 2013 to study the Martian atmosphere, escape processes, and history of volatiles. This mission will have an in-situ ion instrument and magnetometer similar to those used for the studies in this dissertation, so one could conduct similar studies of the oxygen ion escape from Mars during extreme solar wind conditions. (Abstract shortened by UMI.)
ERIC Educational Resources Information Center
Alro, Helle; Skovsmose, Ole
1996-01-01
Provides examples and a discussion of the Inquiry Cooperation Model (ICM). The ICM is a way of describing a pattern of communicative cooperation between teacher and students. It tries to develop students' preconceptions into mathematical competence. Contains 15 references. (DDR)
ICMS. Chemical Tracking, Management, and Reporting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bramlette, J.; Miles, R.; Carlson, M.
1997-10-10
The ICMS provides: management and system users a cost-effective method for identifying, reporting, and tracking chemicals from identifying the chemical when it is received until it enters a waste stream for a facility or area.
ICMS concept of operations for a generic corridor
DOT National Transportation Integrated Search
2006-04-18
This Generic Concept of Operations for Integrated Corridor Management (ICM) has been developed as part of Phase 1 (Foundational Research) for the Federal Highway Administration and the Federal Transit Administration (FHWA/FTA) Integrated Corridor Man...
Internet Domain Names: Background and Policy Issues
2010-04-05
was enacted to create a “ kids -friendly top level domain name” that would contain only age- appropriate content. The Dot Kids Implementation and...were introduced to require the Department of Commerce to compel ICANN to establish a mandatory top level domain name (such as . ) for material that...ICANN announced that it had entered into commercial and technical negotiations with a registry company (ICM Registry) to operate a new “. ” domain
Yiu, Rex; Fung, Vicky; Szeto, Karen; Hung, Veronica; Siu, Ricky; Lam, Johnny; Lai, Daniel; Maw, Christina; Cheung, Adah; Shea, Raman; Choy, Anna
2013-01-01
In Hong Kong, elderly patients discharged from hospital are at high risk of unplanned readmission. The Integrated Care Model (ICM) program is introduced to provide continuous and coordinated care for high risk elders from hospital to community to prevent unplanned readmission. A multidisciplinary working group was set up to address the requirements on developing the electronic forms for ICM program. Six (6) forms were developed. These forms can support ICM service delivery for the high risk elders, clinical documentation, statistical analysis and information sharing.
Single ICMEs and Complex Transient Structures in the Solar Wind in 2010 - 2011
NASA Astrophysics Data System (ADS)
Rodkin, D.; Slemzin, V.; Zhukov, A. N.; Goryaev, F.; Shugay, Y.; Veselovsky, I.
2018-05-01
We analyze the statistics, solar sources, and properties of interplanetary coronal mass ejections (ICMEs) in the solar wind. The total number of coronal mass ejections (CMEs) registered in the Coordinated Data Analysis Workshops catalog (CDAW) during the first eight years of Cycle 24 was 61% larger than in the same period of Cycle 23, but the number of X-ray flares registered by the Geostationary Operational Environmental Satellite (GOES) was 20 % smaller because the solar activity was lower. The total number of ICMEs in the given period of Cycle 24 in the Richardson and Cane list was 29% smaller than in Cycle 23, which may be explained by a noticeable number of non-classified ICME-like events in the beginning of Cycle 24. For the period January 2010 - August 2011, we identify solar sources of the ICMEs that are included in the Richardson and Cane list. The solar sources of ICME were determined from coronagraph observations of the Earth-directed CMEs, supplemented by modeling of their propagation in the heliosphere using kinematic models (a ballistic and drag-based model). A detailed analysis of the ICME solar sources in the period under study showed that in 11 cases out of 23 (48%), the observed ICME could be associated with two or more sources. For multiple-source events, the resulting solar wind disturbances can be described as complex (merged) structures that are caused by stream interactions, with properties depending on the type of the participating streams. As a reliable marker to identify interacting streams and their sources, we used the plasma ion composition because it freezes in the low corona and remains unchanged in the heliosphere. According to the ion composition signatures, we classify these cases into three types: complex ejecta originating from weak and strong CME-CME interactions, as well as merged interaction regions (MIRs) originating from the CME high-speed stream (HSS) interactions. We describe temporal profiles of the ion composition for the single-source and multi-source solar wind structures and compared them with the ICME signatures determined from the kinematic and magnetic field parameters of the solar wind. In single-source events, the ion charge state, as a rule, has a one-peak enhancement with an average duration of about one day, which is similar to the mean ICME duration of 1.12 days derived from the Richardson and Cane list. In the multi-source events, the total profile of the ion charge state consists of a sequence of enhancements that is associated with the interaction between the participating streams. On average, the total duration of the complex structures that appear as a result of the CME-CME and CME-HSS interactions as determined from their ion composition is 2.4 days, which is more than twice longer than that of the single-source events.
Novel Coenzyme B12-dependent Interconversion of Isovaleryl-CoA and Pivalyl-CoA*
Cracan, Valentin; Banerjee, Ruma
2012-01-01
5′-Deoxyadenosylcobalamin (AdoCbl)-dependent isomerases catalyze carbon skeleton rearrangements using radical chemistry. We have recently characterized a fusion protein that comprises the two subunits of the AdoCbl-dependent isobutyryl-CoA mutase flanking a G-protein chaperone and named it isobutyryl-CoA mutase fused (IcmF). IcmF catalyzes the interconversion of isobutyryl-CoA and n-butyryl-CoA, whereas GTPase activity is associated with its G-protein domain. In this study, we report a novel activity associated with IcmF, i.e. the interconversion of isovaleryl-CoA and pivalyl-CoA. Kinetic characterization of IcmF yielded the following values: a Km for isovaleryl-CoA of 62 ± 8 μm and Vmax of 0.021 ± 0.004 μmol min−1 mg−1 at 37 °C. Biochemical experiments show that an IcmF in which the base specificity loop motif NKXD is modified to NKXE catalyzes the hydrolysis of both GTP and ATP. IcmF is susceptible to rapid inactivation during turnover, and GTP conferred modest protection during utilization of isovaleryl-CoA as substrate. Interestingly, there was no protection from inactivation when either isobutyryl-CoA or n-butyryl-CoA was used as substrate. Detailed kinetic analysis indicated that inactivation is associated with loss of the 5′-deoxyadenosine moiety from the active site, precluding reformation of AdoCbl at the end of the turnover cycle. Under aerobic conditions, oxidation of the cob(II)alamin radical in the inactive enzyme results in accumulation of aquacobalamin. Because pivalic acid found in sludge can be used as a carbon source by some bacteria and isovaleryl-CoA is an intermediate in leucine catabolism, our discovery of a new isomerase activity associated with IcmF expands its metabolic potential. PMID:22167181
Stergiopoulos, Vicky; O'Campo, Patricia; Gozdzik, Agnes; Jeyaratnam, Jeyagobi; Corneau, Simon; Sarang, Aseefa; Hwang, Stephen W
2012-10-02
The literature on interventions addressing the intersection of homelessness, mental illness and race is scant. The At Home/Chez Soi research demonstration project is a pragmatic field trial investigating a Housing First intervention for homeless individuals with mental illness in five cities across Canada. A unique focus at the Toronto site has been the development and implementation of a Housing First Ethno-Racial Intensive Case Management (HF ER-ICM) arm of the trial serving 100 homeless individuals with mental illness from ethno-racial groups. The HF ER-ICM program combines the Housing First approach with an anti-racism/anti-oppression framework of practice. This paper presents the findings of an early implementation and fidelity evaluation of the HF ER-ICM program, supplemented by participant narrative interviews to inform our understanding of the HF ER-ICM program theory. Descriptive statistics are used to describe HF ER-ICM participant characteristics. Focus group interviews, key informant interviews and fidelity assessments were conducted between November 2010 and January 2011, as part of the program implementation evaluation. In-depth qualitative interviews with HF ER-ICM participants and control group members were conducted between March 2010 and June 2011. All qualitative data were analysed using grounded theory methodology. The target population had complex health and social service needs. The HF ER-ICM program enjoyed a high degree of fidelity to principles of both anti-racism/anti-oppression practice and Housing First and comprehensively addressed the housing, health and sociocultural needs of participants. Program providers reported congruence of these philosophies of practice, and program participants valued the program and its components. Adapting Housing First with anti-racism/anti-oppression principles offers a promising approach to serving the diverse needs of homeless people from ethno-racial groups and strengthening the service systems developed to support them. The use of fidelity and implementation evaluations can be helpful in supporting successful adaptations of programs and services.
Watanabe, Yuta; Bach, Leu Tho; Van Dinh, Pham; Prudente, Maricar; Aguja, Socorro; Phay, Nyunt; Nakata, Haruhiko
2016-05-01
Water samples from Vietnam, The Philippines, and Myanmar were analyzed for artificial sweeteners (ASs) and iodinated X-ray contrast media (ICMs). High concentrations (low micrograms per liter) of ASs, including aspartame, saccharin, and sucralose, were found in wastewater treatment plant (WWTP) influents from Vietnam. Three ICMs, iohexol, iopamidol, and iopromide were detected in Vietnamese WWTP influents and effluents, suggesting that these ICMs are frequently used in Vietnam. ASs and ICMs were found in river water from downtown Hanoi at concentrations comparable to or lower than the concentrations in WWTP influents. The ASs and ICMs concentrations in WWTP influents and adjacent surface water significantly correlated (r (2) = 0.99, p < 0.001), suggesting that household wastewater is discharged directly into rivers in Vietnam. Acesulfame was frequently detected in northern Vietnamese groundwater, but the concentrations varied spatially by one order of magnitude even though the sampling points were very close together. This implies that poorly performing domestic septic tanks sporadically leak household wastewater into groundwater. High acesulfame, cyclamate, saccharin, and sucralose concentrations were found in surface water from Manila, The Philippines. The sucralose concentrations were one order of magnitude higher in the Manila samples than in the Vietnamese samples, indicating that more sucralose is used in The Philippines than in Vietnam. Acesulfame and cyclamate were found in surface water from Pathein (rural) and Yangon (urban) in Myanmar, but no ICMs were found in the samples. The ASs concentrations were two-three orders of magnitude lower in the samples from Myanmar than in the samples from Vietnam and The Philippines, suggesting that different amounts of ASs are used in these countries. We believe this is the first report of persistent ASs and ICMs having ubiquitous distributions in economically emerging South Asian countries.
Rogers, John D; Sanders, Prashanthan; Piorkowski, Christopher; Sohail, M Rizwan; Anand, Rishi; Crossen, Karl; Khairallah, Farhat S; Kaplon, Rachelle E; Stromberg, Kurt; Kowal, Robert C
2017-02-01
Recent miniaturization of an insertable cardiac monitor (ICM) may make it possible to move device insertion from a hospital to office setting. However, the safety of this strategy is unknown. The primary objective was to compare the safety of inserting the Reveal LINQ ICM in an office vs a hospital environment. Ancillary objectives included summarizing device- and procedure-related adverse events and responses to a physician questionnaire. Five hundred twenty-one patients indicated for an ICM were randomized (1:1 ratio) to undergo ICM insertion in a hospital or office environment at 26 centers in the United States in the Reveal LINQ In-Office 2 study (ClinicalTrials.gov identifier NCT02395536). Patients were followed for 90 days. ICM insertion was successful in all 482 attempted patients (office: 251; hospital: 231). The untoward event rate (composite of unsuccessful insertion and ICM- or insertion-related complications) was 0.8% (2 of 244) in the office and 0.9% (2 of 227) in the hospital (95% confidence interval, -3.0% to 2.9%; 5% noninferiority: P < .001). In addition, adverse events occurred during 2.5% (6 of 244) of office and 4.4% (10 of 227) of hospital insertions (95% confidence interval [office minus inhospital rates], -5.8% to 1.9%; 5% noninferiority: P < .001). Physicians indicated that for procedures performed in an office vs a hospital, there were fewer delays >15 minutes (16% vs 35%; P < .001) and patient response was more often "very positive." Physicians considered the office location "very convenient" more frequently than the hospital location (85% vs 27%; P < .001). The safety profile for the insertion of the Reveal LINQ ICM is excellent irrespective of insertion environment. These results may expand site of service options for LINQ insertion. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Bandyopadhyay, Purnima; Sumer, Eren U.; Jayakumar, Deepak; Liu, Shuqing; Xiao, Huifang
2012-01-01
Legionella pneumophila, the causative agent of Legionnaires' disease, is a ubiquitous freshwater bacterium whose virulence phenotypes require a type IV secretion system (T4SS). L. pneumophila strain JR32 contains two virulence-associated T4SSs, the Dot/Icm and Lvh T4SSs. Defective entry and phagosome acidification phenotypes of dot/icm mutants are conditional and reversed by incubating broth-grown stationary-phase cultures in water (WS treatment) prior to infection, as a mimic of the aquatic environment of Legionella. Reversal of dot/icm virulence defects requires the Lvh T4SS and is associated with a >10-fold induction of LpnE, a tetratricopeptide repeat (TPR)-containing protein. In the current study, we demonstrated that defective entry and phagosome acidification phenotypes of mutants with changes in LpnE and EnhC, another TPR-containing protein, were similarly reversed by WS treatment. In contrast to dot/icm mutants for which the Lvh T4SS was required, reversal for the ΔlpnE or the ΔenhC mutant required that the other TPR-containing protein be present. The single and double ΔlpnE and ΔenhC mutants showed a hypersensitivity to sodium ion, a phenotype associated with dysfunction of the Dot/Icm T4SS. The ΔlpnE single and the ΔlpnE ΔenhC double mutant showed 3- to 9-fold increases in translocation of Dot/Icm T4SS substrates, LegS2/SplY and LepB. Taken together, these data identify TPR-containing proteins in a second mechanism by which the WS mimic of a Legionella environmental niche can reverse virulence defects of broth-grown cultures and implicate LpnE and EnhC directly or indirectly in translocation of Dot/Icm T4SS protein substrates. PMID:22563053
Regional Traffic Incident Management Programs : Implementation Guide
DOT National Transportation Integrated Search
2012-08-01
This report presents the test plan for conducting the Air Quality Analysis for the United States Department of Transportation (U.S. DOT) evaluation of the Dallas U.S. 75 Integrated Corridor Management (ICM) Initiative Demonstration. The ICM projects ...
The Interpersonal Communication Motives Model.
ERIC Educational Resources Information Center
Graham, Elizabeth E.; And Others
1993-01-01
Tests a model of interpersonal communication motives and the construct of validity of the Interpersonal Communication Motives Instrument (ICM). Finds that the ICM is differentially related to who people talk to, how people talk, and what people talk about. (SR)
Final report : Dallas Integrated Corridor Management (ICM) Demonstration Project.
DOT National Transportation Integrated Search
2015-08-01
The Dallas Area Rapid Transit (DART) is leading the US-75 Integrated Corridor Management (ICM) Demonstration Project for the Dallas region. Coordinated corridor operations and management is predicated on being able to share transportation information...
Test report : Dallas Integrated Corridor Management (ICM) demonstration project.
DOT National Transportation Integrated Search
2015-05-01
The Dallas Area Rapid Transit (DART) is leading the US 75 Integrated Corridor Management (ICM) Demonstration Project for the Dallas region. Coordinated corridor operations and management is predicated on being able to share transportation information...
Training plan : Dallas Integrated Corridor Management (ICM) demonstration project.
DOT National Transportation Integrated Search
2013-01-01
The Dallas Area Rapid Transit (DART) is leading the US 75 Integrated Corridor Management (ICM) Demonstration Project for the Dallas region. Coordinated corridor operations and management is predicated on being able to share transportation information...
Integrated corridor management : implementation guide and lessons learned.
DOT National Transportation Integrated Search
2012-02-01
This implementation guide is intended for use by adopters of integrated corridor management (ICM) approaches and strategies to address congestion and travel time reliability issues within specific travel corridors. It introduces the topic of ICM and ...
Calculation of gyrosynchrotron radiation brightness temperature for outer bright loop of ICME
NASA Astrophysics Data System (ADS)
Sun, Weiying; Wu, Ji; Wang, C. B.; Wang, S.
:Solar polar orbit radio telescope (SPORT) is proposed to detect the high density plasma clouds of outer bright loop of ICMEs from solar orbit with large inclination. Of particular interest is following the propagation of the plasma clouds with remote sensor in radio wavelength band. Gyrosynchrotron emission is a main radio radiation mechanism of the plasma clouds and can provide information of interplanetary magnetic field. In this paper, we statistically analyze the electron density, electron temperature and magnetic field of background solar wind in time of quiet sun and ICMEs propagation. We also estimate the fluctuation range of the electron density, electron temperature and magnetic field of outer bright loop of ICMEs. Moreover, we calculate and analyze the emission brightness temperature and degree of polarization on the basis of the study of gyrosynchrotron emission, absorption and polarization characteristics as the optical depth is less than or equal to 1.
Benchmark problems for numerical implementations of phase field models
Jokisaari, A. M.; Voorhees, P. W.; Guyer, J. E.; ...
2016-10-01
Here, we present the first set of benchmark problems for phase field models that are being developed by the Center for Hierarchical Materials Design (CHiMaD) and the National Institute of Standards and Technology (NIST). While many scientific research areas use a limited set of well-established software, the growing phase field community continues to develop a wide variety of codes and lacks benchmark problems to consistently evaluate the numerical performance of new implementations. Phase field modeling has become significantly more popular as computational power has increased and is now becoming mainstream, driving the need for benchmark problems to validate and verifymore » new implementations. We follow the example set by the micromagnetics community to develop an evolving set of benchmark problems that test the usability, computational resources, numerical capabilities and physical scope of phase field simulation codes. In this paper, we propose two benchmark problems that cover the physics of solute diffusion and growth and coarsening of a second phase via a simple spinodal decomposition model and a more complex Ostwald ripening model. We demonstrate the utility of benchmark problems by comparing the results of simulations performed with two different adaptive time stepping techniques, and we discuss the needs of future benchmark problems. The development of benchmark problems will enable the results of quantitative phase field models to be confidently incorporated into integrated computational materials science and engineering (ICME), an important goal of the Materials Genome Initiative.« less
The informatics capability maturity of integrated primary care centres in Australia.
Liaw, Siaw-Teng; Kearns, Rachael; Taggart, Jane; Frank, Oliver; Lane, Riki; Tam, Michael; Dennis, Sarah; Walker, Christine; Russell, Grant; Harris, Mark
2017-09-01
Integrated primary care requires systems and service integration along with financial incentives to promote downward substitution to a single entry point to care. Integrated Primary Care Centres (IPCCs) aim to improve integration by co-location of health services. The Informatics Capability Maturity (ICM) describes how well health organisations collect, manage and share information; manage eHealth technology, implementation, change, data quality and governance; and use "intelligence" to improve care. Describe associations of ICM with systems and service integration in IPCCs. Mixed methods evaluation of IPCCs in metropolitan and rural Australia: an enhanced general practice, four GP Super Clinics, a "HealthOne" (private-public partnership) and a Community Health Centre. Data collection methods included self-assessed ICM, document review, interviews, observations in practice and assessment of electronic health record data. Data was analysed and compared across IPCCs. The IPCCs demonstrated a range of funding models, ownership, leadership, organisation and ICM. Digital tools were used with varying effectiveness to collect, use and share data. Connectivity was problematic, requiring "work-arounds" to communicate and share information. The lack of technical, data and software interoperability standards, clinical coding and secure messaging were barriers to data collection, integration and sharing. Strong leadership and governance was important for successful implementation of robust and secure eHealth systems. Patient engagement with eHealth tools was suboptimal. ICM is positively associated with integration of data, systems and care. Improved ICM requires a health workforce with eHealth competencies; technical, semantic and software standards; adequate privacy and security; and good governance and leadership. Copyright © 2017 Elsevier B.V. All rights reserved.
Using Forbush Decreases to Derive the Transit Time of ICMEs Propagating from 1 AU to Mars
NASA Astrophysics Data System (ADS)
Freiherr von Forstner, Johan L.; Guo, Jingnan; Wimmer-Schweingruber, Robert F.; Hassler, Donald M.; Temmer, Manuela; Dumbović, Mateja; Jian, Lan K.; Appel, Jan K.; Čalogović, Jaša.; Ehresmann, Bent; Heber, Bernd; Lohf, Henning; Posner, Arik; Steigies, Christian T.; Vršnak, Bojan; Zeitlin, Cary J.
2018-01-01
The propagation of 15 interplanetary coronal mass ejections (ICMEs) from Earth's orbit (1 AU) to Mars (˜1.5 AU) has been studied with their propagation speed estimated from both measurements and simulations. The enhancement of magnetic fields related to ICMEs and their shock fronts causes the so-called Forbush decrease, which can be detected as a reduction of galactic cosmic rays measured on ground. We have used galactic cosmic ray (GCR) data from in situ measurements at Earth, from both STEREO A and STEREO B as well as GCR measurements by the Radiation Assessment Detector (RAD) instrument on board Mars Science Laboratory on the surface of Mars. A set of ICME events has been selected during the periods when Earth (or STEREO A or STEREO B) and Mars locations were nearly aligned on the same side of the Sun in the ecliptic plane (so-called opposition phase). Such lineups allow us to estimate the ICMEs' transit times between 1 and 1.5 AU by estimating the delay time of the corresponding Forbush decreases measured at each location. We investigate the evolution of their propagation speeds before and after passing Earth's orbit and find that the deceleration of ICMEs due to their interaction with the ambient solar wind may continue beyond 1 AU. We also find a substantial variance of the speed evolution among different events revealing the dynamic and diverse nature of eruptive solar events. Furthermore, the results are compared to simulation data obtained from two CME propagation models, namely the Drag-Based Model and ENLIL plus cone model.
NASA Astrophysics Data System (ADS)
von Forstner, J.; Guo, J.; Wimmer-Schweingruber, R. F.; Hassler, D.; Temmer, M.; Vrsnak, B.; Čalogović, J.; Dumbovic, M.; Lohf, H.; Appel, J. K.; Heber, B.; Steigies, C. T.; Zeitlin, C.; Ehresmann, B.; Jian, L. K.; Boehm, E.; Boettcher, S. I.; Burmeister, S.; Martin-Garcia, C.; Brinza, D. E.; Posner, A.; Reitz, G.; Matthiae, D.; Rafkin, S. C.; weigle, G., II; Cucinotta, F.
2017-12-01
The propagation of interplanetary coronal mass ejections (ICMEs) between Earth's orbit (1 AU) and Mars ( 1.5 AU) has been studied with their propagation speed estimated from both measurements and simulations. The enhancement of the magnetic fields related to ICMEs and their shock fronts cause so-called Forbush decreases, which can be detected as a reduction of galactic cosmic rays measured on-ground or on a spacecraft. We have used galactic cosmic ray (GCR) data from in-situ measurements at Earth, from both STEREO A and B as well as the GCR measurement by the Radiation Assessment Detector (RAD) instrument onboard Mars Science Laboratory (MSL) on the surface of Mars as well as during its flight to Mars in 2011-2012. A set of ICME events has been selected during the periods when Earth (or STEREO A or B) and MSL locations were nearly aligned on the same side of the Sun in the ecliptic plane (so-called opposition phase). Such lineups allow us to estimate the ICMEs' transit times between 1 AU and the MSL location by estimating the delay time of the corresponding Forbush decreases measured at each location. We investigate the evolution of their propagation speeds after passing Earth's orbit and find that the deceleration of ICMEs due to their interaction with the ambient solar wind continues beyond 1 AU. The results are compared to simulation data obtained from two CME propagation models, namely the Drag-Based Model (DBM) and the WSA-ENLIL plus cone model.
Higo, Noriyuki; Kunori, Nobuo; Murata, Yumi
2016-01-01
In order to accurately interpret experimental data using the topographic body map identified by conventional intracortical microstimulation (ICMS), it is important to know how neurons in each division of the map respond during voluntary movements. Here we systematically investigated neuronal responses in each body representation of the ICMS map during a reach-grasp-retrieval task that involves the movements of multiple body parts. The topographic body map in the primary motor cortex (M1) generally corresponds to functional divisions of voluntary movements; neurons at the recording sites in each body representation with movement thresholds of 10 μA or less were differentially activated during the task, and the timing of responses was consistent with the movements of the body part represented. Moreover, neurons in the digit representation responded differently for the different types of grasping. In addition, the present study showed that neural activity depends on the ICMS current threshold required to elicit body movements and the location of the recording on the cortical surface. In the ventral premotor cortex (PMv), no correlation was found between the response properties of neurons and the body representation in the ICMS map. Neural responses specific to forelimb movements were often observed in the rostral part of PMv, including the lateral bank of the lower arcuate limb, in which ICMS up to 100 μA evoked no detectable movement. These results indicate that the physiological significance of the ICMS-derived maps is different between, and even within, areas M1 and PMv.
Neuroplastic changes in the sensorimotor cortex associated with orthodontic tooth movement in rats.
Sood, Mandeep; Lee, Jye-Chang; Avivi-Arber, Limor; Bhatt, Poolak; Sessle, Barry J
2015-07-01
Orthodontic tooth movement (OTM) causes transient pain and changes in the dental occlusion that may lead to altered somatosensory inputs and patterns of mastication. This study used intracortical microstimulation (ICMS) and electromyographic (EMG) recordings to test whether neuroplastic changes occur in the ICMS-defined motor representations of left and right anterior digastric (LAD, RAD), masseter, buccinator, and genioglossus (GG) muscles within the rat's face primary motor cortex (face-M1) and adjacent face primary somatosensory cortex (face-S1) during OTM. Analyses included any changes in the number of ICMS sites representing these muscles and in the onset latencies of ICMS-evoked responses in the muscles. Sprague-Dawley rats were divided into experimental (E), sham (S), and naive (N) groups; OTM was induced in the E group. Statistical analyses involved a mixed model repeated-measures analysis of variance (MMRM ANOVA). OTM resulted in significant neuroplastic changes in the number of positive sites in the E group for LAD, RAD, and GG muscles in face-M1 and face-S1 at days 1, 7, and 28 of continuous orthodontic force application, and in the number of sites in face-M1 from which ICMS could simultaneously evoke EMG responses in different combinations of LAD, RAD, and GG muscles. However, the onset latencies of ICMS-evoked responses were not significantly different between groups or between face-M1 and face-S1. The neuroplastic changes documented in this study may reflect adaptive sensorimotor changes in response to the altered environment in the oral cavity induced by OTM. © 2015 Wiley Periodicals, Inc.
Kunori, Nobuo; Murata, Yumi
2016-01-01
In order to accurately interpret experimental data using the topographic body map identified by conventional intracortical microstimulation (ICMS), it is important to know how neurons in each division of the map respond during voluntary movements. Here we systematically investigated neuronal responses in each body representation of the ICMS map during a reach-grasp-retrieval task that involves the movements of multiple body parts. The topographic body map in the primary motor cortex (M1) generally corresponds to functional divisions of voluntary movements; neurons at the recording sites in each body representation with movement thresholds of 10 μA or less were differentially activated during the task, and the timing of responses was consistent with the movements of the body part represented. Moreover, neurons in the digit representation responded differently for the different types of grasping. In addition, the present study showed that neural activity depends on the ICMS current threshold required to elicit body movements and the location of the recording on the cortical surface. In the ventral premotor cortex (PMv), no correlation was found between the response properties of neurons and the body representation in the ICMS map. Neural responses specific to forelimb movements were often observed in the rostral part of PMv, including the lateral bank of the lower arcuate limb, in which ICMS up to 100 μA evoked no detectable movement. These results indicate that the physiological significance of the ICMS-derived maps is different between, and even within, areas M1 and PMv. PMID:27494282
Amyot, Whitney M.; deJesus, Dennise
2013-01-01
Legionella pneumophila uses the Icm/Dot type 4B secretion system (T4BSS) to deliver translocated protein substrates to the host cell, promoting replication vacuole formation. The conformational state of the translocated substrates within the bacterial cell is unknown, so we sought to determine if folded substrates could be translocated via this system. Fusions of L. pneumophila Icm/Dot-translocated substrates (IDTS) to dihydrofolate reductase (DHFR) or ubiquitin (Ub), small proteins known to fold rapidly, resulted in proteins with low translocation efficiencies. The folded moieties did not cause increased aggregation of the IDTS and did not impede interaction with the adaptor protein complex IcmS/IcmW, which is thought to form a soluble complex that promotes translocation. The translocation defect was alleviated with a Ub moiety harboring mutations known to destabilize its structure, indicating that unfolded proteins are preferred substrates. Real-time analysis of translocation, following movement during the first 30 min after bacterial contact with host cells, revealed that the folded moiety caused a kinetic defect in IDTS translocation. Expression of an IDTS fused to a folded moiety interfered with the translocation of other IDTS, consistent with it causing a blockage of the translocation channel. Furthermore, the folded protein fusions also interfered with intracellular growth, consistent with inefficient or impaired translocation of proteins critical for L. pneumophila intracellular growth. These studies indicate that substrates of the Icm/Dot T4SS are translocated to the host cytosol in an unfolded conformation and that folded proteins are stalled within the translocation channel, impairing the function of the secretion system. PMID:23798536
Roca, O; Sacanell, J; Laborda, C; Pérez, M; Sabater, J; Burgueño, M J; Domínguez, L; Masclans, J R
2006-01-01
Analyze acute respiratory distress syndrome (ARDS) in patients admitted to an Intensive Care Medicine Service (ICMS) and prognostic factors of mortality in these patients. Prospective study of all the patients admitted consecutively in the ICMS from January 1998 to February 2003. ICMS of a third level university site with 32 beds in its General Area and 10 beds in the Traumatology Area. Patients who met the ARDS criteria of the European-North American Consensus Conference at any time during admission in ICMS. ENDPOINTS OF INTEREST: Mortality at 28 days. One hundred and ninety-one patients (3.4 of all the admissions in ICMS) had ARDS criteria. The origin of ARDS was intrapulmonary in 63%. A total of 77% of the patients had multiorgan dysfunction and 26% respiratory superinfection. Median stay in the ICMS was 20 days. Mortality at 28 days was 48% and hospital mortality 58%. Multivariant analysis showed that the variables associated independently with an increase in mortality were the following: APACHE II > 22 (odds ratio [OR] 2.7; 95% CI: 1.3-5.8; p = 0.007), minimum PaO2/FIO2 during evolution of ARDS < 81 mmHg (odds ratio 5.5; 95% CI: 2.6-11.9; p < 0.0001), dysfunction > or = 3 organs (odds ratio 11.8; 95% CI: 2.5-55.4; p = 0.002). ARDS is an entity with elevated mortality whose prognosis is associated not only with the seriousness of pulmonary function deterioration but also of systemic function, on which some treatment could modulate its evolution.
Niedzwiedzki, Dariusz M; Gardiner, Alastair T; Blankenship, Robert E; Cogdell, Richard J
2018-05-03
Three photosynthetic membranes, called intra-cytoplasmic membranes (ICMs), from wild-type and the ∆pucBA abce mutant of the purple phototrophic bacterium Rps. palustris were investigated using optical spectroscopy. The ICMs contain identical light-harvesting complex 1-reaction centers (LH1-RC) but have various spectral forms of light-harvesting complex 2 (LH2). Spectroscopic studies involving steady-state absorption, fluorescence, and femtosecond time-resolved absorption at room temperature and at 77 K focused on inter-protein excitation energy transfer. The studies investigated how energy transfer is affected by altered spectral features of the LH2 complexes as those develop under growth at different light conditions. The study shows that LH1 → LH2 excitation energy transfer is strongly affected if the LH2 complex alters its spectroscopic signature. The LH1 → LH2 excitation energy transfer rate modeled with the Förster mechanism and kinetic simulations of transient absorption of the ICMs demonstrated that the transfer rate will be 2-3 times larger for ICMs accumulating LH2 complexes with the classical B800-850 spectral signature (grown in high light) compared to the ICMs from the same strain grown in low light. For the ICMs from the ∆pucBA abce mutant, in which the B850 band of the LH2 complex is blue-shifted and almost degenerate with the B800 band, the LH1 → LH2 excitation energy transfer was not observed nor predicted by calculations.
The Analytical Diffusion-Expansion Model for Forbush Decreases Caused by Flux Ropes
NASA Astrophysics Data System (ADS)
Dumbovic, M.; Temmer, M.
2017-12-01
Identification and tracking of interplanetary coronal mass ejections (ICMEs) throughout the heliosphere is a growingly important aspect of space weather research. One of the "signatures" of ICME passage is the corresponding Forbush decrease (FD), a short term decrease in the galactic cosmic ray flux. These depressions are observed at the surface of the Earth for over 50 years, by several spacecraft in interplanetary space in the past couple of decades, and recently also on Mars' surface with Curiosity rover. In order to use FDs as ICME signatures efficiently, it is important to model ICME interaction with energetic particles by taking into account ICME evolution and constraining the model with observational data. We present an analytical diffusion-expansion FD model ForbMod which is based on the widely used approach of the initially empty, closed magnetic structure (i.e. flux rope) which fills up slowly with particles by perpendicular diffusion. The model is restricted to explain only the depression caused by the magnetic structure of the ICME and not of the associated shock. We use remote CME observations and a 3D reconstruction method (the Graduated Cylindrical Shell method) to constrain initial and boundary conditions of the FD model and take into account CME evolutionary properties by incorporating flux rope expansion. Several options of flux rope expansion are regarded as the competing mechanism to diffusion which can lead to different FD characteristics. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 745782.
Cosmic-Ray Feedback Heating of the Intracluster Medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruszkowski, Mateusz; Yang, H.-Y. Karen; Reynolds, Christopher S., E-mail: mateuszr@umich.edu, E-mail: hsyang@astro.umd.edu, E-mail: chris@astro.umd.edu
2017-07-20
Active galactic nuclei (AGNs) play a central role in solving the decades-old cooling-flow problem. Although there is consensus that AGNs provide the energy to prevent catastrophically large star formation, one major problem remains: How is the AGN energy thermalized in the intracluster medium (ICM)? We perform a suite of three-dimensional magnetohydrodynamical adaptive mesh refinement simulations of AGN feedback in a cool core cluster including cosmic rays (CRs). CRs are supplied to the ICM via collimated AGN jets and subsequently disperse in the magnetized ICM via streaming, and interact with the ICM via hadronic, Coulomb, and streaming instability heating. We findmore » that CR transport is an essential model ingredient at least within the context of the physical model considered here. When streaming is included, (i) CRs come into contact with the ambient ICM and efficiently heat it, (ii) streaming instability heating dominates over Coulomb and hadronic heating, (iii) the AGN is variable and the atmosphere goes through low-/high-velocity dispersion cycles, and, importantly, (iv) CR pressure support in the cool core is very low and does not demonstrably violate observational constraints. However, when streaming is ignored, CR energy is not efficiently spent on the ICM heating and CR pressure builds up to a significant level, creating tension with the observations. Overall, we demonstrate that CR heating is a viable channel for the AGN energy thermalization in clusters and likely also in ellipticals, and that CRs play an important role in determining AGN intermittency and the dynamical state of cool cores.« less
Ojukwu, Chidiebele Petronilla; Anyanwu, Godson Emeka; Anekwu, Emelie Morris; Chukwu, Sylvester Caesar; Fab-Agbo, Chukwubuikem
2017-10-01
Infant carrying is an integral part of the mothering occupation. Paucity of data exists on its correlates and associated musculoskeletal injuries. In this study, factors and musculoskeletal injuries associated with infant carrying were investigated in 227 nursing mothers, using a structured questionnaire. 77.1% utilised the back infant carrying methods (ICM). Maternal comfort was the major factor influencing participants' (37.4%) choices of ICMs. Infant's age (p = .000) and transportation means (p = .045) were significantly associated with ICMs. Low back pain (82.8%) and upper back pain (74.9%) were the most reported musculoskeletal discomforts associated with ICMs, especially among women who utilised back ICM. Back ICM is predominantly used by nursing mothers. Impact statement Infant carrying has been associated with increased energy cost and biomechanical changes. Currently, there is a paucity of data on infant carrying-related musculoskeletal injuries. In this study, investigating factors and musculoskeletal injuries associated with infant carrying, the results showed that back infant carrying method is predominantly used by nursing mothers. Age of the infant and mothers' means of transportation were determinant factors of infant carrying methods. Among the several reported infant carrying-related musculoskeletal disorders, low back and upper back pain were the most prevalent, especially among women who utilised the back infant carrying method. There is need for women's health specialists to introduce appropriate ergonomic training and interventions on infant carrying tasks in order to improve maternal musculoskeletal health during the childbearing years and beyond. Further experimental studies on the effects of various infant carrying methods on the musculoskeletal system are recommended.
Female specialists in intensive care medicine: job satisfaction, challenges and work-life balance.
Hawker, Felicity H
2016-06-01
Women are under-represented in the intensive care medicine (ICM) specialist workforce. I aimed to better understand the challenges these women face so they can be considered in the training and support of ICM specialists. All female Fellows of the College of Intensive Care Medicine (CICM) of Australia and New Zealand were surveyed using an online questionnaire. The study was approved by the Cabrini Human Research Ethics Committee. Thirty respondents with children volunteered to complete a second questionnaire. I surveyed demographic and workforce data and women's experiences in the ICM specialist workforce in the first survey, and experiences with child-rearing in the second survey. The response rate was 80.3% (127/158). The median age bracket was 40-45 years, and 118 respondents were practising ICM, 85 full-time in a tertiary intensive care unit. Eighteen were ICU directors and 23 were CICM-appointed supervisors of training. Sixty-five women were mothers, and 70% returned to full-time work after their maternity leave. Child care was most commonly undertaken by family members or a nanny. Overall, 81% were satisfied with their experiences, but 37% felt they had been disadvantaged because of their sex. Fewer women with leadership roles felt disadvantaged. Their major challenges included the on-call work affecting child-rearing and family life, sexism in the workplace and difficulties with academic advancement. The participation and satisfaction rates of women working in the ICM specialist workforce are encouraging. Although challenges exist, women contemplating a career in ICM should see it as achievable and rewarding.
Park, Hye Jung; Park, Jung-Won; Yang, Min-Suk; Kim, Mi-Yeong; Kim, Sae-Hoon; Jang, Gwang Cheon; Nam, Young-Hee; Kim, Gun-Woo; Kim, Sujeong; Park, Hye-Kyung; Jung, Jae-Woo; Park, Jong-Sook; Kang, Hye-Ryun
2017-07-01
To evaluate the outcomes of re-exposure to low-osmolar iodinated contrast medium (LOCM) in patients with a history of moderate-to-severe hypersensitivity reaction (HSR). We retrospectively evaluated a cohort comprising all subjects satisfying the following conditions at 11 centres: (1) experienced a moderate-to-severe HSR to LOCM by December 2014, and (2) underwent contrast-enhanced computed tomography after the initial HSR between January 2014 and December 2014. A total of 150 patients with 328 instances of re-exposure were included; the recurrence rate of HSR was 19.5%. Patients with severe initial HSR exhibited a higher recurrence rate of severe HSR compared to patients with moderate initial HSR, despite more intensive premedication. In the multivariate analysis, the independent risk factors for recurrence of HSR were diabetes, chronic urticaria, drug allergy other than to iodinated contrast media (ICM) and severe initial HSR. The risk of recurrent HSR was 67.1% lower in cases where the implicated ICM was changed to another one (odds ratio: 0.329; P = 0.001). However, steroid premedication did not show protective effects against recurrent HSR. In high-risk patients who have previously experienced a moderate-to-severe initial HSR to LOCM, we should consider changing the implicated ICM to reduce recurrence risk. • In patients with moderate-to-severe HSR, steroid premedication only shows limited effectiveness. • Changing the implicated ICM can reduce the recurrence of HSR to ICM. • Diabetes, chronic urticaria and drug allergies increase the risk of ICM HSR.
Concept of operations : Dallas Integrated Corridor Management (ICM) demonstration project.
DOT National Transportation Integrated Search
2010-06-01
This concept of operations (Con Ops) for the US-75 Integrated Corridor Management (ICM) Program has been developed as part of the US Department of Transportation Integrated Corridor Management Initiative, which is an innovative research initiative th...
Operations and maintenance plan : Dallas Integrated Corridor Management (ICM) demonstration project.
DOT National Transportation Integrated Search
2014-01-01
This Operations and Maintenance (O&M) Plan describes how the Integrated Corridor Management System (ICMS) will be used in daily transportation operations and maintenance activities. The Plan addresses the activities needed to effectively operate the ...
Development of the North American cargo securement standard
DOT National Transportation Integrated Search
2012-08-01
This report presents the test plan for conducting the Benefit-Cost Analysis (BCA) for the United States Department of Transportation (U.S. DOT) evaluation of the Dallas U.S. 75 Integrated Corridor Management (ICM) Initiative Demonstration. The ICM pr...
Integrated corridor management modeling results report : Dallas, Minneapolis, and San Diego.
DOT National Transportation Integrated Search
2012-02-01
This executive summary documents the analysis methodologies, tools, and performance measures used to analyze Integrated Corridor Management (ICM) strategies; and presents high-level results for the successful implementation of ICM at three Stage 2 Pi...
System acceptance test plan : Dallas Integrated Corridor Management (ICM) demonstration project.
DOT National Transportation Integrated Search
2013-02-01
The Dallas Area Rapid Transit (DART) is leading the US 75 Integrated Corridor Management (ICM) Demonstration Project for the Dallas region. Coordinated corridor operations and management is predicated on being able to share transportation information...
Self-similar hierarchical energetics in the ICM of massive galaxy clusters
NASA Astrophysics Data System (ADS)
Miniati, Francesco; Beresnyak, Andrey
Massive galaxy clusters (GC) are filled with a hot, turbulent and magnetised intra-cluster medium (ICM). They are still forming under the action of gravitational instability, which drives supersonic mass accretion flows. These partially dissipate into heat through a complex network of large scale shocks, and partly excite giant turbulent eddies and cascade. Turbulence dissipation not only contributes to heating of the ICM but also amplifies magnetic energy by way of dynamo action. The pattern of gravitational energy turning into kinetic, thermal, turbulent and magnetic is a fundamental feature of GC hydrodynamics but quantitative modelling has remained a challenge. In this contribution we present results from a recent high resolution, fully cosmological numerical simulation of a massive Coma-like galaxy cluster in which the time dependent turbulent motions of the ICM are resolved (Miniati 2014) and their statistical properties are quantified for the first time (Miniati 2015, Beresnyak & Miniati 2015). We combine these results with independent state-of-the art numerical simulations of MHD turbulence (Beresnyak 2012), which shows that in the nonlinear regime of turbulent dynamo (for magnetic Prandtl numbers>~ 1) the growth rate of the magnetic energy corresponds to a fraction CE ~= 4 - 5 × 10-2 of the turbulent dissipation rate. We thus determine without adjustable parameters the thermal, turbulent and magnetic history of giant GC (Miniati & Beresnyak 2015). We find that the energy components of the ICM are ordered according to a permanent hierarchy, in which the sonic Mach number at the turbulent injection scale is of order unity, the beta of the plasma of order forty and the ratio of turbulent injection scale to Alfvén scale is of order one hundred. These dimensionless numbers remain virtually unaltered throughout the cluster's history, despite evolution of each individual component and the drive towards equipartition of the turbulent dynamo, thus revealing a new type of self-similarity in cosmology. Their specific values, while consistent with current data, indicate that thermal energy dominates the ICM energetics and the turbulent dynamo is always far from saturation, unlike the condition in other familiar astrophysical fluids (stars, interstellar medium of galaxies, compact objects, etc.). In addition, they have important physical meaning as their specific values encodes information about the efficiency of turbulent heating (the fraction of ICM thermal energy produced by turbulent dissipation) and the efficiency of dynamo action in the ICM (CE ).
The plasma physics of thermal conduction in the intracluster medium of galaxy clusters
NASA Astrophysics Data System (ADS)
Reynolds, Christopher
Most of the baryons in a galaxy cluster reside in a hot (10-100 million K) and tenuous gaseous atmosphere confined by the gravitational potential of the cluster's dark matter halo. Understanding the microphysics of this intracluster medium (ICM), particularly the transport processes such as thermal conduction and viscosity, is important to any understanding of the thermodynamic state of ICM atmospheres. For example, the current paradigm is that radiative losses in the ICM core are offset by energy from a central jetted active galactic nucleus (AGN), preventing a cooling catastrophe in the cluster core. However, the mechanism by which the jet-injected energy is thermalized in the ICM is highly uncertain - the dissipation of waves or turbulence by thermal conduction or plasma viscosity is a leading contender. A knowledge of thermal conduction in the ICM is also important for any attempts to understand the global temperature profiles of clusters, with consequences for e.g. cosmological studies based on observations of the SunyaevZeldovich (SZ) effect. The basic physics of thermal conduction in the ICM is very poorly understood, however, leading to a huge uncertainty in the relevant coefficients. The ICM resides in a poorly studied regime of plasma physics - it is a highly magnetized (gyroradii << particle mean free path), high-beta (thermal pressure >> magnetic pressure), and weakly collisional (mean-free path only moderately less than global scale lengths) plasma. Thermal conduction will be strongly suppressed perpendicular to magnetic fields lines. But even along field lines, the growth of small scale and fast kinetic instabilities may strongly suppress thermal conduction. Hence the usual assumption, that conduction along the field has its classical Spitzer value, has a shaky theoretical basis and may well be wildly inaccurate. In this proposal, we use analytical theory and computer models to explore thermal conduction in ICM-like plasmas. Recently, we have found that a strong heat-flux will drive a powerful whistler-wave instability and, provided we treat the problem in more than 1D so that oblique modes are captured, these waves efficiently scatter electrons thereby shutting down the heat-flux. Our proposed work builds on these findings with the goal of characterizing the macroscopic effective thermal conduction in a form that can be included in fluid (magnetohydrodynamic; MHD) models of the ICM. We will, 1) Conduct an extended linear analysis of the heat-flux whistler instability, exploring the interaction of the heat flux and the pressure anisotropies that would result from bulk motions of the ICM. We will map the stable/unstable regions as a function of heat-flux, pressure anisotropy, and plasma-beta. 2) Perform particle-in-cell (PIC) simulations to explore the non-linear saturation of the heat-flux whistler instability as a function of the plasma-beta and heat-flux, extending the current work (i.e. very strong fluxes) down to the modest heat-fluxes found in the real ICM. Key is whether overlapping wave-particle resonances that are so efficient at killing the conduction with strong heat-fluxes still operate when the driving heat-flux is weak. 3) Develop a new computational/PIC model that, in contrast to current work, sustains a temperature gradient across the domain thereby allowing us to directly measure the relationship between temperature gradient and heat flux. 4) Build a new thermal conduction model, allowing the heat flux to have a non-linear dependence on temperature gradient, and plasma-beta. We will develop thermal conduction algorithms that can be used in public MHD e.g., PLUTO or FLASH. This work will provide the crucial bridge between the global/MHD models of ICM atmospheres and the microphysics that dictates the transport processes. It will inform the next generation of cluster models used to interpret data from NASA's fleet of X-ray observatories.
Capalbo, Antonio; Wright, Graham; Elliott, Thomas; Ubaldi, Filippo Maria; Rienzi, Laura; Nagy, Zsolt Peter
2013-08-01
Does comprehensive chromosome screening (CCS) of cells sampled from the blastocyst trophectoderm (TE) accurately predict the chromosome complement of the inner cell mass (ICM)? Comprehensive chromosome screening of a TE sample is unlikely to be confounded by mosaicism and has the potential for high diagnostic accuracy. The effectiveness of chromosome aneuploidy screening is limited by the technologies available and chromosome mosaicism in the embryo. Combined with improving methods for cryopreservation and blastocyst culture, TE biopsy and CCS is considered to be a promising approach to select diploid embryos for transfer. The study was performed between January 2011 and August 2011. In the first part, a new ICM isolation method was developed and tested on 20 good morphology blastocysts. In the main phase of the study, fluorescence in situ hybridization (FISH) was used to reanalyse the ICMs and TEs separated from 70 embryos obtained from 26 patients undergoing blastocyst stage array comparative genome hybridization (aCGH) PGS cycles. The isolated ICM and TE fractions were characterized by immunostaining for KRT18. Then, non-transferrable cryopreserved embryos were selected for the FISH reanalysis based on previous genetic diagnosis obtained by TE aCGH analysis. Blastocysts either diploid for chromosome copy number (20) or diagnosed as single- (40) or double aneuploid (10) were included after preparing the embryo into one ICM and three equal-sized TE sections. Accuracy of the aCGH was measured based on FISH reanalysis. Chromosomal segregations resulting in diploid/aneuploid mosaicism were classified as 'low-', 'medium-' and 'high-' grade and categorized with respect to their distribution (1TE, 2TE, 3TE, ICM or ALL embryo). Linear regression model was used to test the relationship between the distributions and the proportion of aneuploid cells across the four embryo sections. Fisher's exact test was used to test for random allocation of aneuploid cells between TE and ICM. All ICM biopsy procedures displayed ICM cells in the recovered fraction with a mean number of ICM cells of 26.2 and a mean TE cell contamination rate of 2%. By FISH reanalysis of previously aCGH-screened blastocysts, a total of 66 aneuploidies were scored, 52 (78.8%) observed in all cells and 14 (21.2%) mosaic. Overall, mosaic chromosomal errors were observed only in 11 out of 70 blastocysts (15.7%) but only 2 cases were classified as mosaic diploid/aneuploid (2.9%). Sensitivity and specificity of aCGH on TE clinical biopsies were 98.0 and 100% per embryo and 95.2 and 99.8% per chromosome, respectively. Linear regression analysis performed on the 11 mosaic diploid/aneuploid chromosomal segregations showed a significant positive correlation between the distribution and the proportion of aneuploid cells across the four-blastocyst sections (P < 0.01). In addition, regression analysis revealed that both the grade and the distribution of mosaic abnormal cells were significantly correlated with the likelihood of being diagnosed by aCGH performed on clinical TE biopsies (P = 0.019 and P < 0.01, respectively). Fisher's exact test for the 66 aneuploidies recorded showed no preferential allocation of abnormal cells between ICM and TE (P = 0.33). The study is limited to non-transferable embryos, reanalyzed for only nine chromosomes and excludes segmental imbalance and uniparental disomy. The prevalence of aneuploidy in the study group is likely to be higher than in the general population of clinical PGD embryos. This study showed high accuracy of diagnosis achievable during blastocyst stage PGS cycles coupled with 24-chromosomes molecular karyotyping analysis. The new ICM isolation strategy developed may open new possibilities for basic research in embryology and for clinical grade derivation of human embryonic stem cells. No specific funding was sought or obtained for this study.
The Development of Talent through Curriculum.
ERIC Educational Resources Information Center
Van Tassel-Baska, Joyce
1995-01-01
An integrated curriculum model (ICM) is applied to the talent development process. Discussion focuses on a rationale for such a model, model features, applications in two federally funded curriculum projects, and relationship of the ICM to curriculum reform variables and implementation considerations. (DB)
DOT National Transportation Integrated Search
2015-09-01
This implementation guide is intended for use by adopters of integrated corridor management (ICM) approaches and strategies to address congestion and travel time reliability issues within specific travel corridors. It introduces the topic of ICM and ...
I-15 integrated corridor management system : project management plan.
DOT National Transportation Integrated Search
2011-06-01
The Project Management Plan (PMP) assists the San Diego ICM Team by defining a procedural framework for management and control of the I-15 Integrated Corridor Management Demonstration Project, and development and deployment of the ICM System. The PMP...
DOT National Transportation Integrated Search
2008-03-31
This Requirements Specification Document (RSD) was developed under the project titled TransGuide Integrated Corridor Management Stage 1 as part of the United States Department of Transportation (USDOT) Integrated Corridor Management (ICM) p...
Dallas integrated corridor management (ICM) transit vehicle real-time data demonstration.
DOT National Transportation Integrated Search
2015-01-01
This project demonstrated and evaluated the ability to collect and transmit transit location and passenger loading data to a transit management center(s) and/or Integrated Corridor Management (ICM) system in real time. It also demonstrated and evalua...
Kinetic Properties of an Interplanetary Shock Propagating inside a Coronal Mass Ejection
NASA Astrophysics Data System (ADS)
Liu, Mingzhe; Liu, Ying D.; Yang, Zhongwei; Wilson, L. B., III; Hu, Huidong
2018-05-01
We investigate the kinetic properties of a typical fast-mode shock inside an interplanetary coronal mass ejection (ICME) observed on 1998 August 6 at 1 au, including particle distributions and wave analysis with the in situ measurements from Wind. Key results are obtained concerning the shock and the shock–ICME interaction at kinetic scales: (1) gyrating ions, which may provide energy dissipation at the shock in addition to wave-particle interactions, are observed around the shock ramp; (2) despite the enhanced proton temperature anisotropy of the shocked plasma, the low plasma β inside the ICME constrains the shocked plasma under the thresholds of the ion cyclotron and mirror-mode instabilities; (3) whistler heat flux instabilities, which can pitch-angle scatter halo electrons through a cyclotron resonance, are observed around the shock, and can explain the disappearance of bi-directional electrons (BDEs) inside the ICME together with normal betatron acceleration; (4) whistler waves near the shock are likely associated with the whistler heat flux instabilities excited at the shock ramp, which is consistent with the result that the waves may originate from the shock ramp; (5) the whistlers share a similar characteristic with the shocklet whistlers observed by Wilson et al., providing possible evidence that the shock is decaying because of the strong magnetic field inside the ICME.
NASA Technical Reports Server (NTRS)
Liu, Y.; Richardson, J. D.; Belcher, J. W.; Kasper, J. C.; Elliott, H. A.
2006-01-01
We investigate the thermodynamic structure of interplanetary coronal mass ejections (ICMEs) using combined surveys of the ejecta between 0.3 and 20 AU. ICMEs are shown to have a moderate expansion in the solar wind compared with theoretical predictions. The expansion seems to be governed by a polytrope with gamma approx. 1.3 in this distance range. We find that Coulomb collisions are important contributors to the ion-ion equilibration process in the ICME plasma. The alpha-proton differential speed quickly drops to below 10 km/s due to strong Coulomb collisions. However, the two species of particles are far from thermal equilibrium with a temperature ratio T(sub alpha/T(sub p) = 4-6, suggestive of a preferential heating of alpha particles. The plasma heating rate as a function of heliocentric &stance required for the temperature profile is deduced by taking into account the expansion and energy transfer between protons and alphas via Coulomb collisions. The turbulence dissipation rate is also inferred from the inertial range power spectrum of magnetic fluctuations within ICMEs. Comparison of the turbulence dissipation rate with the required heating rate shows that turbulence dissipation seems sufficient to explain the ICME heating. Sources powering the turbulence are also investigated by examining the instabilities induced by temperature anisotropies and energy deposition by pickup ions.
Active tactile exploration using a brain-machine-brain interface.
O'Doherty, Joseph E; Lebedev, Mikhail A; Ifft, Peter J; Zhuang, Katie Z; Shokur, Solaiman; Bleuler, Hannes; Nicolelis, Miguel A L
2011-10-05
Brain-machine interfaces use neuronal activity recorded from the brain to establish direct communication with external actuators, such as prosthetic arms. It is hoped that brain-machine interfaces can be used to restore the normal sensorimotor functions of the limbs, but so far they have lacked tactile sensation. Here we report the operation of a brain-machine-brain interface (BMBI) that both controls the exploratory reaching movements of an actuator and allows signalling of artificial tactile feedback through intracortical microstimulation (ICMS) of the primary somatosensory cortex. Monkeys performed an active exploration task in which an actuator (a computer cursor or a virtual-reality arm) was moved using a BMBI that derived motor commands from neuronal ensemble activity recorded in the primary motor cortex. ICMS feedback occurred whenever the actuator touched virtual objects. Temporal patterns of ICMS encoded the artificial tactile properties of each object. Neuronal recordings and ICMS epochs were temporally multiplexed to avoid interference. Two monkeys operated this BMBI to search for and distinguish one of three visually identical objects, using the virtual-reality arm to identify the unique artificial texture associated with each. These results suggest that clinical motor neuroprostheses might benefit from the addition of ICMS feedback to generate artificial somatic perceptions associated with mechanical, robotic or even virtual prostheses.
Mahmoudi, Morteza; Tachibana, Atsushi; Goldstone, Andrew B; Woo, Y Joseph; Chakraborty, Papia; Lee, Kayla R; Foote, Chandler S; Piecewicz, Stephanie; Barrozo, Joyce C; Wakeel, Abdul; Rice, Bradley W; Bell Iii, Caleb B; Yang, Phillip C
2016-06-06
Therapeutic delivery of human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) represents a novel clinical approach to regenerate the injured myocardium. However, methods for robust and accurate in vivo monitoring of the iCMs are still lacking. Although superparamagnetic iron oxide nanoparticles (SPIOs) are recognized as a promising tool for in vivo tracking of stem cells using magnetic resonance imaging (MRI), their signal persists in the heart even weeks after the disappearance of the injected cells. This limitation highlights the inability of SPIOs to distinguish stem cell viability. In order to overcome this shortcoming, we demonstrate the use of a living contrast agent, magneto-endosymbionts (MEs) derived from magnetotactic bacteria for the labeling of iCMs. The ME-labeled iCMs were injected into the infarcted area of murine heart and probed by MRI and bioluminescence imaging (BLI). Our findings demonstrate that the MEs are robust and effective biological contrast agents to track iCMs in an in vivo murine model. We show that the MEs clear within one week of cell death whereas the SPIOs remain over 2 weeks after cell death. These findings will accelerate the clinical translation of in vivo MRI monitoring of transplanted stem cell at high spatial resolution and sensitivity.
Chapman, Brendan B; Corneil, Brian D
2014-01-01
Many forms of brain stimulation utilize the notion of state dependency, whereby greater influences are observed when a given area is more engaged at the time of stimulation. Here, by delivering intracortical microstimulation (ICMS) to the supplementary eye fields (SEF) of monkeys performing interleaved pro- and anti-saccades, we show a surprising diversity of state-dependent effects of ICMS-SEF. Short-duration ICMS-SEF passed around cue presentation selectively disrupted anti-saccades by increasing reaction times and error rates bilaterally, and also recruited neck muscles, favoring contralateral head turning to a greater degree on anti-saccade trials. These results are consistent with the functional relevance of the SEF for anti-saccades. The multiplicity of stimulation-evoked effects, with ICMS-SEF simultaneously disrupting anti-saccade performance and facilitating contralateral head orienting, probably reflects both the diversity of cortical and subcortical targets of SEF projections, and the response of this oculomotor network to stimulation. We speculate that the bilateral disruption of anti-saccades arises via feedback loops that may include the thalamus, whereas neck muscle recruitment arises via feedforward polysynaptic pathways to the motor periphery. Consideration of both sets of results reveals a more complete picture of the highly complex and multiphasic response to ICMS-SEF that can play out differently in different effector systems.
Global ICME-Mars Interaction and Induced Atmospheric Loss
NASA Astrophysics Data System (ADS)
Fang, X.; Ma, Y.; Manchester, W.
2013-12-01
Without the shielding of a strong intrinsic magnetic field, the present-day Mars atmosphere is more vulnerable to external solar wind forcing than the Earth's atmosphere. Therefore interplanetary coronal mass ejections (ICMEs) are expected to drive disturbances in the Mars environment in a profoundly different way, which, however, is poorly understood due to the lack of coordinated solar wind and Mars observations. In this study, three sophisticated models work in concert to simulate the physical domain extending from the solar corona to near-Mars space for the 13 May 2005 ICME event. The Space Weather Modeling Framework (SWMF) will be used to investigate the interaction of the ICME with the ambient solar wind and monitor its propagation from the Sun to the planet. A 3-D MHD model for Mars will be applied to assess the planetary atmospheric/ionospheric responses during the ICME passage of Mars. In the Mars weak magnetic field environment, the ion kinetic effects are important and will be included through the use of a 3-D Monte Carlo pickup ion transport model. These physics-based modeling efforts enable us to provide a global and time series view of the Mars response to transient solar wind disturbances and induced atmospheric loss, which is currently not possible due to the limitation of observations.
Yan, Mingquan; Chen, Zhanghao; Li, Na; Zhou, Yuxuan; Zhang, Chenyang; Korshin, Gregory
2018-06-01
This study examined the electrochemical (EC) reduction of iodinated contrast media (ICM) exemplified by iopamidol and diatrizoate. The method of rotating ring-disc electrode (RRDE) was used to elucidate rates and mechanisms of the EC reactions of the selected ICMs. Experiments were carried at varying hydrodynamic conditions, concentrations of iopamidol, diatrizoate, natural organic matter (NOM) and model compounds (resorcinol, catechol, guaiacol) which were used to examine interactions between products of the EC reduction of ICMs and halogenation-active species. The data showed that iopamidol and diatrizoate were EC-reduced at potentials < -0.45 V vs. s.c.e. In the range of potentials -0.65 to -0.85 V their reduction was mass transfer-controlled. The presence of NOM and model compounds did not affect the EC reduction of iopamidol and diatrizoate but active iodine species formed as a result of the EC-induced transformations of these ICMs reacted readily with NOM and model compounds. These data provide more insight into the nature of generation of iodine-containing by-products in the case of reductive degradation of ICMs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Monitoring non-immediate allergic reactions to iodine contrast media
Torres, M J; Mayorga, C; Cornejo-Garcia, J A; Lopez, S; Chaves, P; Rondon, C; Fernandez, T; Blanca, M
2008-01-01
Non-immediate reactions to iodine contrast media (ICM) affect 2–5% of patients receiving these agents. We studied the immunological mechanisms involved in patients with a confirmed non-immediate reaction, maculopapular exanthema, after administration of ICM. The diagnosis was carried out by skin testing or drug provocation test. The immunological study was performed in sequential peripheral blood mononuclear cells taken from the onset of the reaction by flow cytometry and in skin biopsy by immunohistochemistry, with specific recognition by the lymphocyte transformation test (LTT) with different ICM. Flow cytometry showed an increase in the different activation markers [CD69, CD25 and human leucocyte antigen D-related (HLA-DR)] and the skin homing receptor [cutaneous lymphocyte-associated antigen (CLA)] in CD4 lymphocytes, whereas perforin was higher in the CD8 lymphocytes. The skin biopsy showed a perivascular mononuclear infiltrate composed of CD4 lymphocytes, expressing CD25, HLA-DR and CLA, with eosinophils. Intradermal skin tests and the LTT were positive to several ICM, including the culprit agent in four and three patients, respectively, with negative results in all 10 tolerant controls. We showed that a specific immunological mechanism was implicated in patients with non-immediate reactions to ICM. Moreover, the positive results in skin tests and lymphocyte proliferation tests indicated that an important cross-reactivity exists. PMID:18341616
Jeong, Clara H; Machek, Edward J; Shakeri, Morteza; Duirk, Stephen E; Ternes, Thomas A; Richardson, Susan D; Wagner, Elizabeth D; Plewa, Michael J
2017-08-01
The presence of iodinated X-ray contrast media (ICM) in source waters is of high concern to public health because of their potential to generate highly toxic disinfection by-products (DBPs). The objective of this study was to determine the impact of ICM in source waters and the type of disinfectant on the overall toxicity of DBP mixtures and to determine which ICM and reaction conditions give rise to toxic by-products. Source waters collected from Akron, OH were treated with five different ICMs, including iopamidol, iopromide, iohexol, diatrizoate and iomeprol, with or without chlorine or chloramine disinfection. The reaction product mixtures were concentrated with XAD resins and the mammalian cell cytotoxicity and genotoxicity of the reaction mixture concentrates was measured. Water containing iopamidol generated an enhanced level of mammalian cell cytotoxicity and genotoxicity after disinfection. While chlorine disinfection with iopamidol resulted in the highest cytotoxicity overall, the relative iopamidol-mediated increase in toxicity was greater when chloramine was used as the disinfectant compared with chlorine. Four other ICMs (iopromide, iohexol, diatrizoate, and iomeprol) expressed some cytotoxicity over the control without any disinfection, and induced higher cytotoxicity when chlorinated. Only iohexol enhanced genotoxicity compared to the chlorinated source water. Copyright © 2017. Published by Elsevier B.V.
Chandra Observation of the WAT Radio Source/ICM Interaction in Abell 623
NASA Astrophysics Data System (ADS)
Anand, Gagandeep; Blanton, Elizabeth L.; Randall, Scott W.; Paterno-Mahler, Rachel; Douglass, Edmund
2017-01-01
Galaxy clusters are important objects for studying the physics of the intracluster medium (ICM), galaxy formation and evolution, and cosmological parameters. Clusters containing wide-angle tail (WAT) radio sources are particularly valuable for studies of the interaction between these sources and the surrounding ICM. These sources are thought to form when the ram pressure from the ICM caused by the relative motion between the host radio galaxy and the cluster bends the radio lobes into a distinct wide-angle morphology. We present our results from the analysis of a Chandra observation of the nearby WAT hosting galaxy cluster Abell 623. A clear decrement in X-ray emission is coincident with the southern radio lobe, consistent with being a cavity carved out by the radio source. We present profiles of surface brightness, temperature, density, and pressure and find evidence for a possible shock. Based on the X-ray pressure in the vicinity of the radio lobes and assumptions about the content of the lobes, we estimate the relative ICM velocity required to bend the lobes into the observed angle. We also present spectral model fits to the overall diffuse cluster emission and see no strong signature for a cool core. The sum of the evidence indicates that Abell 623 may be undergoing a large scale cluster-cluster merger.
Kormos, Jennifer Lynne; Schulz, Manoj; Ternes, Thomas A
2011-10-15
A LC tandem MS method was developed for the simultaneous determination of four iodinated X-ray contrast media (ICM) and 46 ICM biotransformation products (TPs) in raw and treated wastewater, surface water, groundwater, and drinking water. Recoveries ranged from 70% to 130%, and limits of quantification (LOQ) varied between 1 ng/L and 3 ng/L for surface water, groundwater and drinking water, and between 10 ng/L and 30 ng/L for wastewater. In a conventional wastewater treatment plant, iohexol, iomeprol, and iopromide were transformed to >80%, while iopamidol was transformed to 35%. In total, 26 TPs were detected above their LOQ in WWTP effluents. A significant change in the pattern of ICM TPs was observed after bank filtration and groundwater infiltration under aerobic conditions. Predominately, these TPs are formed at the end of the microbial transformation pathways in batch experiments with soil and sediment. These polar ICM TPs, such as iohexol TP599, iomeprol TP643, iopromide TP701A, and iopromide TP643, were not or only partially removed during drinking water treatment. As a consequence, several ICM TPs were detected in drinking water, at concentration levels exceeding 100 ng/L, with a maximum of 500 ng/L for iomeprol TP687.
Integrated crop management practices for maximizing grain yield of double-season rice crop.
Wang, Depeng; Huang, Jianliang; Nie, Lixiao; Wang, Fei; Ling, Xiaoxia; Cui, Kehui; Li, Yong; Peng, Shaobing
2017-01-12
Information on maximum grain yield and its attributes are limited for double-season rice crop grown under the subtropical environment. This study was conducted to examine key characteristics associated with high yielding double-season rice crop through a comparison between an integrated crop management (ICM) and farmers' practice (FP). Field experiments were conducted in the early and late seasons in the subtropical environment of Wuxue County, Hubei Province, China in 2013 and 2014. On average, grain yield in ICM was 13.5% higher than that in FP. A maximum grain yield of 9.40 and 10.53 t ha -1 was achieved under ICM in the early- and late-season rice, respectively. Yield improvement of double-season rice with ICM was achieved with the combined effects of increased plant density and optimized nutrient management. Yield gain of ICM resulted from a combination of increases in sink size due to more panicle number per unit area and biomass production, further supported by the increased leaf area index, leaf area duration, radiation use efficiency, crop growth rate, and total nitrogen uptake compared with FP. Further enhancement in the yield potential of double-season rice should focus on increasing crop growth rate and biomass production through improved and integrated crop management practices.
DOT National Transportation Integrated Search
2012-08-01
This report presents the test plan for conducting the Corridor Performance Analysis for the United States Department of Transportation (U.S. DOT) evaluation of the Dallas U.S. 75 Integrated Corridor Management (ICM) Initiative Demonstration. The ICM ...
DOT National Transportation Integrated Search
2012-08-01
This report presents the test plan for conducting the Corridor Performance Analysis for the United States Department of Transportation (U.S. DOT) evaluation of the San Diego Integrated Corridor Management (ICM) Initiative Demonstration. The ICM proje...
DOT National Transportation Integrated Search
2012-08-01
This report presents the test plan for conducting the Traveler Response Analysis for the United States Department of Transportation (U.S. DOT) evaluation of the Dallas U.S. 75 Integrated Corridor Management (ICM) Initiative Demonstration. The ICM pro...
Project management plan : Dallas Integrated Corridor Management (ICM) demonstration project.
DOT National Transportation Integrated Search
2010-12-01
The Dallas Integrated Corridor Management System Demonstration Project is a multi-agency, de-centralized operation which will utilize a set of regional systems to integrate the operations of the corridor. The purpose of the Dallas ICM System is to im...
DOT National Transportation Integrated Search
2012-08-01
This report presents the test plan for conducting the Technical Capability Analysis for the United States Department of Transportation (U.S. DOT) evaluation of the Dallas U.S. 75 Integrated Corridor Management (ICM) Initiative Demonstration. The ICM ...
Integrated corridor management initiative: survey Dallas traveler response panel
DOT National Transportation Integrated Search
2017-03-01
This report presents findings from the Integrated Corridor Management (ICM) traveler behavior surveys, a set of panel surveys of US-75 corridor users, conducted before and after the deployment of ICM. The purpose of the surveys was to measure the imp...
O'Brien, S; McFarland, J; Kealy, B; Pullela, A; Saunders, J; Cullen, W; Meagher, D
2012-09-01
There is increasing interest in the application of recovery principles in mental health services. We studied the implementation of a programme of intensive case management (ICM) emphasizing recovery principles in a community mental health service in Ireland. Eighty service attenders with severe and enduring illness characterized by significant ongoing disability were randomized into (1) a group receiving a programme of ICM and (2) a group receiving treatment as usual (TAU). Groups were compared before and after the programme for general psychopathology using the Brief Psychiatric Rating Scale (BPRS) (clinician rated) and How are You? scale (self-rated). The Functional Analysis of Care Environments (FACE) scale provided assessment of multiple functional domains. The overall group (mean age 44.5 ± 13.2 years; 60% male) had mean total Health of the Nation Outcome Scale (HoNOS) scale scores of 10.5 ± 4.6, with problems in social functioning especially prominent (mean social subscale score 5.0 ± 2.7). The ICM group were younger (p < 0.01) with higher baseline scores on the HoNOS social subscale and BPRS (p < 0.05). An analysis of covariance, controlling for these baseline differences, indicated greater improvement in BPRS scores (p = 0.001), How are You? scores (p = 0.02) and FACE domains for cognition, symptoms and interpersonal relationships (all p < 0.001) in the ICM group. The ICM group underwent greater changes in structured daily activities that were linked to improved BPRS scores (p = 0.01). A programme of ICM emphasizing recovery principles resulted in significant improvement across psychopathological and functional domains. Improvements were linked to enhanced engagement with structured daily activities. Recovery-oriented practices can be integrated into existing mental health services and provided alongside traditional models of care.
Long, John D; Carmena, Jose M
2013-05-01
The rodent somatosensory barrel cortex (S1bf) has proved a valuable model for studying neural plasticity in vivo. It has been observed that sensory deprivation or conditioning reorganizes sensory-driven activity within S1bf. These observations suggest a role for S1bf in somatosensory learning. This study evaluated the hypothesis that the response properties of extracellularly recorded neurons in S1bf would change as subjects learned to respond to stimulation of S1bf. Intracortical microstimulation (ICMS) of S1bf was used as a means for bypassing feedforward drive from the sensory periphery, midbrain, and thalamus while exciting local cortical networks. To separate the learning of this conditioned stimulus-conditioned response (CS-CR) from other elements of the task, we employed a cross-modal transfer schedule. Long-Evans rats were initially trained to respond to an auditory stimulus. All subjects were then implanted in both S1bfs with chronic microwire arrays for recording neural activity and delivering ICMS. Next, this association was transferred to ICMS of one hemisphere's S1bf. S1bf responded to ICMS with a brief increase in firing rate followed by a longer reduction in activity. We observed that the duration of reduced activity elicited by ICMS increased as the subjects began to respond correctly more often than expected by chance, and the magnitude of the initial positive response increased as they consolidated this CS-CR. Subsequent ICMS of the opposite S1bf revealed that this CS-CR did not generalize across hemispheres. These results suggest that a mechanism involving a single hemisphere's S1bf tunes cortical responses in concert with changes in rodent behavior during somatosensory learning.
Galaxy clusters as hydrodynamics laboratories
NASA Astrophysics Data System (ADS)
Roediger, Elke; Sheardown, Alexander; Fish, Thomas; ZuHone, John; Hunt, Matthew; Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul; Forman, William R.; Churazov, Eugene; Randall, Scott W.; Jones, Christine; Machacek, Marie E.
2017-08-01
The intra-cluster medium (ICM) of galaxy clusters shows a wealth of hydrodynamical features that trace the growth of clusters via the infall of galaxies or smaller subclusters. Such hydrodynamical features include the wakes of the infalling objects as well as the interfaces between the host cluster’s ICM and the atmosphere of the infalling object. Furthermore, the cluster dynamics can be traced by merger shocks, bow shocks, and sloshing motions of the ICM.The characteristics of these dynamical features, e.g., the direction, length, brightness, and temperature of the galaxies' or subclusters' gas tails varies significantly between different objects. This could be due to either dynamical conditions or ICM transport coefficients such as viscosity and thermal conductivity. For example, the cool long gas tails of of some infalling galaxies and groups have been attributed to a substantial ICM viscosity suppressing mixing of the stripped galaxy or group gas with the hotter ambient ICM.Using hydrodynamical simulations of minor mergers we show, however, that these features can be explained naturally by the dynamical conditions of each particular galaxy or group infall. Specifically, we identify observable features to distinguish the first and second infall of a galaxy or group into its host cluster as well as characteristics during apocentre passage. Comparing our simulations with observations, we can explain several puzzling observations such as the long and cold tail of M86 in Virgo and the very long and tangentially oriented tail of the group LEDA 87445 in Hydra A.Using our simulations, we also assess the validity of the stagnation pressure method that is widely used to determine an infalling galaxy's velocity. We show that near pericentre passage the method gives reasonable results, but near apocentre it is not easily applicable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moestl, C.; Rollett, T.; Temmer, M.
2011-11-01
One of the goals of the NASA Solar TErestrial RElations Observatory (STEREO) mission is to study the feasibility of forecasting the direction, arrival time, and internal structure of solar coronal mass ejections (CMEs) from a vantage point outside the Sun-Earth line. Through a case study, we discuss the arrival time calculation of interplanetary CMEs (ICMEs) in the ecliptic plane using data from STEREO/SECCHI at large elongations from the Sun in combination with different geometric assumptions about the ICME front shape [fixed-{Phi} (FP): a point and harmonic mean (HM): a circle]. These forecasting techniques use single-spacecraft imaging data and are basedmore » on the assumption of constant velocity and direction. We show that for the slow (350 km s{sup -1}) ICME on 2009 February 13-18, observed at quadrature by the two STEREO spacecraft, the results for the arrival time given by the HM approximation are more accurate by 12 hr than those for FP in comparison to in situ observations of solar wind plasma and magnetic field parameters by STEREO/IMPACT/PLASTIC, and by 6 hr for the arrival time at Venus Express (MAG). We propose that the improvement is directly related to the ICME front shape being more accurately described by HM for an ICME with a low inclination of its symmetry axis to the ecliptic. In this case, the ICME has to be tracked to >30{sup 0} elongation to obtain arrival time errors < {+-} 5 hr. A newly derived formula for calculating arrival times with the HM method is also useful for a triangulation technique assuming the same geometry.« less
Kono, Kanako; Tamashiro, Dana Ann A.; Alarcon, Vernadeth B.
2014-01-01
Specification of the trophectoderm (TE) and inner cell mass (ICM) lineages in the mouse blastocyst correlates with cell position, as TE derives from outer cells whereas ICM from inner cells. Differences in position are reflected by cell polarization and Hippo signaling. Only in outer cells, the apical-basal cell polarity is established, and Hippo signaling is inhibited in such a manner that LATS1 and 2 (LATS1/2) kinases are prevented from phosphorylating YAP, a key transcriptional co-activator of the TE-specifying gene Cdx2. However, the molecular mechanisms that regulate these events are not fully understood. Here, we showed that inhibition of RHO-ROCK signaling enhances ICM and suppresses TE characteristics through activation of Hippo signaling and disruption of apical-basal polarity. Embryos treated with ROCK inhibitor Y-27632 exhibited elevated expression of ICM marker NANOG and reduced expression of CDX2 at the blastocyst stage. Y-27632-treated embryos failed to accumulate YAP in the nucleus, although it was rescued by concomitant inhibition of LATS1/2. Segregation between apical and basal polarity regulators, namely PARD6B, PRKCZ, SCRIB, and LLGL1, was dampened by Y-27632 treatment, whereas some of the polarization events at the late 8-cell stage such as compaction and apical localization of p-ERM and tyrosinated tubulin occurred normally. Similar abnormalities of Hippo signaling and apical-basal polarization were also observed in embryos that were treated with RHO GTPases inhibitor. These results suggest that RHO-ROCK signaling plays an essential role in regulating Hippo signaling and cell polarization to enable proper specification of the ICM and TE lineages. PMID:24997360
Steinhaus, Daniel A; Zimetbaum, Peter J; Passman, Rod S; Leong-Sit, Peter; Reynolds, Matthew R
2016-08-30
Anticoagulation guidelines for patients with atrial fibrillation (AF) disregard AF burden. A strategy of targeted anticoagulation with novel oral anticoagulants (NOACs) based on continuous rhythm assessment with an implantable cardiac monitor (ICM) has recently been explored. We evaluated the potential cost-effectiveness of this strategy versus projected outcomes with continuous anticoagulation. We developed a Markov model using data from the Rhythm Evaluation for AntiCoagulaTion With COntinuous Monitoring (REACT.COM) pilot study (N = 59) and prior NOAC trials to calculate the costs and quality-adjusted life years (QALYs) associated with ICM-guided intermittent anticoagulation for AF versus standard care during a 3-year time horizon. Health state utilities were estimated from the pilot study population using the SF-12. Costs were based on current Medicare reimbursement. Over 14 ± 4 months of follow-up, 18 of 59 patients had 35 AF episodes. The ICM-guided strategy resulted in a 94% reduction in anticoagulant use relative to continuous treatment. There were no strokes, 3 (5.1%) TIAs, 2 major bleeding events (on aspirin) and 3 minor bleeding events with the ICM-guided strategy. The projected total 3-year costs were $12,535 for the ICM-guided strategy versus $13,340 for continuous anticoagulation. Projected QALYs were 2.45 for both groups. Based on a pilot study, a strategy of ICM-guided anticoagulation with NOACs may be cost-saving relative to expected outcomes with continuous anticoagulation, with similar quality-adjusted survival. This strategy could be attractive from a health economic perspective if shown to be safe and effective in a rigorous clinical trial. © 2016 Wiley Periodicals, Inc.
Farolfi, Alberto; Carretta, Elisa; Luna, Corradina Della; Ragazzini, Angela; Gentili, Nicola; Casadei, Carla; Barone, Domenico; Minguzzi, Martina; Amadori, Dino; Nanni, Oriana; Gavelli, Giampaolo
2014-10-31
Cancer patients undergo routine computed-tomography (CT) scans and, therefore, iodinated contrast media (ICM) administration. It is not known whether a time-dependent correlation exists between chemotherapy administration, contrast enhanced CT and onset of acute ICM-related adverse reactions (ARs). All consecutive contrast-enhanced CTs performed from 1 January 2010 to 31 December 2012 within 30 days of the last chemotherapy administration were retrospectively reviewed. Episodes of acute ICM-related ARs were reported to the pharmacovigilance officer. We analyzed time to CT evaluation calculated as the time elapsed from the date of the CT performed to the date of the last chemotherapy administration. Patients were classified into 4 groups based on the antineoplastic treatment: platinum-based, taxane-based, platinum plus taxane and other group. Out of 10,472 contrast-enhanced CTs performed, 3,945 carried out on 1,878 patients were considered for the study. Forty acute ICM-related ARs (1.01%; 95% CI, 0.70-1.33) were reported. No differences were seen among immediate (within 10 days of the last chemotherapy administration), early (11-20 days) and delayed (21-30 days) CTs. Median time to CT in patients who experienced an acute ICM-related AR by treatment group was not statistically different: 20 days (range 6-30), 17 days (range 5-22), 13 days (range 8-17), 13 days (range (2-29) for the platinum, taxane, platinum plus taxane and other group, respectively (P =0.251). Our results did not reveal any correlation between time to CT and risk of acute ICM-related ARs in cancer patients.
Steinhaus, Daniel A; Zimetbaum, Peter J; Passman, Rod S; Leong-Sit, Peter; Reynolds, Matthew R.
2016-01-01
Introduction Anticoagulation guidelines for patients with atrial fibrillation (AF) disregard AF burden. A strategy of targeted anticoagulation with novel oral anticoagulants (NOACs) based on continuous rhythm assessment with an implantable cardiac monitor (ICM) has recently been explored. We evaluated the potential cost-effectiveness of this strategy versus projected outcomes with continuous anticoagulation. Methods and Results We developed a Markov model using data from the Rhythm Evaluation for AntiCoagulaTion With COntinuous Monitoring (REACT.COM) pilot study (N=59) and prior NOAC trials to calculate the costs and quality-adjusted life years (QALYs) associated with ICM-guided intermittent anticoagulation for AF vs. standard care over a 3-year time horizon. Health state utilities were estimated from the pilot study population using the SF-12. Costs were based on current Medicare reimbursement. Over 14±4 months of follow-up 18 of 59 patients had 35 AF episodes. The ICM-guided strategy resulted in a 94% reduction in anticoagulant use relative to continuous treatment. There were no strokes, 3 (5.1%) TIAs, 2 major bleeding events (on aspirin) and 3 minor bleeding events with the ICM-guided strategy. The projected total 3-year costs were $12,535 for the ICM-guided strategy vs. $13,340 for continuous anticoagulation. Projected QALYs were 2.45 for both groups. Conclusion Based on a pilot study, a strategy of ICM-guided anticoagulation with NOACs may be cost-saving relative to expected outcomes with continuous anticoagulation, with similar quality-adjusted survival. This strategy could be attractive from a health economic perspective if shown to be safe and effective in a rigorous clinical trial. PMID:27571718
Preconditioning of Interplanetary Space Due to Transient CME Disturbances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temmer, M.; Reiss, M. A.; Hofmeister, S. J.
Interplanetary space is characteristically structured mainly by high-speed solar wind streams emanating from coronal holes and transient disturbances such as coronal mass ejections (CMEs). While high-speed solar wind streams pose a continuous outflow, CMEs abruptly disrupt the rather steady structure, causing large deviations from the quiet solar wind conditions. For the first time, we give a quantification of the duration of disturbed conditions (preconditioning) for interplanetary space caused by CMEs. To this aim, we investigate the plasma speed component of the solar wind and the impact of in situ detected interplanetary CMEs (ICMEs), compared to different background solar wind modelsmore » (ESWF, WSA, persistence model) for the time range 2011–2015. We quantify in terms of standard error measures the deviations between modeled background solar wind speed and observed solar wind speed. Using the mean absolute error, we obtain an average deviation for quiet solar activity within a range of 75.1–83.1 km s{sup −1}. Compared to this baseline level, periods within the ICME interval showed an increase of 18%–32% above the expected background, and the period of two days after the ICME displayed an increase of 9%–24%. We obtain a total duration of enhanced deviations over about three and up to six days after the ICME start, which is much longer than the average duration of an ICME disturbance itself (∼1.3 days), concluding that interplanetary space needs ∼2–5 days to recover from the impact of ICMEs. The obtained results have strong implications for studying CME propagation behavior and also for space weather forecasting.« less
[Intensive care services resources in Spain].
Martín, M C; León, C; Cuñat, J; del Nogal, F
2013-10-01
To identify the resources related to the care of critically ill patients in Spain, which are available in the units dependent of the Services of Intensive Care Medicine (ICM) or other services/specialties, analyzing their distribution according to characteristics of the hospitals and by autonomous communities. Prospective observational study. Spanish hospitals. Heads of the Services of ICM. Number of units and beds for critically ill patients and functional dependence. The total number of registries obtained with at least one Service of ICM was 237, with a total of 100,198 hospital beds. Level iii (43.5%) and level ii (35%) hospitals predominated. A total of 73% were public hospitals and 55.3% were non-university centers. The total number of beds for adult critically ill patients, was 4,738 (10.3/100,000 inhabitants). The services of ICM registered had available 258 intensive are units (ICUs), with 3,363 beds, mainly polyvalent ICUs (81%) and 43 intermediate care units. The number of patients attended in the Services of ICM in 2008 was 174,904, with a percentage of occupation of 79.5% A total of 228 units attending critically ill patients, which are dependent of other services with 2,233 beds, 772 for pediatric patients or neonates, were registered. When these last specialized units are excluded, there was a marked predominance of postsurgical units followed by coronary and cardiac units. Seventy one per cent of beds available in the Critical Care Units in Spain are characterized by attending severe adult patients, are dependent of the services of ICM, and most of them are polyvalent. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.
Establishing an Integrated Catchment Management (ICM) program in East Java, Indonesia.
Booth, C A; Warianti, A; Wrigley, T
2001-01-01
The Brantas is one of Indonesia's most important catchments. It is the "rice bowl" of Java and nationally important for its industrial activity. Surabaya, Indonesia's second largest city, is located at the mouth of the Brantas River which is pivotal to the city's water supply. The challenges associated with the institutional framework for natural resource management in East Java parallels that of many states and provinces around the globe. It is multi-layered and complex. Integrated Catchment Management (ICM) may be defined as "the co-ordinated and sustainable management of land, water, soil vegetation, fauna and other natural resources on a water catchment basis". Over a period of six months, an ICM Strategy was researched and facilitated for the Brantas River Catchment in East Java via a short term advisor attachment. The aim of the Strategy is to improve coordination, co-operation, communication and consistency of government and community efforts towards sustaining the catchment's environmental, economic and social values. The attachment was part of the Pollution Control Implementation (PCI) Project funded by AusAid and the Indonesian Government. The ICM Strategy developed was broad based and addressed the priority natural resource management issues facing the Brantas Catchment. It was co-ordinated by BAPEDALDA, the Provincial Environmental Protection Agency, and developed by all agencies involved in natural resource management in the catchment. Various Universities and Non Government Organisations (NGOs) were also involved in the ICM process which developed the Strategy. At the conclusion of the attachment, a draft ICM Strategy and a proposed institutional framework had been developed. A working group of key agencies was also established to further enhance local "ownership", finalise timescales and implementation responsibilities within the Strategy and bring the institutional arrangements into being through a Governor's Decree.
NASA Technical Reports Server (NTRS)
Woods, Jody L.
2015-01-01
This paper describes work accomplished to predict the service life of a flexure joint design which is a component of a diffuser duct in the A3 Test Stand, an altitude simulation rocket engine test facility at NASA's Stennis Space Center. The duct has two pressure shells separated by cooling water passages and connected by stiffening ribs and flexure joints. Rocket exhaust flows within the duct and heats the inner pressure shell while the outer pressure shell remains at ambient temperature. The flexure joints allow for differential thermal expansion of the inner and outer pressure shells and are subject to in-service loading by this thermal expansion along with water pressure in the cooling water passage, atmospheric pressure outside the duct, near vacuum conditions within the duct, and vibrational loads from operation of the facility and rocket engine. Figure 1 shows a schematic axisymmetric cross section of the diffuser pressure shells and flexure joints with a zoomed in view of the flexure joint. The flexure joints are expected to eventually fail by fatigue cracking leading to leaks from the cooling water passages to the outside. The zoomed in view in Figure 1 indicates where cracking is expected to occur, namely through a weld bead between two plates of SA-516 Grade 70 steel. This weld bead acts as the fulcrum of the flexure joint and it is clear from inspection of the geometry and loading represented in the zoomed in portion of Figure 1 that inherent in the design there is a severe notch formed between the flexure plate, weld bead, and stiffening ring that will be the site of crack initiation and location from which the crack grows to the outer surface of the weld bead.
Vision 2040: A Roadmap for Integrated, Multiscale Modeling and Simulation of Materials and Systems
NASA Technical Reports Server (NTRS)
Liu, Xuan; Furrer, David; Kosters, Jared; Holmes, Jack
2018-01-01
Over the last few decades, advances in high-performance computing, new materials characterization methods, and, more recently, an emphasis on integrated computational materials engineering (ICME) and additive manufacturing have been a catalyst for multiscale modeling and simulation-based design of materials and structures in the aerospace industry. While these advances have driven significant progress in the development of aerospace components and systems, that progress has been limited by persistent technology and infrastructure challenges that must be overcome to realize the full potential of integrated materials and systems design and simulation modeling throughout the supply chain. As a result, NASA's Transformational Tools and Technology (TTT) Project sponsored a study (performed by a diverse team led by Pratt & Whitney) to define the potential 25-year future state required for integrated multiscale modeling of materials and systems (e.g., load-bearing structures) to accelerate the pace and reduce the expense of innovation in future aerospace and aeronautical systems. This report describes the findings of this 2040 Vision study (e.g., the 2040 vision state; the required interdependent core technical work areas, Key Element (KE); identified gaps and actions to close those gaps; and major recommendations) which constitutes a community consensus document as it is a result of over 450 professionals input obtain via: 1) four society workshops (AIAA, NAFEMS, and two TMS), 2) community-wide survey, and 3) the establishment of 9 expert panels (one per KE) consisting on average of 10 non-team members from academia, government and industry to review, update content, and prioritize gaps and actions. The study envisions the development of a cyber-physical-social ecosystem comprised of experimentally verified and validated computational models, tools, and techniques, along with the associated digital tapestry, that impacts the entire supply chain to enable cost-effective, rapid, and revolutionary design of fit-for-purpose materials, components, and systems. Although the vision focused on aeronautics and space applications, it is believed that other engineering communities (e.g., automotive, biomedical, etc.) can benefit as well from the proposed framework with only minor modifications. Finally, it is TTT's hope and desire that this vision provides the strategic guidance to both public and private research and development decision makers to make the proposed 2040 vision state a reality and thereby provide a significant advancement in the United States global competitiveness.
The Integrated Curriculum Model (ICM)
ERIC Educational Resources Information Center
VanTassel-Baska, Joyce; Wood, Susannah
2010-01-01
This article explicates the Integrated Curriculum Model (ICM) which has been used worldwide to design differentiated curriculum, instruction, and assessment units of study for gifted learners. The article includes a literature review of appropriate curriculum features for the gifted, other extant curriculum models, the theoretical basis for the…
DOT National Transportation Integrated Search
2012-08-01
This report presents the test plan for conducting the Benefit-Cost Analysis (BCA) for the United States Department of Transportation (U.S. DOT) evaluation of the San Diego Integrated Corridor Management (ICM) Initiative Demonstration. The ICM project...
Integrated corridor management I-15 San Diego, California : analysis plan.
DOT National Transportation Integrated Search
2010-02-01
This AMS Analysis Plan for the I-15 Corridor outlines the various tasks associated with the application of the ICM AMS tools and strategies to this corridor in order to support benefit-cost assessment for the successful implementation of ICM. The rep...
Integrated corridor management initiative : overview of the Dallas traveler response panel survey.
DOT National Transportation Integrated Search
2017-03-01
This report presents findings from the Integrated Corridor Management (ICM) traveler behavior surveys, a set of panel surveys of US-75 corridor users, conducted before and after the deployment of ICM. The purpose of the surveys was to measure the imp...
DOT National Transportation Integrated Search
2012-08-01
This report presents the test plan for conducting the Technical Capability Analysis for the United States Department of Transportation (U.S. DOT) evaluation of the San Diego Integrated Corridor Management (ICM) Initiative Demonstration. The ICM proje...
DOT National Transportation Integrated Search
2016-11-01
Post-Deployment Analysis, Modeling, and Simulation (AMS) activities focus on identifying impacts and benefits of the as-deployed Integrated Corridor Management (ICM) system. The as-deployed ICM strategies may differ from as-planned ...
DOT National Transportation Integrated Search
2016-10-01
Post-Deployment Analysis, Modeling, and Simulation (AMS) activities focus on identifying impacts and benefits of the as-deployed Integrated Corridor Management (ICM) system. The as-deployed ICM strategies may differ from as-planned ...
Long-term stability of sensitivity to intracortical microstimulation of somatosensory cortex.
Callier, Thierri; Schluter, Erik W; Tabot, Gregg A; Miller, Lee E; Tenore, Francesco V; Bensmaia, Sliman J
2015-10-01
The dexterous manipulation of objects depends heavily on somatosensory signals from the limb. The development of anthropomorphic robotic arms and of algorithms to decode intended movements from neuronal signals has stimulated the need to restore somatosensation for use in upper-limb neuroprostheses. Without touch and proprioception, patients have difficulty controlling prosthetic limbs to a level that justifies the required invasive surgery. Intracortical microstimulation (ICMS) through chronically implanted electrode arrays has the potential to provide rich and intuitive sensory feedback. This approach to sensory restoration requires, however, that the evoked sensations remain stable over time. To investigate the stability of ICMS-evoked sensations, we measured the ability of non-human primates to detect ICMS over experimental sessions that spanned years. We found that the performance of the animals remained highly stable over time, even when they were tested with electrodes that had experienced extensive stimulation. Given the stability of the sensations that it evokes, ICMS may thus be a viable approach for sensory restoration.
Feuerstein, Michael; Huang, Grant D; Ortiz, Jose M; Shaw, William S; Miller, Virginia I; Wood, Patricia M
2003-08-01
An integrated case management (ICM) approach (ergonomic and problem-solving intervention) to work-related upper-extremity disorders was examined in relation to patient satisfaction, future symptom severity, function, and return to work (RTW). Federal workers with work-related upper-extremity disorder workers' compensation claims (n = 205) were randomly assigned to usual care or ICM intervention. Patient satisfaction was assessed after the 4-month intervention period. Questionnaires on clinical outcomes and ergonomic exposure were administered at baseline and at 6- and 12-months postintervention. Time from intervention to RTW was obtained from an administrative database. ICM group assignment was significantly associated with greater patient satisfaction. Regression analyses found higher patient satisfaction levels predicted decreased symptom severity and functional limitations at 6 months and a shorter RTW. At 12 months, predictors of positive outcomes included male gender, lower distress, lower levels of reported ergonomic exposure, and receipt of ICM. Findings highlight the utility of targeting workplace ergonomic and problem solving skills.
Long-term stability of sensitivity to intracortical microstimulation of somatosensory cortex
NASA Astrophysics Data System (ADS)
Callier, Thierri; Schluter, Erik W.; Tabot, Gregg A.; Miller, Lee E.; Tenore, Francesco V.; Bensmaia, Sliman J.
2015-10-01
Objective. The dexterous manipulation of objects depends heavily on somatosensory signals from the limb. The development of anthropomorphic robotic arms and of algorithms to decode intended movements from neuronal signals has stimulated the need to restore somatosensation for use in upper-limb neuroprostheses. Without touch and proprioception, patients have difficulty controlling prosthetic limbs to a level that justifies the required invasive surgery. Intracortical microstimulation (ICMS) through chronically implanted electrode arrays has the potential to provide rich and intuitive sensory feedback. This approach to sensory restoration requires, however, that the evoked sensations remain stable over time. Approach. To investigate the stability of ICMS-evoked sensations, we measured the ability of non-human primates to detect ICMS over experimental sessions that spanned years. Main results. We found that the performance of the animals remained highly stable over time, even when they were tested with electrodes that had experienced extensive stimulation. Significance. Given the stability of the sensations that it evokes, ICMS may thus be a viable approach for sensory restoration.
NASA Astrophysics Data System (ADS)
Takizawa, Motokazu; Naito, Tsuguya
2000-06-01
We have investigated evolution of nonthermal emission from relativistic electrons accelerated around the shock fronts during mergers of clusters of galaxies. We estimate synchrotron radio emission and inverse Compton scattering of cosmic microwave background photons from extreme ultraviolet (EUV) to hard X-ray range. The hard X-ray emission is most luminous in the later stage of a merger. Both hard X-ray and radio emissions are luminous only while signatures of merging events are clearly seen in the thermal intracluster medium (ICM). On the other hand, EUV radiation is still luminous after the system has relaxed. Propagation of shock waves and bulk-flow motion of ICM play crucial roles in extending radio halos. In the contracting phase, radio halos are located at the hot region of ICM or between two substructures. In the expanding phase, on the other hand, radio halos are located between two ICM hot regions and show rather diffuse distribution.
Wilschanski, Michael; Yaakov, Yasmin; Omari, Ibrahim; Zaman, Munir; Martin, Camilia R; Cohen-Cymberknoh, Malena; Shoseyov, David; Kerem, Eitan; Dasilva, Deborah; Sheth, Sunil; Uluer, Ahmet; OʼSullivan, Brian P; Freedman, Steven
2016-11-01
Nasal potential difference (NPD) measurement is part of the diagnostic criteria for cystic fibrosis (CF) and now used routinely as an endpoint in clinical trials of correcting the basic defect in CF. Intestinal current measurement (ICM), measured ex vivo on a rectal biopsy, has been used to study cystic fibrosis transmembrane conductance regulator (CFTR) function but has not been compared to NPD in the same subject in adults and children. The aim of the study is to evaluate the potential usefulness of ICM as a marker of CFTR function for treatment studies compared NPD in patients with CF and in healthy control subjects. ICM and NPD were performed on healthy controls and patients with CF. The healthy adults were individuals undergoing routine screening colonoscopy at the Beth Israel Deaconess Medical Center. The healthy children were undergoing colonoscopy for suspicion of inflammation in Hadassah Hebrew University Medical Center. The CF adults were recruited from Boston Children's Hospital CF Center and CF Center Worcester Mass, the children with CF from Hadassah CF Center. ICM measurements in healthy control subjects (n = 16) demonstrated a mean (±SE) carbachol response of 16.0 (2.2) μA/cm, histamine response of 13.2 (2.1) μA/cm and a forskolin response of 6.3 (2.0) μA/cm. Basal NPD of -15.9 (1.9) and response to Cl free + isoproterenol of -13.8 (2.0). These responses were inverted in CF subjects (n = 12) for ICM parameters with carbachol response of -3.0 (0.5) μA/cm, histamine -1.0 (0.8) μA/cm and a forskolin response of 0.5 (0.3) and also for NPD parameters; basal NPD of -42.2 (4.3) and response to Cl free + isoproterenol of 4.3 (0.7). Pearson correlation test showed the comparability of ICM and NPD in assessing CFTR function. ICM is equivalent to NPD in the ability to distinguish patients with CF from controls and could be used as surrogate markers of CFTR activity in treatment protocols.
Talkhabi, Mahmood; Razavi, Seyed Morteza; Salari, Ali
2017-06-01
Heart diseases are the most significant cause of morbidity and mortality in the world. De novo generated cardiomyocytes (CMs) are a great cellular source for cell-based therapy and other potential applications. Direct cardiac reprogramming is the newest method to produce CMs, known as induced cardiomyocytes (iCMs). During a direct cardiac reprogramming, also known as transdifferentiation, non-cardiac differentiated adult cells are reprogrammed to cardiac identity by forced expression of cardiac-specific transcription factors (TFs) or microRNAs. To this end, many different combinations of TFs (±microRNAs) have been reported for direct reprogramming of mouse or human fibroblasts to iCMs, although their efficiencies remain very low. It seems that the investigated TFs and microRNAs are not sufficient for efficient direct cardiac reprogramming and other cardiac specific factors may be required for increasing iCM production efficiency, as well as the quality of iCMs. Here, we analyzed gene expression data of cardiac fibroblast (CFs), iCMs and adult cardiomyocytes (aCMs). The up-regulated and down-regulated genes in CMs (aCMs and iCMs) were determined as CM and CF specific genes, respectively. Among CM specific genes, we found 153 transcriptional activators including some cardiac and non-cardiac TFs that potentially activate the expression of CM specific genes. We also identified that 85 protein kinases such as protein kinase D1 (PKD1), protein kinase A (PRKA), calcium/calmodulin-dependent protein kinase (CAMK), protein kinase C (PRKC), and insulin like growth factor 1 receptor (IGF1R) that are strongly involved in establishing CM identity. CM gene regulatory network constructed using protein kinases, transcriptional activators and intermediate proteins predicted some new transcriptional activators such as myocyte enhancer factor 2A (MEF2A) and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A), which may be required for qualitatively and quantitatively efficient direct cardiac reprogramming. Taken together, this study provides new insights into the complexity of cell fate conversion and better understanding of the roles of transcriptional activators, signaling pathways and protein kinases in increasing the efficiency of direct cardiac reprogramming and maturity of iCMs.
Zyoud, Sa'ed H; Al-Jabi, Samah W; Sweileh, Waleed M
2015-09-04
Bibliometric analysis is increasingly employed as a useful tool to assess the quantity and quality of research performance. The specific goal of the current study was to evaluate the performance of research output originating from Arab world and published in international Integrative and Complementary Medicine (ICM) journals. Original scientific publications and reviews from the 22 Arab countries that were published in 22 international peer-reviewed ICM journals during all previous years up to December 31(st) 2013, were screened using the Web of Science databases. Five hundred and ninety-one documents were retrieved from 19 ICM journals. The h-index of the set of papers under study was 47. The highest h-index was 27 for Morocco, 21 for Jordan, followed by 19 for each Kingdom of Saudi Arabia (KSA), and Egypt, and the lowest h-index was 1 for each of Comoros, Qatar, and Syrian Arab Republic. No data related to ICM were published from Djibouti, and Mauritania. After adjusting for economy and population power, Somalia (89), Morocco (32.5), Egypt (31.1), Yemen (21.4), and Palestine (21.2) had the highest research productivity. The total number of citations was 9,466, with an average citation of 16 per document. The study identified 262 (44.3 %) documents with 39 countries in Arab-foreign country collaborations. Arab authors collaborated most with countries in Europe (24.2 %), followed by countries in the Asia-Pacific region (9.8 %). Scientific research output in the ICM field in the Arab world region is increasing. Most of publications from Arab world in ICM filed were driven by societal use of medicinal plants and herbs. Search for new therapies from available low cost medicinal plants in Arab world has motivated many researchers in academia and pharmaceutical industry. Further investigation is required to support these findings in a wider journal as well as to improve research output in the field of ICM from Arab world region by investing in more national and international collaborative research project.
2012-01-01
Background The literature on interventions addressing the intersection of homelessness, mental illness and race is scant. The At Home/Chez Soi research demonstration project is a pragmatic field trial investigating a Housing First intervention for homeless individuals with mental illness in five cities across Canada. A unique focus at the Toronto site has been the development and implementation of a Housing First Ethno-Racial Intensive Case Management (HF ER-ICM) arm of the trial serving 100 homeless individuals with mental illness from ethno-racial groups. The HF ER-ICM program combines the Housing First approach with an anti-racism/anti-oppression framework of practice. This paper presents the findings of an early implementation and fidelity evaluation of the HF ER-ICM program, supplemented by participant narrative interviews to inform our understanding of the HF ER-ICM program theory. Methods Descriptive statistics are used to describe HF ER-ICM participant characteristics. Focus group interviews, key informant interviews and fidelity assessments were conducted between November 2010 and January 2011, as part of the program implementation evaluation. In-depth qualitative interviews with HF ER-ICM participants and control group members were conducted between March 2010 and June 2011. All qualitative data were analysed using grounded theory methodology. Results The target population had complex health and social service needs. The HF ER-ICM program enjoyed a high degree of fidelity to principles of both anti-racism/anti-oppression practice and Housing First and comprehensively addressed the housing, health and sociocultural needs of participants. Program providers reported congruence of these philosophies of practice, and program participants valued the program and its components. Conclusions Adapting Housing First with anti-racism/anti-oppression principles offers a promising approach to serving the diverse needs of homeless people from ethno-racial groups and strengthening the service systems developed to support them. The use of fidelity and implementation evaluations can be helpful in supporting successful adaptations of programs and services. Trial registration Current Controlled Trials ISRCTN42520374 PMID:23031406
Lyon, J A; Haynes, J D; Diggs, C L; Chulay, J D; Pratt-Rossiter, J M
1986-03-15
Some immune sera that inhibit erythrocyte invasion by merozoites also agglutinate the merozoites as they emerge from rupturing schizonts. These immune clusters of merozoites (ICM) possess a surface coat that is cross-linked by antibody and is thicker than the surface coat associated with normal merozoites (NM) obtained from cultures containing preimmune serum. Analysis of metabolically labeled ICM and NM performed by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that washed ICM possessed immune complexes containing antigens representative of schizonts and merozoites. Characteristics of the immune complexes included: a) they were not soluble in pH 8 Triton X-100, b) they were soluble at an acid pH, and c) after pH neutralization they were precipitated by using staphylococcal protein A. Merozoite antigens having Mr of 83, 73, and 45 kDa were associated with immune complexes in ICM. The 83 and 73 kDa antigens were recovered in considerably larger quantities from ICM than from NM. Schizont antigens having Mr of 230, 173 (triplet), 152 (doublet), and 31 kDa were associated with immune complexes in ICM, and a 195 kDa antigen(s) from schizonts and merozoites was also present in the immune complexes. In addition, other antigens of Mr 113, 101, 65, and 51 kDa may have been immune complexed. These 15 antigens accounted for less than 30% of the schizont and merozoite antigens recognized by the immune serum. Immune complexes probably formed between antibodies and a) surface antigens of schizont-infected erythrocytes exposed to antibody before schizont rupture, b) surface antigens of merozoites and schizonts exposed during schizont rupture, and c) soluble antigens normally released during schizont rupture. The antibody components of the immune complexes may have prevented rapid degradation or shedding of some antigens from the merozoite surface. Allowing schizonts to rupture in the presence of inhibitory antibodies (to form ICM) is a useful approach to identifying exposed targets of protective immunity against malaria.
DOT National Transportation Integrated Search
2012-08-01
This report presents the test plan for conducting the Technical Capability Analysis for the United States Department of Transportation (U.S. DOT) evaluation of the San Diego Integrated Corridor Management (ICM) Initiative Demonstration. The ICM proje...
A Study of Language Arts Curriculum Effectiveness with Gifted Learners.
ERIC Educational Resources Information Center
VanTassel-Baska, Joyce; And Others
1996-01-01
This study of language arts curriculum effectiveness presents data supporting utilization of the Integrated Curriculum Model (ICM) with high-ability learners in various grouping contexts. Significant gains were demonstrated in literary analysis, persuasive writing, and linguistic competency for seven elementary classes using the ICM. Implications…
DOT National Transportation Integrated Search
2008-06-23
This document presents the notes taken at the USDOT Integrated Corridor Management (ICM) Transit Data Gaps for Rail Transit Systems Initial Planning Workshop. Different scenarios for handling increased demand on rail and bus transit systems are discu...
DOT National Transportation Integrated Search
2006-04-11
Task 3 involves overall foundational research to further the understanding of various aspects of Integrated Corridor Management (ICM) and to identify integration issues needed to evaluate the feasibility of the ICM initiative. The focus of Task 3.1 a...
DOT National Transportation Integrated Search
2012-08-01
This report presents the test plan for conducting the Decision Support System Analysis for the United States Department of Transportation (U.S. DOT) evaluation of the San Diego Integrated Corridor Management (ICM) Initiative Demonstration. The ICM pr...
The XMM Cluster Outskirts Project (X-COP)
NASA Astrophysics Data System (ADS)
Eckert, D.
2017-10-01
The outskirts of galaxy clusters (typically the regions located beyond R500) are the regions where the transition between the virialized ICM and the infalling material from the large-scale structure takes place. As such, they play a central role in our understanding of the processes leading to the virialization of the accreting gas within the central dark-matter halo. I will give an overview of the XMM cluster outskirts project (X-COP), a very large program on XMM to study the virial region of galaxy clusters with unprecedented details. I will show how X-ray observations can be combined with the Sunyaev-Zeldovich signal to recover the thermodynamic properties and hydrostatic mass of the ICM, bypassing the need for expensive X-ray spectroscopic observations. I will discuss the results obtained using this technique on Abell 2142 and Abell 2319 and give prospects for the results expected using the full X-COP sample. I will also present recent results on the search for warm-hot baryons in the filaments connected to clusters, emphasizing on the discovery of 3 filaments of 10-million-degree gas connected to the massive cluster Abell 2744.
KINEMATIC TREATMENT OF CORONAL MASS EJECTION EVOLUTION IN THE SOLAR WIND
NASA Technical Reports Server (NTRS)
Riley, Pete; Crooker, N. U.
2004-01-01
We present a kinematic study of the evolution of coronal mass ejections (CMEs) in the solar wind. Specifically, we consider the effects of (1) spherical expansion and (2) uniform expansion due to pressure gradients between the interplanetary CME (ICME) and the ambient solar wind. We compare these results with an MHD model that allows us to isolate these effects h m the combined kinematic and dynamical effects, which are included in MHD models. They also provide compelling evidence that the fundamental cross section of so-called "force-free" flux ropes (or magnetic clouds) is neither circular or elliptical, but rather a convex-outward, "pancake" shape. We apply a force-free fit to the magnetic vectors from the MHD simulation to assess how the distortion of the flux rope affects the fit. In spite of these limitations, force-free fits, which are straightforward to apply, do provide an important description of a number of parameters, including the radial dimension, orientation, and chirality of the ICME. Subject headings: MHD - solar wind - Sun: activity - Sun: corona - Sun: coronal mass ejections (CMEs) - On-line material color figures Sun: magnetic fields
NASA Astrophysics Data System (ADS)
Dong, C.; Ma, Y.; Bougher, S. W.; Toth, G.; Nagy, A. F.; Halekas, J. S.; Dong, Y.; Curry, S.; Luhmann, J. G.; Brain, D. A.; Connerney, J. E. P.; Espley, J. R.; Mahaffy, P. R.; Benna, M.; McFadden, J. P.; Mitchell, D. L.; DiBraccio, G. A.; Lillis, R. J.; Jakosky, B. M.; Grebowsky, J. M.
2015-12-01
The 3-D Mars multi-fluid BATS-R-US MHD code is used to study the solar wind interaction with the Martian upper atmosphere during the 2015 March 8th interplanetary coronal mass ejection (ICME). We studied four steady-state cases, corresponding to three major ICME phases: pre-ICME phase (Case 1), sheath phase (Cases 2--3), and ejecta phase (Case 4). Detailed data-model comparisons demonstrate that the simulation results are in good agreement with Mars Atmosphere and Volatile EvolutioN (MAVEN) measurements, indicating that the multi-fluid MHD model can reproduce most of the features observed by MAVEN, thus providing confidence in the estimate of ion escape rates from its calculation. The total ion escape rate is increased by an order of magnitude, from 2.05×1024 s-1 (pre-ICME phase) to 2.25×1025 s-1 (ICME sheath phase), during this time period. The calculated ion escape rates were used to examine the relative importance of the two major ion loss channels from the planet: energetic pickup ion loss through the dayside plume and cold ionospheric ion loss through the nightside plasma wake region. We found that the energetic pickup ions escaping from the dayside plume could be as much as ~23% of the total ion loss prior to the ICME arrival. Interestingly, the tailward ion escape rate is significantly increased at the ejecta phase, leading to a reduction of the dayside ion escape to ~5% of the total ion loss. Under such circumstance, the cold ionospheric ions escaping from the plasma wake comprise the majority of the ion loss from the planet. Furthermore, by comparing four simulation results along the same MAVEN orbit, we note that there is no significant variation in the Martian lower ionosphere. Finally, both bow shock and magnetic pileup boundary (BS, MPB) locations are decreased from (1.2 RMars, 1.57 RMars) at the pre-ICME phase to (1.16 RMars, 1.47 RMars) respectively during the sheath phase along the dayside Sun-Mars line. MAVEN has provided a great opportunity to study the evolution of the Martian atmosphere and climate over its history. A large quantity of useful data has been returned for future studies. These kinds of data-model comparisons can help the community to better understand the Martian upper atmosphere response to the (extreme) variation in the solar wind and its interplanetary environment from a global perspective.
Yao, Dongyuan; Lavigne, Gilles J; Lee, Jye-Chang; Adachi, Kazunori; Sessle, Barry J
2013-02-01
To test the hypothesis that the reflex and corticobulbar motor excitability of jaw muscles is reduced during sleep. Polysomnographic recordings in the electrophysiological study. University sleep research laboratories. The reflex and corticobulbar motor excitability of jaw muscles was determined during the quiet awake state (QW) and quiet sleep (QS) in monkeys (n = 4). During QS sleep, compared to QW periods, both tongue stimulation-evoked jaw-opening reflex peak and root mean square amplitudes were significantly decreased with stimulations at 2-3.5 × thresholds (P < 0.001). The jaw-opening reflex latency during sleep was also significantly longer than during QW. Intracortical microstimulation (ICMS) within the cortical masticatory area induced rhythmic jaw movements at a stable threshold (≤ 60 μA) during QW; but during QS, ICMS failed to induce any rhythmic jaw movements at the maximum ICMS intensity used, although sustained jaw-opening movements were evoked at significantly increased threshold (P < 0.001) in one of the monkeys. Similarly, during QW, ICMS within face primary motor cortex induced orofacial twitches at a stable threshold (≤ 35 μA), but the ICMS thresholds were elevated during QS. Soon after the animal awoke, rhythmic jaw movements and orofacial twitches could be evoked at thresholds similar to those before QS. The results suggest that the excitability of reflex and corticobulbar-evoked activity in the jaw motor system is depressed during QS.
The Origin of Mitochondrial Cristae from Alphaproteobacteria.
Muñoz-Gómez, Sergio A; Wideman, Jeremy G; Roger, Andrew J; Slamovits, Claudio H
2017-04-01
Mitochondria are the respiratory organelles of eukaryotes and their evolutionary history is deeply intertwined with that of eukaryotes. The compartmentalization of respiration in mitochondria occurs within cristae, whose evolutionary origin has remained unclear. Recent discoveries, however, have revived the old notion that mitochondrial cristae could have had a pre-endosymbiotic origin. Mitochondrial cristae are likely homologous to the intracytoplasmic membranes (ICMs) used by diverse alphaproteobacteria for harnessing energy. Because the Mitochondrial Contact site and Cristae Organizing System (MICOS) that controls the development of cristae evolved from a simplified version that is phylogenetically restricted to Alphaproteobacteria (alphaMICOS), ICMs most probably transformed into cristae during the endosymbiotic origin of mitochondria. This inference is supported by the sequence and structural similarities between MICOS and alphaMICOS, and the expression pattern and cellular localization of alphaMICOS. Given that cristae and ICMs develop similarly, alphaMICOS likely functions analogously to mitochondrial MICOS by culminating ICM development with the creation of tubular connections and membrane contact sites at the alphaproteobacterial envelope. Mitochondria thus inherited a pre-existing ultrastructure adapted to efficient energy transduction from their alphaproteobacterial ancestors. The widespread nature of purple bacteria among alphaproteobacteria raises the possibility that cristae evolved from photosynthetic ICMs. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Holding Area LINQ Trial (HALT).
Lee, John J; Weitz, Daniel; Anand, Rishi
Recent studies have shown that insertable cardiac monitors (ICMs) can be implanted out of the traditional hospital setting and efforts are being made to explore the feasibility of implanting these devices in a specific standardized location other than the operating room or a cardiac catherization/electrophysiology lab. This was a prospective, non-randomized, single center post-market clinical trial designed to occur in the holding area of a hospital operating room or cardiac catheterization/electrophysiology laboratory. The Medtronic Reveal LINQ ICM was implanted and patients were followed for 90 days post implant. This study was designed to observe any procedure related adverse events stemming from the holding area implantation. Twenty patients were implanted at our hospital in a holding room not traditionally associated with the electrophysiology/cardiac/operatory labs. One patient was lost to the 90-day follow up. In one case, ICM implantation led to diagnosis requiring removal of ICM before the 90 day follow up and insertion of a biventricular implantable cardioverter defibrillator (ICD). In the remaining 18 patients, there were no serious complications such as minor skin infections, systemic infections or procedure-related adverse events requiring device explant. When following a standardized protocol with attention to sterile technique, it is feasible to implant ICMs in a holding area with no procedure related adverse events (AE). Copyright © 2017 Indian Heart Rhythm Society. Production and hosting by Elsevier B.V. All rights reserved.
EED and KDM6B Coordinate the First Mammalian Cell Lineage Commitment To Ensure Embryo Implantation
Saha, Biswarup; Home, Pratik; Ray, Soma; Larson, Melissa; Paul, Arindam; Rajendran, Ganeshkumar; Behr, Barry
2013-01-01
The first mammalian cell lineage commitment is the formation of the trophectoderm (TE) and the inner cell mass (ICM) lineages during preimplantation development. Proper development of the TE and ICM lineages is dependent upon establishment of specific transcriptional programs. However, the epigenetic mechanisms that functionally contribute to establish TE- and ICM-specific transcriptional programs are poorly understood. Here, we show that proper development of the TE and ICM lineages is coordinated via combinatorial regulation of embryonic ectoderm development (EED) and lysine-specific demethylase 6B (KDM6B). During blastocyst formation, the relative levels of EED and KDM6B expression determine altered polycomb repressor 2 (PRC2) complex recruitment and incorporation of the repressive histone H3 lysine 27 trimethylation (H3K27Me3) mark at the chromatin domains of TE-specific master regulators CDX2 and GATA3, leading to their activation in the TE lineage and repression in the ICM lineage. Furthermore, ectopic gain of EED along with depletion of KDM6B in preimplantation mouse embryos abrogates CDX2 and GATA3 expression in the nascent TE lineage. The loss of CDX2 and GATA3 in the nascent TE lineage results in improper TE development, leading to failure in embryo implantation to the uterus. Our study delineates a novel epigenetic mechanism that orchestrates proper development of the first mammalian cell lineages. PMID:23671187
The Netherlands: Report on the Middle School.
ERIC Educational Resources Information Center
Western European Education, 1985
1985-01-01
The Commission for Renewal of the Middle School (ICM) in the Netherlands has been concentrating its efforts on introducing the middle school into the secondary school system. Described is a report published by the ICM in which the group discusses what it is proposing and problems that it is encountering. (RM)
DOT National Transportation Integrated Search
2006-04-12
Task 3 involves overall foundational research to further the understanding of various aspects of Integrated Corridor Management (ICM) and to identify integration issues needed to evaluate the feasibility of the ICM initiative. The focus of Task 3.2 a...
DOT National Transportation Integrated Search
2016-11-01
The U.S. Department of Transportation Integrated Corridor Management (ICM) Initiative aims to advance the state of the practice in transportation corridor operations to manage congestion. Through the deployment of ICM at the two selected Demonstratio...
DOT National Transportation Integrated Search
2016-12-01
The U.S. Department of Transportation Integrated Corridor Management (ICM) Initiative aims to advance the state of the practice in transportation corridor operations to manage congestion. Through the deployment of ICM at the two selected Demonstratio...
DOT National Transportation Integrated Search
2006-04-12
Task 3 involves overall foundational research to further the understanding of various aspects of Integrated Corridor Management (ICM) and to identify integration issues needed to evaluate the feasibility of the ICM initiative. The focus of Task 3.3 a...
Formation of Toxic Iodinated Disinfection By-Products from Compounds Used in Medical Imaging
Iodinated X-ray contrast media (ICM) were investigated as a source of iodine in the formation of iodo-trihalomethane (iodo-THM) and iodo-acid disinfection byproducts (DBPs), both of which are highly genotoxic and/or cytotoxic in mammalian cells. ICM are widely used at medical cen...
A Systematic Study of Kelvin-Helmholtz Instability in Galaxy Clusters
NASA Astrophysics Data System (ADS)
Su, Yuanyuan
2017-09-01
Kelvin-Helmholtz instabilities (KHI) were observed at cold fronts in a handful of clusters. KHI are predicted at all cold fronts in hydro simulation of intracluster medium (ICM). Their presence and absence provides a unique probe of transport processes in the hot plasma, which are essential to the dissipation and redistribution of the energy in the ICM. We propose the first systematic study of the prevalence of KHI in galaxy clusters by analyzing the archived Chandra observations of a sample of 50 nearby galaxy clusters. We will associate the occurrence and properties of KHI rolls with various cluster parameters such as their gas temperature and density, and put constraints on effective transport coefficients in the ICM
Metal enrichment of the intracluster medium: SN-driven galactic winds
NASA Astrophysics Data System (ADS)
Baumgartner, V.; Breitschwerdt, D.
2009-12-01
% We investigate the role of supernova (SN)-driven galactic winds in the chemical enrichment of the intracluster medium (ICM). Such outflows on galactic scales have their origin in huge star forming regions and expel metal enriched material out of the galaxies into their surroundings as observed, for example, in the nearby starburst galaxy NGC 253. As massive stars in OB-associations explode sequentially, shock waves are driven into the interstellar medium (ISM) of a galaxy and merge, forming a superbubble (SB). These SBs expand in a direction perpendicular to the disk plane following the density gradient of the ISM. We use the 2D analytical approximation by Kompaneets (1960) to model the expansion of SBs in an exponentially stratified ISM. This is modified in order to describe the sequence of SN-explosions as a time-dependent process taking into account the main-sequence life-time of the SN-progenitors and using an initial mass function to get the number of massive stars per mass interval. The evolution of the bubble in space and time is calculated analytically, from which the onset of Rayleigh-Taylor instabilities in the shell can be determined. In its further evolution, the shell will break up and high-metallicity gas will be ejected into the halo of the galaxy and even into the ICM. We derive the number of stars needed for blow-out depending on the scale height and density of the ambient medium, as well as the fraction of alpha- and iron peak elements contained in the hot gas. Finally, the amount of metals injected by Milky Way-type galaxies to the ICM is calculated confirming the importance of this enrichment process.
An Interactive Computer-Based Conferencing System to Accommodate Students' Learning Process.
ERIC Educational Resources Information Center
Saiedian, Hossein
1993-01-01
Describes an integrated computer-based conferencing and mail system called ICMS (Integrated Conferencing and Mail System) that was developed to encourage students to participate in class discussions more actively. The menu-driven user interface is explained, and ICMS's role in promoting self-assessment and critical thinking is discussed. (eight…
Integrated Classroom versus Resource Model: Academic Viability and Effectiveness.
ERIC Educational Resources Information Center
Affleck, James Q.; And Others
1988-01-01
Achievement data of elementary learning-disabled students in both an Integrated Classroom Model (ICM) and resource rooms were compared. The ICM was shown to be more cost effective than resource room programs while achieving similar results on reading, math, and language tests for learning-disabled students and on general achievement tests for…
DOT National Transportation Integrated Search
2006-04-12
Task 3 involves overall foundational research to further the understanding of various aspects of Integrated Corridor Management (ICM) and to identify integration issues needed to evaluate the feasibility of the ICM initiative. The focus of Task 3.4 a...
Predicting ICME properties at 1AU
NASA Astrophysics Data System (ADS)
Lago, A.; Braga, C. R.; Mesquita, A. L.; De Mendonça, R. R. S.
2017-12-01
Coronal mass ejections (CMEs) are among the main origins of geomagnetic disturbances. They change the properties of the near-earth interplanetary medium, enhancing some key parameters, such as the southward interplanetary magnetic field and the solar wind speed. Both quantities are known to be related to the energy transfer from the solar wind to the Earth's magnetosphere via the magnetic reconnection process. Many attempts have been made to predict the magnetic filed and the solar wind speed from coronagraph observations. However, we still have much to learn about the dynamic evolution of ICMEs as they propagate through the interplanetary space. Increased observation capability is probably needed. Among the several attempts to establish correlations between CME and ICME properties, it was found that the average CME propagation speed to 1AU is highly correlated to the ICME peak speed (Dal Lago et al, 2004). In this work, we present an extended study of such correlation, which confirms the results found in our previous study. Some suggestions on how to use this kind of results for space weather estimates are explored.
Embedded spiral patterns in the massive galaxy cluster Abell 1835
NASA Astrophysics Data System (ADS)
Ueda, S.; Kitayama, T.; Dotani, T.
2017-10-01
We report on the properties of the intracluster medium (ICM) in the central region of the massive galaxy cluster, Abell 1835, obtained with the data from the Chandra X-ray Observatory. We find distinctive spiral patterns in the cool core in the residual image of the X-ray surface brightness after its nominal profile is subtracted. The spiral patterns consist of two arms. One of them appears as positive, and the other appears as negative excesses in the residual image. Their sizes are ˜ 70 kpc and their morphologies are consistent with each other. We find that the spiral patterns extend from the cool core out to the hotter surrounding ICM. We analyze the X-ray spectra extracted from both regions. We obtain that the ICM properties are similar to those expected by gas sloshing. We also find that the ICM in the two regions of spiral patterns is near or is in pressure equilibrium. Abell 1835 may now be experiencing gas sloshing induced by an off-axis minor merger. These results have been already published (Ueda, Kitayama, & Dotani 2017, ApJ, 837, 34).
Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki
2015-01-01
Summary Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. PMID:26626177
Williams, Lucy H.; Kalantry, Sundeep; Starmer, Joshua; Magnuson, Terry
2011-01-01
Repression of Xist RNA expression is considered a prerequisite to reversal of X-chromosome inactivation (XCI) in the mouse inner cell mass (ICM), and reactivation of X-linked genes is thought to follow loss of Xist RNA coating and heterochromatic markers of inactivation, such as methylation of histone H3. We analyzed X-chromosome activity in developing ICMs and show that reactivation of gene expression from the inactive-X initiates in the presence of Xist coating and H3K27me3. Furthermore, depletion of Xist RNA coating through forced upregulation of NANOG does not result in altered reactivation kinetics. Taken together, our observations suggest that in the ICM, X-linked gene transcription and Xist coating are uncoupled. These data fundamentally alter our perception of the reactivation process and support the existence of a mechanism to reactivate Xp-linked genes in the ICM that operates independently of loss of Xist RNA and H3K27me3 from the imprinted inactive-X. PMID:21471155
Suppression of Electron Thermal Conduction in the Intracluster Medium
NASA Astrophysics Data System (ADS)
Roberg-Clark, Gareth; Drake, James; Swisdak, M.; Reynolds, Christopher S.
2017-08-01
The Intracluster Medium (ICM) contains high-temperature dilute plasma in which the quantity beta, defined as the ratio of the thermal pressure of the gas to the local magnetic field pressure, is much larger than unity. In addition, the collisional mean free path of particles in the ICM is typically large compared to the magnetic gyro-radius of individual particles. These conditions allow for the growth of robust microinstabilities that can significantly alter the transport of particles and heat along the local magnetic field line. Here we explore such an instability using driven two-dimensional Particle-In-Cell simulations of a magnetized plasma with a temperature gradient imposed at the boundaries. The system is highly unstable and develops large-amplitude magnetic fluctuations that effectively scatter the orbits of electrons crossing the simulation domain, resulting in a collisionless suppression of thermal conduction across the temperature gradient and magnetic field. The results suggest that the spontaneous development of small-scale plasma turbulence in the ICM may play a pivotal role in determining the thermal conductivity of ICM-like plasmas.
Miyamoto, Kazutaka; Akiyama, Mizuha; Tamura, Fumiya; Isomi, Mari; Yamakawa, Hiroyuki; Sadahiro, Taketaro; Muraoka, Naoto; Kojima, Hidenori; Haginiwa, Sho; Kurotsu, Shota; Tani, Hidenori; Wang, Li; Qian, Li; Inoue, Makoto; Ide, Yoshinori; Kurokawa, Junko; Yamamoto, Tsunehisa; Seki, Tomohisa; Aeba, Ryo; Yamagishi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki
2018-01-04
Direct cardiac reprogramming holds great promise for regenerative medicine. We previously generated directly reprogrammed induced cardiomyocyte-like cells (iCMs) by overexpression of Gata4, Mef2c, and Tbx5 (GMT) using retrovirus vectors. However, integrating vectors pose risks associated with insertional mutagenesis and disruption of gene expression and are inefficient. Here, we show that Sendai virus (SeV) vectors expressing cardiac reprogramming factors efficiently and rapidly reprogram both mouse and human fibroblasts into integration-free iCMs via robust transgene expression. SeV-GMT generated 100-fold more beating iCMs than retroviral-GMT and shortened the duration to induce beating cells from 30 to 10 days in mouse fibroblasts. In vivo lineage tracing revealed that the gene transfer of SeV-GMT was more efficient than retroviral-GMT in reprogramming resident cardiac fibroblasts into iCMs in mouse infarct hearts. Moreover, SeV-GMT improved cardiac function and reduced fibrosis after myocardial infarction. Thus, efficient, non-integrating SeV vectors may serve as a powerful system for cardiac regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.
Lessons Learned from 10 Years of STEREO Solar Wind Observations
NASA Astrophysics Data System (ADS)
Jian, L. K.; Russell, C. T.; Luhmann, J. G.; Galvin, A. B.
2017-12-01
We have conducted long-term observations of large-scale solar wind structures since the launch of STEREO spacecraft, specifically interplanetary CMEs (ICMEs), slow-to-fast stream interaction regions (SIRs), and interplanetary shocks. In combination with our previous observations of the same solar wind structures in 1995-2009 using Wind/ACE data and the same identification criteria, we have first studied the solar cycle variations of these structures, especially for the same phases of solar cycles 23 and 24. Attributing the shocks to the interplanetary drivers, we have statistically compared the shocks driven by ICMEs and SIRs, and explained the shocks without a clear local driver. In addition, using the longitudinal and latitudinal separations between the twin spacecraft, we have investigated the recurrence and variability of ICMEs and SIRs, and gained the critical implications for the proposed L5 mission. At last, we have associated the heliospheric current sheet (HCS) crossings with the ICMEs and SIRs, and compared the properties of SIRs with and without HCS crossings, which correspond to the helmet streamers and pseudostreamers, respectively. The findings are important constraints on the theories of slow wind origin.
Schroeder, Gunnar N.
2018-01-01
The defective in organelle trafficking/intracellular multiplication (Dot/Icm) Type IVb secretion system (T4SS) is the essential virulence factor for the intracellular life style and pathogenicity of Legionella species. Screens demonstrated that an individual L. pneumophila strain can use the Dot/Icm T4SS to translocate an unprecedented number of more than 300 proteins into host cells, where these, so called Icm/Dot-translocated substrates (IDTS) or effectors, manipulate host cell functions to the benefit of the bacteria. Bioinformatic analysis of the pan-genus genome predicts at least 608 orthologous groups of putative effectors. Deciphering the function of these effectors is key to understanding Legionella pathogenesis; however, the analysis is challenging. Substantial functional redundancy renders classical, phenotypic screening of single gene deletion mutants mostly ineffective. Here, I review experimental approaches that were successfully used to identify, validate and functionally characterize T4SS effectors and highlight new methods, which promise to facilitate unlocking the secrets of Legionella's extraordinary weapons arsenal. PMID:29354599
CHANG-ES. VII. Magnetic Outflows from the Virgo Cluster Galaxy NGC 4388
NASA Astrophysics Data System (ADS)
Damas-Segovia, A.; Beck, R.; Vollmer, B.; Wiegert, T.; Krause, M.; Irwin, J.; Weżgowiec, M.; Li, J.; Dettmar, R.-J.; English, J.; Wang, Q. D.
2016-06-01
We investigate the effects of ram pressure on the ordered magnetic field of a galaxy hosting a radio halo and strong nuclear outflows. New radio images in total and polarized intensity of the edge-on Virgo galaxy NGC 4388 were obtained within the CHANG-ES EVLA project. The unprecedented noise level reached allows us to detect striking new features of the ordered magnetic field. The nuclear outflow extends far into the halo to about 5 kpc from the center and is spatially correlated with the {{H}}α and X-ray emission. For the first time, the southern outflow is detected. Above and below both spiral arms we find extended blobs of polarized emission with an ordered field oriented perpendicular to the disk. The synchrotron lifetime of the cosmic-ray electrons (CREs) in these regions yields a mean outflow velocity of 270+/- 70 {km} {{{s}}}-1, in agreement with a galactic wind scenario. The observed symmetry of the polarized halo features in NGC 4388 excludes a compression of the halo gas by the ram pressure of the intracluster medium (ICM). The assumption of equilibrium between the halo pressure and the ICM ram pressure yields an estimate of the ICM density that is consistent with both the ICM density derived from X-ray observations and the recent Planck Sunyaev-Zel’dovich measurements. The detection of a faint radio halo around cluster galaxies could thus be used for an estimate of ICM ram pressure.
Powering of Hα Filaments by Cosmic Rays
NASA Astrophysics Data System (ADS)
Ruszkowski, Mateusz; Yang, H.-Y. Karen; Reynolds, Christopher S.
2018-05-01
Cluster cool cores possess networks of line-emitting filaments. These filaments are thought to originate via uplift of cold gas from cluster centers by buoyant active galactic nuclei (AGNs) bubbles, or via local thermal instability in the hot intracluster medium (ICM). Therefore, the filaments are either the signatures of AGN feedback or feeding of supermassive black holes. Despite being characterized by very short cooling times, the filaments are significant Hα emitters, which suggests that some process continuously powers these structures. Many cool cores host diffuse radio mini halos and AGN injecting radio plasma, suggesting that cosmic rays (CRs) and magnetic fields are present in the ICM. We argue that the excitation of Alfvén waves by CR streaming, and the replenishment of CR energy via accretion onto the filaments of high-plasma-β ICM characterized by low CR pressure support, can provide the adequate amount of heating to power and sustain the emission from these filaments. This mechanism does not require the CRs to penetrate the filaments, even if the filaments are magnetically isolated from the ambient ICM, and it may operate irrespectively of whether the filaments are dredged up from the center or form in situ in the ICM. This picture is qualitatively consistent with non-thermal line ratios seen in the cold filaments. Future X-ray observations of the iron line complex with XARM, Lynx, or Athena could help to test this model by providing constraints on the amount of CRs in the hot plasma that is cooling and accreting onto the filaments.
NASA Technical Reports Server (NTRS)
Gopalswamy, N.; Makela, P.; Akiyama, S.; Xie, H.; Yashiro, S.; Reinard, A. A.
2013-01-01
We investigated a set of 54 interplanetary coronal mass ejection (ICME) events whose solar sources are very close to the disk center (within +/- 15deg from the central meridian). The ICMEs consisted of 23 magnetic-cloud (MC) events and 31 non-MC events. Our analyses suggest that the MC and non-MC ICMEs have more or less the same eruption characteristics at the Sun in terms of soft X-ray flares and CMEs. Both types have significant enhancements in ion charge states, although the non-MC structures have slightly lower levels of enhancement. The overall duration of charge-state enhancement is also considerably smaller than that in MCs as derived from solar wind plasma and magnetic signatures. We find very good correlation between the Fe and O charge-state measurements and the flare properties such as soft X-ray flare intensity and flare temperature for both MCs and non-MCs. These observations suggest that both MC and non-MC ICMEs are likely to have a flux-rope structure and the unfavorable observational geometry may be responsible for the appearance of non-MC structures at 1 AU. We do not find any evidence for an active region expansion resulting in ICMEs lacking a flux-rope structure because the mechanism of producing high charge states and the flux-rope structure at the Sun is the same for MC and non-MC events.
NASA Astrophysics Data System (ADS)
Berdichevsky, D. B.; Richardson, I. G.; Farrugia, C. J.
2016-12-01
A Sun-Earth connection event started on December 28, 2015 in association with a M1.8 X-ray flare, commencing at 1120 UT detected by the GOES Environmental satellites, and a partial halo coronal mass ejection (CME) observed from 1200 UT by the SOHO LASCO coronographs. SDO AIA observations indicate that this event was located at W11S22. The related interplanetary coronal mass ejection (ICME) drove an above average strength fast-forward interplanetary shock observed by the Wind spacecraft at the start of Dec 31. This shock also appears to have accelerated solar energetic particles; ACE/EPAM observations show that these energetic particles peaked at shock passage. The shock driver, i.e. the ICME, appears to have impacted the Earth's environment near 17 UT on December 31. This ICME seems to have included several substructures and possibly extended to around midday on January 2, 2016. The impact of the ICME produced lively auroras at low Earth latitudes in the Western-North hemisphere. The associated strong magnetic storm was due to the leading part of the ICME maintaining a southward-oriented magnetic field for several hours. The purpose of this study is to compare and contrast this event with the April 7-11, 1997 Sun-Earth connection event previously discussed by Berdichevsky et al. (1998) which included the passage of an ICME at Earth with a persistent northward, rather than southward, magnetic-field and produced an unusually long-lasting compression of the Earth's magnetosphere. Berdichevsky, D, J.-L. Bougeret, J.-P. Delaboudinière, N. Fox, M. Kaiser, R. Lepping, D. Michels, S. Plunkett, D. Reames, M. Reiner, I. Richardson, G. Rostoker, J. Steinberg, B. Thompson, and T. von Rosenvinge, Evidence for multiple ejecta: April 7-11, 1997, ISTP Sun-Earth connection event GRL, 25, 2473-6, 1998.
Human iPSC-derived myocardium-on-chip with capillary-like flow for personalized medicine.
Ellis, Bradley W; Acun, Aylin; Can, U Isik; Zorlutuna, Pinar
2017-03-01
The heart wall tissue, or the myocardium, is one of the main targets in cardiovascular disease prevention and treatment. Animal models have not been sufficient in mimicking the human myocardium as evident by the very low clinical translation rates of cardiovascular drugs. Additionally, current in vitro models of the human myocardium possess several shortcomings such as lack of physiologically relevant co-culture of myocardial cells, lack of a 3D biomimetic environment, and the use of non-human cells. In this study, we address these shortcomings through the design and manufacture of a myocardium-on-chip (MOC) using 3D cell-laden hydrogel constructs and human induced pluripotent stem cell (hiPSC) derived myocardial cells. The MOC utilizes 3D spatially controlled co-culture of hiPSC derived cardiomyocytes (iCMs) and hiPSC derived endothelial cells (iECs) integrated among iCMs as well as in capillary-like side channels, to better mimic the microvasculature seen in native myocardium. We first fully characterized iCMs using immunostaining, genetic, and electrochemical analysis and iECs through immunostaining and alignment analysis to ensure their functionality, and then seeded these cells sequentially into the MOC device. We showed that iECs could be cultured within the microfluidic device without losing their phenotypic lineage commitment, and align with the flow upon physiological level shear stresses. We were able to incorporate iCMs within the device in a spatially controlled manner with the help of photocrosslinkable polymers. The iCMs were shown to be viable and functional within the device up to 7 days, and were integrated with the iECs. The iCMs and iECs in this study were derived from the same hiPSC cell line, essentially mimicking the myocardium of an individual human patient. Such devices are essential for personalized medicine studies where the individual drug response of patients with different genetic backgrounds can be tested in a physiologically relevant manner.
Human iPSC-derived myocardium-on-chip with capillary-like flow for personalized medicine
Ellis, Bradley W.; Acun, Aylin; Can, U. Isik; Zorlutuna, Pinar
2017-01-01
The heart wall tissue, or the myocardium, is one of the main targets in cardiovascular disease prevention and treatment. Animal models have not been sufficient in mimicking the human myocardium as evident by the very low clinical translation rates of cardiovascular drugs. Additionally, current in vitro models of the human myocardium possess several shortcomings such as lack of physiologically relevant co-culture of myocardial cells, lack of a 3D biomimetic environment, and the use of non-human cells. In this study, we address these shortcomings through the design and manufacture of a myocardium-on-chip (MOC) using 3D cell-laden hydrogel constructs and human induced pluripotent stem cell (hiPSC) derived myocardial cells. The MOC utilizes 3D spatially controlled co-culture of hiPSC derived cardiomyocytes (iCMs) and hiPSC derived endothelial cells (iECs) integrated among iCMs as well as in capillary-like side channels, to better mimic the microvasculature seen in native myocardium. We first fully characterized iCMs using immunostaining, genetic, and electrochemical analysis and iECs through immunostaining and alignment analysis to ensure their functionality, and then seeded these cells sequentially into the MOC device. We showed that iECs could be cultured within the microfluidic device without losing their phenotypic lineage commitment, and align with the flow upon physiological level shear stresses. We were able to incorporate iCMs within the device in a spatially controlled manner with the help of photocrosslinkable polymers. The iCMs were shown to be viable and functional within the device up to 7 days, and were integrated with the iECs. The iCMs and iECs in this study were derived from the same hiPSC cell line, essentially mimicking the myocardium of an individual human patient. Such devices are essential for personalized medicine studies where the individual drug response of patients with different genetic backgrounds can be tested in a physiologically relevant manner. PMID:28396709
The collaborative effect of ram pressure and merging on star formation and stripping fraction
NASA Astrophysics Data System (ADS)
Bischko, J. C.; Steinhauser, D.; Schindler, S.
2015-04-01
Aims: We investigate the effect of ram pressure stripping (RPS) on several simulations of merging pairs of gas-rich spiral galaxies. We are concerned with the changes in stripping efficiency and the time evolution of the star formation rate. Our goal is to provide an estimate of the combined effect of merging and RPS compared to the influence of the individual processes. Methods: We make use of the combined N-body/hydrodynamic code GADGET-2. The code features a threshold-based statistical recipe for star formation, as well as radiative cooling and modeling of galactic winds. In our simulations, we vary mass ratios between 1:4 and 1:8 in a binary merger. We sample different geometric configurations of the merging systems (edge-on and face-on mergers, different impact parameters). Furthermore, we vary the properties of the intracluster medium (ICM) in rough steps: the speed of the merging system relative to the ICM between 500 and 1000 km s-1, the ICM density between 10-29 and 10-27 g cm-3, and the ICM direction relative to the mergers' orbital plane. Ram pressure is kept constant within a simulation time period, as is the ICM temperature of 107 K. Each simulation in the ICM is compared to simulations of the merger in vacuum and the non-merging galaxies with acting ram pressure. Results: Averaged over the simulation time (1 Gyr) the merging pairs show a negligible 5% enhancement in SFR, when compared to single galaxies under the same environmental conditions. The SFRs peak at the time of the galaxies first fly-through. There, our simulations show SFRs of up to 20 M⊙ yr-1 (compared to 3 M⊙ yr-1 of the non-merging galaxies in vacuum). In the most extreme case, this constitutes a short-term (<50 Myr) SFR increase of 50 % over the non-merging galaxies experiencing ram pressure. The wake of merging galaxies in the ICM typically has a third to half the star mass seen in the non-merging galaxies and 5% to 10% less gas mass. The joint effect of RPS and merging, according to our simulations, is not significantly different from pure ram pressure effects.
ERIC Educational Resources Information Center
Riahi, Zahra; Pourdana, Natasha
2017-01-01
The present study attempted to investigate the possible impacts of Individual Concept Mapping (ICM) and Collaborative Concept Mapping (CCM) strategies on Iranian EFL learners' reading comprehension. For this purpose, 90 pre-intermediate female language learners ranged between 12 to 17 years of age were selected to randomly assign into ICM, CCM and…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-21
... designed to be delivered to staff at the SCA/DFE sites. The key elements from the ICMS approach that are... to design an MET approach appropriate for the SCA/DFE intervention which may differ from the... approaches, techniques, or design aspects proposed that will enhance the project? Organizational (35%) Does...
ERIC Educational Resources Information Center
Tahseen, Madiha; Cheah, Charissa S. L.
2012-01-01
The present research used the cluster analysis method to examine the acculturation of immigrant Chinese mothers (ICMs), and the demographic characteristics and psychological functioning associated with each acculturation style. The sample was comprised of 83 first-generation ICMs of preschool children residing in Maryland, United States (US).…
NASA Astrophysics Data System (ADS)
Marsch, Eckart; Yao, Shuo; Tu, Chuanyi; Schwenn, Rainer
This work presents in-situ solar wind observations of three magnetic clouds that contain certain cold high-density material, when Helios 2 was located at 0.3 AU, on 9 May 1979, 0.5 AU on 30 March 1976, and 0.7 AU on 24 December 1978, respectively. In the cold high-density regions embedded in the ICMEs we find that (1) the number density of protons is higher than in other regions inside the magnetic cloud (MC), (2)the possible existence of He+, (3) the thermal velocity distribution functions (VDFs) are more isotropic and appear to be colder than in the other regions of the MC, and the proton temperature is lower than that of the ambient plasma, (4) the associated magnetic field configuration can for all three MC events be identified as a flux rope. This cold high-density region is located at the polarity inversion line in the center of the bipolar structure of the MC magnetic field (consistent with previous work of solar observation that a prominence lies over the neutral line of the related bipolar solar magnetic field ). It is the first time that prominence ejecta are identified by both the plasma and magnetic field features inside 1 AU, and that thermal ion velocity distribution functions are used to investigate the microstate of the prominence material. Overall, our in situ observations are consistent with the three-part CME models.
Analytical Modeling and Performance Prediction of Remanufactured Gearbox Components
NASA Astrophysics Data System (ADS)
Pulikollu, Raja V.; Bolander, Nathan; Vijayakar, Sandeep; Spies, Matthew D.
Gearbox components operate in extreme environments, often leading to premature removal or overhaul. Though worn or damaged, these components still have the ability to function given the appropriate remanufacturing processes are deployed. Doing so reduces a significant amount of resources (time, materials, energy, manpower) otherwise required to produce a replacement part. Unfortunately, current design and analysis approaches require extensive testing and evaluation to validate the effectiveness and safety of a component that has been used in the field then processed outside of original OEM specification. To test all possible combination of component coupled with various levels of potential damage repaired through various options of processing would be an expensive and time consuming feat, thus prohibiting a broad deployment of remanufacturing processes across industry. However, such evaluation and validation can occur through Integrated Computational Materials Engineering (ICME) modeling and simulation. Sentient developed a microstructure-based component life prediction (CLP) tool to quantify and assist gearbox components remanufacturing process. This was achieved by modeling the design-manufacturing-microstructure-property relationship. The CLP tool assists in remanufacturing of high value, high demand rotorcraft, automotive and wind turbine gears and bearings. This paper summarizes the CLP models development, and validation efforts by comparing the simulation results with rotorcraft spiral bevel gear physical test data. CLP analyzes gear components and systems for safety, longevity, reliability and cost by predicting (1) New gearbox component performance, and optimal time-to-remanufacture (2) Qualification of used gearbox components for remanufacturing process (3) Predicting the remanufactured component performance.
NASA Astrophysics Data System (ADS)
Kolodzig, A.; Gilfanov, M.; Hutsi, G.; Sunyaev, R.
2017-10-01
Surface brightness fluctuations of the cosmic X-ray background (CXB) carry unique information about the intracluster-medium (ICM) structure of galaxy clusters and groups up to the virial radius, which is inaccessible by conventional observations of selected nearby resolved clusters. We present results of our CXB fluctuation analysis of the ˜5ks-deep, ˜9deg^2-large Chandra survey XBOOTES. We find that our fluctuation signal of resolved clusters is dominated by nearby, high-luminosity sources. The shape of its power spectrum suggests that for the brightest cluster we are sensitive to the ICM structure up to ˜2× R_{500};(˜2 Mpc/h). The energy spectrum of the fluctuation signal from resolved and unresolved clusters follows a typical ICM spectrum, where redshifts and temperatures are consistent with expectations. It also demonstrates that fluctuations of our unresolved CXB are dominated by unresolved clusters with an average z˜0.4 and T˜1.3keV, suggesting an average L_{0.5-2keV}˜3×10^{42} erg/s and M_{500}˜4×10^{13} M_{Sun}/h. Comparison with modeling suggests, that our fluctuation signal can be described with the one-halo-term of clusters and that it might be sensitive to the presence of substructures. Discrepancies between model and measurement could be utilized to improve our understanding of the ICM structure in a statistical manner. We briefly discuss the potential of larger surveys (e.g. Stripe82, XXL, SRG/eRosita).
Lee, Jivianne T; Brunworth, Joseph; Garg, Rohit; Shibuya, Terry; Keschner, David B; Vanefsky, Marc; Lin, Tina; Choi, Soohoo; Stea, Richard; Thompson, Lester D R
2013-01-01
Chronic rhinosinusitis (CRS) can lead to serious long-term adverse sequelae, particularly if left untreated. The aim of this study was to describe a series of intracranial mucoceles (ICMs) that arose in the context of longstanding CRS combined with a review of the pertinent literature. A retrospective chart review was performed on all patients who developed ICMs in association with CRS between 2003 and 2012. The clinical presentation, radiographic features, surgical approach, intraoperative findings, and patient outcome were examined in the context of a literature review. Sixty-five cases of mucoceles were identified in patients with a history of CRS, of which seven (10.8%) were intracranial. Five patients were men and two were women with a mean age of 42.1 years. Headache, facial pressure, retro-orbital pain, and visual disturbances were the most common presenting symptoms. Five of the seven had previously undergone sinonasal surgery. Imaging studies showed ICMs involving the anterior cranial fossa, two of which were bilateral. Latency between onset of CRS and ICM detection ranged from 3 to 19 years (mean, 9.4 years). All patients underwent endoscopic transnasal drainage with three also requiring a concurrent, open neurosurgical procedure to access the intracranial component. There were no postoperative complications, and no recurrences were observed after a mean follow-up of 2.7 years. ICMs presenting as delayed complications of CRS are uncommon and constitute a surgical challenge. Open, external skull base approaches used in conjunction with transnasal endoscopic drainage procedures may be necessary to achieve successful management of this rare condition.
Suzurikawa, Jun; Tani, Toshiki; Nakao, Masayuki; Tanaka, Shigeru; Takahashi, Hirokazu
2009-12-01
Recently, intrinsic signal optical imaging has been widely used as a routine procedure for visualizing cortical functional maps. We do not, however, have a well-established imaging method for visualizing cortical functional connectivity indicating spatio-temporal patterns of activity propagation in the cerebral cortex. In the present study, we developed a novel experimental setup for investigating the propagation of neural activities combining the intracortical microstimulation (ICMS) technique with voltage sensitive dye (VSD) imaging, and demonstrated the feasibility of this setup applying to the measurement of time-dependent intra- and inter-hemispheric spread of ICMS-evoked excitation in the cat visual cortices, areas 17 and 18. A microelectrode array for the ICMS was inserted with a specially designed easy-to-detach electrode holder around the 17/18 transition zones (TZs), where the left and right hemispheres were interconnected via the corpus callosum. The microelectrode array was stably anchored in agarose without any holder, which enabled us to visualize evoked activities even in the vicinity of penetration sites as well as in a wide recording region that covered a part of both hemispheres. The VSD imaging could successfully visualize ICMS-evoked excitation and subsequent propagation in the visual cortices contralateral as well as ipsilateral to the ICMS. Using the orientation maps as positional references, we showed that the activity propagation patterns were consistent with previously reported anatomical patterns of intracortical and interhemispheric connections. This finding indicates that our experimental system can serve for the investigation of cortical functional connectivity.
ICME Identification from Solar Wind Ion Measurements
NASA Astrophysics Data System (ADS)
Shinde, A.; Russell, C. T.
2002-12-01
In the solar corona, coronal mass ejections are generally identified as an outward moving density enhancement. At 1AU their interplanetary counterparts are generally identified as a twisted and enhanced magnetic structures lasting of the order of a day. In an effort to better classify ICMEs we attempt herein to identify their start and stop time by their signatures in ion data obtained by Wind and ACE solar wind instruments. We search for periods in which the solar wind speed is linearly decreasing and the ion temperature is cool, with a thermal speed of less than 20 km/s. We required a simultaneous enhanced magnetic field but required no special signature of this enhancement. We compared these identifications with those made by D. Larson and R. P. Lepping and published on the web. Of 14 events, 4 were not identified as ICMEs by either Larson or Lepping. Similarly they identified many events that we did not, often because the ion temperature was above our classification threshold, but also because there was no clear speed decrease as the event crossed the spacecraft as would signal an expanding structure. The best events in Larson and Lepping's list had a rate of speed decrease that, if due to the expansion of the structure with distance from the sun moving at the average observed speed, would bring the structure from zero width to the present size in its calculated transit time. We conclude that cold ion temperatures and a declining solar wind velocity are frequent ICME signatures but are neither necessary nor sufficient for ICME identification.
2009-09-01
To characterise the training environment in ICM across Europe, with a particular focus on factors influencing competency-based training. A cross-sectional web-based survey completed by the national coordinator for the CoBaTrICE (Competency-Based Training in Intensive Care medicinE) programme in each of 28 European countries. Since the last survey in 2004, 50% of EU countries have modified their training programmes. Seven have already adopted the CoBaTrICE programme since its completion in 2006. Multidisciplinary access to ICM training ('supraspeciality' model) is available in 57%, most commonly as a 2-year training programme. National examinations are held by 26 (93%); in 24 (86%) this is a mandatory exit exam; ten use the European Diploma of Intensive Care (EDIC). A formal national system for quality assurance of ICM training exists in only 18 (64%) countries. National standards for approving hospitals as training centres vary widely. In 29% there is no designated specialist with responsibility for training at the local level. Time for teaching was cited as inadequate by 93% of respondents; only 21% of trainers receive contractual recognition for their work. In 39% there is no protected teaching time for trainees. Half of countries surveyed have no formal system for workplace-based assessment of competence of trainees. There is considerable diversity in pedagogic structures, processes and quality assurance of ICM across Europe. National training organisations should develop common standards for quality assurance, health systems need to invest in educator support, and the EU should facilitate harmonisation by recognising ICM as a multidisciplinary speciality.
ERIC Educational Resources Information Center
Atalay, Özlem; Kahveci, Nihat Gürel
2015-01-01
This experimental study examines the effects of Integrated Curriculum Model (ICM) on 4th grade elementary gifted and talented students' academic achievement, creativity and critical thinking (Control Group N= 10, Experimental Group N= 11) in the social studies classroom context, in Istanbul, Turkey. Integrated Curriculum Model was utilized to…
An Observational Study of the Lecture Delivery Style Characteristics of High and Low Rated Lectures.
ERIC Educational Resources Information Center
Albanese, Mark A.; And Others
This study identifies distinguishing differences in lecture delivery styles of lecturers rated by students in a large multi-instructor course: the Introduction to Clinical Medicine Course (ICM). The 20 lowest- and highest-rated lecturers of the 1982 and 1983 ICM courses served as the target group. Non-student raters observing the 1984 lectures…
Seong, Han Yu; Cho, Ji Young; Choi, Byeong Sam; Min, Joong Kee; Kim, Yong Hwan; Roh, Sung Woo; Kim, Jeong Hoon; Jeon, Sang Ryong
2014-04-01
Intracortical microstimulation (ICMS) is a technique that was developed to derive movement representation of the motor cortex. Although rats are now commonly used in motor mapping studies, the precise characteristics of rat motor map, including symmetry and consistency across animals, and the possibility of repeated stimulation have not yet been established. We performed bilateral hindlimb mapping of motor cortex in six Sprague-Dawley rats using ICMS. ICMS was applied to the left and the right cerebral hemisphere at 0.3 mm intervals vertically and horizontally from the bregma, and any movement of the hindlimbs was noted. The majority (80%± 11%) of responses were not restricted to a single joint, which occurred simultaneously at two or three hindlimb joints. The size and shape of hindlimb motor cortex was variable among rats, but existed on the convex side of the cerebral hemisphere in all rats. The results did not show symmetry according to specific joints in each rats. Conclusively, the hindlimb representation in the rat motor cortex was conveniently mapped using ICMS, but the characteristics and inter-individual variability suggest that precise individual mapping is needed to clarify motor distribution in rats.
Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki
2015-12-08
Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Radial distribution of metals in the hot intra-cluster medium as observed by XMM-Newton
NASA Astrophysics Data System (ADS)
Mernier, F.; de Plaa, J.; Kaastra, J.; Zhang, Y.; Akamatsu, H.; Gu, L.; Mao, J.; Pinto, C.; Reiprich, T.; Sanders, J.
2017-10-01
The hot intra-cluster medium (ICM), which accounts for ˜80% of the baryonic content in galaxy clusters, is rich in heavy elements. Since these metals have been produced by stars and supernovae before enriching the ICM, measuring metal abundance distributions in galaxy clusters and groups provides essential clues to determine the main astrophysical source(s) and epoch(s) of the ICM enrichment. In this work, we present radial abundance profiles averaged over 44 nearby cool-core galaxy clusters, groups, and massive ellipticals (the CHEERS sample) measured with XMM-Newton EPIC. While most of the Fe of the Universe is thought to be synthesised by Type Ia supernovae (SNIa), lighter elements, such as O, Mg, Si or S, are mostly produced by core-collapse supernovae (SNcc). The derived average radial profiles of the O, Mg, Si, S, Ar, Ca, Fe, and Ni abundances out to ˜ 0.5 r_{500} allows us to accurately compare the distributions of SNIa and SNcc products in clusters and groups. By comparing our results with recent chemo-dynamical simulations, we discuss the interpretation of the profiles in the context of early and late ICM enrichments.
Reprogramming of mouse fibroblasts into cardiomyocyte-like cells in vitro.
Qian, Li; Berry, Emily C; Fu, Ji-dong; Ieda, Masaki; Srivastava, Deepak
2013-06-01
Cardiac fibroblasts can be reprogrammed to cardiomyocyte-like cells by the introduction of three transcription factors: Gata4, Mef2c and Tbx5 (collectively referred to here as GMT). Resident cardiac fibroblasts can be converted in vivo into induced cardiomyocyte-like cells (iCMs) that closely resemble endogenous cardiomyocytes and electrically integrate with the host myocardium. In contrast, in vitro reprogramming yields many partially reprogrammed iCMs, with a few that reprogram fully into contracting myocytes (~3 out of 10,000 GMT-transduced cells). iCMs can be observed as early as 3 d after viral infection, and they continue to mature over 2 months before beating is observed. Despite the success of multiple groups, the inefficiency of in vitro reprogramming has made it challenging for others. However, given the advantages of in vitro iCMs for performing mechanistic studies and, if refined, for testing drugs or small molecules for personalized medicine and modeling cardiac disease in a dish, it is important to standardize the protocol to improve reproducibility and enhance the technology further. Here we describe a detailed step-by-step protocol for in vitro cardiac reprogramming using retroviruses encoding GMT.
Subgrid Modeling of AGN-driven Turbulence in Galaxy Clusters
NASA Astrophysics Data System (ADS)
Scannapieco, Evan; Brüggen, Marcus
2008-10-01
Hot, underdense bubbles powered by active galactic nuclei (AGNs) are likely to play a key role in halting catastrophic cooling in the centers of cool-core galaxy clusters. We present three-dimensional simulations that capture the evolution of such bubbles, using an adaptive mesh hydrodynamic code, FLASH3, to which we have added a subgrid model of turbulence and mixing. While pure hydro simulations indicate that AGN bubbles are disrupted into resolution-dependent pockets of underdense gas, proper modeling of subgrid turbulence indicates that this is a poor approximation to a turbulent cascade that continues far beyond the resolution limit. Instead, Rayleigh-Taylor instabilities act to effectively mix the heated region with its surroundings, while at the same time preserving it as a coherent structure, consistent with observations. Thus, bubbles are transformed into hot clouds of mixed material as they move outward in the hydrostatic intracluster medium (ICM), much as large airbursts lead to a distinctive "mushroom cloud" structure as they rise in the hydrostatic atmosphere of Earth. Properly capturing the evolution of such clouds has important implications for many ICM properties. In particular, it significantly changes the impact of AGNs on the distribution of entropy and metals in cool-core clusters such as Perseus.
Beyond Hydrodynamic Modeling of AGN Heating in Galaxy Clusters
NASA Astrophysics Data System (ADS)
Yang, Hsiang-Yi Karen
Clusters of galaxies hold a unique position in hierarchical structure formation - they are both powerful cosmological probes and excellent astrophysical laboratories. Accurate modeling of the cluster properties is crucial for reducing systematic uncertainties in cluster cosmology. However, theoretical modeling of the intracluster medium (ICM) has long suffered from the "cooling-flow problem" - clusters with short central times or cool cores (CCs) are predicted to host massive inflows of gas that are not observed. Feedback from active galactic nuclei (AGN) is by far the most promising heating mechanism to counteract radiative cooling. Recent hydrodynamic simulations have made remarkable progress reproducing properties of the CCs. However, there remain two major questions that cannot be probed using purely hydrodynamic models: (1) what are the roles of cosmic rays (CRs)? (2) how is the existing picture altered when the ICM is modeled as weakly collisional plasma? We propose to move beyond limitations of pure hydrodynamics and progress toward a complete understanding of how AGN jet-inflated bubbles interact with their surroundings and provide heat to the ICM. Our objectives include: (1) understand how CR-dominated bubbles heat the ICM; (2) understand bubble evolution and sound-wave dissipation in the ICM with different assumptions of plasma properties, e.g., collisionality of the ICM, with or without anisotropic transport processes; (3) Develop a subgrid model of AGN heating that can be adopted in cosmological simulations based on state-of-the-art isolated simulations. We will use a combination of analytical calculations and idealized simulations to advance our understanding of each individual physical process. We will then perform the first three-dimensional (3D) magnetohydrodynamic (MHD) simulations of self-regulated AGN feedback with relevant CR and anisotropic transport processes in order to quantify the amount and distribution of heating from the AGN. Our proposed work will elucidate the poorly understood CR and anisotropic transport processes in the weakly collisional ICM and shed light on the long-standing mystery of AGN heating in CC clusters. Our investigation, which incorporates plasma effects into fluid models and provides physical foundation for cosmological simulations, will serve as an important bridge between physics on both micro and macro scales. This study will enable robust modeling of the radio-mode feedback of AGN in cosmological simulations of cluster and galaxy formation. It will also directly impact observational studies of clusters including NASA missions such as Chandra, XMM-Newton, Astro-H/Hitomi, Fermi, HST, and Planck.
ERIC Educational Resources Information Center
Feng, Annie Xuemei; Van Tassel-Baska, Joyce; Quek, Chwee; Bai, Wenyu; O'Neill, Barbara
2005-01-01
This study examines the effects over time of implementing the William and Mary language arts and science curriculum for gifted learners designed around the Integrated Curriculum Model (ICM) in one suburban school district. It also analyzes stakeholders' perceptions of the effectiveness of the curriculum. Findings suggest that gifted student…
Sung, Iel-Yong; Son, Han-Na; Ullah, Imran; Bharti, Dinesh; Park, Ju-Mi; Cho, Yeong-Cheol; Byun, June-Ho; Kang, Young-Hoon; Sung, Su-Jin; Kim, Jong-Woo; Rho, Gyu-Jin; Park, Bong-Wook
2016-01-01
The purpose of the present study was to investigate the in vitro cardiomyogenic differentiation potential of human dental follicle-derived stem cells (DFCs) under the influence of suberoylanilide hydroxamic acid (SAHA), a member of the histone deacetylase inhibitor family, and analyze the in vivo homing capacity of induced cardiomyocytes (iCMs) when transplanted systemically. DFCs from extracted wisdom teeth showed mesenchymal stem cell (MSC) characteristics such as plate adherent growing, expression of MSC markers (CD44, CD90, and CD105), and mesenchymal lineage-specific differentiation potential. Adding SAHA to the culture medium induced the successful in vitro differentiation of DFCs into cardiomyocytes. These iCMs expressed cardiomyogenic markers, including alpha-smooth muscle actin (α-SMA), cardiac muscle troponin T (TNNT2), Desmin, and cardiac muscle alpha actin (ACTC1) , at both the mRNA and protein level. For the assessment of homing capacity, PKH26 labeled iCMs were intraperitoneally injected (1×10 6 cells in 100 µL of PBS) into the experimental mice, and the ratios of PKH26 positive cells to the total number of injected cells, in multiple organs were determined. The calculated homing ratios, 14 days after systemic cell transplantation, were 5.6 ± 1.0%, 3.6 ± 1.1%, and 11.6 ± 2.7% in heart, liver, and kidney respectively. There was no difference in the serum levels of interleukin-2 and interleukin-10 at 14 days after transplantation, between the experimental (iCM injected) and control (no injection or PBS injection) groups. These results demonstrate that DFCs can be an excellent source for cardiomyocyte differentiation and regeneration. Moreover, the iCMs can be delivered into heart muscle via systemic administration without eliciting inflammatory or immune response. This can serve as the pilot study for further investigations into the in vitro cardiomyogenic differentiation potential of DFCs under the influence of SAHA and the in vivo homing capacity of the iCMs into the heart muscle, when injected systemically.
Muser, Daniele; Liang, Jackson J; Pathak, Rajeev K; Magnani, Silvia; Castro, Simon A; Hayashi, Tatsuya; Garcia, Fermin C; Supple, Gregory E; Riley, Michael P; Lin, David; Dixit, Sanjay; Zado, Erica S; Frankel, David S; Callans, David J; Marchlinski, Francis E; Santangeli, Pasquale
2017-07-01
The goal of this study was to determine the long-term outcomes of catheter ablation (CA) of electrical storm in patients with nonischemic dilated cardiomyopathy (NIDCM) compared with patients with ischemic cardiomyopathy (ICM). CA of ventricular tachycardia (VT) electrical storm has been shown to improve VT-free survival in patients with ICM. Data on the outcomes of CA of electrical storm in patients with NIDCM are insufficient. The study included 267 consecutive patients with NIDCM (n = 71; ejection fraction 32 ± 14%) and ICM (n = 196; ejection fraction 28 ± 12%). Endo-epicardial CA was performed in 59 (22%) patients. CA was guided by activation and entrainment mapping for tolerated VT and pacemapping/targeting of abnormal substrate for unmappable VT. After a median follow-up of 45 (25th to 75th percentile: 9 to 71) months and 1 (25th to 75th percentile: 1 to 8) procedures, 76 (29%) patients died, 25 (9%) underwent heart transplantation, 87 (33%) experienced VT recurrence, and 13 (5%) had recurrence of electrical storm. Overall VT-free survival was 54% at 60 months (48% in NIDCM and 54% in ICM; p = 0.128). Patients with VT recurrence experienced a median of 2 (1 to 10) VT episodes in the 5 (1 to 14) months after the procedure. Death/transplantation-free survival was 62% at 60 months (53% in NIDCM and 64% in ICM; p = 0.067). Persistent inducibility of any VT with cycle length ≥250 ms at programmed stimulation at the end of the procedure was the only independent predictor of VT recurrence. Low ejection fraction, New York Heart Association functional class, and VT recurrence over follow-up independently predicted death/transplantation. CA of electrical storm was similarly effective in patients with NIDCM compared with patients with ICM, with elimination of electrical storm in 95% of cases and achievement of complete VT control at long-term follow-up in most patients. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Goll, Gernot; Löhneysen, Hilbert v.; Loidl, Alois; Pruschke, Thomas; Richter, Manuel; Schultz, Ludwig; Sürgers, Christoph; Wosnitza, Jochen
2010-04-01
The International Conference on Magnetism 2009 (ICM 2009) was held in Karlsruhe, Germany, from 26 to 31 July 2009. Previous conferences in this series were organized in Edinburgh, UK (1991), Warsaw, Poland (1994), Cairns, Australia (1997), Recife, Brazil (2000), Rome, Italy (2003), and Kyoto, Japan (2006). As with previous ICM conferences, the annual Conference on Strongly Correlated Electron Systems (SCES) was integrated into ICM 2009. The topics presented at ICM 2009 were strongly correlated electron systems, quantum and classical spin systems, magnetic structures and interactions, magnetization dynamics and micromagnetics, spin-dependent transport, spin electronics, magnetic thin films, particles and nanostructures, soft and hard magnetic materials and their applications, novel materials and device applications, magnetic recording and memories, measuring techniques and instrumentation, as well as interdisciplinary topics. We are grateful to the International Advisory Committee for their help in coordinating an attractive program encompassing practically all aspects of magnetism, both experimentally and theoretically. The Program Committee comprised A Loidl, Germany (Chair), M A Continentino, Brazil, D E Dahlberg, USA, D Givord, France, G Güntherodt, Germany, H Mikeska, Germany, D Kaczorowski, Poland, Ching-Ray Chang, South Korea, I Mertig, Germany, D Vollhardt, Germany, and E F Wassermann, Germany. E F Wassermann was also head of the National Organizing Committee. His help is gratefully acknowledged. The scientific program started on Monday 27 July 2009 with opening addresses by the Conference Chairman, the Deputy Mayor of Karlsruhe, Ms M Mergen and the Chairman of the Executive Board of Forschungszentrum Karlsruhe, E Umbach. ICM 2009 was attended by the Nobel Laureates P W Anderson, A Fert and P Grünberg who gave plenary talks. A special highlight was the presentation of the Magnetism Award and Néel Medal to S S P Parkin who also presented his newest results in a plenary talk. The IUPAP Young Scientist Award on Magnetism was presented to S O Valenzuela, E Saitoh and T Kimura. The sessions were held in the Stadthalle Karlsuhe operated by the Karlsruher Messe- und Kongress-GmbH (KMK). We are grateful to Ms M Mäkelburg (KMK) for organizing the conference site impeccably. The conference was attended by 1552 participants from 48 countries, with approximately 50 per cent from overseas. The program entailed six plenary talks (40 min each), with 16 half-plenary and 41 invited talks (30 min) and 298 contributed talks (15 min). Extended lunch breaks and evenings were devoted to poster sessions, with a total of 1632 posters presented. All submitted papers were reviewed in order to meet the standards of Journal of Physics: Condensed Matter and Journal of Physics: Conference Series. The referees made every effort to ensure that the manuscripts submitted for publication in the proceedings reached a high standard. The tremendous work in organizing the paper classification and refereeing procedures was carried out by the Publication Committee which was headed by J Wosnitza, and comprised, in addition, Th Pruschke, M Richter and L Schultz. We also thank G Douglas, IOP Publishing, for his support with the preparation of these proceedings. We gratefully acknowledge the help of L Behrens, E Maass and B Schelske in preparing the conference. The conference would not have been possible without G Goll (conference secretary) and C Sürgers (finances). I thank them for their help. Thanks also go to the many students in blue t-shirts who helped to manage the conference. We are grateful for the financial support of Universität Karlsruhe (TH) and Forschungszentrum Karlsruhe (both institutions merged to form the Karlsruhe Institute of Technology (KIT) as of 1 October 2009), the International Union of Pure and Applied Physics (IUPAP), the City of Karlsruhe, Deutsche Forschungsgemeinschaft (German National Science Foundation), and the European Commission through COST MPNS Action P16. Hilbert v Löhneysen Conference Chairman of ICM 2009 Karlsruhe Institute of Technology, Germany
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Jiaying; Liang, Biao; Zhang, Weizhao
In this work, a multiscale modeling framework for CFRP is introduced to study hierarchical structure of CFRP. Four distinct scales are defined: nanoscale, microscale, mesoscale, and macroscale. Information at lower scales can be passed to higher scale, which is beneficial for studying effect of constituents on macroscale part’s mechanical property. This bottom-up modeling approach enables better understanding of CFRP from finest details. Current study focuses on microscale and mesoscale. Representative volume element is used at microscale and mesoscale to model material’s properties. At microscale, unidirection CFRP (UD) RVE is used to study properties of UD. The UD RVE can bemore » modeled with different volumetric fraction to encounter non-uniform fiber distribution in CFRP part. Such consideration is important in modeling uncertainties at microscale level. Currently, we identified volumetric fraction as the only uncertainty parameters in UD RVE. To measure effective material properties of UD RVE, periodic boundary conditions (PBC) are applied to UD RVE to ensure convergence of obtained properties. Properties of UD is directly used at mesoscale woven RVE modeling, where each yarn is assumed to have same properties as UD. Within woven RVE, there can be many potential uncertainties parameters to consider for a physical modeling of CFRP. Currently, we will consider fiber misalignment within yarn and angle between wrap and weft yarns. PBC is applied to woven RVE to calculate its effective material properties. The effect of uncertainties are investigated quantitatively by Gaussian process. Preliminary results of UD and Woven study are analyzed for efficacy of the RVE modeling. This work is considered as the foundation for future multiscale modeling framework development for ICME project.« less
NASA Astrophysics Data System (ADS)
Abrahams, Rachel
2017-06-01
Intermediate alloy steels are widely used in applications where both high strength and toughness are required for extreme/dynamic loading environments. Steels containing greater than 10% Ni-Co-Mo are amongst the highest strength martensitic steels, due to their high levels of solution strengthening, and preservation of toughness through nano-scaled secondary hardening, semi-coherent hcp-M2 C carbides. While these steels have high yield strengths (σy 0.2 % >1200 MPa) with high impact toughness values (CVN@-40 >30J), they are often cost-prohibitive due to the material and processing cost of nickel and cobalt. Early stage-I steels such as ES-1 (Eglin Steel) were developed in response to the high cost of nickel-cobalt steels and performed well in extreme shock environments due to the presence of analogous nano-scaled hcp-Fe2.4 C epsilon carbides. Unfortunately, the persistence of W-bearing carbides limited the use of ES-1 to relatively thin sections. In this study, we discuss the background and accelerated development cycle of AF96, an alternative Cr-Mo-Ni-Si stage-I temper steel using low-cost heuristic and Integrated Computational Materials Engineering (ICME)-assisted methods. The microstructure of AF96 was tailored to mimic that of ES-1, while reducing stability of detrimental phases and improving ease of processing in industrial environments. AF96 is amenable to casting and forging, deeply hardenable, and scalable to 100,000 kg melt quantities. When produced at the industrial scale, it was found that AF96 exhibits near-statistically identical mechanical properties to ES-1 at 50% of the cost.
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Murthy, P.; Bednarcyk, B. A.; Pineda, E. J.
2015-01-01
A fully coupled deformation and damage approach to modeling the response of composite materials and composite laminates is presented. It is based on the semi--analytical generalized method of cells (GMC) micromechanics model as well as its higher fidelity counterpart, HFGMC, both of which provide closed-form constitutive equations for composite materials as well as the micro scale stress and strain fields in the composite phases. The provided constitutive equations allow GMC and HFGMC to function within a higher scale structural analysis (e.g., finite element analysis or lamination theory) to represent a composite material point, while the availability of the micro fields allow the incorporation of lower scale sub-models to represent local phenomena in the fiber and matrix. Further, GMC's formulation performs averaging when applying certain governing equations such that some degree of microscale field accuracy is surrendered in favor of extreme computational efficiency, rendering the method quite attractive as the centerpiece in a integrated computational material engineering (ICME) structural analysis; whereas HFGMC retains this microscale field accuracy, but at the price of significantly slower computational speed. Herein, the sensitivity of deformation and the fatigue life of graphite/epoxy PMC composites, with both ordered and disordered microstructures, has been investigated using this coupled deformation and damage micromechanics based approach. The local effects of fiber breakage and fatigue damage are included as sub-models that operate on the microscale for the individual composite phases. For analysis of laminates, classical lamination theory is employed as the global or structural scale model, while GMC/HFGMC is embedded to operate on the microscale to simulate the behavior of the composite material within each laminate layer. A key outcome of this study is the statistical influence of microstructure and micromechanics idealization (GMC or HFGMC) on the overall accuracy of unidirectional and laminated composite deformation and fatigue response.
NASA Astrophysics Data System (ADS)
Höller, Harald; Stöckl, Josef; Benson, Andrew; Haider, Markus; Steinhauser, Dominik; Lovisari, Lorenzo; Pranger, Florian
2014-09-01
We present a simulation setup for studying the dynamical and chemical evolution of the intracluster medium (ICM) and analyze a sample of 12 galaxy clusters that are diverse both kinetically (pre-merger, merging, virialized) and in total mass (Mvir = 1.17 × 1014 - 1.06 × 1015 M⊙). We analyzed the metal mass fraction in the ICM as a function of redshift and discuss radial trends as well as projected 2D metallicity maps. The setup combines high mass resolution N-body simulations with the semi-analytical galaxy formation model Galacticus for consistent treatment of the subgrid physics (such as galactic winds and ram-pressure stripping) in the cosmological hydrodynamical simulations. The interface between Galacticus and the hydro simulation of the ICM with FLASH is discussed with respect to observations of star formation rate histories, radial star formation trends in galaxy clusters, and the metallicity at different redshifts. As a test for the robustness of the wind model, we compare three prescriptions from different approaches. For the wind model directly taken from Galacticus, we find mean ICM metallicities between 0.2-0.8 Z⊙ within the inner 1 Mpc at z = 0. The main contribution to the metal mass fraction comes from galactic winds. The outflows are efficiently mixed in the ICM, leading to a steady homogenization of metallicities until ram-pressure stripping becomes effective at low redshifts. We find a very peculiar and yet common drop in metal mass fractions within the inner ~200 kpc of the cool cores, which is due to a combination of wind suppression by outer pressure within our model and a lack of mixing after the formation of these dense regions. Appendix A is available in electronic form at http://www.aanda.org
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosello-Lleti, Esther; Rivera, Miguel; Cortes, Raquel
Highlights: Black-Right-Pointing-Pointer Heart failure alters nucleolar morphology and organization. Black-Right-Pointing-Pointer Nucleolin expression is significant increased in ischemic and dilated cardiomyopathy. Black-Right-Pointing-Pointer Ventricular function of heart failure patients was related with nucleolin levels. -- Abstract: We investigate for the first time the influence of heart failure (HF) on nucleolar organization and proteins in patients with ischemic (ICM) or dilated cardiomyopathy (DCM). A total of 71 human hearts from ICM (n = 38) and DCM (n = 27) patients, undergoing heart transplantation and control donors (n = 6), were analysed by western-blotting, RT-PCR and cell biology methods. When we compared protein levelsmore » according to HF etiology, nucleolin was increased in both ICM (117%, p < 0.05) and DCM (141%, p < 0.01). Moreover, mRNA expression were also upregulated in ICM (1.46-fold, p < 0.05) and DCM (1.70-fold, p < 0.05. Immunofluorescence studies showed that the highest intensity of nucleolin was into nucleolus (p < 0.0001), and it was increased in pathological hearts (p < 0.0001). Ultrastructure analysis by electron microscopy showed an increase in the nucleus and nucleolus size in ICM (17%, p < 0.05 and 131%, p < 0.001) and DCM (56%, p < 0.01 and 69%, p < 0.01). Nucleolar organization was influenced by HF irrespective of etiology, increasing fibrillar centers (p < 0.001), perinucleolar chromatin (p < 0.01) and dense fibrillar components (p < 0.01). Finally, left ventricular function parameters were related with nucleolin levels in ischemic hearts (p < 0.0001). The present study demonstrates that HF influences on morphology and organization of nucleolar components, revealing changes in the expression and in the levels of nucleolin protein.« less
Whisker motor cortex reorganization after superior colliculus output suppression in adult rats.
Veronesi, Carlo; Maggiolini, Emma; Franchi, Gianfranco
2013-10-01
The effect of unilateral superior colliculus (SC) output suppression on the ipsilateral whisker motor cortex (WMC) was studied at different time points after tetrodotoxin and quinolinic acid injections, in adult rats. The WMC output was assessed by mapping the movement evoked by intracortical microstimulation (ICMS) and by recording the ICMS-evoked electromyographic (EMG) responses from contralateral whisker muscles. At 1 h after SC injections, the WMC showed: (i) a strong decrease in contralateral whisker sites, (ii) a strong increase in ipsilateral whisker sites and in ineffective sites, and (iii) a strong increase in threshold current values. At 6 h after injections, the WMC size had shrunk to 60% of the control value and forelimb representation had expanded into the lateral part of the normal WMC. Thereafter, the size of the WMC recovered, returning to nearly normal 12 h later (94% of control) and persisted unchanged over time (1-3 weeks). The ICMS-evoked EMG response area decreased at 1 h after SC lesion and had recovered its baseline value 12 h later. Conversely, the latency of ICMS-evoked EMG responses had increased by 1 h and continued to increase for as long as 3 weeks following the lesion. These findings provide physiological evidence that SC output suppression persistently withdrew the direct excitatory drive from whisker motoneurons and induced changes in the WMC. We suggest that the changes in the WMC are a form of reversible short-term reorganization that is induced by SC lesion. The persistent latency increase in the ICMS-evoked EMG response suggested that the recovery of basic WMC excitability did not take place with the recovery of normal explorative behaviour. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Yao, Dongyuan; Lavigne, Gilles J.; Lee, Jye-Chang; Adachi, Kazunori; Sessle, Barry J.
2013-01-01
Study Objective: To test the hypothesis that the reflex and corticobulbar motor excitability of jaw muscles is reduced during sleep. Design: Polysomnographic recordings in the electrophysiological study. Setting: University sleep research laboratories. Participants and Interventions: The reflex and corticobulbar motor excitability of jaw muscles was determined during the quiet awake state (QW) and quiet sleep (QS) in monkeys (n = 4). Measurements and Results: During QS sleep, compared to QW periods, both tongue stimulation-evoked jaw-opening reflex peak and root mean square amplitudes were significantly decreased with stimulations at 2-3.5 × thresholds (P < 0.001). The jaw-opening reflex latency during sleep was also significantly longer than during QW. Intracortical microstimulation (ICMS) within the cortical masticatory area induced rhythmic jaw movements at a stable threshold (≤ 60 μA) during QW; but during QS, ICMS failed to induce any rhythmic jaw movements at the maximum ICMS intensity used, although sustained jaw-opening movements were evoked at significantly increased threshold (P < 0.001) in one of the monkeys. Similarly, during QW, ICMS within face primary motor cortex induced orofacial twitches at a stable threshold (≤ 35 μA), but the ICMS thresholds were elevated during QS. Soon after the animal awoke, rhythmic jaw movements and orofacial twitches could be evoked at thresholds similar to those before QS. Conclusions: The results suggest that the excitability of reflex and corticobulbar-evoked activity in the jaw motor system is depressed during QS. Citation: Yao D; Lavigne GJ; Lee JC; Adachi K; Sessle BJ. Jaw-opening reflex and corticobulbar motor excitability changes during quiet sleep in non-human primates. SLEEP 2013;36(2):269-280. PMID:23372275
Avivi-Arber, Limor; Lee, Jye-Chang; Sessle, Barry J
2010-04-01
Loss of teeth is associated with changes in somatosensory inputs and altered patterns of mastication, but it is unclear whether tooth loss is associated with changes in motor representations within face sensorimotor cortex of rats. We used intracortical microstimulation (ICMS) and recordings of cortically evoked muscle electromyographic (EMG) activities to test whether changes occur in the ICMS-defined motor representations of the left and right jaw muscles [masseter, anterior digastric (LAD, RAD)] and tongue muscle [genioglossus (GG)] within the cytoarchitectonically defined face primary motor cortex (face-M1) and adjacent face primary somatosensory cortex (face-S1) 1 week following extraction of the right mandibular incisor in anesthetized (ketamine-HCl) adult male Sprague-Dawley rats. Under local and general anesthesia, an "extraction" group (n = 8) received mucoalveolar bone surgery and extraction of the mandibular right incisor. A "sham-extraction" group (n = 6) received surgery with no extraction. A "naive" group (n = 6) had neither surgery nor extraction. Data were compared by using mixed-model repeated-measures ANOVA. Dental extraction was associated with a significantly increased number of sites within face-M1 and face-S1 from which ICMS evoked RAD EMG activities, a lateral shift of the RAD and LAD centers of gravity within face-M1, shorter onset latencies of ICMS-evoked GG activities within face-M1 and face-S1, and an increased number of sites within face-M1 from which ICMS simultaneously evoked RAD and GG activities. Our novel findings suggest that dental extraction may be associated with significant neuroplastic changes within the rat's face-M1 and adjacent face-S1 that may be related to the animal's ability to adapt to the altered oral state. (c) 2009 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Fogarty, Kevin; Postman, Marc; Larson, Rebecca; Donahue, Megan; Moustakas, John
2017-09-01
We study the nature of feedback mechanisms in the 11 CLASH brightest cluster galaxies (BCGs) that exhibit extended ultraviolet and nebular line emission features. We estimate star formation rates (SFRs), dust masses, and starburst durations using a Bayesian photometry-fitting technique that accounts for both stellar and dust emission from the UV through far-IR. By comparing these quantities to intracluster medium (ICM) cooling times and freefall times derived from X-ray observations and lensing estimates of the cluster mass distribution, we discover a tight relationship between the BCG SFR and the ICM cooling time to freefall time ratio, {t}{cool}/{t}{ff}, with an upper limit on the intrinsic scatter of 0.15 dex. Furthermore, starburst durations may correlate with ICM cooling times at a radius of 0.025 {R}500, and the two quantities converge upon reaching the gigayear regime. Our results provide a direct observational link between the thermodynamical state of the ICM and the intensity and duration of BCG star formation activity, and appear consistent with a scenario where active galactic nuclei induce condensation of thermally unstable ICM overdensities that fuel long-duration (>1 Gyr) BCG starbursts. This scenario can explain (a) how gas with a low cooling time is depleted without causing a cooling flow and (b) the scaling relationship between SFR and {t}{cool}/{t}{ff}. We also find that the scaling relation between SFR and dust mass in BCGs with SFRs < 100 {M}⊙ yr-1 is similar to that in star-forming field galaxies; BCGs with large (> 100 {M}⊙ yr-1) SFRs have dust masses comparable to extreme starbursts.
Walker, J; Fox, A J; Edwards-Jones, V; Gordon, D B
2002-02-01
Intact cell mass spectrometry (ICMS) rapidly analyses the surface composition of microorganisms providing rapid, discriminatory fingerprints for identification and subtyping of important nosocomial pathogens such as methicillin resistant Staphylocccus aureus (MRSA). In this study, ICMS using matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI TOF/MS) was assessed for the identification and subtyping of MRSA. An intra- and inter-laboratory reproducibility study was carried out and the effects of culture media (an important source of variation for ICMS) were also studied. Several media used for the cultural identification of MRSA were examined using a panel of well-characterised staphylococcal isolates (n=26). Six MRSA isolates were analysed over a 1-month period for intra-laboratory reproducibility on the same instrument and three different culture media. Spectra were consistent for each isolate between the four experiments on the same culture medium. Individual isolates produced different spectral profiles on different culture media. Spectra from organisms grown on Columbia blood agar contained more peaks (approximately 120) compared to Columbia agar (approximately 50) and methicillin mannitol salt agar (approximately 25). All 26 staphylococcal isolates were subjected to an inter-laboratory study on two MALDI instruments. For each isolate, the overall spectral profile was the same for each of the two instruments but the baseline threshold values was adjusted due to instrument differences in detector sensitivities. Differences between certain regions of the spectra reproducibly identified isolates belonging to the two major MRSA strains (EMRSA phage group 15 and 16). These results demonstrate ICMS with appropriate media selection is a rapid and reproducible technique for identification and discrimination of MRSA.
Addis, Russell C.; Ifkovits, Jamie L.; Pinto, Filipa; Kellam, Lori D.; Esteso, Paul; Rentschler, Stacey; Christoforou, Nicolas; Epstein, Jonathan A.; Gearhart, John D.
2013-01-01
Direct conversion of fibroblasts to induced cardiomyocytes (iCMs) has great potential for regenerative medicine. Recent publications have reported significant progress, but the evaluation of reprogramming has relied upon non-functional measures such as flow cytometry for cardiomyocyte markers or GFP expression driven by a cardiomyocyte-specific promoter. The issue is one of practicality: the most stringent measures - electrophysiology to detect cell excitation and the presence of spontaneously contracting myocytes - are not readily quantifiable in the large numbers of cells screened in reprogramming experiments. However, excitation and contraction are linked by a third functional characteristic of cardiomyocytes: the rhythmic oscillation of intracellular calcium levels. We set out to optimize direct conversion of fibroblasts to iCMs with a quantifiable calcium reporter to rapidly assess functional transdifferentiation. We constructed a reporter system in which the calcium indicator GCaMP is driven by the cardiomyocyte-specific Troponin T promoter. Using calcium activity as our primary outcome measure, we compared several published combinations of transcription factors along with novel combinations in mouse embryonic fibroblasts. The most effective combination consisted of Hand2, Nkx2.5, Gata4, Mef2c, and Tbx5 (HNGMT). This combination is >50-fold more efficient than GMT alone and produces iCMs with cardiomyocyte marker expression, robust calcium oscillation, and spontaneous beating that persists for weeks following inactivation of reprogramming factors. HNGMT is also significantly more effective than previously published factor combinations for the transdifferentiation of adult mouse cardiac fibroblasts to iCMs. Quantification of calcium function is a convenient and effective means for the identification and evaluation of cardiomyocytes generated by direct reprogramming. Using this stringent outcome measure, we conclude that HNGMT produces iCMs more efficiently than previously published methods. PMID:23591016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roediger, E.; Kraft, R. P.; Forman, W. R.
2013-02-10
Sloshing cold fronts (CFs) arise from minor merger triggered gas sloshing. Their detailed structure depends on the properties of the intracluster medium (ICM): hydrodynamical simulations predict the CFs to be distorted by Kelvin-Helmholtz instabilities (KHIs), but aligned magnetic fields, viscosity, or thermal conduction can suppress the KHIs. Thus, observing the detailed structure of sloshing CFs can be used to constrain these ICM properties. Both smooth and distorted sloshing CFs have been observed, indicating that the KHI is suppressed in some clusters, but not in all. Consequently, we need to address at least some sloshing clusters individually before drawing general conclusionsmore » about the ICM properties. We present the first detailed attempt to constrain the ICM properties in a specific cluster from the structure of its sloshing CF. Proximity and brightness make the Virgo Cluster an ideal target. We combine observations and Virgo-specific hydrodynamical sloshing simulations. Here, we focus on a Spitzer-like temperature-dependent viscosity as a mechanism to suppress the KHI, but discuss the alternative mechanisms in detail. We identify the CF at 90 kpc north and northeast of the Virgo center as the best location in the cluster to observe a possible KHI suppression. For viscosities {approx}> 10% of the Spitzer value KHIs at this CF are suppressed. We describe in detail the observable signatures at low and high viscosities, i.e., in the presence or the absence of KHIs. We find indications for a low ICM viscosity in archival XMM-Newton data and demonstrate the detectability of the predicted features in deep Chandra observations.« less
Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy
NASA Astrophysics Data System (ADS)
Ota, Naomi; Nagai, Daisuke; Lau, Erwin T.
2018-04-01
Gas motions in galaxy clusters play important roles in determining the properties of the intracluster medium (ICM) and in the constraint of cosmological parameters via X-ray and Sunyaev-Zel'dovich effect observations of galaxy clusters. The Hitomi measurements of gas motions in the core of the Perseus Cluster have provided new insights into the physics in galaxy clusters. The XARM mission, equipped with the Resolve X-ray micro-calorimeter, will continue Hitomi's legacy by measuring ICM motions through Doppler shifting and broadening of emission lines in a larger number of galaxy clusters, and at larger radii. In this work, we investigate how well we can measure bulk and turbulent gas motions in the ICM with XARM, by analyzing mock XARM simulations of galaxy clusters extracted from cosmological hydrodynamic simulations. We assess how photon counts, spectral fitting methods, multiphase ICM structure, deprojections, and region selection affect the measurements of gas motions. We first show that XARM is capable of recovering the underlying spherically averaged turbulent and bulk velocity profiles for dynamically relaxed clusters to within ˜50% with a reasonable amount of photon counts in the X-ray emission lines. We also find that there are considerable azimuthal variations in the ICM velocities, where the velocities measured in a single azimuthal direction can significantly deviate from the true value even in dynamically relaxed systems. Such variation must be taken into account when interpreting data and developing observing strategies. We will discuss the prospect of using the upcoming XARM mission to measure non-thermal pressure and to correct for the hydrostatic mass bias of galaxy clusters. Our results are broadly applicable for future X-ray missions, such as Athena and Lynx.
Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy
NASA Astrophysics Data System (ADS)
Ota, Naomi; Nagai, Daisuke; Lau, Erwin T.
2018-06-01
Gas motions in galaxy clusters play important roles in determining the properties of the intracluster medium (ICM) and in the constraint of cosmological parameters via X-ray and Sunyaev-Zel'dovich effect observations of galaxy clusters. The Hitomi measurements of gas motions in the core of the Perseus Cluster have provided new insights into the physics in galaxy clusters. The XARM mission, equipped with the Resolve X-ray micro-calorimeter, will continue Hitomi's legacy by measuring ICM motions through Doppler shifting and broadening of emission lines in a larger number of galaxy clusters, and at larger radii. In this work, we investigate how well we can measure bulk and turbulent gas motions in the ICM with XARM, by analyzing mock XARM simulations of galaxy clusters extracted from cosmological hydrodynamic simulations. We assess how photon counts, spectral fitting methods, multiphase ICM structure, deprojections, and region selection affect the measurements of gas motions. We first show that XARM is capable of recovering the underlying spherically averaged turbulent and bulk velocity profiles for dynamically relaxed clusters to within ˜50% with a reasonable amount of photon counts in the X-ray emission lines. We also find that there are considerable azimuthal variations in the ICM velocities, where the velocities measured in a single azimuthal direction can significantly deviate from the true value even in dynamically relaxed systems. Such variation must be taken into account when interpreting data and developing observing strategies. We will discuss the prospect of using the upcoming XARM mission to measure non-thermal pressure and to correct for the hydrostatic mass bias of galaxy clusters. Our results are broadly applicable for future X-ray missions, such as Athena and Lynx.
NASA Astrophysics Data System (ADS)
Bingham, S.; Mouikis, C.; Kistler, L. M.; Farrugia, C. J.; Paulson, K. W.; Huang, C. L.; Boyd, A. J.; Spence, H. E.; Kletzing, C.
2017-12-01
Whistler mode chorus waves are electromagnetic waves that have been shown to be a major contributor to enhancements in the outer radiation belt during geomagnetic storms. The temperature anisotropy of source electrons (10s of keV) provides the free energy for chorus waves, which can accelerate sub-relativistic seed electrons (100s of keV) to relativistic energies. This study uses Van Allen Probe observations to examine the excitation and plasma conditions associated with chorus wave observations, the development of the seed population, and the outer radiation belt response in the inner magnetosphere, for 25 ICME and 35 CIR storms. Plasma data from the Helium Oxygen Proton Electron (HOPE) instrument and magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) are used to identify chorus wave activity and to model a linear theory based proxy for chorus wave growth. A superposed epoch analysis shows a peak of chorus wave power on the dawnside during the storm main phase that spreads towards noon during the storm recovery phase. According to the linear theory results, this wave activity is driven by the enhanced convection driving plasma sheet electrons across the dayside. Both ICME and CIR storms show comparable levels of wave growth. Plasma data from the Magnetic Electron Ion Spectrometer (MagEIS) and the Relativistic Electron Proton Telescope (REPT) are used to observe the seed and relativistic electrons. A superposed epoch analysis of seed and relativistic electrons vs. L shows radiation belt enhancements with much greater frequency in the ICME storms, coinciding with a much stronger and earlier seed electron enhancement in the ICME storms.
Berti, A; Della-Torre, E; Yacoub, Mr; Tombetti, E; Canti, V; Sabbadini, M G; Colombo, G
2016-07-01
The term "breakthrough reactions" designates repeated hypersensitivity reactions to iodinated contrast media (ICM) despite premedication with glucocorticoids and antihistamines. We aimed to retrospectively evaluate the rate of positive skin test (STs) in our cohort of patients with previous breakthrough reactions to different ICMs. A series of 35 patients, who experienced at least one breakthrough reaction to ICM and who underwent STs within 6 months from the reaction were studied, and results were compared to a control group of patients with a first hypersensitivity reaction occurred without premedication. Skin prick tests (SPT), intradermal tests (IDT) and patch tests (PT) at different dilutions, with a set of three to four ICM were performed. Of the 35 patients with prior breakthrough reactions, 57% had an immediate reaction (IR) and 43% had a non-immediate reaction (NIR). Patients who experienced the first hypersensitivity IR or NIR, later had one or more breakthrough IR or NIR, respectively. Overall, 29% (10/35) of patients with prior breakthrough reactions resulted positive to STs compared to 57% (16/28) of the control group (p < 0.05). No significant difference in allergy history, age, sex, other clinical / demographic features nor chronic use of ACE-inhibitor, beta-blockers or NSAIDs was observed. This preliminary finding suggests that patients with prior breakthrough reactions have significantly lower immunologically proven ICM reactions (positive STs) if compared to non-breakthrough patients. According to that, a considerable number of breakthrough reactions seems to be non-allergic hypersensitivity reactions or reactions which could be mostly prevented by a proper, well-timed skin testing. Larger prospective studies are needed to confirm these results, with a more careful analysis of patients' risk factors, a laboratory assessment that includes an in vitro allergy diagnostics, and hopefully a drug provocation test for selected cases.
Taxanes as a risk factor for acute adverse reactions to iodinated contrast media in cancer patients.
Farolfi, Alberto; Della Luna, Corradina; Ragazzini, Angela; Carretta, Elisa; Gentili, Nicola; Casadei, Carla; Aquilina, Michele; Barone, Domenico; Minguzzi, Martina; Amadori, Dino; Nanni, Oriana; Gavelli, Giampaolo
2014-08-01
The impact of cytotoxic agents on the risk of acute allergy-like adverse reactions (ARs) to intravenous iodinated contrast media (ICM) injections is unknown. We retrospectively reviewed 13,565 computed tomography (CT) scans performed in a consecutive cohort of cancer patients from January 1, 2010 to December 31, 2012. Episodes of acute ICM-related ARs were reported to the pharmacovigilance officer. The following matched comparisons were made: tax code, gender, primary tumor, antineoplastic therapy, and date of last cycle. Concomitant antineoplastic treatment was classified into five groups: platinum, taxane, platinum plus taxane, other, and no treatment group (no therapy had been administered in the previous 24 months). Logistic regression was used to estimate odds ratio (OR) and 95% confidence interval (CI) to evaluate the risk of acute ICM-related ARs. Of 10,472 contrast-enhanced CT scans, 97 (0.93%; 95% CI: 0.74-1.11) ICM-related ARs were reported, 11 of which (0.1%) were severe, including one fatality. The overall incidence was significantly higher in patients aged <65 years (p = .0062) and in the platinum plus taxane and taxane groups (p = .007), whereas no correlation was found with gender, number of previous CT scans, site of disease, or treatment setting. Multivariate analysis confirmed an increased risk for patients aged <65 years (OR: 1.73; 95% CI: 1.14-2.63) and for the taxane group (in comparison with the no treatment group; OR: 2.06; 95% CI: 1.02-4.16). Among cancer patients, concomitant treatment with taxanes and younger age would seem to be risk factors for ICM-related ARs. ©AlphaMed Press.
Interplanetary Circumstances of Quasi-Perpendicular Interplanetary Shocks in 1996-2005
NASA Technical Reports Server (NTRS)
Richardson, I. G.; Cane, H. V.
2010-01-01
The angle (theta(sub Bn)) between the normal to an interplanetary shock front and the upstream magnetic field direction, though often thought of as a property "of the shock," is also determined by the configuration of the magnetic field immediately upstream of the shock. We investigate the interplanetary circumstances of 105 near-Earth quasi-perpendicular shocks during 1996-2005 identified by theta(sub Bn) greater than or equal to 80 degrees and/or by evidence of shock drift particle acceleration. Around 87% of these shocks were driven by interplanetary coronal mass ejections (ICMEs); the remainder were probably the forward shocks of corotating interaction regions. For around half of the shocks, the upstream field was approximately perpendicular to the radial direction, either east-west or west-east or highly inclined to the ecliptic. Such field directions will give quasi-perpendicular configurations for radially propagating shocks. Around 30% of the shocks were propagating through, or closely followed, ICMEs at the time of observation. Another quarter were propagating through the heliospheric plasma sheet (HPS), and a further quarter occurred in slow solar wind that did not have characteristics of the HPS. Around 11% were observed in high-speed streams, and 7% in the sheaths following other shocks. The fraction of shocks found in high-speed streams is around a third of that expected based on the fraction of the time when such streams were observed at Earth. Quasi-perpendicular shocks are found traveling through ICMEs around 2-3 times more frequently than expected. In addition, shocks propagating through ICMEs are more likely to have larger values of theta(sub Bn) than shocks outside ICMEs.
NASA Astrophysics Data System (ADS)
Duru, F.; Gurnett, D. A.; Morgan, D. D.; Halekas, J.; Frahm, R. A.; Lundin, R.; Dejong, W.; Ertl, C.; Venable, A.; Wilkinson, C.; Fraenz, M.; Nemec, F.; Connerney, J. E. P.; Espley, J. R.; Larson, D.; Winningham, J. D.; Plaut, J.; Mahaffy, P. R.
2017-10-01
In a two-week period between February and March of 2015, a series of interplanetary coronal mass ejections (ICMEs) and solar energetic particle (SEP) events encountered Mars. The interactions were observed by several spacecraft, including Mars Express (MEX), Mars Atmosphere and Volatile Evolution Mission (MAVEN), and Mars Odyssey (MO). The ICME disturbances were characterized by an increase in ion speed, plasma temperature, magnetic field magnitude, and energetic electron flux. Furthermore, increased solar wind density and speeds, as well as unusually high local electron densities and high flow velocities were detected on the nightside at high altitudes during the March 8 event. These effects are thought to be due to the transport of ionospheric plasma away from Mars. In the deep nightside, the peak ionospheric electron density at the periapsis of MEX shows a substantial increase, reaching number densities about 2.7 × 104 cm-3 during the second ICME in the deep nightside. This corresponds to an increase in the MO High-Energy Neutron Detector flux suggesting an increase in the ionization of the neutral atmosphere due to the high intensity of charged particles. Measurements of the SEP fluxs show a substantial enhancement before the shock of a fourth ICME causing impact ionization and absorption of the surface echo intensity which drops to the noise levels, below 10-15 V2m-2 Hz-1 from values of about 2 × 10-14 V2m-2 Hz-1. Moreover, the peak ionospheric density exhibits a discrete enhancement over a period of about 30 h around the same location, which may be due to impact ionization. Ion escape rates at this time are estimated to be in the order of 1025 to 1026 s-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ang; Yu, Heng; Tozzi, Paolo
2016-04-10
We search for bulk motions in the intracluster medium (ICM) of massive clusters showing evidence of an ongoing or recent major merger with spatially resolved spectroscopy in Chandra CCD data. We identify a sample of six merging clusters with >150 ks Chandra exposure in the redshift range 0.1 < z < 0.3. By performing X-ray spectral analysis of projected ICM regions selected according to their surface brightness, we obtain the projected redshift maps for all of these clusters. After performing a robust analysis of the statistical and systematic uncertainties in the measured X-ray redshift z{sub X}, we check whether or not themore » global z{sub X} distribution differs from that expected when the ICM is at rest. We find evidence of significant bulk motions at more than 3σ in A2142 and A115, and less than 2σ in A2034 and A520. Focusing on single regions, we identify significant localized velocity differences in all of the merger clusters. We also perform the same analysis on two relaxed clusters with no signatures of recent mergers, finding no signs of bulk motions, as expected. Our results indicate that deep Chandra CCD data enable us to identify the presence of bulk motions at the level of v{sub BM} > 1000 km s{sup −1} in the ICM of massive merging clusters at 0.1 < z < 0.3. Although the CCD spectral resolution is not sufficient for a detailed analysis of the ICM dynamics, Chandra CCD data constitute a key diagnostic tool complementing X-ray bolometers on board future X-ray missions.« less
Witnessing the Formation of a Brightest Cluster Galaxy in a Nearby X-ray Cluster
NASA Astrophysics Data System (ADS)
Rasmussen, Jesper; Mulchaey, John S.; Bai, Lei; Ponman, Trevor J.; Raychaudhury, Somak; Dariush, Ali
2010-07-01
The central dominant galaxies in galaxy clusters constitute the most massive and luminous galaxies in the universe. Despite this, the formation of these brightest cluster galaxies (BCGs) and the impact of this on the surrounding cluster environment remain poorly understood. Here we present multiwavelength observations of the nearby poor X-ray cluster MZ 10451, in which both processes can be studied in unprecedented detail. Chandra observations of the intracluster medium (ICM) in the cluster core, which harbors two optically bright early-type galaxies in the process of merging, show that the system has retained a cool core and a central metal excess. This suggests that any merger-induced ICM heating and mixing remain modest at this stage. Tidally stripped stars seen around either galaxy likely represent an emerging intracluster light component, and the central ICM abundance enhancement may have a prominent contribution from in situ enrichment provided by these stars. The smaller of the merging galaxies shows evidence for having retained a hot gas halo, along with tentative evidence for some obscured star formation, suggesting that not all BCG major mergers at low redshift are completely dissipationless. Both galaxies are slightly offset from the peak of the ICM emission, with all three lying on an axis that roughly coincides with the large-scale elongation of the ICM. Our data are consistent with a picture in which central BCGs are built up by mergers close to the cluster core, by galaxies infalling on radial orbits aligned with the cosmological filaments feeding the cluster. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
The energetics of relativistic jets in active galactic nuclei with various kinetic powers
NASA Astrophysics Data System (ADS)
Musoke, Gibwa Rebecca; Young, Andrew; Molnar, Sandor; Birkinshaw, Mark
2018-01-01
Numerical simulations are an important tool in understanding the physical processes behind relativistic jets in active galactic nuclei. In such simulations different combinations of intrinsic jet parameters can be used to obtain the same jet kinetic powers. We present a numerical investigation of the effects of varying the jet power on the dynamic and energetic characteristics of the jets for two kinetic power regimes; in the first regime we change the jet density whilst maintaining a fixed velocity, in the second the jet density is held constant while the velocity is varied. We conduct 2D axisymmetric hydrodynamic simulations of bipolar jets propagating through an isothermal cluster atmosphere using the FLASH MHD code in pure hydrodynamics mode. The jets are simulated with kinetic powers ranging between 1045 and 1046 erg/s and internal Mach numbers ranging from 5.6 to 21.5.As the jets begin to propagate into the intracluster medium (ICM), the injected jet energy is converted into the thermal, kinetic and gravitational potential energy components of the jet cocoon and ICM. We explore the temporal evolution of the partitioning of the injected jet energy into the cocoon and the ICM and quantify the importance of entrainment process on the energy partitioning. We investigate the fraction of injected energy transferred to the thermal energy component of the jet-ICM system in the context of heating the cluster environments, noting that the jets simulated display peak thermalisation efficiencies of least 65% and a marked dependence on the jet density. We compare the efficiencies of the energy partitioning between the cocoon and ICM for the two kinetic power regimes and discuss the resulting efficiency-power scaling relations of each regime.
NASA Astrophysics Data System (ADS)
Pal, Sanchita; Gopalswamy, Nat; Nandy, Dibyendu; Akiyama, Sachiko; Yashiro, Seiji; Makela, Pertti; Xie, Hong
2017-12-01
We compare the magnetic helicity in the 2013 March 17–18 interplanetary coronal mass ejection (ICME) flux rope at 1 au and in its solar counterpart. The progenitor coronal mass ejection (CME) erupted on 2013 March 15 from NOAA active region 11692 and is associated with an M1.1 flare. We derive the source region reconnection flux using the post-eruption arcade (PEA) method that uses the photospheric magnetogram and the area under the PEA. The geometrical properties of the near-Sun flux rope is obtained by forward-modeling of white-light CME observations. Combining the geometrical properties and the reconnection flux, we extract the magnetic properties of the CME flux rope. We derive the magnetic helicity of the flux rope using its magnetic and geometric properties obtained near the Sun and at 1 au. We use a constant-α force-free cylindrical flux rope model fit to the in situ observations in order to derive the magnetic and geometric information of the 1 au ICME. We find a good correspondence in both amplitude and sign of the helicity between the ICME and the CME, assuming a semi-circular (half torus) ICME flux rope with a length of π au. We find that about 83% of the total flux rope helicity at 1 au is injected by the magnetic reconnection in the low corona. We discuss the effect of assuming flux rope length in the derived value of the magnetic helicity. This study connecting the helicity of magnetic flux ropes through the Sun–Earth system has important implications for the origin of helicity in the interplanetary medium and the topology of ICME flux ropes at 1 au and hence their space weather consequences.
Taxanes as a Risk Factor for Acute Adverse Reactions to Iodinated Contrast Media in Cancer Patients
Farolfi, Alberto; Della Luna, Corradina; Ragazzini, Angela; Carretta, Elisa; Gentili, Nicola; Casadei, Carla; Aquilina, Michele; Barone, Domenico; Minguzzi, Martina; Amadori, Dino; Nanni, Oriana
2014-01-01
Background. The impact of cytotoxic agents on the risk of acute allergy-like adverse reactions (ARs) to intravenous iodinated contrast media (ICM) injections is unknown. Methods. We retrospectively reviewed 13,565 computed tomography (CT) scans performed in a consecutive cohort of cancer patients from January 1, 2010 to December 31, 2012. Episodes of acute ICM-related ARs were reported to the pharmacovigilance officer. The following matched comparisons were made: tax code, gender, primary tumor, antineoplastic therapy, and date of last cycle. Concomitant antineoplastic treatment was classified into five groups: platinum, taxane, platinum plus taxane, other, and no treatment group (no therapy had been administered in the previous 24 months). Logistic regression was used to estimate odds ratio (OR) and 95% confidence interval (CI) to evaluate the risk of acute ICM-related ARs. Results. Of 10,472 contrast-enhanced CT scans, 97 (0.93%; 95% CI: 0.74–1.11) ICM-related ARs were reported, 11 of which (0.1%) were severe, including one fatality. The overall incidence was significantly higher in patients aged <65 years (p = .0062) and in the platinum plus taxane and taxane groups (p = .007), whereas no correlation was found with gender, number of previous CT scans, site of disease, or treatment setting. Multivariate analysis confirmed an increased risk for patients aged <65 years (OR: 1.73; 95% CI: 1.14–2.63) and for the taxane group (in comparison with the no treatment group; OR: 2.06; 95% CI: 1.02–4.16). Conclusion. Among cancer patients, concomitant treatment with taxanes and younger age would seem to be risk factors for ICM-related ARs. PMID:25063226
Scalise, Filippo; Novelli, Eugenio; Auguadro, Carla; Casali, Valentina; Manfredi, Mariella; Zannoli, Romano
2015-01-01
Carbon dioxide (CO2) has been validated as a contrast agent in a large series of studies. A particular advantages of CO2 over iodinated contrast medium (ICM) is the absence of nephrotoxicity and allergic reactions. One of the limitations of CO2 angiography is the difficulty of CO2 manual injection due to its compressibility. The manual gas injection does not permit optimal control of the gas output. Development of an automated CO2 injector has overcome these problems. This study compares the feasibility, safety, and diagnostic accuracy of automated CO2 digital subtraction angiography (DSA) in comparison with ICM-DSA in the evaluation of critical limb ischemic (CLI) patients. We performed DSA with both CO2 and ICM on 40 consecutive CLI patients and directly compared the two techniques. Sixteen females and 24 males participated in the study (mean age, 71.7 years). We assessed the diagnostic accuracy of CO2 in identifying arterial stenosis in the lower limb, with ICM-DSA used as the gold standard. The overall diagnostic accuracy of CO2-DSA was 96.9% (sensitivity, 99.0%; specificity, 96.1%; positive predictive value, 91.1%; negative predictive value, 99.6%). Tolerable minor symptoms occurred in 3 patients. No allergic reactions or significant decline in renal function were observed in patients receiving the CO2 injection. Carbon dioxide DSA is a valuable and safe alternative to traditional ICM-DSA for evaluating CLI patients. This modality should be considered as the standard choice for CLI patients undergoing angiographic evaluation who are known to have renal insufficiency or contrast allergy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khabarova, Olga V.; Zank, Gary P.; Li, Gang
2016-08-20
We explore the role of heliospheric magnetic field configurations and conditions that favor the generation and confinement of small-scale magnetic islands associated with atypical energetic particle events (AEPEs) in the solar wind. Some AEPEs do not align with standard particle acceleration mechanisms, such as flare-related or simple diffusive shock acceleration processes related to interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs). As we have shown recently, energetic particle flux enhancements may well originate locally and can be explained by particle acceleration in regions filled with small-scale magnetic islands with a typical width of ∼0.01 au or less, whichmore » is often observed near the heliospheric current sheet (HCS). The particle energization is a consequence of magnetic reconnection-related processes in islands experiencing either merging or contraction, observed, for example, in HCS ripples. Here we provide more observations that support the idea and the theory of particle energization produced by small-scale-flux-rope dynamics (Zank et al. and Le Roux et al.). If the particles are pre-accelerated to keV energies via classical mechanisms, they may be additionally accelerated up to 1–1.5 MeV inside magnetically confined cavities of various origins. The magnetic cavities, formed by current sheets, may occur at the interface of different streams such as CIRs and ICMEs or ICMEs and coronal hole flows. They may also form during the HCS interaction with interplanetary shocks (ISs) or CIRs/ICMEs. Particle acceleration inside magnetic cavities may explain puzzling AEPEs occurring far beyond ISs, within ICMEs, before approaching CIRs as well as between CIRs.« less
A cohort study of cardiac resynchronization therapy in patients with chronic Chagas cardiomyopathy.
Martinelli Filho, Martino; de Lima Peixoto, Giselle; de Siqueira, Sérgio Freitas; Martins, Sérgio Augusto Mezzalira; Nishioka, Silvana Angelina D'ório; Pedrosa, Anísio Alexandre Andrade; Teixeira, Ricardo Alkmim; Dos Santos, Johnny Xavier; Costa, Roberto; Kalil Filho, Roberto; Ramires, José Antônio Franchini
2018-03-02
Cardiac resynchronization therapy (CRT) is an established procedure for patients with heart failure. However, trials evaluating its efficacy did not include patients with chronic Chagas cardiomyopathy (CCC). We aimed to assess the role of CRT in a cohort of patients with CCC. This retrospective study compared the outcomes of CCC patients who underwent CRT with those of dilated (DCM) and ischaemic cardiomyopathies (ICM). The primary endpoint was all-cause mortality and the secondary endpoints were the rate of non-advanced New York Heart Association (NYHA) class 12 months after CRT and echocardiographic changes evaluated at least 6 months after CRT. There were 115 patients in the CCC group, 177 with DCM, and 134 with ICM. The annual mortality rates were 25.4%, 10.4%, and 11.3%, respectively (P < 0.001). Multivariate analysis adjusted for potential confounders showed that the CCC group had a two-fold [hazard ratio 2.34 (1.47-3.71), P < 0.001] higher risk of death compared to the DCM group. The rate of non-advanced NYHA class 12 months after CRT was significantly higher in non-CCC groups than in the CCC group (DCM 74.0% vs. ICM 73.9% vs. 56.5%, P < 0.001). Chronic Chagas cardiomyopathy and ICM patients had no improvement in the echocardiographic evaluation, but patients in the DCM group had an increase in left ventricular ejection fraction and a decrease in left ventricular end-diastolic diameter. This study showed that CCC patients submitted to CRT have worse prognosis compared to patients with DCM and ICM who undergo CRT. Studies comparing CCC patients with and without CRT are warranted.
Application and Removal of Strippable Coatings via Remote Platform - 13133
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoffner, P.; Lagos, L.; Maggio, S.
2013-07-01
Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and technology demonstrations of selected technologies and working with technology vendors to optimize the design of their current technologies to accomplish dangerous and demanding tasks during D and D operations.more » To meet one identified technology gap challenge for a technology to remotely apply strippable coatings, fixatives and decontamination gels, FIU identified and performed an initial demonstration of an innovative remote fixative sprayer platform from International Climbing Machines (ICM). The selected technology was demonstrated spraying fixative products at the hot cell mockup facility at the Applied Research Center at FIU in November 2008 under cold (non-radioactive) conditions. The remotely controlled platform was remotely operated and entered the facility and sprayed a fixative onto horizontal and vertical surfaces. Based on the initial FIU demonstration and the specific technical requirements identified at the DOE facilities, a follow-up demonstration was expanded to include strippable coatings and a decontamination gel, which was demonstrated in June 2010 at the ICM facility in Ithaca, NY. This second technology evaluation documented the ability of the remote system to spray the selected products on vertical stainless steel and concrete surfaces to a height of 3 meters (10 feet) and to achieve sufficient coverage and product thickness to promote the ability to peel/remove the strippable coatings and decontamination gel. The next challenge was to determine if a remote platform could be used to remove the strippable coatings and decontamination gels. In 2012, FIU worked with the technology provider, ICM, to conduct feasibility and trade studies to identify the requirements for the remote removal of strippable coatings or decontamination gels using the existing remote controlled platform. (authors)« less
Perspectives on Intracluster Enrichment and the Stellar Initial Mass Function in Elliptical Galaxies
NASA Technical Reports Server (NTRS)
Lowenstein, Michael
2013-01-01
The amount of metals in the Intracluster Medium (ICM) in rich galaxy clusters exceeds that expected based on the observed stellar population by a large factor. We quantify this discrepancy--which we term the "cluster elemental abundance paradox"--and investigate the required properties of the ICM-enriching population. The necessary enhancement in metal enrichment may, in principle, originate in the observed stellar population if a larger fraction of stars in the supernova-progenitor mass range form from an initial mass function (IMF) that is either bottom-light or top-heavy, with the latter in some conflict with observed ICM abundance ratios. Other alternatives that imply more modest revisions to the IMF, mass return and remnant fractions, and primordial fraction, posit an increase in the fraction of 3-8 solar mass stars that explode as SNIa or assume that there are more stars than conventionally thought--although the latter implies a high star formation efficiency. We discuss the feasibility of these various solutions and the implications for the diversity of star formation, the process of elliptical galaxy formation, and the nature of this hidden source of ICM metal enrichment in light of recent evidence of an elliptical galaxy IMF that, because it is skewed to low masses, deepens the paradox.
AGN jet feedback on a moving mesh: cocoon inflation, gas flows and turbulence
NASA Astrophysics Data System (ADS)
Bourne, Martin A.; Sijacki, Debora
2017-12-01
In many observed galaxy clusters, jets launched by the accretion process on to supermassive black holes, inflate large-scale cavities filled with energetic, relativistic plasma. This process is thought to be responsible for regulating cooling losses, thus moderating the inflow of gas on to the central galaxy, quenching further star formation and maintaining the galaxy in a red and dead state. In this paper, we implement a new jet feedback scheme into the moving mesh-code AREPO, contrast different jet injection techniques and demonstrate the validity of our implementation by comparing against simple analytical models. We find that jets can significantly affect the intracluster medium (ICM), offset the overcooling through a number of heating mechanisms, as well as drive turbulence, albeit within the jet lobes only. Jet-driven turbulence is, however, a largely ineffective heating source and is unlikely to dominate the ICM heating budget even if the jet lobes efficiently fill the cooling region, as it contains at most only a few per cent of the total injected energy. We instead show that the ICM gas motions, generated by orbiting substructures, while inefficient at heating the ICM, drive large-scale turbulence and when combined with jet feedback, result in line-of-sight velocities and velocity dispersions consistent with the Hitomi observations of the Perseus cluster.
Cerebellar Modulation of Cortically Evoked Complex Movements in Rats.
Viaro, Riccardo; Bonazzi, Laura; Maggiolini, Emma; Franchi, Gianfranco
2017-07-01
Intracortical microstimulation (ICMS) delivered to the motor cortex (M1) via long- or short-train duration (long- or short-duration ICMS) can evoke coordinated complex movements or muscle twitches, respectively. The role of subcortical cerebellar input in M1 output, in terms of long- and short-duration ICMS-evoked movement and motor skill performance, was evaluated in rats with bilateral lesion of the deep cerebellar nuclei. After the lesion, distal forelimb movements were seldom observed, and almost 30% of proximal forelimb movements failed to match criteria defining the movement class observed under control conditions. The classifiable movements could be evoked in different cortical regions with respect to control and many kinematic variables were strongly affected. Furthermore, movement endpoints within the rat's workspace shrunk closer to the body, while performance in the reaching/grasping task worsened. Surprisingly, neither the threshold current values for evoking movements nor the overall size of forelimb movement representation changed with respect to controls in either long- or short-duration ICMS. We therefore conclude that cerebellar input via the motor thalamus is crucial for expressing the basic functional features of the motor cortex. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Happel, Max F K; Deliano, Matthias; Ohl, Frank W
2015-10-22
Shuttle-box avoidance learning is a well-established method in behavioral neuroscience and experimental setups were traditionally custom-made; the necessary equipment is now available by several commercial companies. This protocol provides a detailed description of a two-way shuttle-box avoidance learning paradigm in rodents (here Mongolian gerbils; Meriones unguiculatus) in combination with site-specific electrical intracortical microstimulation (ICMS) and simultaneous chronical electrophysiological in vivo recordings. The detailed protocol is applicable to study multiple aspects of learning behavior and perception in different rodent species. Site-specific ICMS of auditory cortical circuits as conditioned stimuli here is used as a tool to test the perceptual relevance of specific afferent, efferent and intracortical connections. Distinct activation patterns can be evoked by using different stimulation electrode arrays for local, layer-dependent ICMS or distant ICMS sites. Utilizing behavioral signal detection analysis it can be determined which stimulation strategy is most effective for eliciting a behaviorally detectable and salient signal. Further, parallel multichannel-recordings using different electrode designs (surface electrodes, depth electrodes, etc.) allow for investigating neuronal observables over the time course of such learning processes. It will be discussed how changes of the behavioral design can increase the cognitive complexity (e.g. detection, discrimination, reversal learning).
Transients which are born on the way from the Sun to Earth
NASA Astrophysics Data System (ADS)
Yermolaev, Yuri; Nikolaeva, Nadezhda; Lodkina, Irina; Yermolaev, Michael
2016-07-01
As well known only disturbed types of solar wind (SW) streams can contain the IMF component perpendicular to the ecliptic plane (in particular the southward IMF component) and be geoeffective. Such disturbed types are the following SW streams: interplanetary manifestation of coronal mass ejection (ICME) including magnetic cloud (MC) and Ejecta, Sheath - compression region before ICME and corotating interaction region (CIR) - compression region before high-speed stream (HSS) of solar wind. Role of solar transients, CME and ICME, in generation of geomagnetic disturbances and space weather prediction is intensively studied by many researchers. However transients Sheath and CIR which are born on the way from the Sun to Earth due to corresponding high speed piston (fast ICME for Sheath and HSS from coronal hole for CIR), are investigated less intensively, and their contribution to geoefficiency are underestimated. For example, on 19 December, 1980 the southward component of IMF Bz increased up to 30 nT and the compressed region Sheath before MC induced the strong magnetic storm with Dst ~ -250 nT. We present and discuss statistical data on Sheath and CIR geoeffectiveness. The work was supported by the Russian Foundation for Basic Research, project 16-02-00125 and by Program of Presidium of the Russian Academy of Sciences.
Du, Qing-Yun; Wang, En-Yin; Huang, Yan; Guo, Xiao-Yi; Xiong, Yu-Jing; Yu, Yi-Ping; Yao, Gui-Dong; Shi, Sen-Lin; Sun, Ying-Pu
2016-04-01
To evaluate the independent effects of the degree of blastocoele expansion and re-expansion and the inner cell mass (ICM) and trophectoderm (TE) grades on predicting live birth after fresh and vitrified/warmed single blastocyst transfer. Retrospective study. Reproductive medical center. Women undergoing 844 fresh and 370 vitrified/warmed single blastocyst transfer cycles. None. Live-birth rate correlated with blastocyst morphology parameters by logistic regression analysis and Spearman correlations analysis. The degree of blastocoele expansion and re-expansion was the only blastocyst morphology parameter that exhibited a significant ability to predict live birth in both fresh and vitrified/warmed single blastocyst transfer cycles respectively by multivariate logistic regression and Spearman correlations analysis. Although the ICM grade was significantly related to live birth in fresh cycles according to the univariate model, its effect was not maintained in the multivariate logistic analysis. In vitrified/warmed cycles, neither ICM nor TE grade was correlated with live birth by logistic regression analysis. This study is the first to confirm that the degree of blastocoele expansion and re-expansion is a better predictor of live birth after both fresh and vitrified/warmed single blastocyst transfer cycles than ICM or TE grade. Copyright © 2016. Published by Elsevier Inc.
Theoduloz, Cristina; López-Alarcón, Camilo; Dorta, Eva
2017-01-01
The prevalence of cytoprotective mechanisms induced by polyphenols such as activation of intracellular antioxidant responses (ICM) and direct free radical scavenging was investigated in native Chilean species of strawberries, raspberries, and currants. Human gastric epithelial cells were co- and preincubated with polyphenolic-enriched extracts (PEEs) from Chilean raspberries (Rubus geoides), strawberries (Fragaria chiloensis ssp. chiloensis f. chiloensis), and currants (Ribes magellanicum) and challenged with peroxyl and hydroxyl radicals. Cellular protection was determined in terms of cell viability, glyoxalase I and glutathione s-transferases activities, and carboxymethyl lysine (CML) and malondialdehyde levels. Our results indicate that cytoprotection induced by ICM was the prevalent mechanism for Rubus geoides and F. chiloensis. This agreed with increased levels of glyoxalase I and glutathione S-transferase activities in cells preincubated with PEEs. ORAC index indicated that F. chiloensis was the most efficient peroxyl radical scavenger. Moreover, ICM mediated by F. chiloensis was effective in protecting cells from CML accumulation in contrast to the protective effects induced by free radical scavenging. Our results indicate that although both polyphenol-mediated mechanisms can exert protective effects, ICM was the most prevalent in AGS cells. These results suggest a potential use of these native berries as functional food. PMID:28553436
Muraoka, Naoto; Yamakawa, Hiroyuki; Miyamoto, Kazutaka; Sadahiro, Taketaro; Umei, Tomohiko; Isomi, Mari; Nakashima, Hanae; Akiyama, Mizuha; Wada, Rie; Inagawa, Kohei; Nishiyama, Takahiko; Kaneda, Ruri; Fukuda, Toru; Takeda, Shu; Tohyama, Shugo; Hashimoto, Hisayuki; Kawamura, Yoshifumi; Goshima, Naoki; Aeba, Ryo; Yamagishi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki
2014-07-17
Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors or microRNAs. However, induction of functional cardiomyocytes is inefficient, and molecular mechanisms of direct reprogramming remain undefined. Here, we demonstrate that addition of miR-133a (miR-133) to Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Mesp1 and Myocd improved cardiac reprogramming from mouse or human fibroblasts by directly repressing Snai1, a master regulator of epithelial-to-mesenchymal transition. MiR-133 overexpression with GMT generated sevenfold more beating iCMs from mouse embryonic fibroblasts and shortened the duration to induce beating cells from 30 to 10 days, compared to GMT alone. Snai1 knockdown suppressed fibroblast genes, upregulated cardiac gene expression, and induced more contracting iCMs with GMT transduction, recapitulating the effects of miR-133 overexpression. In contrast, overexpression of Snai1 in GMT/miR-133-transduced cells maintained fibroblast signatures and inhibited generation of beating iCMs. MiR-133-mediated Snai1 repression was also critical for cardiac reprogramming in adult mouse and human cardiac fibroblasts. Thus, silencing fibroblast signatures, mediated by miR-133/Snai1, is a key molecular roadblock during cardiac reprogramming. © 2014 The Authors.
Muraoka, Naoto; Yamakawa, Hiroyuki; Miyamoto, Kazutaka; Sadahiro, Taketaro; Umei, Tomohiko; Isomi, Mari; Nakashima, Hanae; Akiyama, Mizuha; Wada, Rie; Inagawa, Kohei; Nishiyama, Takahiko; Kaneda, Ruri; Fukuda, Toru; Takeda, Shu; Tohyama, Shugo; Hashimoto, Hisayuki; Kawamura, Yoshifumi; Goshima, Naoki; Aeba, Ryo; Yamagishi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki
2014-01-01
Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors or microRNAs. However, induction of functional cardiomyocytes is inefficient, and molecular mechanisms of direct reprogramming remain undefined. Here, we demonstrate that addition of miR-133a (miR-133) to Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Mesp1 and Myocd improved cardiac reprogramming from mouse or human fibroblasts by directly repressing Snai1, a master regulator of epithelial-to-mesenchymal transition. MiR-133 overexpression with GMT generated sevenfold more beating iCMs from mouse embryonic fibroblasts and shortened the duration to induce beating cells from 30 to 10 days, compared to GMT alone. Snai1 knockdown suppressed fibroblast genes, upregulated cardiac gene expression, and induced more contracting iCMs with GMT transduction, recapitulating the effects of miR-133 overexpression. In contrast, overexpression of Snai1 in GMT/miR-133-transduced cells maintained fibroblast signatures and inhibited generation of beating iCMs. MiR-133-mediated Snai1 repression was also critical for cardiac reprogramming in adult mouse and human cardiac fibroblasts. Thus, silencing fibroblast signatures, mediated by miR-133/Snai1, is a key molecular roadblock during cardiac reprogramming. PMID:24920580
Jiang, Ding-Sheng; Zeng, Hao-Long; Li, Rui; Huo, Bo; Su, Yun-Shu; Fang, Jing; Yang, Qing; Liu, Li-Gang; Hu, Min; Cheng, Cai; Zhu, Xue-Hai; Yi, Xin; Wei, Xiang
2017-03-03
There is ample evidence indicating that epicardial adipose tissue (EAT) volume and thickness is positively associated with coronary artery disease (CAD). However, the exact pathological changes in the human EAT after myocardial ischemia remains largely unclear. In the current study, we applied a comparative quantitative proteomics to elucidate the altered biological processes in the EAT of ischemic cardiomyopathy (ICM) patients. A total of 1649 proteins were successfully quantified in our study, among which 165 proteins were significantly changed (ratio <0.8 or >1.2 fold and p < 0.05 in both repetitions) in EAT of ICM individuals. Gene ontology (GO) enrichment analysis revealed that cardiac structure and cellular metabolism were over-represented among these regulated proteins. The hypertrophic cardiomyopathy, adrenergic signaling in cardiomyocytes, extracellular matrix (ECM)-receptor interaction, phagosome, Glycolysis/Gluconeogenesis, and PPAR signaling pathway were highlighted by the KEGG PATHWAY analysis. More importantly, we found that the proteins responsible for extracellular matrix organization were dramatically increased in EAT of ICM patients. In addition, the picrosirius red (PSR) staining results showed that the collagen fiber content was prominently increased, which indicated the EAT of ICM individuals underwent extracellular matrix remodeling and ERK1/2 activation maybe responsible for these pathological changes partially.
Implicit Priors in Galaxy Cluster Mass and Scaling Relation Determinations
NASA Technical Reports Server (NTRS)
Mantz, A.; Allen, S. W.
2011-01-01
Deriving the total masses of galaxy clusters from observations of the intracluster medium (ICM) generally requires some prior information, in addition to the assumptions of hydrostatic equilibrium and spherical symmetry. Often, this information takes the form of particular parametrized functions used to describe the cluster gas density and temperature profiles. In this paper, we investigate the implicit priors on hydrostatic masses that result from this fully parametric approach, and the implications of such priors for scaling relations formed from those masses. We show that the application of such fully parametric models of the ICM naturally imposes a prior on the slopes of the derived scaling relations, favoring the self-similar model, and argue that this prior may be influential in practice. In contrast, this bias does not exist for techniques which adopt an explicit prior on the form of the mass profile but describe the ICM non-parametrically. Constraints on the slope of the cluster mass-temperature relation in the literature show a separation based the approach employed, with the results from fully parametric ICM modeling clustering nearer the self-similar value. Given that a primary goal of scaling relation analyses is to test the self-similar model, the application of methods subject to strong, implicit priors should be avoided. Alternative methods and best practices are discussed.
Turbulent heating in galaxy clusters brightest in X-rays.
Zhuravleva, I; Churazov, E; Schekochihin, A A; Allen, S W; Arévalo, P; Fabian, A C; Forman, W R; Sanders, J S; Simionescu, A; Sunyaev, R; Vikhlinin, A; Werner, N
2014-11-06
The hot (10(7) to 10(8) kelvin), X-ray-emitting intracluster medium (ICM) is the dominant baryonic constituent of clusters of galaxies. In the cores of many clusters, radiative energy losses from the ICM occur on timescales much shorter than the age of the system. Unchecked, this cooling would lead to massive accumulations of cold gas and vigorous star formation, in contradiction to observations. Various sources of energy capable of compensating for these cooling losses have been proposed, the most promising being heating by the supermassive black holes in the central galaxies, through inflation of bubbles of relativistic plasma. Regardless of the original source of energy, the question of how this energy is transferred to the ICM remains open. Here we present a plausible solution to this question based on deep X-ray data and a new data analysis method that enable us to evaluate directly the ICM heating rate from the dissipation of turbulence. We find that turbulent heating is sufficient to offset radiative cooling and indeed appears to balance it locally at each radius-it may therefore be the key element in resolving the gas cooling problem in cluster cores and, more universally, in the atmospheres of X-ray-emitting, gas-rich systems on scales from galaxy clusters to groups and elliptical galaxies.
Happel, Max F.K.
2015-01-01
Shuttle-box avoidance learning is a well-established method in behavioral neuroscience and experimental setups were traditionally custom-made; the necessary equipment is now available by several commercial companies. This protocol provides a detailed description of a two-way shuttle-box avoidance learning paradigm in rodents (here Mongolian gerbils; Meriones unguiculatus) in combination with site-specific electrical intracortical microstimulation (ICMS) and simultaneous chronical electrophysiological in vivo recordings. The detailed protocol is applicable to study multiple aspects of learning behavior and perception in different rodent species. Site-specific ICMS of auditory cortical circuits as conditioned stimuli here is used as a tool to test the perceptual relevance of specific afferent, efferent and intracortical connections. Distinct activation patterns can be evoked by using different stimulation electrode arrays for local, layer-dependent ICMS or distant ICMS sites. Utilizing behavioral signal detection analysis it can be determined which stimulation strategy is most effective for eliciting a behaviorally detectable and salient signal. Further, parallel multichannel-recordings using different electrode designs (surface electrodes, depth electrodes, etc.) allow for investigating neuronal observables over the time course of such learning processes. It will be discussed how changes of the behavioral design can increase the cognitive complexity (e.g. detection, discrimination, reversal learning). PMID:26556300
Application of ICME Methods for the Development of Rapid Manufacturing Technologies
NASA Astrophysics Data System (ADS)
Maiwald-Immer, T.; Göhler, T.; Fischersworring-Bunk, A.; Körner, C.; Osmanlic, F.; Bauereiß, A.
Rapid manufacturing technologies are lately gaining interest as alternative manufacturing method. Due to the large parameter sets applicable in these manufacturing methods and their impact on achievable material properties and quality, support of the manufacturing process development by the use of simulation is highly attractive. This is especially true for aerospace applications with their high quality demands and controlled scatter in the resulting material properties. The applicable simulation techniques to these manufacturing methods are manifold. The paper will focus on the melt pool simulation for a SLM (selective laser melting) process which was originally developed for EBM (electron beam melting). It will be discussed in the overall context of a multi-scale simulation within a virtual process chain.
Mancilla, M; Saavedra, J; Grandón, M; Tapia, E; Navas, E; Grothusen, H; Bustos, P
2018-04-01
Piscirickettsiosis is a threatening infectious disease for the salmon industry, due to it being responsible for significant economic losses. The control of outbreaks also poses considerable environmental challenges. Despite Piscirickettsia salmonis having been discovered as the aetiological agent of the disease more than 25 years ago, its pathogenicity remains poorly understood. Among virulence factors identified so far, type four secretion systems (T4SS) seem to play a key role during the infection caused by the bacterium. We report here the genetic manipulation of P. salmonis by means of the transference of plasmid DNA in mating assays. An insertion cassette was engineered for targeting the icmB gene, which encodes a putative T4SS-ATPase and is carried by one of the chromosomal T4SS clusters found within the genome of P. salmonis PM15972A1, a virulent representative of the EM-90-like strain. The molecular characterization of the resulting mutant strain demonstrated that the insertion interrupted the target gene. Further in vitro testing of the icmB mutant showed a dramatic drop in infectivity as tested in CHSE-214 cells, which is in agreement with its attenuated behaviour observed in vivo. Altogether, our results demonstrate that, similar to other facultative intracellular pathogens, P. salmonis' virulence relies on an intact T4SS. © 2017 The Authors. Journal of Fish Diseases Published by John Wiley & Sons Ltd.
2007-09-30
COAMPS model. Bogumil Jakubiak, University of Warsaw – participated in EGU General Assembly , Vienna Austria 15-20 April 2007 giving one oral and two...conditional forecast (background) error probability density function using an ensemble of the model forecast to generate background error statistics...COAMPS system on ICM machines at Warsaw University for the purpose of providing operational support to the general public using the ICM meteorological
NASA Technical Reports Server (NTRS)
Richardson, I. G.; Cane, H. V.
2004-01-01
"Magnetic clouds" (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) characterized by enhanced magnetic fields with an organized rotation in direction, and low plasma beta. Though intensely studied, MCs only constitute a fraction of all the ICMEs that are detected in the solar wind. A comprehensive survey of ICMEs in the near- Earth solar wind during the ascending, maximum and early declining phases of solar cycle 23 in 1996 - 2003 shows that the MC fraction varies with the phase of the solar cycle, from approximately 100% (though with low statistics) at solar minimum to approximately 15% at solar maximum. A similar trend is evident in near-Earth observations during solar cycles 20 - 21, while Helios 1/2 spacecraft observations at 0.3 - 1.0 AU show a weaker trend and larger MC fraction.
What Do the Hitomi Observations Tell Us About the Turbulent Velocities in the Perseus Cluster?
NASA Astrophysics Data System (ADS)
ZuHone, John A.; Miller, Eric D.; Bulbul, Esra; Zhuravleva, Irina
2017-08-01
Recently, the Hitomi X-ray Observatory provided the first-ever direct measurements of Doppler line shifting and broadening from the hot plasma in clusters of galaxies via its observations of the Perseus Cluster. It has been reported that these observations demonstrate that the ICM in Perseus is "quiescent". It is indisputable that the velocities inferred from the measured line shifts and broadening are low, but what do these observations imply about the structure of the velocity field on scales smaller than the Hitomi PSF? We use hydrodynamic simulations of gas motions in a cool-core cluster in combination with synthetic Hitomi observations in order to compare the observed line-of-sight velocities to the 3D velocity structure of the ICM, and assess the impact of Hitomi's spatial resolution and the effects of varying the underlying ICM physics.
Accurate image-charge method by the use of the residue theorem for core-shell dielectric sphere
NASA Astrophysics Data System (ADS)
Fu, Jing; Xu, Zhenli
2018-02-01
An accurate image-charge method (ICM) is developed for ionic interactions outside a core-shell structured dielectric sphere. Core-shell particles have wide applications for which the theoretical investigation requires efficient methods for the Green's function used to calculate pairwise interactions of ions. The ICM is based on an inverse Mellin transform from the coefficients of spherical harmonic series of the Green's function such that the polarization charge due to dielectric boundaries is represented by a series of image point charges and an image line charge. The residue theorem is used to accurately calculate the density of the line charge. Numerical results show that the ICM is promising in fast evaluation of the Green's function, and thus it is useful for theoretical investigations of core-shell particles. This routine can also be applicable for solving other problems with spherical dielectric interfaces such as multilayered media and Debye-Hückel equations.
What We Have Learned About Clusters From a Decade of Arcsecond Resolution X-ray Observations
NASA Technical Reports Server (NTRS)
Markevitch, Maxim
2012-01-01
This talk will briefly review the main findings from Chandra high angular resolution observations of galaxy clusters, emphasizing results on cluster astrophysics. Chandra has discovered shock fronts in merging systems, providing information on the shock Mach number and velocity, and for best-observed shocks, constraining the microphysical properties of the intracluster medium (ICM). Cold fronts, a Chandra discovery, are ubiquitous both in merging clusters and in the cool ccres of relaxed systems. They reveal the structure and strength of the intracluster magnetic fields and constrain the ICM viscosity a combined with radio data, these observations also shed light on the production of ultra-relativistic particles that are known to coexist with thermal plasma. Finally, in nearly all cool cores, Chandra observes cavities in the ICM that are produced by the central AGN. All these phenomena will be extremely interesting for high-resolution SZ studies.
NASA Astrophysics Data System (ADS)
Broderick, Scott R.; Santhanam, Ganesh Ram; Rajan, Krishna
2016-08-01
As the size of databases has significantly increased, whether through high throughput computation or through informatics-based modeling, the challenge of selecting the optimal material for specific design requirements has also arisen. Given the multiple, and often conflicting, design requirements, this selection process is not as trivial as sorting the database for a given property value. We suggest that the materials selection process should minimize selector bias, as well as take data uncertainty into account. For this reason, we discuss and apply decision theory for identifying chemical additions to Ni-base alloys. We demonstrate and compare results for both a computational array of chemistries and standard commercial superalloys. We demonstrate how we can use decision theory to select the best chemical additions for enhancing both property and processing, which would not otherwise be easily identifiable. This work is one of the first examples of introducing the mathematical framework of set theory and decision analysis into the domain of the materials selection process.
How do Housing Subsidies Improve Quality of Life Among Homeless Adults? A Mediation Analysis.
O'Connell, Maria; Sint, Kyaw; Rosenheck, Robert
2018-03-01
Supported housing, combining rent subsidies with intensive case management, is associated with improvements in quality of life of homeless adults, but factors mediating their impact on quality of life have not been studied. Twelve-month outcome data from a randomized trial of the Housing and Urban Development- Veterans Affairs Supported Housing program (HUD-VASH) showed that access to a housing rent subsidy plus intensive case management (ICM) was associated with greater improvement in subjective quality of life than ICM alone. Multiple mediation analyses were applied to identify variables that significantly mediated the relationship between receipt of housing voucher and improvements in quality of life. Significant mediating covariates were those whose 95% bias-corrected confidence intervals, when added to the model predicting improvement in quality of life, did not overlap zero. Increases in the number of days housed, size of social network, and availability of emotional support appear to mediate improvement in quality of life and account for 71% of the benefit attributable to having a rent subsidy. Improvement in subjective quality of life though housing subsidies is mediated by gains in both material and psychosocial factors. Mediating factors deserve special attention in supported housing services. © Society for Community Research and Action 2018.
NASA Astrophysics Data System (ADS)
Kana, J. B. Kana; Ndjaka, J. M.; Manyala, N.; Nemraoui, O.; Beye, A. C.; Maaza, M.
2008-09-01
We prepared gold/Vanadium dioxide nanocomposites thin films by the rf reactive inverted cylindrical magnetron sputtering (ICMS) for the first time and report their enhanced surface plasmon resonance (SPR) tunable shift reversibility. ICMS has been attracting much attention for its ability for uniform coating of three-dimensional objects and high-rate deposition of dielectric materials. To investigate the optical properties of gold nanoparticles embedded in an active matrix (VO2) composite film was synthesized on corning glass substrates for several substrate temperatures ranging from 400 °C to 600 °C. The X-ray diffraction results demonstrated that the Au and VO2 were well crystallized. The optical transmission properties were measured from 300nm to 1100nm and the absorption peak due to the surface plasmon resonance (SPR) of Au nanoparticles were observed. Under external temperature stimuli, the tunable reversibility of the SPR shift was observed when the nanocomposites temperature varies from 20 °C to 100 °C. The enhancement of this shift of SPR was observed as the substrate temperature increases and it was found that the shift of SPR increased rapidly with increasing substrate temperature but then remained constant at ˜57 nm for substrate temperature higher than 500 °C.
Amundsen Huffmaster, Sommer L; Van Acker, Gustaf M; Luchies, Carl W; Cheney, Paul D
2017-07-01
Simplifying neuromuscular control for movement has previously been explored by extracting muscle synergies from voluntary movement electromyography (EMG) patterns. The purpose of this study was to investigate muscle synergies represented in EMG recordings associated with direct electrical stimulation of single sites in primary motor cortex (M1). We applied single-electrode high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) to the forelimb region of M1 in two rhesus macaques using parameters previously found to produce forelimb movements to stable spatial end points (90-150 Hz, 90-150 μA, 1,000-ms stimulus train lengths). To develop a comprehensive representation of cortical output, stimulation was applied systematically across the full extent of M1. We recorded EMG activity from 24 forelimb muscles together with movement kinematics. Nonnegative matrix factorization (NMF) was applied to the mean stimulus-evoked EMG, and the weighting coefficients associated with each synergy were mapped to the cortical location of the stimulating electrode. Synergies were found for three data sets including 1 ) all stimulated sites in the cortex, 2 ) a subset of sites that produced stable movement end points, and 3 ) EMG activity associated with voluntary reaching. Two or three synergies accounted for 90% of the overall variation in voluntary movement EMG whereas four or five synergies were needed for HFLD-ICMS-evoked EMG data sets. Maps of the weighting coefficients from the full HFLD-ICMS data set show limited regional areas of higher activation for particular synergies. Our results demonstrate fundamental NMF-based muscle synergies in the collective M1 output, but whether and how the central nervous system might coordinate movements using these synergies remains unclear. NEW & NOTEWORTHY While muscle synergies have been investigated in various muscle activity sets, it is unclear whether and how synergies may be organized in the cortex. We have investigated muscle synergies resulting from high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) applied throughout M1. We compared HFLD-ICMS synergies to synergies from voluntary movement. While synergies can be identified from M1 stimulation, they are not clearly related to voluntary movement synergies and do not show an orderly topographic organization across M1. Copyright © 2017 the American Physiological Society.
Atomic force microscopy studies of native photosynthetic membranes.
Sturgis, James N; Tucker, Jaimey D; Olsen, John D; Hunter, C Neil; Niederman, Robert A
2009-05-05
In addition to providing the earliest surface images of a native photosynthetic membrane at submolecular resolution, examination of the intracytoplasmic membrane (ICM) of purple bacteria by atomic force microscopy (AFM) has revealed a wide diversity of species-dependent arrangements of closely packed light-harvesting (LH) antennae, capable of fulfilling the basic requirements for efficient collection, transmission, and trapping of radiant energy. A highly organized architecture was observed with fused preparations of the pseudocrystalline ICM of Blastochloris viridis, consiting of hexagonally packed monomeric reaction center light-harvesting 1 (RC-LH1) core complexes. Among strains which also form a peripheral LH2 antenna, images of ICM patches from Rhodobacter sphaeroides exhibited well-ordered, interconnected networks of dimeric RC-LH1 core complexes intercalated by rows of LH2, coexisting with LH2-only domains. Other peripheral antenna-containing species, notably Rhodospirillum photometricum and Rhodopseudomonas palustris, showed a less regular organization, with mixed regions of LH2 and RC-LH1 cores, intermingled with large, paracrystalline domains. The ATP synthase and cytochrome bc(1) complex were not observed in any of these topographs and are thought to be localized in the adjacent cytoplasmic membrane or in inaccessible ICM regions separated from the flat regions imaged by AFM. The AFM images have served as a basis for atomic-resolution modeling of the ICM vesicle surface, as well as forces driving segregation of photosynthetic complexes into distinct domains. Docking of atomic-resolution molecular structures into AFM topographs of Rsp. photometricum membranes generated precise in situ structural models of the core complex surrounded by LH2 rings and a region of tightly packed LH2 complexes. A similar approach has generated a model of the highly curved LH2-only membranes of Rba. sphaeroides which predicts that sufficient space exists between LH2 complexes for quinones to diffuse freely. Measurement of the intercomplex distances between adjacent LH2 rings of Phaeospirillum molischianum has permitted the first calculation of the separation of bacteriochlorophyll a molecules in the native ICM. A recent AFM analysis of the organization of green plant photosystem II (PSII) in grana thylakoids revealed the protruding oxygen-evolving complex, crowded together in parallel alignment at three distinct levels of stacked membranes over the lumenal surface. The results also confirmed that PSII-LHCII supercomplexes are displaced relative to one another in opposing grana membranes.
ICM: Bridging the Capability Gap between 1 January 2019 and the Replacement Munition
2017-06-09
fires. This qualitative case study focused on the ICM capability gap and potential solutions for the U.S. Field Artillery cannon and rocket systems... one of those countries, the United States could find itself committed in their defense. This case study will be used to provide insight to the...context of the potential ramifications of the 2008 DoD Policy on Cluster Munitions and Unintended Harm to Civilians, a case study on Russian military
Unusual solar energetic proton fluxes at 1 AU within an interplanetary CME
NASA Astrophysics Data System (ADS)
Mulligan, T.; Blake, J. B.; Mewaldt, R. A.
In mid December 2006 several flares on the Sun occurred in rapid succession, spawning several CMEs and bathing the Earth in multiple solar energetic particle (SEP) events. One such SEP occurring on December 15th was observed at the Earth just as an interplanetary CME (ICME) from a previous flare on December 13th was transiting the Earth. Although solar wind observations during this time show typical energetic proton fluxes from the prior SEP and IP shock driven ahead of the ICME, as the ICME passes the Earth unusual energetic particle signatures are observed. Measurements from ACE, Wind, and STEREO show unusual proton flux variations at energies ranging from ~3 MeV up to greater than 70 MeV. Within the Earth’s magnetosphere Polar HIST also sees unusual proton flux variations at energies greater than 10 MeV while crossing open field lines in the southern polar cap. However, no such variation in the energetic proton flux is observed at the GOES 10 or GOES 11 spacecraft in geosynchronous orbit. Differential fluxes observed at GOES 12 in the 15-40 MeV energy range show some variation. However, the overall energetic particle signature within the ICME at GEO orbits remains unclear. This event illustrates the need for caution when using GEO data in statistical studies of SEP events and in interplanetary models of energetic particle transport to 1 AU.
NASA Astrophysics Data System (ADS)
Luhmann, J. G.; Mays, M. L.; Li, Y.; Bain, H. M.; Lee, C. O.; Odstrcil, D.; Mewaldt, R. A.; Cohen, C.; Leske, R. A.
2017-12-01
An observer's magnetic field connection to a SEP-producing interplanetary shock (or compression) source often appears to provide a good indicator of whether or not a SEP event occurs. As a result, some tools for SEP event modeling make use of this finding. However, a key assumption of these approaches is that the interplanetary magnetic field and heliospheric shock geometries are known throughout the event(s). We consider examples of SEP time profile calculations obtained with combined ENLIL and SEPMOD modeling where the results compare well with observations at multiple inner heliosphere sites, and compare them to cases where such comparisons show a relative lack of agreement. ENLIL does not include the shock inside 21 Rs or CME/ICME ejecta magnetic fields, but for the agreeable cases this does not seem to make a big difference. The number, size, speed and directions of related CMEs/ICMEs, and ENLIL field line geometry appear to play the most critical roles. This includes the inclusion of prior and parallel events that affect both the ICME propagation and magnetic field geometry and strength along the observer field line. It seems clear that if a SEP forecasting system is desired, we must continue to have instrumentation that allows us to specify global CME/ICME initiation geometry (coronagraphs, XUV/EUV imagers) and background solar wind structure (magnetographs).
NASA Astrophysics Data System (ADS)
Su, Yuanyuan; Kraft, Ralph P.; Roediger, Elke; Nulsen, Paul; Forman, William R.; Churazov, Eugene; Randall, Scott W.; Jones, Christine; Machacek, Marie E.
2017-01-01
The intracluster medium (ICM), as a magnetized and highly ionized fluid, provides an ideal laboratory to study plasma physics under extreme conditions that cannot be achieved on Earth. NGC 1404 is a bright elliptical galaxy that is being gas stripped as it falls through the ICM of the Fornax Cluster. We use the new Chandra X-ray observations of NGC 1404 to study ICM microphysics. The interstellar medium of NGC 1404 is characterized by a sharp leading edge, 8 kpc from the Galaxy center, and a short downstream gaseous tail. Contact discontinuities are resolved on unprecedented spatial scales (0.″5 = 45 pc) due to the combination of the proximity of NGC 1404, the superb spatial resolution of Chandra, and the very deep (670 ks) exposure. At the leading edge, we observe sub-kiloparsec-scale eddies generated by Kelvin-Helmholtz instability (KHI) and put an upper limit of 5% Spitzer on the isotropic viscosity of the hot cluster plasma. We also observe mixing between the hot cluster gas and the cooler galaxy gas in the downstream stripped tail, which provides further evidence of a low viscosity plasma. The assumed ordered magnetic fields in the ICM ought to be smaller than 5 μG to allow KHI to develop. The lack of an evident magnetic draping layer just outside the contact edge is consistent with such an upper limit.
Pathak, K V; Keharia, H
2013-05-01
To characterize fungal antagonistic bacilli isolated from aerial roots of banyan tree and identify the metabolites responsible for their antifungal activity. Seven gram positive, endospore-forming, rod-shaped endophytic bacterial strains exhibiting a broad-spectrum antifungal activity were isolated from the surface-sterilized aerial roots of banyan tree. The isolates designated as K1, A2, A4 and A12 were identified as Bacillus subtilis, whereas isolates A11 and A13 were identified as Bacillus amyloliquefaciens using Biolog Microbial Identification System. The antifungal lipopeptides, surfactins, iturins and fengycins with masses varying in the range from m/z 900 to m/z 1550 could be detected using intact-cell MALDI-TOF mass spectrometry (ICMS). On the basis of mass spectral and carbon source utilization profile, all seven endophytes could be distinguished from each other. Furthermore, ICMS analysis revealed higher extent of heterogeneity among iturins and fengycins produced by B. subtilis K1, correlating well with its higher antifungal activity in comparison with other isolates. Seven fungal antagonistic bacilli were isolated from aerial roots of banyan tree, exhibiting broad spectrum of antifungal activity, among which B. subtilis K1 isolate was found to be most potent. The ICMS analysis revealed that all these isolates produced cyclic lipopeptides belonging to surfactin, iturin and fengycin families and exhibited varying degree of heterogeneity. The endophytes are considered as a potential source of novel bioactive metabolites, and this study describes the potent fungal antagonistic bacilli from aerial roots of banyan tree. The isolates described in this study have a prospective application as biocontrol agents. Also ICMS analysis described in this study for characterization of antifungal metabolites produced by banyan endophytic bacilli may be used as a high throughput tool for screening of microbes producing novel cyclic lipopeptides. © 2013 The Society for Applied Microbiology.
Yang, Kai-Chien; Yamada, Kathryn A; Patel, Akshar Y; Topkara, Veli K; George, Isaac; Cheema, Faisal H; Ewald, Gregory A; Mann, Douglas L; Nerbonne, Jeanne M
2014-03-04
Microarrays have been used extensively to profile transcriptome remodeling in failing human heart, although the genomic coverage provided is limited and fails to provide a detailed picture of the myocardial transcriptome landscape. Here, we describe sequencing-based transcriptome profiling, providing comprehensive analysis of myocardial mRNA, microRNA (miRNA), and long noncoding RNA (lncRNA) expression in failing human heart before and after mechanical support with a left ventricular (LV) assist device (LVAD). Deep sequencing of RNA isolated from paired nonischemic (NICM; n=8) and ischemic (ICM; n=8) human failing LV samples collected before and after LVAD and from nonfailing human LV (n=8) was conducted. These analyses revealed high abundance of mRNA (37%) and lncRNA (71%) of mitochondrial origin. miRNASeq revealed 160 and 147 differentially expressed miRNAs in ICM and NICM, respectively, compared with nonfailing LV. Among these, only 2 (ICM) and 5 (NICM) miRNAs are normalized with LVAD. RNASeq detected 18 480, including 113 novel, lncRNAs in human LV. Among the 679 (ICM) and 570 (NICM) lncRNAs differentially expressed with heart failure, ≈10% are improved or normalized with LVAD. In addition, the expression signature of lncRNAs, but not miRNAs or mRNAs, distinguishes ICM from NICM. Further analysis suggests that cis-gene regulation represents a major mechanism of action of human cardiac lncRNAs. The myocardial transcriptome is dynamically regulated in advanced heart failure and after LVAD support. The expression profiles of lncRNAs, but not mRNAs or miRNAs, can discriminate failing hearts of different pathologies and are markedly altered in response to LVAD support. These results suggest an important role for lncRNAs in the pathogenesis of heart failure and in reverse remodeling observed with mechanical support.
Duque, Thais M; Prado, Maira; Herrera, Daniel R; Gomes, Brenda P F A
2018-03-23
The aim of the present study was to investigate the effects of a calcium hydroxide-based intracanal medication (ICM) on periodontal and endodontic infectious/inflammatory contents and on periodontal clinical parameters in teeth with primary periodontal lesion and secondary endodontic involvement. Ten patients with abnormal pulp test results and deep probing depth derived from primary periodontal disease with secondary endodontic involvement were included. Samples were collected from root canals (RC) and periodontal pockets (PP) in order to investigate the microbiological status, levels of endotoxin (LPS), cytokines, and matrix metalloproteinases (MMP), before and after ICM. PCR was used for microbiological assessment. The kinetic-chromogenic LAL assay was used for LPS quantification. Quantikine ELISA kits were used for measurement of IL-1 α, IL-1 β, TNF-α, PGE 2 , MMP-2, MMP-3, MMP-8, MMP-9, and MMP-13 levels. The statistical analyses were made using the Friedman and Wilcoxon tests (p < 0.05). T test was used to compare data on periodontal characteristics. ICM did not reduce the number of microorganisms in PP and RC, except for Fusobacterium nucleatum in RC. There was a significant reduction in LPS, MMPs, IL-1 β, and TNF-α levels in PP after ICM. In RC, LPS, MMP13, PGE 2 , and IL-1β levels remained unaltered (p > 0.05); however, the levels of the other MMPs and cytokines were reduced (p < 0.05). After 1 year of the root canal treatment, tooth mobility was significantly reduced (p ≤ 0.05). The use of a calcium hydroxide-based ICM showed positive effects for periodontal treatment prognosis, as it reduced LPS, cytokine, and MMP levels in periodontal pockets. Patients presenting deep probing depth and undergoing periodontal treatment for at least 6 months, with no positive response to periodontal therapy, might benefit with the endodontic treatment.
Ascari, I J; Alves, N G; Jasmin, J; Lima, R R; Quintão, C C R; Oberlender, G; Moraes, E A; Camargo, L S A
2017-07-01
This study was performed to investigate the effects of insulin-like growth factor-I (IGF-I) addition to in vitro maturation (IVM) medium on apoptosis, mitochondrial membrane potential, ROS production, and developmental competence of bovine oocytes subjected to heat shock. Two temperatures (conventional: 24 h at 38.5°C, or heat shock: 12 h at 41°C followed by 12 h at 38.5°C) and 3 IGF-I concentrations (0, 25, and 100 ng/mL) were tested during IVM. The oocytes were then fertilized in vitro, and the presumptive zygotes were cultured until reaching the blastocyst stage. There was no interaction between temperature and IGF-I concentration for any variable evaluated (P > 0.05). The addition of IGF-I did not alter the proportion of nuclear maturation, TUNEL-positive oocytes and caspase-3 activity, or blastocyst proportion on Days 7 and 8 post-fertilization. Furthermore, the total number of cells and the number of cells in the inner cell mass (ICM) in the blastocyst were not altered (P > 0.05). However, IGF-I increased (P < 0.05) the mitochondrial membrane potential and the production of ROS in oocytes and decreased (P < 0.05) the proportion of apoptotic cells in the ICM in blastocysts. Heat shock increased (P < 0.05) the proportion of TUNEL-positive oocytes and ROS production and reduced (P < 0.05) the mitochondrial membrane potential. Moreover, heat shock increased (P < 0.05) the apoptosis proportion in the ICM cells. In conclusion, supplementing IVM medium with IGF-I may increase the mitochondrial membrane potential and ROS production in oocytes and decrease apoptosis in the ICM in blastocysts. Heat shock for 12 h compromised oocyte developmental competence and increased apoptosis within the ICM cells of the blastocysts. Copyright © 2017 Elsevier Inc. All rights reserved.
Sulfate-mediated electrooxidation of X-ray contrast media on boron-doped diamond anode.
Radjenovic, Jelena; Petrovic, Mira
2016-05-01
Recently, electrochemical activation of sulfate ions to sulfate radical species and nonradically activated persulfate has been demonstrated at boron-doped diamond (BDD) anode, which enhanced the electrooxidation kinetics of several persistent contaminants. In this study, we investigated the transformation pathways of two X-ray contrast media (ICM), diatrizoate and iopromide, in electrooxidation at BDD anode using sulfate and inert nitrate anolyte. Sulfate anolyte yielded a seven-fold increase in apparent rate constants for ICM oxidation compared to inert nitrate anolyte, and a two-fold increase for the removal of organic carbon. Higher iodine release was observed in electrooxidation of diatrizoate compared to iopromide. In the case of diatrizoate, around 80% of deiodination efficiency was achieved in both anolytes. Deiodination efficiency of iopromide was somewhat lower in nitrate anolyte (≤75%) and significantly reduced in sulfate anolyte (≤46%) due to a larger steric hindrance of alkyl side chains. Moreover, a considerable lag phase of iopromide deiodination was observed in sulfate anolyte, indicating that initial oxidation reactions took place almost exclusively at the alkyl side chains. Several transformation products (TPs) of ICM were identified in electrooxidation in sulfate anolyte, and only three TPs in the case of nitrate anolyte. The main mechanistic steps in the oxidation of iopromide were H-abstraction and bond cleavage in the alkyl side chains. Diatrizoate was mainly transformed through oxidative cleavage of iodine substituent and inter-molecular cyclization. Two hydroxylamine derivatives of iopromide and a nitro-derivative of diatrizoate were observed in sulfate anolyte. These products have not been reported previously for hydroxyl radical-mediated oxidation of ICM. Given that electron-transfer mechanism is more typical for sulfate than for hydroxyl radicals, formation of hydroxylamine and nitro-derivatives of ICM was assigned to one-electron charge transfer to sulfate radical species and formation of N-centered radicals. Copyright © 2016 Elsevier Ltd. All rights reserved.
A comparative analysis of novel cardiovascular biomarkers in patients with chronic heart failure.
Lichtenauer, Michael; Jirak, Peter; Wernly, Bernhard; Paar, Vera; Rohm, Ilonka; Jung, Christian; Schernthaner, Christiana; Kraus, Johannes; Motloch, Lukas J; Yilmaz, Atilla; Hoppe, Uta C; Christian Schulze, P; Kretzschmar, Daniel; Pistulli, Rudin
2017-10-01
Heart failure (HF) with reduced ejection fraction remains a major therapeutic challenge. The aim of this study was to investigate the role of novel cardiovascular biomarkers, i.e. soluble suppression of tumorigenicity (sST2), growth-differentiation factor-15 (GDF-15), soluble urokinase plasminogen activator receptor (suPAR) and heart-type fatty acid binding protein (H-FABP) in patients with ischaemic (ICM) or dilative cardiomyopathy (DCM). A total of 200 patients were enrolled in this study: 65 were diagnosed with DCM and 59 patients suffering from ICM were included. 76 patients without coronary artery disease or signs of heart failure were included as controls. Plasma samples of all patients were analyzed by use of ELISA. Levels of sST2, suPAR and H-FABP were significantly higher in ICM and DCM patients compared to the control group (p<0.0001). However, there were no significant differences between ICM and DCM in biomarker levels. Ejection fraction correlated inversely with cardiac biomarkers (sST2 p<0.0001, GDF-15 p=0.0394, suPAR p=0.0029, H-FABP p<0.0001). Similarly, CRP levels also showed a positive correlation with cardiac biomarkers. Renal insufficiency (p<0.0001) and diabetes (sST2 p=0.0021, GDF-15 p=0.0055, suPAR p=0.0339, H-FABP p=0.0010) were significantly associated with a rise in cardiac biomarkers. Novel cardiovascular biomarkers such as ST2, GDF-15, uPAR and H-FABP could offer a great potential for more precise diagnostic in ICM and DCM patients. H-FABP was the most promising marker in our study, followed by sST2, uPAR and GDF-15. Additional prospective studies will be necessary to further evaluate the potential clinical benefits in routine treatment of HF. Copyright © 2017 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
Ghumman, Saad S; Weinerman, Jonathan; Khan, Aazib; Cheema, Mubeen S; Garcia, Marlene; Levin, Daniel; Suri, Rajeev; Prasad, Anand
2017-09-01
We conducted a meta-analysis to compare the incidence of acute kidney injury (AKI) with carbon dioxide (CO 2 ) versus iodinated contrast media (ICM). Contrast induced-acute kidney injury (CI-AKI) is a known complication following endovascular procedures with ICM. CO 2 has been employed as an alternative imaging medium as it is nontoxic to the kidneys. Search of indexed databases was performed and 1,732 references were retrieved. Eight studies (7 observational, 1 Randomized Controlled Trial) formed the meta-analysis. Primary outcome was AKI. Fixed effect model was used when possible in addition to analysis of publication bias. In this meta-analysis, 677 patients underwent 754 peripheral angiographic procedures. Compared with ICM, CO 2 was associated with a decreased incidence of AKI (4.3% vs. 11.1%; OR 0.465, 95% CI: 0.218-0.992; P = 0.048). Subgroup analysis of four studies that included granular data for patients with chronic kidney disease (CKD) did not demonstrate a decreased incidence of AKI with CO 2 (4.1% vs. 10.0%; OR 0.449, 95% CI: 0.165-1.221, P = 0.117). Patients undergoing CO 2 angiography experienced a higher number of nonrenal events including limb/abdominal pain (11 vs. 0; P = 0.001) and nausea/vomiting (9 vs. 1; P = 0.006). In comparison to ICM, CO 2 use is associated with a modestly reduced rate of AKI with more frequent adverse nonrenal events. In studies that use CO 2 as the primary imaging agent, the average incidence of AKI remained high at 6.2%-supporting the concept that factors other than renal toxicity from ICM may contribute to renal impairment following peripheral angiography. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Addis, Russell C; Ifkovits, Jamie L; Pinto, Filipa; Kellam, Lori D; Esteso, Paul; Rentschler, Stacey; Christoforou, Nicolas; Epstein, Jonathan A; Gearhart, John D
2013-07-01
Direct conversion of fibroblasts to induced cardiomyocytes (iCMs) has great potential for regenerative medicine. Recent publications have reported significant progress, but the evaluation of reprogramming has relied upon non-functional measures such as flow cytometry for cardiomyocyte markers or GFP expression driven by a cardiomyocyte-specific promoter. The issue is one of practicality: the most stringent measures - electrophysiology to detect cell excitation and the presence of spontaneously contracting myocytes - are not readily quantifiable in the large numbers of cells screened in reprogramming experiments. However, excitation and contraction are linked by a third functional characteristic of cardiomyocytes: the rhythmic oscillation of intracellular calcium levels. We set out to optimize direct conversion of fibroblasts to iCMs with a quantifiable calcium reporter to rapidly assess functional transdifferentiation. We constructed a reporter system in which the calcium indicator GCaMP is driven by the cardiomyocyte-specific Troponin T promoter. Using calcium activity as our primary outcome measure, we compared several published combinations of transcription factors along with novel combinations in mouse embryonic fibroblasts. The most effective combination consisted of Hand2, Nkx2.5, Gata4, Mef2c, and Tbx5 (HNGMT). This combination is >50-fold more efficient than GMT alone and produces iCMs with cardiomyocyte marker expression, robust calcium oscillation, and spontaneous beating that persist for weeks following inactivation of reprogramming factors. HNGMT is also significantly more effective than previously published factor combinations for the transdifferentiation of adult mouse cardiac fibroblasts to iCMs. Quantification of calcium function is a convenient and effective means for the identification and evaluation of cardiomyocytes generated by direct reprogramming. Using this stringent outcome measure, we conclude that HNGMT produces iCMs more efficiently than previously published methods. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Conti, Sergio; Reiffel, James A; Gersh, Bernard J; Kowey, Peter R; Wachter, Rolf; Halperin, Jonathan L; Kaplon, Rachelle E; Pouliot, Erika; Verma, Atul
2017-01-01
Given the high prevalence and risk of stroke associated with atrial fibrillation (AF), detection strategies have important public health implications. The ongoing prospective, single-arm, open-label, multicenter REVEAL AF trial is evaluating the incidence of previously undetected AF using an insertable cardiac monitor (ICM) in patients without prior AF or device implantation, but who could be at risk for AF due to their demographic characteristics, +/- non-specific but compatible symptoms. Enrollment required an elevated AF risk profile defined as CHADS2≥3 or CHADS 2 =2 plus one or more of the following: coronary artery disease, renal impairment, sleep apnea or chronic obstructive pulmonary disease. Exclusions included stroke or transient ischemic attack occurring in the previous year. Of 450 subjects screened, 399 underwent a device insertion attempt, and 395 were included in the final analysis (Reveal XT: n=122; Reveal LINQ: n=273; excluded: n=4). Participants were primarily identified by demographic characteristics and the presence of nonspecific symptoms, but without prior documentation of "overt" AF. The most common symptoms were palpitations (51%), dizziness/lightheadedness/pre-syncope (36%), and shortness of breath (36%). Over 100 subjects were enrolled in each pre-defined CHADS2 subgroup (2, 3 and ≥4). AF risk factors not included in the CHADS2 score were well represented (prevalence≥15%). Procedure and/or device related serious adverse events were low, with the miniaturized Reveal LINQ ICM having a more favorable safety profile than the predicate Reveal XT (all: n=13 [3.3%]; LINQ: n=6 [2.2%]; XT: n=7 [5.7%]). These data demonstrate that REVEAL AF was successful in enrolling its target population, high risk patients were willing to undergo ICM monitoring for AF screening, and ICM use in this group is becoming increasingly safe with advancements in technology. A clinically meaningful incidence of device detected AF in this study will inform clinical decisions regarding ICM use for AF screening in patients at risk.
Experience with an integrated control and monitoring system at the El Segundo generating station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papilla, R.P.; McKinley, J.H.; Blanco, M.A.
1992-01-01
This paper describes the EPRI/Southern California Edison (SCE) El Segundo Integrated Control and Monitoring System (ICMS) project and relates key project experiences. The ICMS project is a cost-shared effort between EPRI and SCE designed to address the issues involved with integrating power plant diagnostic and condition monitoring with control. A digital distributed control system retrofit for SCE's El Segundo Units 3 and 4 provided the case study. although many utilities have retrofitted power plant units with distributed control systems (DCS's) and have applied diagnostics and monitoring programs to improve operations and performance, the approach taken in this project, that is,more » integrating the monitoring function with the control function, is profoundly new and unique. Over the life of the El Segundo ICMS, SCE expects to realize savings form life optimization, increased operating flexibility, improved heat rate, reduced NO{sub x} emissions, and lower maintenance costs. These savings are expected to be significant over the life of the system.« less
Direct Reprogramming of Human Fibroblasts toward a Cardiomyocyte-like State
Fu, Ji-Dong; Stone, Nicole R.; Liu, Lei; Spencer, C. Ian; Qian, Li; Hayashi, Yohei; Delgado-Olguin, Paul; Ding, Sheng; Bruneau, Benoit G.; Srivastava, Deepak
2013-01-01
Summary Direct reprogramming of adult somatic cells into alternative cell types has been shown for several lineages. We previously showed that GATA4, MEF2C, and TBX5 (GMT) directly reprogrammed nonmyocyte mouse heart cells into induced cardiomyocyte-like cells (iCMs) in vitro and in vivo. However, GMT alone appears insufficient in human fibroblasts, at least in vitro. Here, we show that GMT plus ESRRG and MESP1 induced global cardiac gene-expression and phenotypic shifts in human fibroblasts derived from embryonic stem cells, fetal heart, and neonatal skin. Adding Myocardin and ZFPM2 enhanced reprogramming, including sarcomere formation, calcium transients, and action potentials, although the efficiency remained low. Human iCM reprogramming was epigenetically stable. Furthermore, we found that transforming growth factor β signaling was important for, and improved the efficiency of, human iCM reprogramming. These findings demonstrate that human fibroblasts can be directly reprogrammed toward the cardiac lineage, and lay the foundation for future refinements in vitro and in vivo. PMID:24319660
Huang, Xi; Yang, Yu; Zhao, Yuwei; Cao, Dan; Ai, Xiaolin; Zeng, Anqi; Gou, Maling; Cai, Lulu; Yang, Hanshuo; Zhao, Chengjian
2018-05-15
Metastasis is the primary cause of death for most cancer patients. Hematogenous arrest of circulating tumor cells (CTCs) is an essential prerequisite for metastases formation. Using transparent transgenic zebrafish (kdrl:eGFP; Casper), together with resonant laser scanning confocal microscopy, we tracked the fate of CTCs in vivo in the blood circulation for days. We found the intra-capillary morphology-switch (ICMS) of individual CTCs from strip to sphere was necessary for their intravascular arrests. Further genetic and pharmacological inhibition experiments indicated that the RhoA signaling was necessary for ICMS and the arrest of CTCs. At last, we demonstrated that early treatment by a clinically approved RhoA/ROCK inhibitor, Fasudil, could efficiently inhibit the initial arrest of individual CTCs and reduce the incidence of tumor metastasis in both zebrafish and mouse models. These results together indicate that RhoA-stimulated ICMS represents a mechanism for the arrest of individual CTCs, providing a potential target for future treatments of hematogenous metastatic disease. © 2017 UICC.
Cellular microbiology and molecular ecology of Legionella-amoeba interaction.
Richards, Ashley M; Von Dwingelo, Juanita E; Price, Christopher T; Abu Kwaik, Yousef
2013-05-15
Legionella pneumophila is an aquatic organism that interacts with amoebae and ciliated protozoa as the natural hosts, and this interaction plays a central role in bacterial ecology and infectivity. Upon transmission to humans, L. pneumophila infect and replicate within alveolar macrophages causing pneumonia. Intracellular proliferation of L. pneumophila within the two evolutionarily distant hosts is facilitated by bacterial exploitation of evolutionarily conserved host processes that are targeted by bacterial protein effectors injected into the host cell by the Dot/Icm type VIB translocation system. Although cysteine is semi-essential for humans and essential for amoeba, it is a metabolically favorable source of carbon and energy generation by L. pneumophila. To counteract host limitation of cysteine, L. pneumophila utilizes the AnkB Dot/Icm-translocated F-box effector to promote host proteasomal degradation of polyubiquitinated proteins within amoebae and human cells. Evidence indicates ankB and other Dot/Icm-translocated effector genes have been acquired through inter-kingdom horizontal gene transfer.
PROPAGATION AND EVOLUTION OF THE JUNE 1st 2008 CME IN THE INTERPLANETARY MEDIUM
NASA Astrophysics Data System (ADS)
Nieves-Chinchilla, T.; Lamb, D. A.; Davila, J. M.; Vinas, A. F.; Moestl, C.; Hidalgo, M. A.; Farrugia, C. J.; Malandraki, O.; Dresing, N.; Gómez-Herrero, R.
2009-12-01
In this work we present a study of the coronal mass ejection (CME) of June 1st of 2008 in the interplanetary medium. This event has been extensively studied by others because of its favorable geometry and the possible consequences of its peculiar initiation for space weather forecasting. We show an analysis of the evolution of the CME in the interplanetary medium in order to shed some light on the propagation mechanism of the ICME. We have determined the typical shock associated characteristics of the ICME in order to understand the propagation properties. Using two different non force-free models of the magnetic cloud allows us to incorporate expansion of the cloud. We use in-situ measurements from STEREO B/IMPACT to characterize the ICME. In addition, we use images from STEREO A/SECCHI-HI to analyze the propagation and visual evolution of the associated flux rope in the interplanetary medium. We compare and contrast these observations with the results of the analytical models.
Analysis of an Interplanetary Coronal Mass Ejection by a Spacecraft Radio Signal: A Case Study
NASA Astrophysics Data System (ADS)
Molera Calvés, G.; Kallio, E.; Cimo, G.; Quick, J.; Duev, D. A.; Bocanegra Bahamón, T.; Nickola, M.; Kharinov, M. A.; Mikhailov, A. G.
2017-11-01
Tracking radio communication signals from planetary spacecraft with ground-based telescopes offers the possibility to study the electron density and the interplanetary scintillation of the solar wind. Observations of the telemetry link of planetary spacecraft have been conducted regularly with ground antennae from the European Very Long Baseline Interferometry Network, aiming to study the propagation of radio signals in the solar wind at different solar elongations and distances from the Sun. We have analyzed the Mars Express spacecraft radio signal phase fluctuations while, based on a 3-D heliosphere plasma simulation, an interplanetary coronal mass ejection (ICME) crossed the radio path during one of our observations on 6 April 2015. Our measurements showed that the phase scintillation indices increased by a factor of 4 during the passage of the ICME. The method presented here confirms that the phase scintillation technique based on spacecraft signals provides information of the properties and propagation of the ICMEs in the heliosphere.
High time resolution observations of the drivers of Forbush decreases
NASA Astrophysics Data System (ADS)
Jordan, A. P.; Spence, H. E.; Blake, J. B.; Mulligan, T. L.; Shaul, D. N.
2008-12-01
The drivers of Forbush decreases in galactic cosmic ray (GCR) fluxes are thought to be magnetic turbulence in the sheath of an interplanetary coronal mass ejection (ICME) and the closed magnetic field lines in the ICME itself. This model, however, is the result of studies utilizing hourly or longer time averaging. Such averaging can smooth over important correlations between variabilities in the GCR flux and those in the interplanetary medium. To test the validity of the current model of Forbush decreases, we analyze a number of Forbush decreases using high time resolution GCR data from the High Sensitivity Telescope (HIST) on Polar and the Spectrometer for INTEGRAL (SPI). We seek causal correlations between the onset of the decrease and structures in the solar wind plasma and interplanetary magnetic field, as measured concurrently with ACE and/or Wind. We find evidence that planar magnetic structures in the sheath preceding the ICME may be a factor in driving the decrease in at least one event.
Waves associated to COMPLEX EVENTS observed by STEREO
NASA Astrophysics Data System (ADS)
Siu Tapia, A. L.; Blanco-Cano, X.; Kajdic, P.; Aguilar-Rodriguez, E.; Russell, C. T.; Jian, L. K.; Luhmann, J. G.
2012-12-01
Complex Events are formed by two or more large-scale solar wind structures which interact in space. Typical cases are interactions of: (i) a Magnetic Cloud/Interplanetary Coronal Mass Ejection (MC/ICME) with another MC/ICME transient; and (ii) an ICME followed by a Stream Interaction Region (SIR). Complex Events are of importance for space weather studies and studying them can enhance our understanding of collisionless plasma physics. Some of these structures can produce or enhance southward magnetic fields, a key factor in geomagnetic storm generation. Using data from the STEREO mission during the years 2006-2011, we found 17 Complex Events preceded by a shock wave. We use magnetic field and plasma data to study the micro-scale structure of the shocks, and the waves associated to these shocks and within Complex Events structures. To determine wave characteristics we perform Power Spectra and Minimum Variance Analysis. We also use PLASTIC WAP protons data to study foreshock extensions and the relationship between Complex Regions and particle acceleration to suprathermal energies.
Docking and scoring with ICM: the benchmarking results and strategies for improvement
Neves, Marco A. C.; Totrov, Maxim; Abagyan, Ruben
2012-01-01
Flexible docking and scoring using the Internal Coordinate Mechanics software (ICM) was benchmarked for ligand binding mode prediction against the 85 co-crystal structures in the modified Astex data set. The ICM virtual ligand screening was tested against the 40 DUD target benchmarks and 11-target WOMBAT sets. The self-docking accuracy was evaluated for the top 1 and top 3 scoring poses at each ligand binding site with near native conformations below 2 Å RMSD found in 91% and 95% of the predictions, respectively. The virtual ligand screening using single rigid pocket conformations provided the median area under the ROC curves equal to 69.4 with 22.0% true positives recovered at 2% false positive rate. Significant improvements up to ROC AUC= 82.2 and ROC(2%)= 45.2 were achieved following our best practices for flexible pocket refinement and out-of-pocket binding rescore. The virtual screening can be further improved by considering multiple conformations of the target. PMID:22569591
Cellular microbiology and molecular ecology of Legionella–amoeba interaction
Richards, Ashley M.; Von Dwingelo, Juanita E.; Price, Christopher T.; Abu Kwaik, Yousef
2013-01-01
Legionella pneumophila is an aquatic organism that interacts with amoebae and ciliated protozoa as the natural hosts, and this interaction plays a central role in bacterial ecology and infectivity. Upon transmission to humans, L. pneumophila infect and replicate within alveolar macrophages causing pneumonia. Intracellular proliferation of L. pneumophila within the two evolutionarily distant hosts is facilitated by bacterial exploitation of evolutionarily conserved host processes that are targeted by bacterial protein effectors injected into the host cell by the Dot/Icm type VIB translocation system. Although cysteine is semi-essential for humans and essential for amoeba, it is a metabolically favorable source of carbon and energy generation by L. pneumophila. To counteract host limitation of cysteine, L. pneumophila utilizes the AnkB Dot/Icm-translocated F-box effector to promote host proteasomal degradation of polyubiquitinated proteins within amoebae and human cells. Evidence indicates ankB and other Dot/Icm-translocated effector genes have been acquired through inter-kingdom horizontal gene transfer. PMID:23535283
A Randomized Pilot Study of the Engaging Moms Program for Family Drug Court
Dakof, Gayle A.; Cohen, Jeri B.; Henderson, Craig E.; Duarte, Eliette; Boustani, Maya; Blackburn, Audra; Venzer, Ellen; Hawes, Sam
2010-01-01
In response to the need for effective drug court interventions, the effectiveness of the Engaging Moms Program (EMP) versus intensive case management services (ICMS) on multiple outcomes for mothers enrolled in family drug court was investigated. In this intent-to-treat study, mothers (N = 62) were randomly assigned to either usual drug court care or the Engaging Moms drug court program. Mothers were assessed at intake, and 3, 6, 12, and 18 months following intake. Results indicated that at 18 months post drug court enrollment, 77% of mothers assigned to EMP versus 55% of mothers assigned to ICMS had positive child welfare dispositions. There were statistically significant time effects for both intervention groups on multiple outcomes including substance use, mental health, parenting practices, and family functioning. EMP showed equal or better improvement than ICMS on all outcomes. The results suggest that EMP in family drug court is a viable and promising intervention approach to reduce maternal addiction and child maltreatment. PMID:20116961
Specifics of fetuin-A levels in distinct types of chronic heart failure.
Lichtenauer, Michael; Wernly, Bernhard; Paar, Vera; Rohm, Ilonka; Jung, Christian; Yilmaz, Atilla; Hoppe, Uta C; Schulze, Paul Christian; Kretzschmar, Daniel; Pistulli, Rudin
2018-01-01
Fetuin-A has been described to correlate inversely with vascular calcification both in animal models but also in patients with heart and renal disease. In this current study, we sought to investigate whether fetuin-A might be a useful marker for the discrimination of ischemic (ICM) from dilated cardiomyopathy (DCM). A total of 124 non-consecutive patients were included in this study, 59 patients suffered from ICM and 65 patients from DCM. Serum samples were obtained during out-patient visits and analyzed for fetuin-A by ELISA. Median fetuin-A concentration in the overall cohort was significantly lower in ICM patients compared to DCM patients (62.2±16.4 μg/mL vs. 129.6±56.6 μg/mL; P<.001). A positive correlation of fetuin-A levels was found with BMI, cholesterol, LDL/HDL ratio and triglycerides and an inverse correlation with age (r=-.36; P<.001). Moreover, patients suffering from (stable) angina pectoris evidenced lower fetuin-A levels compared to non-symptomatic patients (73.1±22.7 μg/mL vs. 83.7±26.2 μg/mL; P=.047) CONCLUSIONS: Fetuin-A was shown to be a potential discriminator and biomarker for the differential diagnosis between ICM and DCM. Fetuin-A levels might also be helpful in the process of diagnostic decision-making in regards to invasive management or medical therapy. © 2017 Wiley Periodicals, Inc.
Hapeshi, E; Lambrianides, A; Koutsoftas, P; Kastanos, E; Michael, C; Fatta-Kassinos, D
2013-06-01
The capability of a moving bed biofilm reactor (MBBR) to remove the iodinated contrast media (ICM) iohexol (IOX) and diatrizoate (DTZ) from municipal wastewater was studied. A selected number of clones of microorganisms present in the biofilm were identified. Biotransformation products were tentatively identified and the toxicity of the treated effluent was assessed. Microbial samples were DNA-sequenced and subjected to phylogenetic analysis in order to confirm the identity of the microorganisms present and determine the microbial diversity. The analysis demonstrated that the wastewater was populated by a bacterial consortium related to different members of Proteobacteria, Firmicutes, and Nitrisporae. The optimum removal values of the ICM achieved were 79 % for IOX and 73 % for DTZ, whereas 13 biotransformation products for IOX and 14 for DTZ were identified. Their determination was performed using ultra-performance liquid chromatography-tandem mass spectrometry. The toxicity of the treated effluent tested to Daphnia magna showed no statistical difference compared to that without the addition of the two ICM. The MBBR was proven to be a technology able to remove a significant percentage of the two ICM from urban wastewater without the formation of toxic biodegradation products. A large number of biotransformation products was found to be formed. Even though the amount of clones sequenced in this study does not reveal the entire bacterial diversity present, it provides an indication of the predominating phylotypes inhabiting the study site.
Lee, Hye Jin; Yu, Hyeoh Won; Kim, Gi Beom; Shin, Choong Ho; Yang, Sei Won
2017-01-01
Purpose We investigated the clinical course of infants with congenital heart disease (CHD) who experienced thyroid dysfunction within 100 days of birth. Methods We performed retrospective medical reviews of 54 CHD patients (24 male patients) who underwent a thyroid function test (TFT) between January 2007 and July 2016. Data were collected on birth history, diagnosis of CHD, underlying chromosomal or genetic abnormalities, medication history, surgery, ventilator care, and exposure to iodine contrast media (ICM). Results of neonatal screening tests (NSTs) and TFTs were reviewed. Results A total of 36 patients (29 transient, 7 permanent) showed thyroid dysfunction. Among the seven patients with permanent hypothyroidism, three had an underlying syndrome, three showed abnormal NST results, and one was admitted to the intensive care unit for macroglossia and feeding cyanosis. We found that infants with transient thyroid dysfunction had a lower birth weight and were more commonly exposed to thyroid disrupting medication and/or ICM. However, these risk factors were not significant. A total of 8 patients with a history of ICM exposure showed thyroid dysfunction. Excluding 3 patients with elevated thyroid stimulating hormone before ICM exposure, 5 patients recovered from transient thyroid dysfunction. Conclusions We observed thyroid dysfunction in two-thirds of CHD infants (53.7% transient, 13.0% permanent) who had risk factors and received TFT screening within 100 days, despite normal NSTs. Further studies with larger sample sizes are required to revise the criteria for TFT screening in CHD infants. PMID:29301186
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghil, M.; Kravtsov, S.; Robertson, A. W.
2008-10-14
This project was a continuation of previous work under DOE CCPP funding, in which we had developed a twin approach of probabilistic network (PN) models (sometimes called dynamic Bayesian networks) and intermediate-complexity coupled ocean-atmosphere models (ICMs) to identify the predictable modes of climate variability and to investigate their impacts on the regional scale. We had developed a family of PNs (similar to Hidden Markov Models) to simulate historical records of daily rainfall, and used them to downscale GCM seasonal predictions. Using an idealized atmospheric model, we had established a novel mechanism through which ocean-induced sea-surface temperature (SST) anomalies might influencemore » large-scale atmospheric circulation patterns on interannual and longer time scales; we had found similar patterns in a hybrid coupled ocean-atmosphere-sea-ice model. The goal of the this continuation project was to build on these ICM results and PN model development to address prediction of rainfall and temperature statistics at the local scale, associated with global climate variability and change, and to investigate the impact of the latter on coupled ocean-atmosphere modes. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling together with the development of associated software; new intermediate coupled models; a new methodology of inverse modeling for linking ICMs with observations and GCM results; and, observational studies of decadal and multi-decadal natural climate results, informed by ICM results.« less
Oliveira, C S; de Souza, M M; Saraiva, N Z; Tetzner, T A D; Lima, M R; Lopes, F L; Garcia, J M
2012-06-01
Despite extensive efforts, establishment of bovine embryonic stem (ES) cell lines has not been successful. We hypothesized that culture conditions for in vitro-produced (IVP) embryos, the most used source of inner cell mass (ICM) to obtain ES cells, might affect their undifferentiated state. Therefore, the aim of this work was to improve pluripotency of IVP blastocysts to produce suitable ICM for further culturing. We tested KSR and foetal calf serum (FCS) supplements in SOF medium and ES cell conditioned medium (CM) on IVC (groups: KSR, KSR CM, FCS and FCS CM). Cleavage and blastocyst rates were similar between all groups. Also, embryonic quality, assessed by apoptosis rates (TUNEL assay), total cell number and ICM percentage did not differ between experimental groups. However, expression of pluripotency-related markers was affected. We detected down-regulation of OCT3/4, SOX2 and SSEA1 in ICM of FCS CM blastocysts (p < 0.05). SOX2 gene expression revealed lower levels (p < 0.05) on KSR CM blastocysts and a remarkable variation in SOX2 mRNA levels on FCS-supplemented blastocysts. In conclusion, pluripotency-related markers tend to decrease after supplementation with ES cell CM, suggesting different mechanisms regulating mouse and bovine pluripotency. KSR supplementation did not differ from FCS, but FCS replacement by KSR may produce blastocysts with stable SOX2 gene expression levels. © 2011 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Pohlmeyer, Eric A.; Fifer, Matthew; Rich, Matthew; Pino, Johnathan; Wester, Brock; Johannes, Matthew; Dohopolski, Chris; Helder, John; D'Angelo, Denise; Beaty, James; Bensmaia, Sliman; McLoughlin, Michael; Tenore, Francesco
2017-05-01
Brain-computer interface (BCI) research has progressed rapidly, with BCIs shifting from animal tests to human demonstrations of controlling computer cursors and even advanced prosthetic limbs, the latter having been the goal of the Revolutionizing Prosthetics (RP) program. These achievements now include direct electrical intracortical microstimulation (ICMS) of the brain to provide human BCI users feedback information from the sensors of prosthetic limbs. These successes raise the question of how well people would be able to use BCIs to interact with systems that are not based directly on the body (e.g., prosthetic arms), and how well BCI users could interpret ICMS information from such devices. If paralyzed individuals could use BCIs to effectively interact with such non-anthropomorphic systems, it would offer them numerous new opportunities to control novel assistive devices. Here we explore how well a participant with tetraplegia can detect infrared (IR) sources in the environment using a prosthetic arm mounted camera that encodes IR information via ICMS. We also investigate how well a BCI user could transition from controlling a BCI based on prosthetic arm movements to controlling a flight simulator, a system with different physical dynamics than the arm. In that test, the BCI participant used environmental information encoded via ICMS to identify which of several upcoming flight routes was the best option. For both tasks, the BCI user was able to quickly learn how to interpret the ICMSprovided information to achieve the task goals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaikh, Zubair; Bhaskar, Ankush; Raghav, Anil, E-mail: raghavanil1984@gmail.com
The transient interplanetary disturbances evoke short-time cosmic-ray flux decrease, which is known as Forbush decrease. The traditional model and understanding of Forbush decrease suggest that the sub-structure of an interplanetary counterpart of coronal mass ejection (ICME) independently contributes to cosmic-ray flux decrease. These sub-structures, shock-sheath, and magnetic cloud (MC) manifest as classical two-step Forbush decrease. The recent work by Raghav et al. has shown multi-step decreases and recoveries within the shock-sheath. However, this cannot be explained by the ideal shock-sheath barrier model. Furthermore, they suggested that local structures within the ICME’s sub-structure (MC and shock-sheath) could explain this deviation ofmore » the FD profile from the classical FD. Therefore, the present study attempts to investigate the cause of multi-step cosmic-ray flux decrease and respective recovery within the shock-sheath in detail. A 3D-hodogram method is utilized to obtain more details regarding the local structures within the shock-sheath. This method unambiguously suggests the formation of small-scale local structures within the ICME (shock-sheath and even in MC). Moreover, the method could differentiate the turbulent and ordered interplanetary magnetic field (IMF) regions within the sub-structures of ICME. The study explicitly suggests that the turbulent and ordered IMF regions within the shock-sheath do influence cosmic-ray variations differently.« less
NASA Astrophysics Data System (ADS)
Zhang, Congyao; Churazov, Eugene; Schekochihin, Alexander A.
2018-05-01
Buoyant bubbles of relativistic plasma in cluster cores plausibly play a key role in conveying the energy from a supermassive black hole to the intracluster medium (ICM) - the process known as radio-mode AGN feedback. Energy conservation guarantees that a bubble loses most of its energy to the ICM after crossing several pressure scale heights. However, actual processes responsible for transferring the energy to the ICM are still being debated. One attractive possibility is the excitation of internal waves, which are trapped in the cluster's core and eventually dissipate. Here we show that a sufficient condition for efficient excitation of these waves in stratified cluster atmospheres is flattening of the bubbles in the radial direction. In our numerical simulations, we model the bubbles phenomenologically as rigid bodies buoyantly rising in the stratified cluster atmosphere. We find that the terminal velocities of the flattened bubbles are small enough so that the Froude number Fr ≲ 1. The effects of stratification make the dominant contribution to the total drag force balancing the buoyancy force. Clear signs of internal waves are seen in the simulations. These waves propagate horizontally and downwards from the rising bubble, spreading their energy over large volumes of the ICM. If our findings are scaled to the conditions of the Perseus cluster, the expected terminal velocity is ˜100 - 200 km s-1 near the cluster cores, which is in broad agreement with direct measurements by the Hitomi satellite.
Is ram-pressure stripping an efficient mechanism to remove gas in galaxies?
NASA Astrophysics Data System (ADS)
Quilis, Vicent; Planelles, Susana; Ricciardelli, Elena
2017-07-01
We study how the gas in a sample of galaxies (M* > 109 M⊙) in clusters, obtained in a cosmological simulation, is affected by the interaction with the intracluster medium (ICM). The dynamical state of each elemental parcel of gas is studied using the total energy. At z ˜ 2, the galaxies in the simulation are evenly distributed within clusters, later moving towards more central locations. In this process, gas from the ICM is accreted and mixed with the gas in the galactic halo. Simultaneously, the interaction with the environment removes part of the gas. A characteristic stellar mass around M* ˜ 1010 M⊙ appears as a threshold marking two differentiated behaviours. Below this mass, galaxies are located at the external part of clusters and have eccentric orbits. The effect of the interaction with the environment is marginal. Above, galaxies are mainly located at the inner part of clusters with mostly radial orbits with low velocities. In these massive systems, part of the gas, strongly correlated with the stellar mass of the galaxy, is removed. The amount of removed gas is subdominant compared with the quantity of retained gas, which is continuously influenced by the hot gas coming from the ICM. The analysis of individual galaxies reveals the existence of a complex pattern of flows, turbulence and a constant fuelling of gas to the hot corona from the ICM, which could mean that the global effect of the interaction of galaxies with their environment is substantially less dramatic than previously expected.
Regulation of advance directives in Italy: a bad law in the making.
Gristina, Giuseppe Renato; Martin, Erica; Ranieri, Vito Marco
2012-11-01
The Advance Directives (ADs) have been adopted in many countries to defend patients' autonomy. In Italy, the role of ADs has recently been the subject of heated debate involving political parties and the Roman Catholic Church. In February 2009, the conservative government coalition presented a bill of law on this issue. It has been passed by the Low Chamber and is now being discussed in the Senate. The purpose of the article is to highlight any possible bill's contradiction with Italian Constitution, Italian Code of Medical Ethics (ICME), and Oviedo Convention contents, relevant for intensivists. Analysis of bill's content in the light of Italian Constitution, ICME, Oviedo Convention articles and in comparison with French legislation regarding end of life (Leonetti law). In the Authors' point of view the bill's articles -limit the moral and judicial importance of four main issues as informed consent, permanent incapacity, artificial nutrition/hydration, and withdraw/withhold treatments. In the Authors' opinion the ADs must represent informed preferences made freely by patients within the relationship with their physicians, as part of an advance care planning. When this relationship develops in accordance with the ICME rules, it contains all of the ethical/professional dimensions to legitimate right choices in each case. The law should draw inspiration from ICME principles, assigning them a juridical power, acknowledging their validity in legitimating end-of-life decisions, and defining a framework of juridical legitimacy for these decisions without infringing on patients' right to autonomy with prescriptions on the care.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul
The intracluster medium (ICM), as a magnetized and highly ionized fluid, provides an ideal laboratory to study plasma physics under extreme conditions that cannot be achieved on Earth. NGC 1404 is a bright elliptical galaxy that is being gas stripped as it falls through the ICM of the Fornax Cluster. We use the new Chandra X-ray observations of NGC 1404 to study ICM microphysics. The interstellar medium of NGC 1404 is characterized by a sharp leading edge, 8 kpc from the Galaxy center, and a short downstream gaseous tail. Contact discontinuities are resolved on unprecedented spatial scales (0.″5 = 45 pc)more » due to the combination of the proximity of NGC 1404, the superb spatial resolution of Chandra , and the very deep (670 ks) exposure. At the leading edge, we observe sub-kiloparsec-scale eddies generated by Kelvin–Helmholtz instability (KHI) and put an upper limit of 5% Spitzer on the isotropic viscosity of the hot cluster plasma. We also observe mixing between the hot cluster gas and the cooler galaxy gas in the downstream stripped tail, which provides further evidence of a low viscosity plasma. The assumed ordered magnetic fields in the ICM ought to be smaller than 5 μ G to allow KHI to develop. The lack of an evident magnetic draping layer just outside the contact edge is consistent with such an upper limit.« less
2011-01-01
Background Solventogenic clostridia offer a sustainable alternative to petroleum-based production of butanol--an important chemical feedstock and potential fuel additive or replacement. C. beijerinckii is an attractive microorganism for strain design to improve butanol production because it (i) naturally produces the highest recorded butanol concentrations as a byproduct of fermentation; and (ii) can co-ferment pentose and hexose sugars (the primary products from lignocellulosic hydrolysis). Interrogating C. beijerinckii metabolism from a systems viewpoint using constraint-based modeling allows for simulation of the global effect of genetic modifications. Results We present the first genome-scale metabolic model (iCM925) for C. beijerinckii, containing 925 genes, 938 reactions, and 881 metabolites. To build the model we employed a semi-automated procedure that integrated genome annotation information from KEGG, BioCyc, and The SEED, and utilized computational algorithms with manual curation to improve model completeness. Interestingly, we found only a 34% overlap in reactions collected from the three databases--highlighting the importance of evaluating the predictive accuracy of the resulting genome-scale model. To validate iCM925, we conducted fermentation experiments using the NCIMB 8052 strain, and evaluated the ability of the model to simulate measured substrate uptake and product production rates. Experimentally observed fermentation profiles were found to lie within the solution space of the model; however, under an optimal growth objective, additional constraints were needed to reproduce the observed profiles--suggesting the existence of selective pressures other than optimal growth. Notably, a significantly enriched fraction of actively utilized reactions in simulations--constrained to reflect experimental rates--originated from the set of reactions that overlapped between all three databases (P = 3.52 × 10-9, Fisher's exact test). Inhibition of the hydrogenase reaction was found to have a strong effect on butanol formation--as experimentally observed. Conclusions Microbial production of butanol by C. beijerinckii offers a promising, sustainable, method for generation of this important chemical and potential biofuel. iCM925 is a predictive model that can accurately reproduce physiological behavior and provide insight into the underlying mechanisms of microbial butanol production. As such, the model will be instrumental in efforts to better understand, and metabolically engineer, this microorganism for improved butanol production. PMID:21846360
The Inhomogeneous Centers of Cooling Flows in Galaxy Clusters
NASA Astrophysics Data System (ADS)
Sharma, Mangala
2004-04-01
The intracluster medium (ICM) in the centers of galaxy clusters is cool, dense and may be imhomogeneous. We present Chandra X-ray Observatory imaging spectroscopic data on two galaxy clusters, Abell 1991 and MS 0839.8+2938, that have cooling flows in their central few hundred kpc. Their cD galaxies show current star formation, and host compact radio sources. The hot ICM at both their centers has nonhomogeneities on kiloparsec scales. These finer structures are likely to be signatures of the formation of clusters through infall of smaller, cooler subclusters.
Ion-atom charge-transfer reactions and a hot intercloud medium. [in interstellar space
NASA Technical Reports Server (NTRS)
Steigman, G.
1975-01-01
An investigation is conducted concerning the ionization equilibrium of carbon in a hot intercloud medium (ICM), taking into account various charge-transfer reactions. Attention is given to problems related to observations of carbon along the lines of sight to several unreddened stars. It is pointed out that the observed underabundance of C III and overabundance of C I can be consistent with the presence of a hot, partially ionized ICM, provided that two of the charge-transfer reactions considered are rapid at thermal energies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kana, J. B. Kana; Department of physics, University of Yaounde I, P.O. Box 812 Yaounde; Ndjaka, J. M.
2008-09-23
We prepared gold/Vanadium dioxide nanocomposites thin films by the rf reactive inverted cylindrical magnetron sputtering (ICMS) for the first time and report their enhanced surface plasmon resonance (SPR) tunable shift reversibility. ICMS has been attracting much attention for its ability for uniform coating of three-dimensional objects and high-rate deposition of dielectric materials. To investigate the optical properties of gold nanoparticles embedded in an active matrix (VO{sub 2}) composite film was synthesized on corning glass substrates for several substrate temperatures ranging from 400 deg. C to 600 deg. C. The X-ray diffraction results demonstrated that the Au and VO{sub 2} weremore » well crystallized. The optical transmission properties were measured from 300nm to 1100nm and the absorption peak due to the surface plasmon resonance (SPR) of Au nanoparticles were observed. Under external temperature stimuli, the tunable reversibility of the SPR shift was observed when the nanocomposites temperature varies from 20 deg. C to 100 deg. C. The enhancement of this shift of SPR was observed as the substrate temperature increases and it was found that the shift of SPR increased rapidly with increasing substrate temperature but then remained constant at {approx}57 nm for substrate temperature higher than 500 deg. C.« less
NASA Astrophysics Data System (ADS)
Ratajczak, Henryk; Drozd, Marek; Fausto, Rui
2016-12-01
This volume contains a series of selected contributions presented at the XIIIth International Conference on Molecular Spectroscopy (ICMS): "From Molecules to Molecular Materials, Biological Molecular Systems and Nanostructures" held in Wrocław, Poland, 9-12 September 2015, under the auspices of the Mayor of Wrocław and the European Academy of Sciences, Arts and Humanities. Wrocław was chosen not accidentally as venue for the conference. With more than a thousand years of history, Wrocław is the location of one of the oldest universities in Central Europe. Being a place where education and science play major roles in the daily life of its inhabitants, Wrocław is also a privileged center for spectroscopy in Poland.
Niederman, Robert A
2013-10-01
Studies on membrane development in purple bacteria during adaptation to alterations in light intensity and oxygen tension are reviewed. Anoxygenic phototrophic such as the purple α-proteobacterium Rhodobacter sphaeroides have served as simple, dynamic, and experimentally accessible model organisms for studies of the photosynthetic apparatus. A major landmark in photosynthesis research, which dramatically illustrates this point, was provided by the determination of the X-ray structure of the reaction center (RC) in Blastochloris viridis (Deisenhofer and Michel, EMBO J 8:2149-2170, 1989), once it was realized that this represented the general structure for the photosystem II RC present in all oxygenic phototrophs. This seminal advance, together with a considerable body of subsequent research on the light-harvesting (LH) and electron transfer components of the photosynthetic apparatus has provided a firm basis for the current understanding of how phototrophs acclimate to alterations in light intensity and quality. Oxygenic phototrophs adapt to these changes by extensive thylakoid membrane remodeling, which results in a dramatic supramolecular reordering to assure that an appropriate flow of quinone redox species occurs within the membrane bilayer for efficient and rapid electron transfer. Despite the high level of photosynthetic unit organization in Rba. sphaeroides as observed by atomic force microscopy (AFM), fluorescence induction/relaxation measurements have demonstrated that the addition of the peripheral LH2 antenna complex in cells adapting to low-intensity illumination results in a slowing of the rate of electron transfer turnover by the RC of up to an order of magnitude. This is ascribed to constraints in quinone redox species diffusion between the RC and cytochrome bc1 complexes arising from the increased packing density as the intracytoplasmic membrane (ICM) bilayer becomes crowded with LH2 rings. In addition to downshifts in light intensity as a paradigm for membrane development studies in Rba. sphaeroides, the lowering of oxygen tension in chemoheterotropically growing cells results in a gratuitous formation of the ICM by an extensive membrane biogenesis process. These membrane alterations in response to lowered illumination and oxygen levels in purple bacteria are under the control of a number of interrelated two-component regulatory circuits reviewed here, which act at the transcriptional level to regulate the formation of both the pigment and apoprotein components of the LH, RC, and respiratory complexes. We have performed a proteomic examination of the ICM development process in which membrane proteins have been identified that are temporally expressed both during adaptation to low light intensity and ICM formation at low aeration and are spatially localized in both growing and mature ICM regions. For these proteomic analyses, membrane growth initiation sites and mature ICM vesicles were isolated as respective upper-pigmented band (UPB) and chromatophore fractions and subjected to clear native electrophoresis for isolation of bands containing the LH2 and RC-LH1 core complexes. In chromatophores, increasing levels of LH2 polypeptides relative to those of the RC-LH1 complex were observed as ICM membrane development proceeded during light-intensity downshifts, along with a large array of other associated proteins including high spectral counts for the F1FO-ATP synthase subunits and the cytochrome bc1 complex, as well as RSP6124, a protein of unknown function, that was correlated with increasing LH2 spectral counts. In contrast, the UPB was enriched in cytoplasmic membrane (CM) markers, including electron transfer and transport proteins, as well as general membrane protein assembly factors confirming the origin of the UPB from both peripheral respiratory membrane and sites of active CM invagination that give rise to the ICM. The changes in ICM vesicles were correlated to AFM mapping results (Adams and Hunter, Biochim Biophys Acta 1817:1616-1627, 2012), in which the increasing LH2 levels were shown to form densely packed LH2-only domains, representing the light-responsive antenna complement formed under low illumination. The advances described here could never have been envisioned when the author was first introduced in the mid-1960s to the intricacies of the photosynthetic apparatus during a lecture delivered in a graduate Biochemistry course at the University of Illinois by Govindjee, to whom this volume is dedicated on the occasion of his 80th birthday.
Increased Expression of Fatty-Acid and Calcium Metabolism Genes in Failing Human Heart
Rodríguez-Penas, Diego; Feijóo-Bandín, Sandra; Noguera-Moreno, Teresa; Calaza, Manuel; Álvarez-Barredo, María; Mosquera-Leal, Ana; Parrington, John; Brugada, Josep; Portolés, Manuel; Rivera, Miguel; González-Juanatey, José Ramón; Lago, Francisca
2012-01-01
Background Heart failure (HF) involves alterations in metabolism, but little is known about cardiomyopathy-(CM)-specific or diabetes-independent alterations in gene expression of proteins involved in fatty-acid (FA) uptake and oxidation or in calcium-(Ca2+)-handling in the human heart. Methods RT-qPCR was used to quantify mRNA expression and immunoblotting to confirm protein expression in left-ventricular myocardium from patients with HF (n = 36) without diabetes mellitus of ischaemic (ICM, n = 16) or dilated (DCM, n = 20) cardiomyopathy aetiology, and non-diseased donors (CTL, n = 6). Results Significant increases in mRNA of genes regulating FA uptake (CD36) and intracellular transport (Heart-FA-Binding Protein (HFABP)) were observed in HF patients vs CTL. Significance was maintained in DCM and confirmed at protein level, but not in ICM. mRNA was higher in DCM than ICM for peroxisome-proliferator-activated-receptor-alpha (PPARA), PPAR-gamma coactivator-1-alpha (PGC1A) and CD36, and confirmed at the protein level for PPARA and CD36. Transcript and protein expression of Ca2+-handling genes (Two-Pore-Channel 1 (TPCN1), Two-Pore-Channel 2 (TPCN2), and Inositol 1,4,5-triphosphate Receptor type-1 (IP3R1)) increased in HF patients relative to CTL. Increases remained significant for TPCN2 in all groups but for TPCN1 only in DCM. There were correlations between FA metabolism and Ca2+-handling genes expression. In ICM there were six correlations, all distinct from those found in CTL. In DCM there were also six (all also different from those found in CTL): three were common to and three distinct from ICM. Conclusion DCM-specific increases were found in expression of several genes that regulate FA metabolism, which might help in the design of aetiology-specific metabolic therapies in HF. Ca2+-handling genes TPCN1 and TPCN2 also showed increased expression in HF, while HF- and CM-specific positive correlations were found among several FA and Ca2+-handling genes. PMID:22701570
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jing; Department of Dental Implantology, School of Stomatology, Tongji University, Shanghai 200072; Ogata, Shigenori
2010-07-02
So far, the content and accumulation of ATP in isolated endoplasmic reticulum (ER) are little understood. First, we confirmed using electron microscopic and Western blotting techniques that the samples extracted from MDCK cells are endoplasmic reticulum (ER). The amounts of ATP in the extracted ER were measured from the filtrate after a spinning down of ultrafiltration spin column packed with ER. When the ER sample (5 {mu}g) after 3 days freezing was suspended in intracellular medium (ICM), 0.1% Triton X and ultrapure water (UPW), ATP amounts from the ER with UPW were the highest and over 10 times compared withmore » that from the control with ICM, indicating that UPW is the most effective tool in destroying the ER membrane. After a 10-min-incubation with ICM containing phosphocreatine (PCr)/creatine kinase (CK) of the fresh ER. ATP amounts in the filtrate obtained by spinning down were not changed from that in the control (no PCr/CK). However, ATP amounts in the filtrate from the second spinning down of the ER (treated with PCr/CK) suspended in UPW became over 10-fold compared with the control. When 1 {mu}M inositol(1,4,5)trisphosphate (Ins(1,4,5)P{sub 3}) was added in the incubation medium (ICM with PCr/CK), ATP amounts from the filtrate after the second spinning down were further enhanced around three times. This enhancement was almost canceled by Ca{sup 2+}-removal from ICM and by adding thapsigargin, a Ca{sup 2+}-ATPase inhibitor, but not by 2-APB and heparin, Ins(1,4,5)P{sub 3} receptor antagonists. Administration of 500 {mu}M adenosine to the incubation medium (with PCr/CK) failed to enhance the accumulation of ATP in the ER. These findings suggest that the ER originally contains ATP and ATP accumulation in the ER is promoted by PCr/CK and Ins(1,4,5)P{sub 3}.« less
NASA Technical Reports Server (NTRS)
Riley, P.; Richardson, I. G.
2012-01-01
In-situ measurements of interplanetary coronal mass ejections (ICMEs) display a wide range of properties. A distinct subset, "magnetic clouds" (MCs), are readily identifiable by a smooth rotation in an enhanced magnetic field, together with an unusually low solar wind proton temperature. In this study, we analyze Ulysses spacecraft measurements to systematically investigate five possible explanations for why some ICMEs are observed to be MCs and others are not: i) An observational selection effect; that is, all ICMEs do in fact contain MCs, but the trajectory of the spacecraft through the ICME determines whether the MC is actually encountered; ii) interactions of an erupting flux rope (PR) with itself or between neighboring FRs, which produce complex structures in which the coherent magnetic structure has been destroyed; iii) an evolutionary process, such as relaxation to a low plasma-beta state that leads to the formation of an MC; iv) the existence of two (or more) intrinsic initiation mechanisms, some of which produce MCs and some that do not; or v) MCs are just an easily identifiable limit in an otherwise corntinuous spectrum of structures. We apply quantitative statistical models to assess these ideas. In particular, we use the Akaike information criterion (AIC) to rank the candidate models and a Gaussian mixture model (GMM) to uncover any intrinsic clustering of the data. Using a logistic regression, we find that plasma-beta, CME width, and the ratio O(sup 7) / O(sup 6) are the most significant predictor variables for the presence of an MC. Moreover, the propensity for an event to be identified as an MC decreases with heliocentric distance. These results tend to refute ideas ii) and iii). GMM clustering analysis further identifies three distinct groups of ICMEs; two of which match (at the 86% level) with events independently identified as MCs, and a third that matches with non-MCs (68 % overlap), Thus, idea v) is not supported. Choosing between ideas i) and iv) is more challenging, since they may effectively be indistinguishable from one another by a single in-situ spacecraft. We offer some suggestions on how future studies may address this.