Sample records for materials environments 1a

  1. Space Environment Effects on Materials : An Overview

    NASA Technical Reports Server (NTRS)

    Garrett, Henry B.

    2006-01-01

    A general overview on the space environment and its effects on materials is presented. The topics include: 1) Impact of Space Effects on Spacecraft Costs; 2) Space Environment Effects on Spacecraft by Source; 3) Primary Source of Space Effects: The Sun; 4) The Earth's Environment; 5) Trapped Radiation Belts; 6) Aurora Are Everywhere; 7) Spacecraft Interactions; 8) Atmospheric Effects; 9) Contaminant Effects on Materials; 10) Meteoroid/Debris Effects on Materials; 11) Spacecraft Surface Charging; 12) Surface Discharge Effects; 13) Internal Electrostatic Discharge--Satellite Killer; 14) Plasma Interactions DS-1 Ion Engines; 15) Radiation Effects on Spacecraft Systems and Materials; 16) Total Ionizing Dose Effects Total Ionizing Dose Effects; 17) Man-Made Sources of Space Effects Man-Made Sources of Space Effects; and 18) Space Environments Versus Interactions.

  2. Design and Analysis of Advanced Materials in a Thermal/Acoustic Environment. Delivery Order 0007: Volume 1 - Structural Health Monitoring

    DTIC Science & Technology

    2010-03-01

    AFRL-RB-WP-TR-2010-3028 DESIGN AND ANALYSIS OF ADVANCED MATERIALS IN A THERMAL /ACOUSTIC ENVIRONMENT Delivery Order 0007: Volume 1‒Structural...Final 15 July 2005 – 30 March 2010 4. TITLE AND SUBTITLE DESIGN AND ANALYSIS OF ADVANCED MATERIALS IN A THERMAL /ACOUSTIC ENVIRONMENT Delivery...color. 14. ABSTRACT Air vehicles flying at hypersonic speeds encounter extreme thermal , aerodynamic and acoustic loads, utilizing thermal protection

  3. EMERGE: Engineered Materials that Create Environments for ReGeneration via Electric Field

    DTIC Science & Technology

    2016-10-01

    Recruitment of multiple cell lines by collagen-synthetic copolymer matrices in corneal regeneration ,” Biomaterials (2004). A) B) REDD-2016-537...AWARD NUMBER: W81XWH-14-1-0542 TITLE: EMERGE: Engineered Materials that Create Environments for ReGeneration via Electric Field PRINCIPAL...23 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER EMERGE: Engineered Materials that Create Environments for ReGeneration via Electric Field

  4. Spacecraft Materials in the Space Flight Environment: International Space Station - May 2002 to May 2007

    NASA Technical Reports Server (NTRS)

    Golden, John; Lorenz, Mary J.; Alred, John; Koontz, Steven L.; Pedley, Michael

    2008-01-01

    The performance of ISS spacecraft materials and systems on prolonged exposure to the low-Earth orbit (LEO) space flight is reported in this paper. In-flight data, flight crew observations, and the results of ground-based test and analysis directly supporting programmatic and operational decision-making are presented. The space flight environments definitions (both natural and induced) used for ISS design, material selection, and verification testing are shown, in most cases, to be more severe than the actual flight environment accounting for the outstanding performance of ISS as a long mission duration spacecraft. No significant ISS material or system failures have been attributed to spacecraft-environments interactions. Nonetheless, ISS materials and systems performance data is contributing to our understanding of spacecraft material interactions in the spaceflight environment so as to reduce cost and risk for future spaceflight projects and programs. Orbital inclination (51.6o) and altitude (nominally near 360 km) determine the set of natural environment factors affecting the functional life of materials and systems on ISS. ISS operates in an electrically conducting environment (the F2 region of Earth s ionosphere) with well-defined fluxes of atomic oxygen, other charged and neutral ionospheric plasma species, solar UV, VUV, and x-ray radiation as well as galactic cosmic rays, trapped radiation, and solar cosmic rays (1-4). The LEO micrometeoroid and orbital debris environment is an especially important determinant of spacecraft design and operations (5, 6). The magnitude of several environmental factors varies dramatically with latitude and longitude as ISS orbits the Earth (1-4). The high latitude orbital environment also exposes ISS to higher fluences of trapped energetic electrons, auroral electrons, solar cosmic rays, and galactic cosmic rays (1-4) than would be the case in lower inclination orbits, largely as a result of the overall shape and magnitude of the geomagnetic field (1-4). As a result, ISS exposure to many environmental factors can vary dramatically along a particular orbital ground track, and from one ground track to the next, during any 24-hour period.

  5. Nanosegregated bimetallic oxide anode catalyst for proton exchange membrane electrolyzer

    DOEpatents

    Danilovic, Nemanja; Kang, Yijin; Markovic, Nenad; Stamenkovic, Vojislav; Myers, Deborah J.; Subbaraman, Ram

    2016-08-23

    A surface segregated bimetallic composition of the formula Ru.sub.1-xIr.sub.x wherein 0.1.ltoreq.x.ltoreq.0.75, wherein a surface of the material has an Ir concentration that is greater than an Ir concentration of the material as a whole is provided. The surface segregated material may be produced by a method including heating a bimetallic composition of the formula Ru.sub.1-xIr.sub.x, wherein 0.1.ltoreq.x.ltoreq.0.75, at a first temperature in a reducing environment, and heating the composition at a second temperature in an oxidizing environment. The surface segregated material may be utilized in electrochemical devices.

  6. PROGRAM ASTEC (ADVANCED SOLAR TURBO ELECTRIC CONCEPT). PART 1. CANDIDATE MATERIALS LABORATORY TESTS

    DTIC Science & Technology

    A space power system of the type envisioned by the ASTEC program requires the development of a lightweight solar collector of high reflectance...capable of withstanding the space environment for an extended period. A survey of the environment of interest for ASTEC purposes revealed 4 potential...developed by the solar-collector industry for use in the ASTEC program, and to test the effects of space environment on these materials. Of 6 material

  7. Construction material processed using lunar simulant in various environments

    NASA Technical Reports Server (NTRS)

    Chase, Stan; Ocallaghan-Hay, Bridget; Housman, Ralph; Kindig, Michael; King, John; Montegrande, Kevin; Norris, Raymond; Vanscotter, Ryan; Willenborg, Jonathan; Staubs, Harry

    1995-01-01

    The manufacture of construction materials from locally available resources in space is an important first step in the establishment of lunar and planetary bases. The objective of the CoMPULSIVE (Construction Material Processed Using Lunar Simulant In Various Environments) experiment is to develop a procedure to produce construction materials by sintering or melting Johnson Space Center Simulant 1 (JSC-1) lunar soil simulant in both earth-based (1-g) and microgravity (approximately 0-g) environments. The characteristics of the resultant materials will be tested to determine its physical and mechanical properties. The physical characteristics include: crystalline, thermal, and electrical properties. The mechanical properties include: compressive tensile, and flexural strengths. The simulant, placed in a sealed graphite crucible, will be heated using a high temperature furnace. The crucible will then be cooled by radiative and forced convective means. The core furnace element consists of space qualified quartz-halogen incandescent lamps with focusing mirrors. Sample temperatures of up to 2200 C are attainable using this heating method.

  8. Combined space environment on spacecraft engineering materials

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Smith, Guy A.; Kosten, Susan

    1993-01-01

    Spacecraft structures and surface materials exposed to the space environment for extended periods, up to thirty years, have increased potential for damage from long term exposure to the combined space environment including solar ultraviolet radiation, electrons, and protons and orbiting space debris. The space environment in which the Space Station Freedom and other space platforms will orbit is truly a hostile environment. For example, the currently estimated integral fluence for electrons above 1 Mev at 2000 nautical miles is above 2 x 10(exp 10) electrons/cm(sup 2)/day and the proton integral fluence is above 1 x 10(exp 9) protons/cm(sup 2)/day. At the 200 - 400 nautical miles, which is more representative of the altitude which will provide the environment for the Space Station, each of these fluences will be proportionately less; however, the data indicates that the radiation environment will obviously have an effect on structural materials exposed to the environment for long durations. The effects of ultraviolet radiation, particularly in the vacuum ultraviolet (less than 200 nm wavelength) is more difficult to characterize at this time. Very little data is available in the literature which can be used for determining the life cycle of a material placed in space for extended durations of time. In order to obtain critical data for planning and designing of spacecraft systems, use of a small vacuum system at the Environmental Effects Facility at MSFC, which can be used for these purposes was used. A special effort was made to build up this capability during the course of this research effort and perform a variety of experiments on materials proposed for the Space Station. A description of the apparatus and the procedure devised to process potential spacecraft materials is included.

  9. Behavior of HfB2-SiC Materials in Simulated Re-Entry Environments

    NASA Technical Reports Server (NTRS)

    Ellerby, Don; Beckman, Sarah; Irby, Edward; Johnson, Sylvia M.; Gunsman, Michael; Gasch, Matthew; Ridge, Jerry; Martinez, Ed; Squire, Tom; Olejniczak, Joe

    2003-01-01

    The objectives of this research are to: 1) Investigate the oxidation/ablation behavior of HfB2/SiC materials in simulated re-entry environments; 2) Use the arc jet test results to define appropriate use environments for these materials for use in vehicle design. The parameters to be investigated include: surface temperature, stagnation pressure, duration, number of cycles, and thermal stresses.

  10. Quantification Of Fire Signatures For Practical Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.; Ruff, Gary A.; Tomasek, Aaron J.

    2003-01-01

    The overall objective of this project is to measure the fire signatures of typical spacecraft materials in 1-g and determine how these signatures may be altered in a microgravity environment. During this project, we will also develop a test technique to obtain representative low-gravity signatures. The specific tasks that will be accomplished to achieve these objectives are to: (1) measure the time history of various fire signatures of typical spacecraft materials in 1-g at varying heating rates, temperatures, convective velocities, and oxygen concentrations, (2) conduct tests in the Zero-Gravity Facility at NASA John H. Glenn Research Center to investigate the manner that a microgravity environment alters the fire signature,(3) compare 0-g and 1-g time histories and determine if 0-g data exhibits the same dependence on the test parameters as experienced in 1-g (4) develop a 1-g test technique by which 0-g fire signatures can be measured. The proposed study seeks to investigate the differences in the identities and relative concentrations of the volatiles produced by pyrolyzing and/or smoldering materials between normal gravity and microgravity environments. Test materials will be representative of typical spacecraft materials and, where possible, will be tested in appropriate geometries. Wire insulation materials of Teflon, polyimide, silicone, and PVC will be evaluated using either cylindrical samples or actual wire insulation. Other materials such as polyurethane, polyimide, melamine, and silicone-based foams will be tested using cylindrical samples, in addition to fabric materials, such as Nomex. Electrical components, such as resistors, capacitors, circuit board will also be tested.

  11. Space environmental effects on spacecraft: LEO materials selection guide, part 1

    NASA Astrophysics Data System (ADS)

    Silverman, Edward M.

    1995-08-01

    This document provides performance properties on major spacecraft materials and subsystems that have been exposed to the low-Earth orbit (LEO) space environment. Spacecraft materials include metals, polymers, composites, white and black paints, thermal-control blankets, adhesives, and lubricants. Spacecraft subsystems include optical components, solar cells, and electronics. Information has been compiled from LEO short-term spaceflight experiments (e.g., space shuttle) and from retrieved satellites of longer mission durations (e.g., Long Duration Exposure Facility). Major space environment effects include atomic oxygen (AO), ultraviolet radiation, micrometeoroids and debris, contamination, and particle radiation. The main objective of this document is to provide a decision tool to designers for designing spacecraft and structures. This document identifies the space environments that will affect the performance of materials and components, e.g., thermal-optical property changes of paints due to UV exposures, AO-induced surface erosion of composites, dimensional changes due to thermal cycling, vacuum-induced moisture outgassing, and surface optical changes due to AO/UV exposures. Where appropriate, relationships between the space environment and the attendant material/system effects are identified. Part 1 covers spacecraft design considerations for the space environment; advanced composites; polymers; adhesives; metals; ceramics; protective coatings; and lubricants, greases, and seals.

  12. Space environmental effects on spacecraft: LEO materials selection guide, part 1

    NASA Technical Reports Server (NTRS)

    Silverman, Edward M.

    1995-01-01

    This document provides performance properties on major spacecraft materials and subsystems that have been exposed to the low-Earth orbit (LEO) space environment. Spacecraft materials include metals, polymers, composites, white and black paints, thermal-control blankets, adhesives, and lubricants. Spacecraft subsystems include optical components, solar cells, and electronics. Information has been compiled from LEO short-term spaceflight experiments (e.g., space shuttle) and from retrieved satellites of longer mission durations (e.g., Long Duration Exposure Facility). Major space environment effects include atomic oxygen (AO), ultraviolet radiation, micrometeoroids and debris, contamination, and particle radiation. The main objective of this document is to provide a decision tool to designers for designing spacecraft and structures. This document identifies the space environments that will affect the performance of materials and components, e.g., thermal-optical property changes of paints due to UV exposures, AO-induced surface erosion of composites, dimensional changes due to thermal cycling, vacuum-induced moisture outgassing, and surface optical changes due to AO/UV exposures. Where appropriate, relationships between the space environment and the attendant material/system effects are identified. Part 1 covers spacecraft design considerations for the space environment; advanced composites; polymers; adhesives; metals; ceramics; protective coatings; and lubricants, greases, and seals.

  13. The increase in fatigue crack growth rates observed for Zircaloy-4 in a PWR environment

    NASA Astrophysics Data System (ADS)

    Cockeram, B. V.; Kammenzind, B. F.

    2018-02-01

    Cyclic stresses produced during the operation of nuclear reactors can result in the extension of cracks by processes of fatigue. Although fatigue crack growth rate (FCGR) data for Zircaloy-4 in air are available, little testing has been performed in a PWR primary water environment. Test programs have been performed by Gee et al., in 1989 and Picker and Pickles in 1984 by the UK Atomic Energy Authority, and by Wisner et al., in 1994, that have shown an enhancement in FCGR for Zircaloy-2 and Zircaloy-4 in high-temperature water. In this work, FCGR testing is performed on Zircaloy-4 in a PWR environment in the hydrided and non-hydrided condition over a range of stress-intensity. Measurements of crack extension are performed using a direct current potential drop (DCPD) method. The cyclic rate in the PWR primary water environment is varied between 1 cycle per minute to 0.1 cycle per minute. Faster FCGR rates are observed in water in comparison to FCGR testing performed in air for the hydrided material. Hydrided and non-hydrided materials had similar FCGR values in air, but the non-hydrided material exhibited much lower rates of FCGR in a PWR primary water environment than for hydrided material. Hydrides are shown to exhibit an increased tendency for cracking or decohesion in a PWR primary water environment that results in an enhancement in FCGR values. The FCGR in the PWR primary water only increased slightly with decreasing cycle frequency in the range of 1 cycle per minute to 0.1 cycle per minute. Comparisons between the FCGR in water and air show the enhancement from the PWR environment is affected by the applied stress intensity.

  14. Fatigue crack growth behavior of pressure vessel steels and submerged arc weldments in a high-temperature pressurized water environment

    NASA Astrophysics Data System (ADS)

    Liaw, P. K.; Logsdon, W. A.; Begley, J. A.

    1989-10-01

    The fatigue crack growth rate (FCGR) properties of SA508 C1 2a and SA533 Gr A C1 2 pressure vessel steels and the corresponding automatic submerged are weldments were developed in a high-temperature pressurized water (HPW) environment at 288 °C (550°F) and 7.2 MPa (1044 psi) at load ratios of 0.02 and 0.50. The HPW enviromment FCGR properties of these pressure vessel steels and submerged arc weldments were generally conservative, compared with the approrpriate American Society of Mechanical Engineers (ASME) Section XI water environmental reference curve. The growth rate of fatigue cracks in the base materials, however, was considerably faster in the HPW environment than in a corresponding 288°C (550°F) base line air environment. The growth rate of fatigue cracks in the two submerged are weldments was also accelerated in the HPW environment but to a significantly lesser degree than that demonstrated by the corresponding base materials. In the air environment, fatigue striations were observed, independent of material and load ratio, while in the HPW environment, some intergranular facets were present. The greater environmental effect on crack growth rates displayed by the base materials, as compared with the weldments, was attributed to a different sulfide composition and morphology.

  15. Impact of physical properties on ozone removal by several porous materials.

    PubMed

    Gall, Elliott T; Corsi, Richard L; Siegel, Jeffrey A

    2014-04-01

    Models of reactive uptake of ozone in indoor environments generally describe materials through aerial (horizontal) projections of surface area, a potentially limiting assumption for porous materials. We investigated the effect of changing porosity/pore size, material thickness, and chamber fluid mechanic conditions on the reactive uptake of ozone to five materials: two cellulose filter papers, two cementitious materials, and an activated carbon cloth. Results include (1) material porosity and pore size distributions, (2) effective diffusion coefficients for ozone in materials, and (3) material-ozone deposition velocities and reaction probabilities. At small length scales (0.02-0.16 cm) increasing thickness caused increases in estimated reaction probabilities from 1 × 10(-6) to 5 × 10(-6) for one type of filter paper and from 1 × 10(-6) to 1 × 10(-5) for a second type of filter paper, an effect not observed for materials tested at larger thicknesses. For high porosity materials, increasing chamber transport-limited deposition velocities resulted in increases in reaction probabilities by factors of 1.4-2.0. The impact of physical properties and transport effects on values of the Thiele modulus, ranging across all materials from 0.03 to 13, is discussed in terms of the challenges in estimating reaction probabilities to porous materials in scenarios relevant to indoor environments.

  16. Heterogeneous Coordination Environments in Lithium-Neutralized Ionomers Identified Using 1H and 7Li MAS NMR

    PubMed Central

    Alam, Todd M.; Jenkins, Janelle E.; Bolintineanu, Dan S.; Stevens, Mark J.; Frischknecht, Amalie L.; Buitrago, C. Francisco; Winey, Karen I.; Opper, Kathleen L.; Wagener, Kenneth B.

    2012-01-01

    The carboxylic acid proton and the lithium coordination environments for precise and random Li-neutralized polyethylene acrylic acid P(E-AA) ionomers were explored using high speed solid-state 1H and 7Li MAS NMR. While the 7Li NMR revealed only a single Li coordination environment, the chemical shift temperature variation was dependent on the precise or random nature of the P(E-AA) ionomer. The 1H MAS NMR revealed two different carboxylic acid proton environments in these materials. By utilizing 1H-7Li rotational echo double resonance (REDOR) MAS NMR experiments, it was demonstrated that the proton environments correspond to different average 1H-7Li distances, with the majority of the protonated carboxylic acids having a close through space contact with the Li. Molecular dynamics simulations suggest that the shortest 1H-7Li distance corresponds to un-neutralized carboxylic acids directly involved in the coordination environment of Li clusters. These solid-state NMR results show that heterogeneous structural motifs need to be included when developing descriptions of these ionomer materials.

  17. Science Data Report for the Optical Properties Monitor (OPM) Experiment

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Zwiener, James M.

    1999-01-01

    Long term stability of spacecraft materials when exposed to the space environment continues to be a major area of investigation. The natural and induced environment surrounding a spacecraft can decrease material performance and limit useful lifetimes. The Optical Properties Monitor (OPM) experiment provided the capability to perform the important flight testing of materials and was flown on the Russian Mir Station to study the long term effects of the natural and induced space environment on materials. The core of the OPM in-flight analysis was three independent optical instruments. These instruments included an integrating sphere spectral reflectometer, a vacuum ultraviolet spectrometer, and a Total Integrated Scatter instrument. The OPM also monitored selected components of the environment including molecular contamination. The OPM was exposed on the exterior of the Mir Docking Module for approximately 8-1/2 months. This report describes the OPM experiment, a brief background of its development, program organization, experiment description, mission overview including space environment definition, performance overview, materials data including flight and ground data, in-depth post flight analysis including ground analysis measurements and a summary discussion of the findings and results.

  18. Genesis Radiation Environment

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Altstatt, Richard L.; Skipworth, William C.

    2007-01-01

    The Genesis spacecraft launched on 8 August 2001 sampled solar wind environments at L1 from 2001 to 2004. After the Science Capsule door was opened, numerous foils and samples were exposed to the various solar wind environments during periods including slow solar wind from the streamer belts, fast solar wind flows from coronal holes, and coronal mass ejections. The Survey and Examination of Eroded Returned Surfaces (SEERS) program led by NASA's Space Environments and Effects program had initiated access for the space materials community to the remaining Science Capsule hardware after the science samples had been removed for evaluation of materials exposure to the space environment. This presentation will describe the process used to generate a reference radiation Genesis Radiation Environment developed for the SEERS program for use by the materials science community in their analyses of the Genesis hardware.

  19. Weightless Environment Training Facility (WETF) Materials Coating Evaluation, Volume 1

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Weightless Environment Training Facility Material Coating Evaluation project has included preparing, coating, testing, and evaluating 800 test panels of three differing substrates. Ten selected coating systems were evaluated in six separate exposure environments and subject to three tests for physical properties. Substrate materials were identified, the manner of surface preparation described, and exposure environments defined. Exposure environments included immersion exposure, cyclic exposure, and field exposure. Cyclic exposures, specifically QUV-Weatherometer and the KTA Envirotest were found to be the most agressive of the environments included in the study when all three evaluation criteria are considered. This was found to result primarily from chalking of the coatings under ultraviolet (UV) light exposure. Volumes 2 and 3 hold the 5 appendices to this report.

  20. Effect of Service Environment on Composite Materials

    DTIC Science & Technology

    1980-08-01

    AGARC -CP-288 . z AGARD Conference Procee•dings No.288 Effect of Service Environment on Composite Materials M1TflIBInj4 STATE 9s~k 7- II LLU...ORGANISATION DU TRAITE DE L’ATLANTI )UE NOR3) AGARD Conference Proceedings 1, o.288 EFFECT OF SERVICE ENVIRONM ENT ONj I COMPOSITE MATERIALS --- I... composites soumis aux divers types d’agressions que l’on recouvre aujourd’hui du vocable d’...environnement". On doit admettre que cette revue 6tait part

  1. 40 CFR 247.1 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Purpose and scope. 247.1 Section 247.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES COMPREHENSIVE PROCUREMENT GUIDELINE FOR PRODUCTS CONTAINING RECOVERED MATERIALS General § 247.1 Purpose and scope. (a) The purpose of...

  2. Intrinsic Schooling: A New Yellow Brick Road.

    ERIC Educational Resources Information Center

    Samples, Robert E.

    1970-01-01

    This paper describes one pioneer effort to develop materials for teachers who operate on the premise that the student can learn from his environment. Three environments are considered: 1) the inner environment of the child; 2) the immediate environment in which he finds himself; and, 3) the global environment which is of so much concern to…

  3. Agreement for NASA/OAST - USAF/AFSC space interdependency on spacecraft environment interaction

    NASA Technical Reports Server (NTRS)

    Pike, C. P.; Stevens, N. J.

    1980-01-01

    A joint AF/NASA comprehensive program on spacecraft environment interactions consists of combined contractual and in house efforts aimed at understanding spacecraft environment ineraction phenomena and relating ground test results to space conditions. Activities include: (1) a concerted effort to identify project related environmental interactions; (2) a materials investigation to measure the basic properties of materials and develop or modify materials as needed; and (3) a ground simulation investigation to evaluate basic plasma interaction phenomena and provide inputs to the analytical modeling investigation. Systems performance is evaluated by both ground tests and analysis. There is an environmental impact investigation to determine the effect of future large spacecraft on the charged particle environment. Space flight investigations are planned to verify the results. The products of this program are test standards and design guidelines which summarize the technology, specify test criteria, and provide techniques to minimize or eliminate system interactions with the charged particle environment.

  4. The Strata-1 Regolith Dynamics Experiment: Class 1E Science on ISS

    NASA Technical Reports Server (NTRS)

    Fries, Marc; Graham, Lee; John, Kristen

    2016-01-01

    The Strata-1 experiment studies the evolution of small body regolith through long-duration exposure of simulant materials to the microgravity environment on the International Space Station (ISS). This study will record segregation and mechanical dynamics of regolith simulants in a microgravity and vibration environment similar to that experienced by regolith on small Solar System bodies. Strata-1 will help us understand regolith dynamics and will inform design and procedures for landing and setting anchors, safely sampling and moving material on asteroidal surfaces, processing large volumes of material for in situ resource utilization (ISRU) purposes, and, in general, predicting the behavior of large and small particles on disturbed asteroid surfaces. This experiment is providing new insights into small body surface evolution.

  5. The Canadian Space Agency, Space Station, Strategic Technologies for Automation and Robotics Program technology development activity in protection of materials from the low Earth orbit space environment

    NASA Technical Reports Server (NTRS)

    Francoeur, J. R.

    1992-01-01

    The Strategic Technologies in Automation and Robotics (STEAR) program is managing a number of development contracts to improve the protection of spacecraft materials from the Low Earth Orbit (LEO) space environment. The project is structured in two phases over a 3 to 4 year period with a budget of 3 to 4 million dollars. Phase 1 is designed to demonstrate the technical feasibility and commercial potential of a coating/substrate system and its associated application process. The objective is to demonstrate a prototype fabrication capability using a full scale component of a commercially viable process for the protection of materials and surface finishes from the LEO space environment, and to demonstrate compliance with a set of performance requirements. Only phase 1 will be discussed in this paper.

  6. Microgravity strategic plan, 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The mission of the NASA Microgravity program is to utilize the unique characteristics of the space environment, primarily the near absence of gravity, to understand the role of gravity in materials processing, and to demonstrate the feasibility of space production of improved materials that have high technological, and possible commercial, utility. The following five goals for the Microgravity Program are discussed: (1) Develop a comprehensive research program in fundamental sciences, materials science, and biotechnology for the purpose of attaining a structured understanding of gravity dependent physical phenomena in both Earth and non-Earth environments; (2) Foster the growth of interdisciplinary research community to conduct research in the space environment; (3) Encourage international cooperation for the purpose of conducting research in the space environment; (4) Utilize a permanently manned, multi-facility national microgravity laboratory in low-Earth orbit to provide a long-duration, stable microgravity environment; (5) Promote industrial applications of space research for the development of new, commercially viable products, services, and markets resulting from research in the space environment.

  7. 45 CFR 1304.53 - Facilities, materials, and equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... (a) Head Start physical environment and facilities. (1) Grantee and delegate agencies must provide a physical environment and facilities conducive to learning and reflective of the different stages of... delegate agencies must provide a center-based environment free of toxins, such as cigarette smoke, lead...

  8. 40 CFR Table N-1 to Subpart N of... - CO2 Emission Factors for Carbonate-Based Raw Materials

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-Based Raw Materials N Table N-1 to Subpart N of Part 98 Protection of Environment ENVIRONMENTAL... Raw Materials Carbonate-basedraw material—mineral CO2 emission factor a Limestone—CaCO3 0.440 Dolomite... in units of metric tons of CO2 emitted per metric ton of carbonate-based raw material charged to the...

  9. Sealing and External Sterilization of a Sample Container

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Olorunsola, Ayoola

    2008-01-01

    A method of (1) sealing a sample of material acquired in a possibly b iologically contaminated ("dirty") environment into a hermetic conta iner, (2) sterilizing the outer surface of the container, then (3) d elivering the sealed container to a clean environment has been propos ed. The method now proposed was originally intended to be used to ret urn samples from Mars to Earth, but could also be used on Earth to t ransport material samples acquired in environments that contain biol ogical hazards and/or, in some cases, chemical hazards.

  10. The Story of Stuff: Increasing Environmental Citizenship

    ERIC Educational Resources Information Center

    Nowak, Amy L. Versnik; Hale, Heidi; Lindholm, Jessica; Strausser, Elizabeth

    2009-01-01

    Objectives: After this lesson, students will be able to: (1) list the five stages of materials production, (2) report key facts related to the materials economy, (3) identify sustainable solutions that positively impact the environment, and (4) recognize how the environment affects health. Target Audience: This activity is designed for students in…

  11. Studies of volatiles and organic materials in early terrestrial and present-day outer solar system environments

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Thompson, W. Reid; Chyba, Christopher F.; Khare, B. N.

    1991-01-01

    A review and partial summary of projects within several areas of research generally involving the origin, distribution, chemistry, and spectral/dielectric properties of volatiles and organic materials in the outer solar system and early terrestrial environments are presented. The major topics covered include: (1) impact delivery of volatiles and organic compounds to the early terrestrial planets; (2) optical constants measurements; (3) spectral classification, chemical processes, and distribution of materials; and (4) radar properties of ice, hydrocarbons, and organic heteropolymers.

  12. 40 CFR 60.1060 - What steps must I complete for my materials separation plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What steps must I complete for my... Requirements: Materials Separation Plan § 60.1060 What steps must I complete for my materials separation plan? (a) For your materials separation plan, you must complete nine steps: (1) Prepare a draft materials...

  13. ISO WD 1856. Guideline for radiation exposure of nonmetallic materials. Present status

    NASA Astrophysics Data System (ADS)

    Briskman, B. A.

    In the framework of the International Organization for Standardization (ISO) activity we started development of international standard series for space environment simulation at on-ground tests of materials. The proposal was submitted to ISO Technical Committee 20 (Aircraft and Space Vehicles), Subcommittee 14 (Space Systems and Operations) and was approved as Working Draft 15856 at the Los-Angeles meeting (1997). A draft of the first international standard "Space Environment Simulation for Radiation Tests of Materials" (1st version) was presented at the 7th International Symposium on Materials in Space Environment (Briskman et al, 1997). The 2nd version of the standard was limited to nonmetallic materials and presented at the 20th Space Simulation Conference (Briskman and Borson, 1998). It covers the testing of nonmetallic materials embracing also polymer composite materials including metal components (metal matrix composites) to simulated space radiation. The standard does not cover semiconductor materials. The types of simulated radiation include charged particles (electrons and protons), solar ultraviolet radiation, and soft X-radiation of solar flares. Synergistic interactions of the radiation environment are covered only for these natural and some induced environmental effects. This standard outlines the recommended methodology and practices for the simulation of space radiation on materials. Simulation methods are used to reproduce the effects of the space radiation environment on materials that are located on surfaces of space vehicles and behind shielding. It was discovered that the problem of radiation environment simulation is very complex and the approaches of different specialists and countries to the problem are sometimes quite opposite. To the present moment we developed seven versions of the standard. The last version is a compromise between these approaches. It was approved at the last ISO TC20/SC14/WG4 meeting in Houston, October 2002. At a splinter meeting of Int. Conference on Materials in a Space Environment, Noordwijk, Netherlands, ESA, June 2003, the experts from ESA, USA, France, Russia and Japan discussed the last version of the draft and approved it with a number of notes. A revised version of the standard will be presented this May at ISO TC20/SC14 meeting in Russia.

  14. 40 CFR 246.202-1 - Requirement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Requirement. 246.202-1 Section 246.202-1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures § 246.202-1 Requirement...

  15. 40 CFR 246.200-1 - Requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Requirements. 246.200-1 Section 246.200-1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures § 246.200-1 Requirements...

  16. 40 CFR 246.201-1 - Requirement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Requirement. 246.201-1 Section 246.201-1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures § 246.201-1 Requirement...

  17. 40 CFR 246.202-1 - Requirement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Requirement. 246.202-1 Section 246.202-1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures § 246.202-1 Requirement...

  18. 40 CFR 246.201-1 - Requirement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Requirement. 246.201-1 Section 246.201-1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures § 246.201-1 Requirement...

  19. 40 CFR 246.202-1 - Requirement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Requirement. 246.202-1 Section 246.202-1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures § 246.202-1 Requirement...

  20. 40 CFR 246.200-1 - Requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Requirements. 246.200-1 Section 246.200-1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures § 246.200-1 Requirements...

  1. 40 CFR 246.200-1 - Requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Requirements. 246.200-1 Section 246.200-1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures § 246.200-1 Requirements...

  2. 40 CFR 246.201-1 - Requirement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Requirement. 246.201-1 Section 246.201-1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures § 246.201-1 Requirement...

  3. Analysis of Surface Charging for a Candidate Solar Sail Mission Using Nascap-2k

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard; Minow, Joseph I.; Davis, Victoria; Mandell, Myron; Gardner, Barbara

    2005-01-01

    The characterization of the electromagnetic interaction for a solar sail in the solar wind environment and identification of viable charging mitigation strategies are critical solar sail mission design task. Spacecraft charging has important implications both for science applications and for lifetime and reliability issues of sail propulsion systems. To that end, surface charging calculations of a candidate 150-meter-class solar sail spacecraft for the 0.5 AU solar polar and 1.0 AU L1 solar wind environments are performed. A model of the spacecraft with candidate materials having appropriate electrical properties is constructed using Object Toolkit. The spacecraft charging analysis is performed using Nascap-2k, the NASA/AFRL sponsored spacecraft charging analysis tool. Nominal and atypical solar wind environments appropriate for the 0.5 AU and 1.0 AU missions are used to establish current collection of solar wind ions and electrons. Finally, a geostationary orbit environment case is included to demonstrate a bounding example of extreme (negative) charging of a solar sail spacecraft. Results from the charging analyses demonstrate that minimal differential potentials (and resulting threat of electrostatic discharge) occur when the spacecraft is constructed entirely of conducting materials, as anticipated from standard guidelines for mitigation of spacecraft charging issues. Examples with dielectric materials exposed to the space environment exhibit differential potentials ranging from a few volts to extreme potentials in the kilovolt range.

  4. The Development of Biology Teaching Material Based on the Local Wisdom of Timorese to Improve Students Knowledge and Attitude of Environment in Caring the Preservation of Environment

    ERIC Educational Resources Information Center

    Ardan, Andam S.

    2016-01-01

    The purposes of this study were (1) to describe the biology learning such as lesson plans, teaching materials, media and worksheets for the tenth grade of High School on the topic of Biodiversity and Basic Classification, Ecosystems and Environment Issues based on local wisdom of Timorese; (2) to analyze the improvement of the environmental…

  5. 40 CFR 5.425 - Counseling and use of appraisal and counseling materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Counseling and use of appraisal and counseling materials. 5.425 Section 5.425 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL... Discrimination on the Basis of Sex in Education Programs or Activities Prohibited § 5.425 Counseling and use of...

  6. 40 CFR 5.425 - Counseling and use of appraisal and counseling materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Counseling and use of appraisal and counseling materials. 5.425 Section 5.425 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL... Discrimination on the Basis of Sex in Education Programs or Activities Prohibited § 5.425 Counseling and use of...

  7. 40 CFR 5.425 - Counseling and use of appraisal and counseling materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Counseling and use of appraisal and counseling materials. 5.425 Section 5.425 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL... Discrimination on the Basis of Sex in Education Programs or Activities Prohibited § 5.425 Counseling and use of...

  8. 40 CFR 5.425 - Counseling and use of appraisal and counseling materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Counseling and use of appraisal and counseling materials. 5.425 Section 5.425 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL... Discrimination on the Basis of Sex in Education Programs or Activities Prohibited § 5.425 Counseling and use of...

  9. Evaluating Material Flammability in Microgravity and Martian Gravity Compared to the NASA Standard Normal Gravity Test

    NASA Technical Reports Server (NTRS)

    Oslon, Sandra. L.; Ferkul, Paul

    2012-01-01

    Drop tower tests are conducted at Martian gravity to determine the flammability of three materials compared to previous tests in other normal gravity and reduced gravity environments. The comparison is made with consideration of a modified NASA standard test protocol. Material flammability limits in the different gravity and flow environments are tabulated to determine the factor of safety associated with normal gravity flammability screening. Previous testing at microgravity and Lunar gravity indicated that some materials burned to lower oxygen concentrations in low gravity than in normal gravity, although the low g extinction limit criteria are not the same as 1g due to time constraints in drop testing. Similarly, the data presented in this paper for Martian gravity suggest that there is a gravity level below Earth s at which materials burn more readily than on Earth. If proven for more materials, this may indicate the need to include a factor of safety on 1g flammability limits.

  10. Vaccum Gas Tungsten Arc Welding, phase 1

    NASA Astrophysics Data System (ADS)

    Weeks, J. L.; Krotz, P. D.; Todd, D. T.; Liaw, Y. K.

    1995-03-01

    This two year program will investigate Vacuum Gas Tungsten Arc Welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. VGTAW appears to offer a significant improvement in weldability because of the clean environment and lower heat input needed. The overall objective of the program is to develop the VGTAW technology and implement it into a manufacturing environment that will result in lower cost, better quality and higher reliability aerospace components for the space shuttle and other NASA space systems. Phase 1 of this program was aimed at demonstrating the process's ability to weld normally difficult-to-weld materials. Phase 2 will focus on further evaluation, a hardware demonstration and a plan to implement VGTAW technology into a manufacturing environment. During Phase 1, the following tasks were performed: (1) Task 11000 Facility Modification - an existing vacuum chamber was modified and adapted to a GTAW power supply; (2) Task 12000 Materials Selection - four difficult-to-weld materials typically used in the construction of aerospace hardware were chosen for study; (3) Task 13000 VGTAW Experiments - welding experiments were conducted under vacuum using the hollow tungsten electrode and evaluation. As a result of this effort, two materials, NARloy Z and Incoloy 903, were downselected for further characterization in Phase 2; and (4) Task 13100 Aluminum-Lithium Weld Studies - this task was added to the original work statement to investigate the effects of vacuum welding and weld pool vibration on aluminum-lithium alloys.

  11. Vaccum Gas Tungsten Arc Welding, phase 1

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Krotz, P. D.; Todd, D. T.; Liaw, Y. K.

    1995-01-01

    This two year program will investigate Vacuum Gas Tungsten Arc Welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. VGTAW appears to offer a significant improvement in weldability because of the clean environment and lower heat input needed. The overall objective of the program is to develop the VGTAW technology and implement it into a manufacturing environment that will result in lower cost, better quality and higher reliability aerospace components for the space shuttle and other NASA space systems. Phase 1 of this program was aimed at demonstrating the process's ability to weld normally difficult-to-weld materials. Phase 2 will focus on further evaluation, a hardware demonstration and a plan to implement VGTAW technology into a manufacturing environment. During Phase 1, the following tasks were performed: (1) Task 11000 Facility Modification - an existing vacuum chamber was modified and adapted to a GTAW power supply; (2) Task 12000 Materials Selection - four difficult-to-weld materials typically used in the construction of aerospace hardware were chosen for study; (3) Task 13000 VGTAW Experiments - welding experiments were conducted under vacuum using the hollow tungsten electrode and evaluation. As a result of this effort, two materials, NARloy Z and Incoloy 903, were downselected for further characterization in Phase 2; and (4) Task 13100 Aluminum-Lithium Weld Studies - this task was added to the original work statement to investigate the effects of vacuum welding and weld pool vibration on aluminum-lithium alloys.

  12. Modeling of space environment impact on nanostructured materials. General principles

    NASA Astrophysics Data System (ADS)

    Voronina, Ekaterina; Novikov, Lev

    2016-07-01

    In accordance with the resolution of ISO TC20/SC14 WG4/WG6 joint meeting, Technical Specification (TS) 'Modeling of space environment impact on nanostructured materials. General principles' which describes computer simulation methods of space environment impact on nanostructured materials is being prepared. Nanomaterials surpass traditional materials for space applications in many aspects due to their unique properties associated with nanoscale size of their constituents. This superiority in mechanical, thermal, electrical and optical properties will evidently inspire a wide range of applications in the next generation spacecraft intended for the long-term (~15-20 years) operation in near-Earth orbits and the automatic and manned interplanetary missions. Currently, ISO activity on developing standards concerning different issues of nanomaterials manufacturing and applications is high enough. Most such standards are related to production and characterization of nanostructures, however there is no ISO documents concerning nanomaterials behavior in different environmental conditions, including the space environment. The given TS deals with the peculiarities of the space environment impact on nanostructured materials (i.e. materials with structured objects which size in at least one dimension lies within 1-100 nm). The basic purpose of the document is the general description of the methodology of applying computer simulation methods which relate to different space and time scale to modeling processes occurring in nanostructured materials under the space environment impact. This document will emphasize the necessity of applying multiscale simulation approach and present the recommendations for the choice of the most appropriate methods (or a group of methods) for computer modeling of various processes that can occur in nanostructured materials under the influence of different space environment components. In addition, TS includes the description of possible approximations and limitations of proposed simulation methods as well as of widely used software codes. This TS may be used as a base for developing a new standard devoted to nanomaterials applications for spacecraft.

  13. 40 CFR 264.1 - Purpose, scope and applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste. (D) An immediate threat to human health, public safety, property, or the environment, from the... material or waste is necessary to protect human health or the environment, that official or specialist may..., a release of hazardous waste constituents to the environment, or a threat to human health. The owner...

  14. Predicting Material Performance in the Space Environment from Laboratory Test Data, Static Design Environments, and Space Weather Models

    NASA Technical Reports Server (NTRS)

    Minow, Josep I.; Edwards, David L.

    2008-01-01

    Qualifying materials for use in the space environment is typically accomplished with laboratory exposures to simulated UV/EUV, atomic oxygen, and charged particle radiation environments with in-situ or subsequent measurements of material properties of interest to the particular application. Choice of environment exposure levels are derived from static design environments intended to represent either mean or extreme conditions that are anticipated to be encountered during a mission. The real space environment however is quite variable. Predictions of the on orbit performance of a material qualified to laboratory environments can be done using information on 'space weather' variations in the real environment. This presentation will first review the variability of space environments of concern for material degradation and then demonstrate techniques for using test data to predict material performance in a variety of space environments from low Earth orbit to interplanetary space using historical measurements and space weather models.

  15. Proceedings of the NASA Workshop on Atomic Oxygen Effects. [low earth orbital environment

    NASA Technical Reports Server (NTRS)

    Brinza, David E. (Editor)

    1987-01-01

    A workshop was held to address the scientific issues concerning the effects of atomic oxygen on materials in the low Earth orbital (LEO) environment. The program included 18 invited speakers plus contributed posters covering topics such as LEO spaceflight experiments, interaction mechanisms, and atomic oxygen source development. Discussion sessions were also held to organize a test program to evaluate atomic oxygen exposure facilities. The key issues raised in the workshop were: (1) the need to develop a reliable predictive model of the effects of long-term exposure of materials to the LEO environment; (2) the ability of ground-based exposure facilities to provide useful data for development of durable materials; and (3) accurate determination of the composition of the LEO environment. These proceedings include the invited papers, the abstracts for the contributed posters, and an account of the test program discussion sessions.

  16. Are We Underestimating Microplastic Contamination in Aquatic Environments?

    NASA Astrophysics Data System (ADS)

    Conkle, Jeremy L.; Báez Del Valle, Christian D.; Turner, Jeffrey W.

    2018-01-01

    Plastic debris, specifically microplastic in the aquatic environment, is an escalating environmental crisis. Efforts at national scales to reduce or ban microplastics in personal care products are starting to pay off, but this will not affect those materials already in the environment or those that result from unregulated products and materials. To better inform future microplastic research and mitigation efforts this study (1) evaluates methods currently used to quantify microplastics in the environment and (2) characterizes the concentration and size distribution of microplastics in a variety of products. In this study, 50 published aquatic surveys were reviewed and they demonstrated that most ( 80%) only account for plastics ≥ 300 μm in diameter. In addition, we surveyed 770 personal care products to determine the occurrence, concentration and size distribution of polyethylene microbeads. Particle concentrations ranged from 1.9 to 71.9 mg g-1 of product or 1649 to 31,266 particles g-1 of product. The large majority ( > 95%) of particles in products surveyed were less than the 300 μm minimum diameter, indicating that previous environmental surveys could be underestimating microplastic contamination. To account for smaller particles as well as microfibers from synthetic textiles, we strongly recommend that future surveys consider methods that materials < 300 μm in diameter.

  17. Material Concerns: Evaluating Sulfur Concrete for use in the Lunar Environment

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Toutanji, Houssam

    2006-01-01

    On Earth sulfur "concrete" is an established construction material that has good mechanical properties, generally better than Portland cement, and can be used in corrosive environments. Troilite (FeS) has been found on the moon and raises the question of using extracted sulfur as a lunar construction material, an attractive alternative to conventional concrete as it does not require water. Troilite reduction to elemental sulfur and using it to make concrete in a lunar setting has been previously discussed. However, little has been experimentally done to evaluate its performance in the extreme lunar environment. This study subjected sets of sulfur concrete samples, prepared using JSC-1 lunar simulant, to I ) extended periods of high vacuum and 2) extreme temperature cycles. Here an overview of sulfur concrete and experimentally assessed properties, put in context of the lunar environment, is presented and discussed.

  18. 48 CFR 223.370-1 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Hazardous Material Identification and Material Safety Data 223.370...

  19. Ignitability of materials in transitional heating regimes

    Treesearch

    Mark A. Dietenberger

    2004-01-01

    Piloted ignition behavior of materials, particularly wood products, during transitions between heating regimes is measured and modeled in a cone calorimetry (ISO 5660) heating environment. These include (1) effect of material thickness, density, moisture content, and paint coating variations on thermal response characteristics, (2) effect of fire retardant treatment...

  20. Space Systems - Safety and Compatibility of Materials - Method to Determine the Flammability Thresholds of Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David

    2009-01-01

    Spacecraft fire safety emphasizes fire prevention, which is achieved primarily through the use of fire-resistant materials. Materials selection for spacecraft is based on conventional flammability acceptance tests, along with prescribed quantity limitations and configuration control for items that are non-pass or questionable. ISO 14624-1 and -2 are the major methods used to evaluate flammability of polymeric materials intended for use in the habitable environments of spacecraft. The methods are upward flame-propagation tests initiated in static environments and using a well-defined igniter flame at the bottom of the sample. The tests are conducted in the most severe flaming combustion environment expected in the spacecraft. The pass/fail test logic of ISO 14624-1 and -2 does not allow a quantitative comparison with reduced gravity or microgravity test results; therefore their use is limited, and possibilities for in-depth theoretical analyses and realistic estimates of spacecraft fire extinguishment requirements are practically eliminated. To better understand the applicability of laboratory test data to actual spacecraft environments, a modified ISO 14624 protocol has been proposed that, as an alternative to qualifying materials as pass/fail in the worst-expected environments, measures the actual upward flammability limit for the material. A working group established by NASA to provide recommendations for exploration spacecraft internal atmospheres realized the importance of correlating laboratory data with real-life environments and recommended NASA to develop a flammability threshold test method. The working group indicated that for the Constellation Program, the flammability threshold information will allow NASA to identify materials with increased flammability risk from oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extravehicular landers and habitats. Furthermore, recent research has shown that current normal gravity materials flammability tests do not correlate with flammability in ventilated, micro- or reduced-gravity conditions. Currently, the materials selection for spacecraft is based on the assumption of commonality between ground flammability test results and spacecraft environments, which does not appear to be valid. Materials flammability threshold data acquired in normal gravity can be correlated with data obtained in microgravity or reduced-gravity experiments, and consequently a more accurate assessment of the margin of safety of the material in the real environment can be made. In addition, the method allows the option of selecting better or best space system materials, as opposed to what would be considered just acceptable from a flammability point of view and realistic assessment of spacecraft fire extinguishment needs, which could result in significant weight savings. The knowledge afforded by this technique allows for limited extrapolations of flammability behavior to conditions not specifically tested and that could potentially result in significant cost and time savings. The intent of this Technical Specification is to bring to the attention of International Aerospace Community the importance of correlating laboratory test data with real-life space systems applications. The method presented is just one of the possibilities that are believed will lead to better understanding the applicability of laboratory aerospace materials flammability test data. International feedback on improving the proposed method, as well as suggestions for correlating other laboratory aerospace test data with real-life applications relevant to space systems are being sought.

  1. Molds and mycotoxins in indoor environments--a survey in water-damaged buildings.

    PubMed

    Bloom, Erica; Nyman, Eva; Must, Aime; Pehrson, Christina; Larsson, Lennart

    2009-11-01

    Mycotoxins are toxic, secondary metabolites frequently produced by molds in water-damaged indoor environments. We studied the prevalence of selected, potent mycotoxins and levels of fungal biomass in samples collected from water-damaged indoor environments in Sweden during a 1-year period. One hundred samples of building materials, 18 samples of settled dust, and 37 samples of cultured dust were analyzed for: (a) mycoflora by microscopy and culture; (b) fungal chemical marker ergosterol and hydrolysis products of macrocyclic trichothecenes and trichodermin (verrucarol and trichodermol) by gas chromatography-tandem mass spectrometry; and (c) sterigmatocystin, gliotoxin, aflatoxin B(1), and satratoxin G and H by high performance liquid chromatography-tandem mass spectrometry. Sixty-six percent of the analyzed building materials samples, 11% of the settled dust samples, and 51% of the cultured dust samples were positive for at least one of the studied mycotoxins. In addition, except in the case of gliotoxin, mycotoxin-positive building material samples contained 2-6 times more ergosterol than mycotoxin-negative samples. We show that (a) molds growing on a range of different materials indoors in water-damaged buildings generally produce mycotoxins, and (b) mycotoxin-containing particles in mold-contaminated environments may settle on surfaces above floor level. The mass spectrometry methods used in this study are valuable tools in further research to survey mycotoxin exposure and investigate potential links with health effects.

  2. 40 CFR 26.305 - Protections applicable, after delivery, to the placenta, the dead fetus, or fetal material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Protections applicable, after delivery, to the placenta, the dead fetus, or fetal material. 26.305 Section 26.305 Protection of Environment... Supported by EPA § 26.305 Protections applicable, after delivery, to the placenta, the dead fetus, or fetal...

  3. 40 CFR 26.305 - Protections applicable, after delivery, to the placenta, the dead fetus, or fetal material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Protections applicable, after delivery, to the placenta, the dead fetus, or fetal material. 26.305 Section 26.305 Protection of Environment... Supported by EPA § 26.305 Protections applicable, after delivery, to the placenta, the dead fetus, or fetal...

  4. 40 CFR 26.305 - Protections applicable, after delivery, to the placenta, the dead fetus, or fetal material.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Protections applicable, after delivery, to the placenta, the dead fetus, or fetal material. 26.305 Section 26.305 Protection of Environment... Supported by EPA § 26.305 Protections applicable, after delivery, to the placenta, the dead fetus, or fetal...

  5. 40 CFR 26.305 - Protections applicable, after delivery, to the placenta, the dead fetus, or fetal material.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Protections applicable, after delivery, to the placenta, the dead fetus, or fetal material. 26.305 Section 26.305 Protection of Environment... Supported by EPA § 26.305 Protections applicable, after delivery, to the placenta, the dead fetus, or fetal...

  6. 40 CFR 26.305 - Protections applicable, after delivery, to the placenta, the dead fetus, or fetal material.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Protections applicable, after delivery, to the placenta, the dead fetus, or fetal material. 26.305 Section 26.305 Protection of Environment... Supported by EPA § 26.305 Protections applicable, after delivery, to the placenta, the dead fetus, or fetal...

  7. Testing of solar cell covers and encapsulants conducted in a simulated space environment

    NASA Technical Reports Server (NTRS)

    Russell, D. A.

    1981-01-01

    The materials included in the evaluation were 0211 micro-sheet, FEP-A used as a cover and as an adhesive, DC 93-500 adhesive, PFA "hard coat" used as a cover, GE 615/UV-24 used as a cover, GR 650 used as a cover, and electrostatically bonded 7070 glass. The test environments were 1 MeV electron irradiation interspersed with thermal cycling, 0.5 MeV proton irradiation interspersed with thermal cycling and UV exposure interspersed with thermal cycling. Summary data is given describing the response of the test materials both visually and electrically to the three different environments.

  8. Bibliography of the space processing program. Volume 1: A compilation through June 1974, Parts 1 and 2. [space manufacturing/spacecraft construction materials - aerospace environments

    NASA Technical Reports Server (NTRS)

    Shoultz, M. B.; Mcclurken, E. W., Jr.

    1975-01-01

    A compilation of NASA research efforts in the area of space environmental effects on materials and processes is presented. Topics considered are: (1) fluid mechanics and heat transfer; (2) crystal growth and containerless melts; (3) acoustics; (4) glass and ceramics; (5) electrophoresis; (6) welding; and (7) exobiology.

  9. Simulation-based Extraction of Key Material Parameters from Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Alsafi, Huseen; Peninngton, Gray

    Models for the atomic force microscopy (AFM) tip and sample interaction contain numerous material parameters that are often poorly known. This is especially true when dealing with novel material systems or when imaging samples that are exposed to complicated interactions with the local environment. In this work we use Monte Carlo methods to extract sample material parameters from the experimental AFM analysis of a test sample. The parameterized theoretical model that we use is based on the Virtual Environment for Dynamic AFM (VEDA) [1]. The extracted material parameters are then compared with the accepted values for our test sample. Using this procedure, we suggest a method that can be used to successfully determine unknown material properties in novel and complicated material systems. We acknowledge Fisher Endowment Grant support from the Jess and Mildred Fisher College of Science and Mathematics,Towson University.

  10. An overview of NASA testing requirements for alternate cleaning solvents used in liquid and gaseous oxygen environments

    NASA Technical Reports Server (NTRS)

    Strickland, John W.; Davis, S. Eddie

    1995-01-01

    The elimination of CFC-containing cleaning solvents for oxygen systems has prompted the development of a number of alternative cleaning solvents that must now be evaluated not only for cleanability, but compatibility as well. NASA Handbook 8060.1(NHB 8060.1) establishes the requirements for evaluation, testing, and selection of materials for use in oxygen rich environments. Materials intended for use in space vehicles, specified test facilities, and ground support equipment must meet the requirements of this document. In addition to the requirements of NHB 8060.1 for oxygen service, alternative cleaning solvents must also be evaluated in other areas (such as corrosivity, non-metals compatibility, non-volatile residue contamination, etc.). This paper will discuss the testing requirements of NHB 8060.1 and present preliminary results from early screening tests performed at Marshall Space Flight Center's Materials Combustion Research Facility.

  11. Experiment requirements and implementation plan (Erip) for semiconductor materials growth in low-G environment

    NASA Technical Reports Server (NTRS)

    Crouch, R. K.; Fripp, A. L.; Debnam, W. J.; Clark, I. O.

    1983-01-01

    The MEA-2 A facility was used to test the effect of the low gravity environment on suppressing convective mixing in the growth of Pb(1-x)Sn(x)Te crystals. The need to eliminate convection, the furnace characteristics and operation that will be required for successful experimental implementation, and to the level that is presently known, the measured physical properties of the Pb(1-x)Sn(x)Te system were discussed. In addition, a brief background of the present and potential utilization of Pb(1-x)Sn(x)Te is given. Additional experiments are anticipated in future MEA-A, improved MEA and other dedicated materials processing in space flight apparatus.

  12. The Life Cycle Application of Intelligent Software Modeling for the First Materials Science Research Rack

    NASA Technical Reports Server (NTRS)

    Rice, Amanda; Parris, Frank; Nerren, Philip

    2000-01-01

    Marshall Space Flight Center (MSFC) has been funding development of intelligent software models to benefit payload ground operations for nearly a decade. Experience gained from simulator development and real-time monitoring and control is being applied to engineering design, testing, and operation of the First Material Science Research Rack (MSRR-1). MSRR-1 is the first rack in a suite of three racks comprising the Materials Science Research Facility (MSRF) which will operate on the International Space Station (ISS). The MSRF will accommodate advanced microgravity investigations in areas such as the fields of solidification of metals and alloys, thermo-physical properties of polymers, crystal growth studies of semiconductor materials, and research in ceramics and glasses. The MSRR-1 is a joint venture between NASA and the European Space Agency (ESA) to study the behavior of different materials during high temperature processing in a low gravity environment. The planned MSRR-1 mission duration is five (5) years on-orbit and the total design life is ten (IO) years. The MSRR-1 launch is scheduled on the third Utilization Flight (UF-3) to ISS, currently in February of 2003). The objective of MSRR-1 is to provide an early capability on the ISS to conduct material science, materials technology, and space product research investigations in microgravity. It will provide a modular, multi-user facility for microgravity research in materials crystal growth and solidification. An intelligent software model of MSRR-1 is under development and will serve multiple purposes to support the engineering analysis, testing, training, and operational phases of the MSRR-1 life cycle development. The G2 real-time expert system software environment developed by Gensym Corporation was selected as the intelligent system shell for this development work based on past experience gained and the effectiveness of the programming environment. Our approach of multi- uses of the simulation model and its intuitive graphics capabilities is providing a concurrent engineering environment for rapid prototyping and development. Operational schematics of the MSRR-1 electrical, thermal control, vacuum access, and gas supply systems, and furnace inserts are represented graphically in the environment. Logic to represent first order engineering calculations is coded into the knowledge base to simulate the operational behavior of the MSRR-1 systems. An example of engineering data provided includes electrical currents, voltages, operational power, temperatures, thermal fluid flow rates. pressures, and component status indications. These type of data are calculated and displayed at appropriate instrumentation points, and the schematics are animated to reflect the simulated operational status of the MSRR-1. The software control functions are also simulated to represent appropriate operational behavior based on automated control and response to commands received by the crew or ground controllers. The first benefit of this simulation environment is being realized in the high fidelity engineering analysis results from the electrical power system G2 model. Secondly, the MSRR-1 simulation model will be embedded with a hardware mock-up of the MSRR-1 to provide crew training on MSRR-1 integrated payload operations. G2 gateway code will output the simulated instrumentation values, termed as telemetry, in a flight-like data stream so that the crew has realistic and accurate simulated MSRR-1 data on the flight displays which will be designed for crew use. The simulation will also respond appropriately to crew or ground initiated commands, which will be part of normal facility operations. A third use of the G2 model is being planned; the MSRR-1 simulation will be integrated with additional software code as part of the test configuration of the primary onboard computer, or Master Controller, for MSRR-1. We will take advantage of the G2 capability to simulate the flight like data stream to test flight software responses and behavior. A fourth use of the G2 model will be to train the Ground Support Personnel that will monitor the MSRR-1 systems and payloads while they are operating aboard the ISS. The intuitive, schematic based environment will provide an excellent foundation for personnel to understand the integrated configuration and operation of the MSRR-1, and the anticipated telemetry feedback based on operational modes of the equipment. Expert monitoring features will be enhanced to provide a smart monitoring environment for the operators. These features include: (1) Animated, intuitive schematic-based displays which reflect telemetry values, (1) Real-time plotting of simulated or incoming sensor values, (3) High/Low exception monitoring for analog data, (4) Expected state monitoring for discrete data, (5) Data trending, (6) Automated malfunction procedure execution to diagnose problems, (7) Look ahead capability to planned MSRR-1 activities in the onboard timeline. And finally, the logic to calculate telemetry values will be deactivated, and the same environment will interface to the incoming data for the real-time telemetry stream to schematically represent the onboard hardware configuration. G2 will be the foundation for the real-time monitoring and control environment. In summary, our MSRR-1 simulation model spans many elements of the life cycle development of this project: Engineering Analysis, Test and Checkout, Training of Crew and Ground Personnel, and Real-time monitoring and control. By utilizing the unique features afforded by an expert system development environment, we have been able to synergize a powerful tool capable of addressing our project needs at every phase of project development.

  13. Evaluation of cryogenic insulation materials and composites for use in nuclear radiation environments

    NASA Technical Reports Server (NTRS)

    Bullock, R. E.

    1972-01-01

    The following subjects are studied: (1) composite materials tests; (2) test of liquid level sensors and fission couples; (3) test of valve-seal materials; (4) boron epoxy composites; (5) radiation analysis of explosive materials and bifuels for RNS applications; and (6) test of thermal insulation.

  14. The Effects of Environment and Dwell on High Temperature Fatigue Crack Growth of 2 1/4 Cr - 1 Mo Steel.

    DTIC Science & Technology

    1983-06-01

    frequency with a vacuum environment. In work concerning nuclear steam generator design ; Brinkman, et al. [Ref. 13], investigated time dependent...Nuclear Steam Generator Design ," Journal of Nuclear Materials, Vol. 62, pp. 181-204, 1976. 14. K. D. Challenger, A. K. Miller, C. R. Brinkman, "An

  15. The International Microgravity Laboratory, a Spacelab for materials and life sciences

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.

    1992-01-01

    The material science experiments performed on the International Microgravity Laboratory (IML-1), which is used to perform investigations which require the low gravity environment of space, are discussed. These experiments, the principal investigator, and associated organization are listed. Whether the experiment was a new development or was carried on an earlier space mission, such as the third Spacelab (SL-3) or the Shuttle Middeck, is also noted. The two major disciplines of materials science represented on IML-1 were the growth of crystals from the melt, solution, or vapor and the study of fluids (liquids and gases) in a reduced gravity environment. The various facilities on board IML-1 and their related experiments are described. The facilities include the Fluids Experiment System (FES) Vapor Crystal Growth System (VCGS) Organic Crystal Growth Facility (OCGF), Cryostat (CRY), and the Critical Point Facility (CPF).

  16. Arc-Heater Facility for Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Wang,Ten-See; Hickman, Robert; Panda, Binayak; Dobson, Chris; Osborne, Robin; Clifton, Scooter

    2006-01-01

    A hyper-thermal environment simulator is described for hot hydrogen exposure of nuclear thermal rocket material specimens and component development. This newly established testing capability uses a high-power, multi-gas, segmented arc-heater to produce high-temperature pressurized hydrogen flows representative of practical reactor core environments and is intended to serve. as a low cost test facility for the purpose of investigating and characterizing candidate fueUstructura1 materials and improving associated processing/fabrication techniques. Design and development efforts are thoroughly summarized, including thermal hydraulics analysis and simulation results, and facility operating characteristics are reported, as determined from a series of baseline performance mapping tests.

  17. Analysis of Surface Charging for a Candidate Solar Sail Mission Using NASCAP-2K

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard; Minow, Joseph L.; Davis, V. A.; Mandell, Myron; Gardner, Barbara

    2005-01-01

    The characterization of the electromagnetic interaction for a solar sail in the solar wind environment and identification of viable charging mitigation strategies are critical solar sail mission design tasks. Spacecraft charging has important implications both for science applications and for lifetime and reliability issues of sail propulsion systems. To that end, surface charging calculations of a candidate 150-meter-class solar sail spacecraft for the 0.5 AU solar polar and 1.9 AU LI solar wind environments are performed. A model of the spacecraft with candidate materials having appropriate electrical properties is constructed using Object Toolkit. The spacecraft charging analysis is performed using Nascap-2k. the NASA/AFRL sponsored spacecraft charging analysis tool. Nominal and atypical solar wind environments appropriate for the 0.5 AU and 1.0 AU missions are used to establish current collection of solar wind ions and electrons. Finally, a geostationary orbit environment case is included to demonstrate a bounding example of extreme (negative) charging of a solar sail spacecraft. Results from the charging analyses demonstrate that minimal differential potentials (and resulting threat of electrostatic discharge) occur when the spacecraft is constructed entirely of conducting materials, as anticipated from standard guidelines for mitigation of spacecraft charging issues. Examples with dielectric materials exposed to the space environment exhibit differential potentials ranging from a few volts to extreme potentials in the kilovolt range.

  18. Electrostatic apparatus for measurement of microfracture strength

    DOEpatents

    de Boer, Maarten; Bitsie, Fernando; Jensen, Brian D.

    2002-01-01

    A new class of materials testing apparatus has been invented. Particularly suited to the measurement of fracture and fatigue properties in the extremely strong materials encountered in microelectromechanical systems, material strains well in excess of 1% can be applied pseudostatically, dynamically, or repetitively by these testers. There are no other practical methods to determine these material properties routinely in a process environment, and few alternatives in any circumstances.

  19. Additive Effects on Si3n4 Oxidation/Volatilization in Water Vapor

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Robinson, R. Craig; Fox, Dennis S.; Wenglarz, Richard A.; Ferber, Mattison K.

    2002-01-01

    Two commercially available additive-containing silicon nitride materials were exposed in four environments which range in severity from dry oxygen at 1 atm pressure, and low gas velocity to an actual turbine engine. Oxidation and volatilization kinetics were monitored at temperatures ranging from 1066 to 1400 C. The main purpose of this paper is to examine the surface oxide morphology resulting from the exposures. It was found that the material surface was enriched in rare earth silicate phases in combustion environments when compared to the oxides formed on materials exposed in dry oxygen. However, the in situ formation of rare earth disilicate phases offered little additional protection from the volatilization of silica observed in combustion environments. It was concluded that externally applied environmental barrier coatings are needed to protect additive-containing silicon nitride materials from volatilization reactions in combustion environments. Introduction Si3N4 is proposed for use as components, such as vanes, in turbine applications. Tens of thousands of hours of life are needed for both land-based turbines and aeropropulsion applications. Additive-containing SisN4 materials are

  20. Surface characterization through shape oscillations of drops in microgravity and 1-g

    NASA Technical Reports Server (NTRS)

    Apfel, Robert E.; Holt, R. Glynn; Tian, Yuren; Shi, Tao; Zheng, Xiao-Yu

    1994-01-01

    The goal of these experiments is to determine the rheological properties of liquid drops of single or multiple components in the presence or absence of surface active materials by exciting drops into their quadrupole resonance and observing their free decay. The resulting data coupled with appropriate theory should give a better description of the physics of the underlying phenomena, providing a better foundation than earlier empirical results could. The space environment makes an idealized geometry available (spherical drops) so that theory and experiment can be properly compared, and allows a 'clean' environment, by which is meant an environment in which no solid surfaces come in contact with the drops during the test period. Moreover, by considering the oscillations of intentionally deformed drops in microgravity, a baseline is established for interpreting surface characterization experiments done on the ground by other groups and ours. Experiments performed on the United States Microgravity Laboratory Laboratory (USML-1) demonstrated that shape oscillation experiments could be performed over a wide parameter range, and with a variety of surfactant materials. Results, however, were compromised by an unexpected, slow drop tumbling, some problems with droplet injection, and the presence of bubbles in the drop samples. Nevertheless, initial data suggests that the space environment will be useful in providing baseline data that can serve to validate theory and permit quantitative materials characterization at 1-g.

  1. Burning of solids in oxygen-rich environments in normal and reduced gravity. [combustion of cellulose acetates

    NASA Technical Reports Server (NTRS)

    Andracchio, C. R.; Cochran, T. H.

    1974-01-01

    An experimental program was conducted to investigate the combustion characteristics of solids burning in a weightless environment. The combustion characteristics of thin cellulose acetate material were obtained from specimens burned in supercritical as well as in low pressure oxygen atmospheres. Flame spread rates were measured and found to depend on material thickness and pressure in both normal gravity (1-g) and reduced gravity (0-g). A gravity effect on the burning process was also observed; the ratio of 1-g to 0-g flame spread rate becomes larger with increasing material thickness. Qualitative results on the combustion characteristics of metal screens (stainless steel, Inconel, copper, and aluminum) burning in supercritical oxygen and normal gravity are also presented. Stainless steel (300 sq mesh) was successfully ignited in reduced gravity; no apparent difference in the flame spread pattern was observed between 1-g and 0-g.

  2. Effect of environment on insulation materials, volume 1

    NASA Technical Reports Server (NTRS)

    Parmley, R. T.; Smith, F. J.; Glassford, A. P.; Coleman, J.; Stevenson, D. R.

    1973-01-01

    Twenty candidate multilayer insulation and insulation related materials were subjected to eight conditions that represent possible operational environments. These exposures include ground contaminants, various operational temperatures, space vacuum, space-vented propellants, and tank leakage. The objective of this program was to obtain and evaluate the data from these exposures to provide both a quantitative and qualitative description of the degradation to certain physical and thermal properties, and from this, to obtain a better understanding of the environmental effects on the insulation performance.

  3. Perovskite nickelates as electric-field sensors in salt water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhen; Schwanz, Derek; Narayanan, Badri

    Designing materials to function in harsh environments, such as conductive aqueous media, is a problem of broad interest to a range of technologies, including energy, ocean monitoring and biological applications(1-4). The main challenge is to retain the stability and morphology of the material as it interacts dynamically with the surrounding environment. Materials that respond to mild stimuli through collective phase transitions and amplify signals could open up new avenues for sensing. Here we present the discovery of an electric-field-driven, water-mediated reversible phase change in a perovskite-structured nickelate, SmNiO35-7. This prototypical strongly correlated quantum material is stable in salt water, doesmore » not corrode, and allows exchange of protons with the surrounding water at ambient temperature, with the concurrent modification in electrical resistance and optical properties being capable of multi-modal readout. Besides operating both as thermistors and pH sensors, devices made of this material can detect sub-volt electric potentials in salt water. We postulate that such devices could be used in oceanic environments for monitoring electrical signals from various maritime vessels and sea creatures« less

  4. Science Laboratory Environment and Academic Performance

    NASA Astrophysics Data System (ADS)

    Aladejana, Francisca; Aderibigbe, Oluyemisi

    2007-12-01

    The study determined how students assess the various components of their science laboratory environment. It also identified how the laboratory environment affects students' learning outcomes. The modified ex-post facto design was used. A sample of 328 randomly selected students was taken from a population of all Senior Secondary School chemistry students in a state in Nigeria. The research instrument, Science Laboratory Environment Inventory (SLEI) designed and validated by Fraser et al. (Sci Educ 77:1-24, 1993) was administered on the selected students. Data analysis was done using descriptive statistics and Product Moment Correlation. Findings revealed that students could assess the five components (Student cohesiveness, Open-endedness, Integration, Rule clarity, and Material Environment) of the laboratory environment. Student cohesiveness has the highest assessment while material environment has the least. The results also showed that the five components of the science laboratory environment are positively correlated with students' academic performance. The findings are discussed with a view to improving the quality of the laboratory environment, subsequent academic performance in science and ultimately the enrolment and retaining of learners in science.

  5. Study of the space environmental effects on spacecraft engineering materials

    NASA Technical Reports Server (NTRS)

    Obrien, Susan K.; Workman, Gary L.; Smith, Guy A.

    1995-01-01

    The space environment in which the Space Station Freedom and other space platforms will orbit is truly a hostile environment. For example, the current estimates of the integral fluence for electrons above 1 Mev at 2000 nautical miles is above 2 x 10(exp 10) electrons/sq cm/day. and the proton integral fluence is above 1 x 109 protons/sq cm/day. At the 200 - 400 nautical miles, which is more representative of the altitude which will provide the environment for the Space Station, each of these fluences will be proportionately less; however, the data indicates that the radiation environment will obviously have an effect on structural materials exposed to the environment for long durations. The effects of this combined environment is the issue which needs to be understood for the long term exposure of structures in space. In order to better understand the effect of these hostile phenomena on spacecraft, several types of studies are worth performing in order to simulate at some level the effect of the environment. For example the effect of protons and electrons impacting structural materials are easily simulated through experiments using the Van de Graff and Pelletron accelerators currently housed in the Environmental Effects Facility at MSFC. Proton fluxes with energies of 700 Kev-2.5 Mev can be generated and used to impinge on sample targets to determine the effects of the particles. Also the Environmental Effects Facility has the capability to generate electron beams with energies from 700 Kev to 2.5 Mev. These facilities will be used in this research to simulate space environmental effects from energetic particles. Ultraviolet radiation, particularly in the ultraviolet (less than 400 nm wavelength) is less well characterized at this time. The Environmental Effects Facility has a vacuum system dedicated to studying the effects of ultraviolet radiation on specific surface materials. This particular system was assembled in a previous study (NAS8-38609) in order to perform a variety of experiments on materials proposed for the Space Station. That system has continued to function as planned and has been used in carrying out portions of the proposed study.

  6. Properties of the moon, Mars, Martian satellites, and near-earth asteroids

    NASA Technical Reports Server (NTRS)

    Taylor, Jeffrey G.

    1989-01-01

    Environments and surface properties of the moon, Mars, Martian satellites, and near-earth asteroids are discussed. Topics include gravity, atmospheres, surface properties, surface compositions, seismicity, radiation environment, degradation, use of robotics, and environmental impacts. Gravity fields vary from large fractions of the earth's field such as 1/3 on Mars and 1/6 on the moon to smaller fractions of 0.0004 g on an asteroid 1 km in diameter. Spectral data and the analogy with meteor compositions suggest that near-earth asteroids may contain many resources such as water-rich carbonaceous materials and iron-rich metallic bodies. It is concluded that future mining and materials processing operations from extraterrestrial bodies require an investment now in both (1) missions to the moon, Mars, Phobos, Deimos, and near-earth asteroids and (2) earth-based laboratory research in materials and processing.

  7. Space Environment Factors Affecting the Performance of International Space Station Materials: The First Two Years of Flight Operations

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Peldey, Michael; Mayeaux, Brian; Milkatarian, Ronald R.; Golden, John; Boeder, paul; Kern, John; Barsamian, Hagop; Alred, John; Soares, Carlos; hide

    2003-01-01

    In this paper, the natural and induced space environment factors affecting materials performance on ISS are described in some detail. The emphasis will be on ISS flight experience and the more significant design and development issues of the last two years. The intent is to identify and document the set of space environment factors, affecting materials, that are producing the largest impacts on the ISS flight hardware verification and acceptance process and on ISS flight operations. Orbital inclination (S1.6 ) and altitude (nominal3S0 km to 400 km altitude) determine the set of natural environment factors affecting the functional life of materials and subsystems on ISS. ISS operates in the F2 region of Earth's ionosphere in well-defined fluxes of atomic oxygen, other ionospheric plasma species, and solar UV, VUV, and x-ray radiation, as well as galactic cosmic rays, trapped radiation, and solar cosmic rays (1,2). The high latitude orbital environment also exposes external surfaces to significantly less well-defined or predictable fluxes of higher energy trapped electrons and auroral electrons (3 ,4). The micrometeoroid and orbital debris environment is an important determinant of spacecraft design and operations in any orbital inclination. Environment factors induced by ISS flight operations include ram-wake effects, magnetic induction voltages arising from flight through Earth's magnetic field, hypergolic thruster plume impingement from proximity operations of visiting vehicles, materials outgassing, venting and dumping of fluids, ISS thruster operations, as well as specific electrical power system interactions with the ionospheric plasma (S-7). ISS must fly in a very limited number of approved flight attitudes leading to location specific environmental exposures and extreme local thermal environments (8). ISS is a large vehicle and produces a deep wake structure from which both ionospheric plasma and neutrals (atomic oxygen) are largely excluded (9-11). At high latitude, the ISS wake may produce a spacecraft charging environment similar to that experienced by the DMSP and Freja satellites (800 to 100 km altitude polar orbits), especially during geo-magnetic disturbances (12-14). ISS is also subject to magnetic induction voltages (VxB L) on conducting structure, a result of high velocity flight through Earth's magnetic field. The magnitude of the magnetic induction voltage varies with location on ISS, as well as the relative orientation of the vehicle velocity vector and planetary magnetic field vector, leading to maximum induction voltages at high latitude (15). The space environment factors, natural and induced, that have had the largest impact on pre-launch ISS flight hardware verification and flight operations during the first two years of ISS flight operations are listed below and grouped according to the physical and chemical processes driving their interaction with ISS materials.

  8. 40 CFR 763.88 - Assessment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Assessment. 763.88 Section 763.88 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools § 763.88 Assessment. (a)(1) For each inspection and reinspection...

  9. 40 CFR 763.88 - Assessment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Assessment. 763.88 Section 763.88 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools § 763.88 Assessment. (a)(1) For each inspection and reinspection...

  10. 40 CFR 763.88 - Assessment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Assessment. 763.88 Section 763.88 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools § 763.88 Assessment. (a)(1) For each inspection and reinspection...

  11. 40 CFR 763.88 - Assessment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Assessment. 763.88 Section 763.88 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools § 763.88 Assessment. (a)(1) For each inspection and reinspection...

  12. 40 CFR 763.88 - Assessment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Assessment. 763.88 Section 763.88 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools § 763.88 Assessment. (a)(1) For each inspection and reinspection...

  13. MISSE PEACE Polymers: An International Space Station Environmental Exposure Experiment Being Conducted

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Hammerstrom, Anne; Youngstrom, Erica; Kaminski, Carolyn; Marx, Laura; Fine, Elizabeth; Gummow, Jonathan D.; Wright, Douglas

    2002-01-01

    As part of the Materials International Space Station Experiment (MISSE), 41 different polymers are being exposed for approximately 1 1/2 years to the low-Earth-orbit (LEO) environment on the exterior of the International Space Station. MISSE is a materials flight experiment sponsored by the Air Force Research Lab/Materials Lab and NASA, and is the first external experiment on the space station. A similar set of 41 polymers will be flown as part of the Polymer Erosion and Contamination Experiment (PEACE) a shuttle flight experiment that is being developed at the NASA Glenn Research Center collaboratively with the Hathaway Brown School for girls. Therefore, these 41 polymers are collectively called the MISSE PEACE Polymers. The purpose of the MISSE PEACE Polymers experiment is to determine how durable polymers are in the LEO space environment where spacecraft, such as the space station, orbit. Polymers are commonly used as spacecraft materials because of their desirable properties such as good flexibility, low density, and certain electrical properties or optical properties (such as a low solar absorptance and high thermal emittance). Two examples of the use of polymers on the exterior of spacecraft exposed to the space environment include metalized Teflon FEP (fluorinated ethylene propylene, DuPont) thermal control materials on the Hubble Space Telescope, and polyimide Kapton (DuPont) solar array blankets.

  14. Vacuum ultraviolet radiation and thermal cycling effects on atomic oxygen protective photovoltaic array blanket materials

    NASA Technical Reports Server (NTRS)

    Brady, J.; Banks, B.

    1990-01-01

    The importance of synergistic environmental exposure is demonstrated through the evaluation of DuPont 93-1 in simulated LEO environment. Changes in optical properties, surface condition, and mass loss data are described. The qualitative results indicate the necessity for exposure of materials to a series of simulated LEO environments in order to properly determine synergistic effects and demonstrate the overall LEO durability of candidate materials. It is shown that synergistic effects may occur with vacuum thermal cycling combined with VUV radiation followed by atomic oxygen exposure. Testing the durability of candidate solar array blanket materials in a test sequence with necessary synergistic effects makes it possible to determine the appropriate material for providing structural support and maintaining the proper operating temperature for solar cells in the SSF Photovaltaic Power System.

  15. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading. Volume 2, Part 1; Appendices

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approximately 9 inches from the source) dominated by direct wave propagation, mid-field environment (approximately 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.

  16. Corrosion Mitigation and Materials Selection Guide for Military Construction in a Severely Corrosive Environment

    DTIC Science & Technology

    1988-07-01

    Skylights 33 OGS Section No. 07840: Ventilators, Roof: Gravity Type 33 SOGS Section No. 07951: Calking and Sealants 34 4 CONTENTS (Cont’d) Page 7 DOORS...shall be fully bonded to the primed surface. The finished surface shall be smooth, lustrous, and impervious to moisture. Dull or porous spots shall be...Type 1 21, Type I Gloss, TT-P-645 TT-E-1593 TT-E-1593 Sunlight Resistant SOGS Section No. 07810: Skylights Environment - Exposure Materials Selection

  17. Shields-1, A SmallSat Radiation Shielding Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Thomsen, D. Laurence, III; Kim, Wousik; Cutler, James W.

    2015-01-01

    The NASA Langley Research Center Shields CubeSat initiative is to develop a configurable platform that would allow lower cost access to Space for materials durability experiments, and to foster a pathway for both emerging and commercial-off-the-shelf (COTS) radiation shielding technologies to gain spaceflight heritage in a relevant environment. The Shields-1 will be Langleys' first CubeSat platform to carry out this mission. Radiation shielding tests on Shields-1 are planned for the expected severe radiation environment in a geotransfer orbit (GTO), where advertised commercial rideshare opportunities and CubeSat missions exist, such as Exploration Mission 1 (EM-1). To meet this objective, atomic number (Z) graded radiation shields (Zshields) have been developed. The Z-shield properties have been estimated, using the Space Environment Information System (SPENVIS) radiation shielding computational modeling, to have 30% increased shielding effectiveness of electrons, at half the thickness of a corresponding single layer of aluminum. The Shields-1 research payload will be made with the Z-graded radiation shields of varying thicknesses to create dose-depth curves to be compared with baseline materials. Additionally, Shields-1 demonstrates an engineered Z-grade radiation shielding vault protecting the systems' electronic boards. The radiation shielding materials' performances will be characterized using total ionizing dose sensors. Completion of these experiments is expected to raise the technology readiness levels (TRLs) of the tested atomic number (Z) graded materials. The most significant contribution of the Z-shields for the SmallSat community will be that it enables cost effective shielding for small satellite systems, with significant volume constraints, while increasing the operational lifetime of ionizing radiation sensitive components. These results are anticipated to increase the development of CubeSat hardware design for increased mission lifetimes, and enable out of low earth orbit (LEO) missions by using these tested material concepts as shielding for sensitive components and new spaceflight hardware

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, V.I.; Brown, F.A.; Hansen, N.R.

    Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil, rock, and ice penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact of 125 fps. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these moremore » sensitive electronics. In many cases, it has been found that the packaging techniques currently used not only do not mitigate the shock environment but actually amplify the shock environment. An ambitious goal for this packaging study is to avoid amplification and possibly attenuate the shock environment before it reaches the electronics contained in the various mechanical systems. As part of the investigation of packaging techniques, a two phase study of shock mitigating materials is being conducted. The purpose of the first phase reported here is to examine the performance of a joint that consists of shock mitigating material sandwiched in between steel and to compare the performance of the shock mitigating materials. A split Hopkinson bar experimental configuration simulates this joint and has been used to study the shock mitigating characteristics of seventeen, unconfined materials. The nominal input for these tests is an incident compressive wave with 50 fps peak (1,500 {micro}{var_epsilon} peak) amplitude and a 100 {micro}s duration (measured at 10% amplitude).« less

  19. A three dimensional dynamic study of electrostatic charging in materials

    NASA Technical Reports Server (NTRS)

    Katz, I.; Parks, D. E.; Mandell, M. J.; Harvey, J. M.; Brownell, D. H., Jr.; Wang, S. S.; Rotenberg, M.

    1977-01-01

    A description is given of the physical models employed in the NASCAP (NASA Charging Analyzer Program) code, and several test cases are presented. NASCAP dynamically simulates the charging of an object made of conducting segments which may be entirely or partially covered with thin dielectric films. The object may be subject to either ground test or space user-specified environments. The simulation alternately treats (1) the tendency of materials to accumulate and emit charge when subject to plasma environment, and (2) the consequent response of the charged particle environment to an object's electrostatic field. Parameterized formulations of the emission properties of materials subject to bombardment by electrons, protons, and sunlight are presented. Values of the parameters are suggested for clean aluminum, Al2O3, clean magnesium, MgO, SiO2 kapton, and teflon. A discussion of conductivity in thin dielectrics subject to radiation and high fields is given, together with a sample calculation.

  20. Selected Parametric Effects on Materials Flammability Limits

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.; Juarez, Alfredo; Peyton, Gary J.; Harper, Susana A.; Olson, Sandra L.

    2011-01-01

    NASA-STD-(I)-6001B Test 1 is currently used to evaluate the flammability of materials intended for use in habitable environments of U.S. spacecraft. The method is a pass/fail upward flame propagation test conducted in the worst case configuration, which is defined as a combination of a material s thickness, test pressure, oxygen concentration, and temperature that make the material most flammable. Although simple parametric effects may be intuitive (such as increasing oxygen concentrations resulting in increased flammability), combinations of multi-parameter effects could be more complex. In addition, there are a variety of material configurations used in spacecraft. Such configurations could include, for example, exposed free edges where fire propagation may be different when compared to configurations commonly employed in standard testing. Studies involving combined oxygen concentration, pressure, and temperature on flammability limits have been conducted and are summarized in this paper. Additional effects on flammability limits of a material s thickness, mode of ignition, burn-length criteria, and exposed edges are presented. The information obtained will allow proper selection of ground flammability test conditions, support further studies comparing flammability in 1-g with microgravity and reduced gravity environments, and contribute to persuasive scientific cases for rigorous space system fire risk assessments.

  1. Tulane/Xavier University Hazardous Materials in Aquatic Environments of the Mississippi River Basin. Quarterly progress report, January 1, 1995--March 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-05-01

    This progress report covers activities for the period January 1 - March 31, 1995 on project concerning `Hazardous Materials in Aquatic Environments of the Mississippi River Basin.` The following activities are each summarized by bullets denoting significant experiments/findings: biotic and abiotic studies on the biological fate, transport and ecotoxicity of toxic and hazardous waste in the Mississippi River Basin; assessment of mechanisms of metal-induced reproductive toxicity in quatic species as a biomarker of exposure; hazardous wastes in aquatic environments: biological uptake and metabolism studies; ecological sentinels of aquatic contamination in the lower Mississippi River system; bioremediation of selected contaminants inmore » aquatic environments of the Mississippi River Basin; a sensitive rapid on-sit immunoassay for heavy metal contamination; pore-level flow, transport, agglomeration and reaction kinetics of microorganism; biomarkers of exposure and ecotoxicity in the Mississippi River Basin; natural and active chemical remediation of toxic metals, organics and radionuclides in the aquatic environment; expert geographical information systems for assessing hazardous wastes in aquatic environments; enhancement of environmental education; and a number of just initiated projects including fate and transport of contaminants in aquatic environments; photocatalytic remediation; radionuclide fate and modeling from Chernobyl.« less

  2. Energy-Environment Source Book. Volume 1: Energy, Society, and the Environment. Volume 2: Energy, Its Extraction, Conversion and Use.

    ERIC Educational Resources Information Center

    Fowler, John W.

    This source book, one part of a three-part NSTA series on energy-environment, is written for teachers who wish to incorporate material on the complex subject of energy into their teaching. This work is divided into two volumes, each with numerous tables and figures, along with appendices containing a glossary, mathematics primer, heat engine…

  3. A laboratory and field study of composite piles for bridge substructures

    DOT National Transportation Integrated Search

    2006-03-01

    The most commonly used pile materials are steel, concrete, and wood. These materials can degrade, and the degradation rate can be relatively rapid in harsh marine environments. It has been estimated that the U.S. spends over $1 billion annually for r...

  4. Combination of thermal and electric properties' measurement techniques in a single setup suitable for radioactive materials in controlled environments and based on the 3ω approach

    NASA Astrophysics Data System (ADS)

    Shrestha, K.; Gofryk, K.

    2018-04-01

    We have designed and developed a new experimental setup, based on the 3ω method, to measure thermal conductivity, heat capacity, and electrical resistivity of a variety of samples in a broad temperature range (2-550 K) and under magnetic fields up to 9 T. The validity of this method is tested by measuring various types of metallic (copper, platinum, and constantan) and insulating (SiO2) materials, which have a wide range of thermal conductivity values (1-400 W m-1 K-1). We have successfully employed this technique for measuring the thermal conductivity of two actinide single crystals: uranium dioxide and uranium nitride. This new experimental approach for studying nuclear materials will help us to advance reactor fuel development and understanding. We have also shown that this experimental setup can be adapted to the Physical Property Measurement System (Quantum Design) environment and/or other cryocooler systems.

  5. Biodegradability of Plastics: Challenges and Misconceptions.

    PubMed

    Kubowicz, Stephan; Booth, Andy M

    2017-11-07

    Plastics are one of the most widely used materials and, in most cases, they are designed to have long life times. Thus, plastics contain a complex blend of stabilizers that prevent them from degrading too quickly. Unfortunately, many of the most advantageous properties of plastics such as their chemical, physical and biological inertness and durability present challenges when plastic is released into the environment. Common plastics such as polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) are extremely persistent in the environment, where they undergo very slow fragmentation (projected to take centuries) into small particles through photo-, physical, and biological degradation processes 1 . The fragmentation of the material into increasingly smaller pieces is an unavoidable stage of the degradation process. Ultimately, plastic materials degrade to micron-sized particles (microplastics), which are persistent in the environment and present a potential source of harm for organisms.

  6. Proceedings of the Spacecraft Charging Technology Conference

    NASA Technical Reports Server (NTRS)

    Pike, C. P. (Editor); Lovell, R. R. (Editor)

    1977-01-01

    Over 50 papers from the spacecraft charging conference are included on subjects such as: (1) geosynchronous plasma environment, (2) spacecraft modeling, (3) spacecraft materials characterization, (4) spacecraft materials development, and (5) satellite design and test.

  7. Longitudinal study on the sources of Listeria monocytogenes contamination in cold-smoked salmon and its processing environment in Italy.

    PubMed

    Di Ciccio, Pierluigi; Meloni, Domenico; Festino, Anna Rita; Conter, Mauro; Zanardi, Emanuela; Ghidini, Sergio; Vergara, Alberto; Mazzette, Rina; Ianieri, Adriana

    2012-08-01

    The aim of the present study was to investigate the sources of Listeria monocytogenes contamination in a cold smoked salmon processing environment over a period of six years (2003-2008). A total of 170 samples of raw material, semi-processed, final product and processing surfaces at different production stages were tested for the presence of L. monocytogenes. The L. monocytogenes isolates were characterized by multiplex PCR for the analysis of virulence factors and for serogrouping. The routes of contamination over the six year period were traced by PFGE. L. monocytogenes was isolated from 24% of the raw salmon samples, 14% of the semi-processed products and 12% of the final products. Among the environmental samples, 16% were positive for L. monocytogenes. Serotyping yielded three serovars: 1/2a, 1/2b, 4b, with the majority belonging to serovars 1/2a (46%) and 1/2b (39%). PFGE yielded 14 profiles: two of them were repeatedly isolated in 2005-2006 and in 2007-2008 mainly from the processing environment and final products but also from raw materials. The results of this longitudinal study highlighted that contamination of smoked salmon occurs mainly during processing rather than originating from raw materials, even if raw fish can be a contamination source of the working environment. Molecular subtyping is critical for the identification of the contamination routes of L. monocytogenes and its niches into the production plant when control strategies must be implemented with the aim to reduce its prevalence during manufacturing. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Thermal conductivity of aerogel blanket insulation under cryogenic-vacuum conditions in different gas environments

    NASA Astrophysics Data System (ADS)

    E Fesmire, J.; Ancipink, J. B.; Swanger, A. M.; White, S.; Yarbrough, D.

    2017-12-01

    Thermal conductivity of low-density materials in thermal insulation systems varies dramatically with the environment: cold vacuum pressure, residual gas composition, and boundary temperatures. Using a reference material of aerogel composite blanket (reinforcement fibers surrounded by silica aerogel), an experimental basis for the physical heat transmission model of aerogel composites and other low-density, porous materials is suggested. Cryogenic-vacuum testing between the boundary temperatures of 78 K and 293 K is performed using a one meter cylindrical, absolute heat flow calorimeter with an aerogel blanket specimen exposed to different gas environments of nitrogen, helium, argon, or CO2. Cold vacuum pressures include the full range from 1×10-5 torr to 760 torr. The soft vacuum region, from about 0.1 torr to 10 torr, is complex and difficult to model because all modes of heat transfer - solid conduction, radiation, gas conduction, and convection - are significant contributors to the total heat flow. Therefore, the soft vacuum tests are emphasized for both heat transfer analysis and practical thermal data. Results for the aerogel composite blanket are analyzed and compared to data for its component materials. With the new thermal conductivity data, future applications of aerogel-based insulation systems are also surveyed. These include Mars exploration and surface systems in the 5 torr CO2 environment, field joints for vacuum-jacketed cryogenic piping systems, common bulkhead panels for cryogenic tanks on space launch vehicles, and liquid hydrogen cryofuel systems with helium purged conduits or enclosures.

  9. Towards Cluster-Assembled Materials of True Monodispersity in Size and Chemical Environment: Synthesis, Dynamics and Activity

    DTIC Science & Technology

    2016-10-27

    AFRL-AFOSR-UK-TR-2016-0037 Towards cluster-assembled materials of true monodispersity in size and chemical environment: Synthesis, Dynamics and...Towards cluster-assembled materials of true monodispersity in size and chemical environment: synthesis, dynamics and activity 5a.  CONTRACT NUMBER 5b...report Towards cluster-assembled materials of true monodispersity in size and chemical environment: Synthesis, Dynamics and Activity Ulrich Heiz

  10. Evaluation of insulation materials and composites for use in a nuclear radiation environment, phase 1

    NASA Technical Reports Server (NTRS)

    Greenhow, W. A.; Lewis, J. H.

    1972-01-01

    This study has been carried out to evaluate flight-qualified Saturn 5 materials, components, and systems for use, with or without modification, in the radiation environment of the nuclear flight system. The results reported herein are primarily intended to aid designers in their evaluation and selection of off-the-shelf equipments which may meet the stringent requirements and specifications associated with application on a reusable nuclear powered space system, i.e., the reusable nuclear shuttle. One of the factors which must be evaluated in the design of the RNS is the effects of radiation on materials; and it is toward this aspect of the overall effort that this analysis has been directed.

  11. COMPLEX CONDITIONAL CONTROL BY PIGEONS IN A CONTINUOUS VIRTUAL ENVIRONMENT

    PubMed Central

    Qadri, Muhammad A. J.; Reid, Sean; Cook, Robert G.

    2016-01-01

    We tested two pigeons in a continuously streaming digital environment. Using animation software that constantly presented a dynamic, three-dimensional (3D) environment, the animals were tested with a conditional object identification task. The correct object at a given time depended on the virtual context currently streaming in front of the pigeon. Pigeons were required to accurately peck correct target objects in the environment for food reward, while suppressing any pecks to intermixed distractor objects which delayed the next object’s presentation. Experiment 1 established that the pigeons’ discrimination of two objects could be controlled by the surface material of the digital terrain. Experiment 2 established that the pigeons’ discrimination of four objects could be conjunctively controlled by both the surface material and topography of the streaming environment. These experiments indicate that pigeons can simultaneously process and use at least two context cues from a streaming environment to control their identification behavior of passing objects. These results add to the promise of testing interactive digital environments with animals to advance our understanding of cognition and behavior. PMID:26781058

  12. Standards on the permanence of recording materials

    NASA Astrophysics Data System (ADS)

    Adelstein, Peter Z.

    1996-02-01

    The permanence of recording materials is dependent upon many factors, and these differ for photographic materials, magnetic tape and optical disks. Photographic permanence is affected by the (1) stability of the material, (2) the photographic processing and (3) the storage conditions. American National Standards on the material and the processing have been published for different types of film and standard test methods have been established for color film. The third feature of photographic permanence is the storage requirements and these have been established for photographic film, prints and plates. Standardization on the permanence of electronic recording materials is more complicated. As with photographic materials, stability is dependent upon (1) the material itself and (2) the storage environment. In addition, retention of the necessary (3) hardware and (4) software is also a prerequisite. American National Standards activity in these areas has been underway for the past six years. A test method for the material which determines the life expectancy of CD-ROMs has been standardized. The problems of determining the expected life of magnetic tape have been more formidable but the critical physical properties have been determined. A specification for the storage environment of magnetic tape has been finalized and one on the storage of optical disks is being worked on. Critical but unsolved problems are the obsolescence of both the hardware and the software necessary to read digital images.

  13. Standards on the permanence of recording materials

    NASA Astrophysics Data System (ADS)

    Adelstein, Peter Z.

    1996-01-01

    The permanence of recording materials is dependent upon many factors, and these differ for photographic materials, magnetic tape and optical disks. Photographic permanence is affected by the (1) stability of the material, (2) the photographic processing, and (3) the storage conditions. American National Standards on the material and the processing have been published for different types of film and standard test methods have been established for color film. The third feature of photographic permanence is the storage requirements and these have been established for photographic film, prints, and plates. Standardization on the permanence of electronic recording materials is more complicated. As with photographic materials, stability is dependent upon (1) the material itself and (2) the storage environment. In addition, retention of the necessary (3) hardware and (4) software is also a prerequisite. American National Standards activity in these areas has been underway for the past six years. A test method for the material which determines the life expectancy of CD-ROMs has been standardized. The problems of determining the expected life of magnetic tape have been more formidable but the critical physical properties have been determined. A specification for the storage environment of magnetic tapes has been finalized and one on the storage of optical disks is being worked on. Critical but unsolved problems are the obsolescence of both the hardware and the software necessary to read digital images.

  14. Techniques used for limiting degradation products of polymeric materials for use in the space environment

    NASA Technical Reports Server (NTRS)

    Vest, C. E.; Park, J. J.

    1978-01-01

    Techniques are discussed for limiting or controlling the degradation products (outgassing) of polymeric materials in the space environment. One technique, now ASTM E-595-77, is used to screen out those materials which lose greater than 1% Total Mass Loss when in vacuum for 24 hours at 125 C and which have more than 0.10% Collected Volatile Condensable Materials condensing on a collector surface at 25 C. Examples of silicone materials which are high and low in outgassing are given. The numerous mechanical motions in spacecraft experiments require liquid lubricants which also might degrade in space. Labyrinth seals and barrier films are utilized to limit the degradation of or from these lubricants. A recoverable in-flight experiment has been proposed for making definitive measurements of how effective these techniques are in limiting the amounts and escape paths of outgassed molecules.

  15. Investigation of microgravity effects on solidification phenomena of selected materials

    NASA Technical Reports Server (NTRS)

    Maag, Carl R.; Hansen, Patricia A.

    1992-01-01

    A Get Away Special (GAS) experiment payload to investigate microgravity effects on solidification phenomena of selected experimental samples has been designed for flight. It is intended that the first flight of the assembly will (1) study the p-n junction characteristics for advancing semiconductor device applications, (2) study the effects of gravity-driven convection on the growth of HgCd crystals, (3) compare the textures of the sample which crystallizes in microgravity with those found in chondrite meteorites, and (4) modify glass optical characteristics through divalent oxygen exchange. The space flight experiment consists of many small furnaces. While the experiment payload is in the low gravity environment of orbital flight, the payload controller will sequentially activate the furnaces to heat samples to their melt state and then allow cooling to resolidification in a controlled fashion. The materials processed in the microgravity environment of space will be compared to the same materials processed on earth in a one-gravity environment. This paper discusses the design of all subassemblies (furnance, electronics, and power systems) in the experiment. A complete description of the experimental materials is also presented.

  16. 10 CFR 33.17 - Conditions of specific licenses of broad scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... shall not: (1) Conduct tracer studies in the environment involving direct release of byproduct material... required; or (4) Add or cause the addition of byproduct material to any food, beverage, cosmetic, drug, or...

  17. Identification of Flaws Responsible for Crack Initiation and Micromechanisms of Slow Crack Growth in the Delayed Fracture of Alumina.

    DTIC Science & Technology

    1982-02-01

    ntsitycrOtained Alumina in 50 % Relative Humidity . 123 (1) the material constants under a certain environment, A, B, and n in eq. (2-14) and eq. (2-15), evalu... Fatigue Crack Growth," Int. Jour. Fract., 17 (1981) 235-247. 3. S.M. Wiederhorn, " Effects of Environment on the Fracture of Glass," Environment-Sensitive...Distribution of Alumina 4 1 34 2-11 Schematic Drawing of Variation in Effective Critical Stress Intensity Factor, KC ff with Crack Length Relative to Grain

  18. Investigations of the local environment and macroscopic alignment behavior of novel polymerizeable lyotropic liquid crystals using nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Juang, Elizabeth

    In this dissertation, a variety of NMR techniques were used to explore the local environment of novel polymerizeable lyotropic liquid crystals (LLC). The LLC monomers examined in this study self-assemble in the presence of a small amount of water to form uniform, nanometer-scale tubes with aqueous interiors. The phase architecture is retained upon photopolymerization to yield the resulting nanoporous material. By dissolving reactive precursors into the aqueous phase, well- structured nancomposite materials have also been formed. Proposed uses for these novel polymerizeable LLCs are as porous water filtration membranes, as heterogeneous organic catalysts, and as nanocomposite materials for load bearing and optical applications. In order to better exploit these polymerizeable LLCs for materials development, the local environment must be examined. In addition, the macroscopic orientation of these materials remains an important step in their advancement. Various NMR studies were conducted on these novel LLCs. NMR T1 relaxation measurements were conducted to elucidate the local environment and dynamics of the 23Na counterions located inside the aqueous channels. 2H NMR line shape analyses were used to characterize the local structure and dynamics near the hydrophilic headgroup. 29 Si NMR studies were performed on silica nanocomposites formed with these LLC structures. Finally, the macroscopic alignment behavior of these novel LLCs using shear and magnetic fields was examined.

  19. Design and "As Flown" Radiation Environments for Materials in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Minow, Joseph; McWilliams, Brett; Altstatt, Richard; Koontz, Steven

    2006-01-01

    A conservative design approach was adopted by the International Space Station Program for specifying total ionizing radiation dose requirements for use in selecting and qualifying materials for construction of the International Space Station. The total ionizing dose design environment included in SSP 30512 Space Station Ionizing Radiation Design Environment is based on trapped proton and electron fluence derived from the solar maximum versions of the AE-8 and AP-8 models, respectively, specified for a circular orbit at 500 km altitude and 51.7 degree inclination. Since launch, the range of altitudes utilized for Space Station operations vary from a minimum of approximately 330 km to a maximum of approximately 405 km with a mean operational altitude less than 400 km. The design environment, therefore, overestimates the radiation environment because the particle flux in the South Atlantic Anomaly is the primary contributor to radiation dose in low Earth orbit and flux within the Anomaly is altitude dependent. In addition, a 2X multiplier is often applied to the design environment to cover effects from the contributions of galactic cosmic rays, solar energetic particle events, geomagnetic storms, and uncertainties in the trapped radiation models which are not explicitly included in the design environment. Application of this environment may give radiation dose overestimates on the order of 1OX to 30X for materials exposed to the space environment, suggesting that materials originally qualified for ten year exposures on orbit may be used for longer periods without replacement. In this paper we evaluate the "as flown" radiation environments derived from historical records of the ISS flight trajectory since launch and compare the results with the SSP 30512 design environment to document the magnitude of the radiation dose overestimate provided by the design environment. "As flown" environments are obtained from application of the AE-8/AP-8 trapped particle models along the ISS flight trajectory including variations in altitude due to decay of the vehicle orbit and periodic reboosts to higher altitudes. In addition, an estimate of the AE-8 model to predict low Earth orbit electron flux (because the radiation dose for thin materials is dominated by the electron component of the radiation environment) is presented based on comparisons of the AE-8 model to measurements of electron integral flux at approximately 850 km from the Medium Energy Proton and Electron Detector on board the NOAA Polar Operational Environmental Satellite.

  20. Compact ultrahigh vacuum sample environments for x-ray nanobeam diffraction and imaging.

    PubMed

    Evans, P G; Chahine, G; Grifone, R; Jacques, V L R; Spalenka, J W; Schülli, T U

    2013-11-01

    X-ray nanobeams present the opportunity to obtain structural insight in materials with small volumes or nanoscale heterogeneity. The effective spatial resolution of the information derived from nanobeam techniques depends on the stability and precision with which the relative position of the x-ray optics and sample can be controlled. Nanobeam techniques include diffraction, imaging, and coherent scattering, with applications throughout materials science and condensed matter physics. Sample positioning is a significant mechanical challenge for x-ray instrumentation providing vacuum or controlled gas environments at elevated temperatures. Such environments often have masses that are too large for nanopositioners capable of the required positional accuracy of the order of a small fraction of the x-ray spot size. Similarly, the need to place x-ray optics as close as 1 cm to the sample places a constraint on the overall size of the sample environment. We illustrate a solution to the mechanical challenge in which compact ion-pumped ultrahigh vacuum chambers with masses of 1-2 kg are integrated with nanopositioners. The overall size of the environment is sufficiently small to allow their use with zone-plate focusing optics. We describe the design of sample environments for elevated-temperature nanobeam diffraction experiments demonstrate in situ diffraction, reflectivity, and scanning nanobeam imaging of the ripening of Au crystallites on Si substrates.

  1. Compact ultrahigh vacuum sample environments for x-ray nanobeam diffraction and imaging

    NASA Astrophysics Data System (ADS)

    Evans, P. G.; Chahine, G.; Grifone, R.; Jacques, V. L. R.; Spalenka, J. W.; Schülli, T. U.

    2013-11-01

    X-ray nanobeams present the opportunity to obtain structural insight in materials with small volumes or nanoscale heterogeneity. The effective spatial resolution of the information derived from nanobeam techniques depends on the stability and precision with which the relative position of the x-ray optics and sample can be controlled. Nanobeam techniques include diffraction, imaging, and coherent scattering, with applications throughout materials science and condensed matter physics. Sample positioning is a significant mechanical challenge for x-ray instrumentation providing vacuum or controlled gas environments at elevated temperatures. Such environments often have masses that are too large for nanopositioners capable of the required positional accuracy of the order of a small fraction of the x-ray spot size. Similarly, the need to place x-ray optics as close as 1 cm to the sample places a constraint on the overall size of the sample environment. We illustrate a solution to the mechanical challenge in which compact ion-pumped ultrahigh vacuum chambers with masses of 1-2 kg are integrated with nanopositioners. The overall size of the environment is sufficiently small to allow their use with zone-plate focusing optics. We describe the design of sample environments for elevated-temperature nanobeam diffraction experiments demonstrate in situ diffraction, reflectivity, and scanning nanobeam imaging of the ripening of Au crystallites on Si substrates.

  2. An analysis of the development and application of plant protection UAV based on advanced materials

    NASA Astrophysics Data System (ADS)

    Huang, Yuan-hui; Wei, Neng; Quan, Zhi-cheng; Huang, Yu-rong

    2018-06-01

    The development and application of a number of advanced materials plant protection unmanned aerial vehicle (UAV) is an important part of the comprehensive production of agricultural modernization. The paper is taken as an example of Guangxi No. 1 agricultural service aviation science and Technology Co., Ltd. This paper introduces the internal and external environment of the research and development of the plant protection UAV for the advanced materials of the company. The external environment focuses on the role of the plant protection UAV on the development of the agricultural mechanization; the internal environment focuses on the advantages of the UAV in technology research, market promotion and application, which is imperative. Finally, according to the background of the whole industry, we put forward some suggestions for the developing opportunities and challenges faced by plant protection UAV, hoping to proving some ideas for operators, experts and scholars engaged in agricultural industry.

  3. The contribution of woody plant materials on the several conditions in a space environment

    NASA Astrophysics Data System (ADS)

    Tomita-Yokotani, Kaori; Baba, Keiichi; Suzuki, Toshisada; Kimura, Shunta; Sato, Seigo; Katoh, Hiroshi; Abe, Yusuke; Katayama, Takeshi

    Woody plant materials have several utilization elements in our habitation environment on earth. The studies of woody plants under a space-environment in the vegetable kingdom have a high contribution to the study of various and exotic environmental responses, too. Woody plants can produce an excess oxygen, woody materials for the living cabin, and provide a biomass by cultivating crops and other species of creatures. Tree material would become to be a tool in closed bio-ecosystems such as an environment in a space. We named the trees used as material for the experiment related to space environments “CosmoBon”, small tree bonsai. Japanese cherry tree, “Sakura”, is famous and lovely tree in Japan. One species of “Sakura”, “Mamezakura, Prunus incisa”, is not only lovely tree species, but also suitable tree for the model tree of our purpose. The species of Prunus incisa is originally grown in volcano environment. That species of Sakura is originally grown on Mt. Fuji aria, oligotrophic place. We will try to build the best utilization usage of woody plant under the space environment by “Mamezakura” as a model tree. Here, we will show the importance of uniformity of materials when we will use the tree materials in a space environment. We will also discuss that tree has a high possibility of utilization under the space environments by using our several results related to this research.

  4. Successful model of suicide prevention in the Ukraine military environment.

    PubMed

    Rozanov, Vsevolod A; Mokhovikov, Alexander N; Stiliha, Richard

    2002-01-01

    The article deals with the problem of suicidal behavior in the Ukraine military environment and gives an example of the successful prevention approach. The model of prevention is based on (1) education of the responsible officers, (2) training of the representatives of the most vulnerable risk groups, and (3) follow-up procedures based on distribution of pocket books for soldiers, educational booklets, and sets of helpful materials for officers. One of the main conclusions is that the prevention activity must be organized as a continuum of actions, seminars, consultations, and materials distribution.

  5. 40 CFR 220.1 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING GENERAL § 220.1 Purpose... material for the purpose of dumping it in ocean waters pursuant to section 103 of the Act. Except as may be... shall transport from the United States any material for the purpose of dumping it into ocean waters; (2...

  6. 40 CFR 220.1 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING GENERAL § 220.1 Purpose... material for the purpose of dumping it in ocean waters pursuant to section 103 of the Act. Except as may be... shall transport from the United States any material for the purpose of dumping it into ocean waters; (2...

  7. 40 CFR 220.1 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING GENERAL § 220.1 Purpose... material for the purpose of dumping it in ocean waters pursuant to section 103 of the Act. Except as may be... shall transport from the United States any material for the purpose of dumping it into ocean waters; (2...

  8. Moldy buildings, health of their occupants and fungal prevention.

    PubMed

    Mihinova, D; Pieckova, E

    2012-01-01

    Microscopic fungi are important biological pollutants in the indoor environment, they are spread generally: on building materials, carpets, ceiling tiles, insulations, any surfaces, wallpapers, or in heating, ventilation, and air conditioning systems. Molds are able to grow on any materials, as long as moisture and oxygen are available. Exposure to fungi in indoor environments (esp. in water-damaged buildings) can cause adverse health effects, such as allergy, asthma, hypersensitivity pneumonia, mucous membrane irritation, different toxic effects, or even mycoses (in immunocompromised individuals) - alone or in combination. As serious adverse health effects could be caused antifungal prevention is an absolute need.This review article summarizes the occurrence of fungi in the indoor environment of buildings and their contribution to occupants´ health problems, and preventive measures against molds (Tab. 1, Fig. 1, Ref. 48).

  9. Citizen Participation for Urban Management. Modules 1-3. Instructor's Manual.

    ERIC Educational Resources Information Center

    Benson, Jonathon L.; And Others

    This manual was written to accompany workshop curricular materials concerning the design and implementation of alternate forms of citizen participation mechanisms. The materials were prepared for use with management-level and pre-service personnel involved in urban management within a political environment. Three curricular modules are presented…

  10. VZLUSAT-1: verification of new materials and technologies for space

    NASA Astrophysics Data System (ADS)

    Daniel, Vladimir; Urban, Martin; Nentvich, Ondrej; Stehlikova, Veronika

    2016-09-01

    CubeSats are a good opportunity to test new technologies and materials on orbit. These innovations can be later used for improving of properties and life length of Cubesat or other satellites as well. VZLUSAT-1 is a small satellite from the CubeSat family, which will carry a wide scale of payloads with different purposes. The poster is focused on measuring of degradation and properties measurement of new radiation hardened composite material in orbit due to space environment. Material properties changes can be studied by many methods and in many disciplines. One payload measures mechanical changes in dependence on Young's modulus of elasticity which is got from non-destructive testing by mechanical vibrations. The natural frequencies we get using Fast Fourier Transform. The material is tested also by several thermometers which measure heat distribution through the composite, as well as reflectivity in dependence on different coatings. The satellite also will measure the material radiation shielding properties. There are PIN diodes which measure the relative shielding efficiency of composite and how it will change in time in space environment. Last one of material space testing is measurement of outgassing from tested composite material. It could be very dangerous for other parts of satellite, like detectors, when anything was outgassing, for example water steam. There are several humidity sensors which are sensitive to steam and other gases and measures temperatures as well.

  11. 40 CFR 11.4 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Definitions. 11.4 Section 11.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL SECURITY CLASSIFICATION REGULATIONS.... Confidential refers to that national security information or material which requires protection. The test for...

  12. Materials selection for long life in LEO: A critical evaluation of atomic oxygen testing with thermal atom systems

    NASA Technical Reports Server (NTRS)

    Koontz, S. L.; Kuminecz, J.; Leger, L.; Nordine, P.

    1988-01-01

    The use of thermal atom test methods as a materials selection and screening technique for low-Earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined to be in thermal atom environments are compared to those observed in LEO and in high quality LEO simulations. Reaction efficiencies measured in a new type of thermal atom apparatus are one-hundredth to one-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of 8 in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain specific thermal test environments can be used as reliable materials screening tools. Using thermal atom methods to predict material lifetime in LEO requires direct calibration of the method against LEO data or high quality simulation data for each material.

  13. Overview of Heatshield for Extreme Entry Environment Technology (HEEET)

    NASA Technical Reports Server (NTRS)

    Driver, David M.; Ellerby, Donald T.; Gasch, Matthew J.; Mahzari, Milad; Milos, Frank S.; Nishioka, Owen S.; Stackpoole, Margaret M.; Venkatapathy, Ethiraj; Young, Zion W.; Gage, Peter J.; hide

    2018-01-01

    The Heatshield for Extreme Entry Environment Technology (HEEET) projects objective is to mature a 3-D Woven Thermal Protection System (TPS) to Technical Readiness Level (TRL) 6 to support future NASA missions to destinations such as Venus and Saturn. The scope of the project, status of which will be discussed, encompasses development of manufacturing and integration processes, fabrication of a prototype 1m diameter engineering test unit (ETU) that will undergo a series of structural tests, characterizing material aerothermal performance including development of a material response model, and structural testing and analysis to develop tools to support design and establish system capability.

  14. Effect of the space environment on materials flown on the EURECA/TICCE-HVI experiment

    NASA Technical Reports Server (NTRS)

    Maag, Carl R.; Stevenson, Tim J.; Tanner, William G.; Borg, Janet

    1995-01-01

    The primary benefit of accurately quantifying and characterizing the space environmental effects on materials is longer instrument and spacecraft life. Knowledge of the limits of materials allows the designer to optimize the spacecraft design so that the required life is achieved. Materials such as radiator coatings that have excellent durability result in the design of smaller radiators than a radiator coated with a lower durability coating. This may reduce the weight of the spacecraft due to a more optimum design. Another benefit of characterizing materials is the quantification of outgassing properties. Spacecraft which have ultraviolet or visible sensor payloads are susceptible to contamination by outgassed volatile materials. Materials with known outgassing characteristics can be restricted in these spacecraft. Finally, good data on material characteristics improves the ability of analytical models to predict material performance. A flight experiment was conducted on the European Space Agency's European Retrievable Carrier (EuReCa) as part of the Timeband Capture Cell Experiment (TICCE). Our main objective was to gather additional data on the dust and debris environments, with the focus on understanding growth as a function of size (mass) for hypervelocity particles 1E-06 cm and larger. In addition to enumerating particle impacts, hypervelocity particles were to be captured and returned intact. Measurements were performed post-flight to determine the flux density, diameters, and subsequent effects on various optical, thermal control and structural materials. In addition to these principal measurements, the experiment also provided a structure and sample holders for the exposure of passive material samples to the space environment, e.g., the effects of thermal cycling, atomic oxygen, etc. Preliminary results are presented, including the techniques used for intact capture of particles.

  15. Effect of the space environment on materials flown on the EURECA/TICCE-HVI experiment

    NASA Astrophysics Data System (ADS)

    Maag, Carl R.; Stevenson, Tim J.; Tanner, William G.; Borg, Janet

    1995-02-01

    The primary benefit of accurately quantifying and characterizing the space environmental effects on materials is longer instrument and spacecraft life. Knowledge of the limits of materials allows the designer to optimize the spacecraft design so that the required life is achieved. Materials such as radiator coatings that have excellent durability result in the design of smaller radiators than a radiator coated with a lower durability coating. This may reduce the weight of the spacecraft due to a more optimum design. Another benefit of characterizing materials is the quantification of outgassing properties. Spacecraft which have ultraviolet or visible sensor payloads are susceptible to contamination by outgassed volatile materials. Materials with known outgassing characteristics can be restricted in these spacecraft. Finally, good data on material characteristics improves the ability of analytical models to predict material performance. A flight experiment was conducted on the European Space Agency's European Retrievable Carrier (EuReCa) as part of the Timeband Capture Cell Experiment (TICCE). Our main objective was to gather additional data on the dust and debris environments, with the focus on understanding growth as a function of size (mass) for hypervelocity particles 1E-06 cm and larger. In addition to enumerating particle impacts, hypervelocity particles were to be captured and returned intact. Measurements were performed post-flight to determine the flux density, diameters, and subsequent effects on various optical, thermal control and structural materials. In addition to these principal measurements, the experiment also provided a structure and sample holders for the exposure of passive material samples to the space environment, e.g., the effects of thermal cycling, atomic oxygen, etc. Preliminary results are presented, including the techniques used for intact capture of particles.

  16. Workshop on Aerospace Materials for Extreme Environments

    DTIC Science & Technology

    2009-12-01

    Materials for Titanium Alloys Machining Ukraine Volodymyr Filipov Influence of Lattice Parameter Mismatch between Fibers and Matrix on Structure and...on your own 1:00 pm Alina Ievdokymova ZrBi2-Based Tool Materials for Titanium Alloys Machining 1:30 pm Donna Ballard and Don Weaver Processing of...C.K. Gren, T.P. Hanusa, "Deposition of Alumina From Dimethylaluminum Isopropoxide " Ken Sandhage D. Lipke, Y. Zhang, Y. Liu, B. Church, and K

  17. Effects of High-Density Impacts on Shielding Capability

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Lear, Dana M.

    2014-01-01

    Spacecraft are shielded from micrometeoroids and orbital debris (MMOD) impacts to meet requirements for crew safety and/or mission success. In the past, orbital debris particles have been considered to be composed entirely of aluminum (medium-density material) for the purposes of MMOD shielding design and verification. Meteoroids have been considered to be low-density porous materials, with an average density of 1 g/cu cm. Recently, NASA released a new orbital debris environment model, referred to as ORDEM 3.0, that indicates orbital debris contains a substantial fraction of high-density material for which steel is used in MMOD risk assessments [Ref.1]. Similarly, an update to the meteoroid environment model is also under consideration to include a high-density component of that environment. This paper provides results of hypervelocity impact tests and hydrocode simulations on typical spacecraft MMOD shields using steel projectiles. It was found that previous ballistic limit equations (BLEs) that define the protection capability of the MMOD shields did not predict the results from the steel impact tests and hydrocode simulations (typically, the predictions from these equations were too optimistic). The ballistic limit equations required updates to more accurately represent shield protection capability from the range of densities in the orbital debris environment. Ballistic limit equations were derived from the results of the work and are provided in the paper.

  18. New World Vistas: Air and Space Power for the 21st Century, Materials Volume.

    DTIC Science & Technology

    1996-06-01

    derivatives from niche (non-silicon) materials: IR sensors, radars, lasers, and high - temperature , adverse-environment electronics. Investment in these...Develop metastable interstitial composites to create extremely high temperatures for destroying chemical biological warfare agents. " Explosives: 1...synthesize of high temperature materials that will be tailored for specific applications/ components. These materials will tend to have microstructures on

  19. Trajectories of the home learning environment across the first 5 years: associations with children's vocabulary and literacy skills at prekindergarten.

    PubMed

    Rodriguez, Eileen T; Tamis-LeMonda, Catherine S

    2011-01-01

    Children's home learning environments were examined in a low-income sample of 1,852 children and families when children were 15, 25, 37, and 63 months. During home visits, children's participation in literacy activities, the quality of mothers' engagements with their children, and the availability of learning materials were assessed, yielding a total learning environment score at each age. At 63 months, children's vocabulary and literacy skills were assessed. Six learning environment trajectories were identified, including environments that were consistently low, environments that were consistently high, and environments characterized by varying patterns of change. The skills of children at the extremes of learning environment trajectories differed by more than 1 SD and the timing of learning experiences related to specific emerging skills. © 2011 The Authors. Child Development © 2011 Society for Research in Child Development, Inc.

  20. Energy & Man's Environment Impact Study. Summary of Results.

    ERIC Educational Resources Information Center

    Horsfall, J. Stuart

    An evaluation was conducted on the effectiveness of Energy and Man's Environment (EME), a nonprofit energy organization which conducts energy programs in 15 states around the United States. Three research questions were addressed: (1) Who is the consumer of EME workshops and the user of EME materials? (2) How do participants view EME workshops.…

  1. A Summary of the Quasi-Steady Acceleration Environment on-Board STS-94 (MSL-1)

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin M.; Nati, Maurizio; Touboul, Pierre; Schuette, Andreas; Sablon, Gert

    1999-01-01

    The continuous free-fall state of a low Earth orbit experienced by NASA's Orbiters results in a unique reduced gravity environment. While microgravity science experiments are conducted in this reduced gravity environment, various accelerometer systems measure and record the microgravity acceleration environment for real-time and post-flight correlation with microgravity science data. This overall microgravity acceleration environment is comprised of quasi-steady, oscillatory, and transient contributions. The First Microgravity Science Laboratory (MSL-1) payload was dedicated to experiments studying various microgravity science disciplines, including combustion, fluid physics, and materials processing. In support of the MSL-1 payload, two systems capable of measuring the quasi-steady acceleration environment were flown: the Orbital Acceleration Research Experiment (OARE) and the Microgravity Measurement Assembly (MMA) system's Accelerometre Spatiale Triaxiale most evident in the quasi-steady acceleration regime. Utilizing such quasi-steady events, a comparison and summary of the quasi-steady acceleration environment for STS-94 will be presented

  2. Effects of Environment on Creep Behavior of Nextel 720/Alumina-Mullite Ceramic Composite at 1200 deg C

    DTIC Science & Technology

    2008-03-01

    creep life . This degradation increased with increasing temperatures. At 1000°, all specimens achieved creep run-out, defined as...strain measurement 29 Table 4. Summary of N720/AM creep data. Sample Environment Thermal Strain (%) E (GPa) Creep Stress (MPa) Creep Life (h...Material Creep Stress(MPa) Creep Life (h) Creep Strain (%) Secondary Creep Rate (s-1) N720/A 80 >100 0.798 1.5E-08 N720/A 100 41 1.520

  3. Dynamics of bulk versus nanoscale W S2 : Local strain and charging effects

    NASA Astrophysics Data System (ADS)

    Luttrell, R. D.; Brown, S.; Cao, J.; Musfeldt, J. L.; Rosentsveig, R.; Tenne, R.

    2006-01-01

    We measured the infrared vibrational properties of bulk and nanoparticle WS2 in order to investigate the structure-property relations in these materials. In addition to the symmetry-breaking effects of local strain, nanoparticle curvature modifies the local charging environment of the bulk material. Performing a charge analysis on the xy -polarized E1u vibrational mode, we find an approximate 1.5:1 intralayer charge difference between the layered 2H material and inorganic fullerene-like (IF) nanoparticles. This effective charge difference may impact the solid-state lubrication properties of nanoscale metal dichalcogenides.

  4. Dynamics of Bulk vs. Nanoscale WS2: Local Strain and Charging Effects

    NASA Astrophysics Data System (ADS)

    Musfeldt, J. L.; Brown, S.; Luttrell, R. D.; Cao, J.; Rosentsveig, R.; Tenne, R.

    2006-03-01

    We measured the infrared vibrational properties of bulk and nanoparticle WS2 in order to investigate the structure- property relations in these novel materials. In addition to the symmetry-breaking effects of local strain, nanoparticle curvature modifies the local charging environment of the bulk material. Performing a charge analysis on the xy-polarized E1u vibrational mode, we find an approximate 1.5:1 intralayer charge difference between the layered 2H material and inorganic fullerene-like (IF) nanoparticles. This effective charge difference may impact the solid-state lubrication properties of nanoscale metal dichalcogenides.

  5. 10 CFR 960.5-1 - System guidelines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REPOSITORY Preclosure Guidelines § 960.5-1 System guidelines. (a) Qualifying conditions—(1) Preclosure... radioactive materials to restricted and unrestricted areas during repository operation and closure shall meet... repository siting, construction, operation, closure, and decommissioning the public and the environment shall...

  6. The Materials Chemistry of Atomic Oxygen with Applications to Anisotropic Etching of Submicron Structures in Microelectronics and the Surface Chemistry Engineering of Porous Solids

    NASA Technical Reports Server (NTRS)

    Koontz, Steve L.; Leger, Lubert J.; Wu, Corina; Cross, Jon B.; Jurgensen, Charles W.

    1994-01-01

    Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen 'spin-off' or 'dual use' technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.

  7. Soft X-Ray Exposure Testing of FEP Teflon for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.

    1998-01-01

    The FEP Teflon (DuPont) multilayer insulation (MLI) thermal-control blanket material on the Hubble Space Telescope is degrading in the space environment. During the first Hubble servicing mission in 1993, after 3.6 years in low Earth orbit, aluminized and silvered FEP Teflon MLI thermal-control blanket materials were retrieved. These materials have been jointly analyzed by the NASA Lewis Research Center and the NASA Goddard Space Flight Center for degradation induced in the space environment (ref. 1). Solar-facing blanket materials were found to be embrittled with through-the-thickness cracking in the 5-mil FEP. During the second Hubble servicing mission in 1997, astronauts noticed that several blankets had large areas with tears. The torn FEP was curled up in some areas, exposing the underlying materials to the space environment. This tearing problem, and the associated curling up of torn areas, could lead to over-heating of the telescope and to particulate contamination. A Hubble Space Telescope MLI Failure Review Board was assembled by Goddard to investigate and identify the degradation mechanism of the FEP, to identify and characterize replacement materials, and to estimate the extent of damage at the time of the third servicing mission in 1999. A small piece of FEP retrieved during the second servicing mission is being evaluated by this failure review board along with materials from the first servicing mission. Since the first servicing mission, and as part of the failure review board, Lewis has been exposing FEP to soft x-rays to help determine the damage mechanisms of FEP in the space environment. Soft x-rays, which can penetrate into the bulk of FEP, are generated during solar flares and appear to be contributing to the degradation of the Hubble MLI.

  8. Fire safety in space - beyond flammability testing of small samples

    NASA Astrophysics Data System (ADS)

    Jomaas, Grunde; Torero, Jose L.; Eigenbrod, Christian; Niehaus, Justin; Olson, Sandra L.; Ferkul, Paul V.; Legros, Guillaume; Fernandez-Pello, A. Carlos; Cowlard, Adam J.; Rouvreau, Sebastien; Smirnov, Nickolay; Fujita, Osamu; T`ien, James S.; Ruff, Gary A.; Urban, David L.

    2015-04-01

    An international research team has been assembled to reduce the uncertainty and risk in the design of spacecraft fire safety systems by testing material samples in a series of flight experiments (Saffire 1, 2, and -3) to be conducted in an Orbital Science Corporation Cygnus vehicle after it has undocked from the International Space Station (ISS). The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle re-enters the atmosphere. The unmanned, pressurized environment in the Saffire experiments allows for the largest sample sizes ever to be tested for material flammability in microgravity, which will be based on the characteristics of flame spread over the surface of the combustible material. Furthermore, the experiments will have a duration that is unmatched in scale compared to earth based microgravity research facilities such as drop towers (about 5 s) and parabolic flights (about 20 s). In contrast to sounding rockets, the experiments offer a much larger volume, and the reduction in the oxygen concentration during the Saffire experiments will be minimal. The selection of the experimental settings for the first three Saffire experiments has been based on existing knowledge of scenarios that are relevant, yet challenging, for a spacecraft environment. Given that there is always airflow in the space station, all the experiments are conducted with flame spread in either concurrent or opposed flow, though with the flow being stopped in some tests, to simulate the alarm mode environment in the ISS and thereby also to study extinguishment. The materials have been selected based on their known performance in NASA STD-6001Test-1, and with different materials being classified as charring, thermally thin, and thermally thick. Furthermore, materials with non-uniform surfaces will be investigated.

  9. Graphene oxide in the water environment could affect tetracycline-antibiotic resistance.

    PubMed

    Guo, Mei-Ting; Zhang, Guo-Sheng

    2017-09-01

    In recent years, the influence of new materials like nanoparticles in the water environment on biological substances has been widely studied. Antibiotic resistance genes (ARGs) represent a new type of pollutant in the environment. Graphene oxide (GO), as a nano material, because of its unique structure, may have an impact on antibiotic resistance bacteria (ARB) and ARGs; however the research in this area is rarely reported. Therefore, this study mainly investigated the effects of GO on bacterial antibiotic resistance. The results showed that GO had a limited effect on ARB inactivation. A high concentration of GO (>10 mg/L) can damage resistant plasmids to reduce bacterial resistance to antibiotics, but low concentrations of GO (<1 mg/L) led to almost no damage to the plasmid. However, all tested concentrations of GO promoted the conjugative transfer from 1to over 3 folds, with low concentrations and high concentration (1-10 and 100 mg/L) of GO samples the least promoted. The overall effect of GO on antibiotic resistance needs further investigation. Copyright © 2017. Published by Elsevier Ltd.

  10. Creep Performance of Oxide Ceramic Fiber Materials at Elevated Temperature in Air and in Steam

    DTIC Science & Technology

    2011-03-24

    engineered materials are finding more and more applications in space, aeronautics, energy, automotive, and other industries . In particular, engineered...performance in harsh environments are prime candidates for such applications . Oxide ceramic materials have been used as constituents in CMCs...183  xviii List of Tables Page Table 1.  CMC Applications [2

  11. Materials: Renewable and Nonrenewable Resources. No. 4 in a Series of Special "Science" Compendia.

    ERIC Educational Resources Information Center

    Abelson, Philip H., Ed.; Hammond, Allen L., Ed.

    Presented are 36 articles originally published in "Science" during 1973-75. The articles are divided into six sections entitled: (1) Policy Considerations; (2) Energy, Environment and Conservation; (3) Perspectives on Needs and Supplies of Resources; (4) Finding the Processing Minerals; (5) High Technology Materials; and (6) Wood and Plant…

  12. Local structures in mixed Li{sub x}Fe{sub 1−y}M{sub y}PO{sub 4} (M=Co, Ni) electrode materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalkanen, K.; Lindén, J.; Karppinen, M., E-mail: maarit.karppinen@aalto.fi

    We employ {sup 57}Fe Mössbauer spectroscopy as a local tool to probe electrical environments of Fe{sup 2+} and Fe{sup 3+} at different lithiation (x) and cation-substitution (y) levels in Li{sub x}Fe{sub 1−y}M{sub y}PO{sub 4}/C (M=Co, Ni) Li-ion battery electrode materials. Upon delithiation the local environment of Fe{sup 3+} remains unaffected for the parent y=0 system due to the LiFePO{sub 4}/FePO{sub 4} phase separation, whereas for y>0 changes in the electrical environment are seen for Fe{sup 3+}. When the Fe{sup 2+}/Fe{sup 3+} redox couple is partially-delithiated, a decreasing quadrupole splitting value is observed for Fe{sup 3+} with increasing y, implying amore » more symmetric electrical environment. The increasing concentration of the Co{sup 2+}/Ni{sup 2+} substituent introduces increasing amounts of Li atoms in the Fe{sup 3+}-containing phase, and these nearest-neighbor Li atoms are suspected to cause the changes seen in the local environment of Fe{sup 3+}. - Graphical abstract: Local environment of iron in Li{sub x}Fe{sub 1−y}(Co/Ni){sub y}PO{sub 4} is studied by {sup 57}Fe Mössbauer spectroscopy at different lithiation (x) and cation-substitution (y) levels. - Highlights: • Local Fe environment in Li{sub x}Fe{sub 1−y}(Co/Ni){sub y}PO{sub 4} is studied by {sup 57}Fe Mössbauer spectroscopy. • Co/Ni-for-Fe substitution results in a more symmetric electrical environment for Fe{sup 3+}. • Due to presence of Co{sup 2+}/Ni{sup 2+}, Li atoms are introduced into the Fe{sup 3+}-containing phase. • These nearest-neighbor Li atoms are suggested to change the local Fe{sup 3+} environment.« less

  13. Materials selection for long life in low earth orbit - A critical evaluation of atomic oxygen testing with thermal atom systems

    NASA Technical Reports Server (NTRS)

    Koontz, S. L.; Albyn, K.; Leger, L.

    1990-01-01

    The use of thermal atom test methods as a materials selection and screening technique for low-earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined in thermal atom environments are compared with those observed in LEO and in high-quality LEO simulations. Reaction efficiencies (cu cm/atom) measured in a new type of thermal atom apparatus are one-thousandth to one ten-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of eight in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain speciic thermal atom test environments can be used as reliable materials screening tools.

  14. Oxidation Characterization of Hafnium-Based Ceramics Fabricated by Hot Pressing and Electric Field-Assisted Sintering

    NASA Technical Reports Server (NTRS)

    Gasch, Matt; Johnson, Sylvia; Marschall, Jochen

    2010-01-01

    Ceramic borides, such as hafnium diboride (HfB2) and zirconium diboride (ZrB2), are members of a family of materials with extremely high melting temperatures referred to as Ultra High Temperature Ceramics (UHTCs). UHTCs constitute a class of promising materials for use in high temperature applications, such as sharp leading edges on future-generation hypersonic flight vehicles, because of their high melting points. The controlled development of microstructure has become important to the processing of UHTCs, with the prospect of improving their mechanical and thermal properties. The improved oxidation resistance of HfB2 has also become important if this material is to be successfully used at temperatures above 2000 C. Furthermore, the use of UHTCs on the leading edges of vehicles traveling at hypersonic speeds will mean exposure to a mixed oxidation environment comprised of both molecular and atomic oxygen. The current study has investigated the high-temperature oxidation behavior of HfB2-based materials in a pure O2 environment, as well as in environments containing different levels of dissociated oxygen (O/O2). Materials were processed by two techniques: conventional hot pressing (HP) and electric field-assisted sintering (FAS). Their oxidation behavior was evaluated in both a tube furnace at 1250 C for 3 hours and in a simulated re-entry environment in the Advanced Heating Facility (AHF) arcjet at NASA Ames Research Center, during a 10-minute exposure to a cold wall heat flux of 250W/sq cm and stagnation pressure of 0.1-0.2 atm. The microstructure of the different materials was characterized before and after oxidation using scanning electron microscopy (SEM).

  15. NASA Glenn Research Center's Materials International Space Station Experiments (MISSE 1-7)

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce a.; Dever, Joyce A.; Jaworske, Donald A.; Miller, Sharon K.; Sechkar, Edward A.; Panko, Scott R.

    2008-01-01

    NASA Glenn Research Center (Glenn) has 39 individual materials flight experiments (>540 samples) flown as part of the Materials International Space Station Experiment (MISSE) to address long duration environmental durability of spacecraft materials in low Earth orbit (LEO). MISSE is a series of materials flight experiments consisting of trays, called Passive Experiment Carriers (PECs) that are exposed to the space environment on the exterior of the International Space Station (ISS). MISSE 1-5 have been successfully flown and retrieved and were exposed to the space environment from one to four years. MISSE 6A & 6B were deployed during the STS-123 shuttle mission in March 2008, and MISSE 7A & 7B are being prepared for launch in 2009. The Glenn MISSE experiments address atomic oxygen (AO) effects such as erosion and undercutting of polymers, AO scattering, stress effects on AO erosion, and in-situ AO fluence monitoring. Experiments also address solar radiation effects such as radiation induced polymer shrinkage, stress effects on radiation degradation of polymers, and radiation degradation of indium tin oxide (ITO) coatings and spacesuit fabrics. Additional experiments address combined AO and solar radiation effects on thermal control films, paints and cermet coatings. Experiments with Orion Crew Exploration Vehicle (CEV) seals and UltraFlex solar array materials are also being flown. Several experiments were designed to provide ground-facility to in-space calibration data thus enabling more accurate in-space performance predictions based on ground-laboratory testing. This paper provides an overview of Glenn s MISSE 1-7 flight experiments along with a summary of results from Glenn s MISSE 1 & 2 experiments.

  16. LANL Environmental ALARA Program Status Report for CY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whicker, Jeffrey Jay; Mcnaughton, Michael; Ruedig, Elizabeth

    2017-02-24

    Los Alamos National Laboratory (LANL) ensures that radiation exposures to members of the public and the environment from LANL operations, past and present, are below regulatory thresholds and are as low as reasonably achievable (ALARA) through compliance with DOE Order 458.1 Radiation Protection for the Public and the Environment, and LANL Policy 412 Environmental Radiation Protection (LANL2016a). In 2007, a finding (RL.2-F-1) and observation (RL.2-0-1) in the NNSA/ LASO report, September 2007, Release of Property (Land) Containing Residual Radioactive Material Self-Assessment Report, indicated that LANL had no policy or documented process in place for the release of property containing residualmore » radioactive material. In response, LANL developed PD410, Los Alamos National Laboratory Environmental ALARA Program. The most recent version of this document became effective in 2014 (LANL 2014a). The document provides program authorities, responsibilities, descriptions, processes, and thresholds for conducting qualitative and quantitative ALARA analyses for prospective and actual radiation exposures to the public and t o the environment resulting from DOE activities conducted on the LANL site.« less

  17. Halophilic microbial communities in deteriorated buildings.

    PubMed

    Adamiak, Justyna; Otlewska, Anna; Gutarowska, Beata

    2015-10-01

    Halophilic microorganisms were traditionally isolated from an aquatic environment. There has been little research conducted into halophiles inhabiting the terrestrial environment in which historic monuments deteriorate. Salt efflorescence deposited on the walls is an observed phenomenon on the surface of historic buildings, and would favour the growth of halophiles. However, some conditions have to be fulfilled in order for efflorescence to occur: (1) the presence of salts, (2) porosity, (3) a source of water. Salt crystallization influences the material structure (cracking, detachment, material loss), but active growth of halophilic microorganisms may be a serious threat to historic materials as well, leading to aesthetical changes such as coloured biofilms, orange to pink or even violet stains. This is why it is important to investigate halophilic microorganisms, taking into consideration both the environmental conditions they need to grow in, material characteristics they inhabit, the mechanisms they possess to cope with osmotic stress, and the methods that should be applied for their identification.

  18. Research on Space Environmental Effect of Organic Composite Materials for Thermal Management of Satellites Using MC-50 Cyclotron

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Weon; Kim, Dong-Iel; Huh, Yong-Hak; Yang, Tae-Keun; Lee, Ho-Young; Kim, Yong-Hyup

    2005-12-01

    The organic material is one of the most popular material for the satellites and the spacecrafts in order to perform the thermal management, and to protect direct exposure from the space environment. The present paper observes material property changes of organic material under the space environment by using ground facilities. One of the representative organic thermal management material of satellites, 2 mil ITO(Indium Tin Oxide) coated aluminized KAPTON was selected for experiments. In order to investigate the single parametric effect of protons in space environment, MC-50 cyclotron system in KIRAMS(Korea Institute of Radiological and Medical Science) was utilized for the ion beam irradiation of protons and ion beam dose was set to the Very Large August 1972 EVENT model, the highest protons occurrence near the earth orbit in history. The energy of ion beam is fixed to 30MeV(mega electron volt), observed average energy, and the equivalent irradiance time conditions were set to 1-year, 3-year, 5-year and 10-year exposure in space. The procedure of analyses includes the measurement of the ultimate tensile strength for the assessment of quantitative degradation in material properties, and the imaging analyses of crystalline transformation and damages on the exposed surface by FE-SEM(Field Emission Scanning Electron Spectroscopy) etc.

  19. 40 CFR 230.4 - Organization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Organization. 230.4 Section 230.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL General § 230.4 Organization. The...

  20. 40 CFR 230.43 - Vegetated shallows.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Vegetated shallows. 230.43 Section 230.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Potential Impacts on...

  1. 40 CFR 230.43 - Vegetated shallows.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Vegetated shallows. 230.43 Section 230.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Potential Impacts on...

  2. 40 CFR 230.43 - Vegetated shallows.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Vegetated shallows. 230.43 Section 230.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Potential Impacts on...

  3. Are We Underestimating Microplastic Contamination in Aquatic Environments?

    PubMed

    Conkle, Jeremy L; Báez Del Valle, Christian D; Turner, Jeffrey W

    2018-01-01

    Plastic debris, specifically microplastic in the aquatic environment, is an escalating environmental crisis. Efforts at national scales to reduce or ban microplastics in personal care products are starting to pay off, but this will not affect those materials already in the environment or those that result from unregulated products and materials. To better inform future microplastic research and mitigation efforts this study (1) evaluates methods currently used to quantify microplastics in the environment and (2) characterizes the concentration and size distribution of microplastics in a variety of products. In this study, 50 published aquatic surveys were reviewed and they demonstrated that most (~80%) only account for plastics ≥ 300 μm in diameter. In addition, we surveyed 770 personal care products to determine the occurrence, concentration and size distribution of polyethylene microbeads. Particle concentrations ranged from 1.9 to 71.9 mg g -1 of product or 1649 to 31,266 particles g -1 of product. The large majority ( > 95%) of particles in products surveyed were less than the 300 μm minimum diameter, indicating that previous environmental surveys could be underestimating microplastic contamination. To account for smaller particles as well as microfibers from synthetic textiles, we strongly recommend that future surveys consider methods that materials < 300 μm in diameter.

  4. Environment-insensitive and gate-controllable photocurrent enabled by bandgap engineering of MoS2 junctions.

    PubMed

    Shih, Fu-Yu; Wu, Yueh-Chun; Shih, Yi-Siang; Shih, Ming-Chiuan; Wu, Tsuei-Shin; Ho, Po-Hsun; Chen, Chun-Wei; Chen, Yang-Fang; Chiu, Ya-Ping; Wang, Wei-Hua

    2017-03-21

    Two-dimensional (2D) materials are composed of atomically thin crystals with an enormous surface-to-volume ratio, and their physical properties can be easily subjected to the change of the chemical environment. Encapsulation with other layered materials, such as hexagonal boron nitride, is a common practice; however, this approach often requires inextricable fabrication processes. Alternatively, it is intriguing to explore methods to control transport properties in the circumstance of no encapsulated layer. This is very challenging because of the ubiquitous presence of adsorbents, which can lead to charged-impurity scattering sites, charge traps, and recombination centers. Here, we show that the short-circuit photocurrent originated from the built-in electric field at the MoS 2 junction is surprisingly insensitive to the gaseous environment over the range from a vacuum of 1 × 10 -6   Torr to ambient condition. The environmental insensitivity of the short-circuit photocurrent is attributed to the characteristic of the diffusion current that is associated with the gradient of carrier density. Conversely, the photocurrent with bias exhibits typical persistent photoconductivity and greatly depends on the gaseous environment. The observation of environment-insensitive short-circuit photocurrent demonstrates an alternative method to design device structure for 2D-material-based optoelectronic applications.

  5. Corrosion Issues for Ceramics in Gas Turbines

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan; Opila, Elizabeth; Nickel, Klaus G.

    2004-01-01

    The requirements for hot-gas-path materials in gas turbine engines are demanding. These materials must maintain high strength and creep resistance in a particularly aggressive environment. A typical gas turbine environment involves high temperatures, rapid gas flow rates, high pressures, and a complex mixture of aggressive gases. Over the past forty years, a wealth of information on the behavior of ceramic materials in heat engine environments has been obtained. In the first part of the talk we summarize the behavior of monolithic SiC and Si3N4. These materials show excellent baseline behavior in clean, oxygen environments. However the aggressive components in a heat engine environment such as water vapor and salt deposits can be quite degrading. In the second part of the talk we discuss SiC-based composites. The critical issue with these materials is oxidation of the fiber coating. We conclude with a brief discussion of future directions in ceramic corrosion research.

  6. Dehalogenation of Haloalkanes by Mycobacterium tuberculosis H37Rv and Other Mycobacteria

    PubMed Central

    Jesenská, Andrea; Sedlác̆ek, Ivo; Damborský, Jir̆í

    2000-01-01

    Haloalkane dehalogenases convert haloalkanes to their corresponding alcohols by a hydrolytic mechanism. To date, various haloalkane dehalogenases have been isolated from bacteria colonizing environments that are contaminated with halogenated compounds. A search of current databases with the sequences of these known haloalkane dehalogenases revealed the presence of three different genes encoding putative haloalkane dehalogenases in the genome of the human parasite Mycobacterium tuberculosis H37Rv. The ability of M. tuberculosis and several other mycobacterial strains to dehalogenate haloaliphatic compounds was therefore studied. Intact cells of M. tuberculosis H37Rv were found to dehalogenate 1-chlorobutane, 1-chlorodecane, 1-bromobutane, and 1,2-dibromoethane. Nine isolates of mycobacteria from clinical material and four strains from a collection of microorganisms were found to be capable of dehalogenating 1,2-dibromoethane. Crude extracts prepared from two of these strains, Mycobacterium avium MU1 and Mycobacterium smegmatis CCM 4622, showed broad substrate specificity toward a number of halogenated substrates. Dehalogenase activity in the absence of oxygen and the identification of primary alcohols as the products of the reaction suggest a hydrolytic dehalogenation mechanism. The presence of dehalogenases in bacterial isolates from clinical material, including the species colonizing both animal tissues and free environment, indicates a possible role of parasitic microorganisms in the distribution of degradation genes in the environment. PMID:10618227

  7. Low Earth orbit thermal control coatings exposure flight tests: A comparison of U.S. and Russian results

    NASA Technical Reports Server (NTRS)

    Tribble, A. C.; Lukins, R.; Watts, E.; Naumov, S. F.; Sergeev, V. K.

    1995-01-01

    Both the United States (US) and Russia have conducted a variety of space environment effects on materials (SEEM) flight experiments in recent years. A prime US example was the Long Duration Exposure Facility (LDEF), which spent 5 years and 9 months in low Earth orbit (LEO) from April 1984 to January 1990. A key Russian experiment was the Removable Cassette Container experiment, (RCC-1), flown on the Mir Orbital Station from 11 January 1990 to 26 April 1991. This paper evaluates the thermal control coating materials data generated by these two missions by comparing: environmental exposure conditions, functionality and chemistry of thermal control coating materials, and pre- and post-flight analysis of absorptance, emittance, and mass loss due to atomic oxygen erosion. It will be seen that there are noticeable differences in the US and Russian space environment measurements and models, which complicates comparisons of environments. The results of both flight experiments confirm that zinc oxide and zinc oxide orthotitanate white thermal control paints in metasilicate binders (Z93, YB71, TP-co-2, TP-co-11, and TP-co-12), are the most stable upon exposure to the space environment. It is also seen that Russian flight materials experience broadens to the use of silicone and acrylic resin binders while the US relies more heavily on polyurethane.

  8. Software Quality Assurance and the Fleet Material Support Environment.

    DTIC Science & Technology

    1982-06-01

    is one of utility; each factor identified could be applied to :t production environment. The interaction of support groups within an operational...ship-support functio2s. It is comprised of aoproxi- mately 250 people and is i furctionally oriented department. The Financial Sistems Desian and...that t h-, following specific conditions ?xist: 1. Poorly Defined Regu-rements/Speci-fica:-4ons a) FM1SO design procedures/practices tend to be appli

  9. Atomic oxygen erosion considerations for spacecraft materials selection

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Kamenetzky, Rachel R.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) satellite carried 57 experiments that were designed to define the low-Earth orbit (LEO) space environment and to evaluate the impact of this environment on potential engineering materials and material processes. Deployed by the Shuttle Challenger in April of 1984, LDEF made over 32,000 orbits before being retrieved nearly 6 years later by the Shuttle Columbia in January of 1990. The Solar Array Passive LDEF Experiment (SAMPLE) AO171 contained approximately 300 specimens, representing numerous material classes and material processes. AO171 was located on LDEF in position A8 at a yaw of 38.1 degrees from the ram direction and was subjected to an atomic oxygen (AO) fluence of 6.93 x 10(exp 21) atoms/sq cm. LDEF AO171 data, as well as short-term shuttle data, will be discussed in this paper as it applies to engineering design applications of composites, bulk and thin film polymers, glassy ceramics, thermal control paints, and metals subjected to AO erosion.

  10. Environmental geology and hydrology

    NASA Astrophysics Data System (ADS)

    Nakić, Zoran; Mileusnić, Marta; Pavlić, Krešimir; Kovač, Zoran

    2017-10-01

    Environmental geology is scientific discipline dealing with the interactions between humans and the geologic environment. Many natural hazards, which have great impact on humans and their environment, are caused by geological settings. On the other hand, human activities have great impact on the physical environment, especially in the last decades due to dramatic human population growth. Natural disasters often hit densely populated areas causing tremendous death toll and material damage. Demand for resources enhanced remarkably, as well as waste production. Exploitation of mineral resources deteriorate huge areas of land, produce enormous mine waste and pollute soil, water and air. Environmental geology is a broad discipline and only selected themes will be presented in the following subchapters: (1) floods as natural hazard, (2) water as geological resource and (3) the mining and mineral processing as types of human activities dealing with geological materials that affect the environment and human health.

  11. Degradation patterns of natural and synthetic textiles on a soil surface during summer and winter seasons studied using ATR-FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ueland, Maiken; Howes, Johanna M.; Forbes, Shari L.; Stuart, Barbara H.

    2017-10-01

    Textiles are a valuable source of forensic evidence and the nature and condition of textiles collected from a crime scene can assist investigators in determining the nature of the death and aid in the identification of the victim. Until now, much of the knowledge of textile degradation in forensic contexts has been based on the visual inspection of material collected from soil environments. The purpose of the current study was to investigate the potential of a more quantitative approach to the understanding of forensic textile degradation through the application of infrared spectroscopy. Degradation patterns of natural and synthetic textile materials as they were subjected to a natural outdoor environment in Australia were investigated. Cotton, polyester and polyester - cotton blend textiles were placed on a soil surface during the summer and winter seasons and were analysed over periods 1 and 1.5 years, respectively, and examined using attenuated total reflectance (ATR) spectroscopy. Statistical analysis of the spectral data obtained for the cotton material correlated with visual degradation and a difference in the onset of degradation between the summer and winter season was revealed. The synthetic material did not show any signs of degradation either visually or statistically throughout the experimental period and highlighted the importance of material type in terms of preservation. The cotton section from the polyester - cotton blend samples was found to behave in a similar manner to that of the 100% cotton samples, however principal component analysis (PCA) demonstrated that the degradation patterns were less distinct in both the summer and winter trial for the blend samples. These findings indicated that the presence of the synthetic material may have inhibited the degradation of the natural material. The use of statistics to analyse the spectral data obtained for textiles of forensic interest provides a better foundation for the interpretation of the data obtained using ATR-FTIR spectroscopy, and has provided insight into textile degradation processes relevant to a soil environment.

  12. Going Places, Making Choices: Transportation and the Environment. Curriculum Designed for Grades 9-12.

    ERIC Educational Resources Information Center

    National 4-H Council, Chevy Chase, MD.

    This curriculum packet includes a teacher's introduction and five curriculum units that explore how transportation needs affect the environment, including the quality of air and water, habitat, and global climate. These materials encourage teens to apply wisdom, ingenuity, and sound science to the choices they make. Units are: (1)…

  13. Institutional Approach to Establishment of a Structural Model of the Russian Academic Environment Development

    ERIC Educational Resources Information Center

    Dudin, Mikhail N.; Ivashchenko, Natalia P.; Frolova, ?vgenia ?.; Abashidze, Aslan H.

    2017-01-01

    The purpose of the present article is to generalize and unify the approaches to improvement of the institutional environment that ensures optimal functioning and sustainable development of the Russian academic sphere. The following conclusions and results have been obtained through presentation of the materials in the article: (1) Improvement of…

  14. Effect of Light Water Reactor Water Environments on the Fatigue Life of Reactor Materials

    DOE PAGES

    Chopra, O. K.; Stevens, G. L.; Tregoning, R.; ...

    2017-10-06

    The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (Code) provides rules for the design of Class 1 components of nuclear power plants. Figures I-9.1 through I-9.6 of Appendix I to Section III of the Code specify fatigue design curves for applicable structural materials. However, the Code design curves do not explicitly address the effects of light water reactor (LWR) water environments. Existing fatigue strain-vs.-life (ε-N) laboratory data illustrate potentially significant effects of LWR water environments on the fatigue resistance of pressure vessel and piping steels. Extensive studies have been conducted at Argonne National Laboratory and elsewheremore » since 1990 to investigate the effects of LWR environments on the fatigue life of piping and pressure vessel steels. This article summarizes the results of these studies. Existing fatigue ε-N data were evaluated to identify the various material, environmental, and loading conditions that influence fatigue crack initiation; a methodology for estimating fatigue lives as a function of these parameters was developed. The effects were incorporated into the ASME Code Section III fatigue evaluations in terms of an environmental correction factor, F en, which is defined as the ratio of fatigue life in air at room temperature to the fatigue life in the LWR water environment at reactor operating temperatures. Available fatigue data were used to develop fatigue design curves for carbon and low-alloy steels, austenitic stainless steels, and nickel-chromium-iron (NiCr-Fe) alloys and their weld metals in air at room temperature. A review of the Code Section III fatigue adjustment factors of 2 on strain and 20 on life is also presented and the possible conservatism inherent in the choice of these adjustment factors is evaluated. A brief description of potential effects of neutron irradiation on fatigue crack initiation for these structural materials is also presented.« less

  15. Effect of Light Water Reactor Water Environments on the Fatigue Life of Reactor Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, O. K.; Stevens, G. L.; Tregoning, R.

    The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (Code) provides rules for the design of Class 1 components of nuclear power plants. Figures I-9.1 through I-9.6 of Appendix I to Section III of the Code specify fatigue design curves for applicable structural materials. However, the Code design curves do not explicitly address the effects of light water reactor (LWR) water environments. Existing fatigue strain-vs.-life (ε-N) laboratory data illustrate potentially significant effects of LWR water environments on the fatigue resistance of pressure vessel and piping steels. Extensive studies have been conducted at Argonne National Laboratory and elsewheremore » since 1990 to investigate the effects of LWR environments on the fatigue life of piping and pressure vessel steels. This article summarizes the results of these studies. Existing fatigue ε-N data were evaluated to identify the various material, environmental, and loading conditions that influence fatigue crack initiation; a methodology for estimating fatigue lives as a function of these parameters was developed. The effects were incorporated into the ASME Code Section III fatigue evaluations in terms of an environmental correction factor, F en, which is defined as the ratio of fatigue life in air at room temperature to the fatigue life in the LWR water environment at reactor operating temperatures. Available fatigue data were used to develop fatigue design curves for carbon and low-alloy steels, austenitic stainless steels, and nickel-chromium-iron (NiCr-Fe) alloys and their weld metals in air at room temperature. A review of the Code Section III fatigue adjustment factors of 2 on strain and 20 on life is also presented and the possible conservatism inherent in the choice of these adjustment factors is evaluated. A brief description of potential effects of neutron irradiation on fatigue crack initiation for these structural materials is also presented.« less

  16. Materials Outgassing Rate Decay in Vacuum at Isothermal Conditions

    NASA Technical Reports Server (NTRS)

    Huang, Alvin Y.; Kastanas, George N.; Kramer, Leonard; Soares, Carlos E.; Mikatarian, Ronald R.

    2016-01-01

    As a laboratory for scientific research, the International Space Station has been in Low Earth Orbit for nearly 20 years and is expected to be on-orbit for another 10 years. The ISS has been maintaining a relatively pristine contamination environment for science payloads. Materials outgassing induced contamination is currently the dominant source for sensitive surfaces on ISS and modeling the outgassing rate decay over a 20 to 30 year period is challenging. Materials outgassing is described herein as a diffusion-reaction process using ASTM E 1559 rate data. The observation of -1/2 (diffusion) or non-integers (reaction limited) as rate decay exponents for common ISS materials indicate classical reaction kinetics is unsatisfactory in modeling materials outgassing. Non-randomness of reactant concentrations at the interface is the source of this deviation from classical reaction kinetics. A diffusion limited decay was adopted as the result of the correlation of the contaminant layer thicknesses on returned ISS hardware, the existence of high outgassing silicone exhibiting near diffusion limited decay, and the confirmation of non-depleted material after ten years in the Low Earth Orbit.Keywords: Materials Outgassing, ASTM E 1559, Reaction Kinetics, Diffusion, Space Environments Effects, Contamination

  17. Evaluation and prediction of long-term environmental effects on nonmetallic materials

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Changes in functional properties of a broad spectrum of nonmetallic materials as a function of environment and exposure time were evaluated. Models for predicting long-term material performance are discussed. A literature search on specific materials in the space and simulated space environment was carried out and evaluated.

  18. FUNCTIONAL BIOMATERIALS: Design of Novel Biomaterials

    NASA Astrophysics Data System (ADS)

    Sakiyama-Elbert, Se; Hubbell, Ja

    2001-08-01

    The field of biomaterials has recently been focused on the design of intelligent materials. Toward this goal, materials have been developed that can provide specific bioactive signals to control the biological environment around them during the process of materials integration and wound healing. In addition, materials have been developed that can respond to changes in their environment, such as a change in pH or cell-associated enzymatic activity. In designing such novel biomaterials, researchers have sought not merely to create bio-inert materials, but rather materials that can respond to the cellular environment around them to improve device integration and tissue regeneration.

  19. Measurements of Parameters Controlling the Emissions of Organophosphate Flame Retardants in Indoor Environments.

    PubMed

    Liang, Yirui; Liu, Xiaoyu; Allen, Matthew R

    2018-05-15

    Emission of semivolatile organic compounds (SVOCs) from source materials usually occurs very slowly in indoor environments due to their low volatility. When the SVOC emission process is controlled by external mass transfer, the gas-phase concentration in equilibrium with the material ( y 0 ) is used as a key parameter to simplify the source models that are based on solid-phase diffusion. A material-air-material (M-A-M) configured microchamber method was developed to rapidly measure y 0 for a polyisocyanurate rigid foam material containing organophosphate flame retardants (OPRFs). The emission test was conducted in 44 mL microchambers for target OPFRs, including tris(2-chloroethyl) phosphate (CASRN: 115-96-8), tris(1-chloro-2-propyl) phosphate (CASRN: 13674-84-5), and tris(1,3-dichloro-2-propyl) phosphate (CASRN: 13674-87-8). In addition to the microchamber emission test, two other types of tests were conducted to determine y 0 for the same foam material: OPFR diffusive tube sampling tests from the OPFR source foam using stainless-steel thermal desorption tubes and sorption tests of OPFR on an OPFR-free foam in a 53 L small chamber. Comparison of parameters obtained from the three methods suggests that the discrepancy could be caused by a combination of theoretical, experimental, and computational differences. Based on the y 0 measurements, a linear relationship between the ratio of y 0 to saturated vapor pressure concentration and material-phase mass fractions has been found for phthalates and OPFRs.

  20. Space Station needs, attributes and architectural options. Volume 2, book 1, part 2, task 1: Mission requirements

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Mission areas analyzed for input to the baseline mission model include: (1) commercial materials processing, including representative missions for producing metallurgical, chemical and biological products; (2) commercial Earth observation, represented by a typical carry-on mission amenable to commercialization; (3) solar terrestrial and resource observations including missions in geoscience and scientific land observation; (4) global environment, including representative missions in meteorology, climatology, ocean science, and atmospheric science; (5) materials science, including missions for measuring material properties, studying chemical reactions and utilizing the high vacuum-pumping capacity of space; and (6) life sciences with experiments in biomedicine and animal and plant biology.

  1. Measurement of radon exhalation rate in various building materials and soil samples

    NASA Astrophysics Data System (ADS)

    Bala, Pankaj; Kumar, Vinod; Mehra, Rohit

    2017-03-01

    Indoor radon is considered as one of the potential dangerous radioactive elements. Common building materials and soil are the major source of this radon gas in the indoor environment. In the present study, the measurement of radon exhalation rate in the soil and building material samples of Una and Hamirpur districts of Himachal Pradesh has been done with solid state alpha track detectors, LR-115 type-II plastic track detectors. The radon exhalation rate for the soil samples varies from 39.1 to 91.2 mBq kg-1 h-1 with a mean value 59.7 mBq kg-1 h-1. Also the radium concentration of the studied area is found and it varies from 30.6 to 51.9 Bq kg-1 with a mean value 41.6 Bq kg-1. The exhalation rate for the building material samples varies from 40.72 (sandstone) to 81.40 mBq kg-1 h-1 (granite) with a mean value of 59.94 mBq kg-1 h-1.

  2. Recycling Resources. [Student Handbook, Sound Filmstrips, 12-Inch Record, Pollution Simulation Game, Teacher's Manual

    ERIC Educational Resources Information Center

    Hatch, C. Richard

    A 15- to 20-hour course on materials recycling, teaching junior high school students about environmental problems and solutions, is developed in this set of materials. It attempts to stimulate them to participate in community efforts aimed at improving the environment. Items in the kit include: (1) teacher's manual, with lesson plans enumerating…

  3. Priority One: Environment. Air Pollution and Your Health, Teacher's Guide.

    ERIC Educational Resources Information Center

    McCutcheon, Patricia; And Others

    This teaching guide is designed to be used with secondary school students and the unit Air Pollution and Your Health. Material for the teacher includes the following: (1) an introduction to the unit; (2) a discussion of the sections of the unit; (3) instructional objectives; (4) suggestions for use of filmstrips, worksheets, reference materials,…

  4. A Novel Graphene-Polysulfide Anode Material for High-Performance Lithium-Ion Batteries

    PubMed Central

    Ai, Wei; Xie, Linghai; Du, Zhuzhu; Zeng, Zhiyuan; Liu, Juqing; Zhang, Hua; Huang, Yunhui; Huang, Wei; Yu, Ting

    2013-01-01

    We report a simple and efficient approach for fabrication of novel graphene-polysulfide (GPS) anode materials, which consists of conducting graphene network and homogeneously distributed polysulfide in between and chemically bonded with graphene sheets. Such unique architecture not only possesses fast electron transport channels, shortens the Li-ion diffusion length but also provides very efficient Li-ion reservoirs. As a consequence, the GPS materials exhibit an ultrahigh reversible capacity, excellent rate capability and superior long-term cycling performance in terms of 1600, 550, 380 mAh g−1 after 500, 1300, 1900 cycles with a rate of 1, 5 and 10 A g−1 respectively. This novel and simple strategy is believed to work broadly for other carbon-based materials. Additionally, the competitive cost and low environment impact may promise such materials and technique a promising future for the development of high-performance energy storage devices for diverse applications. PMID:23903017

  5. 75 FR 36445 - Draft Regulatory Guide, DG-4018, “Constraint on Releases of Airborne Radioactive Materials To the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... Releases of Airborne Radioactive Materials To the Environment for Licensees Other Than Power Reactors... Regulatory Guide (DG)-4018, ``Constraint on Releases of Airborne Radioactive Materials to the Environment for..., ``Constraint on Releases of Airborne Radioactive Materials to the Environment for Licensees Other than Power...

  6. Cobalt doped lanthanum chromite material suitable for high temperature use

    DOEpatents

    Ruka, R.J.

    1986-12-23

    A high temperature, solid electrolyte electrochemical cell, subject to thermal cycling temperatures of between about 25 C and about 1,200 C, capable of electronic interconnection to at least one other electrochemical cell and capable of operating in an environment containing oxygen and a fuel, is made; where the cell has a first and second electrode with solid electrolyte between them, where an improved interconnect material is applied along a portion of a supporting electrode; where the interconnect is made of a chemically modified lanthanum chromite, containing cobalt as the important additive, which interconnect allows for adjustment of the thermal expansion of the interconnect material to more nearly match that of other cell components, such as zirconia electrolyte, and is stable in oxygen containing atmospheres such as air and in fuel environments. 2 figs.

  7. 23 CFR 750.711 - Structures which have never displayed advertising material.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Structures which have never displayed advertising... RIGHT-OF-WAY AND ENVIRONMENT HIGHWAY BEAUTIFICATION Outdoor Advertising Control § 750.711 Structures which have never displayed advertising material. Structures, including poles, which have never displayed...

  8. 23 CFR 750.711 - Structures which have never displayed advertising material.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Structures which have never displayed advertising material. 750.711 Section 750.711 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RIGHT-OF-WAY AND ENVIRONMENT HIGHWAY BEAUTIFICATION Outdoor Advertising Control § 750.711 Structures...

  9. Long Duration Exposure Facility M0003-5 recent results on polymeric films

    NASA Technical Reports Server (NTRS)

    Hurley, Charles J.; Jones, Michele D.

    1992-01-01

    The M0003-5 polymeric film specimens orbited on the LDEF M0003 Space Environment Effects on Spacecraft Materials were a part of a Wright Laboratories Materials Directorate larger thermal control materials experiment. They were selected from new materials which emerged from development programs during the 1978-1982 time frame. Included were materials described in the technical literature which were being considered or had been applied to satellites. Materials that had been exposed on previous satellite materials experiments were also included to provide data correlation with earlier space flight experiments. The objective was to determine the effects of the LDEF environment on the physical and optical properties of polymeric thin film thermal control materials, the interaction of the LDEF environment with silvered spacecraft surfaces, and the performance of low outgassing adhesives. Sixteen combinations of various polymeric films, metallized and unmetallized, adhesively bonded and unbonded films were orbited on LDEF in the M0003-5 experiment. The films were exposed in two separate locations on the vehicle. One set was exposed on the direct leading edge of the satellite. The other set was exposed on the direct trailing edge of the vehicle. The purpose of the experiment was to understand the changes in the properties of materials before and after exposure to the space environment and to compare the changes with predictions based on laboratory experiments. The basic approach was to measure the optical and physical properties of materials before and after long-term exposure to a low earth orbital environment comprised of UV, VUV, electrons, protons, atomic oxygen, thermal cycling, vacuum, debris and micrometeoroids. Due to the unanticipated extended orbital flight of LDEF, the polymeric film materials were exposed for a full five years and ten months to the space environment.

  10. 40 CFR 264.281 - Special requirements for ignitable or reactive waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for ignitable or reactive waste. 264.281 Section 264.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... immediately incorporated into the soil so that: (1) The resulting waste, mixture, or dissolution of material...

  11. 40 CFR 230.24 - Normal water fluctuations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Normal water fluctuations. 230.24 Section 230.24 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Potential Impacts on Physical and Chemical Characteristics o...

  12. LANL Environmental ALARA Program Status Report for CY 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whicker, Jeffrey Jay; Mcnaughton, Michael; Gillis, Jessica Mcdonnel

    2016-03-29

    Los Alamos National Laboratory (LANL) ensures that radiation exposures to members of the public and the environment from LANL operations, past and present, are below regulatory thresholds and are as low as reasonably achievable (ALARA) through compliance with DOE Order 458.1 Radiation Protection for the Public and the Environment, and LANL Policy 412 Environmental Radiation Protection. In 2007, a finding (RL.2-F-1) and observation (RL.2-0-1) in the NNSA/ LASO report, September 2007, Release of Property (Land) Containing Residual Radioactive Material Self-Assessment Report, indicated that LANL had no policy or documented process in place for the release of property containing residual radioactivemore » material. In response, LANL developed PD410, Los Alamos National Laboratory Environmental ALARA Program. The most recent version of this document became effective on September 28, 2011. The document provides program authorities, responsibilities, descriptions, processes, and thresholds for conducting qualitative and quantitative ALARA analyses for prospective and actual radiation exposures to the public and t o the environment resulting from DOE activities conducted on the LANL site.« less

  13. Subcritical crack growth and other time- and environment-dependent behavior in crustal rocks

    NASA Technical Reports Server (NTRS)

    Swanson, P. L.

    1984-01-01

    Stable crack growth strongly influences both the fracture strength of brittle rocks and some of the phenomena precursory to catastrophic failure. Quantification of the time and environment dependence of fracture propagation is attempted with the use of a fracture mechanics technique. Some of the difficulties encountered when applying techniques originally developed for simple synthetic materials to complex materials like rocks are examined. A picture of subcritical fracture propagation is developed that embraces the essential ingredients of the microstructure, a microcrack process zone, and the different roles that the environment plays. To do this, the results of (1) fracture mechanics experiments on five rock types, (2) optical and scanning electron microscopy, (3) studies of microstructural aspects of fracture in ceramics, and (4) exploratory tests examining the time-dependent response of rock to the application of water are examined.

  14. High diffraction efficiency of three-layer diffractive optics designed for wide temperature range and large incident angle.

    PubMed

    Mao, Shan; Cui, Qingfeng; Piao, Mingxu; Zhao, Lidong

    2016-05-01

    A mathematical model of diffraction efficiency and polychromatic integral diffraction efficiency affected by environment temperature change and incident angle for three-layer diffractive optics with different dispersion materials is put forward, and its effects are analyzed. Taking optical materials N-FK5 and N-SF1 as the substrates of multilayer diffractive optics, the effect on diffraction efficiency and polychromatic integral diffraction efficiency with intermediate materials POLYCARB is analyzed with environment temperature change as well as incident angle. Therefore, three-layer diffractive optics can be applied in more wide environmental temperature ranges and larger incident angles for refractive-diffractive hybrid optical systems, which can obtain better image quality. Analysis results can be used to guide the hybrid imaging optical system design for optical engineers.

  15. Weightless Environment Training Facility (WETF) materials coating evaluation, volume 2

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This volume consists of Appendices A and B to the report on the Weightless Environment Training Facility Materials Coating Evaluation project. The project selected 10 coating systems to be evaluated in six separate exposure environments, and subject to three tests for physical properties. Appendix A holds the coating system, surface preparation, and application data. Appendix B holds the coating material infrared spectra.

  16. Energy and Environment as Related to Chemistry Teaching. Proceeding of the UNESCO International Workshop/Symposium (Berkeley, California, December 1-8, 1989).

    ERIC Educational Resources Information Center

    California Univ., Berkeley. Board of Regents.

    The proceedings of a program on teaching chemistry through energy and the environment that included plenary lectures, country and commission reports, introductions to new programs and materials, and an experimental approach to curriculum development across national boundaries via the production of an instruction unit are provided. The workshop…

  17. The effects of environment and ownership on children's innovation of tools and tool material selection.

    PubMed

    Sheridan, Kimberly M; Konopasky, Abigail W; Kirkwood, Sophie; Defeyter, Margaret A

    2016-03-19

    Research indicates that in experimental settings, young children of 3-7 years old are unlikely to devise a simple tool to solve a problem. This series of exploratory studies done in museums in the US and UK explores how environment and ownership of materials may improve children's ability and inclination for (i) tool material selection and (ii) innovation. The first study takes place in a children's museum, an environment where children can use tools and materials freely. We replicated a tool innovation task in this environment and found that while 3-4 year olds showed the predicted low levels of innovation rates, 4-7 year olds showed higher rates of innovation than the younger children and than reported in prior studies. The second study explores the effect of whether the experimental materials are owned by the experimenter or the child on tool selection and innovation. Results showed that 5-6 year olds and 6-7 year olds were more likely to select tool material they owned compared to tool material owned by the experimenter, although ownership had no effect on tool innovation. We argue that learning environments supporting tool exploration and invention and conveying ownership over materials may encourage successful tool innovation at earlier ages. © 2016 The Author(s).

  18. Template-free synthesis of renewable macroporous carbon via yeast cells for high-performance supercapacitor electrode materials.

    PubMed

    Sun, Hongmei; He, Wenhui; Zong, Chenghua; Lu, Lehui

    2013-03-01

    The urgent need for sustainable development has forced material scientists to explore novel materials for next-generation energy storage devices through a green and facile strategy. In this context, yeast, which is a large group of single cell fungi widely distributed in nature environments, will be an ideal candidate for developing effective electrode materials with fascinating structures for high-performance supercapacitors. With this in mind, herein, we present the first example of creating three-dimensional (3D) interpenetrating macroporous carbon materials via a template-free method, using the green, renewable, and widespread yeast cells as the precursors. Remarkably, when the as-prepared materials are used as the electrode materials for supercapacitors, they exhibit outstanding performance with high specific capacitance of 330 F g(-1) at a current density of 1 A g(-1), and good stability, even after 1000 charge/discharge cycles. The approach developed in this work provides a new view of making full use of sustainable resources endowed by nature, opening the avenue to designing and producing robust materials with great promising applications in high-performance energy-storage devices.

  19. Housing Quality and Access to Material and Learning Resources within the Home Environment in Developing Countries

    ERIC Educational Resources Information Center

    Bradley, Robert H.; Putnick, Diane L.

    2012-01-01

    This study examined home environment conditions (housing quality, material resources, formal and informal learning materials) and their relations with the Human Development Index (HDI) in 28 developing countries. Home environment conditions in these countries varied widely. The quality of housing and availability of material resources at home were…

  20. Corrosion inhibition of steam generator tubesheet by Alloy 690 cladding in secondary side environments

    NASA Astrophysics Data System (ADS)

    Hur, Do Haeng; Choi, Myung Sik; Lee, Deok Hyun; Han, Jung Ho; Shim, Hee Sang

    2013-11-01

    Denting is a phenomenon that a steam generator tube is distorted by a volume expansion of corrosion products of the tube support and tubesheet materials adjacent to the tube. Although denting has been mitigated by a modification of the design and material of the tube support structures, it has been an inevitable concern in the crevice region of the top of tubesheet. This paper provides a new technology to prevent denting by cladding the secondary surface of the tubesheet with a corrosion resistant material. In this study, Alloy 690 material was cladded onto the surface of an SA508 tubesheet to a thickness of about 9 mm. The corrosion rates of the original SA508 tubesheet and the Alloy 690 clad material were measured in acidic and alkaline simulated environments. Using Alloy 690 cladding, the corrosion rate of the tubesheet within a magnetite sludge pile decreased by a factor of 680 in 0.1 M NiCl2 solution at 300 °C, and by a factor of 58 in 2 M NaOH solution at 315 °C. This means that denting can drastically be prevented by cladding the secondary tubesheet surface with corrosion resistant materials.

  1. Analysis of the Thermo-Elastic Response of Space Reflectors to Simulated Space Environment

    NASA Astrophysics Data System (ADS)

    Allegri, G.; Ivagnes, M. M.; Marchetti, M.; Poscente, F.

    2002-01-01

    The evaluation of space environment effects on materials and structures is a key matter to develop a proper design of long duration missions: since a large part of satellites operating in the earth orbital environment are employed for telecommunications, the development of space antennas and reflectors featured by high dimensional stability versus space environment interactions represents a major challenge for designers. The structural layout of state of the art space antennas and reflectors is very complex, since several different sensible elements and materials are employed: particular care must be placed in evaluating the actual geometrical configuration of the reflectors operating in the space environment, since very limited distortions of the designed layout can produce severe effects on the quality of the signal both received and transmitted, especially for antennas operating at high frequencies. The effects of thermal loads due to direct sunlight exposition and to earth and moon albedo can be easily taken into account employing the standard methods of structural analysis: on the other hand the thermal cycling and the exposition to the vacuum environment produce a long term damage accumulation which affects the whole structure. The typical effects of the just mentioned exposition are the outgassing of polymeric materials and the contamination of the exposed surface, which can affect sensibly the thermo-mechanical properties of the materials themselves and, therefore, the structural global response. The main aim of the present paper is to evaluate the synergistic effects of thermal cycling and of the exposition to high vacuum environment on an innovative antenna developed by Alenia Spazio S.p.a.: to this purpose, both an experimental and numerical research activity has been developed. A complete prototype of the antenna has been exposed to the space environment simulated by the SAS facility: this latter is constituted by an high vacuum chamber, equipped by high pressure Xenon lamps to simulate the direct solar irradiation and a cryogenic heat exchanger to reproduce the earth shadowing of sunlight. The temperature of the thermal cycles ranges from -80°C up to 100°C: the thermo-elastic response of the antenna has been surveyed by employing strain gauges place on the structures at several different locations. The structure has been subjected to 100 thermal cycles, each of which lasting two hours: the total duration of the exposition to the vacuum environment has been equal to 300 hours. Finally the antenna has been disassembled and its elements have been examined to evaluate the effects of the simulated exposition on each of them: the total mass loss and the final thermo-mechanical properties of the polymeric based materials which constitute the structural core of the antenna have been surveyed. The experimental results have been compared to numerical simulation performed by the NASTRAN code: the basic FEM model, developed for the unexposed antenna, has been updated to take into account the thermo-mechanical degradation of the structural elements and materials. This has allowed to obtain, by extrapolation, a FEM based prevision of the antenna thermo-elastic response for long-term operative conditions. References. [1] D. Hastings, H. Garret "Spacecraft environment interactions", Cambridge University Press, Atmospheric Series, Cambridge, 1996. [2] IAF-01-I.6.05 "On the Reliability of Honeycomb Core Bonding Joint in Sandwich Composite Materials for Space Applications" G. Allegri, U. Lecci, M. Marchetti, F. Poscente, 52° IAF Congress, 2001. [3] Meguro A. and alii, "Technology status of the 13 m aperture deployment antenna reflectors for Engineering Test Satellite VIII", Acta Astronautica, Volume: 47, Issue: 2-9, July - November, 2000, pp. 147-152. [4] Novikov L. S. "Contemporary state of spacecraft/environment interaction research" Radiation Measurements, Volume: 30, Issue: 5, October, 1999, pp. 661-667. [5] IAF-01-I.1.02 "Development of High Performance Large Single Shaped Reflectors" Paul Archer, C. Abegg, T. Le Goff, EADS/LV, Les Mureaux, France.

  2. Long Duration Exposure Facility M0003-5 thermal control coatings on DoD flight experiment

    NASA Technical Reports Server (NTRS)

    Hurley, Charles J.; Lehn, William L.

    1992-01-01

    The M0003-5 thermal control coatings and materials orbited on the LDEF M0003 Space Environment Effects on Spacecraft Materials were a part of a Wright Laboratories Materials Directorate larger experiment. They were selected from new materials which emerged from development programs during the 1978-1982 time frame. Included were materials described in the technical literature which were being considered or had been applied to satellites. Materials that had been exposed on previous satellite materials experiments were also included to provide data correlation with earlier space flight experiments. The objective was to determine the effect of the LDEF environment on the physical and optical properties of thermal control coatings and materials. One hundred and two specimens of various pigmented organic and inorganic coatings, metallized polymer thin films, optical solar reflectors, and mirrors were orbited on LDEF. The materials were exposed in four separate locations on the vehicle. The first set was exposed on the direct leading edge of the satellite. The second set was exposed on the direct trailing edge of the vehicle. The third and fourth sets were exposed in environmental exposure control canisters (EECC) located 30 degrees off normal to the leading and trailing edges. The purpose of the experiment was to understand the changes in the properties of materials before and after exposure to the space environment and to compare the changes with predictions based on laboratory experiments. The basic approach was to measure the optical and physical properties of materials before and after long-term exposure to a low earth orbital environment comprised of UV, VUV, electrons, protons, atomic oxygen, thermal cycling, vacuum, debris, and micrometeoroids. Due to the unanticipated extended orbital flight of LDEF, the thermal control coatings and materials in the direct leading and trailing edge were exposed for a full five years and ten months to the space environment and the canister materials were exposed for approximately one year to the full environment.

  3. Materials and Coatings for Extreme Performances: Investigations, Applications, Ecologically Safe Technologies for Their Production and Utilization

    DTIC Science & Technology

    2004-11-16

    1) E170 CORROSION RESICTANCE OF Ti AND ITS ALLOYS IN SEA WATER Vyazovikina N.V., Kus’menko H.H., Kulak L.D., Vyazovikin I.V.(1) E45 TECHNOLOGICAL...INFLUENCE OF CORROSION IN SEA WATER ENVIRONMENT ON PHYSICO – MECHANICAL PROPERTIES OF GREEN BODIES FABRICATED FROM A COPPER BASED HETEROGENEOUS MATERIAL...high chemical stability (tolerance towards gasoline, sea water, acids and alkali), reduced flammability, low adhesion to dirtying substances. In

  4. Application of Chemistry in Materials Research at NASA GRC

    NASA Technical Reports Server (NTRS)

    Kavandi, Janet L.

    2016-01-01

    Overview of NASA GRC Materials Development. New materials enabled by new chemistries offering unique properties and chemical processing techniques. Durability of materials in harsh environments requires understanding and modeling of chemical interaction of materials with the environment.

  5. 40 CFR 35.940-1 - Allowable project costs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Allowable project costs. 35.940-1... Allowable project costs. Allowable costs include: (a) Costs of salaries, benefits, and expendable material the grantee incurs for the project, except as provided in § 35.940-2(g); (b) Costs under construction...

  6. 40 CFR 35.940-1 - Allowable project costs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Allowable project costs. 35.940-1... Allowable project costs. Allowable costs include: (a) Costs of salaries, benefits, and expendable material the grantee incurs for the project, except as provided in § 35.940-2(g); (b) Costs under construction...

  7. 40 CFR 35.940-1 - Allowable project costs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Allowable project costs. 35.940-1... Allowable project costs. Allowable costs include: (a) Costs of salaries, benefits, and expendable material the grantee incurs for the project, except as provided in § 35.940-2(g); (b) Costs under construction...

  8. 40 CFR 35.940-1 - Allowable project costs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Allowable project costs. 35.940-1... Allowable project costs. Allowable costs include: (a) Costs of salaries, benefits, and expendable material the grantee incurs for the project, except as provided in § 35.940-2(g); (b) Costs under construction...

  9. 40 CFR 35.940-1 - Allowable project costs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Allowable project costs. 35.940-1... Allowable project costs. Allowable costs include: (a) Costs of salaries, benefits, and expendable material the grantee incurs for the project, except as provided in § 35.940-2(g); (b) Costs under construction...

  10. Composite materials for precision space reflector panels

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.; Funk, Joan G.; Bowles, David E.; Towell, Timothy W.; Connell, John W.

    1992-01-01

    One of the critical technology needs of large precision reflectors for future astrophysical and optical communications satellites lies in the area of structural materials. Results from a materials research and development program at NASA Langley Research Center to provide materials for these reflector applications are discussed. Advanced materials that meet the reflector panel requirements are identified, and thermal, mechanical and durability properties of candidate materials after exposure to simulated space environments are compared. A parabolic, graphite-phenolic honeycomb composite panel having a surface accuracy of 70.8 microinches rms and an areal weight of 1.17 lbm/sq ft was fabricated with T50/ERL1962 facesheets, a PAEI thermoplastic surface film, and Al and SiO(x) coatings.

  11. Space simulation test for thermal control materials

    NASA Technical Reports Server (NTRS)

    Hardgrove, W. R.

    1990-01-01

    Tests were run in TRW's Combined Environment Facility to examine the degradation of thermal control materials in a simulated space environment. Thermal control materials selected for the test were those presently being used on spacecraft or predicted to be used within the next few years. The geosynchronous orbit environment was selected as the most interesting. One of the goals was to match degradation of those materials with available flight data. Another aim was to determine if degradation can adequately be determined with accelerated or short term ground tests.

  12. A study of the applicability of gallium arsenide and silicon carbide as aerospace sensor materials

    NASA Technical Reports Server (NTRS)

    Hurley, John S.

    1990-01-01

    Most of the piezoresistive sensors, to date, are made of silicon and germanium. Unfortunately, such materials are severly restricted in high temperature environments. By comparing the effects of temperature on the impurity concentrations and piezoresistive coefficients of silicon, gallium arsenide, and silicon carbide, it is being determined if gallium arsenide and silicon carbide are better suited materials for piezoresistive sensors in high temperature environments. The results show that the melting point for gallium arsenide prevents it from solely being used in high temperature situations, however, when used in the alloy Al(x)Ga(1-x)As, not only the advantage of the wider energy band gas is obtained, but also the higher desire melting temperature. Silicon carbide, with its wide energy band gap and higher melting temperature suggests promise as a high temperature piezoresistive sensor.

  13. Stable polyurethane coatings for electronic circuits. NASA tech briefs, fall 1982, volume 7, no. 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    One of the most severe deficiencies of polyurethanes as engineering materials for electrical applications has been their sensitivity to combined humidity and temperature environments. Gross failure by reversion of urethane connector potting materials has occurred under these conditions. This has resulted in both scrapping of expensive hardware and reduction in reliability in other instances. A basic objective of this study has been to gain a more complete understanding of the mechanisms and interactions of moisture in urethane systems to guide the development of reversion resistant materials for connector potting and conformal coating applications in high humidity environments. Basic polymer studies of molecular weight and distribution, polymer structure, and functionality were carried out to define those areas responsible for hydrolytic instability and to define polymer structural feature conducive to optimum hydrolytic stability.

  14. Proton irradiation on materials

    NASA Technical Reports Server (NTRS)

    Chang, C. Ken

    1993-01-01

    A computer code is developed by utilizing a radiation transport code developed at NASA Langley Research Center to study the proton radiation effects on materials which have potential application in NASA's future space missions. The code covers the proton energy from 0.01 Mev to 100 Gev and is sufficient for energetic protons encountered in both low earth and geosynchronous orbits. With some modification, the code can be extended for particles heavier than proton as the radiation source. The code is capable of calculating the range, stopping power, exit energy, energy deposition coefficients, dose, and cumulative dose along the path of the proton in a target material. The target material can be any combination of the elements with atomic number ranging from 1 to 92, or any compound with known chemical composition. The generated cross section for a material is stored and is reused in future to save computer time. This information can be utilized to calculate the proton dose a material would receive in an orbit when the radiation environment is known. It can also be used to determine, in the laboratory, the parameters such as beam current of proton and irradiation time to attain the desired dosage for accelerated ground testing of any material. It is hoped that the present work be extended to include polymeric and composite materials which are prime candidates for use as coating, electronic components, and structure building. It is also desirable to determine, for ground testing these materials, the laboratory parameters in order to simulate the dose they would receive in space environments. A sample print-out for water subject to 1.5 Mev proton is included as a reference.

  15. New Oxide Ceramic Developed for Superior High-Temperature Wear Resistance

    NASA Technical Reports Server (NTRS)

    Sayir, Ali; Miyoshi, Kazuhisa; Farmer, Serene C.

    2003-01-01

    Ceramics, for the most part, do not have inherently good tribological properties. For example friction coefficients in excess of 0.7 have been reported for silicon nitride sliding on silicon nitride or on bearing steel (ref. 1). High friction is always accompanied by considerable wear. Despite their inherently poor tribological properties, the high strength and high toughness of silicon nitride (Si3N4) ceramics has led to their successful use in tribological applications (refs. 1 to 4). The upper temperature limit for the application of Si3N4 as wear-resistant material is limited by reaction with the tribological environment (ref. 3). Silicon nitride is known to produce a thin silicon dioxide film with easy shear capability that results in low friction and low wear in a moist environment (ref. 5). At elevated temperatures, the removal of the reaction product that acts as lubricant causes the friction coefficient to increase and, consequently, the wear performance to become poor. New materials are sought that will have wear resistance superior to that of Si3N4 at elevated temperatures and in harsh environments. A new class of oxide ceramic materials has been developed with potential for excellent high-temperature wear resistance. The new material consists of a multicomponent oxide with a two-phase microstructure, in which the wear resistance of the mixed oxide is significantly higher than that of the individual constituents. This is attributed to the strong constraining effects provided by the interlocking microstructures at different length scales, to the large aspect ratio of the phases, to the strong interphase bonding, and to the residual stresses. Fretting wear tests were conducted by rubbing the new ceramic material against boron carbide (B4C). The new ceramic material produced a wear track groove on B4C, suggesting significantly higher wear resistance for the oxide ceramic. The new material did not suffer from any microstructural degradation after the wear test. The wear rate of the new ceramic material at 600 C was determined to be on the order of 10-10 mm3/N-m, which is 3 to 5 orders of magnitude lower than that for the current state-of-theart wear-resistant materials (Si3N4and B4C). The friction coefficient of the new ceramic materials is on the order of 0.4, which is significantly lower than that of silicon nitride. This new class of oxide materials has shown considerable potential for applications requiring high wear resistance at high temperatures and in harsh environments. New understanding of the wear behavior of ceramic materials is emerging as a result of the surprisingly high wear resistance of two-phase oxide ceramics. There is excellent potential for further improvements in the wear resistance of oxide ceramics through optimizing the microstructure and altering the crystallographic properties of specific oxide materials as a second phase to reduce the coefficient of friction at elevated temperatures.

  16. Arcjet Testing of Micro-Meteoroid Impacted Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Munk, Michelle M.; Glaab, Louis J.

    2013-01-01

    There are several harsh space environments that could affect thermal protection systems and in turn pose risks to the atmospheric entry vehicles. These environments include micrometeoroid impact, extreme cold temperatures, and ionizing radiation during deep space cruise, all followed by atmospheric entry heating. To mitigate these risks, different thermal protection material samples were subjected to multiple tests, including hyper velocity impact, cold soak, irradiation, and arcjet testing, at various NASA facilities that simulated these environments. The materials included a variety of honeycomb packed ablative materials as well as carbon-based non-ablative thermal protection systems. The present paper describes the results of the multiple test campaign with a focus on arcjet testing of thermal protection materials. The tests showed promising results for ablative materials. However, the carbon-based non-ablative system presented some concerns regarding the potential risks to an entry vehicle. This study provides valuable information regarding the capability of various thermal protection materials to withstand harsh space environments, which is critical to sample return and planetary entry missions.

  17. Modeling Electrostatic Fields Generated by Internal Charging of Materials in Space Radiation Environments

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.

    2011-01-01

    Internal charging is a risk to spacecraft in energetic electron environments. DICTAT, NU MIT computational codes are the most widely used engineering tools for evaluating internal charging of insulator materials exposed to these environments. Engineering tools are designed for rapid evaluation of ESD threats, but there is a need for more physics based models for investigating the science of materials interactions with energetic electron environments. Current tools are limited by the physics included in the models and ease of user implementation .... additional development work is needed to improve models.

  18. The Strata-l Experiment on Microgravity Regolith Segregation

    NASA Technical Reports Server (NTRS)

    Fries, M.; Abell, P.; Brisset, J.; Britt, D.; Colwell, J.; Durda, D.; Dove, A.; Graham, L.; Hartzell, C.; John, K.; hide

    2016-01-01

    The Strata-1 experiment studies the segregation of small-body regolith through long-duration exposure of simulant materials to the microgravity environment on the International Space Station (ISS). Many asteroids feature low bulk densities, which implies high values of porosity and a mechanical structure composed of loosely bound particles, (i.e. the "rubble pile" model), a prime example of a granular medium. Even the higher-density, mechanically coherent asteroids feature a significant surface layer of loose regolith. These bodies will evolve in response to very small perturbations such as micrometeoroid impacts, planetary flybys, and the YORP effect. A detailed understanding of asteroid mechanical evolution is needed in order to predict the surface characteristics of as-of-yet unvisited bodies, to understand the larger context of samples from sample return missions, and to mitigate risks for both manned and unmanned missions to asteroidal bodies. Due to observation of rocky regions on asteorids such as Eros and Itokawa, it has been hypothesized that grain size distribution with depth on an asteroid may be inhomogeneous: specifically, that large boulders have been mobilized to the surface. In terrestrial environments, this size-dependent sorting to the surface of the sample is called the Brazil Nut Effect. The microgravity and acceleration environment on the ISS is similar that of a small asteroid. Thus, Strata-1 investigates size segregation of regolith in an environment analogous to that of small bodies. Strata-1 consists of four regolith simulants in evacuated tubes, as shown in Figure 1 (Top and Middle). The simulants are (1) a crushed and sieved ordinary chondrite meteorite to simulate an asteroidal surface, (2) a carbonaceous chondrite simulant with a mixture of fine and course particles, and two simplified silicate glass simulants; (3) one with angular and (4) another with spherical particles. These materials were chosen to span a range of granular complexity. The materials were sorted into three size species pre-launch, and maintained during launch and return by a device called the Entrapulator. The hypothesis under test is that the particles that constitute a granular medium in a micro-gravity environment, subjected to a known vibration environemnt, will segregate in accordance to modeled predictions. Strata-1 is currently operating on ISS, with cameras capturing images of simulant motion throughout the one year mission. Vibration data is recorded and downlinked, and the simulants will be analyzed after return to Earth.

  19. CATALOG OF MATERIALS AS POTENTIAL SOURCES OF INDOOR AIR EMISSIONS - VOLUME 1. INSULATION, WALLCOVERINGS, RESILIENT FLOOR COVERINGS, CARPET, ADHESIVES, SEALANTS AND CAULKS, AND PESTICIDES

    EPA Science Inventory

    The report discusses and presents data on constituents and emissions from products that have the potential to impact the indoor air environment. t is a tool to be used by researchers to help organize the study of materials as potential sources of indoor air emissions. ncluded are...

  20. Child of the World: Essential Montessori Age 3-12+ Years. Sixteenth Edition.

    ERIC Educational Resources Information Center

    Stephenson, Susan Mayclin

    This book provides information on the basic principles of Montessori education for 3- to 12-year-olds and contains a catalog of equipment, materials, and books for use by adults living or working with children. Information and relevant materials for 3- to 6-year-olds are organized into the following areas: (1) organizing the environment; (2)…

  1. An Approach to the Flammability Testing of Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2012-01-01

    Presentation reviews: (1) Current approach to evaluation of spacecraft materials flammability (2) The need for and the approach to alternative routes (3) Examples of applications of the approach recommended a) Crew Module splash down b) Crew Module depressurization c) Applicability of NASA's flammability test data to other sample configurations d) Applicability of NASA's ground flammability test data to spacecraft environments

  2. Fatigue crack growth behavior of pressure vessel steels and submerged arc weldments in a high-temperature pressurized water environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liaw, P.K.; Logsdon, W.A.; Begley, J.A.

    1989-10-01

    The fatigue crack growth rate (FCGR) properties of SA508 Cl 2a and SA533 Gr A Cl 2 pressure vessel steels and the corresponding automatic submerged arc weldments were developed in a high-temperature pressurized water (HPW) environment at 288{degrees} C (550{degrees} F) and 7.2 MPa (1044 psi) at load ratios of 0.20 and 0.50. The properties were generally conservative compared to American Society of Mechanical Engineers Section XI water environment reference curve. The growth rate of fatigue cracks in the base materials, however, was faster in the HPW environment than in a 288{degrees} C (550{degrees} F) base line air environment. Themore » growth rate of fatigue cracks in the two submerged arc weldments was also accelerated in the HPW environment but to a lesser degree than that demonstrated by the base materials. In the air environment, fatigue striations were observed, independent of material and load ratio, while in the HPW environment, some intergranular facets were present. The greater environmental effect on crack growth rates displayed by the base materials compared the weldments attributed to a different sulfide composition and morphology.« less

  3. 40 CFR 230.50 - Municipal and private water supplies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Municipal and private water supplies. 230.50 Section 230.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Potential Effects on Human Use Characteristics §...

  4. 40 CFR 230.23 - Current patterns and water circulation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Current patterns and water circulation. 230.23 Section 230.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Potential Impacts on Physical and Chemical...

  5. 40 CFR 230.23 - Current patterns and water circulation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Current patterns and water circulation. 230.23 Section 230.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Potential Impacts on Physical and Chemical...

  6. 40 CFR 230.52 - Water-related recreation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Water-related recreation. 230.52 Section 230.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Potential Effects on Human Use Characteristics § 230.52...

  7. Interplanetary Radiation and Internal Charging Environment Models for Solar Sails

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Altstatt, Richard L.; Neergaard, Linda F.

    2004-01-01

    A Solar Sail Radiation Environment (SSRE) model has been developed for characterizing the radiation dose and internal charging environments in the solar wind. The SSRE model defines the 0.01 keV to 1 MeV charged particle environment for use in testing the radiation dose vulnerability of candidate solar sail materials and for use in evaluating the internal charging effects in the interplanetary environment. Solar wind and energetic particle instruments aboard the Ulysses spacecraft provide the particle data used to derive the environments for the high inclination 0.5 AU Solar Polar Imager mission and the 1.0 AU L1 solar sail missions. Ulysses is the only spacecraft to sample high latitude solar wind environments far from the ecliptic plane and is therefore uniquely capable of providing the information necessary for defining radiation environments for the Solar Polar Imager spacecraft. Cold plasma moments are used to derive differential flux spectra based on Kappa distribution functions. Energetic particle flux measurements are used to constrain the high energy, non-thermal tails of the distribution functions providing a comprehensive electron, proton, and helium spectra from less than 0.01 keV to a few MeV.

  8. A new perspective of particle adsorption: Dispersed oil and granular materials interactions in simulated coastal environment.

    PubMed

    Meng, Long; Bao, Mutai; Sun, Peiyan

    2017-09-15

    This study, adsorption behaviors of dispersed oil in seawaters by granular materials were explored in simulation environment. We quantitatively demonstrated the dispersed oil adsorbed by granular materials were both dissolved petroleum hydrocarbons (DPHs) and oil droplets. Furthermore, DPHs were accounted for 42.5%, 63.4%, and 85.2% (35.5% was emulsion adsorption) in the adsorption of dispersed oil by coastal rocks, sediments, and bacterial strain particles respectively. Effects of controlling parameters, such as temperature, particle size and concentration on adsorption of petroleum hydrocarbons were described in detail. Most strikingly, adsorption concentration was followed a decreasing order of bacterial strain (0.5-2μm)>sediments (0.005-0.625mm)>coastal rocks (0.2-1cm). With particle concentration or temperature increased, adsorption concentration increased for coastal rocks particle but decreased for sediments particle. Besides, particle adsorption rate of petroleum hydrocarbons (n-alkanes and PAHs) was different among granular materials during 60 days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Space Materials Handbook. 3rd; ed.

    NASA Technical Reports Server (NTRS)

    Rittenhouse, John B.; Singletary, John B.

    1969-01-01

    This edition is the result of an extensive revision and reworking of the second edition of the Space Materials Handbook along with the incorporation of entirely new subject matter coverage and new materials data. All of the most significant material, phenomena, properties, and principles covered in the original Handbook are presented and expanded in this revised and updated version. However, treatment of theoretical aspects has been condensed in order that more emphasis could be placed on the extensive new materials knowledge and data obtained from the design and successful launching of a wide variety of space systems. The handbook is organized into four parts, namely: space environment, effect of space environment on materials, materials in space, and biological interaction with spacecraft materials. Information on mechanical, physical, and chemical properties and characteristics is given for a wide variety of metallic and nonmetallic materials. The effects of natural and induced environments on materials are appraised. Materials categories include coverage of thermal control materials, optical materials, adhesives, organic structural materials, inorganic structural materials, electronic components and materials, materials for sealing applications, and lubrication materials. In addition, a comprehensive multiple citation index is incorporated which gives ready access to information on specific subject areas with regard to their locations within the Handbook.

  10. Comparison of High-Performance Fiber Materials Properties in Simulated and Actual Space Environments

    NASA Technical Reports Server (NTRS)

    Finckernor, M. M.

    2017-01-01

    A variety of high-performance fibers, including Kevlar, Nomex, Vectran, and Spectra, have been tested for durability in the space environment, mostly the low Earth orbital environment. These materials have been tested in yarn, tether/cable, and fabric forms. Some material samples were tested in a simulated space environment, such as the Atomic Oxygen Beam Facility and solar simulators in the laboratory. Other samples were flown on the International Space Station as part of the Materials on International Space Station Experiment. Mass loss due to atomic oxygen erosion and optical property changes due to ultraviolet radiation degradation are given. Tensile test results are also presented, including where moisture loss in a vacuum had an impact on tensile strength.

  11. Trajectories of the Home Learning Environment across the First 5 Years: Associations with Children's Vocabulary and Literacy Skills at Prekindergarten

    ERIC Educational Resources Information Center

    Rodriguez, Eileen T.; Tamis-LeMonda, Catherine S.

    2011-01-01

    Children's home learning environments were examined in a low-income sample of 1,852 children and families when children were 15, 25, 37, and 63 months. During home visits, children's participation in literacy activities, the quality of mothers' engagements with their children, and the availability of learning materials were assessed, yielding a…

  12. Grassroots projects aimed at the built environment: Association with neighbourhood deprivation, land-use mix and injury risk to road users.

    PubMed

    Dubé, Anne Sophie; Beausoleil, Maude; Gosselin, Céline; Beaulme, Ginette; Paquin, Sophie; Pelletier, Anne; Goudreau, Sophie; Poirier, Marie-Hélène; Drouin, Louis; Gauvin, Lise

    2014-07-09

    1) To describe grassroots projects aimed at the built environment and associated with active transportation on the Island of Montreal; and 2) to examine associations between the number of projects and indicators of neighbourhood material and social deprivation and the built environment. We identified funding agencies and community groups conducting projects on built environments throughout the Island of Montreal. Through website consultation and a snowballing procedure, we inventoried projects that aimed at transforming built environments and that were carried out by community organizations between January 1, 2006, and November 1, 2010. We coded and validated information about project activities and created an interactive map using Geoclip software. Correlational analyses quantified associations between number of projects, neighbourhood characteristics and deprivation. A total of 134 community organizations were identified, and 183 grassroots projects were inventoried. A large number of projects were aimed at increasing awareness of/improving active or public transportation (n=95), improving road safety (n=84) and enhancing neighbourhood beautification and greening (n=69). The correlation between the presence of projects and the extent of neighbourhood material deprivation was small (Kendall's t=0.26, p<0.001), but in areas with greater social deprivation there were more projects (Kendall's t=0.38, p<0.001). Larger numbers of projects were also associated with the presence of more extensive land-use mix (Kendall's t=0.23, p<0.001) and a greater proportion of road intersections with injured pedestrians, cyclists and motor vehicle users (Kendall's t=0.43, p<0.001). There is significant community mobilization around built environments and active transportation. Investigations of the implementation processes and impacts are warranted.

  13. The Effect of Stress and Hot Corrosion on Nickel-Base Superalloys

    DTIC Science & Technology

    1985-03-01

    in a degradation of material properties and reduced component life. Allen and Whitlow(6). stated that superalloys in combustion turbine environments...pins are tested in combustion gas streams at elevated temperatures. A hot corrosion environment is usually simulated by burning a sulfur-containing fuel...corrosion attack frequently observed on combustion turbine blades retrieved from service. Figure 1 shows the effect of salt thickness on hot corrosion

  14. Core Scientific Effort for Biosurfaces Studies. Task 1

    DTIC Science & Technology

    1991-08-30

    Intraoral Environment by Glow Discharge-I Treatment (GDT) Techniques, Transactions of the Academy of Dental Materials, 1:6-29, 1990. Vrolijk, N.H., Targett... Dental Materials, D. Williams, ed., Pergamon Press, New York, pp 24-27, 1990. I Baier, R.E., Control of Bioadhesion by the Zebra Mussel, in...and Interdisciplinary Sciences, School of Dental Medicine, State University of New York at Buffalo, 1987-Present. I Senior Member, Undergraduate

  15. Development and evaluation of an ablative closeout material for solid rocket booster thermal protection system

    NASA Technical Reports Server (NTRS)

    Patterson, W. J.

    1979-01-01

    A trowellable closeout/repair material designated as MTA-2 was developed and evaluated for use on the Solid Rocket Booster. This material is composed of an epoxy-polysulfide binder and is highly filled with phenolic microballoons for density control and ablative performance. Mechanical property testing and thermal testing were performed in a wind tunnel to simulate the combined Solid Rocket Booster trajectory aeroshear and heating environments. The material is characterized by excellent thermal performance and was used extensively on the Space Shuttle STS-1 and STS-2 flight hardware.

  16. Analysis of optical properties behaviour of CLEARCERAM, fused silica and CaF2 glasses exposed to simulated space conditions

    NASA Astrophysics Data System (ADS)

    Fernández-Rodríguez, M.; Alvarado, C. G.; Núñez, A.; Álvarez-Herrero, A.

    2017-11-01

    Optical instrumentation on-board satellites suffer degradation due to the hostile conditions of space environment. Space conditions produce instrumentation performances changes causing a decrease or a cancellation of their features. Particularly, space environment conditions have a significant influence on the optical properties of glasses which are part of space optical systems. Space environment characteristics which effects on the optical system have to be taken into account are: outgassing, volatile components, gas or water vapor which form part of the spacecraft materials, vacuum, microgravity, micrometeorites, space debris, thermal, mechanical and radiation environment and effects of the high atmosphere [1]. This work is focused on analyzing temperature variations and ultraviolet (UV) and gamma radiation effects on the optical properties of several glasses used on space applications. Thermal environment is composed of radiation from the Sun, the albedo and the Earth radiation and the radiation from the spacecraft to deep space. Flux and influence of temperature on satellite materials depend on factors as the period of year or the position of them on the space system. Taking into account that the transfer mechanisms of heat are limited by the conduction and the radiation, high gradients of temperature are obtained in system elements which can cause changes of their optical properties, birefringence… Also, these thermal cycles can introduce mechanical loads into material structure due to the expansion and the contraction of the material leading to mechanical performances degradation [2]. However, it is the radiation environment the main cause of damage on optical properties of materials used on space instrumentation. This environment consists of a wide range of energetic particles between keV and MeV which are trapped by the geomagnetic field or are flux of particles that cross the Earth environment from the external of the Solar System [3]. The damage produced by the radiation environment on the optical materials can be classified in two types: ionizing or non-ionizing. This damage may produce continual or accumulative (dose) alterations on the optical material performances, or may produce alterations which not remain along the time (transitory effects). The effects of the radiation on optical materials can be summarized on changes of optical transmission and refractive index, variation of density and superficial degradation [4-6]. Two non-invasive and non-destructive techniques such as Optical Spectrum Analyzer and Spectroscopic Ellipsometry [7] have been used to characterize optically the three kinds of studied glasses, CaF2, Fused Silica and Clearceram. The study of the temperature and radiation effects on the glasses optical properties showed that the gamma radiation is the principal responsible of glasses optical degradation. The optical properties of the Clearceram glass have been affected by the gamma irradiation due to the absorption bands induced by the radiation in the visible spectral range (color centers). Therefore, an analysis about the behavior of these color centers with the gamma radiation total dose and with the time after the irradiation has been carried out in the same way that it is performed in [8].

  17. Diffusive mass transport in agglomerated glassy fallout from a near-surface nuclear test

    NASA Astrophysics Data System (ADS)

    Weisz, David G.; Jacobsen, Benjamin; Marks, Naomi E.; Knight, Kim B.; Isselhardt, Brett H.; Matzel, Jennifer E.

    2018-02-01

    Aerodynamically-shaped glassy fallout is formed when vapor phase constituents from the nuclear device are incorporated into molten carriers (i.e. fallout precursor materials derived from soil or other near-field environmental debris). The effects of speciation and diffusive transport of condensing constituents are not well defined in models of fallout formation. Previously we reported observations of diffuse micrometer scale layers enriched in Na, Fe, Ca, and 235U, and depleted in Al and Ti, at the interfaces of agglomerated fallout objects. Here, we derive the timescales of uranium mass transport in such fallout as it cools from 2500 K to 1500 K by applying a 1-dimensional planar diffusion model to the observed 235U/30Si variation at the interfaces. By modeling the thermal transport between the fireball and the carrier materials, the time of mass transport is calculated to be <0.6 s, <1 s, <2 s, and <3.5 s for fireball yields of 0.1 kt, 1 kt, 10 kt, and 100 kt respectively. Based on the calculated times of mass transport, a maximum temperature of deposition of uranium onto the carrier material of ∼2200 K is inferred (1σ uncertainty of ∼200 K). We also determine that the occurrence of micrometer scale layers of material enriched in relatively volatile Na-species as well as more refractory Ca-species provides evidence for an oxygen-rich fireball based on the vapor pressure of the two species under oxidizing conditions. These results represent the first application of diffusion-based modeling to derive material transport, thermal environments, and oxidation-speciation in near-surface nuclear detonation environments.

  18. Diffusive mass transport in agglomerated glassy fallout from a near-surface nuclear test

    DOE PAGES

    Weisz, David G.; Jacobsen, Benjamin; Marks, Naomi E.; ...

    2017-12-15

    Aerodynamically-shaped glassy fallout is formed when vapor phase constituents from the nuclear device are incorporated into molten carriers (i.e. fallout precursor materials derived from soil or other near-field environmental debris). The effects of speciation and diffusive transport of condensing constituents are not well defined in models of fallout formation. Previously we reported observations of diffuse micrometer scale layers enriched in Na, Fe, Ca, and 235U, and depleted in Al and Ti, at the interfaces of agglomerated fallout objects. Here in this paper, we derive the timescales of uranium mass transport in such fallout as it cools from 2500 K tomore » 1500 K by applying a 1-dimensional planar diffusion model to the observed 235U/ 30Si variation at the interfaces. By modeling the thermal transport between the fireball and the carrier materials, the time of mass transport is calculated to be <0.6 s, <1 s, <2 s, and <3.5 s for fireball yields of 0.1 kt, 1 kt, 10 kt, and 100 kt respectively. Based on the calculated times of mass transport, a maximum temperature of deposition of uranium onto the carrier material of ~2200 K is inferred (1σ uncertainty of ~200 K). We also determine that the occurrence of micrometer scale layers of material enriched in relatively volatile Na-species as well as more refractory Ca-species provides evidence for an oxygen-rich fireball based on the vapor pressure of the two species under oxidizing conditions. These results represent the first application of diffusion-based modeling to derive material transport, thermal environments, and oxidation-speciation in near-surface nuclear detonation environments.« less

  19. Diffusive mass transport in agglomerated glassy fallout from a near-surface nuclear test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisz, David G.; Jacobsen, Benjamin; Marks, Naomi E.

    Aerodynamically-shaped glassy fallout is formed when vapor phase constituents from the nuclear device are incorporated into molten carriers (i.e. fallout precursor materials derived from soil or other near-field environmental debris). The effects of speciation and diffusive transport of condensing constituents are not well defined in models of fallout formation. Previously we reported observations of diffuse micrometer scale layers enriched in Na, Fe, Ca, and 235U, and depleted in Al and Ti, at the interfaces of agglomerated fallout objects. Here in this paper, we derive the timescales of uranium mass transport in such fallout as it cools from 2500 K tomore » 1500 K by applying a 1-dimensional planar diffusion model to the observed 235U/ 30Si variation at the interfaces. By modeling the thermal transport between the fireball and the carrier materials, the time of mass transport is calculated to be <0.6 s, <1 s, <2 s, and <3.5 s for fireball yields of 0.1 kt, 1 kt, 10 kt, and 100 kt respectively. Based on the calculated times of mass transport, a maximum temperature of deposition of uranium onto the carrier material of ~2200 K is inferred (1σ uncertainty of ~200 K). We also determine that the occurrence of micrometer scale layers of material enriched in relatively volatile Na-species as well as more refractory Ca-species provides evidence for an oxygen-rich fireball based on the vapor pressure of the two species under oxidizing conditions. These results represent the first application of diffusion-based modeling to derive material transport, thermal environments, and oxidation-speciation in near-surface nuclear detonation environments.« less

  20. Ultrahigh vacuum process for the deposition of nanotubes and nanowires

    DOEpatents

    Das, Biswajit; Lee, Myung B

    2015-02-03

    A system and method A method of growing an elongate nanoelement from a growth surface includes: a) cleaning a growth surface on a base element; b) providing an ultrahigh vacuum reaction environment over the cleaned growth surface; c) generating a reactive gas of an atomic material to be used in forming the nanoelement; d) projecting a stream of the reactive gas at the growth surface within the reactive environment while maintaining a vacuum of at most 1.times.10.sup.-4 Pascal; e) growing the elongate nanoelement from the growth surface within the environment while maintaining the pressure of step c); f) after a desired length of nanoelement is attained within the environment, stopping direction of reactive gas into the environment; and g) returning the environment to an ultrahigh vacuum condition.

  1. Real-time continuous glucose monitoring systems in the classroom/school environment.

    PubMed

    Benassi, Kari; Drobny, Jessica; Aye, Tandy

    2013-05-01

    Children with type 1 diabetes (T1D) spend 4-7 h/day in school with very little supervision of their diabetes management. Therefore, families have become more dependent on technology, such as use of real-time continuous glucose monitoring (RT-CGM), to provide increased supervision of their diabetes management. We sought to assess the impact of RT-CGM use in the classroom/school environment. Children with T1D using RT-CGM, their parents, and teachers completed a questionnaire about RT-CGM in the classroom/school environment. The RT-CGM was tolerated well in the classroom/school environment. Seventy percent of parents, 75% of students, and 51% of teachers found RT-CGM useful in the classroom/school environment. The students found the device to be more disruptive than did their parents and teachers. However, all three groups agreed that RT-CGM increased their comfort with diabetes management at school. Our study suggests that RT-CGM is useful and not disruptive in the classroom/school environment. The development of education materials for teachers could further increase its acceptance in the classroom/school environment.

  2. Most Probable Fire Scenarios in Spacecraft and Extraterrestrial Habitats: Why NASA's Current Test 1 Might Not Always Be Conservative

    NASA Technical Reports Server (NTRS)

    Olson, S. L.

    2004-01-01

    NASA s current method of material screening determines fire resistance under conditions representing a worst-case for normal gravity flammability - the Upward Flame Propagation Test (Test 1[1]). Its simple pass-fail criteria eliminates materials that burn for more than 12 inches from a standardized ignition source. In addition, if a material drips burning pieces that ignite a flammable fabric below, it fails. The applicability of Test 1 to fires in microgravity and extraterrestrial environments, however, is uncertain because the relationship between this buoyancy-dominated test and actual extraterrestrial fire hazards is not understood. There is compelling evidence that the Test 1 may not be the worst case for spacecraft fires, and we don t have enough information to assess if it is adequate at Lunar or Martian gravity levels.

  3. Graphene-Based Platform for Infrared Near-Field Nanospectroscopy of Water and Biological Materials in an Aqueous Environment.

    PubMed

    Khatib, Omar; Wood, Joshua D; McLeod, Alexander S; Goldflam, Michael D; Wagner, Martin; Damhorst, Gregory L; Koepke, Justin C; Doidge, Gregory P; Rangarajan, Aniruddh; Bashir, Rashid; Pop, Eric; Lyding, Joseph W; Thiemens, Mark H; Keilmann, Fritz; Basov, D N

    2015-08-25

    Scattering scanning near-field optical microscopy (s-SNOM) has emerged as a powerful nanoscale spectroscopic tool capable of characterizing individual biomacromolecules and molecular materials. However, applications of scattering-based near-field techniques in the infrared (IR) to native biosystems still await a solution of how to implement the required aqueous environment. In this work, we demonstrate an IR-compatible liquid cell architecture that enables near-field imaging and nanospectroscopy by taking advantage of the unique properties of graphene. Large-area graphene acts as an impermeable monolayer barrier that allows for nano-IR inspection of underlying molecular materials in liquid. Here, we use s-SNOM to investigate the tobacco mosaic virus (TMV) in water underneath graphene. We resolve individual virus particles and register the amide I and II bands of TMV at ca. 1520 and 1660 cm(-1), respectively, using nanoscale Fourier transform infrared spectroscopy (nano-FTIR). We verify the presence of water in the graphene liquid cell by identifying a spectral feature associated with water absorption at 1610 cm(-1).

  4. Arc Jet Testing of Carbon Phenolic for Mars Sample Return and Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Laub, Bernard; Chen, Yih-Kanq; Skokova, Kristina; Delano, Chad

    2004-01-01

    The objective of the Mars Sample Return (MSR) Mission is to return a sample of MArtian soil to Earth. The Earth Entry Vehicle (EEV) brings te samples through the atmosphere to the ground.The program aims to: Model aerothermal environment during EEV flight; On the basis of results, select potential TPS materials for EEV forebody; Fabricate TPS materials; Test the materials in the arc jet environment representative of predicted flight environment;Evaluate material performance; Compare results of modeling predictions with test results.

  5. Microbial fouling and corrosion of carbon steel in deep anoxic alkaline groundwater.

    PubMed

    Rajala, Pauliina; Bomberg, Malin; Vepsäläinen, Mikko; Carpén, Leena

    2017-02-01

    Understanding the corrosion of carbon steel materials of low and intermediate level radioactive waste under repository conditions is crucial to ensure the safe storage of radioactive contaminated materials. The waste will be in contact with the concrete of repository silos and storage containers, and eventually with groundwater. In this study, the corrosion of carbon steel under repository conditions as well as the microbial community forming biofilm on the carbon steel samples, consisting of bacteria, archaea, and fungi, was studied over a period of three years in a groundwater environment with and without inserted concrete. The number of biofilm forming bacteria and archaea was 1,000-fold lower, with corrosion rates 620-times lower in the presence of concrete compared to the natural groundwater environment. However, localized corrosion was detected in the concrete-groundwater environment indicating the presence of local microenvironments where the conditions for pitting corrosion were favorable.

  6. Interplanetary Radiation and Internal Charging Environment Models for Solar Sails

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Altstatt, Richard L.; NeegaardParker, Linda

    2005-01-01

    A Solar Sail Radiation Environment (SSRE) model has been developed for defining charged particle environments over an energy range from 0.01 keV to 1 MeV for hydrogen ions, helium ions, and electrons. The SSRE model provides the free field charged particle environment required for characterizing energy deposition per unit mass, charge deposition, and dose rate dependent conductivity processes required to evaluate radiation dose and internal (bulk) charging processes in the solar sail membrane in interplanetary space. Solar wind and energetic particle measurements from instruments aboard the Ulysses spacecraft in a solar, near-polar orbit provide the particle data over a range of heliospheric latitudes used to derive the environment that can be used for radiation and charging environments for both high inclination 0.5 AU Solar Polar Imager mission and the 1.0 AU L1 solar missions. This paper describes the techniques used to model comprehensive electron, proton, and helium spectra over the range of particle energies of significance to energy and charge deposition in thin (less than 25 micrometers) solar sail materials.

  7. Heavy ion linear accelerator for radiation damage studies of materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response ofmore » the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for U-238(50+) and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.« less

  8. Heavy ion linear accelerator for radiation damage studies of materials

    NASA Astrophysics Data System (ADS)

    Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif

    2017-03-01

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for 238U50+ and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.

  9. SRB thermal protection systems materials test results in an arc-heated nitrogen environment

    NASA Technical Reports Server (NTRS)

    Wojciechowski, C. J.

    1979-01-01

    The external surface of the Solid Rocket Booster (SRB) will experience imposed thermal and shear environments due to aerodynamic heating and radiation heating during launch, staging and reentry. This report is concerned with the performance of the various TPS materials during the staging maneuver. During staging, the wash from the Space Shuttle Main Engine (SSME) exhust plumes impose severe, short duration, thermal environments on the SRB. Five different SRB TPS materials were tested in the 1 MW Arc Plasma Generator (APG) facility. The maximum simulated heating rate obtained in the APG facility was 248 Btu/sq ft./sec, however, the test duration was such that the total heat was more than simulated. Similarly, some local high shear stress levels of 0.04 psia were not simulated. Most of the SSME plume impingement area on the SRB experiences shear stress levels of 0.02 psia and lower. The shear stress levels on the test specimens were between 0.021 and 0.008 psia. The SSME plume stagnation conditions were also simulated.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, Tracy L.; Lubow, S. H.; Bary, Jeffrey S.

    We present high spatial resolution maps of ro-vibrational molecular hydrogen emission from the environment of the GG Tau A binary component in the GG Tau quadruple system. The H{sub 2} v = 1-0 S(1) emission is spatially resolved and encompasses the inner binary, with emission detected at locations that should be dynamically cleared on several hundred year timescales. Extensions of H{sub 2} gas emission are seen to {approx}100 AU distances from the central stars. The v = 2-1 S(1) emission at 2.24 {mu}m is also detected at {approx}30 AU from the central stars, with a line ratio of 0.05 {+-}more » 0.01 with respect to the v = 1-0 S(1) emission. Assuming gas in LTE, this ratio corresponds to an emission environment at {approx}1700 K. We estimate that this temperature is too high for quiescent gas heated by X-ray or UV emission from the central stars. Surprisingly, we find that the brightest region of H{sub 2} emission arises from a spatial location that is exactly coincident with a recently revealed dust 'streamer' which seems to be transferring material from the outer circumbinary ring around GG Tau A into the inner region. As a result, we identify a new excitation mechanism for ro-vibrational H{sub 2} stimulation in the environment of young stars. The H{sub 2} in the GG Tau A system appears to be stimulated by mass accretion infall as material in the circumbinary ring accretes onto the system to replenish the inner circumstellar disks. We postulate that H{sub 2} stimulated by accretion infall could be present in other systems, particularly binaries and 'transition disk' systems which have dust-cleared gaps in their circumstellar environments.« less

  11. CATALOG OF MATERIALS AS POTENTIAL SOURCES OF INDOOR AIR EMISSIONS - VOLUME 1. INSULATION, WALLCOVERINGS, RESI- LIENT FLOOR COVERINGS, CARPET, ADHESIVES, SEALANTS AND CAULKS, AND PESTICIDES

    EPA Science Inventory

    The report discusses and presents data on constituents and emissions from products that have the potential to impact the indoor air environment. t is a tool to be used by researchers to help organize the study of materials as potential sources of indoor air emissions. ncluded are...

  12. Interdisciplinary Student/Teacher Materials in Energy, the Environment, and the Economy: 6, The Energy We Use, Grade 1.

    ERIC Educational Resources Information Center

    Bloch, Lenore; And Others

    This instructional unit contains a set of nine lessons on energy for grade one. Each lesson contains complete teacher and student materials. Reading skills and language experiences are reinforced in each activity. The lessons cover such topics as energy from food, energy from the sun, fossil fuels, the wind, moving water, and energy conservation.…

  13. Exposure to space radiation of high-performance infrared multilayer filters and materials technology experiment (A0056)

    NASA Technical Reports Server (NTRS)

    Hawkins, Gary J.; Seeley, John S.; Hunneman, Roger

    1992-01-01

    Infrared optical multilayer filters and materials were exposed to the space environment of low Earth orbit on LDEF. The effects are summarized of that environment on the physical and optical properties of the filters and materials flown.

  14. The effects of simulated space environmental parameters on six commercially available composite materials

    NASA Technical Reports Server (NTRS)

    Funk, Joan G.; Sykes, George F., Jr.

    1989-01-01

    The effects of simulated space environmental parameters on microdamage induced by the environment in a series of commercially available graphite-fiber-reinforced composite materials were determined. Composites with both thermoset and thermoplastic resin systems were studied. Low-Earth-Orbit (LEO) exposures were simulated by thermal cycling; geosynchronous-orbit (GEO) exposures were simulated by electron irradiation plus thermal cycling. The thermal cycling temperature range was -250 F to either 200 F or 150 F. The upper limits of the thermal cycles were different to ensure that an individual composite material was not cycled above its glass transition temperature. Material response was characterized through assessment of the induced microcracking and its influence on mechanical property changes at both room temperature and -250 F. Microdamage was induced in both thermoset and thermoplastic advanced composite materials exposed to the simulated LEO environment. However, a 350 F cure single-phase toughened epoxy composite was not damaged during exposure to the LEO environment. The simuated GEO environment produced microdamage in all materials tested.

  15. Degradation patterns of natural and synthetic textiles on a soil surface during summer and winter seasons studied using ATR-FTIR spectroscopy.

    PubMed

    Ueland, Maiken; Howes, Johanna M; Forbes, Shari L; Stuart, Barbara H

    2017-10-05

    Textiles are a valuable source of forensic evidence and the nature and condition of textiles collected from a crime scene can assist investigators in determining the nature of the death and aid in the identification of the victim. Until now, much of the knowledge of textile degradation in forensic contexts has been based on the visual inspection of material collected from soil environments. The purpose of the current study was to investigate the potential of a more quantitative approach to the understanding of forensic textile degradation through the application of infrared spectroscopy. Degradation patterns of natural and synthetic textile materials as they were subjected to a natural outdoor environment in Australia were investigated. Cotton, polyester and polyester - cotton blend textiles were placed on a soil surface during the summer and winter seasons and were analysed over periods 1 and 1.5years, respectively, and examined using attenuated total reflectance (ATR) spectroscopy. Statistical analysis of the spectral data obtained for the cotton material correlated with visual degradation and a difference in the onset of degradation between the summer and winter season was revealed. The synthetic material did not show any signs of degradation either visually or statistically throughout the experimental period and highlighted the importance of material type in terms of preservation. The cotton section from the polyester - cotton blend samples was found to behave in a similar manner to that of the 100% cotton samples, however principal component analysis (PCA) demonstrated that the degradation patterns were less distinct in both the summer and winter trial for the blend samples. These findings indicated that the presence of the synthetic material may have inhibited the degradation of the natural material. The use of statistics to analyse the spectral data obtained for textiles of forensic interest provides a better foundation for the interpretation of the data obtained using ATR-FTIR spectroscopy, and has provided insight into textile degradation processes relevant to a soil environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Biosignature Preservation and Detection in Mars Analog Environments.

    PubMed

    Hays, Lindsay E; Graham, Heather V; Des Marais, David J; Hausrath, Elisabeth M; Horgan, Briony; McCollom, Thomas M; Parenteau, M Niki; Potter-McIntyre, Sally L; Williams, Amy J; Lynch, Kennda L

    2017-04-01

    This review of material relevant to the Conference on Biosignature Preservation and Detection in Mars Analog Environments summarizes the meeting materials and discussions and is further expanded upon by detailed references to the published literature. From this diverse source material, there is a detailed discussion on the habitability and biosignature preservation potential of five primary analog environments: hydrothermal spring systems, subaqueous environments, subaerial environments, subsurface environments, and iron-rich systems. Within the context of exploring past habitable environments on Mars, challenges common to all of these key environments are laid out, followed by a focused discussion for each environment regarding challenges to orbital and ground-based observations and sample selection. This leads into a short section on how these challenges could influence our strategies and priorities for the astrobiological exploration of Mars. Finally, a listing of urgent needs and future research highlights key elements such as development of instrumentation as well as continued exploration into how Mars may have evolved differently from Earth and what that might mean for biosignature preservation and detection. Key Words: Biosignature preservation-Biosignature detection-Mars analog environments-Conference report-Astrobiological exploration. Astrobiology 17, 363-400.

  17. Sliding Seal Materials for Adiabatic Engines, Phase 2

    NASA Technical Reports Server (NTRS)

    Lankford, J.; Wei, W.

    1986-01-01

    An essential task in the development of the heavy-duty adiabatic diesel engine is identification and improvements of reliable, low-friction piston seal materials. In the present study, the sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, and loading conditions that are representative of the adiabatic engine environment. In addition, silicon nitride and partially stabilized zirconia disks were ion implanted with TiNi, Ni, Co, and Cr, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Electron microscopy was used to elucidate the micromechanisms of wear following wear testing, and Auger electron spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. The coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implanation of TiNi or Co. This beneficial effect was found to derive from lubricious Ti, Ni, and Co oxides.

  18. Spacelab

    NASA Image and Video Library

    1992-01-22

    This is the Space Shuttle Orbiter Discovery, STS-42 mission, with the First International Microgravity Laboratory (IML-1) module shown in the cargo bay. IML-1, the first in a series of Shuttle flights, was dedicated to study the fundamental materials and life sciences in the microgravity environment inside Spacelab, a laboratory carried aloft by the Shuttle. The mission explored how life forms adapt to weightlessness and investigated how materials behave when processed in space. The IML program gave a team of scientists from around the world access to a unique environment, one that is free from most of Earth's gravity. The 14-nation European Space Agency (ESA), the Canadian Space Agency (SCA), the French National Center for Space Studies (CNES), the German Space Agency and the German Aerospace Research Establishment (DARA/DLR), and the National Space Development Agency of Japan (NASDA) participated in developing hardware and experiments for the IML missions. The missions were managed by NASA's Marshall Space Flight Center. The Orbiter Discovery was launched on January 22, 1992 for the IML-1 mission.

  19. Population, Poverty, and Land Degradation. Teacher's Guide to World Resources. Comprehensive Coursework on the Global Environment.

    ERIC Educational Resources Information Center

    Snyder, Sarah A.

    This teacher's guide presents teaching suggestions and presentation materials about the complex connections among population growth, economic activity, and changes in the environment. The lesson is divided into five parts and may be completed in one or more class periods. Student handouts include: (1) "Facts about Population, Poverty, and…

  20. Effects of atomic oxygen and ultraviolet radiation on candidate elastomeric materials for long duration missions. Test series no.1

    NASA Technical Reports Server (NTRS)

    Linton, R. C.; Finckenor, M. M.; Kamenetzky, R. R.; Gray, P.

    1993-01-01

    Research was conducted at MSFC on the behavior of elastomeric materials after exposure to simulated space environment. Silicone S383 and Viton V747 samples were exposed to thermal vacuum, ultraviolet radiation, and atomic oxygen and then evaluated for changes in material properties. Characterization of the elastomeric materials included weight, hardness, optical inspection under normal and black light, spectrofluorescence, solar absorptance and emittance, Fourier transform infrared spectroscopy, and permeability. These results indicate a degree of sensitivity to exposure and provided some evidence of UV and atomic oxygen synergism.

  1. Current Trends on the Applicability of Ground Aerospace Materials Test Data to Space System Environments

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2010-01-01

    This slide presentation discusses the application of testing aerospace materials to the environment of space for flammability. Test environments include use of drop towers, and the parabolic flight to simulate the low gravity environment of space.

  2. Export Control and the U.S. Defense Industrial Base - Revised. Volume 1: Summary Report and Volume 2: Appendices

    DTIC Science & Technology

    2008-10-01

    advanced materials, US producers still have a reservoir of intellectual property , product capabilities and process know-how built over several...while providing remarkable properties superior to conventional materials (ultra lightweight, high strength and stiffness). Characteristics of these...investor and tax environment; and • A level playing field, with enforcement of trade agreements and intellectual property (IP) rights. Accordingly, the

  3. Housing Quality and Access to Material and Learning Resources within the Home Environment in Developing Countries

    PubMed Central

    Bradley, Robert H.; Putnick, Diane L.

    2011-01-01

    This study examined home environment conditions (housing quality, material resources, formal and informal learning materials) and their relations with the Human Development Index (HDI) in 28 developing countries. Home environment conditions in these countries varied widely. The quality of housing and availability of material resources at home were consistently tied to HDI; the availability of formal and informal learning materials little less so. Gross domestic product (GDP) tended to show a stronger independent relation with housing quality and material resources than life expectancy and education. Formal learning resources were independently related to the GDP and education indices, and informal learning resources were not independently related to any constituent indices of the overall HDI. PMID:22277008

  4. Lifewide Learning for Early Reading Development.

    PubMed

    Dowd, Amy Jo; Friedlander, Elliott; Jonason, Christine; Leer, Jane; Sorensen, Lisa Zook; Guajardo, Jarrett; D'Sa, Nikhit; Pava, Clara; Pisani, Lauren

    2017-03-01

    The authors examine the relationships between children's reading abilities and the enabling environment for learning in the context of Save the Children's Literacy Boost program. They conceptualize the enabling environment at a micro level, with two components: the home literacy environment, represented by reading materials/habits at home, and the community learning environment (community reading activities). Using longitudinal reading scores of 6,874 students in 424 schools in 12 sites across Africa and Asia, there was 1) a modest but consistent relationship between students' home literacy environments and reading scores, and 2) a strong relationship between reading gains and participation in community reading activities, suggesting that interventions should consider both home and community learning environments and their differential influences on interventions across different low-resource settings. © 2017 Wiley Periodicals, Inc.

  5. The chemical effects of the Martian environment on power system component materials: A theoretical approach

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Gaier, James R.

    1990-01-01

    In the foreseeable future, an expedition may be undertaken to explore the planet Mars. Some of the power source options being considered for such a mission are photovoltaics, regenerative fuel cells and nuclear reactors. In addition to electrical power requirements, environmental conditions en route to Mars, in the planetary orbit and on the Martian surface must be simulated and studied in order to anticipate and solve potential problems. Space power systems components such as photovoltaic arrays, radiators, and solar concentrators may be vulnerable to degradation in the Martian environment. Natural characteristics of Mars which may pose a threat to surface power systems include high velocity winds, dust, ultraviolet radiation, large daily variation in temperature, reaction to components of the soil, atmosphere and atmospheric condensates as well as synergistic combinations. Most of the current knowledge of the characteristics of the Martian atmosphere and soil composition was obtained from the Viking 1 and 2 missions in 1976. A theoretical study is presented which was used to assess the effects of the Martian atmospheric conditions on the power systems components. A computer program written at NASA-Lewis for combustion research that uses a free energy minimization technique was used to calculate chemical equilibrium for assigned thermodynamic states of temperature and pressure. The power system component materials selected for this study include: silicon dioxide, silicon, carbon, copper, and titanium. Combinations of environments and materials considered include: (1) Mars atmosphere with power surface material, (2) Mars atmosphere and dust component with power surface material, and (3) Mars atmosphere and hydrogen peroxide or superoxide or superoxide with power system material. The chemical equilibrium calculations were performed at a composition ratio (oxidant to reactant) of 100. The temperature for the silicon dioxide material and silicon, which simulate photovoltaic cells, were 300 and 400 K; for carbon, copper and titanium, which simulate radiator surfaces, 300, 500, and 1000 K. All of the systems were evaluated at pressures of 700, 800, and 900 Pa, which stimulate the Martian atmosphere.

  6. Progress in Spacecraft Environment Interactions: International Space Station (ISS) Development and Operations

    NASA Technical Reports Server (NTRS)

    Koontz, Steve; Suggs, Robb; Schneider, Todd; Minow, Joe; Alred, John; Cooke, Bill; Mikatarian, Ron; Kramer, Leonard; Boeder, paul; Soares, Carlos

    2007-01-01

    The set of spacecraft interactions with the space flight environment that have produced the largest impacts on the design, verification, and operation of the International Space Station (ISS) Program during the May 2000 to May 2007 time frame are the focus of this paper. In-flight data, flight crew observations, and the results of ground-based test and analysis directly supporting programmatic and operational decision-making are reported as are the analysis and simulation efforts that have led to new knowledge and capabilities supporting current and future space explorations programs. The specific spacecraft-environment interactions that have had the greatest impact on ISS Program activities during the first several years of flight are: 1) spacecraft charging, 2) micrometeoroids and orbital debris effects, 3) ionizing radiation (both total dose to materials and single event effects [SEE] on avionics), 4) hypergolic rocket engine plume impingement effects, 5) venting/dumping of liquids, 6) spacecraft contamination effects, 7) neutral atmosphere and atomic oxygen effects, 8) satellite drag effects, and 9) solar ultraviolet effects. Orbital inclination (51.6deg) and altitude (nominally between 350 km and 460 km) determine the set of natural environment factors affecting the performance and reliability of materials and systems on ISS. ISS operates in the F2 region of Earth s ionosphere in well-defined fluxes of atomic oxygen, other ionospheric plasma species, solar UV, VUV, and x-ray radiation as well as galactic cosmic rays, trapped radiation, and solar cosmic rays. The micrometeoroid and orbital debris environment is an important determinant of spacecraft design and operations in any orbital inclination. The induced environment results from ISS interactions with the natural environment as well as environmental factors produced by ISS itself and visiting vehicles. Examples include ram-wake effects, hypergolic thruster plume impingement, materials out-gassing, venting and dumping of fluids, and specific photovoltaic (PV) power system interactions with the ionospheric plasma. Vehicle size (L) and velocity (v), combined with the magnitude and direction of the geomagnetic field (B) produce operationally significant magnetic induction voltages (VxB.L) in ISS conducting structure during high latitude flight (>+/- 45deg) during each orbit. In addition, ISS is a large vehicle and produces a deep wake structure from which both ionospheric plasma and neutrals species are largely excluded. ISS must fly in a very limited number of approved flight attitudes, so that exposure of a particular material or system to environmental factors depends upon: 1) location on ISS, 2) ISS flight configuration, 3) ISS flight attitude, and 4) variation of solar exposure (Beta angle), and hence thermal environment, with time. Finally, an induced ionizing radiation environment is produced by trapped radiation and solar/cosmic ray interactions with the relatively massive ISS structural shielding.

  7. Interdisciplinary Student/Teacher Materials in Energy, the Environment, and the Economy: 1, How a Bill Becomes a Law to Conserve Energy, Grades 9, 11, 12.

    ERIC Educational Resources Information Center

    Brock, Phyllis; And Others

    This instructional unit for secondary school students is designed to integrate facts and concepts of energy, environment, and economics into the study of the process of making and applying a law (the fifty-five mile-per-hour speed limit law). The unit contains activities on the legislative process designed to fit into traditional segments of…

  8. Experimental Reproduction of Type 1B Chondrules

    NASA Technical Reports Server (NTRS)

    Lofgren, G. E.; Le, L.

    2002-01-01

    We have replicated type 1B chondrule textures and compositions with crystallization experiments in which UOC material was melted at 1400 deg.C and cooled at 5-1000 deg.C/hr using graphite crucibles in evacuated silica tubes to provide a reducing environment. Additional information is contained in the original extended abstract.

  9. Sulfur "Concrete" for Lunar Applications - Sublimation Concerns

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Toutanji, Houssam

    2006-01-01

    Melting sulfur and mixing it with an aggregate to form "concrete" is commercially well established and constitutes a material that is particularly well-suited for use in corrosive environments. Discovery of the mineral troilite (FeS) on the moon poses the question of extracting the sulfur for use as a lunar construction material. This would be an attractive alternative to conventional concrete as it does not require water. However, the viability of sulfur concrete in a lunar environment, which is characterized by lack of an atmosphere and extreme temperatures, is not well understood. Here it is assumed that the lunar ore can be mined, refined, and the raw sulfur melded with appropriate lunar regolith to form, for example, bricks. This study evaluates pure sulfur and two sets of small sulfur concrete samples that have been prepared using JSC-1 lunar stimulant and SiO2 powder as aggregate additions. Each set was subjected to extended periods in a vacuum environment to evaluate sublimation issues. Results from these experiments are presented and discussed within the context of the lunar environment.

  10. Structural Technology and Analysis Program (STAP) Delivery Order 0004: Durability Patch

    NASA Astrophysics Data System (ADS)

    Ikegami, Roy; Haugse, Eric; Trego, Angela; Rogers, Lynn; Maly, Joe

    2001-06-01

    Structural cracks in secondary structure, resulting from a high cycle fatigue (HCF) environment, are often referred to as nuisance cracks. This type of damage can result in costly inspections and repair. The repairs often do not last long because the repaired structure continues to respond in a resonant fashion to the environment. Although the use of materials for passive damping applications is well understood, there are few applications to high-cycle fatigue problems. This is because design information characterization temperature, resonant response frequency and strain levels are difficult to determine. The Durability Patch and Damage Dosimeter Program addressed these problems by: (1) Developing a damped repair design process which includes a methodology for designing the material and application characteristics required to optimally damp the repair. (2) Designing and developing a rugged, small, and lightweight data acquisition unit called the damage dosimeter. This is a battery operated, single board computer, capable of collecting three channels of strain and one channel of temperature, processing this data by user developed algorithms written in the C programming language, and storing the processed data in resident memory. The dosimeter is used to provide flight data needed to characterize the vibration environment. The vibration environment is then used to design the damping material characteristics and repair. The repair design methodology and dosimeter were demonstrated on B-52, C-130, and F-15 aircraft applications.

  11. Effects of Heating on Teflon(Registered Trademark) FEP Thermal Control Material from the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    deGroh, Kim; Gaier, James R.; Hall, Rachelle L.; Norris, Mary Jo; Espe, Matthew P.; Cato, Daveen R.

    1999-01-01

    Metallized Teflon(Registered Trademark) FEP (fluorinated ethylene propylene) thermal control material on the Hubble Space Telescope (HST) is degrading in the space environment. Teflon(Registered Trademark) FEP thermal control blankets (space-facing FEP) retrieved during the first servicing mission (SM1) were found to be embrittled on solar facing surfaces and contained microscopic cracks. During the second servicing mission (SM2) astronauts noticed that the FEP outer layer of the multi-layer insulation (MLI) covering the telescope was cracked in many locations around the telescope. Large cracks were observed on the light shield, forward shell and equipment bays. A tightly curled piece of cracked FEP from the light shield was retrieved during SM2 and was severely embrittled, as witnessed by ground testing. A Failure Review Board (FRB) was organized to determine the mechanism causing the MLI degradation. Density, x-ray crystallinity and solid state nuclear magnetic resonance (NMR) analyses of FEP retrieved during SM1 were inconsistent with results of FEP retrieved during SM2. Because the retrieved SM2 material curled while in space, it experienced a higher temperature extreme during thermal cycling, estimated at 200 C, than the SM1 material, estimated at 50 C. An investigation on the effects of heating pristine and FEP exposed on HST was therefore conducted. Samples of pristine. SM1, and SM2 FEP were heated to 200 C and evaluated for changes in density and morphology. Elevated temperature exposure was found to have a major impact on the density of the retrieved materials. Characterization of polymer morphology of as-received and heated FEP samples by NMR provided results that were consistent with the density results. These findings have provided insight to the damage mechanisms of FEP in the space environment.

  12. Comparative Measurements of Earth and Martian Entry Environments in the NASA Langley HYMETS Facility

    NASA Technical Reports Server (NTRS)

    Splinter, Scott C.; Bey, Kim S.; Gragg, Jeffrey G.; Brewer, Amy

    2011-01-01

    Arc-jet facilities play a major role in the development of heat shield materials for entry vehicles because they are capable of producing representative high-enthalpy flow environments. Arc-jet test data is used to certify material performance for a particular mission and to validate or calibrate models of material response during atmospheric entry. Materials used on missions entering Earth s atmosphere are certified in an arc-jet using a simulated air entry environment. Materials used on missions entering the Martian atmosphere should be certified in an arc-jet using a simulated Martian atmosphere entry environment, which requires the use of carbon dioxide. Carbon dioxide has not been used as a test gas in a United States arc-jet facility since the early 1970 s during the certification of materials for the Viking Missions. Materials certified for the Viking missions have been used on every entry mission to Mars since that time. The use of carbon dioxide as a test gas in an arc-jet is again of interest to the thermal protection system community for certification of new heat shield materials that can increase the landed mass capability for Mars bound missions beyond that of Viking and Pathfinder. This paper describes the modification, operation, and performance of the Hypersonic Materials Environmental Test System (HYMETS) arc-jet facility with carbon dioxide as a test gas. A basic comparison of heat fluxes, various bulk properties, and performance characteristics for various Earth and Martian entry environments in HYMETS is provided. The Earth and Martian entry environments consist of a standard Earth atmosphere, an oxygen-rich Earth atmosphere, and a simulated Martian atmosphere. Finally, a preliminary comparison of the HYMETS arc-jet facility to several European plasma facilities is made to place the HYMETS facility in a more global context of arc-jet testing capability.

  13. Skylab parasol material evaluation

    NASA Technical Reports Server (NTRS)

    Jacobs, S.

    1975-01-01

    Results of experimental work to evaluate the degradation rate of a parasol that was used as a means of alleviating thermal problems encountered soon after the launch of the Skylab 1 space vehicle are presented. Material selection criteria are discussed; the material chosen is described, and results of tests performed after environmental exposure at five facilities are given. The facilities used for exposure to ultraviolet radiation/thermal-vacuum environments and the equipment used for testing physical properties before and after exposure are described. Comparisons of ground test and flight test data are included.

  14. In-flight and laboratory vacuum-friction test results

    NASA Technical Reports Server (NTRS)

    Devine, E. J.; Evans, H. E.; Leasure, W. A.

    1973-01-01

    Coefficient of friction measurements were made for six unlubricated metal couples exposed to the space environment aboard the OV-1-13 spacecraft and exposed to laboratory vacuum. Materials studied included mutually soluble, partially soluble, and insoluble metal combinations. Two samples of each material couple were tested in space and in the laboratory using the disk and rider technique. Linear velocity was 0.10 cm/s (2.5 in/min) and rider normal load was 4.45 N (1 lb) for the gold versus silver couples and 8.90 N (2lb) for the other combinations. Results showed that friction data obtained in a clean ion-pumped laboratory vacuum of 10 to the minus 10 power materials with low mutual solubility can be correlated to operation in the vicinity of a typical scientific spacecraft that is exposed to an ambient pressure as low as 10 to the minus 12 power torr. The expected increase in coefficient of friction with solubility was shown. Material couples with high mutual solubility present the hazard of unpredictable drastic friction increase in orbit which may not be evident in laboratory testing at levels down to 10 to the minus 10 power torr. It was also shown that gross cold welding of unlubricated metals exposed to a satellite environment does not occur.

  15. Environmental and medical geochemistry in urban disaster response and preparedness

    USGS Publications Warehouse

    Plumlee, Geoffrey S.; Morman, Suzette A.; Cook, A.

    2012-01-01

    History abounds with accounts of cities that were destroyed or significantly damaged by natural or anthropogenic disasters, such as volcanic eruptions, earthquakes, wildland–urban wildfires, hurricanes, tsunamis, floods, urban firestorms, terrorist attacks, and armed conflicts. Burgeoning megacities place ever more people in the way of harm from future disasters. In addition to the physical damage, casualties, and injuries they cause, sudden urban disasters can also release into the environment large volumes of potentially hazardous materials. Environmental and medical geochemistry investigations help us to (1) understand the sources and environmental behavior of disaster materials, (2) assess potential threats the materials pose to the urban environment and health of urban populations, (3) develop strategies for their cleanup/disposal, and (4) anticipate and mitigate potential environmental and health effects from future urban disasters.

  16. Polymeric materials science in the microgravity environment

    NASA Technical Reports Server (NTRS)

    Coulter, Daniel R.

    1989-01-01

    The microgravity environment presents some interesting possibilities for the study of polymer science. Properties of polymeric materials depend heavily on their processing history and environment. Thus, there seem to be some potentially interesting and useful new materials that could be developed. The requirements for studying polymeric materials are in general much less rigorous than those developed for studying metals, for example. Many of the techniques developed for working with other materials, including heat sources, thermal control hardware and noncontact temperature measurement schemes should meet the needs of the polymer scientist.

  17. Most Probable Fire Scenarios in Spacecraft and Extraterrestrial Habitats: Why NASA's Current Test 1 Might Not Always be Conservative

    NASA Technical Reports Server (NTRS)

    Olson, S. L.

    2004-01-01

    NASA's current method of material screening determines fire resistance under conditions representing a worst-case for normal gravity flammability - the Upward Flame Propagation Test (Test 1). Its simple pass-fail criteria eliminates materials that burn for more than 12 inches from a standardized ignition source. In addition, if a material drips burning pieces that ignite a flammable fabric below, it fails. The applicability of Test 1 to fires in microgravity and extraterrestrial environments, however, is uncertain because the relationship between this buoyancy-dominated test and actual extraterrestrial fire hazards is not understood. There is compelling evidence that the Test 1 may not be the worst case for spacecraft fires, and we don t have enough information to assess if it is adequate at Lunar or Martian gravity levels.

  18. Evaluation of reformulated thermal control coatings in a simulated space environment. Part 1: YB-71

    NASA Technical Reports Server (NTRS)

    Cerbus, Clifford A.; Carlin, Patrick S.

    1994-01-01

    The Air Force Space and Missile Systems Center and Wright Laboratory Materials Directorate (WL/ML) have sponsored and effort to effort to reformulate and qualify Illinois Institute of Technology Research Institute (IITRI) spacecraft thermal control coatings. S13G/LO-1, Z93, and YB-71 coatings were reformulated because the potassium silicate binder, Sylvania PS-7, used in the coatings is no longer manufactured. Coatings utilizing the binder's replacement candidate, Kasil 2130, manufactured by The Philadelphia Quartz (PQ) Corporation, Baltimore, Maryland, and undergoing testing at the Materials Directorate's Space Combined Effects Primary Test and Research Equipment (SCEPTRE) Facility operated by the University of Dayton Research Institute (UDRI). The simulated space environment consists of combined ultraviolet (UV) and electron exposure with in site specimen reflectance measurements. A brief description of the effort at IITRI, results and discussion from testing the reformulated YB-71 coating in SCEPTRE, and plans for further testing of reformulated Z93 and S13G/LO-1 are presented.

  19. Current asthma, respiratory symptoms and airway infections among students in relation to the school and home environment in Japan.

    PubMed

    Takaoka, Motoko; Suzuki, Kyoko; Norbäck, Dan

    2017-08-01

    To study associations between the school and home environment and current asthma, respiratory symptoms and airway infections among Japanese students. Japanese students (12-15 y) (N = 1048) in four schools responded to a questionnaire on respiratory health, allergy and the home environment. Temperature, relative air humidity (RH) and student density (students/m 2 floor area) was measured in the classrooms: dust was collected from floors and in classroom air and analysed for cat (Fel d 1) and dog (Can f 1) allergens. Health associations were analysed by multi-level logistic regression. Doctor's diagnosed asthma was common (13.4%), 8.8% reported cat allergy and 6.1% dog allergy. The median level in floor dust was 41 ng/g (IQR 23-92) for Fel d 1 and 101 ng/g (IQR 54-101) for Can f 1. The median level in air was 18.6 ng/ m 2 / day (IQR5.9-25.1) for Fel d 1 and 18.6 ng/ m 2 / day (IQR 6.0-13.3) for Can f 1. High RH, high student density and airborne cat allergen was associated with airway infections. In the home environment, recent indoor painting, new floor materials, odour, having cats as pets, window pane condensation in winter, and dampness in floor construction were associated with respiratory illness. High relative air humidity, high student density and airborne cat allergens at school may increase the risk of airway infections. Having cats as pets, chemical emissions from paint and new floor materials, odour and dampness can constitute domestic risk factors for respiratory symptoms while having dogs as pets could be protective.

  20. Crew Launch Vehicle Mobile Launcher Solid Rocket Motor Plume Induced Environment

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Sulyma, Peter

    2008-01-01

    The plume-induced environment created by the Ares 1 first stage, five-segment reusable solid rocket motor (RSRMV) will impose high heating rates and impact pressures on Launch Complex 39. The extremes of these environments pose a potential threat to weaken or even cause structural components to fail if insufficiently designed. Therefore the ability to accurately predict these environments is critical to assist in specifying structural design requirements to insure overall structural integrity and flight safety. This paper presents the predicted thermal and pressure environments induced by the launch of the Crew Launch Vehicle (CLV) from Launch Complex (LC) 39. Once the environments are predicted, a follow-on thermal analysis is required to determine the surface temperature response and the degradation rate of the materials. An example of structures responding to the plume-induced environment will be provided.

  1. Investigating the Evolution of Progressive Die Wear on Uncoated Dp1180 Steel in Production Environment

    NASA Astrophysics Data System (ADS)

    Wu, W.; Zhou, D. J.; Adamski, D. J.; Young, D.; Wang, Y. W.

    2017-09-01

    A study of die wear was performed using an uncoated dual phase, 1,180 MPa ultimate tensile strength steel (DP1180) in a progressive die. The objectives of the current study are to evaluate the die durability of various tooling materials and coatings for forming operations on uncoated DP1180 steel and update OEM’s die standards based on the experimental results in the real production environment. In total, 100,800 hits were performed in manufacturing production conditions, where 33 die inserts with the combination of 10 die materials and 9 coatings were investigated. The die inserts were evaluated for surface wear using scanning electron microscopy and characterized in terms of die material and/or coating defects, failure mode, failure initiation and propagation. Surface roughness of the formed parts was characterized using a WYKO NT110 machine. The analytical analysis of the die inserts and formed parts, combined with the failure mode and service life, provide a basis for die material and coating selection for forming AHSS components. The conclusions of this study will guide the selection of die material and coatings for high-volume production of AHSS components.

  2. Simulation of major space particles toward selected materials in a near-equatorial low earth orbit

    NASA Astrophysics Data System (ADS)

    Suparta, Wayan; Zulkeple, Siti Katrina

    2017-05-01

    A low earth orbit near the equator (LEO-NEqO) is exposed to the highest energies from galactic cosmic rays (GCR) and from trapped protons with a wide range of energies. Moreover, GCR fluxes were seen to be the highest in 2009 to 2010 when communication belonging to the RazakSAT-1 satellite was believed to have been lost. Hence, this study aimed to determine the influence of the space environment toward the operation of LEO-NEqO satellites by investigating the behavior of major space particles toward satellite materials. The space environment was referred to GCR protons and trapped protons. Their fluxes were obtained from the Space Environment Information System (SPENVIS) and their tracks were simulated through three materials using a simulation program called Geometry and Tracking (Geant4). The materials included aluminum (Al), gallium arsenide (GaAs) and silicon (Si). Then the total ionizing dose (TID) and non-ionizing dose (NIEL) were calculated for a three-year period. Simulations showed that GCR traveled at longer tracks and produced more secondary radiation than trapped protons. Al turned out to receive the lowest total dose, while GaAs showed to be susceptible toward GCR than Si. However, trapped protons contributed the most in spacecraft doses where Si received the highest doses. Finally, the comparison between two Geant4 programs revealed the estimated doses differed at <18%.

  3. Meditations on the ubiquity and mutability of nano-sized materials in the environment.

    PubMed

    Wiesner, Mark R; Lowry, Gregory V; Casman, Elizabeth; Bertsch, Paul M; Matson, Cole W; Di Giulio, Richard T; Liu, Jie; Hochella, Michael F

    2011-11-22

    A wide variety of nanomaterials can be found naturally occurring in the environment, although finding and characterizing these materials remains a challenge due to their size. Recent studies in the field have shown that natural nanomaterials are common in many geochemical systems. In this issue of ACS Nano, Hutchison and co-workers make us realize that manmade nanomaterials can often be practically identical to those that spontaneously form in the environment. This Perspective discusses the prevalence of nanomaterials in nature, including anthropogenic and naturally occurring nanomaterials, and the dynamic behavior of these materials in the environment. © 2011 American Chemical Society

  4. Thermally emissive sensing materials for chemical spectroscopy analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poole, Zsolt; Ohodnicki, Paul R.

    A sensor using thermally emissive materials for chemical spectroscopy analysis includes an emissive material, wherein the emissive material includes the thermally emissive materials which emit electromagnetic radiation, wherein the electromagnetic radiation is modified due to chemical composition in an environment; and a detector adapted to detect the electromagnetic radiation, wherein the electromagnetic radiation is indicative of the chemical interaction changes and hence chemical composition and/or chemical composition changes of the environment. The emissive material can be utilized with an optical fiber sensor, with the optical fiber sensor operating without the emissive material probed with a light source external to themore » material.« less

  5. Evaluation of Bulk Charging in Geostationary Transfer Orbit and Earth Escape Trajectories Using the Numit 1-D Charging Model

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Coffey, Victoria N.; Parker, Linda N.; Blackwell, William C., Jr.; Jun, Insoo; Garrett, Henry B.

    2007-01-01

    The NUMIT 1-dimensional bulk charging model is used as a screening to ol for evaluating time-dependent bulk internal or deep dielectric) ch arging of dielectrics exposed to penetrating electron environments. T he code is modified to accept time dependent electron flux time serie s along satellite orbits for the electron environment inputs instead of using the static electron flux environment input originally used b y the code and widely adopted in bulk charging models. Application of the screening technique ts demonstrated for three cases of spacecraf t exposure within the Earth's radiation belts including a geostationa ry transfer orbit and an Earth-Moon transit trajectory for a range of orbit inclinations. Electric fields and charge densities are compute d for dielectric materials with varying electrical properties exposed to relativistic electron environments along the orbits. Our objectiv e is to demonstrate a preliminary application of the time-dependent e nvironments input to the NUMIT code for evaluating charging risks to exposed dielectrics used on spacecraft when exposed to the Earth's ra diation belts. The results demonstrate that the NUMIT electric field values in GTO orbits with multiple encounters with the Earth's radiat ion belts are consistent with previous studies of charging in GTO orb its and that potential threat conditions for electrostatic discharge exist on lunar transit trajectories depending on the electrical proper ties of the materials exposed to the radiation environment.

  6. 77 FR 14569 - Notice of Intent To Grant Exclusive License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ... Direct Chip Attach Packaging Methodologies and Apparatuses for Harsh Environments, LEW 17,256-1, to... equipment; semiconductor manufacturing; material manufacturing such as metallurgy, refractory processes, and...

  7. Performance Testing of Lidar Components Subjected to Space Exposure in Space via MISSE 7 Mission

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.

    2012-01-01

    .The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Several laser and lidar components were sent by NASA Langley Research Center (LaRC) as a part of the MISSE 7 mission. The MISSE 7 module was transported to the international space station (ISS) via STS 129 mission that was launched on Nov 16, 2009. Later, the MISSE 7 module was brought back to the earth via the STS 134 that landed on June 1, 2011. The MISSE 7 module that was subjected to exposure in space environment for more than one and a half year included fiber laser, solid-state laser gain materials, detectors, and semiconductor laser diode. Performance testing of these components is now progressing. In this paper, the current progress on post-flight performance testing of a high-speed photodetector and a balanced receiver is discussed. Preliminary findings show that detector characteristics did not undergo any significant degradation.

  8. MISSE-6 hardware

    NASA Image and Video Library

    2009-09-02

    ISS020-E-037367 (1 Sept. 2009) --- A close-up view of a Materials International Space Station Experiment (MISSE-6) on the exterior of the Columbus laboratory is featured in this image photographed by a space walking astronaut during the STS-128 mission’s first session of extravehicular activity (EVA). MISSE collects information on how different materials weather in the environment of space. MISSE was later placed in Space Shuttle Discovery’s cargo bay for its return to Earth.

  9. Low Earth Orbital Mission Aboard the Space Test Experiments Platform (STEP-3)

    NASA Technical Reports Server (NTRS)

    Brinza, David E.

    1992-01-01

    A discussion of the Space Active Modular Materials Experiments (SAMMES) is presented in vugraph form. The discussion is divided into three sections: (1) a description of SAMMES; (2) a SAMMES/STEP-3 mission overview; and (3) SAMMES follow on efforts. The SAMMES/STEP-3 mission objectives are as follows: assess LEO space environmental effects on SDIO materials; quantify orbital and local environments; and demonstrate the modular experiment concept.

  10. Property changes induced by the space environment in composite materials on LDEF: Solar array materials passive LDEF experiment A0171 (SAMPLE)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Surface modifications to composite materials induced by long term exposure in low earth orbit (LEO) were dominated by atomic oxygen erosion and micrometeoroid and space debris impacts. As expected, calculated erosion rates were peculiar to material type and within the predicted order of magnitude. Generally, about one ply of the carbon fiber composites was eroded during the 70 month LDEF experiment. Matrix erosion was greater than fiber erosion and was more evident for a polysulfone matrix than for epoxy matrices. Micrometeoroid and space debris impacts resulted in small (less than 1mm) craters and splattered contaminants on all samples. Surfaces became more diffuse and darker with small increases in emissivity and absorption. Tensile strength decreased roughly with thickness loss, and epoxy matrices apparently became slightly embrittled, probably as a result of continued curing under UV and/or electron bombardment. However, changes in the ultimate yield stress of the carbon reinforced epoxy composites correlate neither with weave direction nor fiber type. Unexpected developments were the discovery of new synergistic effects of the space environment in the interaction of atomic oxygen and copious amounts of contamination and in the induced luminescence of many materials.

  11. 40 CFR 243.203-1 - Requirement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Requirement. 243.203-1 Section 243.203... THE STORAGE AND COLLECTION OF RESIDENTIAL, COMMERCIAL, AND INSTITUTIONAL SOLID WASTE Requirements and Recommended Procedures § 243.203-1 Requirement. Solid wastes (or materials which have been separated for the...

  12. 40 CFR 243.204-1 - Requirement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Requirement. 243.204-1 Section 243.204... THE STORAGE AND COLLECTION OF RESIDENTIAL, COMMERCIAL, AND INSTITUTIONAL SOLID WASTE Requirements and Recommended Procedures § 243.204-1 Requirement. The collection of solid wastes (or materials which have been...

  13. 40 CFR 243.204-1 - Requirement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Requirement. 243.204-1 Section 243.204... THE STORAGE AND COLLECTION OF RESIDENTIAL, COMMERCIAL, AND INSTITUTIONAL SOLID WASTE Requirements and Recommended Procedures § 243.204-1 Requirement. The collection of solid wastes (or materials which have been...

  14. 40 CFR 243.203-1 - Requirement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Requirement. 243.203-1 Section 243.203... THE STORAGE AND COLLECTION OF RESIDENTIAL, COMMERCIAL, AND INSTITUTIONAL SOLID WASTE Requirements and Recommended Procedures § 243.203-1 Requirement. Solid wastes (or materials which have been separated for the...

  15. 40 CFR 243.203-1 - Requirement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Requirement. 243.203-1 Section 243.203... THE STORAGE AND COLLECTION OF RESIDENTIAL, COMMERCIAL, AND INSTITUTIONAL SOLID WASTE Requirements and Recommended Procedures § 243.203-1 Requirement. Solid wastes (or materials which have been separated for the...

  16. 40 CFR 243.204-1 - Requirement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Requirement. 243.204-1 Section 243.204... THE STORAGE AND COLLECTION OF RESIDENTIAL, COMMERCIAL, AND INSTITUTIONAL SOLID WASTE Requirements and Recommended Procedures § 243.204-1 Requirement. The collection of solid wastes (or materials which have been...

  17. The environmental and medical geochemistry of potentially hazardous materials produced by disasters

    USGS Publications Warehouse

    Plumlee, Geoffrey S.; Morman, Suzette A.; Meeker, G.P.; Hoefen, Todd M.; Hageman, Philip L.; Wolf, Ruth E.

    2014-01-01

    Many natural or human-caused disasters release potentially hazardous materials (HM) that may pose threats to the environment and health of exposed humans, wildlife, and livestock. This chapter summarizes the environmentally and toxicologically significant physical, mineralogical, and geochemical characteristics of materials produced by a wide variety of recent disasters, such as volcanic eruptions, hurricanes and extreme storms, spills of mining/mineral-processing wastes or coal extraction by-products, and the 2001 attacks on and collapse of the World Trade Center towers. In describing these characteristics, this chapter also illustrates the important roles that geochemists and other earth scientists can play in environmental disaster response and preparedness. In addition to characterizing in detail the physical, chemical, and microbial makeup of HM generated by the disasters, these roles also include (1) identifying and discriminating potential multiple sources of the materials; (2) monitoring, mapping, and modeling dispersal and evolution of the materials in the environment; (3) understanding how the materials are modified by environmental processes; (4) identifying key characteristics and processes that influence the materials' toxicity to exposed humans and ecosystems; (5) estimating shifts away from predisaster environmental baseline conditions; and (6) using geochemical insights learned from past disasters to help estimate, prepare for, and increase societal resilience to the environmental and related health impacts of future disasters.

  18. Tensions between materials and environmental quality.

    PubMed

    Carpenter, R A

    1976-02-20

    The tensions between availability of materials and quality of the environment will increase with economic growth and the appreciation of environmental values. These tensions can be relieved to an extent by internalizing the costs of environmental protection so that they are reflected in the price of materials. Economic incentives and disincentives, such as effluent fees, are receiving renewed attention (5, pp. 49-51). In addition, government regulation to protect the environment will, perhaps arbitrarily, affect the availability and use of materials. The report, Man, Materials, and Environment (5, p. 25), concluded that: A national materials policy should be based upon the principle that calculations of benefits and costs associated with the extraction, transport, processing, use, and disposal of materials should take full account of the value of common property resources and of any change in the value of common properties resulting from the impact of materials on the environment; and should support the principle that those responsible for impairment of the environment should bear the costs of damage or repair. These principles should become a commonplace element of property rights, legislation, and administrative practice at all levels of government. The difficulty of measuring benefits and costs should not delay adoption of these principles but suggests the need for continuous observation and experimentation. Environmental protection regulations will result in: (i) increased costs for many materials; (ii) disruptive changes in use of materials, due to environmental characteristics and revised cost effectiveness calculations; (iii) restrictions on the siting of processing and manufacturing installations; (iv) preemption of access and surface rights to some mineral bearing lands, particularly those that are federally controlled; (v) diversion of capital from new production facilities; and (vi) frustrating delays in decisions, such as those affecting leasing and plant siting. In return for these generally undesirable disruptions in the continued development and supply of materials, society will obtain: (i) improved quality of air and water; (ii) long-term protection of the natural ecosystems of which man is a part; (iii) more efficient allocation of natural resources on the basis of more accurate and complete accounting of costs; (iv) improved human health through decreased contamination of the environment with toxic substances; and (v) conservation of materials through a closing of the production, use, and disposal cycle. Ingenuity and a more complete understanding of the parts and interactions of the energy, materials, and environment system can do much to reduce the tensions in these conflicts and bring about equitable trade-offs among societal goals.

  19. Separation and Sealing of a Sample Container Using Brazing

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Rivellini, Tommaso P.; Wincentsen, James E.; Gershman, Robert

    2007-01-01

    A special double-wall container and a process for utilizing the container are being developed to enable (1) acquisition of a sample of material in a dirty environment that may include a biological and/or chemical hazard; (2) sealing a lid onto the inner part of the container to hermetically enclose the sample; (3) separating the resulting hermetic container from the dirty environment; and (4) bringing that hermetic container, without any biological or chemical contamination of its outer surface, into a clean environment. The process is denoted S(exp 3)B (separation, seaming, and sealing using brazing) because sealing of the sample into the hermetic container, separating the container from the dirty environment, and bringing the container with a clean outer surface into the clean environment are all accomplished simultaneously with a brazing operation.

  20. Housing quality and access to material and learning resources within the home environment in developing countries.

    PubMed

    Bradley, Robert H; Putnick, Diane L

    2012-01-01

    This study examined home environment conditions (housing quality, material resources, formal and informal learning materials) and their relations with the Human Development Index (HDI) in 28 developing countries. Home environment conditions in these countries varied widely. The quality of housing and availability of material resources at home were consistently tied to HDI; the availability of formal and informal learning materials a little less so. Gross domestic product (GDP) tended to show a stronger independent relation with housing quality and material resources than life expectancy and education. Formal learning resources were independently related to the GDP and education indices, and informal learning resources were not independently related to any constituent indices of the overall HDI. © 2012 The Authors. Child Development © 2012 Society for Research in Child Development, Inc.

  1. Development and evaluation of elastomeric materials for geothermal applications

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Kalfayan, S. H.; Reilly, W. W.; Ingham, J. D.

    1978-01-01

    A material for a casing packer for service for 24 hours in a geothermal environment was developed by synthesis of new elastomers and formulation of available materials. Formulation included use of commercial elastomer gumstocks and also crosslinking of plastic (high Tg) materials. Fibrous reinforcement of fluorocarbon rubbers was emphasized. Organic fiber reinforcement did not increase hot properties significantly. Glass fiber reinforcement gave significant increase in tensile properties. Elongation was reduced, and the glass-reinforced composition examined so far did not hold up well in the geothermal environment. Colloidal asbestos fibers were also investigated. A few experiments with polyphenyl ether gave material with low tensile and high compression set. Available high styrene SBR compositions were studied. Work to date suggests that new synthetic polymers will be required for service in geothermal environments.

  2. Compatibility of Space Nuclear Power Plant Materials in an Inert He/Xe Working Gas Containing Reactive Impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MM Hall

    2006-01-31

    A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing.

  3. Plastic container bagless transfer

    DOEpatents

    Tibrea, Steven L.; D'Amelio, Joseph A.; Daugherty, Brent A.

    2003-11-18

    A process and apparatus are provided for transferring material from an isolated environment into a storage carrier through a conduit that can be sealed with a plug. The plug and conduit can then be severed to provide a hermetically sealed storage carrier containing the material which may be transported for storage or disposal and to maintain a seal between the isolated environment and the ambient environment.

  4. Impact sensitivity of materials in contact with liquid and gaseous oxygen at high pressure

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1972-01-01

    As a result of the Apollo 13 incident, increased emphasis is being placed on materials compatibility in a high pressure GOX environment. It is known that in addition to impact sensitivity of materials, approximately adiabatic compression conditions can contrive to induce materials reactivity. Test runs at high pressure using the ABMA tester indicate the following: (1) The materials used in the tests showed an inverse relationship between thickness and impact sensitivity. (2) Several materials tested exhibited greater impact sensitivity in GOX than in LOX. (3) The impact sensitivity of the materials tested in GOX, at the pressures tested, showed enhanced impact sensitivity with higher pressure. (4) The rank ordering of the materials tested in LOX up to 1000 psia is the same as the rank ordering resulting from tests in LOX at 14.7 psia.

  5. Guidance Manual for Integrating Hazardous Material Control and Management into System Acquisition Programs

    DTIC Science & Technology

    1993-04-01

    34 in the remainder of this "• IPS. Ensure that system safety, Section refer to the DoD format paragraph health hazards, and environmental for the...hazardous materials is controlled in the manner which protects human health and the environment at the least cost. Hazardous Material Control and Management...of hazardous materials is controlled in a manner which protects human health and the environment at the least cost. Hazardous Material Control and

  6. Development of a continuous broad-energy-spectrum electron source

    NASA Technical Reports Server (NTRS)

    Adamo, R. C.; Nanevicz, J. E.

    1985-01-01

    The development of a practical prototype, large-area, continuous-spectrum, multienergy electron source to simulate the lower energy (approx = 1 to 30 keV) portion of the geosynchronous orbit electron environment was investigated. The results of future materials-charging tests using this multienergy source should significantly improve the understanding of actual in-orbit charging processes and should help to resolve some of the descrepancies between predicted and observed spacecraft materials performance.

  7. Scaling analysis applied to the NORVEX code development and thermal energy flight experiment

    NASA Technical Reports Server (NTRS)

    Skarda, J. Raymond Lee; Namkoong, David; Darling, Douglas

    1991-01-01

    A scaling analysis is used to study the dominant flow processes that occur in molten phase change material (PCM) under 1 g and microgravity conditions. Results of the scaling analysis are applied to the development of the NORVEX (NASA Oak Ridge Void Experiment) computer program and the preparation of the Thermal Energy Storage (TES) flight experiment. The NORVEX computer program which is being developed to predict melting and freezing with void formation in a 1 g or microgravity environment of the PCM is described. NORVEX predictions are compared with the scaling and similarity results. The approach to be used to validate NORVEX with TES flight data is also discussed. Similarity and scaling show that the inertial terms must be included as part of the momentum equation in either the 1 g or microgravity environment (a creeping flow assumption is invalid). A 10(exp -4) environment was found to be a suitable microgravity environment for the proposed PCM.

  8. Research on the Use of Robotics in Hazardous Environments at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwok, Kwan S.

    Many hazardous material handling needs exist in remote unstructured environments. Currently these operations are accomplished using personnel in direct contact with the hazards. A safe and cost effective alternative to this approach is the use of intelligent robotic systems for safe handling, packaging, transport, and even excavation of hazardous materials. The Intelligent Systems and Robotics Center of Sandia National Laboratories has developed and deployed robotic technologies for use in hazardous environments, three of which have been deployed in DOE production facilities for handling of special nuclear materials. Other systems are currently under development for packaging special nuclear materials. This papermore » presents an overview of the research activities, including five delivered systems, at %ndia National Laboratories on the use of robotics in hazardous environments.« less

  9. Incorporation of hydrogel as a sensing medium for recycle of sensing material in chemical sensors

    NASA Astrophysics Data System (ADS)

    Hwang, Yunjung; Park, Jeong Yong; Kwon, Oh Seok; Joo, Seokwon; Lee, Chang-Soo; Bae, Joonwon

    2018-01-01

    A hydrogel, produced with agarose extracted from seaweed, was introduced as a reusable medium in ultrasensitive sensors employing conducting polymer nanomaterials and aptamers. A basic dopamine (DA) sensor was constructed by placing a hydrogel, containing a sensing material composed of aptamer-linked carboxylated polypyrrole nanotubes (PPy-COOH NTs), onto a micropatterned gold electrode. The hydrogel provided a benign electrochemical environment, facilitated specific interactions between DA and the PPy-COOH NT sensing material, and simplified the retrieval of PPy-COOH NTs after detection. It was demonstrated that the agarose hydrogel was successfully employed as a sensing medium for detection of DA, providing a benign environment for the electrode type sensor. PPy-COOH NTs were recovered by simply heating the hydrogel in water. The hydrogel also afforded stable signal intensity after repeated use with a limit of detection of 1 nmol and a clear, stable signal up to 100 nmol DA. This work provides relevant information for future research on reusable or recyclable sensors.

  10. Biologically inspired dynamic material systems.

    PubMed

    Studart, André R

    2015-03-09

    Numerous examples of material systems that dynamically interact with and adapt to the surrounding environment are found in nature, from hair-based mechanoreceptors in animals to self-shaping seed dispersal units in plants to remodeling bone in vertebrates. Inspired by such fascinating biological structures, a wide range of synthetic material systems have been created to replicate the design concepts of dynamic natural architectures. Examples of biological structures and their man-made counterparts are herein revisited to illustrate how dynamic and adaptive responses emerge from the intimate microscale combination of building blocks with intrinsic nanoscale properties. By using top-down photolithographic methods and bottom-up assembly approaches, biologically inspired dynamic material systems have been created 1) to sense liquid flow with hair-inspired microelectromechanical systems, 2) to autonomously change shape by utilizing plantlike heterogeneous architectures, 3) to homeostatically influence the surrounding environment through self-regulating adaptive surfaces, and 4) to spatially concentrate chemical species by using synthetic microcompartments. The ever-increasing complexity and remarkable functionalities of such synthetic systems offer an encouraging perspective to the rich set of dynamic and adaptive properties that can potentially be implemented in future man-made material systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. An Ontology to Support the Classification of Learning Material in an Organizational Learning Environment: An Evaluation

    ERIC Educational Resources Information Center

    Valaski, Joselaine; Reinehr, Sheila; Malucelli, Andreia

    2017-01-01

    Purpose: The purpose of this research was to evaluate whether ontology integrated in an organizational learning environment may support the automatic learning material classification in a specific knowledge area. Design/methodology/approach: An ontology for recommending learning material was integrated in the organizational learning environment…

  12. The Thermochemical Degradation of Hot Section Materials for Gas Turbine Engines in Alternative-Fuel Combustion Environments

    NASA Astrophysics Data System (ADS)

    Montalbano, Timothy

    Gas turbine engines remain an integral part of providing the world's propulsion and power generation needs. The continued use of gas turbines requires increased temperature operation to reach higher efficiencies and the implementation of alternative fuels for a lower net-carbon footprint. This necessitates evaluation of the material coatings used to shield the hot section components of gas turbines in these new extreme environments in order to understand how material degradation mechanisms change. Recently, the US Navy has sought to reduce its use of fossil fuels by implementing a blended hydroprocessed renewable diesel (HRD) derived from algae in its fleet. To evaluate the material degradation in this alternative environment, metal alloys are exposed in a simulated combustion environment using this blended fuel or the traditional diesel-like fuel. Evaluation of the metal alloys showed the development of thick, porous scales with a large depletion of aluminum for the blend fuel test. A mechanism linking an increased solubility of the scale to the blend fuel test environment will be discussed. For power generation applications, Integrated Gasification Combined Cycle (IGCC) power plants can provide electricity with 45% efficiency and full carbon capture by using a synthetic gas (syngas) derived from coal, biomass, or another carbon feedstock. However, the combustion of syngas is known to cause high water vapor content levels in the exhaust stream with unknown material consequences. To evaluate the effect of increased humidity, air-plasma sprayed (APS), yttria-stabilized zirconia (YSZ) is thermally aged in an environment with and without humidity. An enhanced destabilization of the parent phase by humid aging is revealed by x-ray diffraction (XRD) and Raman spectroscopy. Microstructural analysis by transmission electron microscopy (TEM) and scanning-TEM (STEM) indicate an enhanced coarsening of the domain structure of the YSZ in the humid environment. The enhanced destabilization and coarsening in the humid aging environment is explained mechanistically by water-derived species being incorporated into the YSZ structure and altering the anion sublattice. The characterization of the metal alloy and ceramic coatings exposed in these alternative environments allows for a deeper understanding of the mechanisms behind the material evolution in these environments.

  13. The Science of Cost-Effective Materials Design - A Study in the Development of a High Strength, Impact Resistant Steel

    NASA Astrophysics Data System (ADS)

    Abrahams, Rachel

    2017-06-01

    Intermediate alloy steels are widely used in applications where both high strength and toughness are required for extreme/dynamic loading environments. Steels containing greater than 10% Ni-Co-Mo are amongst the highest strength martensitic steels, due to their high levels of solution strengthening, and preservation of toughness through nano-scaled secondary hardening, semi-coherent hcp-M2 C carbides. While these steels have high yield strengths (σy 0.2 % >1200 MPa) with high impact toughness values (CVN@-40 >30J), they are often cost-prohibitive due to the material and processing cost of nickel and cobalt. Early stage-I steels such as ES-1 (Eglin Steel) were developed in response to the high cost of nickel-cobalt steels and performed well in extreme shock environments due to the presence of analogous nano-scaled hcp-Fe2.4 C epsilon carbides. Unfortunately, the persistence of W-bearing carbides limited the use of ES-1 to relatively thin sections. In this study, we discuss the background and accelerated development cycle of AF96, an alternative Cr-Mo-Ni-Si stage-I temper steel using low-cost heuristic and Integrated Computational Materials Engineering (ICME)-assisted methods. The microstructure of AF96 was tailored to mimic that of ES-1, while reducing stability of detrimental phases and improving ease of processing in industrial environments. AF96 is amenable to casting and forging, deeply hardenable, and scalable to 100,000 kg melt quantities. When produced at the industrial scale, it was found that AF96 exhibits near-statistically identical mechanical properties to ES-1 at 50% of the cost.

  14. Materials in the economy; material flows, scarcity, and the environment

    USGS Publications Warehouse

    Wagner, Lorie A.

    2002-01-01

    The importance of materials to the economy of the United States is described, including the levels of consumption and uses of materials. The paths (or flows) that materials take from extraction, through processing, to consumer products, and then final disposition are illustrated. Scarcity and environmental issues as they relate to the flow of materials are discussed. Examples for the three main themes of the report (material flows, scarcity, and the environment) are presented.

  15. The Influence of Free Space Environment in the Mission Life Cycle: Material Selection

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Burns, Howard D.; de Groh, Kim K.

    2014-01-01

    The natural space environment has a great influence on the ability of space systems to perform according to mission design specification. Understanding the natural space environment and its influence on space system performance is critical to the concept formulation, design, development, and operation of space systems. Compatibility with the natural space environment is a primary factor in determining the functional lifetime of the space system. Space systems being designed and developed today are growing in complexity. In many instances, the increased complexity also increases its sensitivity to space environmental effects. Sensitivities to the natural space environment can be tempered through appropriate design measures, material selection, ground processing, mitigation strategies, and/or the acceptance of known risks. The design engineer must understand the effects of the natural space environment on the space system and its components. This paper will discuss the influence of the natural space environment in the mission life cycle with a specific focus on the role of material selection.

  16. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.

  17. Surface modifications on InAs decrease indium and arsenic leaching under physiological conditions

    NASA Astrophysics Data System (ADS)

    Jewett, Scott A.; Yoder, Jeffrey A.; Ivanisevic, Albena

    2012-11-01

    Devices containing III-V semiconductors such as InAs are increasingly being used in the electronic industry for a variety of optoelectronic applications. Furthermore, the attractive chemical, material, electronic properties make such materials appealing for use in devices designed for biological applications, such as biosensors. However, in biological applications the leaching of toxic materials from these devices could cause harm to cells or tissue. Additionally, after disposal, toxic inorganic materials can leach from devices and buildup in the environment, causing long-term ecological harm. Therefore, the toxicity of these materials along with their stability in physiological conditions are important factors to consider. Surface modifications are one common method of stabilizing semiconductor materials in order to chemically and electronically passivate them. Such surface modifications could also prevent the leaching of toxic materials by preventing the regrowth of the unstable surface oxide layer and by creating an effective barrier between the semiconductor surface and the surrounding environment. In this study, various surface modifications on InAs are developed with the goal of decreasing the leaching of indium and arsenic. The leaching of indium and arsenic from modified substrates was assessed in physiological conditions using inductively coupled plasma mass spectrometry (ICP-MS). Substrates modified with 11-mercapto-1-undecanol (MU) and graft polymerized with poly(ethylene) glycol (PEG) were most effective at preventing indium and arsenic leaching. These surfaces were characterized using contact angle analysis, ellipsometry, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Substrates modified with collagen and synthetic polyelectrolytes were least effective, due to the destructive nature of acidic environments on InAs. The toxicity of modified and unmodified InAs, along with raw indium, arsenic, and PEG components was assessed using zebrafish embryos.

  18. Pre-Columbian Curriculum Motivators: An Approach to Bi-cultural Instruction.

    ERIC Educational Resources Information Center

    Jimenez, Randall Cosme

    A process that could facilitate a cross-cultural learning environment was designed. The process involved (1) developing motivational devices using an historical selection process that incorporated a "significant difference", evaluated reconstructed historical materials, devices that prevent a "past-present" dichotomy,…

  19. Effects of simulated space environment on Skylab parasol material

    NASA Technical Reports Server (NTRS)

    Slemp, W. S.

    1974-01-01

    A material consisting of ripstop nylon bonded to the Mylar side of aluminized Mylar film was used to construct the first Skylab parasol. The mechanical properties of elongation and tensile strength and the radiative properties of solar absorptance and thermal emittance were measured before and after exposure to simulated solar radiation at intensities of 1.0 and 3.5 solar constants for exposure times as long as 947 hours or 3316 equivalent solar hours. The accelerated testing indicated more severe degradation than was experienced in the real-time test (1 solar constant). The results predicted that this material could have given satisfactory performance throughout the planned lifetime of the Skylab workshop.

  20. The ALMA early science view of FUor/EXor objects - IV. Misaligned outflows in the complex star-forming environment of V1647 Ori and McNeil's Nebula

    NASA Astrophysics Data System (ADS)

    Principe, David A.; Cieza, Lucas; Hales, Antonio; Zurlo, Alice; Williams, Jonathan; Ruíz-Rodríguez, Dary; Canovas, Hector; Casassus, Simon; Mužić, Koraljka; Perez, Sebastian; Tobin, John J.; Zhu, Zhaohuan

    2018-01-01

    We present Atacama Large Millimeter/sub-millimeter Array (ALMA) observations of the star-forming environment surrounding V1647 Ori, an outbursting FUor/EXor pre-main sequence star. Dust continuum and the (J = 2 - 1) 12CO, 13CO, C18O molecular emission lines were observed to characterize the V1647 Ori circumstellar disc and any large scale molecular features present. We detect continuum emission from the circumstellar disc and determine a radius r = 40 au, inclination i = 17°+6-9 and total disc mass of Mdisc of ∼0.1 M⊙. We do not identify any disc structures associated with nearby companions, massive planets or fragmentation. The molecular cloud environment surrounding V1647 Ori is both structured and complex. We confirm the presence of an excavated cavity north of V1647 Ori and have identified dense material at the base of the optical reflection nebula (McNeil's Nebula) that is actively shaping its surrounding environment. Two distinct outflows have been detected with dynamical ages of ∼11 700 and 17 200 yr. These outflows are misaligned suggesting disc precession over ∼5500 yr as a result of anisotropic accretion events is responsible. The collimated outflows exhibit velocities of ∼2 km s-1, similar in velocity to that of other FUor objects presented in this series, but significantly slower than previous observations and model predictions. The V1647 Ori system is seemingly connected by an 'arm' of material to a large unresolved structure located ∼20 arcsec to the west. The complex environment surrounding V1647 Ori suggests it is in the early stages of star formation, which may relate to its classification as both a FUor and EXor type object.

  1. Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content (HHC) - Fueled Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumm, Daniel

    2013-08-31

    The overarching goal of this research program has been to evaluate the potential impacts of coal-derived syngas and high-hydrogen content fuels on the degradation of turbine hot-section components through attack of protective oxides and thermal barrier coatings. The primary focus of this research program has been to explore mechanisms underpinning the observed degradation processes, and connections to the combustion environments and characteristic non-combustible constituents. Based on the mechanistic understanding of how these emerging fuel streams affect materials degradation, the ultimate goal of the program is to advance the goals of the Advanced Turbine Program by developing materials design protocols leadingmore » to turbine hot-section components with improved resistance to service lifetime degradation under advanced fuels exposures. This research program has been focused on studying how: (1) differing combustion environments – relative to traditional natural gas fired systems – affect both the growth rate of thermally grown oxide (TGO) layers and the stability of these oxides and of protective thermal barrier coatings (TBCs); and (2) how low levels of fuel impurities and characteristic non-combustibles interact with surface oxides, for instance through the development of molten deposits that lead to hot corrosion of protective TBC coatings. The overall program has been comprised of six inter-related themes, each comprising a research thrust over the program period, including: (i) evaluating the role of syngas and high hydrogen content (HHC) combustion environments in modifying component surface temperatures, heat transfer to the TBC coatings, and thermal gradients within these coatings; (ii) understanding the instability of TBC coatings in the syngas and high hydrogen environment with regards to decomposition, phase changes and sintering; (iii) characterizing ash deposition, molten phase development and infiltration, and associated corrosive/thermo-chemical attack mechanisms; (iv) developing a mechanics-based analysis of the driving forces for crack growth and delamination, based on molten phase infiltration, misfit upon cooling, and loss of compliance; (v) understanding changes in TGO growth mechanisms associated with these emerging combustion product streams; and (vi) identifying degradation resistant alternative materials (including new compositions or bi-layer concepts) for use in mitigating the observed degradation modes. To address the materials stability concerns, this program integrated research thrusts aimed at: (1) Conducting tests in simulated syngas and HHC environments to evaluate materials evolution and degradation mechanisms; assessing thermally grown oxide development unique to HHC environmental exposures; carrying out high-resolution imaging and microanalysis to elucidate the evolution of surface deposits (molten phase formation and infiltration); exploring thermo-chemical instabilities; assessing thermo-mechanical drivers and thermal gradient effects on degradation; and quantitatively measuring stress evolution due to enhanced sintering and thermo-chemical instabilities induced in the coating. (2) Executing experiments to study the melting and infiltration of simulated ash deposits, and identifying reaction products and evolving phases associated with molten phase corrosion mechanisms; utilizing thermal spray techniques to fabricate test coupons with controlled microstructures to study mechanisms of instability and degradation; facilitating thermal gradient testing; and developing new materials systems for laboratory testing; (3) Correlating information on the resulting combustion environments to properly assess materials exposure conditions and guide the development of lab-scale simulations of material exposures; specification of representative syngas and high-hydrogen fuels with realistic levels of impurities and contaminants, to explore differences in heat transfer, surface degradation, and deposit formation; and facilitating combustion rig testing of materials test coupons.« less

  2. Environmental assessment of applicability of mineral-organic composite for landfill area rehabilitation

    NASA Astrophysics Data System (ADS)

    Mizerna, Kamila; Król, Anna; Mróz, Adrian

    2017-10-01

    This paper undertakes an assessment of the impact of a mineral-organic composite on the environment as well as the potential for its application for land rehabilitation purposes. The analysis involves the release of the leachable contaminations from the material subjected to testing. This material was formed by a composite manufactured on the basis of communal bottom ash and stabilized sewage sludge. The sludge resulting from wastewater treatment was subjected to stabilization and dehydration in waste pounds at the phase of pre-watering until 20% of dry mass is obtained. Subsequently, they were mixed with bottom ash, which was obtained from selective waste collection, in a 1:1 mass ratio. The analysis involved the leaching of inorganic contaminants in the form of heavy metals, sulphates (VI), chlorides, and fluorides as well as organic compounds in the form of organic carbon solution under the effect of leachant with a various level of pH. The analysed components were characterized by various leaching behaviour depending on the leachant pH. On the basis of the results, it was able to assess the potential hazard posed by the examined material on the environment as a consequence of its application for landfill area rehabilitation.

  3. Diamond-Dispersed Fiber-Reinforced Composite for Superior Friction and Wear Properties in Extreme Environments and Method for Fabricating the Same

    NASA Technical Reports Server (NTRS)

    Voronov, Oleg A (Inventor); Street, Kenneth (Inventor); Kear, Bernard H (Inventor)

    2017-01-01

    Systems, methods, and articles of manufacture related to composite materials are discussed herein. These materials can be based on a mixture of diamond particles with a matrix and fibers or fabrics. The matrix can be formed into the composite material through optional pressurization and via heat treatment. These materials display exceptionally low friction coefficient and superior wear resistance in extreme environments.

  4. 40 CFR Appendix C-1 to Subpart E... - Required Provisions-Consulting Engineering Agreements

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Engineering Agreements C Appendix C-1 to Subpart E of Part 35 Protection of Environment ENVIRONMENTAL... Provisions—Consulting Engineering Agreements 1. General 2. Responsibility of the Engineer 3. Scope of Work 4... drawings, designs, specifications, reports, and incidental engineering work or materials furnished...

  5. 40 CFR Appendix C-1 to Subpart E... - Required Provisions-Consulting Engineering Agreements

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Engineering Agreements C Appendix C-1 to Subpart E of Part 35 Protection of Environment ENVIRONMENTAL... Provisions—Consulting Engineering Agreements 1. General 2. Responsibility of the Engineer 3. Scope of Work 4... drawings, designs, specifications, reports, and incidental engineering work or materials furnished...

  6. 40 CFR Appendix C-1 to Subpart E... - Required Provisions-Consulting Engineering Agreements

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Engineering Agreements C Appendix C-1 to Subpart E of Part 35 Protection of Environment ENVIRONMENTAL... Provisions—Consulting Engineering Agreements 1. General 2. Responsibility of the Engineer 3. Scope of Work 4... drawings, designs, specifications, reports, and incidental engineering work or materials furnished...

  7. 40 CFR Appendix C-1 to Subpart E... - Required Provisions-Consulting Engineering Agreements

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Engineering Agreements C Appendix C-1 to Subpart E of Part 35 Protection of Environment ENVIRONMENTAL... Provisions—Consulting Engineering Agreements 1. General 2. Responsibility of the Engineer 3. Scope of Work 4... drawings, designs, specifications, reports, and incidental engineering work or materials furnished...

  8. Investigation of Lithium Metal Hydride Materials for Mitigation of Deep Space Radiation

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Atwell, William

    2016-01-01

    Radiation exposure to crew, electronics, and non-metallic materials is one of many concerns with long-term, deep space travel. Mitigating this exposure is approached via a multi-faceted methodology focusing on multi-functional materials, vehicle configuration, and operational or mission constraints. In this set of research, we are focusing on new multi-functional materials that may have advantages over traditional shielding materials, such as polyethylene. Metal hydride materials are of particular interest for deep space radiation shielding due to their ability to store hydrogen, a low-Z material known to be an excellent radiation mitigator and a potential fuel source. We have previously investigated 41 different metal hydrides for their radiation mitigation potential. Of these metal hydrides, we found a set of lithium hydrides to be of particular interest due to their excellent shielding of galactic cosmic radiation. Given these results, we will continue our investigation of lithium hydrides by expanding our data set to include dose equivalent and to further understand why these materials outperformed polyethylene in a heavy ion environment. For this study, we used HZETRN 2010, a one-dimensional transport code developed by NASA Langley Research Center, to simulate radiation transport through the lithium hydrides. We focused on the 1977 solar minimum Galactic Cosmic Radiation environment and thicknesses of 1, 5, 10, 20, 30, 50, and 100 g/cm2 to stay consistent with our previous studies. The details of this work and the subsequent results will be discussed in this paper.

  9. MSFC Thermal Protection System Materials on MISSE-6

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria M.; Valentine, Peter G.; Gubert, Michael K.

    2010-01-01

    The Lightweight Nonmetallic Thermal Protection Materials Technology (LNTPMT) program studied a number of ceramic matrix composites, ablator materials, and tile materials for durability in simulated space environment. Materials that indicated low atomic oxygen reactivity and negligible change in thermo-optical properties in ground testing were selected to fly on the Materials on International Space Station Experiment (MISSE)-6. These samples were exposed for 17 months to the low Earth orbit environment on both the ram and wake sides of MISSE-6B. Thermo-optical properties are discussed, along with any changes in mass.

  10. Testing of Candidate Rigid Heatshield Materials at LHMEL for the Entry, Descent, and Landing Technology Development Project

    NASA Technical Reports Server (NTRS)

    Sepka, Steven; Gasch, Matthew; Beck, Robin A.; White, Susan

    2012-01-01

    The material testing results described in this paper were part of a material development program of vendor-supplied, proposed heat shield materials. The goal of this program was to develop low density, rigid material systems with an appreciable weight savings over phenolic-impregnated carbon ablator (PICA) while improving material response performance. New technologies, such as PICA-like materials in honeycomb or materials with variable density through-the-thickness were tested. The material testing took place at the Wright-Patterson Air Force Base Laser Hardened Materials Laboratory (LHMEL) using a 10.6 micron CO2 laser operating with the test articles immersed in a nitrogen-gas environment at 1 atmosphere pressure. Test measurements included thermocouple readings of in-depth temperatures, pyrometer readings of surface temperatures, weight scale readings of mass loss, and sectioned-sample readings of char depth. Two laser exposures were applied. The first exposure was at an irradiance of 450 W/cm2 for 50 or 60 seconds to simulate an aerocapture maneuver. The second laser exposure was at an irradiance of 115 W/cm2 for 100 seconds to simulate a planetary entry. Results from Rounds 1 and 2 of these screening tests are summarized.

  11. Stability of silk and collagen protein materials in space.

    PubMed

    Hu, Xiao; Raja, Waseem K; An, Bo; Tokareva, Olena; Cebe, Peggy; Kaplan, David L

    2013-12-05

    Collagen and silk materials, in neat forms and as silica composites, were flown for 18 months on the International Space Station [Materials International Space Station Experiment (MISSE)-6] to assess the impact of space radiation on structure and function. As natural biomaterials, the impact of the space environment on films of these proteins was investigated to understand fundamental changes in structure and function related to the future utility in materials and medicine in space environments. About 15% of the film surfaces were etched by heavy ionizing particles such as atomic oxygen, the major component of the low-Earth orbit space environment. Unexpectedly, more than 80% of the silk and collagen materials were chemically crosslinked by space radiation. These findings are critical for designing next-generation biocompatible materials for contact with living systems in space environments, where the effects of heavy ionizing particles and other cosmic radiation need to be considered.

  12. Stability of Silk and Collagen Protein Materials in Space

    PubMed Central

    Hu, Xiao; Raja, Waseem K.; An, Bo; Tokareva, Olena; Cebe, Peggy; Kaplan, David L.

    2013-01-01

    Collagen and silk materials, in neat forms and as silica composites, were flown for 18 months on the International Space Station [Materials International Space Station Experiment (MISSE)-6] to assess the impact of space radiation on structure and function. As natural biomaterials, the impact of the space environment on films of these proteins was investigated to understand fundamental changes in structure and function related to the future utility in materials and medicine in space environments. About 15% of the film surfaces were etched by heavy ionizing particles such as atomic oxygen, the major component of the low-Earth orbit space environment. Unexpectedly, more than 80% of the silk and collagen materials were chemically crosslinked by space radiation. These findings are critical for designing next-generation biocompatible materials for contact with living systems in space environments, where the effects of heavy ionizing particles and other cosmic radiation need to be considered. PMID:24305951

  13. Evaluation of AK-225(R), Vertrel(R) MCA and HFE A 7100 as Alternative Solvents for Precision Cleaning and Verification Technology

    NASA Technical Reports Server (NTRS)

    Melendez, Orlando; Trizzino, Mary; Fedderson, Bryan

    1997-01-01

    The National Aeronautics and Space Administration (NASA), Kennedy Space Center (KSC) Materials Science Division conducted a study to evaluate alternative solvents for CFC-113 in precision cleaning and verification on typical samples that are used in the KSC environment. The effects of AK-225(R), Vertrel(R), MCA, and HFE A 7100 on selected metal and polymer materials were studied over 1, 7 and 30 day test times. This report addresses a study on the compatibility aspects of replacement solvents for materials in aerospace applications.

  14. Deterministic propagation model for RFID using site-specific and FDTD

    NASA Astrophysics Data System (ADS)

    Cunha de Azambuja, Marcelo; Passuelo Hessel, Fabiano; Luís Berz, Everton; Bauermann Porfírio, Leandro; Ruhnke Valério, Paula; De Pieri Baladei, Suely; Jung, Carlos Fernando

    2015-06-01

    The conduction of experiments to evaluate a tag orientation and its readability in a laboratory offers great potential for reducing time and costs for users. This article presents a novel methodology for developing simulation models for RFID (radio-frequency identification) environments. The main challenges in adopting this model are: (1) to find out how the properties of each one of the materials, on which the tag is applied, influence the read range and to determine the necessary power for tag reading and (2) to find out the power of the backscattered signal received by the tag when energised by the RF wave transmitted by the reader. The validation tests, performed in four different kinds of environments, with tags applied to six different kinds of materials, six different distances and with a reader configured with three different powers, showed achievements on the average of 95.3% accuracy in the best scenario and 87.0% in the worst scenario. The methodology can be easily duplicated to generate simulation models to other different RFID environments.

  15. Bacteriostatic and anti-collagenolytic dental materials through the incorporation of polyacrylic acid modified CuI nanoparticles

    DOEpatents

    Renne, Walter George; Mennito, Anthony Samuel; Schmidt, Michael Gerard; Vuthiganon, Jompobe; Chumanov, George

    2015-05-19

    Provided are antibacterial and antimicrobial surface coatings and dental materials by utilizing the antimicrobial properties of copper chalcogenide and/or copper halide (CuQ, where Q=chalcogens including oxygen, or halogens, or nothing). An antimicrobial barrier is created by incorporation of CuQ nanoparticles of an appropriate size and at a concentration necessary and sufficient to create a unique bioelectrical environment. The unique bioelectrical environment results in biocidal effectiveness through a multi-factorial mechanism comprising a combination of the intrinsic quantum flux of copper (Cu.sup.0, Cu.sup.1+, Cu.sup.2+) ions and the high surface-to-volume electron sink facilitated by the nanoparticle. The result is the constant quantum flux of copper which manifests and establishes the antimicrobial environment preventing or inhibiting the growth of bacteria. The presence of CuQ results in inhibiting or delaying bacterial destruction and endogenous enzymatic breakdown of the zone of resin inter-diffusion, the integrity of which is essential for dental restoration longevity.

  16. Metals combustion in normal gravity and microgravity

    NASA Technical Reports Server (NTRS)

    Steinberg, Theodore A.; Wilson, D. Bruce; Benz, Frank J.

    1993-01-01

    The study of the combustion characteristics of metallic materials has been an ongoing area of research at the NASA White Sands Test Facility (WSTF). This research has been in support of both government and industrial operations and deals not only with the combustion of specific metallic materials but also with the relative flammabilities of these materials under similar conditions. Since many of the metallic materials that are characterized at WSTF for aerospace applications are to be used in microgravity environments, it was apparent that the testing of these materials needed to proceed in a microgravity environment. It was believed that burning metallic materials in a microgravity environment would allow the evaluation of the validity of applying normal gravity combustion tests to characterize metallic materials to be used in microgravity environments. It was also anticipated that microgravity testing would provide insight into the general combustion process of metallic materials. The availability of the NASA Lewis Research Center's (LeRC) 2.2-second drop tower provided the necessary facility to accomplish the microgravity portion of the testing while the normal gravity testing was conducted at NASA WSTF. The tests, both at LeRC and WSTF, were conducted in the same instrumented system and utilized the standard metal flammability test of upward propagation burning of cylindrical rod samples.

  17. Evaluation of seals, lubricants, and adhesives used on LDEF

    NASA Technical Reports Server (NTRS)

    Dursch, Harry; Keough, Bruce; Pippin, Gary

    1993-01-01

    A wide variety of seals, lubricants, and adhesives were used on the Long Duration Exposure Facility (LDEF). The results, to date, of the Systems Special Investigation Group (SIG) and the Materials SIG investigation into the effect of the long term low Earth orbit (LEO) exposure on these materials is discussed. Results of this investigation show that if the material was shielded from exposure to LDEF's external environment, the 69 month exposure to LEO had minimal effect on the material. However, if the material was on LDEF's exterior surface, a variety of events occurred ranging from no material change, to changes in mechanical or physical properties, to complete disappearance of the material. The results are from the following sources: (1) visual examinations and/or testing of materials performed by various LDEF experimenters, (2) testing done at Boeing in support of the Materials or Systems SIG investigations, (3) testing done at Boeing on Boeing hardware flown on LDEF.

  18. Effect of Ram and Zenith Exposure on the Optical Properties of Polymers in Space

    NASA Technical Reports Server (NTRS)

    Li, Yuachun; de Groh, Kim K.; Banks, Bruce A.; Leneghan, Halle; Asmar, Olivia

    2017-01-01

    The temperature of spacecraft is influenced by the solar absorptance and thermal emittance of the external spacecraft materials. Optical and thermal properties can degrade over time in the harsh low Earth orbital (LEO) space environment where spacecraft external materials are exposed to various forms of radiation, thermal cycling, and atomic oxygen. Therefore, it is important to test the durability of spacecraft materials in the space environment. One objective of the Polymers and Zenith Polymers Experiments was to determine the effect of LEO space exposure on the optical properties of various spacecraft polymers. These experiments were flown as part of the Materials International Space Station Experiment 7 (MISSE 7) mission on the exterior of the International Space Station (ISS) for 1.5 years. Samples were flown in ram, wake or zenith directions, receiving varying amounts of atomic oxygen and solar radiation exposure. Total and diffuse reflectance and transmittance of flight and corresponding control samples were obtained post-flight using a Cary 5000 UV-Vis-NIR Spectrophotometer. Integrated air mass zero solar absorptance (s) of the flight and control samples were computed from the total transmittance and reflectance, and compared. The optical data are compared with similar polymers exposed to space for four years as part of MISSE 2, and with atomic oxygen erosion data, to help understand the degradation of these polymers in the space environment. Results show that prolonged space exposure increases the solar absorptance of some materials. Knowing which polymers remain stable will benefit future spacecraft design.

  19. 77 FR 24746 - Constraint on Releases of Airborne Radioactive Materials to the Environment for Licensees Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... Materials to the Environment for Licensees Other Than Power Reactors AGENCY: Nuclear Regulatory Commission... Environment for Licensees other than Power Reactors.'' This RG provides guidance on methods acceptable to the... environment. ADDRESSES: Please refer to Docket ID NRC-2010-0158 when contacting the NRC about the availability...

  20. Tribological properties of polymer films and solid bodies in a vacuum environment

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1988-01-01

    The tribological properties of ten different polymer based materials were evaluated in a vacuum environment to determine their suitability for possible lubrication applications in a space environment, such as might be encountered on the proposed Space Station. A pin-on-disk tribometer was used and the polymer materials were evaluated either as solid body disks or as films applied to 440C HT stainless steel disks. A 440C HT stainless steel hemispherically tipped pin was slid against the polymer materials. For comparison, similar tests were conducted in a controlled air atmosphere of 50 percent relative humidity air. In most instances, the polymer materials lubricated much better under vacuum conditions than in air. Thus, several of the materials show promise as lubricants for vacuum applications. Friction coefficients of 0.05 or less and polymer material wear rates of up to 2 orders of magnitude less than in air were obtained. One material showed considerable promise as a traction drive material. Relative high friction coefficients (0.36 to 0.52) and reasonably low wear rates were obtained in vacuum.

  1. Tribological properties of polymer films and solid bodies in a vacuum environment

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1987-01-01

    The tribological properties of ten different polymer based materials were evaluated in a vacuum environment to determine their suitability for possible lubrication applications in a space environment, such as might be encountered on the proposed space station. A pin-on-disk tribometer was used and the polymer materials were evaluated either as solid body disks or as films applied to 440C HT stainless steel disks. A 440C HT stainless steel hemispherically tipped pin was slid against the polymer materials. For comparison, similar tests were conducted in a controlled air atmosphere of 50 percent relative humidity air. In most instances, the polymer materials lubricated much better under vacuum conditions than in air. Thus, several of the materials show promise as lubricants for vacuum applications. Friction coefficients of 0.05 or less and polymer material wear rates of up to 2 orders of magnitude less than in air were obtained. One material showed considerable promise as a traction drive material. Relatively high friction coefficients (0.36 to 0.52) and reasonably low wear rates were obtained in vacuum.

  2. Development of Anticorrosive Polymer Nanocomposite Coating for Corrosion Protection in Marine Environment

    NASA Astrophysics Data System (ADS)

    Mardare, L.; Benea, L.

    2017-06-01

    The marine environment is considered to be a highly aggressive environment for metal materials. Steels are the most common materials being used for shipbuilding. Corrosion is a major cause of structural deterioration in marine and offshore structures. Corrosion of carbon steel in marine environment becomes serious due to the highly corrosive nature of seawater with high salinity and microorganism. To protect metallic materials particularly steel against corrosion occurrence various organic and inorganic coatings are used. The most used are the polymeric protective coatings. The nanostructured TiO2 polymer coating is able to offer higher protection to steel against corrosion, and performed relatively better than other polymer coatings.

  3. Simulation of the low earth orbital atomic oxygen interaction with materials by means of an oxygen ion beam

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Paulsen, Phillip E.; Steuber, Thomas J.

    1989-01-01

    Atomic oxygen is the predominant species in low-Earth orbit between the altitudes of 180 and 650 km. These highly reactive atoms are a result of photodissociation of diatomic oxygen molecules from solar photons having a wavelength less than or equal to 2430A. Spacecraft in low-Earth orbit collide with atomic oxygen in the 3P ground state at impact energies of approximately 4.2 to 4.5 eV. As a consequence, organic materials previously used for high altitude geosynchronous spacecraft are severely oxidized in the low-Earth orbital environment. The evaluation of materials durability to atomic oxygen requires ground simulation of this environment to cost effectively screen materials for durability. Directed broad beam oxygen sources are necessary to evaluate potential spacecraft materials performance before and after exposure to the simulated low-Earth orbital environment. This paper presents a description of a low energy, broad oxygen ion beam source used to simulate the low-Earth orbital atomic oxygen environment. The results of materials interaction with this beam and comparison with actual in-space tests of the same meterials will be discussed. Resulting surface morphologies appear to closely replicate those observed in space tests.

  4. The role of the micro environment on the tribological behavior of materials

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1980-01-01

    The properties of the environment which exert an influence upon adhesion, friction, wear, and lubrication of materials in solid state contact are discussed. The effect of the environment upon lubricants and lubricant properties is considered in relation to the interaction of the lubricant with the material surfaces in solid state contact and the ability of lubricants to provide protective surface films.

  5. Burner Rig in the Material and Stresses Building

    NASA Image and Video Library

    1969-11-21

    A burner rig heats up a material sample in the Materials and Stresses Building at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Materials technology is an important element in the successful development of advanced airbreathing and rocket propulsion systems. Different types of engines operate in different environments so an array of dependable materials is needed. NASA Lewis began investigating the characteristics of different materials shortly after World War II. In 1949 the materials group was expanded into its own division. The Lewis researchers sought to study and test materials in environments that simulate the environment in which they would operate. The Materials and Stresses Building, built in 1949, contained a number of laboratories to analyze the materials. They are subjected to high temperatures, high stresses, corrosion, irradiation, and hot gasses. The Physics of Solids Laboratory included a cyclotron, cloud chamber, helium cryostat, and metallurgy cave. The Metallographic Laboratory possessed six x-ray diffraction machines, two metalloscopes, and other equipment. The Furnace Room had two large induction machines, a 4500⁰ F graphite furnace, and heat treating equipment. The Powder Laboratory included 60-ton and 3000-ton presses. The Stresses Laboratory included stress rupture machines, fatigue machines, and tensile strength machines.

  6. Aqueous corrosion and corrosion-sensitive embrittlement of Fe{sub 3}Al-based and lean-aluminum iron aluminides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.G.; Buchanan, R.A.

    Aqueous corrosion and corrosion-sensitive embrittlement of iron aluminides were characterized as functions of environment, alloying content, notch sensitivity, and strain rate. Polarization resistance and cyclic anodic polarization evaluations were performed in 3.5 wt % NaCl, 200 ppM Cl{sup {minus}} (pH = 4), and 1 N NaOH solutions. In the mild acid-chloride solution [200 ppM Cl{sup {minus}} (pH = 4)], the pitting-corrosion resistance of the new lean-aluminum iron aluminides (FAP-Y and CM-Mo) was comparable to that of the Fe{sub 3}Al-based FAL-Mo. In the higher-chloride 3.5 wt % NaCl, the resistance of CM-Mo was slightly less but FAP-Y showed quite similar behaviormore » to FAL-Mo. In 1 N NaOH solution, all materials exhibited ideal passive behavior. Under slow-strain-rate test conditions in the mild acid-chloride electrolyte, prior work had shown the ductilities (% elongations) of Fe{sub 3}Al-based materials to be {approximately}7% and {approximately}1% at the freely-corroding and hydrogen-charging potentials, respectively. Present studied on the lean-aluminum materials have shown the ductilities to be {approximately}17% and {approximately}5%, respectively. Thus, the present results indicate that these new materials have reasonably-good aqueous-corrosion properties in chloride environments and significantly-enhanced ductilities under aqueous corrosion conditions. The strain rate and notch sensitivities of high-aluminum iron aluminide (FA-129) were investigated by performing slow-strain-rate tests. The notch sensitivity was independent of strain rate and the notch sensitivity in the aqueous environment was similar to that in air.« less

  7. Tulane/Xavier Center for Bioenvironmental Research; project: hazardous materials in aquatic environments; subproject: biomarkers and risk assessment in Bayou Trepagnier, LA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ide, C.

    1996-12-31

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established in 1989 as the umbrella organization to coordinate environmental research at both universities. CBR projects funded by the DOE under the Hazardous Materials in Aquatic Environments grant are defining the following: (1) the complex interactions that occur during the transport of contaminants through wetlands environments, (2) the actual and potential impact of contaminants on ecological systems and health, (3) the mechanisms and new technologies through whichmore » these impacts might be remediated, and (4) new programs aimed at educating and training environmental workers of the future. The subproject described in this report, `Biomarkers and Risk Assessment in Bayou Trepagnier, LN`, is particularly relevant to the US Department of Energy`s Environmental Restoration and Waste Management program aimed at solving problems related to hazard monitoring and clean-up prioritization at sites with aquatic pollution problems in the DOE complex.« less

  8. Method for making an energetic material

    DOEpatents

    Fox, Robert V [Idaho Falls, ID

    2008-03-18

    A method for making trinitrotoluene is described, and which includes the steps of providing a source of aqueous nitric acid having a concentration of less than about 95% by weight; mixing a surfactant with the source of aqueous nitric acid so as to dehydrate the aqueous nitric acid to produce a source of nitronium ions; providing a supercritical carbon dioxide environment; providing a source of an organic material to be nitrated to the supercritical carbon dioxide environment; and controllably mixing the source or nitronium ions with the supercritical carbon dioxide environment to nitrate the organic material and produce trinitrotoluene.

  9. Coatings could protect composites from hostile space environment

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.

    1991-01-01

    An experiment has been conducted on about 100 different material/process combinations, most of which were candidates for use in solar arrays having high power-to-weight ratios. These substances were exposed to the LEO environment during Long-Duration Exposure Facility Experiment A0171 in order to evaluate the synergistic effects of the LEO environment on the materials' mechanical, electrical, and optical properties. Materials evaluated include solar cells, cover slips having antireflectance coatings, adhesives, encapsulants, reflective materials, mast and harness materials, structural composites, and thermal control thin films. About one-sixth of the experiment tray was devoted to composite-material tensile specimens, which were specifically to be studied for changes in their mechanical properties. Preliminary results of the surface-damage evaluation are presented. These surface effects are dominated by atomic-oxygen erosion and micrometeoroid/space debris impacts.

  10. Use of cork as absorbent material

    NASA Astrophysics Data System (ADS)

    Trematerra, Amelia; Lombardi, Ilaria; D'Alesio, Andrea

    2017-07-01

    Cork is a green and sustainable material. At the end of its useful life, it can be disposed of into the environment without causing any damage. It can be used to improve the acoustics inside environments, as a system for the reduction of reverberation time. Sound absorption systems consist of cork panels mounted at a distance onto a rigid wall. The thickness of the cork panels considered are 1.5 mm and 2.5 mm. While the distances considered from the rigid wall are 3 cm, 5 cm, 10 cm and 15 cm. The absorption coefficient of the samples was measured in the frequency range from 100 Hz to 2,000 Hz with an impedance tube (tube of Kundt). Furthermore, the problems relating to the realization of sound-absorption systems composed of cork panels are also discussed.

  11. Overview of Photonic Materials for Application in Space Environments

    NASA Technical Reports Server (NTRS)

    Taylor, E. W.; Osinski, M.; Svimonishvili, Tengiz; Watson, M.; Bunton, P.; Pearson, S. D.; Bilbro, J.

    1999-01-01

    Future space systems will he based on components evolving from the development and refinement of new and existing photonic materials. Optically based sensors, inertial guidance, tracking systems, communications, diagnostics, imaging and high speed optical processing are but a few of the applications expected to widely utilize photonic materials. The response of these materials to space environment effects (SEE) such as spacecraft charging, orbital debris, atomic oxygen, ultraviolet irradiation, temperature and ionizing radiation will be paramount to ensuring successful space applications. The intent of this paper is to, address the latter two environments via a succinct comparison of the known sensitivities of selected photonic materials to the temperature and ionizing radiation conditions found in space and enhanced space environments Delineation of the known temperature and radiation induced responses in LiNbO3, AlGaN, AlGsAs,TeO2, Si:Ge, and several organic polymers are presented. Photonic materials are realizing rapid transition into applications for many proposed space components and systems including: optical interconnects, optical gyros, waveguide and spatial light modulators, light emitting diodes, lasers, optical fibers and fiber optic amplifiers. Changes to material parameters such as electrooptic coefficients, absorption coefficients, polarization, conductivity, coupling coefficients, diffraction efficiencies, and other pertinent material properties examined for thermo-optic and radiation induced effect. Conclusions and recommendations provide the reader with an understanding of the limitations or attributes of material choices for specific applications.

  12. Europa Propulsion Valve Seat Material Testing

    NASA Technical Reports Server (NTRS)

    Addona, Brad M.

    2017-01-01

    The Europa mission and spacecraft design presented unique challenges for selection of valve seat materials that met the fluid compatibility requirements, and combined fluid compatibility and high radiation exposure level requirements. The Europa spacecraft pressurization system valves will be exposed to fully saturated propellant vapor for the duration of the mission. The effects of Nitrogen Tetroxide (NTO) and Monomethylhydrazine (MMH) propellant vapors on heritage valve seat materials, such as Vespel SP-1 and Polychlorotrifluoroethylene (PCTFE), were evaluated to determine if an alternate material is required. In liquid system applications, Teflon is the only available compatible valve seat material. Radiation exposure data for Teflon in an air or vacuum environment has been previously documented. Radiation exposure data for Teflon in an oxidizer environment such as NTO, was not available, and it was unknown whether the effects would be similar to those on air-exposed samples. Material testing was conducted by Marshall Space Flight Center (MSFC) and White Sands Test Facility (WSTF) to determine the effects of propellant vapor on heritage seat materials for pressurization valve applications, and the effects of combined radiation and NTO propellant exposure on Teflon. The results indicated that changes in heritage pressurization valve seat materials' properties rendered them unsuitable for the Europa application. The combined radiation and NTO exposure testing of Teflon produced results equivalent to combined radiation and air exposure results.

  13. Materials challenges for nuclear systems

    DOE PAGES

    Allen, Todd; Busby, Jeremy; Meyer, Mitch; ...

    2010-11-26

    The safe and economical operation of any nuclear power system relies to a great extent, on the success of the fuel and the materials of construction. During the lifetime of a nuclear power system which currently can be as long as 60 years, the materials are subject to high temperature, a corrosive environment, and damage from high-energy particles released during fission. The fuel which provides the power for the reactor has a much shorter life but is subject to the same types of harsh environments. This article reviews the environments in which fuels and materials from current and proposed nuclearmore » systems operate and then describes how the creation of the Advanced Test Reactor National Scientific User Facility is allowing researchers from across the U.S. to test their ideas for improved fuels and materials.« less

  14. Biosignature Preservation and Detection in Mars Analog Environments

    PubMed Central

    Graham, Heather V.; Des Marais, David J.; Hausrath, Elisabeth M.; Horgan, Briony; McCollom, Thomas M.; Parenteau, M. Niki; Potter-McIntyre, Sally L.; Williams, Amy J.; Lynch, Kennda L.

    2017-01-01

    Abstract This review of material relevant to the Conference on Biosignature Preservation and Detection in Mars Analog Environments summarizes the meeting materials and discussions and is further expanded upon by detailed references to the published literature. From this diverse source material, there is a detailed discussion on the habitability and biosignature preservation potential of five primary analog environments: hydrothermal spring systems, subaqueous environments, subaerial environments, subsurface environments, and iron-rich systems. Within the context of exploring past habitable environments on Mars, challenges common to all of these key environments are laid out, followed by a focused discussion for each environment regarding challenges to orbital and ground-based observations and sample selection. This leads into a short section on how these challenges could influence our strategies and priorities for the astrobiological exploration of Mars. Finally, a listing of urgent needs and future research highlights key elements such as development of instrumentation as well as continued exploration into how Mars may have evolved differently from Earth and what that might mean for biosignature preservation and detection. Key Words: Biosignature preservation—Biosignature detection—Mars analog environments—Conference report—Astrobiological exploration. Astrobiology 17, 363–400. PMID:28177270

  15. Using Reactive Transport Modeling to Understand Formation of the Stimson Sedimentary Unit and Altered Fracture Zones at Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Hausrath, E. M.; Ming, D. W.; Peretyazhko, T.; Rampe, E. B.

    2017-01-01

    Water flowing through sediments at Gale Crater, Mars created environments that were likely habitable, and sampled basin-wide hydrological systems. However, many questions remain about these environments and the fluids that generated them. Measurements taken by the Mars Science Laboratory Curiosity of multiple fracture zones can help constrain the environments that formed them because they can be compared to nearby associated parent material (Figure 1). For example, measurements of altered fracture zones from the target Greenhorn in the Stimson sandstone can be compared to parent material measured in the nearby Big Sky target, allowing constraints to be placed on the alteration conditions that formed the Greenhorn target from the Big Sky target. Similarly, CheMin measurements of the powdered < 150 micron fraction from the drillhole at Big Sky and sample from the Rocknest eolian deposit indicate that the mineralogies are strikingly similar. The main differences are the presence of olivine in the Rocknest eolian deposit, which is absent in the Big Sky target, and the presence of far more abundant Fe oxides in the Big Sky target. Quantifying the changes between the Big Sky target and the Rocknest eolian deposit can therefore help us understand the diagenetic changes that occurred forming the Stimson sedimentary unit. In order to interpret these aqueous changes, we performed reactive transport modeling of 1) the formation of the Big Sky target from a Rocknest eolian deposit-like parent material, and 2) the formation of the Greenhorn target from the Big Sky target. This work allows us to test the relationships between the targets and the characteristics of the aqueous conditions that formed the Greenhorn target from the Big Sky target, and the Big Sky target from a Rocknest eolian deposit-like parent material.

  16. The role of the micro environment on the tribological behavior of materials

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1980-01-01

    The paper reviews studies of the role of the microenvironment in the adhesion, friction, and wear behavior of materials in solid-state contact. The microenvironment is defined as the environment on the surface of solids in solid-state contact. Properties of the environment are discussed which exert an influence on the adhesion, friction, wear, and lubrication of materials in contact. The effect of the environment on lubricants and their properties is considered with respect to the interaction of lubricants with material surfaces in contact; the effect on the ability of lubricants to provide protective surface films is also considered. It is concluded that naturally occurring oxides are probably the best available natural solid-film lubricants.

  17. A shirt containing multistage phase change material and active cooling components was associated with increased exercise capacity in a hot, humid environment.

    PubMed

    McFarlin, Brian K; Henning, Andrea L; Venable, Adam S; Williams, Randall R; Best Sampson, Jill N

    2016-08-01

    Recent advances in clothing design include the incorporation of phase change materials (PCM) and other active cooling components (ACC) to provide better body heat dissipation. The purpose of this study was to determine the effect of wearing a shirt containing multistage PCM/ACC on exercise capacity at low (5.0), moderate-high (7.5) and extreme (9.0) levels of the physiological strain index (PSI). Fourteen individuals tested two shirts (control vs. cooling) during 45-min of interval running in a hot, humid (35 ± 1 °C; 55 ± 6% RH) environment. The cooling shirt resulted in an 8% improvement in exercise capacity at a PSI of 7.5 (p < 0.05). The observed increase in exercise capacity would likely translate to a significant improvement in exercise performance. More research is needed to determine a best practice approach for the use of cooling clothing as a counter to exercise-induced heat exposure. Practitioner Summary: In this report, we demonstrate that when forced to exercise in a hot, humid environment, an individual's exercise capacity may increase by as much as 8% when wearing a shirt composed of multistage phase change material and active cooling components.

  18. LDEF Materials/Contamination

    NASA Technical Reports Server (NTRS)

    Pippin, Gary

    1997-01-01

    This pictorial presentation reviews the post-flight analysis results from two type of hardware (tray clamp bolt heads and uhcre flight experiment tray walls) from the Long Duration Exposure Facility (LDEF). It will also discuss flight hardware for one upcoming (Effects of the Space Environment on Materials (ESEM) flight experiment), and two current flight experiments evaluating the performance of materials in space (Passive Optical Sample Assembly (POSA) 1&2 flight experiments. These flight experiments also are concerned with contamination effects which will also be discussed.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorgensen, S.

    Testing the behavior of metals in extreme environments is not always feasible, so material scientists use models to try and predict the behavior. To achieve accurate results it is necessary to use the appropriate model and material-specific parameters. This research evaluated the performance of six material models available in the MIDAS database [1] to determine at which temperatures and strain-rates they perform best, and to determine to which experimental data their parameters were optimized. Additionally, parameters were optimized for the Johnson-Cook model using experimental data from Lassila et al [2].

  20. 24 CFR 982.401 - Housing quality standards (HQS).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Elevators must be working and safe. (h) Interior air quality—(1) Performance requirement. The dwelling unit... environment; (E) Illumination and electricity; (F) Structure and materials; (G) Interior air quality; (H... dwelling unit. (e) Thermal environment—(1) Performance requirement. The dwelling unit must have and be...

  1. The viscoelastic characterization of polymer materials exposed to the low-Earth orbit environment

    NASA Technical Reports Server (NTRS)

    Strganac, Thomas; Letton, Alan

    1992-01-01

    Recent accomplishments in our research efforts have included the successful measurement of the thermal mechanical properties of polymer materials exposed to the low-earth orbit environment. In particular, viscoelastic properties were recorded using the Rheometrics Solids Analyzer (RSA 2). Dynamic moduli (E', the storage component of the elastic modulus, and E'', the loss component of the elastic modulus) were recorded over three decades of frequency (0.1 to 100 rad/sec) for temperatures ranging from -150 to 150 C. Although this temperature range extends beyond the typical use range of the materials, measurements in this region are necessary in the development of complete viscoelastic constitutive models. The experimental results were used to provide the stress relaxation and creep compliance performance characteristics through viscoelastic correspondence principles. Our results quantify the differences between exposed and control polymer specimens. The characterization is specifically designed to elucidate a constitutive model that accurately predicts the change in behavior of these materials due to exposure. The constitutive model for viscoelastic behavior reflects the level of strain, the rate of strain, and the history of strain as well as the thermal history of the material.

  2. The magnitude of impact damage on LDEF materials

    NASA Technical Reports Server (NTRS)

    Allbrooks, Martha; Atkinson, Dale

    1992-01-01

    The purpose of this report is to document the magnitude and types of impact damage to materials and systems on the LDEF. This report will provide insights which permit NASA and industry space-systems designers to more rapidly identify potential problems and hazards in placing a spacecraft in low-Earth orbit (LEO). This report is structured to provide (1) a background on LDEF, (2) an introduction to the LEO meteoroid and debris environments, and (3) descriptions of the types of damage caused by impacts into structural materials, and contamination caused by spallation and ejecta from impact events.

  3. Amarillo National Resource Center for plutonium. Work plan progress report, November 1, 1995--January 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cluff, D.

    1996-04-01

    The Center operates under a cooperative agreement between DOE and the State of Texas and is directed and administered by an education consortium. Its programs include developing peaceful uses for the materials removed from dismantled weapons, studying effects of nuclear materials on environment and public health, remedying contaminated soils and water, studying storage, disposition, and transport of Pu, HE, and other hazardous materials removed from weapons, providing research and counsel to US in carrying out weapons reductions in cooperation with Russia, and conducting a variety of education and training programs.

  4. MISSE 6-Testing Materials in Space

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S; Kinard, William H.

    2008-01-01

    The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment by placing them in space environment for several months. In this paper, a few materials and components from NASA Langley Research Center (LaRC) that have been flown on MISSE 6 mission will be discussed. These include laser and optical elements for photonic devices. The pre-characterized MISSE 6 materials were packed inside a ruggedized Passive Experiment Container (PEC) that resembles a suitcase. The PEC was tested for survivability due to launch conditions. Subsequently, the MISSE 6 PEC was transported by the STS-123 mission to International Space Station (ISS) on March 11, 2008. The astronauts successfully attached the PEC to external handrails and opened the PEC for long term exposure to the space environment.

  5. Atomic oxygen effects on spacecraft materials: The state of the art of our knowledge

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.

    1989-01-01

    In the flight materials exposure data base extensive quantitative data is available from limited exposures in a narrow range of orbital environments. More data is needed in a wider range of environments as well as longer exposure times. Synergistic effects with other environmental factors; polar orbit and higher altitude environments; and real time materials degradation data is needed to understand degradation kinetics and mechanism. Almost no laboratory data exists from high fidelity simulations of the LEO environment. Simulation and test system are under development, and the data base is scanty. Theoretical understanding of hyperthermal atom surface reactions in the LEO environment is not good enough to support development of reliable accelerated test methods. The laser sustained discharge, atom beam sources are the most promising high fidelity simulation-test systems at this time.

  6. Polymer materials and component evaluation in acidic-radiation environments

    NASA Astrophysics Data System (ADS)

    Celina, M.; Gillen, K. T.; Malone, G. M.; Clough, R. L.; Nelson, W. H.

    2001-07-01

    Polymeric materials used for cable/wire insulation, electrical connectors, O-rings, seals, and in critical components such as motors, level switches and resistive thermo-devices were evaluated under accelerated degradation conditions in combined radiation-oxidative elevated-temperature acidic-vapor (nitric/oxalic) environments relevant to conditions in isotope processing facilities. Experiments included the assessment of individual materials such as PEEK, polyimides, polyolefin based cable insulation, EPDM rubbers, various epoxy systems, commercial caulking materials as well as some functional testing of components. We discuss how to conduct laboratory experiments to simulate such complex hostile environments, describe some degradation effects encountered, and evaluate the impact on appropriate material and component selection.

  7. Corrosion of Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  8. Applicability of Aerospace Materials Ground Flammability Test Data to Spacecraft Environments Theory and Applied Technologies

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Williams, Jim; Beeson, Harold

    2009-01-01

    This slide presentation reviews the use of ground test data in reference to flammability to spacecraft environments. It reviews the current approach to spacecraft fire safety, the challenges to fire safety that the Constellation program poses, the current trends in the evaluation of the Constellation materials flammability, and the correlation of test data from ground flammability tests with the spacecraft environment. Included is a proposal for testing and the design of experiments to test the flammability of materials under similar spacecraft conditions.

  9. Stress Corrosion Cracking of Ferritic Materials for Fossil Power Generation Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawel, Steven J; Siefert, John A.

    2014-01-01

    Creep strength enhanced ferritic (CSEF) steels Grades 23, 24, 91, and 92 have been widely implemented in the fossil fired industry for over two decades. The stress corrosion cracking (SCC) behavior of these materials with respect to mainstay Cr-Mo steels (such as Grades 11, 12 and 22) has not been properly assessed, particularly in consideration of recent reported issues of SCC in CSEF steels. This report details the results of Jones test exposures of a wide range of materials (Grades 11, 22, 23, 24, and 92), material conditions (as-received, improper heat treatments, normalized, weldments) and environments (salt fog; tube cleaningmore » environments including decreasing, scale removal, and passivation; and high temperature water) to compare the susceptibility to cracking of these steels. In the as-received (normalized and tempered) condition, none of these materials are susceptible to SCC in the environments examined. However, in the hardened condition, certain combinations of environment and alloy reveal substantial SCC susceptibility.« less

  10. Photovoltaic Cell And Manufacturing Process

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes R.

    1996-11-26

    Provided is a method for controlling electrical properties and morphology of a p-type material of a photovoltaic device. The p-type material, such as p-type cadmium telluride, is first subjected to heat treatment in an oxidizing environment, followed by recrystallization in an environment substantially free of oxidants. In one embodiment, the heat treatment step comprises first subjecting the p-type material to an oxidizing atmosphere at a first temperature to getter impurities, followed by second subjecting the p-type material to an oxidizing atmosphere at a second temperature, higher than the first temperature, to develop a desired oxidation gradient through the p-type material.

  11. Space Environment Exposure Results from the MISSE 5 Polymer Film Thermal Control Experiment on the International Space Station

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K. R.; Dever, Joyce A.

    2009-01-01

    It is known that polymer films can degrade in space due to exposure to the environment, but the magnitude of the mechanical property degradation and the degree to which the different environmental factors play a role in it is not well understood. This paper describes the results of an experiment flown on the Materials International Space Station Experiment (MISSE) 5 to determine the change in tensile strength and % elongation of some typical polymer films exposed in a nadir facing environment on the International Space Station and where possible compare to similar ram and wake facing experiments flown on MISSE 1 to get a better indication of the role the different environments play in mechanical property change.

  12. Coupling of Nuclear Waste Form Corrosion and Radionuclide Transports in Presence of Relevant Repository Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Nathalie A.; Neeway, James J.; Qafoku, Nikolla P.

    2015-09-30

    Assessments of waste form and disposal options start with the degradation of the waste forms and consequent mobilization of radionuclides. Long-term static tests, single-pass flow-through tests, and the pressurized unsaturated flow test are often employed to study the durability of potential waste forms and to help create models that predict their durability throughout the lifespan of the disposal site. These tests involve the corrosion of the material in the presence of various leachants, with different experimental designs yielding desired information about the behavior of the material. Though these tests have proved instrumental in elucidating various mechanisms responsible for material corrosion,more » the chemical environment to which the material is subject is often not representative of a potential radioactive waste repository where factors such as pH and leachant composition will be controlled by the near-field environment. Near-field materials include, but are not limited to, the original engineered barriers, their resulting corrosion products, backfill materials, and the natural host rock. For an accurate performance assessment of a nuclear waste repository, realistic waste corrosion experimental data ought to be modeled to allow for a better understanding of waste form corrosion mechanisms and the effect of immediate geochemical environment on these mechanisms. Additionally, the migration of radionuclides in the resulting chemical environment during and after waste form corrosion must be quantified and mechanisms responsible for migrations understood. The goal of this research was to understand the mechanisms responsible for waste form corrosion in the presence of relevant repository sediments to allow for accurate radionuclide migration quantifications. The rationale for this work is that a better understanding of waste form corrosion in relevant systems will enable increased reliance on waste form performance in repository environments and potentially decrease the need for expensive engineered barriers.Our current work aims are 1) quantifying and understanding the processes associated with glass alteration in contact with Fe-bearing materials; 2) quantifying and understanding the processes associated with glass alteration in presence of MgO (example of engineered barrier used in WIPP); 3) identifying glass alteration suppressants and the processes involved to reach glass alteration suppression; 4) quantifying and understanding the processes associated with Saltstone and Cast Stone (SRS and Hanford cementitious waste forms) in various representative groundwaters; 5) investigating positron annihilation as a new tool for the study of glass alteration; and 6) quantifying and understanding the processes associated with glass alteration under gamma irradiation.« less

  13. Quantifying the degradation of TNT and RDX in a saline environment with and without UV-exposure.

    PubMed

    Sisco, Edward; Najarro, Marcela; Bridge, Candice; Aranda, Roman

    2015-06-01

    Terrorist attacks in a maritime setting, such as the bombing of the USS Cole in 2000, or the detection of underwater mines, require the development of proper protocols to collect and analyse explosive material from a marine environment. In addition to proper analysis of the explosive material, protocols must also consider the exposure of the material to potentially deleterious elements, such as UV light and salinity, time spent in the environment, and time between storage and analysis. To understand how traditional explosives would be affected by such conditions, saline solutions of explosives were exposed to natural and artificial sunlight. Degradation of the explosives over time was then quantified using negative chemical ionization gas chromatography mass spectrometry (GC/NCI-MS). Two explosives, trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX), were exposed to different aqueous environments and light exposures with salinities ranging from freshwater to twice the salinity of ocean water. Solutions were then aged for up to 6 months to simulate different conditions the explosives may be recovered from. Salinity was found to have a negligible impact on the degradation of both RDX and TNT. RDX was stable in solutions of all salinities while TNT solutions degraded regardless of salinity. Solutions of varying salinities were also exposed to UV light, where accelerated degradation was seen for both explosives. Potential degradation products of TNT were identified using electrospray ionization mass spectrometry (ESI-MS), and correspond to proposed degradation products discussed in previously published works [1]. Published by Elsevier Ireland Ltd.

  14. MISSE-6 hardware

    NASA Image and Video Library

    2009-09-02

    ISS020-E-037372 (1 Sept. 2009) --- A close-up view of a Materials International Space Station Experiment (MISSE-6) on the exterior of the Columbus laboratory is featured in this image photographed by a space walking astronaut during the STS-128 mission’s first session of extravehicular activity (EVA). MISSE collects information on how different materials weather in the environment of space. MISSE was later placed in Space Shuttle Discovery’s payload bay for its return to Earth. A portion of a payload bay door is visible in the background.

  15. MISSE-6 hardware

    NASA Image and Video Library

    2009-09-02

    ISS020-E-037369 (1 Sept. 2009) --- A close-up view of a Materials International Space Station Experiment (MISSE-6) on the exterior of the Columbus laboratory is featured in this image photographed by a space walking astronaut during the STS-128 mission’s first session of extravehicular activity (EVA). MISSE collects information on how different materials weather in the environment of space. MISSE was later placed in Space Shuttle Discovery’s payload bay for its return to Earth. A portion of a payload bay door is visible in the background.

  16. Environmental Effects on ISS Materials Aging (1998 to 2008)

    NASA Technical Reports Server (NTRS)

    Alred, John; Dasgupta, Rajib; Koontz, Steve; Soares, Carlos; Golden, John

    2009-01-01

    The performance of ISS spacecraft materials and systems on prolonged exposure to the low- Earth orbit (LEO) space flight are reported in this paper. In-flight data, flight crew observations, and the results of ground-based test and analysis directly supporting programmatic and operational decision-making are described. The space flight environments definitions (both natural and induced) used for ISS design, material selection, and verification testing are shown, in most cases, to be more severe than the actual flight environment accounting, in part, for the outstanding performance of ISS as a long mission duration spacecraft. No significant ISS material or system failures have been attributed to spacecraft-environments interactions. Nonetheless, ISS materials and systems performance data is contributing to our understanding of spacecraft material interactions with the spaceflight environment so as to reduce cost and risk for future spaceflight projects and programs. Orbital inclination (51.6 deg) and altitude (nominally near 360 km) determine the set of natural environment factors affecting the functional life of materials and systems on ISS. ISS operates in an electrically conducting environment (the F2 region of Earth s ionosphere) with well-defined fluxes of atomic oxygen, other charged and neutral ionospheric plasma species, solar UV, VUV, and x-ray radiation as well as galactic cosmic rays, trapped radiation, and solar cosmic rays. The LEO micrometeoroid and orbital debris environment is an especially important determinant of spacecraft design and operations. The magnitude of several environmental factors varies dramatically with latitude and longitude as ISS orbits the Earth. The high latitude orbital environment also exposes ISS to higher fluences of trapped energetic electrons, auroral electrons, solar cosmic rays, and galactic cosmic rays than would be the case in lower inclination orbits, largely as a result of the overall shape and magnitude of the geomagnetic field. As a result, ISS exposure to many environmental factors can vary dramatically along a particular orbital ground track, and from one ground track to the next, during any 24-hour period. The induced environment results from ISS interactions with the natural environment as well as environmental factors produced by ISS itself and visiting vehicles fleet. Examples include ram-wake effects, hypergolic thruster plume impingement, materials out-gassing, venting and dumping of fluids, and specific photovoltaic (PV) power system interactions with the ionospheric plasma (7-11). Vehicle size (L) and velocity (V), combined with the magnitude and direction of the geomagnetic field (B) produce operationally significant magnetic induction voltages (VxB.L) in ISS conducting structure during flight through high latitudes (> +45deg) during each orbit. Finally, an induced ionizing radiation environment is produced by cosmic ray interaction with the relatively thick ISS structure and shielding materials. The intent of this review article is, therefore, to provide a summary of selected aspects and elements of the ISS vehicle with regard to LEO space environment effects, associated with the much larger and more complicated vehicle that ISS has become since 1998, but also with an eye towards performance life extension to the year 2016 and beyond.

  17. Accumulation of Radioactive Cesium Released from Fukushima Daiichi Nuclear Power Plant in Terrestrial Cyanobacteria Nostoc commune

    PubMed Central

    Sasaki, Hideaki; Shirato, Susumu; Tahara, Tomoya; Sato, Kenji; Takenaka, Hiroyuki

    2013-01-01

    The Fukushima Daiichi Nuclear Power Plant accident released large amounts of radioactive substances into the environment and contaminated the soil of Tohoku and Kanto districts in Japan. Removal of radioactive material from the environment is an urgent problem, and soil purification using plants is being considered. In this study, we investigated the ability of 12 seed plant species and a cyanobacterium to accumulate radioactive material. The plants did not accumulate radioactive material at high levels, but high accumulation was observed in the terrestrial cyanobacterium Nostoc commune. In Nihonmatsu City, Fukushima Prefecture, N. commune accumulated 415,000 Bq/kg dry weight 134Cs and 607,000 Bq kg−1 dry weight 137Cs. The concentration of cesium in N. commune tended to be high in areas where soil radioactivity was high. A cultivation experiment confirmed that N. commune absorbed radioactive cesium from polluted soil. These data demonstrated that radiological absorption using N. commune might be suitable for decontaminating polluted soil. PMID:24256969

  18. The Mars oxidant experiment (MOx) for Mars '96

    NASA Technical Reports Server (NTRS)

    McKay, C. P.; Grunthaner, F. J.; Lane, A. L.; Herring, M.; Bartman, R. K.; Ksendzov, A.; Manning, C. M.; Lamb, J. L.; Williams, R. M.; Ricco, A. J.; hide

    1998-01-01

    The MOx instrument was developed to characterize the reactive nature of the martian soil. The objectives of MOx were: (1) to measure the rate of degradation of organics in the martian environment; (2) to determine if the reactions seen by the Viking biology experiments were caused by a soil oxidant and measure the reactivity of the soil and atmosphere: (3) to monitor the degradation, when exposed to the martian environment, of materials of potential use in future missions; and, finally, (4) to develop technologies and approaches that can be part of future soil analysis instrumentation. The basic approach taken in the MOx instrument was to place a variety of materials composed as thin films in contact with the soil and monitor the physical and chemical changes that result. The optical reflectance of the thin films was the primary sensing-mode. Thin films of organic materials, metals, and semiconductors were prepared. Laboratory simulations demonstrated the response of thin films to active oxidants.

  19. Sustainability in a materials world

    USGS Publications Warehouse

    Amey, E.B.; Lemons, J.F.; Berry, Darbi R.

    1996-01-01

    Many adverse impacts on the environment can be directly related to the materials dispersed to the environment during processing or use, or after use as refuse and waste. Some materials, such as toxic wastes, are a major concern because they create immediate problems with longer-term effects. Gases released by major manufacturing industries can contribute to long-term regional and global problems such as acid rain or increased carbon dioxide in the atmosphere. The use of other materials, however, appears to be more benign or strictly localized in their impacts. If the current per capita level of material consumption in the United States was achieved worldwide, it would create major stresses on both resource adequacy and the environment. In fact, stresses have been created and will continue from this consumption style (developed countries) even if others don't achieve them. ?? 1996 International Association for Mathematical Geology.

  20. Materials, Processes, and Environmental Engineering Network

    NASA Technical Reports Server (NTRS)

    White, Margo M.

    1993-01-01

    Attention is given to the Materials, Processes, and Environmental Engineering Network (MPEEN), which was developed as a central holding facility for materials testing information generated by the Materials and Processes Laboratory of NASA-Marshall. It contains information from other NASA centers and outside agencies, and also includes the NASA Environmental Information System (NEIS) and Failure Analysis Information System (FAIS) data. The data base is NEIS, which is accessible through MPEEN. Environmental concerns are addressed regarding materials identified by the NASA Operational Environment Team (NOET) to be hazardous to the environment. The data base also contains the usage and performance characteristics of these materials.

  1. The LDCE Particle Impact Experiment as flown on STS-46. [limited duration space environment candidate materials exposure (LDCE)

    NASA Technical Reports Server (NTRS)

    Maag, Carl R.; Tanner, William G.; Borg, Janet; Bibring, Jean-Pierre; Alexander, W. Merle; Maag, Andrew J.

    1992-01-01

    Many materials and techniques have been developed by the authors to sample the flux of particles in Low Earth Orbit (LEO). Though regular in-site sampling of the flux in LEO the materials and techniques have produced data which compliment the data now being amassed by the Long Duration Exposure Facility (LDEF) research activities. Orbital debris models have not been able to describe the flux of particles with d sub p less than or = 0.05 cm, because of the lack of data. Even though LDEF will provide a much needed baseline flux measurement, the continuous monitoring of micron and sub-micron size particles must be carried out. A flight experiment was conducted on the Space Shuttle as part of the LDCE payload to develop an understanding of the Spatial Density (concentration) as a function of size (mass) for particle sizes 1 x 10(exp 6) cm and larger. In addition to the enumeration of particle impacts, it is the intent of the experiment that hypervelocity particles be captured and returned intact. Measurements will be performed post flight to determine the flux density, diameters, and subsequent effects on various optical, thermal control and structural materials. In addition to these principal measurements, the Particle Impact Experiment (PIE) also provides a structure and sample holders for the exposure of passive material samples to the space environment, e.g., thermal cycling, and atomic oxygen, etc. The experiment will measure the optical property changes of mirrors and will provide the fluence of the ambient atomic oxygen environment to other payload experimenters. In order to augment the amount of material returned in a form which can be analyzed, the survivability of the experiment as well as the captured particles will be assessed. Using Sandia National Laboratory's hydrodynamic computer code CTH, hypervelocity impacts on the materials which comprise the experiments have been investigated and the progress of these studies are reported.

  2. Long Duration Space Materials Exposure (LDSE)

    NASA Technical Reports Server (NTRS)

    Allen, David; Schmidt, Robert

    1992-01-01

    The Center on Materials for Space Structures (CMSS) at Case Western Reserve University is one of seventeen Commercial Centers for the Development of Space. It was founded to: (1) produce and evaluate materials for space structures; (2) develop passive and active facilities for materials exposure and analysis in space; and (3) develop improved material systems for space structures. A major active facility for materials exposure is proposed to be mounted on the exterior truss of the Space Station Freedom (SSF). This Long Duration Space Materials Exposure (LDSE) experiment will be an approximately 6 1/2 ft. x 4 ft. panel facing into the velocity vector (RAM) to provide long term exposure (up to 30 years) to atomic oxygen, UV, micro meteorites, and other low earth orbit effects. It can expose large or small active (instrumented) or passive samples. These samples may be mounted in a removable Materials Flight Experiment (MFLEX) carrier which may be periodically brought into the SSF for examination by CMSS's other SSF facility, the Space Materials Evaluation Facility (SMEF), which will contain a Scanning Electron Microscope, a Variable Angle & Scanning Ellipsometer, a Fourier Transform Infrared Spectrometer, and other analysis equipment. These facilities will allow commercial firms to test their materials in space and promptly obtain information on their materials survivability in the LEO environment.

  3. Tulane/Xavier University hazardous materials in aquatic environments of the Mississippi River Basin. Annual technical report, January 1--December 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-05-02

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. In 1989, the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established as the umbrella organization which coordinates environmental research at both universities. In December, 1992, the Tulane/Xavier CBR was awarded a five year grant to study pollution in the Mississippi River system. The Hazardous Materials in Aquatic Environments of the Mississippi River Basin project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environmentsmore » of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. Summaries which describe objectives, goals, and accomplishments are included on ten collaborative cluster projects, two education projects, and six initiation projects. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less

  4. Microplastic ingestion decreases energy reserves in marine worms.

    PubMed

    Wright, Stephanie L; Rowe, Darren; Thompson, Richard C; Galloway, Tamara S

    2013-12-02

    The indiscriminate disposal of plastic to the environment is of concern. Microscopic plastic litter (<5 mm diameter; 'microplastic') is increasing in abundance in the marine environment, originating from the fragmentation of plastic items and from industry and personal-care products [1]. On highly impacted beaches, microplastic concentrations (<1mm) can reach 3% by weight, presenting a global conservation issue [2]. Microplastics are a novel substrate for the adherence of hydrophobic contaminants [1], deposition of eggs [3], and colonization by unique bacterial assemblages [4]. Ingestion by indiscriminate deposit-feeders has been reported, yet physical impacts remain understudied [1]. Here, we show that deposit-feeding marine worms maintained in sediments spiked with microscopic unplasticised polyvinylchloride (UPVC) at concentrations overlapping those in the environment had significantly depleted energy reserves by up to 50% (Figure 1). Our results suggest that depleted energy reserves arise from a combination of reduced feeding activity, longer gut residence times of ingested material and inflammation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Intelligence Preparation for Operational Resilience (IPOR)

    DTIC Science & Technology

    2015-12-01

    unlimited distribution except as restricted below. Internal use:* Permission to reproduce this material and to prepare derivative works from this...material for internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and de- rivative works...legal coun- sel regarding the latest state of jurisprudence . 2.1.3 Determine the Technological Environment Changes in the technical landscape can also

  6. International SAMPE Symposium and Exhibition, 36th, San Diego, CA, Apr. 15-18, 1991, Proceedings. Books 1 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinson, J.; Adsit, R.; Gordaninejad, F.

    This symposium presents papers in the fields of the design and development of space system structures, advanced textile preforming, low-cost processing of materials, and nondestructive testing. Also presented are adhesive and bonding technologies, resin transfer molding, filament winding, high-temperature composites, thermoplastic material properties, composites for marine environments, and thermoplastic processes and applications.

  7. 75 FR 43906 - Hazardous Materials: Requirements for the Storage of Explosives During Transportation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... program in emergency response procedures for all employees working at the safe haven. NFPA 498 section 4.5... safe havens used for unattended storage of Division 1.1, 1.2, and 1.3 explosives. DATES: Comments must... circumstances and operational environment. B. Federal Motor Carrier Safety Regulations (FMCSRs), 49 CFR Parts...

  8. Confined-Volume Effect on the Thermal Properties of Encapsulated Phase Change Materials for Thermal Energy Storage.

    PubMed

    De Castro, Paula F; Ahmed, Adham; Shchukin, Dmitry G

    2016-03-18

    We have encapsulated the heat exchange material, n-docosane, into polyurethane capsules of different sizes. Decreasing the size of the capsules leads to changes of the crystallinity of phase-change material as well as melting/crystallization temperature. The novelty of the paper includes 1) protection of the nanostructured energy-enriched materials against environment during storage and controlled release of the encapsulated energy on demand and 2) study of the structure and surface-to-volume properties of the energy-enriched materials dispersed in capsules of different sizes. The stability of energy nanomaterials, influence of capsule diameter on their energy capacity, homogeneity and operation lifetime are investigated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Space environment effects on polymers in low earth orbit

    NASA Astrophysics Data System (ADS)

    Grossman, E.; Gouzman, I.

    2003-08-01

    Polymers are widely used in space vehicles and systems as structural materials, thermal blankets, thermal control coatings, conformal coatings, adhesives, lubricants, etc. The low earth orbit (LEO) space environment includes hazards such as atomic oxygen, UV radiation, ionizing radiation (electrons, protons), high vacuum, plasma, micrometeoroids and debris, as well as severe temperature cycles. Exposure of polymers and composites to the space environment may result in different detrimental effects via modification of their chemical, electrical, thermal, optical and mechanical properties as well as surface erosion. The high vacuum induces material outgassing (e.g. low-molecular weight residues, plasticizers and additives) and consequent contamination of nearby surfaces. The present work reviews the LEO space environment constituents and their interactions with polymers. Examples of degradation of materials exposed in ground simulation facilities are presented. The issues discussed include the erosion mechanisms of polymers, formation of contaminants and their interaction with the space environment, and protection of materials from the harsh space environment.

  10. Environment-Conscious Ceramics (Ecoceramics) Technology Received 2001 R&D 100 Award

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2002-01-01

    Since the dawn of human civilization, there has been a delicate balance between the use of resources as human frontiers expanded and the need to have a minimum influence on the ecosystem. The first 200 years of the industrial revolution essentially solved the problem of production. However, the massive production of goods also generated tremendous amounts of byproducts and wastes. In the new millennium, to sustain a healthy life in harmony with nature, it will be extremely important for us to develop various materials, products, and processes that minimize any harmful influence on the environment. Environment-conscious ceramics (ecoceramics) are a new class of materials that can be fabricated with renewable resources (wood) and wood waste material (wood sawdust). Wood is a "lignocellulosic" material formed by the photosynthetic reaction within the needles or leaves of trees. The photosynthesis process uses sunlight to take carbon dioxide from air and convert it into oxygen and organic materials. Wood has been known to be one of the best and most intricate engineering materials created by nature and known to mankind. In addition, natural woods of various types are available throughout the world. On the other hand, wood sawdusts are generated in abundant quantities by sawmills. Environment-conscious ceramic materials, fabricated via the pyrolysis and infiltration of natural wood-derived preforms, have tailorable properties with numerous potential applications. The experimental studies conducted to date on the development of materials based on biologically derived structures indicate that these materials behave like ceramic materials manufactured by conventional approaches. These structures have been shown to be quite useful in producing porous or dense materials having various microstructures and compositions.

  11. Effects and mechanism on Kapton film under ozone exposure in a ground near space simulator

    NASA Astrophysics Data System (ADS)

    Wei, Qiang; Yang, Guimin; Liu, Gang; Jiang, Haifu; Zhang, Tingting

    2018-05-01

    The effect on aircraft materials in the near space environment is a key part of air-and-space integration research. Ozone and aerodynamic fluids are important organizational factors in the near space environment and both have significant influences on the performance of aircraft materials. In the present paper a simulated ozone environment was used to test polyimide material that was rotated at the approximate velocity of 150-250 m/s to form an aerodynamic fluid field. The goal was to evaluate the performance evolution of materials under a comprehensive environment of ozone molecular corrosion and aerodynamic fluids. The research results show that corrosion and sputtering by ozone molecules results in Kapton films exhibiting a rugged "carpet-like" morphology exhibits an increase in surface roughness. The morphology after ozone exposure led to higher surface roughness and an increase in surface optical diffuse reflection, which is expressed by the lower optical transmittance and the gradual transition from light orange to brown. The mass loss test, XPS, and FTIR analysis show that the molecular chains on the surface of the Kapton film are destroyed resulting in Csbnd C bond breaking to form small volatile molecules such as CO2 or CO, which are responsible for a linear increase in mass loss per unit area. The Csbnd N and Csbnd O structures exhibit weakening tendency under ozone exposure. The present paper explores the evaluation method for Kapton's adaptability under the ozone exposure test in the near space environment, and elucidates the corrosion mechanism and damage mode of the polyimide material under the combined action of ozone corrosion and the aerodynamic fluid. This work provides a methodology for studying materials in the near-space environment.

  12. A versatile bio-based material for efficiently removing toxic dyes, heavy metal ions and emulsified oil droplets from water simultaneously.

    PubMed

    Li, Daikun; Li, Qing; Mao, Daoyong; Bai, Ningning; Dong, Hongzhou

    2017-12-01

    Developing versatile materials for effective water purification is significant for environment and water source protection. Herein, a versatile bio-based material (CH-PAA-T) was reported by simple thermal cross-linking chitosan and polyacrylic acid which exhibits excellent performances for removing insoluble oil, soluble toxic dyes and heavy metal ions from water, simultaneously. The adsorption capacities are 990.1mgg -1 for methylene blue (MB) and 135.9mgg -1 for Cu 2+ , which are higher than most of present advanced absorbents. The adsorption towards organic dyes possesses high selectivity which makes CH-PAA-T be able to efficiently separate dye mixtures. The stable superoleophobicity under water endows CH-PAA-T good performance to separate toluene-in-water emulsion stabilized by Tween 80. Moreover, CH-PAA-T can be recycled for 10 times with negligible reduction of efficiency. Such versatile bio-based material is a potential candidate for water purification. Copyright © 2017. Published by Elsevier Ltd.

  13. Effects of aeroconvective environments on 2D reinforced ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R.; Love, Wendell L.; Balter-Peterson, Aliza; Hood, Thomas; Chang, William

    1991-01-01

    The effect of aeroconvective heating environment similar to that observed a spacecraft ascent or reentry from orbit, on the performance of a commercial carbon-reinforced ceramic matrix material specimens of two configurations (orthotropic and quasi-isotropic), fabricated by the Societe Europenne Propulsion (SEP) process was investigated using the NASA Ames Research Center 20 Megawatt Panel Test facility. The performance of the commercial material was compared with the SEP prepared materials. It was found that, whereas the quasi-isotropic SEP specimens exhibited a much higher mass loss rate and a significant dimensional change upon exposure to the thermal environment than did the orthotropic ones, the commercial SEP-like materials did not exhibit these characteristics. There was no greater mass loss rate for the quasi-isotropic specimens, and no dimension changes were observed. The Nicalon reinforced materials in both configurations, as fabricated by SEP or by the commercial source, showed no mass changes and no dimensional changes.

  14. SU-E-T-608: Perturbation Corrections for Alanine Dosimeters in Different Phantom Materials in High-Energy Photon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voigts-Rhetz, P von; Czarnecki, D; Anton, M

    Purpose: Alanine dosimeters are often used for in-vivo dosimetry purposes in radiation therapy. In a Monte Carlo study the influence of 20 different surrounding/phantom materials for alanine dosimeters was investigated. The investigations were performed in high-energy photon beams, covering the whole range from {sup 60}Co up to 25 MV-X. The aim of the study is the introduction of a perturbation correction k{sub env} for alanine dosimeters accounting for the environmental material. Methods: The influence of different surrounding materials on the response of alanine dosimeters was investigated with Monte Carlo simulations using the EGSnrc code. The photon source was adapted withmore » BEAMnrc to a {sup 60}Co unit and an Elekta (E{sub nom}=6, 10, 25 MV-X) linear accelerator. Different tissue-equivalent materials ranging from cortical bone to lung were investigated. In addition to available phantom materials, some material compositions were taken and scaled to different electron densities. The depth of the alanine detectors within the different phantom materials corresponds to 5 cm depth in water, i.e. the depth is scaled according to the electron density (n{sub e}/n{sub e,w}) of the corresponding phantom material. The dose was scored within the detector volume once for an alanine/paraffin mixture and once for a liquid water voxel. The relative response, the ratio of the absorbed dose to alanine to the absorbed dose to water, was calculated and compared to the corresponding ratio under reference conditions. Results: For each beam quality the relative response r and the correction factor for the environment kenv was calculated. k{sub env}=0.9991+0.0049 *((n{sub e}/n{sub e,w})−0.7659){sup 3} Conclusion: A perturbation correction factor k{sub env} accounting for the phantom environment has been introduced. The response of the alanine dosimeter can be considered independent of the surrounding material for relative electron densities (n{sub e}/n{sub e,w}) between 1 and 1.4. For denser materials such as bone or much less dense surroundings such as lung, a small correction would be appropriate.« less

  15. Assessment of tbe Performance of Ablative Insulators Under Realistic Solid Rocket Motor Operating Conditions (a Doctoral Dissertation)

    NASA Technical Reports Server (NTRS)

    Martin, Heath Thomas

    2013-01-01

    Ablative insulators are used in the interior surfaces of solid rocket motors to prevent the mechanical structure of the rocket from failing due to intense heating by the high-temperature solid-propellant combustion products. The complexity of the ablation process underscores the need for ablative material response data procured from a realistic solid rocket motor environment, where all of the potential contributions to material degradation are present and in their appropriate proportions. For this purpose, the present study examines ablative material behavior in a laboratory-scale solid rocket motor. The test apparatus includes a planar, two-dimensional flow channel in which flat ablative material samples are installed downstream of an aluminized solid propellant grain and imaged via real-time X-ray radiography. In this way, the in-situ transient thermal response of an ablator to all of the thermal, chemical, and mechanical erosion mechanisms present in a solid rocket environment can be observed and recorded. The ablative material is instrumented with multiple micro-thermocouples, so that in-depth temperature histories are known. Both total heat flux and thermal radiation flux gauges have been designed, fabricated, and tested to characterize the thermal environment to which the ablative material samples are exposed. These tests not only allow different ablative materials to be compared in a realistic solid rocket motor environment but also improve the understanding of the mechanisms that influence the erosion behavior of a given ablative material.

  16. Nature-Inspired Structural Materials for Flexible Electronic Devices.

    PubMed

    Liu, Yaqing; He, Ke; Chen, Geng; Leow, Wan Ru; Chen, Xiaodong

    2017-10-25

    Exciting advancements have been made in the field of flexible electronic devices in the last two decades and will certainly lead to a revolution in peoples' lives in the future. However, because of the poor sustainability of the active materials in complex stress environments, new requirements have been adopted for the construction of flexible devices. Thus, hierarchical architectures in natural materials, which have developed various environment-adapted structures and materials through natural selection, can serve as guides to solve the limitations of materials and engineering techniques. This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices. First, we summarize structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments. Second, we discuss the functionalities of flexible devices induced by nature-inspired structural materials, including mechanical sensing, energy harvesting, physically interacting, and so on. Finally, we provide a perspective on newly developed structural materials and their potential applications in future flexible devices, as well as frontier strategies for biomimetic functions. These analyses and summaries are valuable for a systematic understanding of structural materials in electronic devices and will serve as inspirations for smart designs in flexible electronics.

  17. Polymers for hydrogen infrastructure and vehicle fuel systems :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barth, Rachel Reina; Simmons, Kevin L.; San Marchi, Christopher W.

    2013-10-01

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  18. Ceramics for Molten Materials Transfer

    NASA Technical Reports Server (NTRS)

    Standish, Evan; Stefanescu, Doru M.; Curreri, Peter A.

    2009-01-01

    The paper reviews the main issues associated with molten materials transfer and handling on the lunar surface during the operation of a hig h temperature electrowinning cell used to produce oxygen, with molten iron and silicon as byproducts. A combination of existing technolog ies and purposely designed technologies show promise for lunar exploi tation. An important limitation that requires extensive investigation is the performance of refractory currently used for the purpose of m olten metal containment and transfer in the lunar environment associa ted with electrolytic cells. The principles of a laboratory scale uni t at a scale equivalent to the production of 1 metric ton of oxygen p er year are introduced. This implies a mass of molten materials to be transferred consistent with the equivalent of 1kg regolithlhr proces sed.

  19. Arcing time analysis of liquid nitrogen with respect to electrode materials

    NASA Astrophysics Data System (ADS)

    Junaid, Muhammad; Yang, Kun; Ge, Hanming; Wang, Jianhua

    2018-03-01

    Unlike sulphur hexafluoride (SF6), liquid nitrogen (LN2) is cost effective, environment friendly and cryogenic dielectric. It has astounding insulating properties with the potential to decrease power loss in switchgear applications due to its remarkably low temperatures. The basic research is however a necessity to observe the performance of LN2 subjected to high luminance arcs. So far, there are no findings that refer to the arcing time inside the LN2 environment. The objective of this work was to investigate the arcing times in LN2 and compare the results with open air conditions using different electrode materials. Experiments were conducted on different DC voltages and their arcing times were measured. Three different kinds of electrode materials, namely: pure copper (Cu), stainless used steel (SUS) and aluminium alloy (Al 6061) were tested under 1 atmospheric pressure. The results revealed that LN2 extinguishes arc in almost half the amount of time required by the open air insulation. With Al 6061 has the shortest arcing time, whilst Cu, the second best choice and SUS places last in the evaluation. It was encapsulated from the findings that LN2 is a better choice than air insulation in terms of arc quenching and a better alternative to SF6 when environment is the priority.

  20. Multi-regime transport model for leaching behavior of heterogeneous porous materials.

    PubMed

    Sanchez, F; Massry, I W; Eighmy, T; Kosson, D S

    2003-01-01

    Utilization of secondary materials in civil engineering applications (e.g. as substitutes for natural aggregates or binder constituents) requires assessment of the physical and environment properties of the product. Environmental assessment often necessitates evaluation of the potential for constituent release through leaching. Currently most leaching models used to estimate long-term field performance assume that the species of concern is uniformly dispersed in a homogeneous porous material. However, waste materials are often comprised of distinct components such as coarse or fine aggregates in a cement concrete or waste encapsulated in a stabilized matrix. The specific objectives of the research presented here were to (1) develop a one-dimensional, multi-regime transport model (i.e. MRT model) to describe the release of species from heterogeneous porous materials and, (2) evaluate simple limit cases using the model for species when release is not dependent on pH. Two different idealized model systems were considered: (1) a porous material contaminated with the species of interest and containing inert aggregates and, (2) a porous material containing the contaminant of interest only in the aggregates. The effect of three factors on constituent release were examined: (1) volume fraction of material occupied by the aggregates compared to a homogeneous porous material, (2) aggregate size and, (3) differences in mass transfer rates between the binder and the aggregates. Simulation results confirmed that assuming homogeneous materials to evaluate the release of contaminants from porous waste materials may result in erroneous long-term field performance assessment.

  1. Simulated space environmental effects on a polyetherimide and its carbon fiber-reinforced composites

    NASA Technical Reports Server (NTRS)

    Kern, Kristen T.; Stancil, Phillip C.; Harries, Wynford L.; Long, Edward R., Jr.; Thibeault, Sheila A.

    1993-01-01

    The selection of materials for spacecraft construction requires identification of candidate materials which can perform reliably in the space environment. Understanding the effects of the space environment on the materials is an important step in the selection of candidate materials. This work examines the effects of energetic electrons, thermal cycling, electron radiation in conjunction with thermal cycling, and atomic oxygen on a thermoplastic polyetherimide and its carbon-fiber-reinforced composites. Composite materials made with non-sized fibers as well as materials made with fibers sized with an epoxy were evaluated. The mechanical and thermomechanical properties of the materials were studied and spectroscopic techniques were used to investigate the mechanisms for the observed effects. Considerations for future material development are suggested.

  2. Environment-Related Topics in Social Studies Student Materials: A Survey

    ERIC Educational Resources Information Center

    Myers, Charles B.; Stitely, Thomas B.

    1973-01-01

    The purpose of this article is to describe briefly some impressions of the treatment of the topics: "environment,""ecology,""pollution," and "population" in contemporary social studies materials intended for student use in secondary and elementary school classrooms. (Author)

  3. Characterizing Nanophase Materials on Mars: Spectroscopic Studies of Allophane and Imogolite

    NASA Technical Reports Server (NTRS)

    Jeute, Thomas; Baker, Leslie; Bishop, Janice; Rampe, Elizabeth; Abidin, Zaenal

    2017-01-01

    Allophane is an amorphous or poorly crystalline hydrous aluminosilicate material. Allophane's chemical structure represents a hollow nanosphere, 5-6 nm in diameter with 4-7 large pores in the structure. Identification of allophane and other amorphous and nanophase minerals on Mars has provided clues about the aqueous geochemical environment there. These materials likely represent partially altered or leached basaltic ash and therefore, could represent a geologic marker for where water was present on the Martian surface; as well as indicate regions of climate change, where surface water was not present long enough or sufficiently warm to form clays. Characterization of these materials is important for increasing spectral recognition capabilities using visible/near-infrared (VNIR) and thermal infrared (TIR) spectra of Mars. A suite of synthetic allophane samples was created using a method that has been modified to produce allophane with Fe isomorphically substituted for Al in octahedral coordination. Compositions of the materials range from high-Si allophane (molar Al:Si = 1:2) to protoimogolite (Al:Si = 2:1), with Fe(3+) and Fe(2+) isomorphically substituted for Al from 0-10 mol% of total Al. These compositions span the range observed in natural terrestrial allophanes. Fe K-edge X-ray absorption spectroscopy provided information on the speciation and electrochemical and structural position of Fe in the framework. Fourier transform infrared spectroscopy confirmed syntheses and demonstrated changes in infrared spectroscopic signature with Fe substitution. VNIR reflectance spectra and TIR Thermal infrared emissivity spectra were also collected for direct comparison to Martian data. By increasing spectral recognition capacities of nanophase materials, more accurate estimates can be made on the aqueous geochemical environment of Mars.

  4. Effect of genetic background on the stability of sunflower fatty acid composition in different high oleic mutations.

    PubMed

    Alberio, Constanza; Aguirrezábal, Luis An; Izquierdo, Natalia G; Reid, Roberto; Zuil, Sebastián; Zambelli, Andrés

    2018-02-01

    The effect of genetic background on the stability of fatty acid composition in sunflower near isogenic lines (NILs) carrying high-oleic Pervenets (P) or high-oleic NM1 mutations was studied. The materials were field-tested in different locations and at different sowing dates to evaluate a wide range of environmental conditions. Relationships were established between the fatty acids and the minimum night temperature (MNT) and the response was characterized. A genetic background effect for the fatty acid composition was found in both groups of NILs. The NM1-NILs showed an oleic level higher than 910 g kg -1 and they were more stable across environments with a zero or low dependence on the genetic background; on the other hand, high oleic materials bearing the P mutation showed lower levels of oleic acid, with a higher variation in fatty acid composition and a highly significant dependence on the genetic background. The NM1 mutation is the best option to develop ultra-high oleic sunflower oil that is stable across environments and genetic backgrounds, making its agronomical production more efficient and predictable. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  5. Digested sludge-derived three-dimensional hierarchical porous carbon for high-performance supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Jia; Fan, Hao-Xiang; Dai, Xiao-Hu; Yuan, Shi-Jie

    2018-04-01

    Digested sludge, as the main by-product of the sewage sludge anaerobic digestion process, still contains considerable organic compounds. In this protocol, we report a facile method for preparing digested sludge-derived self-doped porous carbon material for high-performance supercapacitor electrodes via a sustainable pyrolysis/activation process. The obtained digested sludge-derived carbon material (HPDSC) exhibits versatile O-, N-doped hierarchical porous framework, high specific surface area (2103.6 m2 g-1) and partial graphitization phase, which can facilitate ion transport, provide more storage sites for electrolyte ions and enhance the conductivity of active electrode materials. The HPDSC-based supercapacitor electrodes show favourable energy storage performance, with a specific capacitance of 245 F g-1 at 1.0 A g-1 in 0.5 M Na2SO4; outstanding cycling stability, with 98.4% capacitance retention after 2000 cycles; and good rate performance (211 F g-1 at 11 A g-1). This work provides a unique self-doped three-dimensional hierarchical porous carbon material with a favourable charge storage capacity and at the same time finds a high value-added and environment-friendly strategy for disposal and recycling of digested sludge.

  6. A Comparison of Atomic Oxygen Degradation in Low Earth Orbit and in a Plasma Etcher

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline A.; Park, Gloria

    1997-01-01

    In low Earth orbit (LEO) significant degradation of certain materials occurs from exposure to atomic oxygen (AO). Orbital opportunities to study this degradation for specific materials are limited and expensive. While plasma etchers are commonly used in ground-based studies because of their low cost and convenience, the environment produced in an etcher chamber differs greatly from the LEO environment. Because of the differences in environment, the validity of using etcher data has remained an open question. In this paper, degradation data for 22 materials from the orbital experiment Evaluation of Oxygen Interaction with Materials (EOIM-3) are compared with data from EOIM-3 control specimens exposed in a typical plasma etcher. This comparison indicates that, when carefully considered, plasma etcher results can produce order-of-magnitude estimates of orbital degradation. This allows the etcher to be used to screen unacceptable materials from further, more expensive tests.

  7. Refractory Materials for Flame Deflector Protection

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Sampson, Jeffrey W.; Curran, Jerome P.; Kolody, Mark R.; Peruisich, Stephen A.

    2010-01-01

    Fondu Fyre (FF) is currently the only refractory material qualified for use in the flame trench at KSC's Shuttle Launch Pads 39A and 3913. However, the material is not used as it was qualified and has undergone increasingly frequent and severe degradation due to the launch blasts. This degradation is costly as well as dangerous for launch infrastructure, crew and vehicle. The launch environment at KSC is unique. The refractory material is subject to the normal seacoast environment, is completely saturated with water before launch, and is subjected to vibrations and aggressive heat/blast conditions during launch. This report presents results comparing two alternate materials, Ultra-Tek FS gun mix and Kruzite GR Plus, with Fondu Fyre. The materials were subjected to bulk density, porosity, compression strength, modulus of rupture and thermal shock tests. In addition, test specimens were exposed to conditions meant to simulate the launch environment at KSC to help better understand how the materials will perform once installed.

  8. Multiple Cosmic Sources for Meteorite Macromolecules?

    PubMed Central

    Watson, Jonathan S.; Meredith, William; Love, Gordon D.; Gilmour, Iain; Snape, Colin E.

    2015-01-01

    Abstract The major organic component in carbonaceous meteorites is an organic macromolecular material. The Murchison macromolecular material comprises aromatic units connected by aliphatic and heteroatom-containing linkages or occluded within the wider structure. The macromolecular material source environment remains elusive. Traditionally, attempts to determine source have strived to identify a single environment. Here, we apply a highly efficient hydrogenolysis method to liberate units from the macromolecular material and use mass spectrometric techniques to determine their chemical structures and individual stable carbon isotope ratios. We confirm that the macromolecular material comprises a labile fraction with small aromatic units enriched in 13C and a refractory fraction made up of large aromatic units depleted in 13C. Our findings suggest that the macromolecular material may be derived from at least two separate environments. Compound-specific carbon isotope trends for aromatic compounds with carbon number may reflect mixing of the two sources. The story of the quantitatively dominant macromolecular material in meteorites appears to be made up of more than one chapter. Key Words: Abiotic organic synthesis—Carbonaceous chondrite—Cosmochemistry—Meteorites. Astrobiology 15, 779–786. PMID:26418568

  9. Self-assembly of pi-conjugated peptides in aqueous environments leading to energy-transporting bioelectronic nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavor, John

    The realization of new supramolecular pi-conjugated organic structures inspired and driven by peptide-based self-assembly will offer a new approach to interface with the biotic environment in a way that will help to meet many DOE-recognized grand challenges. Previously, we developed pi-conjugated peptides that undergo supramolecular self-assembly into one-dimensional (1-D) organic electronic nanomaterials under benign aqueous conditions. The intermolecular interactions among the pi-conjugated organic segments within these nanomaterials lead to defined perturbations of their optoelectronic properties and yield nanoscale conduits that support energy transport within individual nanostructures and throughout bulk macroscopic collections of nanomaterials. Our objectives for future research are tomore » construct and study biomimetic electronic materials for energy-related technology optimized for harsher non-biological environments where peptide-driven self-assembly enhances pi-stacking within nanostructured biomaterials, as detailed in the following specific tasks: (1) synthesis and detailed optoelectronic characterization of new pi-electron units to embed within homogeneous self assembling peptides, (2) molecular and data-driven modeling of the nanomaterial aggregates and their higher-order assemblies, and (3) development of new hierarchical assembly paradigms to organize multiple electronic subunits within the nanomaterials leading to heterogeneous electronic properties (i.e. gradients and localized electric fields). These intertwined research tasks will lead to the continued development and fundamental mechanistic understanding of a powerful bioinspired materials set capable of making connections between nanoscale electronic materials and macroscopic bulk interfaces, be they those of a cell, a protein or a device.« less

  10. 33 CFR 156.205 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OIL AND HAZARDOUS MATERIAL TRANSFER OPERATIONS Special Requirements for Lightering of Oil and... and subpart C: Lightering or Lightering operation means the transfer of a cargo of oil or a hazardous... environment means— (1) The navigable waters of the United States; (2) The waters of an area over which the...

  11. 33 CFR 156.205 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OIL AND HAZARDOUS MATERIAL TRANSFER OPERATIONS Special Requirements for Lightering of Oil and... and subpart C: Lightering or Lightering operation means the transfer of a cargo of oil or a hazardous... environment means— (1) The navigable waters of the United States; (2) The waters of an area over which the...

  12. 33 CFR 156.205 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OIL AND HAZARDOUS MATERIAL TRANSFER OPERATIONS Special Requirements for Lightering of Oil and... and subpart C: Lightering or Lightering operation means the transfer of a cargo of oil or a hazardous... environment means— (1) The navigable waters of the United States; (2) The waters of an area over which the...

  13. 33 CFR 156.205 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OIL AND HAZARDOUS MATERIAL TRANSFER OPERATIONS Special Requirements for Lightering of Oil and... and subpart C: Lightering or Lightering operation means the transfer of a cargo of oil or a hazardous... environment means— (1) The navigable waters of the United States; (2) The waters of an area over which the...

  14. 33 CFR 156.205 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OIL AND HAZARDOUS MATERIAL TRANSFER OPERATIONS Special Requirements for Lightering of Oil and... and subpart C: Lightering or Lightering operation means the transfer of a cargo of oil or a hazardous... environment means— (1) The navigable waters of the United States; (2) The waters of an area over which the...

  15. Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Chen

    2014-04-01

    The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions.

  16. ISS Material Science Research Rack HWIL Interface Simulation

    NASA Technical Reports Server (NTRS)

    Williams, Philip J.; Ballard, Gary H.; Crumbley, Robert T. (Technical Monitor)

    2002-01-01

    In this paper, the first Material Science Research Rack (MSRR-1) hardware-in-the-loop (HWIL) interface simulation is described. Dynamic Concepts developed this HWIL simulation system with funding and management provided by the Flight Software group (ED14) of NASA-MSFC's Avionics Department. The HWIL system has been used both as a flight software development environment and as a software qualification tool. To fulfill these roles, the HWIL simulator accurately models the system dynamics of many MSRR-1 subsystems and emulates most of the internal interface signals. The modeled subsystems include the Experiment Modules, the Thermal Environment Control System, the Vacuum Access System, the Solid State Power Controller Module, and the Active Rack Isolation Systems. The emulated signals reside on three separate MIL-STD-1553B digital communication buses, the ISS Medium Rate Data Link, and several analog controller and sensor signals. To enhance the range of testing, it was necessary to simulate several off-nominal conditions that may occur in the interfacing subsystems.

  17. Microbial Communities Model Parameter Calculation for TSPA/SR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Jolley

    2001-07-16

    This calculation has several purposes. First the calculation reduces the information contained in ''Committed Materials in Repository Drifts'' (BSC 2001a) to useable parameters required as input to MING V1.O (CRWMS M&O 1998, CSCI 30018 V1.O) for calculation of the effects of potential in-drift microbial communities as part of the microbial communities model. The calculation is intended to replace the parameters found in Attachment II of the current In-Drift Microbial Communities Model revision (CRWMS M&O 2000c) with the exception of Section 11-5.3. Second, this calculation provides the information necessary to supercede the following DTN: M09909SPAMING1.003 and replace it with a newmore » qualified dataset (see Table 6.2-1). The purpose of this calculation is to create the revised qualified parameter input for MING that will allow {Delta}G (Gibbs Free Energy) to be corrected for long-term changes to the temperature of the near-field environment. Calculated herein are the quadratic or second order regression relationships that are used in the energy limiting calculations to potential growth of microbial communities in the in-drift geochemical environment. Third, the calculation performs an impact review of a new DTN: M00012MAJIONIS.000 that is intended to replace the currently cited DTN: GS9809083 12322.008 for water chemistry data used in the current ''In-Drift Microbial Communities Model'' revision (CRWMS M&O 2000c). Finally, the calculation updates the material lifetimes reported on Table 32 in section 6.5.2.3 of the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000c) based on the inputs reported in BSC (2001a). Changes include adding new specified materials and updating old materials information that has changed.« less

  18. Digested sludge-derived three-dimensional hierarchical porous carbon for high-performance supercapacitor electrode.

    PubMed

    Zhang, Jia-Jia; Fan, Hao-Xiang; Dai, Xiao-Hu; Yuan, Shi-Jie

    2018-04-01

    Digested sludge, as the main by-product of the sewage sludge anaerobic digestion process, still contains considerable organic compounds. In this protocol, we report a facile method for preparing digested sludge-derived self-doped porous carbon material for high-performance supercapacitor electrodes via a sustainable pyrolysis/activation process. The obtained digested sludge-derived carbon material (HPDSC) exhibits versatile O-, N-doped hierarchical porous framework, high specific surface area (2103.6 m 2  g -1 ) and partial graphitization phase, which can facilitate ion transport, provide more storage sites for electrolyte ions and enhance the conductivity of active electrode materials. The HPDSC-based supercapacitor electrodes show favourable energy storage performance, with a specific capacitance of 245 F g -1 at 1.0 A g -1 in 0.5 M Na 2 SO 4 ; outstanding cycling stability, with 98.4% capacitance retention after 2000 cycles; and good rate performance (211 F g -1 at 11 A g -1 ). This work provides a unique self-doped three-dimensional hierarchical porous carbon material with a favourable charge storage capacity and at the same time finds a high value-added and environment-friendly strategy for disposal and recycling of digested sludge.

  19. [Distance education: use of the WebCT as a support tool for teaching intravenous therapy in nursing undergraduate programs].

    PubMed

    Dias, Denise Costa; Cassiani, Silvia Helena De Bortoli

    2003-01-01

    This investigation focused on a learning environment via internet, through which Intravenous Therapy (IVT) was taught. Due to its complexity, Intravenous Therapy was chosen against numerous subjects to be taught through an e-learning environment, by comprising both technical procedures and conceptual aspects that can be discussed through a virtual learning environment. The objectives of this study were to develop educational material about Intravenous Therapy to guide students through the learning related to intravenous therapy, to have the related educational material evaluated by experts, and to evaluate the students' use of this material, considering difficulties and/or advantages, participation/interaction in this environment, and usability of its tools. The interface used for the internet-based training program was WebCT.

  20. Deformation and Damage Studies for Advanced Structural Materials

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Advancements made in understanding deformation and damage of advanced structural materials have enabled the development of new technologies including the attainment of a nationally significant NASA Level 1 Milestone and the provision of expertise to the Shuttle Return to Flight effort. During this collaborative agreement multiple theoretical and experimental research programs, facilitating safe durable high temperature structures using advanced materials, have been conceived, planned, executed. Over 26 publications, independent assessments of structures and materials in hostile environments, were published within this agreement. This attainment has been recognized by 2002 Space Flight Awareness Team Award, 2004 NASA Group Achievement Award and 2003 and 2004 OAI Service Awards. Accomplishments in the individual research efforts are described as follows.

  1. Radiation transport simulation of the Martian GCR surface flux and dose estimation using spherical geometry in PHITS compared to MSL-RAD measurements

    NASA Astrophysics Data System (ADS)

    Flores-McLaughlin, John

    2017-08-01

    Planetary bodies and spacecraft are predominantly exposed to isotropic radiation environments that are subject to transport and interaction in various material compositions and geometries. Specifically, the Martian surface radiation environment is composed of galactic cosmic radiation, secondary particles produced by their interaction with the Martian atmosphere, albedo particles from the Martian regolith and occasional solar particle events. Despite this complex physical environment with potentially significant locational and geometric dependencies, computational resources often limit radiation environment calculations to a one-dimensional or slab geometry specification. To better account for Martian geometry, spherical volumes with respective Martian material densities are adopted in this model. This physical description is modeled with the PHITS radiation transport code and compared to a portion of measurements from the Radiation Assessment Detector of the Mars Science Laboratory. Particle spectra measured between 15 November 2015 and 15 January 2016 and PHITS model results calculated for this time period are compared. Results indicate good agreement between simulated dose rates, proton, neutron and gamma spectra. This work was originally presented at the 1st Mars Space Radiation Modeling Workshop held in 2016 in Boulder, CO.

  2. Radiation transport simulation of the Martian GCR surface flux and dose estimation using spherical geometry in PHITS compared to MSL-RAD measurements.

    PubMed

    Flores-McLaughlin, John

    2017-08-01

    Planetary bodies and spacecraft are predominantly exposed to isotropic radiation environments that are subject to transport and interaction in various material compositions and geometries. Specifically, the Martian surface radiation environment is composed of galactic cosmic radiation, secondary particles produced by their interaction with the Martian atmosphere, albedo particles from the Martian regolith and occasional solar particle events. Despite this complex physical environment with potentially significant locational and geometric dependencies, computational resources often limit radiation environment calculations to a one-dimensional or slab geometry specification. To better account for Martian geometry, spherical volumes with respective Martian material densities are adopted in this model. This physical description is modeled with the PHITS radiation transport code and compared to a portion of measurements from the Radiation Assessment Detector of the Mars Science Laboratory. Particle spectra measured between 15 November 2015 and 15 January 2016 and PHITS model results calculated for this time period are compared. Results indicate good agreement between simulated dose rates, proton, neutron and gamma spectra. This work was originally presented at the 1st Mars Space Radiation Modeling Workshop held in 2016 in Boulder, CO. Copyright © 2017. Published by Elsevier Ltd.

  3. The Built Environment Is a Microbial Wasteland

    PubMed Central

    2016-01-01

    ABSTRACT Humanity’s transition from the outdoor environment to the built environment (BE) has reduced our exposure to microbial diversity. The relative importance of factors that contribute to the composition of human-dominated BE microbial communities remains largely unknown. In their article in this issue, Chase and colleagues (J. Chase, J. Fouquier, M. Zare, D. L. Sonderegger, R. Knight, S. T. Kelley, J. Siegel, and J. G. Caporaso, mSystems 1(2):e00022-16, 2016, http://dx.doi.org/10.1128/mSystems.00022-16) present an office building study in which they controlled for environmental factors, geography, surface material, sampling location, and human interaction type. They found that surface location and geography were the strongest factors contributing to microbial community structure, while surface material had little effect. Even in the absence of direct human interaction, BE surfaces were composed of 25 to 30% human skin-associated taxa. The authors demonstrate how technical variation across sequencing runs is a major issue, especially in BE work, where the biomass is often low and the potential for PCR contaminants is high. Overall, the authors conclude that BE surfaces are desert-like environments where microbes passively accumulate. PMID:27832216

  4. Storage of nuclear materials by encapsulation in fullerenes

    DOEpatents

    Coppa, Nicholas V.

    1994-01-01

    A method of encapsulating radioactive materials inside fullerenes for stable long-term storage. Fullerenes provide a safe and efficient means of disposing of nuclear waste which is extremely stable with respect to the environment. After encapsulation, a radioactive ion is essentially chemically isolated from its external environment.

  5. Acoustic-Levitation Chamber

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Granett, D.; Lee, M. C.

    1984-01-01

    Uncontaminated environments for highly-pure material processing provided within completely sealed levitation chamber that suspends particles by acoustic excitation. Technique ideally suited for material processing in low gravity environment of space.

  6. EPR/PTFE dosimetry for test reactor environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vehar, D.W.; Griffin, P.J.; Quirk, T.J.

    2011-07-01

    The use of Electron Paramagnetic Resonance (EPR) spectroscopy with materials such as alanine is well established as a technique for measurement of ionizing radiation absorbed dose in photon and electron fields such as Co-60, high-energy bremsstrahlung and electron-beam fields [1]. In fact, EPR/Alanine dosimetry has become a routine transfer standard for national standards bodies such as NIST and NPL. In 1992 the Radiation Metrology Laboratory (RML) at Sandia National Laboratories implemented EPR/Alanine capabilities for use in routine and calibration activities at its Co-60 and pulsed-power facilities. At that time it also investigated the usefulness of the system for measurement ofmore » absorbed dose in the mixed neutron/photon environments of reactors such as the Sandia Pulsed Reactor and the Annular Core Research Reactor used for hardness testing of electronics. The RML concluded that the neutron response of alanine was a sufficiently high fraction of the overall dosimeter response that the resulting uncertainties in the photon dose would be unacceptably large for silicon-device testing. However, it also suggested that non-hydrogenous materials such as polytetrafluoroethylene (PTFE) would exhibit smaller neutron response and might be useful in mixed environments. Preliminary research with PTFE in photon environments indicated considerable promise, but further development was not pursued at that time. Because of renewed interest in absorbed dose measurements that could better define the individual contributions of photon and neutron components to the overall dose delivered to a test object, the RML has re-initiated the development of an EPR/PTFE dosimetry system. This effort consists of three stages: 1) Identification of PTFE materials that may be suitable for dosimetry applications. It was speculated that the inconsistency of EPR signatures in the earlier samples may have been due to variability in PTFE manufacturing processes. 2) Characterization of dosimetry in photon-only environments. This is necessary to establish requirements for sample preparation, operating parameters and limitations for use in well-defined and predictable environments prior to deployment in the less well-defined mixed environments of test reactors. 3) Characterization of the EPR responses obtained with PTFE in mixed neutron/photon fields. This includes evaluation of the neutron and photon contributions to response, determination of applicable of neutron fluence and photon dose ranges. This paper presents a summary of the research, a description of the EPR/PTFE dosimetry system, and recommendations for preparation and fielding of the dosimetry in photon and mixed neutron/photon environments. (authors)« less

  7. 222Rn progeny surface deposition and resuspension--residential materials.

    PubMed

    Leonard, B E

    1995-07-01

    The radiological hazard of radon gas to occupants in residential environments is from the particulate progeny 218Po, 214Pb, 214Bi, and 214Po, rather than 222Rn itself. Attachment to aerosols, plateout, and resuspension impact on the progeny airborne concentrations. Plateout rate and resuspension factors were measured for air change (ventilation) rates, 0.01 to 1.0 h-1, in a 0.28 m3 test chamber for interior residential materials of wallboard, drapery, carpet, ceiling tile, and concrete, and from 0.05 to 2.5 h-i for hardwood and glass. The overall accuracy of the plateout rate values is estimated to be +/- 13% standard deviation. For the different materials, the plateout rates for 218Po progeny varied by a factor of nearly six. Drapery gave the largest plateout rates. Resuspension rate factors, R, were measured for hardwood, wallboard, drapery, carpet, and glass by a new time-dependent measurement method based on the difference in buildup rate of 214Po to equilibrium caused by resuspension. Values for R obtained for hardwood, wallboard, drapery, carpet and glass were 0.31, 0.29, 0.44, 0.55, and 0.36, respectively ( +/- 30% standard deviation). All measurements were made in a continuous air conditioned interior environment maintaining temperature at 22.2 +/- 1.1 degrees C and relative humidity of 30% +/- 10%. Computations were made of equivalent plateout rates and equilibrium fractions for a standard 5 m x 5 m x 3 m high room to provide values to compare with other work.

  8. Evaluation of Space Power Materials Flown on the Passive Optical Sample Assembly

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; deGroh, Kim K.; Skowronski, Timothy J.; McCollum, Tim; Pippin, Gary; Bungay, Corey

    1999-01-01

    Evaluating the performance of materials on the exterior of spacecraft is of continuing interest, particularly in anticipation of those applications that will require a long duration in low Earth orbit. The Passive Optical Sample Assembly (POSA) experiment flown on the exterior of Mir as a risk mitigation experiment for the International Space Station was designed to better understand the interaction of materials with the low Earth orbit environment and to better understand the potential contamination threats that may be present in the vicinity of spacecraft. Deterioration in the optical performance of candidate space power materials due to the low Earth orbit environment, the contamination environment, or both, must be evaluated in order to propose measures to mitigate such deterioration. The thirty two samples of space power materials studied here include solar array blanket materials such as polyimide Kapton H and SiO(x) coated polyimide Kapton H, front surface aluminized sapphire, solar dynamic concentrator materials such as silver on spin coated polyimide and aluminum on spin coated polyimide, CV 1144 silicone, and the thermal control paint Z-93-P. The physical and optical properties that were evaluated prior to and after the POSA flight include mass, total, diffuse, and specular reflectance, solar absorptance, and infrared emittance. Additional post flight evaluation included scanning electron microscopy to observe surface features caused by the low Earth orbit environment and the contamination environment, and variable angle spectroscopic ellipsometry to identify contaminant type and thickness. This paper summarizes the results of pre- and post-flight measurements, identifies the mechanisms responsible for optical properties deterioration, and suggests improvements for the durability of materials in future missions.

  9. Constitutive and damage material modeling in a high pressure hydrogen environment

    NASA Technical Reports Server (NTRS)

    Russell, D. A.; Fritzemeier, L. G.

    1991-01-01

    Numerous components in reusable space propulsion systems such as the SSME are exposed to high pressure gaseous hydrogen environments. Flow areas and passages in the fuel turbopump, fuel and oxidizer preburners, main combustion chamber, and injector assembly contain high pressure hydrogen either high in purity or as hydrogen rich steam. Accurate constitutive and damage material models applicable to high pressure hydrogen environments are therefore needed for engine design and analysis. Existing constitutive and cyclic crack initiation models were evaluated only for conditions of oxidizing environments. The main objective is to evaluate these models for applicability to high pressure hydrogen environments.

  10. Research on regulating technique of material flow for 2-person and 30-day integrated CELSS test

    NASA Astrophysics Data System (ADS)

    Guo, Shuangsheng; Dong, Wenping; Ai, Weidang; Feng, Hongqi; Tang, Yongkang; Huang, Zhide; Shen, Yunze; Ren, Jin; Qin, Lifeng; Zeng, Gu; Zhang, Lihong; Zhu, Jingtao; Fei, Jinxue; Xu, Guoxin

    2014-07-01

    A man-plant integration test was processed using the CELSS integration experiment platform in which 4 kinds of plants were grown (Lactuca sativa L var. Dasusheng, L. sativa L var. Youmaicai, Gynura bicolor and Cichorium endivia L) to exchange material with 2 persons in order to research the dynamic changing laws and balanced regulation of air and water between man and plant in an inclosed system. In the test the material flow was measured so that the dynamically changing laws and balanced regulation of air and water between man and plant in the closed system were mostly mastered. The material closure degree of air, water and food reached 100%, 90% and 13.9% respectively with the whole system closure degree up to 95.1%. Meanwhile, it was proved that a 13.5 m2 planting area could meet the demand of one person for O2 in the system, and the energy efficiency ratio of which reached 59.56 g/(kW m2 day). The material flow dynamic balance-regulating technology was initially mastered between man and plant through the test. The interaction was realized among man, plant and environment in the closed system, which is of great significance to the advancement of long-term manned environment control and life support technology for China.

  11. 40 CFR 763.86 - Sampling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sampling. 763.86 Section 763.86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools § 763.86 Sampling. (a) Surfacing material. An accredited inspector...

  12. 40 CFR 763.86 - Sampling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sampling. 763.86 Section 763.86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools § 763.86 Sampling. (a) Surfacing material. An accredited inspector...

  13. 40 CFR 763.86 - Sampling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Sampling. 763.86 Section 763.86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools § 763.86 Sampling. (a) Surfacing material. An accredited inspector...

  14. 40 CFR 763.86 - Sampling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sampling. 763.86 Section 763.86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools § 763.86 Sampling. (a) Surfacing material. An accredited inspector...

  15. 40 CFR 763.86 - Sampling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sampling. 763.86 Section 763.86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools § 763.86 Sampling. (a) Surfacing material. An accredited inspector...

  16. Self assembled molecular monolayers on high surface area materials as molecular getters

    DOEpatents

    King, David E.; Herdt, Gregory C.; Czanderna, Alvin W.

    1997-01-01

    The present invention relates to a gettering material that may be used as a filtration medium to remove pollutants from the environment. The gettering material comprises a high surface area material having a metal surface that chemically bonds n-alkanethiols in an organized manner thereby forming a molecular monolayer over the metal surface. The n-alkanethiols have a free functional group that interacts with the environment thereby binding specific pollutants that may be present. The gettering material may be exposed to streams of air in heating, ventilation, and air conditioning systems or streams of water to remove specific pollutants from either medium.

  17. A Combustion Research Facility for Testing Advanced Materials for Space Applications

    NASA Technical Reports Server (NTRS)

    Bur, Michael J.

    2003-01-01

    The test facility presented herein uses a groundbased rocket combustor to test the durability of new ceramic composite and metallic materials in a rocket engine thermal environment. A gaseous H2/02 rocket combustor (essentially a ground-based rocket engine) is used to generate a high temperature/high heat flux environment to which advanced ceramic and/or metallic materials are exposed. These materials can either be an integral part of the combustor (nozzle, thrust chamber etc) or can be mounted downstream of the combustor in the combustor exhaust plume. The test materials can be uncooled, water cooled or cooled with gaseous hydrogen.

  18. Self assembled molecular monolayers on high surface area materials as molecular getters

    DOEpatents

    King, D.E.; Herdt, G.C.; Czanderna, A.W.

    1997-01-07

    The present invention relates to a gettering material that may be used as a filtration medium to remove pollutants from the environment. The gettering material comprises a high surface area material having a metal surface that chemically bonds n-alkanethiols in an organized manner thereby forming a molecular monolayer over the metal surface. The n-alkanethiols have a free functional group that interacts with the environment thereby binding specific pollutants that may be present. The gettering material may be exposed to streams of air in heating, ventilation, and air conditioning systems or streams of water to remove specific pollutants from either medium. 9 figs.

  19. Environment Conscious Ceramics (Ecoceramics): An Eco-Friendly Route to Advanced Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2001-01-01

    Environment conscious ceramics (Ecoceramics) are a new class of materials, which can be produced with renewable natural resources (wood) or wood wastes (wood sawdust). This technology provides an eco-friendly route to advanced ceramic materials. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches. Silicon carbide-based ecoceramics have been fabricated by reactive infiltration of carbonaceous preforms by molten silicon or silicon-refractory metal alloys. The fabrication approach, microstructure, and mechanical properties of SiC-based ecoceramics are presented.

  20. The Literacy Environment of Preschool Classrooms: Contributions to Children's Emergent Literacy Growth

    ERIC Educational Resources Information Center

    Guo, Ying; Justice, Laura M.; Kaderavek, Joan N.; McGinty, Anita

    2012-01-01

    This study examined the relations among features of the classroom physical literacy environment (book materials, literacy area and writing materials) and psychological literacy environment (instructional support), and preschool children's gains in two areas of emergent literacy over an academic year. Results showed that features of the physical…

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, V.I.; Bell, R.G. III; Brown, F.A.

    Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil, rock, and ice penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact of 125-fps. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these more sensitivemore » electronics. In many cases, it has been found that the packaging techniques currently used not only do not mitigate the shock environment but actually amplify the shock environment. An ambitious goal for this packaging study is to avoid amplification and possibly attenuate the shock environment before it reaches the electronics contained in the various mechanical system. As part of the investigation of packaging techniques, a two part study of shock mitigating materials is being conducted. This paper reports the first part of the shock mitigating materials study. A study to compare three thicknesses (0.125, 0.250, and 0.500 in.) of seventeen, unconfined materials for their shock mitigating characteristics has been completed with a split Hopkinson bar configuration. The nominal input as measured by strain gages on the incident Hopkinson bar is 50 fps {at} 100 {micro}s for these tests. It is hypothesized that a shock mitigating material has four purposes: to lengthen the shock pulse, to attenuate the shock pulse, to mitigate high frequency content in the shock pulse, and to absorb energy. Both time domain and frequency domain analyses of the split Hopkinson bar data have been performed to compare the materials` achievement of these purposes.« less

  2. Axial collapse characteristics of CFRP composites with stacking conditions under the hygrothermal

    NASA Astrophysics Data System (ADS)

    Yang, Yongjun; Choi, Juho; Hwang, Woochae; Son, Jaekyung; Kook, Hyun; Im, Kwanghee; Sim, Jaeki; Yang, Inyoung

    2012-04-01

    CFRP composite material has superior specific strength and rigidity compared to metallic material, and is widely adopted in the various fields. Exceptional corrosion resistance enables the acceptance in maritime structural members such as ship and oildrilling machineries. However, CFRP composite material has the weakness in hygrothermal environment and crash environment. Especially, moisture ingress into composite material under hygrothermal environment can change molecule arrangement and chemical properties. In addition, interface characteristics and component material properties can be degraded. An experimental investigation was carried out to study the crash evaluations of CFRP composites to dynamic crushing by impact loading. We have made a collapse experiment to research into the difference of absorbed energy and deformation mode between moisture absorbed specimen and non-moisture absorbed specimen. As a result, the effect of moisture absorption and impact loads of approximately 30~50% reduction in strength are shown.

  3. Axial collapse characteristics of CFRP composites with stacking conditions under the hygrothermal

    NASA Astrophysics Data System (ADS)

    Yang, Yongjun; Choi, Juho; Hwang, Woochae; Son, Jaekyung; Kook, Hyun; Im, Kwanghee; Sim, Jaeki; Yang, Inyoung

    2011-11-01

    CFRP composite material has superior specific strength and rigidity compared to metallic material, and is widely adopted in the various fields. Exceptional corrosion resistance enables the acceptance in maritime structural members such as ship and oildrilling machineries. However, CFRP composite material has the weakness in hygrothermal environment and crash environment. Especially, moisture ingress into composite material under hygrothermal environment can change molecule arrangement and chemical properties. In addition, interface characteristics and component material properties can be degraded. An experimental investigation was carried out to study the crash evaluations of CFRP composites to dynamic crushing by impact loading. We have made a collapse experiment to research into the difference of absorbed energy and deformation mode between moisture absorbed specimen and non-moisture absorbed specimen. As a result, the effect of moisture absorption and impact loads of approximately 30~50% reduction in strength are shown.

  4. Purchasing in a supply chain environment.

    PubMed

    Schorr, J E

    2000-08-01

    Why the interest in purchasing? In the typical company, material costs are 40% to 75% of the cost of goods sold, labor is 5% to 15%, and the balance is burden. The typical company has $4-$5 in purchased cost to $1 in labor. Most companies are implementing material requirements planning (MRP II) and enterprise resource planning systems to control the $1 in labor and have little expectation in the area of purchasing savings. Yet a dollar saved in purchasing goes directly to the bottom line. I ran a survey of 100 Class A users of MRP II; in all 100 of the companies, the biggest payback was in the area of purchasing.

  5. Digital exchange of graphic arts material: the ultimate challenge

    NASA Astrophysics Data System (ADS)

    McDowell, David Q.

    1996-02-01

    The digital exchange of graphic arts material - particularly advertising material for publications- in an open standardized environment represents the ultimate challenge for electronic data exchange. To meet the needs of publication advertising, the graphic arts industry must be able to transmit advertisements in an open environment where there are many senders and many receivers of the material. The material being transmitted consists of combinations of pictorial material, text, and line art with these elements superimposed on top of each other and/or interrelated in complex ways. The business relationships established by the traditional workflow environment, the combination of aesthetic and technical requirements, and the large base of existing hardware and software play a major role in limiting the options available. Existing first- and second-generation standards are focused on the CEPS environment, which operates on and stores data as raster files. The revolution in personal computer hardware and software, and the acceptance of these tools by the graphic arts community, dictates that standards must also be created and implemented for this world of vector/raster-based systems. The requirements for digital distribution of advertising material for publications, the existing graphic arts standards base, and the anticipation of future standards developments in response to these needs are explored.

  6. Digital exchange of graphic arts material: the ultimate challenge

    NASA Astrophysics Data System (ADS)

    McDowell, David Q.

    1996-01-01

    The digital exchange of graphic arts material -- particularly advertising material for publications -- in an open standardized environment represents the ultimate challenge for electronic data exchange. To meet the needs of publication advertising, the graphic arts industry must be able to transmit advertisements in an open environment where there are many senders and many receivers of the material. The material being transmitted consists of combinations of pictorial material, text, and line art with these elements superimposed on top of each other and/or interrelated in complex ways. The business relationships established by the traditional workflow environment, the combination of aesthetic and technical requirements, and the large base of existing hardware and software play a major role in limiting the options available. Existing first- and second-generation standards are focused on the CEPS environment, which operates on and stores data as raster files. The revolution in personal computer hardware and software, and the acceptance of these tools by the graphic arts community, dictates that standards must also be created and implemented for this world of vector/raster-based systems. The requirements for digital distribution of advertising material for publications, the existing graphic arts standards base, and the anticipation of future standards developments in response to these needs are explored.

  7. Characterizing the Chemical Stability of High Temperature Materials for Application in Extreme Environments

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth

    2005-01-01

    The chemical stability of high temperature materials must be known for use in the extreme environments of combustion applications. The characterization techniques available at NASA Glenn Research Center vary from fundamental thermodynamic property determination to material durability testing in actual engine environments. In this paper some of the unique techniques and facilities available at NASA Glenn will be reviewed. Multiple cell Knudsen effusion mass spectrometry is used to determine thermodynamic data by sampling gas species formed by reaction or equilibration in a Knudsen cell held in a vacuum. The transpiration technique can also be used to determine thermodynamic data of volatile species but at atmospheric pressures. Thermodynamic data in the Si-O-H(g) system were determined with this technique. Free Jet Sampling Mass Spectrometry can be used to study gas-solid interactions at a pressure of one atmosphere. Volatile Si(OH)4(g) was identified by this mass spectrometry technique. A High Pressure Burner Rig is used to expose high temperature materials in hydrocarbon-fueled combustion environments. Silicon carbide (SiC) volatility rates were measured in the burner rig as a function of total pressure, gas velocity and temperature. Finally, the Research Combustion Lab Rocket Test Cell is used to expose high temperature materials in hydrogen/oxygen rocket engine environments to assess material durability. SiC recession due to rocket engine exposures was measured as a function of oxidant/fuel ratio, temperature, and total pressure. The emphasis of the discussion for all techniques will be placed on experimental factors that must be controlled for accurate acquisition of results and reliable prediction of high temperature material chemical stability.

  8. Surface physics-materials science research possibilities on a lunar base

    NASA Astrophysics Data System (ADS)

    Ignatiev, A.

    1990-03-01

    The benefits of experimental investigations are discussed in terms of the vacuum environment and low-gravity conditions which can be made possible by a lunar base. The proposed experiments address the interaction of UV and cosmic radiation with the atomic surfaces and bulk properties of materials, the study of microclusters, and the development of epitaxial films in a lunar environment. The interaction of low- and high-energy charged particles and radiation with materials can potentially be studied to analyze the use of the materials in space.

  9. Nanostructured porous carbons with high rate cycling and floating performance for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Ochai-Ejeh, F. O.; Momodu, D. Y.; Madito, M. J.; Khaleed, A. A.; Oyedotun, K. O.; Ray, S. C.; Manyala, N.

    2018-05-01

    Biomass-derived activated carbon from cork (Quercus Suber) (ACQS) was prepared via a two-step environment-friendly route using mild KHCO3 as the activating agent. This synthesis route makes the material produced less toxic for usage as electrode material for energy storage application. The ACQS has well-defined microporous and mesoporous structures and a specific surface area of 1056.52 m2 g-1 and pore volume of 0.64 cm3 g-1. Three-electrode tests were performed in 6 M KOH, 1 M H2SO4 and 3 M KNO3 aqueous electrolytes, to analyse the material performance in acidic, basic, and neutral media. Specific capacitance values (Cs) of 133 F g-1/167 F g-1 at 1.0 A g-1 was obtained in 3 M KNO3 in the positive/negative potential windows. Due to the observed best performance in neutral 3 M KNO3, further electrochemical analysis of the symmetric device was carried out using the same electrolyte. The device displayed a Cs value of 122 F g-1, energy and power densities of ˜14 W h kg-1 and 450 W kg-1 respectively; at 0.5 A g-1. The device also displayed an excellent stability after potentiostatic floating at a maximum voltage of 1.8 V for 120 h and ˜100% capacitance retention after 10,000 charge-discharge cycles. The excellent stability makes the cork-derived material a potential excellent, cost-effective material for supercapacitor application.

  10. Testing of Advanced Conformal Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew; Agrawal, Parul; Beck, Robin

    2013-01-01

    In support of the CA250 project, this paper details the results of a test campaign that was conducted at the Ames Arcjet Facility, wherein several novel low density thermal protection (TPS) materials were evaluated in an entry like environment. The motivation for these tests was to investigate whether novel conformal ablative TPS materials can perform under high heat flux and shear environment as a viable alternative to rigid ablators like PICA or Avcoat for missions like MSL and beyond. A conformable TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials (such as tiled Phenolic Impregnated Carbon Ablator (PICA) system on MSL, and honeycomb-based Avcoat on the Orion Multi Purpose Crew Vehicle (MPCV)). The compliant (high strain to failure) nature of the conformable ablative materials will allow better integration of the TPS with the underlying aeroshell structure and enable monolithic-like configuration and larger segments to be used in fabrication.A novel SPRITE1 architecture, developed by the researchers at NASA Ames was used for arcjet testing. This small probe like configuration with 450 spherecone, enabled us to test the materials in a combination of high heat flux, pressure and shear environment. The heat flux near the nose were in the range of 500-1000 W/sq cm whereas in the flank section of the test article the magnitudes were about 50 of the nose, 250-500W/sq cm range. There were two candidate conformable materials under consideration for this test series. Both test materials are low density (0.28 g/cu cm) similar to Phenolic Impregnated Carbon Ablator (PICA) or Silicone Impregnated Refractory Ceramic Ablator (SIRCA) and are comprised of: A flexible carbon substrate (Carbon felt) infiltrated with an ablative resin system: phenolic (Conformal-PICA) or silicone (Conformal-SICA). The test demonstrated a successful performance of both the conformable ablators for heat flux conditions between 50-500 W/sq cm. The recession and temperature profile for these materials were comparable to PICA proving them to be viable alternatives for TPS technology development for future missions.

  11. Carpet in Schools: Myth and Reality.

    ERIC Educational Resources Information Center

    Chan, T. C.; Richardson, Michael D.; Jording, Cathy

    2001-01-01

    Carpet can serve as a type of finish over concrete, improves the acoustical environment, and helps build a more conducive, personalized learning environment. Problems associated with carpeting are related to raw materials, texture, cleaning materials, cost factors, moisture, and alleged contribution to poor indoor air quality. Recommendations are…

  12. MODELING THE FATE OF TOXIC ORGANIC MATERIALS IN AQUATIC ENVIRONMENTS

    EPA Science Inventory

    Documentation is given for PEST, a dynamic simulation model for evaluating the fate of toxic organic materials (TOM) in freshwater environments. PEST represents the time-varying concentration (in ppm) of a given TOM in each of as many as 16 carrier compartments; it also computes ...

  13. Environmental Effects on Graphite-Epoxy Fatigue Properties

    NASA Technical Reports Server (NTRS)

    Sumsion, H. T.

    1976-01-01

    Effects of torsional and flexural fatigue on the long-time Integrity of advanced graphite-epoxy structural composites have been investigated. Torsional fatigue tests were run at stress ratios of R = 0 (zero to maximum, repeated) and R = -1 (zero mean stress) on unidirectional, angleply, and woven graphite fiber materials in air and water at room temperature and at 74 C. Flexural fatigue tests (four-point bending) with R = -1 were run in air and water at room temperature, and with R = 0 in air. Results show that, in torsional cycling, both water environment and higher test temperature contribute to significant degradation of torsional stiffness. The degradation of stiffness from torsional stress cycling was observed to be much greater with R = -1 than with simple R = 0 cycling. The effect of environment also is greater in the fully reversed cycling. Flexural fatigue results on +/- 30 deg material show a large fatigue effect, with fatigue limits of less than 50% and 30% of the static failure strength for specimens tested under stress ratios of R = 0 and R = -1, respectively. Compliance measurements indicate that the final failures are preceded by damage initiation and accumulation, which begins at about 1% of the specimen life.

  14. Materials development and evaluation for the ceramic helical expander

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landingham, R.L.; Taylor, R.W.

    The supporting role of the materials program for the ceramic helical expander program is described. The materials problems for this rotory expander in an extremely severe environment - a direct coal-fired Brayton topping cycle is defined. Readily available materials and methods are evaluated for possible solution to these material problems as well as initiating some longer-range studies to improve reliability. A preliminary screening of materials in hot coal-fired environments to select candidate materials and coating, was made, but there is a need to perform more detailed evaluations of these candidate materials-reaction-bonded silicon nitride (RBSN) and Si--Al--O--N (Sialon) system- and coatings-chemical-vapor-depositedmore » silicon nitride (CVD-Si/sub 3/N/sub 4/) and CVD-Sialon. Termination of the helical expander program abruptly stopped the materials program during this evaluation.« less

  15. Silicate-catalyzed chemical grouting compositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1972-09-28

    Chemical grouting compositions for stabilizing earth, sand, and other porous particulate formations or agglomerates of solids are described. The composition for producing a chemically grouting structure consists of an aqueous base solution of: (1) vegetative polyphenolic material consisting of condensed type tannins, and an aqueous catalyst solution of (2) a water-soluble alkali metal silicate. The polyphenolic material is present in an amount from 5% to 40% based on the weight of the base solution, and the water- soluble alkali metal silicate is present in an amount to provide from 1% to 15% SiOD2U in the silicate compound based on themore » weight of the polyphenolic material. These grouting compositions are completely safe to operating personnel and to surrounding environment, since the potassium or sodium silicate catalysts are nontoxic. (15 claims)« less

  16. The Microgravity Research Experiments (MICREX) Data Base. Volume 1

    NASA Technical Reports Server (NTRS)

    Winter, C. A.; Jones, J.C.

    1996-01-01

    An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments), was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigators, (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the experimental facilities employed to examine reduced gravity fluid flow, (3) discusses the importance of a low-gravity fluids and materials processing data base, (4) describes the MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.

  17. Aerial Vehicles to Detect Maximum Volume of Plume Material Associated with Habitable Areas in Extreme Environments

    NASA Technical Reports Server (NTRS)

    Gunasekara, Onalli; Wong, Uland Y.; Furlong, Michael P.; Dille, Michael

    2017-01-01

    Current technologies of exploring habitable areas of icy moons are limited to flybys of space probes. This research project addresses long-term navigation of icy moons by developing a MATLAB adjustable trajectory based on the volume of plume material observed. Plumes expose materials from the sub-surface without accessing the subsurface. Aerial vehicles capable of scouting vapor plumes and detecting maximum plume material volumes, which are considered potentially habitable in inhospitable environments, would enable future deep-space missions to search for extraterrestrial organisms on the surface of icy moons. Although this platform is still a prototype, it demonstrates the potential aerial vehicles can have in improving the capabilities of long-term space navigation and enabling technology for detecting life in extreme environments. Additionally, this work is developing the capabilities that could be utilized as a platform for space biology research. For example, aerial vehicles that are sent to map extreme environments of icy moons or the planet Mars, could also carry small payloads with automated cell-biology experiments, designed to probe the biological response of low-gravity and high-radiation planetary environments, serving as a pathfinder for future human missions.

  18. Electrostatic Discharge Testing of Carbon Composite Solar Array Panels for Use in the Jovian Environment

    NASA Technical Reports Server (NTRS)

    Green, Nelson W.; Dawson, Stephen F.

    2015-01-01

    NASA is currently considering a mission to investigate the moons of Jupiter. When designing a spacecraft for this type of mission, there are a number of engineering challenges, especially if the mission chooses to utilize solar arrays to provide the spacecraft power. In order for solar arrays to be feasible for the mission, their total mass needed to fit within the total budget for the mission, which strongly suggested the use of carbon composite facesheets on an aluminum core for the panel structure. While these composite structures are a good functional substitution for the metallic materials they replace, they present unique challenges when interacting with the harsh Jovian space environment. As a composite material, they are composed of more than one material and can show different base properties depending in differing conditions. Looking at the electrical properties, in an Earth-based environment the carbon component of the composite dominates the response of the material to external stimulus. Under these conditions, the structures strongly resembles a conductor. In the Jovian environment, with temperatures reaching 50K and under the bombardment from energetic electrons, the non-conducting pre-preg binding materials may come to the forefront and change the perceived response. Before selecting solar arrays as the baseline power source for a mission to Jupiter, the response of the carbon composites to energetic electrons while held at cryogenic temperatures needed to be determined. A series of tests were devised to exam the response of a sample solar array panel composed of an M55J carbon weave layup with an RS-3 pre-preg binder. Test coupons were fabricated and exposed to electrons ranging from 10 keV to 100 keV, at 1 nA/cm2, while being held at cryogenic temperatures. While under electron bombardment, electrical discharges were observed and recorded with the majority of discharges occurring with electron energies of 25 keV. A decrease in temperature to liquid nitrogen temperatures showed a marked increase in the magnitude of these discharges. The results indicate that dielectric discharges are primarily produced due to the presence of large regions of the non-conductive pre-preg on the surface of the carbon sheets. The frequency and magnitude of discharges decreased when layers of the pre-preg material were removed from the composite surface. These tests indicate that solar array panels may be used in the Jovian environment, but that electrostatic discharges can be expected on the carbon composite solar arrays.

  19. Stress Corrosion of Ceramic Materials.

    DTIC Science & Technology

    1983-10-01

    ACCESSION NO. 3 RECIPIENT’S CATALOG NUMBER £ TITLE (and Subilie) S. TYPE OF REPORT & PERIOD COVERED Annual Stress Corrosion of Ceramic Materials 1 Nov...ener- behavior. This type of interaction is quite different from the chemi- gies for deuterium and protium which, in barn, results in different cal...Scientifique Continentale du Verre , Charleroi, Belgium, 1962. Dunning, J.M., Effects of Aqueous Chemical Environments on Crack Propagation in Quartz, this volume

  20. Materials outgassing rate decay in vacuum at isothermal conditions

    NASA Astrophysics Data System (ADS)

    Huang, Alvin Y.; Kastanas, George N.; Kramer, Leonard; Soares, Carlos E.; Mikatarian, Ronald R.

    2016-09-01

    As a laboratory for scientific research, the International Space Station has been in Low Earth Orbit for over 17 years and is planned to be on-orbit for another 10 years. The ISS has been maintaining a relatively pristine contamination environment for science payloads. Materials outgassing induced contamination is currently the dominant source for sensitive surfaces on ISS and modelling the outgassing rate decay over a 20 to 30 year period is challenging. Using ASTM E 1559 rate data, materials outgassing is described herein as a diffusion-reaction process with the interface playing a key role. The observation of -1/2 (diffusion) or non-integers (reaction limited) as rate decay exponents for common ISS materials indicate classical reaction kinetics is unsatisfactory in modelling materials outgassing. Nonrandomness of reactant concentrations at the interface is the source of this deviation from classical reaction kinetics. A t-1/2 decay is adopted as the result of the correlation of the contaminant layer thicknesses and composition on returned ISS hardware, the existence of high outgassing silicone exhibiting near diffusion limited decay, the confirmation of nondepleted material after ten years in Low Earth Orbit, and a potential slowdown of long term materials outgassing kinetics due to silicone contaminants at the interface.

  1. Flammability, Odor, and Offgassing Requirements and Test Procedures for Materials in Environments That Support Combustion

    DTIC Science & Technology

    1988-05-01

    alcohol (1- octanol ) phenol n-propyl alcohol (1-propanol) isopropy1 alcohol (2-propanol) **2. Aldehydes acetaldehyde (ethanal) acrolein (propenal...59.0) D-7 MACs 7-Day ppm fmq/M^) 20 (105) 20 (82.0) 20 (70.4) 20 (70.4) Mol. Wt. methyl hexyl ketone (2- octanone ) 128.2 methyl

  2. Evaluation of functional substances in the selected food materials for space agriculture

    NASA Astrophysics Data System (ADS)

    Tomita-Yokotani, Kaori; Kimura, Yasuko; Yamashita, Masamichi; Kimura, Shunta; Sato, Seigo; Katoh, Hiroshi; Abe, Yusuke; Ajioka, Reiko

    We have been studying the useful life-support system in closed bio-ecosystem for space agriculture. We have already proposed the several species as food material, such as Nostoc sp. HK-01 and Prunnus sp., cyanobacterium and Japanese cherry tree, respectively. The cyanobacterium, Nostoc sp Hk-01, has high tolerances to several space environment. Furthermore, the woody plant materials have useful utilization elements in our habitation environment. The studies of woody plants under a space-environment in the vegetable kingdom have a high contribution to the study of various and exotic environmental responses, too. We have already found that they can produce the important functional substances for human. Here, we will show the evaluation of functional substances in the selected food materials under the possible conditions for space agriculture after cooking.

  3. APPLICATION OF MICROWAVES IN BENIGN SYNTHESIS OF NANOMETALS AND NANOCOMPOSITES

    EPA Science Inventory

    A brief account of a greener preparation of nanoparticles that renders these materials less mobile in the environment, thus reducing or eliminating the use and generation of hazardous substances, is presented. The use of vitamins B1 and B2, which can function both as reducing and...

  4. A Teachers' Guide to the Whales of the Gulf of Maine.

    ERIC Educational Resources Information Center

    Elk, Catherine Kiorpes; Lignell, Kathleen, Ed.

    This guide provides: (1) background information for teachers on whales; (2) 10 interdisciplinary activities; (3) teacher resources; (4) a bibliography; and (5) "pocket materials." Topic areas addressed in the first section include evolution and adaptation to an aquatic environment, diversity of whales, functional anatomy of feeding and…

  5. Citizen Participation for Urban Management. Modules 1-3.

    ERIC Educational Resources Information Center

    Benson, Jonathon L.; And Others

    These workshop curricular materials concerning the design and implementation of alternate forms of citizen participation mechanisms were prepared for use with management-level and pre-service personnel involved in urban management within a political environment. Three curricular modules are presented. Module I, "An Overview of Citizen…

  6. 49 CFR 192.479 - Atmospheric corrosion control: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... this section. (b) Coating material must be suitable for the prevention of atmospheric corrosion. (c... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion..., or experience appropriate to the environment of the pipeline that corrosion will— (1) Only be a light...

  7. 49 CFR 192.479 - Atmospheric corrosion control: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... this section. (b) Coating material must be suitable for the prevention of atmospheric corrosion. (c... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion..., or experience appropriate to the environment of the pipeline that corrosion will— (1) Only be a light...

  8. Experimental and theoretical studies on the gas/solid/gas transformation cycle in extraterrestrial environments

    NASA Astrophysics Data System (ADS)

    Cottin, Hervé; Gazeau, Marie-Claire; Chaquin, Patrick; Raulin, François; Bénilan, Yves

    2001-12-01

    The ubiquity of molecular material in the universe, from hydrogen to complex organic matter, is the result of intermixed physicochemical processes that have occurred throughout history. In particular, the gas/solid/gas phase transformation cycle plays a key role in chemical evolution of organic matter from the interstellar medium to planetary systems. This paper focuses on two examples that are representative of the diversity of environments where such transformations occur in the Solar System: (1) the photolytic evolution from gaseous to solid material in methane containing planetary atmospheres and (2) the degradation of high molecular weight compounds into gas phase molecules in comets. We are currently developing two programs which couple experimental and theoretical studies. The aim of this research is to provide data necessary to build models in order to better understand (1) the photochemical evolution of Titan's atmosphere, through a laboratory program to determine quantitative spectroscopic data on long carbon chain molecules (polyynes) obtained in the SCOOP program (French acronym for Spectroscopy of Organic Compounds Oriented for Planetology), and (2) the extended sources in comets, through a laboratory program of quantitative studies of photochemical and thermal degradation processes on relevant polymers (e.g., Polyoxymethylene) by the SEMAPhOrE Cometaire program (French acronym for Experimental Simulation and Modeling Applied to Organic Chemistry in Cometary Environment).

  9. 26th Annual Report to Congress on the Implementation of the Individuals with Disabilities Education Act, 2004. Volume 1

    ERIC Educational Resources Information Center

    US Department of Education, 2006

    2006-01-01

    This 2004 Annual Report to Congress has two volumes. Volume 1 focuses on the children and students being served under IDEA and provides profiles of individual states' special education environment. It contains three sections. Section I contains the child/student-focused material, presented in a question-and-answer format. It contains three…

  10. [Present state and problems of work environment control in the workplaces using hazardous materials based on the Occupational Safety and Health Act in Japan].

    PubMed

    Hori, Hajime

    2013-10-01

    In Japan, working environment measurement is prescribed in the designated workplaces using hazardous materials. Measurements should be carried out periodically and countermeasures are performed depending on the results. By introducing such a system, working environments have remarkably improved. However, in the designated workplaces, measurements should be continued even in work environments found safe. On the other hand, measurement need not be obliged for non-designated workplaces even if hazardous materials are utilized.In the United States of America and many European countries, work environment management and work management are carried out by measuring personal exposure concentrations. In Japan, the Ministry of Health, Labour and Welfare is now discussing the introduction of personal exposure monitoring. However, many problems exist to prevent the simple introduction of American and European methods. This paper describes the brief history, present state and problems of work environment control in Japan, comparing with the systems of American and European countries.

  11. Habitability and Biosignature Preservation in Impact-Derived Materials

    NASA Astrophysics Data System (ADS)

    Sapers, H. M.; Pontefract, A.; Osinski, G. R.; Cannon, K. M.; Mustard, J. F.

    2016-05-01

    Meteorite impacts create environments conducive to microbial colonization. Biosignatures in impact-derived materials have been characterized on Earth. Impact environments comprise candidates for biosignature detection and preservation on Mars.

  12. Evaluation of seals and lubricants used on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Dursch, H. W.; Keough, B. K.; Pippin, H. G.

    1994-01-01

    This report described results from testing and analysis of seals and lubricants subsequent to the 69-month low-earth-orbit (LEO) exposure on the Long Duration Exposure Facility (LDEF). Results show that if the materials were shielded from exposure to LDEF's external environment, the 69-month exposure to LEO resulted in minimal changes to material properties. However, if the materials were exposed to LDEF's exterior environments (atomic oxygen, solar radiation, meteoroids, and/or space debris), a variety of events occurred, ranging from no material change, to changes in properties, to significant erosion of the material.

  13. Mo-Si-B Alloys and Diboride Systems for High Enthalpy Environments: Design and Evaluation

    DTIC Science & Technology

    2016-01-15

    candidate material species production over a range of test gas enthalpies and pressures for UWM and ISU samples. Year 3: 3.1 Begin FTIR...emission measurements on CO2-laser heated samples at SRI. 3.2 Continue experiments to optimize Si-, B-, and C-species LIF detection schemes in hot gas ...material tests to identify data that can be used to benchmark development of physics-based models of gas -surface interactions. • Employ the

  14. Crystal Growth of Device Quality Gaas in Space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.

    1985-01-01

    The GaAs research evolves about these key thrust areas. The overall program combines: (1) studies of crystal growth on novel approaches to engineering of semiconductor material (i.e., GaAs and related compounds); (2) investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; and (3) investigation of electronic properties and phenomena controlling device applications and device performance. This effort is aimed at the essential ground-based program which would insure successful experimentation with and eventually processing of GaAs in near zero gravity environment. It is believed that this program addresses in a unique way materials engineering aspects which bear directly on the future exploitation of the potential of GaAs and related materials in device and systems applications.

  15. ACE-1 experiment

    NASA Image and Video Library

    2013-06-24

    In the International Space Stations Destiny laboratory,NASA astronaut Karen Nyberg,Expedition 36 flight engineer,speaks into a microphone while conducting a session with the Advanced Colloids Experiment (ACE)-1 sample preparation at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF). ACE-1 is a series of microscopic imaging investigations that uses the microgravity environment to examine flow characteristics and the evolution and ordering effects within a group of colloidal materials.

  16. The microgravity environment of the D1 mission

    NASA Technical Reports Server (NTRS)

    Hamacher, H.; Merbold, U.; Jilg, R.

    1990-01-01

    Some characteristic features and results of D1 microgravity measurements are discussed as performed in the Material Science Double Rack (MSDR) and the Materials Science Double Rack for Experiment Modules and Apparatus (MEDEA). Starting with a brief review of the main potential disturbances, the payload aspects of interest to the analysis and the accelerometer measuring systems are described. The microgravity data are analyzed with respect to selected mission events such as thruster firings for attitude control, operations of Spacelab experiment facilities, vestibular experiments and crew activities. The origins are divided into orbit, vehicle, and experiment induced perturbations. It has been found that the microgravity-environment is dictated mainly by payload-induced perturbations. To reduce the microgravity-level, the design of some experiment facilities has to be improved by minimizing the number of moving parts, decoupling of disturbing units from experiment facilities, by taking damping measures, etc. In addition, strongly disturbing experiments and very sensitive investigations should be performed in separate mission phases.

  17. Cyclical tests of selected space shuttle TPS metallic materials in a plasma arc tunnel Volume 1: Description of tests and program summary

    NASA Technical Reports Server (NTRS)

    Rinehart, W. A.; Land, D. W.; Painter, J. H.; Williamson, R. A.

    1972-01-01

    Work, concerned with cyclical thermal evaluation of selected space shuttle thermal protection system (TPS) metallic materials in a hypervelocity oxidizing atmosphere that approximated an actual entry environment, is presented. A total of 325 sample test hours were conducted on 21 super-alloy metallic samples at temperatures from 1800 to 2200 F (1256 to 1478 K) without any failures. The 4 x 4 in. (10.2 x 10.2 cm) samples were fabricated from five nickel base alloys and one cobalt base alloy. Eighteen of the samples were cycled 100 times each and the other three samples 50 times each in a test stream emanating from an 8 in. (20.3 cm) diam exit, Mach 4.6, conical nozzle. The test cycle consisted of a 10 min heat pulse to a controlled temperature followed by a 10 min cooldown period. The TD-NiCrAl and TD-NiAlY materials showed the least change in weight, thickness, and physical appearance even though they were subjected to the highest temperature environment.

  18. Materials development and evaluation for the ceramic helical expander

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landingham, R.L.; Taylor, R.W.

    The supporting role of the materials program for the ceramic helical expander program is described. The materials problems for this rotory expander in an extremely severe environment-a direct coal-fired Brayton topping cycle is defined. Readily available materials and methods for possible solution to these material problems as well as initiating some longer-range studies to improve reliability were evaluated. A preliminary screening of materials in hot coal-fired environments to select candidate materials and coating was made. More detailed evaluations of these candidate materials-reaction-bonded silicon nitride (RBSN) and Si--Al--O--N (Sialon) system- and coatings-chemical-vapor-deposited silicon nitride (CVD-Si/sub 3/N/sub 4/) and CVD-Sialon need tomore » be performed. Termination of the helical expander program abruptly stopped the materials program during this evaluation.« less

  19. Space Environmental Effects on Colored Coatings and Anodizes

    NASA Technical Reports Server (NTRS)

    Kamenetzky, Rachel R.; Finckenor, Miria M.; Vaughn, Jason A.

    1999-01-01

    Colored coatings and anodizes are used on spacecraft as markers and astronaut visual aids. These materials must be stable in the space environment and withstand atomic oxygen, ultraviolet radiation, particulate radiation, thermal cycling, and high vacuum without significant change in optical and mechanical properties. A variety of colored coatings and anodizes have been exposed to simulated space environments at Marshall Space Flight Center and also actual space environment as part of the Passive Optical Sample Assembly (POSA) - I flight experiment. Colored coatings were developed by AZ Technology, Huntsville, AL, under a NASA contract for International Space Station (ISS). These include yellow, red, blue, and black paints suitable for Extra-Vehicular Activity (EVA) visual aids and ISS emblems. AaChron, Inc., Minneapolis, MN, developed stable colored anodizes, also in yellow, red, blue, and black, for astronaut visual aids. These coatings were exposed in the laboratory to approximately 550 equivalent sun-hours of solar ultraviolet radiation and approximately 1 x 10(exp 21) atoms/sq cm of atomic oxygen in vacuum. The AZ Technology yellow colored coating, designated TMS800IY, and all four AaChron colored anodizes were flown on POSA-I. POSA-I was a Risk Mitigation Experiment for ISS. It was attached to the exterior of the Mir space station docking module by EVA and was exposed for 18 months. The laboratory-simulated space environment, the natural space environment and the unique environment of an orbiting, active space station and their effects on these developmental materials are discussed.

  20. Pressure Flammability Thresholds of Selected Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.; Williams, James H.; Harper, Susana A.; Beeson, Harold D.; Ruff, Gary A.; Pedley, Michael D.

    2010-01-01

    A test program was performed to determine the highest pressure in oxygen where materials used in the planned NASA Constellation Program Orion Crew Exploration Vehicle (CEV) Crew Module (CM) would not propagate a flame if an ignition source was present. The test methodology used was similar to that previously used to determine the maximum oxygen concentration (MOC) at which self-extinguishment occurs under constant total pressure conditions. An upward limiting pressure index (ULPI) was determined, where approximately 50 percent of the materials self-extinguish in a given environment. Following this, the maximum total pressure (MTP) was identified; where all samples tested (at least five) self-extinguished following the NASA-STD-6001.A Test 1 burn length criteria. The results obtained on seven materials indicate that the non-metallic materials become flammable in oxygen between 0.4 and 0.9 psia.

  1. Ballistic Performance of Porous-Ceramic, Thermal-Protection-Systems

    NASA Technical Reports Server (NTRS)

    Christiansen, E. L.; Davis, B. A.; Miller, J. E.; Bohl, W. E.; Foreman, C. D.

    2009-01-01

    Porous-ceramic, thermal protection systems are used heavily in current reentry vehicles like the Space Shuttle and are currently being proposed for the next generation of manned spacecraft, Orion. These materials insulate the structural components of a spacecraft against the intense thermal environments of atmospheric reentry. Furthermore, these materials are also highly exposed to space environmental hazards like meteoroid and orbital debris impacts. This paper discusses recent impact testing up to 9 km/s, and the findings of the influence of material equation-of-state on the simulation of the impact event to characterize the ballistic performance of these materials. These results will be compared with heritage models1 for these materials developed from testing at lower velocities. Assessments of predicted spacecraft risk based upon these tests and simulations will also be discussed.

  2. Using the Shuttle In Situ Window and Radiator Data for Meteoroid Measurements

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2015-01-01

    Every time NASA's Space Shuttle flew in orbit, it was exposed to the natural meteoroid and artificial debris environment. NASA Johnson Space Center maintains a database of impact cratering data of 60 Shuttle missions flown since the mid-1990's that were inspected after flight. These represent a total net exposure time to the space environment of 2 years. Impact damage was recorded on the windows and radiators, and in many cases information on the impactor material was determined by later analysis of the crater residue. This information was used to segregate damage caused by natural meteoroids and artificial space debris. The windows represent a total area of 3.565 sq m, and were capable of resolving craters down to about 10 micrometers in size. The radiators represent a total area of 119.26 sq m, and saw damage from objects up to approximately 1 mm in diameter. These data were used extensively in the development of NASA's ORDEM 3.0 Orbital Debris Environment Model, and gives a continuous picture of the orbital debris environment in material type and size ranging from about 10 micrometers to 1 mm. However, the meteoroid data from the Shuttles have never been fully analyzed. For the orbital debris work, special "as flown" files were created that tracked the pointing of the surface elements and their shadowing by structure (such as the ISS during docking). Unfortunately, such files for the meteoroid environment have not yet been created. This talk will introduce these unique impact data and describe how they were used for orbital debris measurements. We will then discuss some simple first-order analyses of the meteoroid data, and point the way for future analyses.

  3. Hybrid Shape Memory Alloy Composites for Extreme Environments

    DTIC Science & Technology

    2011-10-01

    Shape Memory Alloys in Oil Well Applications,” Sintef Petroleum Research, 1999, Trondheim, Norway. 5. Hartl , D. J., Lagoudas, D., Mabe , J., Calkins...Materials and Structures, Vol. 19, No. 1., 2009. 6. Hartl , D. J., Lagoudas, D., Mabe , J., Calkins, F., and Mooney, J., “Use of Ni60Ti Shape Memory...hydraulic actuators) and can thus be located in environments not previously accessible. SMA actuators can also be found in the aerospace ( Hartl and

  4. The Charging of Composites in the Space Environment

    NASA Technical Reports Server (NTRS)

    Czepiela, Steven A.

    1997-01-01

    Deep dielectric charging and subsequent electrostatic discharge in composite materials used on spacecraft have become greater concerns since composite materials are being used more extensively as main structural components. Deep dielectric charging occurs when high energy particles penetrate and deposit themselves in the insulating material of spacecraft components. These deposited particles induce an electric field in the material, which causes the particles to move and thus changes the electric field. The electric field continues to change until a steady state is reached between the incoming particles from the space environment and the particles moving away due to the electric field. An electrostatic discharge occurs when the electric field is greater than the dielectric strength of the composite material. The goal of the current investigation is to investigate deep dielectric charging in composite materials and ascertain what modifications have to be made to the composite properties to alleviate any breakdown issues. A 1-D model was created. The space environment, which is calculated using the Environmental Workbench software, the composite material properties, and the electric field and voltage boundary conditions are input into the model. The output from the model is the charge density, electric field, and voltage distributions as functions of the depth into the material and time. Analysis using the model show that there should be no deep dielectric charging problem with conductive composites such as carbon fiber/epoxy. With insulating materials such as glass fiber/epoxy, Kevlar, and polymers, there is also no concern of deep dielectric charging problems with average day-to-day particle fluxes. However, problems can arise during geomagnetic substorms and solar particle events where particle flux levels increase by several orders of magnitude, and thus increase the electric field in the material by several orders of magnitude. Therefore, the second part of this investigation was an experimental attempt to measure the continuum electrical properties of a carbon fiber/epoxy composite, and to create a composite with tailorable conductivity without affecting its mechanical properties. The measurement of the conductivity and dielectric strength of carbon fiber/epoxy composites showed that these properties are surface layer dominated and difficult to measure. In the second experimental task, the conductivity of a glass fiber/epoxy composite was increased by 3 orders of magnitude, dielectric constant was increased approximately by a factor of 16, with minimal change to the mechanical properties, by adding conductive carbon black to the epoxy.

  5. Characterization of Space Environmental Effects on Candidate Solar Sail Material

    NASA Technical Reports Server (NTRS)

    Edwards, David; Hubbs, Whitney; Stanaland, Tesia; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) is concentrating research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two if the sunfacing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. The Space Environmental Effects Team, at MSFC, is actively characterizing candidate solar sail material to evaluate the thermo-optical and mechanical properties after exposure to radiation environments simulating orbital environments. This paper describes the results of three candidate materials after exposure to a simulated Geosynchronous Transfer Orbit (GTO). This is the first known characterization of solar sail material exposed to space simulated radiation environments. The technique of radiation dose versus material depth profiling was used to determine the orbital equivalent exposure doses. The solar sail exposure procedures and results of the material characterization will be discussed.

  6. 42 CFR 71.1 - Scope and definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ship, aircraft, train, road vehicle, or other means of transport, including military. Commander means the aircrew member with responsibility for the aircraft's operations and navigation. Communicable... environment. Contamination means the presence of undesirable substances or material which may contain...

  7. 42 CFR 71.1 - Scope and definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ship, aircraft, train, road vehicle, or other means of transport, including military. Commander means the aircrew member with responsibility for the aircraft's operations and navigation. Communicable... environment. Contamination means the presence of undesirable substances or material which may contain...

  8. Amarillo National Resource Center for Plutonium. Quarterly technical progress report, May 1, 1997--July 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Progress summaries are provided from the Amarillo National Center for Plutonium. Programs include the plutonium information resource center, environment, public health, and safety, education and training, nuclear and other material studies.

  9. Sustainable practices and related performances at state highway agencies.

    DOT National Transportation Integrated Search

    2010-12-01

    This report identifies seven ways in which an SHA can harm the environment: (1) excessive consumption of virgin materials; (2) unnecessary levels or amounts of storm water runoff; (3) release of environmental contaminants by SHA employees and conract...

  10. Effects of pH and cationic and nonionic surfactants on the adsorption of pharmaceuticals to a natural aquifer material.

    PubMed

    Hari, Ajai C; Paruchuri, Rajiv A; Sabatini, David A; Kibbey, Tohren C G

    2005-04-15

    A wide range of pharmaceutical compounds have been identified in the environment, and their presence is a topic of growing concern, both for human and ecological health. Adsorption to aquifer materials and sediments is an important factor influencing the fate and transport of pharmaceutical compounds in the environment. Surfactants and other amphiphiles are known to influence the adsorption of many compounds and may be present in the environment from wastewaters or other sources. The work described here examines the adsorption of four pharmaceutical compounds, acetaminophen, carbamazepine, nalidixic acid, and norfloxacin, in the presence of a natural aquifer material. Adsorption was studied as a function of pH and in the presence and absence of two surfactants, cetylpyridinium chloride (CPC), a cationic surfactant, and Tergitol NP9, an ethoxylated nonionic surfactant. In the absence of surfactants, results indicate a 1-2 orders of magnitude variation in adsorption affinity with changing pH for each of the two quinolone pharmaceuticals (nalidixic acid and norfloxacin) but no measurable adsorption for carbamazepine or acetaminophen. In the presence of surfactants, adsorption of acetaminophen and carbamazepine was enhanced to extents consistent with compound hydrophobicity, while adsorption of nalidixic acid and norfloxacin was not. At high pH values, the anionic species of nalidixic acid exhibited enhanced adsorption in the presence of the cationic surfactant, CPC.

  11. Containerless synthesis of amorphous and nanophase organic materials

    DOEpatents

    Benmore, Chris J.; Weber, Johann R.

    2016-05-03

    The invention provides a method for producing a mixture of amorphous compounds, the method comprising supplying a solution containing the compounds; and allowing at least a portion of the solvent of the solution to evaporate while preventing the solute of the solution from contacting a nucleation point. Also provided is a method for transforming solids to amorphous material, the method comprising heating the solids in an environment to form a melt, wherein the environment contains no nucleation points; and cooling the melt in the environment.

  12. Volatile Reaction Products From Silicon-Based Ceramics in Combustion Environments Identified

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.

    1997-01-01

    Silicon-based ceramics and composites are prime candidates for use as components in the hot sections of advanced aircraft engines. These materials must have long-term durability in the combustion environment. Because water vapor is always present as a major product of combustion in the engine environment, its effect on the durability of silicon-based ceramics must be understood. In combustion environments, silicon-based ceramics react with water vapor to form a surface silica (SiO2) scale. This SiO2 scale, in turn, has been found to react with water vapor to form volatile hydroxides. Studies to date have focused on how water vapor reacts with high-purity silicon carbide (SiC) and SiO2 in model combustion environments. Because the combustion environment in advanced aircraft engines is expected to contain about 10-percent water vapor at 10-atm total pressure, the durability of SiC and SiO2 in gas mixtures containing 0.1- to 1-atm water vapor is of interest. The reactions of SiC and SiO2 with water vapor were monitored by measuring weight changes of sample coupons in a 0.5-atm water vapor/0.5-atm oxygen gas mixture with thermogravimetric analysis.

  13. Durability of Environmental Barrier Coatings in a Water Vapor/Oxygen Environment

    NASA Technical Reports Server (NTRS)

    Holchin, John E.

    2004-01-01

    Silicon carbide (Sic) and silicon nitride (Si3N4) show potential for application in the hot sections of advanced jet engines. The oxidation behavior of these materials has been studied in great detail. In a pure oxygen environment, a silica (SiO2) layer forms on the surface and provides protection from further oxidation. Initial oxidation is rapid, but slows as silica layer grows; this is known as parabolic oxidation. When exposed to model fuel-lean combustion applications (standard in jet engines), wherein the partial pressure of water vapor is approximately 0.5 atm., these materials exhibit different characteristics. In such an environment, the primary oxidant to form silica is water vapor. At the same time, water vapor reacts with the surface oxide to form gaseous silicon hydroxide (Si(OH)4). The simultaneous formation of both silica and Si(OH)4 -the latter which is lost to the atmosphere- the material continues to recede. Recession rates for uncoated Sic and Si3N4 are unacceptably high, for use in jet engines, - on the order of 1mm/4000h. External coatings have been developed that protect Si-based materials from water vapor attack. One such coating consists of a Ba(0.75)Sr(0.25)Al2Si2O8 (BSAS) topcoat, a mullite/BSAS intermediate layer and a Si bond coat. The key function of the topcoat is to protect the Si-base material from water vapor; therefore it must be fairly stable in water vapor (recession rate of about 1mm/40,000h) and remain crack free. Although BSAS is much more resistant to water vapor attack than pure silica, it exhibits a linear weight loss in 50% H2O - 50% O2 at 1500 C. The objective of my research is to determine the oxidation behavior of a number of alternate hot-pressed monolithic top coat candidates. Potential coatings were exposed at 1500 C to a 50% H2O - 50% O2 gas mixture flowing at 4.4 cm/s . These included rare- earth silicates, barium-strontium aluminosilicates. When weight changes were measured with a continuously recording microbalance, linear weight loss was observed. BSAS materials have a fairly high volatility at this temperature, but rare-earth mono-silicate compounds were significantly more stable.

  14. Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics

    PubMed Central

    Grindy, Scott C.; Learsch, Robert; Mozhdehi, Davoud; Cheng, Jing; Barrett, Devin G.; Guan, Zhibin; Messersmith, Phillip B.; Holten-Andersen, Niels

    2015-01-01

    In conventional polymer materials, mechanical performance is traditionally engineered via material structure, using motifs such as polymer molecular weight, polymer branching, or copolymer-block design1. Here, by means of a model system of 4-arm poly(ethylene glycol) hydrogels crosslinked with multiple, kinetically distinct dynamic metal-ligand coordinate complexes, we show that polymer materials with decoupled spatial structure and mechanical performance can be designed. By tuning the relative concentration of two types of metal-ligand crosslinks, we demonstrate control over the material’s mechanical hierarchy of energy-dissipating modes under dynamic mechanical loading, and therefore the ability to engineer a priori the viscoelastic properties of these materials by controlling the types of crosslinks rather than by modifying the polymer itself. This strategy to decouple material mechanics from structure may inform the design of soft materials for use in complex mechanical environments. PMID:26322715

  15. Towards radiation hard converter material for SiC-based fast neutron detectors

    NASA Astrophysics Data System (ADS)

    Tripathi, S.; Upadhyay, C.; Nagaraj, C. P.; Venkatesan, A.; Devan, K.

    2018-05-01

    In the present work, Geant4 Monte-Carlo simulations have been carried out to study the neutron detection efficiency of the various neutron to other charge particle (recoil proton) converter materials. The converter material is placed over Silicon Carbide (SiC) in Fast Neutron detectors (FNDs) to achieve higher neutron detection efficiency as compared to bare SiC FNDs. Hydrogenous converter material such as High-Density Polyethylene (HDPE) is preferred over other converter materials due to the virtue of its high elastic scattering reaction cross-section for fast neutron detection at room temperature. Upon interaction with fast neutrons, hydrogenous converter material generates recoil protons which liberate e-hole pairs in the active region of SiC detector to provide a detector signal. The neutron detection efficiency offered by HDPE converter is compared with several other hydrogenous materials viz., 1) Lithium Hydride (LiH), 2) Perylene, 3) PTCDA . It is found that, HDPE, though providing highest efficiency among various studied materials, cannot withstand high temperature and harsh radiation environment. On the other hand, perylene and PTCDA can sustain harsh environments, but yields low efficiency. The analysis carried out reveals that LiH is a better material for neutron to other charge particle conversion with competent efficiency and desired radiation hardness. Further, the thickness of LiH has also been optimized for various mono-energetic neutron beams and Am-Be neutron source generating a neutron fluence of 109 neutrons/cm2. The optimized thickness of LiH converter for fast neutron detection is found to be ~ 500 μm. However, the estimated efficiency for fast neutron detection is only 0.1%, which is deemed to be inadequate for reliable detection of neutrons. A sensitivity study has also been done investigating the gamma background effect on the neutron detection efficiency for various energy threshold of Low-Level Discriminator (LLD). The detection efficiency of a stacked structure concept has been explored by juxtaposing several converter-detector layers to improve the efficiency of LiH-SiC-based FNDs . It is observed that approximately tenfold efficiency improvement has been achieved—0.93% for ten layers stacked configuration vis-à-vis 0.1% of single converter-detector layer configuration. Finally, stacked detectors have also been simulated for different converter thicknesses to attain the efficiency as high as ~ 3.25% with the help of 50 stacked layers.

  16. A Catalog of Curriculum Materials for Marine Environment Studies--Elementary and Secondary.

    ERIC Educational Resources Information Center

    Delaware Univ., Newark. Coll. of Marine Studies.

    This partially annotated bibliography on marine environment contains a list of learning experiences and curriculum units for elementary and secondary students. A majority of materials were published in the 1970s. Subjects include biological oceanography, which deals with general and specific aspects of marine biology such as plankton,…

  17. San Jose Unified School District Health & Safety Guide for Facilities and Construction.

    ERIC Educational Resources Information Center

    2001

    This guide from the San Jose Unified School District describes recommended procedures to promote and maintain a healthy and safe school environment during maintenance, modernization, or construction. Guidelines are presented in the following areas: (1) construction safety; (2) communication; (3) material selection; (4) heating, ventilation, and…

  18. [Environmental Education the Organic Way.

    ERIC Educational Resources Information Center

    1972

    Interdisciplinary teaching resources for environmental studies at all educational levels are combined in this set of materials. Items include: (1) teaching aids for science, health, and nature study entitled: (a) "Insects--Here to Help You and the Environment," an 18-minute color filmstrip, cassette sound track and accompanying teacher's guide for…

  19. 32 CFR Appendix A to Part 310 - Safeguarding Personally Identifiable Information (PII)

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... all computer products containing classified data in accordance with the requirements of DoD 5200.1-R... computer environments outside the data processing installation (such as, remote job entry stations... process classified material have adequate procedures and security for the purposes of this Regulation...

  20. 32 CFR Appendix A to Part 310 - Safeguarding Personally Identifiable Information (PII)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... all computer products containing classified data in accordance with the requirements of DoD 5200.1-R... computer environments outside the data processing installation (such as, remote job entry stations... process classified material have adequate procedures and security for the purposes of this Regulation...

Top