DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirro, G.A.
1997-02-01
This paper presents an overview of issues related to handling NORM materials, and provides a description of a facility designed for the processing of NORM contaminated equipment. With regard to handling NORM materials the author discusses sources of NORM, problems, regulations and disposal options, potential hazards, safety equipment, and issues related to personnel protection. For the facility, the author discusses: description of the permanent facility; the operations of the facility; the license it has for handling specific radioactive material; operating and safety procedures; decontamination facilities on site; NORM waste processing capabilities; and offsite NORM services which are available.
Standards for material handling and facilities equipment proofload testing
NASA Technical Reports Server (NTRS)
Bonn, S. P.
1970-01-01
Document provides information on verifying the safety of material handling and facilities equipment /MH/FE/, ranging from monorail systems to ladders and non-powered mobile equipment. Seven catagories of MH/FE equipment are defined.
Code of Federal Regulations, 2011 CFR
2011-07-01
... evaluation criteria for facilities that handle, store, or transport other non-petroleum oils. 154.1325...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Other Non-Petroleum..., store, or transport other non-petroleum oils. (a) An owner or operator of a facility that handles...
Code of Federal Regulations, 2010 CFR
2010-07-01
... evaluation criteria for facilities that handle, store, or transport other non-petroleum oils. 154.1325...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Other Non-Petroleum..., store, or transport other non-petroleum oils. (a) An owner or operator of a facility that handles...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 7 2010-07-01 2010-07-01 false Terminal facilities handling menhaden and similar species of fish (see also § 1917.2, definition of hazardous cargo, material, substance or atmosphere). 1917... facilities handling menhaden and similar species of fish (see also § 1917.2, definition of hazardous cargo...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Response plan development and... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Oil Facilities § 154.1045 Response plan development and evaluation criteria for facilities that handle, store, or...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Response plan development and... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Oil Facilities § 154.1045 Response plan development and evaluation criteria for facilities that handle, store, or...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Response plan development and... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Oil Facilities § 154.1045 Response plan development and evaluation criteria for facilities that handle, store, or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Response plan development and... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Oil Facilities § 154.1045 Response plan development and evaluation criteria for facilities that handle, store, or...
21 CFR 110.37 - Sanitary facilities and controls.
Code of Federal Regulations, 2011 CFR
2011-04-01
... food-packaging materials, or for employee sanitary facilities. (b) Plumbing. Plumbing shall be of... understandable signs directing employees handling unproteced food, unprotected food-packaging materials, of food... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Sanitary facilities and controls. 110.37 Section...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-16
..., New York. A modernized facility is needed to streamline radioactive material handling and storage... waste shipments would be a small part of the shipments of radioactive materials made annually in the... preferred action to address the need for streamlining radioactive material handling and storage operations...
NASA Technical Reports Server (NTRS)
Allton, J. H.; Zeigler, R. A.; Calaway, M. J.
2016-01-01
The Lunar Receiving Laboratory (LRL) was planned and constructed in the 1960s to support the Apollo program in the context of landing on the Moon and safely returning humans. The enduring science return from that effort is a result of careful curation of planetary materials. Technical decisions for the first facility included sample handling environment (vacuum vs inert gas), and instruments for making basic sample assessment, but the most difficult decision, and most visible, was stringent biosafety vs ultra-clean sample handling. Biosafety required handling of samples in negative pressure gloveboxes and rooms for containment and use of sterilizing protocols and animal/plant models for hazard assessment. Ultra-clean sample handling worked best in positive pressure nitrogen environment gloveboxes in positive pressure rooms, using cleanable tools of tightly controlled composition. The requirements for these two objectives were so different, that the solution was to design and build a new facility for specific purpose of preserving the scientific integrity of the samples. The resulting Lunar Curatorial Facility was designed and constructed, from 1972-1979, with advice and oversight by a very active committee comprised of lunar sample scientists. The high precision analyses required for planetary science are enabled by stringent contamination control of trace elements in the materials and protocols of construction (e.g., trace element screening for paint and flooring materials) and the equipment used in sample handling and storage. As other astromaterials, especially small particles and atoms, were added to the collections curated, the technical tension between particulate cleanliness and organic cleanliness was addressed in more detail. Techniques for minimizing particulate contamination in sample handling environments use high efficiency air filtering techniques typically requiring organic sealants which offgas. Protocols for reducing adventitious carbon on sample handling surfaces often generate particles. Further work is needed to achieve both minimal particulate and adventitious carbon contamination. This paper will discuss these facility topics and others in the historical context of nearly 50 years' curation experience for lunar rocks and regolith, meteorites, cosmic dust, comet particles, solar wind atoms, and asteroid particles at Johnson Space Center.
The materials processing sciences glovebox
NASA Technical Reports Server (NTRS)
Traweek, Larry
1990-01-01
The Materials Processing Sciences Glovebox is a rack mounted workstation which allows on orbit sample preparation and characterization of specimens from various experiment facilities. It provides an isolated safe, clean, and sterile environment for the crew member to work with potentially hazardous materials. It has to handle a range of chemicals broader than even PMMS. The theme is that the Space Station Laboratory experiment preparation and characterization operations provide the fundamental glovebox design characteristics. Glovebox subsystem concepts and how internal material handling operations affect the design are discussed.
Risk management technique for liquefied natural gas facilities
NASA Technical Reports Server (NTRS)
Fedor, O. H.; Parsons, W. N.
1975-01-01
Checklists have been compiled for planning, design, construction, startup and debugging, and operation of liquefied natural gas facilities. Lists include references to pertinent safety regulations. Methods described are applicable to handling of other hazardous materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halkjaer-Knudsen, Vibeke
2014-11-01
For the purposes of this paper, a Biocontainment facility is a laboratory, production facility, or similar building that handles contagious biological materials in a safe and responsible manner. This specialized facility, also called a containment facility or a high containment facility reduces the potential for biological agents to be released into the environment, provides a safe work environment for the employees, and supports good laboratory practices.
The requirements described apply to certain facilities licensed by the Nuclear Regulatory Commission (NRC) or its Agreement States to handle radioactive materials. Federal facilities not part of the Department of Energy (DOE) are also covered.
Higashikubo, Ichiro; Miyauchi, Hiroyuki; Yoshida, Satoru; Tanaka, Shinsuke; Matsuoka, Mitsunori; Arito, Heihachiro; Araki, Akihiro; Shimizu, Hidesuke; Sakurai, Haruhiko
2017-04-07
Workplace air concentrations of formaldehyde (FA) in medical facilities where FA and FA-treated organs were stored and handled were measured before and during working hours and assessed by the official method specified by Work Environment Measurement Law. Sixty-percent of the total facilities examined were judged as inappropriately controlled work environment. The concentrations of FA before working hours by spot sampling were found to exceed 0.1 ppm in some facilities, and tended to increase with increasing volume of containers storing FA and FA-treated materials. Regression analysis revealed that logarithmic concentrations of FA during working hours by the Law-specified analytical method were highly correlated with those before working hours by spot sampling, suggesting the importance for appropriate storing methods of FA and FA-treated materials. The concentrations of FA during working hours are considered to be lowered by effective ventilation of FA-contaminated workplace air and appropriate storage of FA and FA-treated materials in plastic containers in the medical facilities. In particular, such improvement by a local exhaust ventilation system and tightly-sealed containment of FA-treated material were urgently needed for the dissecting room where FA-treated cadavers were prepared and handled for a gross anatomy course in a medical school.
Research on the Use of Robotics in Hazardous Environments at Sandia National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwok, Kwan S.
Many hazardous material handling needs exist in remote unstructured environments. Currently these operations are accomplished using personnel in direct contact with the hazards. A safe and cost effective alternative to this approach is the use of intelligent robotic systems for safe handling, packaging, transport, and even excavation of hazardous materials. The Intelligent Systems and Robotics Center of Sandia National Laboratories has developed and deployed robotic technologies for use in hazardous environments, three of which have been deployed in DOE production facilities for handling of special nuclear materials. Other systems are currently under development for packaging special nuclear materials. This papermore » presents an overview of the research activities, including five delivered systems, at %ndia National Laboratories on the use of robotics in hazardous environments.« less
NASA Technical Reports Server (NTRS)
Wong, Willy
2009-01-01
This slide presentation reviews the basics of biosafety and the importance of assuring proper biosafety practices. The objectives of the presentation are to review regulations about biosafety, and the different biosafety levels; the biosafety facilities at Johnson Space Center; the usage and maintenance of the biosafety cabinet, the proper methods to handle biologically hazardous materials upon exposure, and the methods of cleanup in the event of a spill, and the training requirements that are mandated for personnel handling biologically hazardous materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sexton, L.
2012-06-06
Environmental sampling has become a key component of International Atomic Energy Agency (IAEA) safeguards approaches since its approval for use in 1996. Environmental sampling supports the IAEA's mission of drawing conclusions concerning the absence of undeclared nuclear material or nuclear activities in a Nation State. Swipe sampling is the most commonly used method for the collection of environmental samples from bulk handling facilities. However, augmenting swipe samples with an air monitoring system, which could continuously draw samples from the environment of bulk handling facilities, could improve the possibility of the detection of undeclared activities. Continuous sampling offers the opportunity tomore » collect airborne materials before they settle onto surfaces which can be decontaminated, taken into existing duct work, filtered by plant ventilation, or escape via alternate pathways (i.e. drains, doors). Researchers at the Savannah River National Laboratory and Oak Ridge National Laboratory have been working to further develop an aerosol collection technology that could be installed at IAEA safeguarded bulk handling facilities. The addition of this technology may reduce the number of IAEA inspector visits required to effectively collect samples. The principal sample collection device is a patented Aerosol Contaminant Extractor (ACE) which utilizes electrostatic precipitation principles to deposit particulates onto selected substrates. Recent work has focused on comparing traditional swipe sampling to samples collected via an ACE system, and incorporating tamper resistant and tamper indicating (TRI) technologies into the ACE system. Development of a TRI-ACE system would allow collection of samples at uranium/plutonium bulk handling facilities in a manner that ensures sample integrity and could be an important addition to the international nuclear safeguards inspector's toolkit. This work was supported by the Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and International Security (NIS), National Nuclear Security Administration (NNSA).« less
Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danny Anderson
2014-07-01
As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposalmore » vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE and commercial disposal options exist for contact-handled LLW; however, offsite disposal options are either not currently available (i.e., commercial disposal facilities), practical, or cost-effective for all remote-handled LLW streams generated at INL. Offsite disposal of all INL and tenant-generated remote-handled waste is further complicated by issues associated with transporting highly radioactive waste in commerce; and infrastructure and processing changes at the generating facilities, specifically NRF, that would be required to support offsite disposal. The INL Remote-Handled LLW Disposal Project will develop a new remote handled LLW disposal facility to meet mission-critical, remote-handled LLW disposal needs. A formal DOE decision to proceed with the project has been made in accordance with the requirements of National Environmental Policy Act (42 USC§ 4321 et seq.). Remote-handled LLW is generated from nuclear programs conducted at INL, including spent nuclear fuel handling and operations at NRF and operations at the Advanced Test Reactor. Remote-handled LLW also will be generated by new INL programs and from segregation and treatment (as necessary) of remote handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex.« less
45 CFR 12a.6 - Suitability criteria.
Code of Federal Regulations, 2010 CFR
2010-10-01
... basis. (2) Property containing flammable or explosive materials. A property located within 2000 feet of an industrial, commercial or Federal facility handling flammable or explosive material (excluding... substances such as radon, periodic flooding, sinkholes or earth slides. (6) Inaccessible. A property that is...
33 CFR 127.1313 - Storage of hazardous materials.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Storage of hazardous materials. 127.1313 Section 127.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1313 Storage of...
33 CFR 127.1313 - Storage of hazardous materials.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Storage of hazardous materials. 127.1313 Section 127.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1313 Storage of...
33 CFR 127.1313 - Storage of hazardous materials.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Storage of hazardous materials. 127.1313 Section 127.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1313 Storage of...
33 CFR 127.1313 - Storage of hazardous materials.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Storage of hazardous materials. 127.1313 Section 127.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1313 Storage of...
33 CFR 127.1313 - Storage of hazardous materials.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Storage of hazardous materials. 127.1313 Section 127.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1313 Storage of...
Building 211 cyclotron characterization survey report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-03-30
The Building 211 Cyclotron Characterization Survey includes an assessment of the radioactive and chemical inventory of materials stored within the facility; an evaluation of the relative distribution of accelerator-produced activation products within various cyclotron components and adjacent structures; measurement of the radiation fields throughout the facility; measurement and assessment of internal and external radioactive surface contamination on various equipment, facility structures, and air-handling systems; and an assessment of lead (Pb) paint and asbestos hazards within the facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detamore, J.A.
1983-04-16
Research was conducted to locate information about fluorine. This information includes chemical and physical properties of fluorine, physiological effects produced by the material, first-aid, personnel and facility protection, and materials of construction required when handling fluorine in piping and process vessels. The results of this research have been compiled in this report.
33 CFR 127.1605 - Other sources of ignition.
Code of Federal Regulations, 2011 CFR
2011-07-01
... sources of ignition. Each operator of a waterfront facility handling LHG shall ensure that in the marine... is located where sparks may ignite combustible material; and (d) All rubbish, debris, and waste go...
Management of stormwater facility maintenance residuals
DOT National Transportation Integrated Search
1998-06-01
Current research on stormwater maintenance residuals has revealed that the source and nature of these materials is extremely variable, that regulation can be ambiguous, and handling can be costly and difficult. From a regulatory perspective, data ind...
NASA Astrophysics Data System (ADS)
Sibille, L.; Mantovani, J. G.; Townsend, I. I.; Mueller, R. P.
2018-02-01
The concepts describe hardware and instrumentation for the study of planetary surface materials at the Deep Space Gateway as a progressive evolution of capabilities for eliminating the need for special handling and Planetary Protection (PP) protocols inside the habitats.
Morin, Nicolas; Arp, Hans Peter H; Hale, Sarah E
2015-07-07
The plastic additive bisphenol A (BPA) is commonly found in landfill leachate at levels exceeding acute toxicity benchmarks. To gain insight into the mechanisms controlling BPA emissions from waste and waste-handling facilities, a comprehensive field and laboratory campaign was conducted to quantify BPA in solid waste materials (glass, combustibles, vehicle fluff, waste electric and electronic equipment (WEEE), plastics, fly ash, bottom ash, and digestate), leachate water, and atmospheric dust from Norwegian sorting, incineration, and landfill facilities. Solid waste concentrations varied from below 0.002 mg/kg (fly ash) to 188 ± 125 mg/kg (plastics). A novel passive sampling method was developed to, for the first time, establish a set of waste-water partition coefficients, KD,waste, for BPA, and to quantify differences between total and freely dissolved concentrations in waste-facility leachate. Log-normalized KD,waste (L/kg) values were similar for all solid waste materials (from 2.4 to 3.1), excluding glass and metals, indicating BPA is readily leachable. Leachate concentrations were similar for landfills and WEEE/vehicle sorting facilities (from 0.7 to 200 μg/L) and dominated by the freely dissolved fraction, not bound to (plastic) colloids (agreeing with measured KD,waste values). Dust concentrations ranged from 2.3 to 50.7 mg/kgdust. Incineration appears to be an effective way to reduce BPA concentrations in solid waste, dust, and leachate.
Chemical Safety Alert: Lightning Hazard to Facilities Handling Flammable Substances
Raises awareness about lightning strikes, which cause more death/injury and damage than all other environmental elements combined, so industry can take proper precautions to protect equipment and storage or process vessels containing flammable materials.
Microgravity Science Glovebox (MSG)
NASA Technical Reports Server (NTRS)
1998-01-01
The Microgravity Science Glovebox is a facility for performing microgravity research in the areas of materials, combustion, fluids and biotechnology science. The facility occupies a full ISPR, consisting of: the ISPR rack and infrastructure for the rack, the glovebox core facility, data handling, rack stowage, outfitting equipment, and a video subsystem. MSG core facility provides the experiment developers a chamber with air filtering and recycling, up to two levels of containment, an airlock for transfer of payload equipment to/from the main volume, interface resources for the payload inside the core facility, resources inside the airlock, and storage drawers for MSG support equipment and consumables.
1998-05-01
The Microgravity Science Glovebox is a facility for performing microgravity research in the areas of materials, combustion, fluids and biotechnology science. The facility occupies a full ISPR, consisting of: the ISPR rack and infrastructure for the rack, the glovebox core facility, data handling, rack stowage, outfitting equipment, and a video subsystem. MSG core facility provides the experiment developers a chamber with air filtering and recycling, up to two levels of containment, an airlock for transfer of payload equipment to/from the main volume, interface resources for the payload inside the core facility, resources inside the airlock, and storage drawers for MSG support equipment and consumables.
Facility Concepts for Mars Returned Sample Handling
NASA Technical Reports Server (NTRS)
Cohen, Marc M.; Briggs, Geoff (Technical Monitor)
2001-01-01
Samples returned from Mars must be held in quarantine until their biological safety has been determined. A significant challenge, unique to NASA's needs, is how to contain the samples (to protect the blaspheme) while simultaneously protecting their pristine nature. This paper presents a comparative analysis of several quarantine facility concepts for handling and analyzing these samples. The considerations in this design analysis include: modes of manipulation; capability for destructive as well as non-destructive testing; avoidance of cross-contamination; linear versus recursive processing; and sample storage and retrieval within a closed system. The ability to rigorously contain biologically hazardous materials has been amply demonstrated by facilities that meet the specifications of the Center for Disease Control Biosafety Level 4. The newly defined Planetary Protection Level Alpha must provide comparable containment while assuring that the samples remain pristine; the latter requirement is based on the need to avoid compromising science analyses by instrumentation of the highest possible sensitivity (among other things this will assure that there is no false positive detection of organisms or organic molecules - a situation that would delay or prevent the release of the samples from quarantine). Protection of the samples against contamination by terrestrial organisms and organic molecules makes a considerable impact upon the sample handling facility. The use of glove boxes appears to be impractical because of their tendency to leak and to surges. As a result, a returned sample quarantine facility must consider the use of automation and remote manipulation to carry out the various functions of sample handling and transfer within the system. The problem of maintaining sensitive and bulky instrumentation under the constraints of simultaneous sample containment and contamination protection also places demands on the architectural configuration of the facility that houses it.
7 CFR 322.21 - Post-entry handling.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE... restricted organism must move by a bonded commercial carrier directly to a containment facility or apiary... or sterilizing restricted organisms and any breeding materials, pathogens, parasites, containers, or...
7 CFR 322.21 - Post-entry handling.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE... restricted organism must move by a bonded commercial carrier directly to a containment facility or apiary... or sterilizing restricted organisms and any breeding materials, pathogens, parasites, containers, or...
7 CFR 322.21 - Post-entry handling.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE... restricted organism must move by a bonded commercial carrier directly to a containment facility or apiary... or sterilizing restricted organisms and any breeding materials, pathogens, parasites, containers, or...
7 CFR 322.21 - Post-entry handling.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE... restricted organism must move by a bonded commercial carrier directly to a containment facility or apiary... or sterilizing restricted organisms and any breeding materials, pathogens, parasites, containers, or...
7 CFR 322.21 - Post-entry handling.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE... restricted organism must move by a bonded commercial carrier directly to a containment facility or apiary... or sterilizing restricted organisms and any breeding materials, pathogens, parasites, containers, or...
Robust telerobotics - an integrated system for waste handling, characterization and sorting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couture, S.A.; Hurd, R.L.; Wilhelmsen, K.C.
The Mixed Waste Management Facility (MWMF) at the Lawrence Livermore National Laboratory was designed to serve as a national testbed to demonstrate integrated technologies for the treatment of low-level organic mixed waste at a pilot-plant scale. Pilot-scale demonstration serves to bridge the gap between mature, bench-scale proven technologies and full-scale treatment facilities by providing the infrastructure needed to evaluate technologies in an integrated, front-end to back-end facility. Consistent with the intent to focus on technologies that are ready for pilot scale deployment, the front-end handling and feed preparation of incoming waste material has been designed to demonstrate the application ofmore » emerging robotic and remotely operated handling systems. The selection of telerobotics for remote handling in MWMF was made based on a number of factors - personnel protection, waste generation, maturity, cost, flexibility and extendibility. Telerobotics, or shared control of a manipulator by an operator and a computer, provides the flexibility needed to vary the amount of automation or operator intervention according to task complexity. As part of the telerobotics design effort, the technical risk of deploying the technology was reduced through focused developments and demonstrations. The work involved integrating key tools (1) to make a robust telerobotic system that operates at speeds and reliability levels acceptable to waste handling operators and, (2) to demonstrate an efficient operator interface that minimizes the amount of special training and skills needed by the operator. This paper describes the design and operation of the prototype telerobotic waste handling and sorting system that was developed for MWMF.« less
Le, Aurora B; Hoboy, Selin; Germain, Anne; Miller, Hal; Thompson, Richard; Herstein, Jocelyn J; Jelden, Katelyn C; Beam, Elizabeth L; Gibbs, Shawn G; Lowe, John J
2018-02-01
The recent Ebola outbreak led to the development of Ebola virus disease (EVD) best practices in clinical settings. However, after the care of EVD patients, proper medical waste management and disposal was identified as a crucial component to containing the virus. Category A waste-contaminated with EVD and other highly infectious pathogens-is strictly regulated by governmental agencies, and led to only several facilities willing to accept the waste. A pilot survey was administered to determine if U.S. medical waste facilities are prepared to handle or transport category A waste, and to determine waste workers' current extent of training to handle highly infectious waste. Sixty-eight percent of survey respondents indicated they had not determined if their facility would accept category A waste. Of those that had acquired a special permit, 67% had yet to modify their permit since the EVD outbreak. This pilot survey underscores gaps in the medical waste industry to handle and respond to category A waste. Furthermore, this study affirms reports a limited number of processing facilities are capable or willing to accept category A waste. Developing the proper management of infectious disease materials is essential to close the gaps identified so that states and governmental entities can act accordingly based on the regulations and guidance developed, and to ensure public safety. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Design Producibility Assessment System
1989-06-30
Data Base Material Code 17 - 4PH Manufactu Description Precipitation-Handling, corrosion-resist steel Strategic? No Strip Sheet Bar Wire Tube Yes Yes Yes...planned production quantity: 10000 PRODUCTION FACILITIES 5 Select the design material: 17 - 4PH <PgUp> Page Up, <PgDn> Page Down, <Fl> Help, <Esc> Exit DPAS...vl.00 Saturday June 17 , 1989 11:06 am Design Producibility Assessment System Select the design material: 17 - 4PH Select the design material’s form
Performance of a porous pavement system on the Maine Mall Road in South Portland.
DOT National Transportation Integrated Search
2010-12-01
Porous pavements have been successfully used by developers since the mid-70s as a means to make : traditional impervious facilities, such as parking lots, handle storm water in a more environmentally : friendly way. Traditional pavement materials ...
9 CFR 71.20 - Approval of livestock facilities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... shall signify the class or classes of livestock that the facility will handle.) (14) Cattle and bison: —This facility will handle cattle and bison: [Initials of operator, date] —This facility will handle cattle and bison known to be brucellosis reactors, suspects, or exposed: [Initials of operator, date...
NIST Automated Manufacturing Research Facility (AMRF): March 1987
NASA Technical Reports Server (NTRS)
Herbert, Judith E. (Editor); Kane, Richard (Editor)
1987-01-01
The completion and advances to the NIST Automated Manufacturing Research Facility (AMRF) is described in this video. The six work stations: (1) horizontal machining; (2) vertical machining; (3) turning machinery; (4) cleaning and deburring; (5) materials handling; and (6) inspection are shown and uses for each workstation are cited. Visiting researchers and scientists within NIST describe the advantages of each of the workstations, what the facility is used for, future applications for the technological advancements from the AMRF, including examples of how AMRF technology is being transferred to the U.S. Navy industry and discuss future technological goals for the facility.
7 CFR 1436.6 - Eligible storage or handling equipment.
Code of Federal Regulations, 2012 CFR
2012-01-01
... eligible facility loan commodity, such as cleaners, moisture testers, and heat detectors; (4) Electrical... moisture testers, and heat detectors; (vii) Electrical equipment, including labor and materials for..., but are not limited to, the following: An insulated cement slab floor, insulation for walls and...
7 CFR 1436.6 - Eligible storage or handling equipment.
Code of Federal Regulations, 2010 CFR
2010-01-01
... stored eligible facility loan commodity, such as cleaners, moisture testers, and heat detectors; (4... moisture testers, and heat detectors; (vii) Electrical equipment, including labor and materials for..., but are not limited to, the following: An insulated cement slab floor, insulation for walls and...
7 CFR 1436.6 - Eligible storage or handling equipment.
Code of Federal Regulations, 2014 CFR
2014-01-01
... eligible facility loan commodity, such as cleaners, moisture testers, and heat detectors; (4) Electrical... moisture testers, and heat detectors; (vii) Electrical equipment, including labor and materials for..., but are not limited to, the following: An insulated cement slab floor, insulation for walls and...
7 CFR 1436.6 - Eligible storage or handling equipment.
Code of Federal Regulations, 2011 CFR
2011-01-01
... stored eligible facility loan commodity, such as cleaners, moisture testers, and heat detectors; (4... moisture testers, and heat detectors; (vii) Electrical equipment, including labor and materials for..., but are not limited to, the following: An insulated cement slab floor, insulation for walls and...
7 CFR 1436.6 - Eligible storage or handling equipment.
Code of Federal Regulations, 2013 CFR
2013-01-01
... eligible facility loan commodity, such as cleaners, moisture testers, and heat detectors; (4) Electrical... moisture testers, and heat detectors; (vii) Electrical equipment, including labor and materials for..., but are not limited to, the following: An insulated cement slab floor, insulation for walls and...
9 CFR 71.20 - Approval of livestock facilities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... years, and for cattle and bison, sheep and goats, cervids, and equines, for at least 5 years. APHIS... classes of livestock that the facility will handle.) (14) Cattle and bison: —This facility will handle cattle and bison: [Initials of operator, date] —This facility will handle cattle and bison known to be...
Mars Sample Handling and Requirements Panel (MSHARP)
NASA Technical Reports Server (NTRS)
Carr, Michael H.; McCleese, Daniel J.; Bada, Jeffrey L.; Bogard, Donald D.; Clark, Benton C.; DeVincenzi, Donald; Drake, Michael J.; Nealson, Kenneth H.; Papike, James J.; Race, Margaret S.;
1999-01-01
In anticipation of the return of samples from Mars toward the end of the first decade of the next century, NASA's Office of Space Sciences chartered a panel to examine how Mars samples should be handled. The panel was to make recommendations in three areas: (1) sample collection and transport back to Earth; (2) certification of the samples as nonhazardous; and (3) sample receiving, curation, and distribution. This report summarizes the findings of that panel. The samples should be treated as hazardous until proven otherwise. They are to be sealed within a canister on Mars, and the canister is not to be opened until within a Biosafety Hazard Level 4 (BSL-4) containment facility here on Earth. This facility must also meet or exceed the cleanliness requirements of the Johnson Space Center (JSC) facility for curation of extraterrestrial materials. A containment facility meeting both these requirements does not yet exist. Hazard assessment and life detection experiments are to be done at the containment facility, while geochemical characterization is being performed on a sterilized subset of the samples released to the science community. When and if the samples are proven harmless, they are to be transferred to a curation facility, such as that at JSC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmack, William Jonathan; Braase, Lori Ann
Fuel recovery from severe accidents requires careful planning and execution. The Idaho National Laboratory played a key role in the Three Mile Island (TMI) fuel and core recovery. This involved technology development to locate and handle the damaged fuel; characterization of fuel and debris; analysis of fuel interaction with structural components and materials; development of fuel drying technology for long-term storage. However, one of the critical activities from the TMI project was the extensive effort document all the activities and archive the reports and photos. A historical review of the TMI project at the INL leads to the identification ofmore » current applications and considerations for facility designs, fuel handling, robotic applications, material characterization, etc.« less
33 CFR 126.33 - Penalties for handling dangerous cargo without permit.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Penalties for handling dangerous... HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.33 Penalties for handling dangerous cargo without permit. Handling, storing, stowing, loading...
33 CFR 126.33 - Penalties for handling dangerous cargo without permit.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Penalties for handling dangerous... HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.33 Penalties for handling dangerous cargo without permit. Handling, storing, stowing, loading...
33 CFR 126.33 - Penalties for handling dangerous cargo without permit.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Penalties for handling dangerous... HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.33 Penalties for handling dangerous cargo without permit. Handling, storing, stowing, loading...
33 CFR 126.33 - Penalties for handling dangerous cargo without permit.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Penalties for handling dangerous... HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.33 Penalties for handling dangerous cargo without permit. Handling, storing, stowing, loading...
33 CFR 126.33 - Penalties for handling dangerous cargo without permit.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Penalties for handling dangerous... HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.33 Penalties for handling dangerous cargo without permit. Handling, storing, stowing, loading...
33 CFR 126.27 - General permit for handling dangerous cargo.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) in bulk, portable tanks, containers, or packagings, at designated waterfront facilities, conditioned... bulk packaging; or Division 2.3 (Poison Gas) materials in excess of 72,800 kg (80 net tons) at any one... cargo in limited-quantity packaging. (e) Transport units and portable tanks containing dangerous cargo...
Webinar August 11: Analysis Using Fuel Cell MHE for Shaving Peak Building
;Analysis Using Fuel Cell Material Handling Equipment (MHE) for Shaving Peak Building Energy" on offset grid charges associated with peak facility demands. The analyzed scenarios will focus on how the alternative peak-shaving apparatus. View the past webinar. -Sara Havig
1978-07-01
degrades thermal stability and forms undesirable sulfur dioxide emissions . Although the original premises for controlling total sulfur may not still...eliminate corrosive trace contamination, presence of surfactants which deactivate filter/ separators, carry-over of refinery processing materials, and...increase raw vapor emissions from ground fuel handling facilities and during refueling operations. Controlling raw vapor emissions is difficult at 3
33 CFR 154.1216 - Facility classification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Vegetable Oils Facilities § 154.1216 Facility classification. (a) The Coast Guard classifies facilities that handle, store, or transport animal fats or vegetable oils as “substantial harm” facilities because they... classification of a facility that handles, stores, or transports animal fats or vegetable oils. The COTP may...
33 CFR 154.1216 - Facility classification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Vegetable Oils Facilities § 154.1216 Facility classification. (a) The Coast Guard classifies facilities that handle, store, or transport animal fats or vegetable oils as “substantial harm” facilities because they... classification of a facility that handles, stores, or transports animal fats or vegetable oils. The COTP may...
Systems and methods for harvesting and storing materials produced in a nuclear reactor
Heinold, Mark R.; Dayal, Yogeshwar; Brittingham, Martin W.
2016-04-05
Systems produce desired isotopes through irradiation in nuclear reactor instrumentation tubes and deposit the same in a robust facility for immediate shipping, handling, and/or consumption. Irradiation targets are inserted and removed through inaccessible areas without plant shutdown and placed in the harvesting facility, such as a plurality of sealable and shipping-safe casks and/or canisters. Systems may connect various structures in a sealed manner to avoid release of dangerous or unwanted matter throughout the nuclear plant, and/or systems may also automatically decontaminate materials to be released. Useable casks or canisters can include plural barriers for containment that are temporarily and selectively removable with specially-configured paths inserted therein. Penetrations in the facilities may limit waste or pneumatic gas escape and allow the same to be removed from the systems without over-pressurization or leakage. Methods include processing irradiation targets through such systems and securely delivering them in such harvesting facilities.
25 CFR 31.7 - Handling of student funds in Federal school facilities.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 1 2011-04-01 2011-04-01 false Handling of student funds in Federal school facilities... SCHOOLS FOR INDIANS § 31.7 Handling of student funds in Federal school facilities. The Secretary or his... to disburse deposits of funds of students and student activity associations in schools operated by...
25 CFR 31.7 - Handling of student funds in Federal school facilities.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 25 Indians 1 2013-04-01 2013-04-01 false Handling of student funds in Federal school facilities... SCHOOLS FOR INDIANS § 31.7 Handling of student funds in Federal school facilities. The Secretary or his... to disburse deposits of funds of students and student activity associations in schools operated by...
25 CFR 31.7 - Handling of student funds in Federal school facilities.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 25 Indians 1 2014-04-01 2014-04-01 false Handling of student funds in Federal school facilities... SCHOOLS FOR INDIANS § 31.7 Handling of student funds in Federal school facilities. The Secretary or his... to disburse deposits of funds of students and student activity associations in schools operated by...
40 CFR 792.47 - Facilities for handling test, control, and reference substances.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Facilities for handling test, control... § 792.47 Facilities for handling test, control, and reference substances. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test, control, and...
40 CFR 792.47 - Facilities for handling test, control, and reference substances.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Facilities for handling test, control... § 792.47 Facilities for handling test, control, and reference substances. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test, control, and...
40 CFR 792.47 - Facilities for handling test, control, and reference substances.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 33 2013-07-01 2013-07-01 false Facilities for handling test, control... § 792.47 Facilities for handling test, control, and reference substances. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test, control, and...
40 CFR 792.47 - Facilities for handling test, control, and reference substances.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 33 2012-07-01 2012-07-01 false Facilities for handling test, control... § 792.47 Facilities for handling test, control, and reference substances. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test, control, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-18
... TRIDENT Support Facilities Explosives Handling Wharf at Naval Base Kitsap at Bangor, Kitsap County, WA... existing Explosives Handling Wharf in Hood Canal on the waterfront of Naval Base Kitsap (NBK) at Bangor, WA... Stevenson, Naval Facilities Engineering Command Northwest, 1101 Tautog Circle, Silverdale, WA 98315-1101...
33 CFR 126.25 - Penalties for handling designated dangerous cargo without permit.
Code of Federal Regulations, 2014 CFR
2014-07-01
... dangerous cargo without permit. 126.25 Section 126.25 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.25 Penalties for handling designated dangerous cargo without permit. Handling, loading...
33 CFR 126.25 - Penalties for handling designated dangerous cargo without permit.
Code of Federal Regulations, 2010 CFR
2010-07-01
... dangerous cargo without permit. 126.25 Section 126.25 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.25 Penalties for handling designated dangerous cargo without permit. Handling, loading...
33 CFR 126.25 - Penalties for handling designated dangerous cargo without permit.
Code of Federal Regulations, 2012 CFR
2012-07-01
... dangerous cargo without permit. 126.25 Section 126.25 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.25 Penalties for handling designated dangerous cargo without permit. Handling, loading...
33 CFR 126.25 - Penalties for handling designated dangerous cargo without permit.
Code of Federal Regulations, 2011 CFR
2011-07-01
... dangerous cargo without permit. 126.25 Section 126.25 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.25 Penalties for handling designated dangerous cargo without permit. Handling, loading...
33 CFR 126.25 - Penalties for handling designated dangerous cargo without permit.
Code of Federal Regulations, 2013 CFR
2013-07-01
... dangerous cargo without permit. 126.25 Section 126.25 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.25 Penalties for handling designated dangerous cargo without permit. Handling, loading...
33 CFR 126.27 - General permit for handling dangerous cargo.
Code of Federal Regulations, 2014 CFR
2014-07-01
... dangerous cargo. 126.27 Section 126.27 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.27 General permit for handling dangerous cargo. A general permit is hereby issued for the handling, storing...
33 CFR 126.27 - General permit for handling dangerous cargo.
Code of Federal Regulations, 2011 CFR
2011-07-01
... dangerous cargo. 126.27 Section 126.27 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.27 General permit for handling dangerous cargo. A general permit is hereby issued for the handling, storing...
33 CFR 126.27 - General permit for handling dangerous cargo.
Code of Federal Regulations, 2012 CFR
2012-07-01
... dangerous cargo. 126.27 Section 126.27 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.27 General permit for handling dangerous cargo. A general permit is hereby issued for the handling, storing...
33 CFR 126.27 - General permit for handling dangerous cargo.
Code of Federal Regulations, 2013 CFR
2013-07-01
... dangerous cargo. 126.27 Section 126.27 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.27 General permit for handling dangerous cargo. A general permit is hereby issued for the handling, storing...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, D.; Ascanio, X.
1996-05-01
The Department of Energy has issued a technical standard for long-term (>50 years) storage and will soon issue a criteria document for interim (<20 years) storage of plutonium materials. The long-term technical standard, {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides,{close_quotes} addresses the requirements for storing metals and oxides with greater than 50 wt % plutonium. It calls for a standardized package that meets both off-site transportation requirements, as well as remote handling requirements from future storage facilities. The interim criteria document, {open_quotes}Criteria for Interim Safe Storage of Plutonium-Bearing Solid Materials{close_quotes}, addresses requirements for storing materials with less thanmore » 50 wt% plutonium. The interim criteria document assumes the materials will be stored on existing sites, and existing facilities and equipment will be used for repackaging to improve the margin of safety.« less
25 CFR 31.7 - Handling of student funds in Federal school facilities.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 25 Indians 1 2012-04-01 2011-04-01 true Handling of student funds in Federal school facilities. 31... SCHOOLS FOR INDIANS § 31.7 Handling of student funds in Federal school facilities. The Secretary or his... to disburse deposits of funds of students and student activity associations in schools operated by...
LLNL Contribution to Sandia Used Fuel Disposition - Security March 2011 Deliverable
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blink, J A
2011-03-23
Cleary [2007] divides the proliferation pathway into stages: diversion, facility misuse, transportation, transformation, and weapons fabrication. King [2010], using Cleary's methodology, compares a deepburn fusion-driven blanket containing weapons-grade plutonium with a PWR burning MOX fuel enrichments of 5-9%. King considers the stages of theft, transportation, transformation, and nuclear explosive fabrication. In the current study of used fuel storage security, a similar approach is appropriate. First, one must consider the adversary's objective, which can be categorized as on-site radionuclide dispersion, theft of material for later radionuclide dispersion, and theft of material for later processing and fabrication into a nuclear explosive. Formore » on-site radionuclide dispersion, only a single proliferation pathway stage is appropriate: dispersion. That situation will be addressed in future reports. For later radionuclide dispersion, the stages are theft, transportation, and transformation (from oxide spent fuel containing both fission products and actinides to a material size and shape suitable for dispersion). For later processing and fabrication into a nuclear explosive, the stages are theft (by an outsider or by facility misuse by an insider), transportation, transformation (from oxide spent fuel containing both fission products and actinides to a metal alloy), and fabrication (of the alloy into a weapon). It should be noted that the theft and transportation stages are similar, and possibly identical, for later radionuclide dispersion and later processing and fabrication into a nuclear explosive. Each stage can be evaluated separately, and the methodology can vary for each stage. For example, King starts with the methodology of Cleary for the theft, transportation, transformation, and fabrication stages. Then, for each stage, King assembles and modifies the attributes and inputs suggested by Cleary. In the theft (also known as diversion) stage, Cleary has five high-level categories (material handling during diversion, difficulty of evading detection by the accounting system, difficulty of evading detection by the material control system, difficulty of conducting undeclared facility modifications for the purpose of diverting nuclear material, and difficulty of evading detection of the facility modifications for the purposes of diverting nuclear material). Each category has one or more subcategories. For example, the first category includes mass per significant quantity (SQ) of nuclear material, volume/SQ of nuclear material, number of items/SQ, material form (solid, liquid, powder, gas), radiation level in terms of dose, chemical reactivity, heat load, and process temperature. King adds the following two subcategories to that list: SQs available for theft, and interruptions/changes (normal and unexpected) in material stocks and flows. For the situation of an orphaned surface storage facility, this approach is applicable, with some of the categories and subcategories being modified to reflect the static situation (no additions or removals of fuel or containers). In addition, theft would require opening a large overpack and either removing a full container or opening that sealed container and then removing one or more spent nuclear fuel assemblies. These activities would require time without observation (detection), heavy-duty equipment, and some degree of protection of the thieves from radiological dose. In the transportation stage, Cleary has two high-level categories (difficulty of handling material during transportation, and difficulty of evading detection during transport). Each category has a number of subcategories. For the situation of an orphaned surface storage facility, these categories are applicable. The transformation stage of Cleary has three high-level categories (facilities and equipment needed to process diverted materials; knowledge, skills, and workforce needed to process diverted materials; and difficulty of evading detection of transformation activities). Again, there are subcategories. King [2007] adds a fourth high-level category: time required to transform the materials. For the situation of an orphaned surface storage facility, the categories are applicable, but the evaluations of each category and subcategory will be significantly different for later radionuclide dispersion than for later processing and fabrication into a nuclear explosive. The fabrication stage of Cleary has three high-level categories (difficulty associated with design, handling difficulties, and knowledge and skills needed to design and fabricate). King replaces the first two high-level categories with the Figure of Merit for Nuclear Explosives Utility (FOM), with subcategories of bare critical mass, heat content of transformed material, dose rate of transformed material, and SQs available for theft. The next section of this report describes the FOM in more detail.« less
CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Berglund; Jeffrey T. Ranney; Carol L. Babb
2002-04-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility hydrolysis production has been completed to produce lignin for co-fire testing and the lignin fuel was washed and dewatered. Both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation and co-firing. EERC has received coal typical of the fuel to the TVA-Colbert boilers. This material was used atmore » EERC as baseline material and for mixing with the bio-fuel for combustion testing. All the combustion and fuel handling tests at EERC have been completed. During fuel preparation EERC reported no difficulties in fuel blending and handling. Preliminary co-fire test results indicate that the blending of lignin and bio-solids with the Colbert coal blend generally reduces NO{sub x} emissions, increases the reactivity of the coal, and increases the ash deposition rate on superheater surfaces. Deposits produced from the fuel blends, however, are more friable and hence easier to remove from tube surfaces relative to those produced from the baseline Colbert coal blend. The final co-fire testing report is being prepared at EERC and will be completed by the end of the second quarter of 2002. The TVA-Colbert facility has neared completion of the task to evaluate co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for the steam supply system was completed. The cost estimate and output and heat rate impacts have been used to determine a preliminary price for the exported steam. TVA is further evaluating the impacts of adding lignin to the coal fuel blend and how the steam cost is impacted by proximity of the Masada biomass facility.« less
Storage and handling of aviation fuels at airports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-01-01
This standard covers the basic principles for the design of fuel handling facilities and equipment at airports. It provides a reference for the planning and operation of aviation fuel handling facilities and associated equipment.
Ground Handling of Batteries at Test and Launch-site Facilities
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith A.; Hohl, Alan R.
2008-01-01
Ground handling of flight as well as engineering batteries at test facilities and launch-site facilities is a safety critical process. Test equipment interfacing with the batteries should have the required controls to prevent a hazardous failure of the batteries. Test equipment failures should not induce catastrophic failures on the batteries. Transportation requirements for batteries should also be taken into consideration for safe transportation. This viewgraph presentation includes information on the safe handling of batteries for ground processing at test facilities as well as launch-site facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... evaluation criteria for facilities that handle, store, or transport Group V petroleum oils. 154.1047 Section... Group V petroleum oils. (a) An owner or operator of a facility that handles, stores, or transports Group...) Procedures and strategies for responding to a worst case discharge of Group V petroleum oils to the maximum...
Code of Federal Regulations, 2013 CFR
2013-07-01
... evaluation criteria for facilities that handle, store, or transport Group V petroleum oils. 154.1047 Section... Group V petroleum oils. (a) An owner or operator of a facility that handles, stores, or transports Group...) Procedures and strategies for responding to a worst case discharge of Group V petroleum oils to the maximum...
Code of Federal Regulations, 2010 CFR
2010-07-01
... evaluation criteria for facilities that handle, store, or transport Group V petroleum oils. 154.1047 Section... Group V petroleum oils. (a) An owner or operator of a facility that handles, stores, or transports Group...) Procedures and strategies for responding to a worst case discharge of Group V petroleum oils to the maximum...
Code of Federal Regulations, 2014 CFR
2014-07-01
... evaluation criteria for facilities that handle, store, or transport Group V petroleum oils. 154.1047 Section... Group V petroleum oils. (a) An owner or operator of a facility that handles, stores, or transports Group...) Procedures and strategies for responding to a worst case discharge of Group V petroleum oils to the maximum...
Code of Federal Regulations, 2012 CFR
2012-07-01
... evaluation criteria for facilities that handle, store, or transport Group V petroleum oils. 154.1047 Section... Group V petroleum oils. (a) An owner or operator of a facility that handles, stores, or transports Group...) Procedures and strategies for responding to a worst case discharge of Group V petroleum oils to the maximum...
Abuahmad, H
2015-06-01
This paper does not necessarily reflect the views of the International Commission on Radiological Protection. Naturally occurring radioactive material (NORM) is produced during exploration and production operations of subsidiaries of the Abu Dhabi National Oil Company (ADNOC) in the United Arab Emirates, and accumulates in drilling tubulars, plant equipment, and components. These NORM hazardous wastes need to be managed in such a way that they do not damage human health and the environment. The primary radionuclides of concern in the oil and gas industries are radium-226 and radium-228. These radioisotopes are the decay products of uranium and thorium isotopes that are present in subsurface formations from which hydrocarbons are produced. While uranium and thorium are largely immobile, radium is slightly more soluble and may become mobilised in the fluid phases of the formation (International Association of Oil & Gas Producers, 2008). In order to treat and dispose of NORM waste products safely, ADNOC's subsidiary 'TAKREER' is developing a new facility, on behalf of all ADNOC subsidiaries, within the existing Central Environmental Protection Facilities (BeAAT) in Ruwais city. The NORM plant is envisaged to treat, handle, and dispose of NORM waste in the forms of scale, sludge, and contaminated equipment. The NORM treatment facility will cover activities such as decontamination, volume reduction, NORM handling, and concrete immobilisation of NORM waste into packages for designated landfilling. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Firefighting Equipment § 127.1501 General. (a) The... applicable, of Underwriters Laboratories, Inc., Factory Mutual Research Corporation, or other independent...
Code of Federal Regulations, 2011 CFR
2011-07-01
...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Firefighting Equipment § 127.1501 General. (a) The... applicable, of Underwriters Laboratories, Inc., Factory Mutual Research Corporation, or other independent...
40 CFR 160.47 - Facilities for handling test, control, and reference substances.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Facilities for handling test, control, and reference substances. 160.47 Section 160.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.47 Facilities...
Transuranic Waste Test Facility Development Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Looper, M.G.
1987-05-05
This letter discusses the development and test program planned for the Transuranic Waste Test Facility (TWTF). The planned effort is based on previous work in the ADandD Pilot Facility and testing of TWTF equipment before installation. Input from Waste Management and AED Fairview is included. The program will focus on the following areas: Retrieval; Material Handling; Size Reduction; Operation and Maintenance. The program will take 1-1/2 to 2 years to complete and began in December 1986. Technical Data Summaries (TDS) and basic data reports will be issued periodically to document results and provide basic data for the Transuranic Waste Facilitymore » (TWF). 2 refs., 2 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodkind, M.E.; Klimczak, C.A.; Munyon, W.J.
1993-01-01
Argonne National Laboratory-East (ANL) is a Department of Energy (DOE)-owned, contractor-operated national laboratory located 22 miles southwest of downtown Chicago on a wooded, 1700-acre site. The principal nuclear facilities at ANL include a large fast neutron source (Intense Pulse Neutron Source) in which high-energy protons strike a uranium target to produce neutrons for research studies; [sup 60]Co irradiation sources; chemical and metallurgical plutonium laboratories, some of which are currently being decommissioned; several large hot cell facilities designed for work with multicurie quantities of actinide elements and irradiated reactor fuel materials; a few small research reactors currently in different phases ofmore » being decommissioned; and a variety of research laboratories handling many different sources in various chemical and physical forms. The hazards analysis for the ANL site shows that tornado strikes are a serious threat. The site has been struck twice in the past 20 yr, receiving only minor building damage and no release of radioactivity to the environment. Although radioactive materials in general are handled in areas that provide good tornado protection, ANL is prepared to address the problems that would occur should there be a loss of control of radioactive materials due to severe building damage.« less
ERIC Educational Resources Information Center
Jarkon, Joe; Fitzpatrick, Vicki, Ed.
This publication describes the Andrew Heiskell Library for the Blind and Physically Handicapped, a regional library for the National Library Service (NLS) example of the creative use of physical space and innovative technology. The publication focuses on the materials-handling system designed for the new facility, including system design…
Autoclave Meltout of Cast Explosives
1996-08-22
various tanks , kettles , and pelletizing equipment a usable product was recovered. This process creates large amounts of pink water requiring...vacuum treatment melt kettles , flaker belts, and improved material handling equipment in an integrated system. During the 1976/1977 period, AED...McAlester Army Ammo Plant , Oklahoma, to discuss proposed workload and inspect available facilities and equipment . Pilot model production and testing
33 CFR 127.601 - Fire equipment: General.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Firefighting § 127.601 Fire equipment: General. (a) Fire... Laboratories, Inc., the Factory Mutual Research Corp., or the Coast Guard. ...
33 CFR 127.601 - Fire equipment: General.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Firefighting § 127.601 Fire equipment: General. (a) Fire... Laboratories, Inc., the Factory Mutual Research Corp., or the Coast Guard. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kartashov,V.V.; Pratt,W.; Romanov, Y.A.
The Material Protection, Control and Accounting (MPC&A) Operations Monitoring (MOM) systems handling at the International Intergovernmental Organization - Joint Institute for Nuclear Research (JINR) is described in this paper. Category I nuclear material (plutonium and uranium) is used in JINR research reactors, facilities and for scientific and research activities. A monitoring system (MOM) was installed at JINR in April 2003. The system design was based on a vulnerability analysis, which took into account the specifics of the Institute. The design and installation of the MOM system was a collaborative effort between JINR, Brookhaven National Laboratory (BNL) and the U.S. Departmentmore » of Energy (DOE). Financial support was provided by DOE through BNL. The installed MOM system provides facility management with additional assurance that operations involving nuclear material (NM) are correctly followed by the facility personnel. The MOM system also provides additional confidence that the MPC&A systems continue to perform effectively.« less
NASA Astrophysics Data System (ADS)
Arbeiter, Frederik; Baluc, Nadine; Favuzza, Paolo; Gröschel, Friedrich; Heidinger, Roland; Ibarra, Angel; Knaster, Juan; Kanemura, Takuji; Kondo, Hiroo; Massaut, Vincent; Saverio Nitti, Francesco; Miccichè, Gioacchino; O'hira, Shigeru; Rapisarda, David; Sugimoto, Masayoshi; Wakai, Eiichi; Yokomine, Takehiko
2018-01-01
As part of the engineering validation and engineering design activities (EVEDA) phase for the international fusion materials irradiation facility IFMIF, major elements of a lithium target facility and the test facility were designed, prototyped and validated. For the lithium target facility, the EVEDA lithium test loop was built at JAEA and used to test the stability (waves and long term) of the lithium flow in the target, work out the startup procedures, and test lithium purification and analysis. It was confirmed by experiments in the Lifus 6 plant at ENEA that lithium corrosion on ferritic martensitic steels is acceptably low. Furthermore, complex remote handling procedures for the remote maintenance of the target in the test cell environment were successfully practiced. For the test facility, two variants of a high flux test module were prototyped and tested in helium loops, demonstrating their good capabilities of maintaining the material specimens at the desired temperature with a low temperature spread. Irradiation tests were performed for heated specimen capsules and irradiation instrumentation in the BR2 reactor at SCK-CEN. The small specimen test technique, essential for obtaining material test results with limited irradiation volume, was advanced by evaluating specimen shape and test technique influences.
Sánchez-Henarejos, Ana; Fernández-Alemán, José Luis; Toval, Ambrosio; Hernández-Hernández, Isabel; Sánchez-García, Ana Belén; Carrillo de Gea, Juan Manuel
2014-04-01
The appearance of electronic health records has led to the need to strengthen the security of personal health data in order to ensure privacy. Despite the large number of technical security measures and recommendations that exist to protect the security of health data, there is an increase in violations of the privacy of patients' personal data in healthcare organizations, which is in many cases caused by the mistakes or oversights of healthcare professionals. In this paper, we present a guide to good practice for information security in the handling of personal health data by health personnel, drawn from recommendations, regulations and national and international standards. The material presented in this paper can be used in the security audit of health professionals, or as a part of continuing education programs in ambulatory care facilities. Copyright © 2013 Elsevier España, S.L. All rights reserved.
Facility design consideration for continuous mix production of class 1.3 propellant
NASA Technical Reports Server (NTRS)
Williamson, K. L.; Schirk, P. G.
1994-01-01
In November of 1989, NASA awarded the Advanced Solid Rocket Motor (ASRM) contract to Lockheed Missiles and Space Company (LMSC) for production of advanced solid rocket motors using the continuous mix process. Aerojet ASRM division (AAD) was selected as the facility operator and RUST International Corporation provided the engineering, procurement, and construction management services. The continuous mix process mandates that the mix and cast facilities be 'close-coupled' along with the premix facilities, creating unique and challenging requirements for the facility designer. The classical approach to handling energetic materials-division into manageable quantities, segregation, and isolation-was not available due to these process requirements and quantities involved. This paper provides a description of the physical facilities, the continuous mix process, and discusses the monitoring and detection techniques used to mitigate hazards and prevent an incident.
33 CFR 126.17 - Permits required for handling designated dangerous cargo.
Code of Federal Regulations, 2013 CFR
2013-07-01
... designated dangerous cargo. 126.17 Section 126.17 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.17 Permits required for handling designated dangerous cargo. Designated dangerous cargo may be...
33 CFR 126.17 - Permits required for handling designated dangerous cargo.
Code of Federal Regulations, 2014 CFR
2014-07-01
... designated dangerous cargo. 126.17 Section 126.17 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.17 Permits required for handling designated dangerous cargo. Designated dangerous cargo may be...
33 CFR 126.17 - Permits required for handling designated dangerous cargo.
Code of Federal Regulations, 2012 CFR
2012-07-01
... designated dangerous cargo. 126.17 Section 126.17 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.17 Permits required for handling designated dangerous cargo. Designated dangerous cargo may be...
33 CFR 126.17 - Permits required for handling designated dangerous cargo.
Code of Federal Regulations, 2010 CFR
2010-07-01
... designated dangerous cargo. 126.17 Section 126.17 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.17 Permits required for handling designated dangerous cargo. Designated dangerous cargo may be...
33 CFR 126.17 - Permits required for handling designated dangerous cargo.
Code of Federal Regulations, 2011 CFR
2011-07-01
... designated dangerous cargo. 126.17 Section 126.17 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.17 Permits required for handling designated dangerous cargo. Designated dangerous cargo may be...
RoboCal: An automated nondestructive assay system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staley, H.C.; Hollen, R.M.; Bonner, C.A.
1990-01-01
The manager of a facility handling special nuclear material (SNM) is caught in a squeeze between increased state and federal regulations and tighter funding. RoboCal uses a robot to manipulate canisters containing SNM to lower worker radiation exposure and to provide increased utilization of expensive assay equipment. In addition, it helps with accountability and material tracking. It consists of a hierarchical network of more than a dozen computers and provides a single point of contact for the user to accomplish multiple assays.
Fires at storage sites of organic materials, waste fuels and recyclables.
Ibrahim, Muhammad Asim; Alriksson, Stina; Kaczala, Fabio; Hogland, William
2013-09-01
During the last decade, the European Union has enforced the diversion of organic wastes and recyclables to waste management companies operating incineration plants, composting plants and recycling units instead of landfills. The temporary storage sites have been established as a buffer against fluctuations in energy demand throughout the year. Materials also need to be stored at temporary storage sites before recovery and recycling. However, regulations governing waste fuel storage and handling have not yet been developed, and, as a result, companies have engaged in risky practices that have resulted in a high number of fire incidents. In this study, a questionnaire survey was distributed to 249 of the 400 members of Avfall Sverige (Swedish Waste Management Association), which represents the waste management of 95% of the Swedish population. Information regarding 122 storage facilities owned by 69 companies was obtained; these facilities were responsible for the storage of 47% of the total treated waste (incineration + digestion + composting) in 2010 in Sweden. To identify factors related to fire frequency, the questionnaire covered the amounts of material handled and burnt per year, financial losses due to fires, storage duration, storage method and types of waste. The results show that 217 fire incidents corresponded to 170 kilotonnes of material burnt and cumulative losses of 49 million SEK (€4.3 million). Fire frequency and amount of material burnt per fire was found to be dependent upon type of management group (waste operator). Moreover, a correlation was found between fire frequency and material recycled during past years. Further investigations of financial aspects and externalities of fire incidents are recommended.
RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
KOZLOWSKI, S.D.
2007-05-30
This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditionsmore » for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.« less
33 CFR 126.19 - Issuance of permits for handling designated dangerous cargo.
Code of Federal Regulations, 2014 CFR
2014-07-01
... designated dangerous cargo. 126.19 Section 126.19 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.19 Issuance of permits for handling designated dangerous cargo. Upon the application of the owners...
33 CFR 126.19 - Issuance of permits for handling designated dangerous cargo.
Code of Federal Regulations, 2012 CFR
2012-07-01
... designated dangerous cargo. 126.19 Section 126.19 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.19 Issuance of permits for handling designated dangerous cargo. Upon the application of the owners...
33 CFR 126.19 - Issuance of permits for handling designated dangerous cargo.
Code of Federal Regulations, 2011 CFR
2011-07-01
... designated dangerous cargo. 126.19 Section 126.19 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.19 Issuance of permits for handling designated dangerous cargo. Upon the application of the owners...
33 CFR 126.19 - Issuance of permits for handling designated dangerous cargo.
Code of Federal Regulations, 2013 CFR
2013-07-01
... designated dangerous cargo. 126.19 Section 126.19 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.19 Issuance of permits for handling designated dangerous cargo. Upon the application of the owners...
33 CFR 126.19 - Issuance of permits for handling designated dangerous cargo.
Code of Federal Regulations, 2010 CFR
2010-07-01
... designated dangerous cargo. 126.19 Section 126.19 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.19 Issuance of permits for handling designated dangerous cargo. Upon the application of the owners...
40 CFR 160.47 - Facilities for handling test, control, and reference substances.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the test systems and shall be adequate to preserve the identity, strength, purity, and stability of... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Facilities for handling test, control... for handling test, control, and reference substances. (a) As necessary to prevent contamination or...
40 CFR 160.47 - Facilities for handling test, control, and reference substances.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the test systems and shall be adequate to preserve the identity, strength, purity, and stability of... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Facilities for handling test, control... for handling test, control, and reference substances. (a) As necessary to prevent contamination or...
40 CFR 160.47 - Facilities for handling test, control, and reference substances.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the test systems and shall be adequate to preserve the identity, strength, purity, and stability of... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Facilities for handling test, control... for handling test, control, and reference substances. (a) As necessary to prevent contamination or...
40 CFR 160.47 - Facilities for handling test, control, and reference substances.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the test systems and shall be adequate to preserve the identity, strength, purity, and stability of... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Facilities for handling test, control... for handling test, control, and reference substances. (a) As necessary to prevent contamination or...
33 CFR 127.205 - Emergency shutdown.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.205 Emergency shutdown. Each transfer... automatically when the fixed sensors under § 127.201(b) measure LNG concentrations exceeding 40% of the lower...
33 CFR 127.205 - Emergency shutdown.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.205 Emergency shutdown. Each transfer... automatically when the fixed sensors under § 127.201(b) measure LNG concentrations exceeding 40% of the lower...
33 CFR 127.311 - Motor vehicles.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.311 Motor vehicles. (a) The operator... storage tank or loading flange. (b) During transfer operations, no person may— (1) Stop or park a motor...
33 CFR 127.1315 - Preliminary transfer inspection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1315 Preliminary... capacity of each storage tank to or from which LHG will be transferred, to ensure that it is safe for...
33 CFR 127.315 - Preliminary transfer inspection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.315 Preliminary transfer... parts; (b) For each of the vessel's cargo tanks from which cargo will be transferred, note the pressure...
A Draft Protocol for Detecting Possible Biohazards in Martian Samples Returned to Earth
NASA Technical Reports Server (NTRS)
Viso, M.; DeVincenzi, D. L.; Race, M. S.; Schad, P. J.; Stabekis, P. D.; Acevedo, S. E.; Rummel, J. D.
2002-01-01
In preparation for missions to Mars that will involve the return of samples, it is necessary to prepare for the safe receiving, handling, testing, distributing, and archiving of martian materials here on Earth. Previous groups and committees have studied selected aspects of sample return activities, but a specific protocol for handling and testing of returned -=1 samples from Mars remained to be developed. To refine the requirements for Mars sample hazard testing and to develop criteria for the subsequent release of sample materials from precautionary containment, NASA Planetary Protection Officer, working in collaboration with CNES, convened a series of workshops to produce a Protocol by which returned martian sample materials could be assessed for biological hazards and examined for evidence of life (extant or extinct), while safeguarding the samples from possible terrestrial contamination. The Draft Protocol was then reviewed by an Oversight and Review Committee formed specifically for that purpose and composed of senior scientists. In order to preserve the scientific value of returned martian samples under safe conditions, while avoiding false indications of life within the samples, the Sample Receiving Facility (SRF) is required to allow handling and processing of the Mars samples to prevent their terrestrial contamination while maintaining strict biological containment. It is anticipated that samples will be able to be shipped among appropriate containment facilities wherever necessary, under procedures developed in cooperation with international appropriate institutions. The SRF will need to provide different types of laboratory environments for carrying out, beyond sample description and curation, the various aspects of the protocol: Physical/Chemical analysis, Life Detection testing, and Biohazard testing. The main principle of these tests will be described and the criteria for release will be discussed, as well as the requirements for the SRF and its personnel.
Construction safety in DOE. Part 1, Students guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handwerk, E C
This report is the first part of a compilation of safety standards for construction activities on DOE facilities. This report covers the following areas: general safety and health provisions; occupational health and environmental control/haz mat; personal protective equipment; fire protection and prevention; signs, signals, and barricades; materials handling, storage, use, and disposal; hand and power tools; welding and cutting; electrical; and scaffolding.
Credit BG. View shows north and west sides of structure ...
Credit BG. View shows north and west sides of structure as seen when looking east southeast (124°). The thick walls of this building are solid concrete, and the rooms are isolated from each other. The magazine is rated for a maximum of 100 pounds (45.4 Kg) of class 1.1 materials, and two personnel. Handles, attached to walls next to door handles, are static electric discharge points for personnel to touch before entering magazine doors. Note the lightning rods on roof corners and the exterior electrical system for interior lighting - Jet Propulsion Laboratory Edwards Facility, Igniter Magazine, Edwards Air Force Base, Boron, Kern County, CA
21 CFR 58.47 - Facilities for handling test and control articles.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Facilities for handling test and control articles. 58.47 Section 58.47 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... for handling test and control articles. (a) As necessary to prevent contamination or mixups, there...
40 CFR 792.47 - Facilities for handling test, control, and reference substances.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Facilities for handling test, control, and reference substances. 792.47 Section 792.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Facilities...
33 CFR 127.201 - Sensing and alarm systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... vapor or gas may accumulate; and (2) Meet Section 9-4 of NFPA 59A. (c) Fixed sensors that continuously... (CONTINUED) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.201 Sensing and alarm...
33 CFR 127.1205 - Emergency shutdown.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1205 Emergency shutdown. (a) Each... elements that melt at less than 105 °C (221 °F) and activate the emergency shutdown, or have a sensor that...
33 CFR 127.1205 - Emergency shutdown.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1205 Emergency shutdown. (a) Each... elements that melt at less than 105 °C (221 °F) and activate the emergency shutdown, or have a sensor that...
33 CFR 127.201 - Sensing and alarm systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... vapor or gas may accumulate; and (2) Meet Section 9-4 of NFPA 59A. (c) Fixed sensors that continuously... (CONTINUED) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.201 Sensing and alarm...
Vacuum System and Modeling for the Materials Plasma Exposure Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumsdaine, Arnold; Meitner, Steve; Graves, Van
Understanding the science of plasma-material interactions (PMI) is essential for the future development of fusion facilities. The design of divertors and first walls for the next generation of long-pulse fusion facilities, such as a Fusion Nuclear Science Facility (FNSF) or a DEMO, requires significant PMI research and development. In order to meet this need, a new linear plasma facility, the Materials Plasma Exposure Experiment (MPEX) is proposed, which will produce divertor relevant plasma conditions for these next generation facilities. The device will be capable of handling low activation irradiated samples and be able to remove and replace samples without breakingmore » vacuum. A Target Exchange Chamber (TEC) which can be disconnected from the high field environment in order to perform in-situ diagnostics is planned for the facility as well. The vacuum system for MPEX must be carefully designed in order to meet the requirements of the different heating systems, and to provide conditions at the target similar to those expected in a divertor. An automated coupling-decoupling (“autocoupler”) system is designed to create a high vacuum seal, and will allow the TEC to be disconnected without breaking vacuum in either the TEC or the primary plasma materials interaction chamber. This autocoupler, which can be actuated remotely in the presence of the high magnetic fields, has been designed and prototyped, and shows robustness in a variety of conditions. The vacuum system has been modeled using a simplified finite element analysis, and indicates that the design goals for the pressures in key regions of the facility are achievable.« less
Vacuum System and Modeling for the Materials Plasma Exposure Experiment
Lumsdaine, Arnold; Meitner, Steve; Graves, Van; ...
2017-08-07
Understanding the science of plasma-material interactions (PMI) is essential for the future development of fusion facilities. The design of divertors and first walls for the next generation of long-pulse fusion facilities, such as a Fusion Nuclear Science Facility (FNSF) or a DEMO, requires significant PMI research and development. In order to meet this need, a new linear plasma facility, the Materials Plasma Exposure Experiment (MPEX) is proposed, which will produce divertor relevant plasma conditions for these next generation facilities. The device will be capable of handling low activation irradiated samples and be able to remove and replace samples without breakingmore » vacuum. A Target Exchange Chamber (TEC) which can be disconnected from the high field environment in order to perform in-situ diagnostics is planned for the facility as well. The vacuum system for MPEX must be carefully designed in order to meet the requirements of the different heating systems, and to provide conditions at the target similar to those expected in a divertor. An automated coupling-decoupling (“autocoupler”) system is designed to create a high vacuum seal, and will allow the TEC to be disconnected without breaking vacuum in either the TEC or the primary plasma materials interaction chamber. This autocoupler, which can be actuated remotely in the presence of the high magnetic fields, has been designed and prototyped, and shows robustness in a variety of conditions. The vacuum system has been modeled using a simplified finite element analysis, and indicates that the design goals for the pressures in key regions of the facility are achievable.« less
21 CFR 1250.45 - Food handling facilities on railroad conveyances.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Food handling facilities on railroad conveyances. 1250.45 Section 1250.45 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... facilities on railroad conveyances. (a) Both kitchens and pantries of cars hereafter constructed or...
Beans, Bruce E
2017-05-01
The new USP standard for handling hazardous drugs (HDs) will require millions of dollars in capital outlays for facility and equipment upgrades and also requires in-depth assessments of each HD that facilities handle, significant workflow and work practice changes, and thorough staff training.
Life Science Research Facility materials management requirements and concepts
NASA Technical Reports Server (NTRS)
Johnson, Catherine C.
1986-01-01
The Advanced Programs Office at NASA Ames Research Center has defined hypothetical experiments for a 90-day mission on Space Station to allow analysis of the materials necessary to conduct the experiments and to assess the impact on waste processing of recyclable materials and storage requirements of samples to be returned to earth for analysis as well as of nonrecyclable materials. The materials include the specimens themselves, the food, water, and gases necessary to maintain them, the expendables necessary to conduct the experiments, and the metabolic products of the specimens. This study defines the volumes, flow rates, and states of these materials. Process concepts for materials handling will include a cage cleaner, trash compactor, biological stabilizer, and various recycling devices.
Remote-Handled Low-Level Waste Disposal Project Code of Record
DOE Office of Scientific and Technical Information (OSTI.GOV)
Austad, S. L.; Guillen, L. E.; McKnight, C. W.
2015-04-01
The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by themore » Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.« less
Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manohar S. Sohal; J. Stephen Herring
2008-07-01
Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazardsmore » related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable oxygen standards and practices for minimum safety requirements. A summary of operational hazards, along with oxygen safety and emergency procedures, are provided.« less
Viability of Existing INL Facilities for Dry Storage Cask Handling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randy Bohachek; Charles Park; Bruce Wallace
2013-04-01
This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hotmore » Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.« less
Viability of Existing INL Facilities for Dry Storage Cask Handling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohachek, Randy; Wallace, Bruce; Winston, Phil
2013-04-30
This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hotmore » Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.« less
Waste Handeling Building Conceptual Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
G.W. Rowe
2000-11-06
The objective of the ''Waste Handling Building Conceptual Study'' is to develop proposed design requirements for the repository Waste Handling System in sufficient detail to allow the surface facility design to proceed to the License Application effort if the proposed requirements are approved by DOE. Proposed requirements were developed to further refine waste handling facility performance characteristics and design constraints with an emphasis on supporting modular construction, minimizing fuel inventory, and optimizing facility maintainability and dry handling operations. To meet this objective, this study attempts to provide an alternative design to the Site Recommendation design that is flexible, simple, reliable,more » and can be constructed in phases. The design concept will be input to the ''Modular Design/Construction and Operation Options Report'', which will address the overall program objectives and direction, including options and issues associated with transportation, the subsurface facility, and Total System Life Cycle Cost. This study (herein) is limited to the Waste Handling System and associated fuel staging system.« less
21 CFR 58.47 - Facilities for handling test and control articles.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Facilities for handling test and control articles... for handling test and control articles. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test and control articles. (2) Mixing of the...
21 CFR 58.47 - Facilities for handling test and control articles.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Facilities for handling test and control articles... for handling test and control articles. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test and control articles. (2) Mixing of the...
21 CFR 58.47 - Facilities for handling test and control articles.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Facilities for handling test and control articles... for handling test and control articles. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test and control articles. (2) Mixing of the...
21 CFR 58.47 - Facilities for handling test and control articles.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Facilities for handling test and control articles... for handling test and control articles. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test and control articles. (2) Mixing of the...
Preliminary Authorization Basis Documentation for the Proposed Bio Safety Level 3 (BSl-3) Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altenbach, T J; Nguyen, S N
2003-09-20
Lawrence Livermore National Laboratory (LLNL) is proposing to construct a biosafety level (BSL-3) facility at Site 200 in Livermore, California. Biosafety level 3 (BSL-3) is a designation assigned by the Centers for Disease Control and Prevention (CDC) and National Institutes Health (NIH) for handling infectious organisms based on the specific microorganisms and associated operations. Biosafety levels range from BSL-1 (lowest hazard) to BSL-4 (highest hazard). Details about the BSL-3 criteria are described in the Center of Disease Control and Prevention (CDC)/National Institutes of Health (NIH)'s publication ''Biosafety Microbiological and Biomedical Laboratories'' (BMBL), 4th edition (CDC 1999): The BSL-3 facility willmore » be built in accordance with the required BMBL guidelines. This Preliminary Authorization Basis Documentation (PABD) for the proposed BSL-3 facility has been prepared in accordance with the current contractual requirements at LLNL. This includes the LLNL Environment, Safety, and Health Manual (ES&H Manual) and applicable Work Smart Standards, including the biosafety standards, such as the aforementioned BMBL and the NIH Guidelines for Research Involving Recombinant DNA Molecules: The proposed BSL-3 facility is a 1,100 ft{sup 2}, one-story permanent prefabricated facility, which will have three individual BSL-3 laboratory rooms (one of which is an animal biosafety level-3 [ABSL-3] laboratory to handle rodents), a mechanical room, clothes-change and shower rooms, and small storage space (Figure 3.1). The BSL-3 facility will be designed and operated accordance with guidelines for BSL-3 laboratories established by the CDC and the NIH. No radiological, high explosives, fissile, or propellant material will be used or stored in the proposed BSL-3 facility. The BSL-3 facility will be used to develop scientific tools to identify and understand the pathogens of medical, environmental, and forensic importance. Microorganisms that are to be handled in this facility will be limited in quantity, type and form in accordance with the BMBL requirements and approval by the Institutional Biosafety Committee (IBC). The proposed facility will have the unique capability within DOE/NNSA to perform aerosol studies to include challenges to rodents using infectious agents or biologically derived toxins (biotoxins). These types of aerosol studies will be strictly confined in a Class II Type B biosafety cabinet.« less
2016-04-07
ISS047e050514 (04/07/2016) --- Expedition 47 Commander Tim Kopra configures the station’s Microgravity Science Glovebox for upcoming research operations. The glovebox is one of the major dedicated science facilities inside Destiny. It has a large front window and built-in gloves to provide a sealed environment for conducting science and technology experiments. The Glovebox is particularly suited for handling hazardous materials when the crew is present.
Flexible manufacturing of aircraft engine parts
NASA Astrophysics Data System (ADS)
Hassan, Ossama M.; Jenkins, Douglas M.
1992-06-01
GE Aircraft Engines, a major supplier of jet engines for commercial and military aircraft, has developed a fully integrated manufacturing facility to produce aircraft engine components in flexible manufacturing cells. This paper discusses many aspects of the implementation including process technologies, material handling, software control system architecture, socio-technical systems and lessons learned. Emphasis is placed on the appropriate use of automation in a flexible manufacturing system.
Morin, Nicolas A O; Andersson, Patrik L; Hale, Sarah E; Arp, Hans Peter H
2017-12-01
Flame retardants in commercial products eventually make their way into the waste stream. Herein the presence of flame retardants in Norwegian landfills, incineration facilities and recycling sorting/defragmenting facilities is investigated. These facilities handled waste electrical and electronic equipment (WEEE), vehicles, digestate, glass, combustibles, bottom ash and fly ash. The flame retardants considered included polybrominated diphenyl ethers (∑BDE-10) as well as dechlorane plus, polybrominated biphenyls, hexabromobenzene, pentabromotoluene and pentabromoethylbenzene (collectively referred to as ∑FR-7). Plastic, WEEE and vehicles contained the largest amount of flame retardants (∑BDE-10: 45,000-210,000μg/kg; ∑FR-7: 300-13,000μg/kg). It was hypothesized leachate and air concentrations from facilities that sort/defragment WEEE and vehicles would be the highest. This was supported for total air phase concentrations (∑BDE-10: 9000-195,000pg/m 3 WEEE/vehicle facilities, 80-900pg/m 3 in incineration/sorting and landfill sites), but not for water leachate concentrations (e.g., ∑BDE-10: 15-3500ng/L in WEEE/Vehicle facilities and 1-250ng/L in landfill sites). Landfill leachate exhibited similar concentrations as WEEE/vehicle sorting and defragmenting facility leachate. To better account for concentrations in leachates at the different facilities, waste-water partitioning coefficients, K waste were measured (for the first time to our knowledge for flame retardants). WEEE and plastic waste had elevated K waste compared to other wastes, likely because flame retardants are directly added to these materials. The results of this study have implications for the development of strategies to reduce exposure and environmental emissions of flame retardants in waste and recycled products through improved waste management practices. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Sutanto, G. R.; Kim, S.; Kim, D.; Sutanto, H.
2018-03-01
One of the problems in dealing with capacitated facility location problem (CFLP) is occurred because of the difference between the capacity numbers of facilities and the number of customers that needs to be served. A facility with small capacity may result in uncovered customers. These customers need to be re-allocated to another facility that still has available capacity. Therefore, an approach is proposed to handle CFLP by using k-means clustering algorithm to handle customers’ allocation. And then, if customers’ re-allocation is needed, is decided by the overall average distance between customers and the facilities. This new approach is benchmarked to the existing approach by Liao and Guo which also use k-means clustering algorithm as a base idea to decide the facilities location and customers’ allocation. Both of these approaches are benchmarked by using three clustering evaluation methods with connectedness, compactness, and separations factors.
Unequal-area, fixed-shape facility layout problems using the firefly algorithm
NASA Astrophysics Data System (ADS)
Ingole, Supriya; Singh, Dinesh
2017-07-01
In manufacturing industries, the facility layout design is a very important task, as it is concerned with the overall manufacturing cost and profit of the industry. The facility layout problem (FLP) is solved by arranging the departments or facilities of known dimensions on the available floor space. The objective of this article is to implement the firefly algorithm (FA) for solving unequal-area, fixed-shape FLPs and optimizing the costs of total material handling and transportation between the facilities. The FA is a nature-inspired algorithm and can be used for combinatorial optimization problems. Benchmark problems from the previous literature are solved using the FA. To check its effectiveness, it is implemented to solve large-sized FLPs. Computational results obtained using the FA show that the algorithm is less time consuming and the total layout costs for FLPs are better than the best results achieved so far.
Great Lakes Steel -- PCI facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichinger, F.T.; Dake, S.H.; Wagner, E.D.
1997-12-31
This paper discusses the planning, design, and start-up of the 90 tph PCI facility for National Steel`s Great Lakes Steel Division in River Rouge, MI. This project is owned and operated by Edison Energy Services, and was implemented on a fast-track basis by Raytheon Engineers and Constructors, Babcock Material Handling, and Babcock and Wilcox. This paper presents important process issues, basic design criteria, an the challenges of engineering and building a state-of-the-art PCI facility in two existing plants. Pulverized coal is prepared at the River Rouge Power Plant of Detroit Edison, is pneumatically conveyed 6,000 feet to a storage silomore » at Great Lakes Steel, and is injected into three blast furnaces.« less
Copper as an antibacterial material in different facilities.
Inkinen, J; Mäkinen, R; Keinänen-Toivola, M M; Nordström, K; Ahonen, M
2017-01-01
The present study was performed in real life settings in different facilities (hospital, kindergarten, retirement home, office building) with copper and copper alloy touch surface products (floor drain lids, toilet flush buttons, door handles, light switches, closet touch surfaces, corridor hand rails, front door handles and toilet support rails) in parallel to reference products. Pure copper surfaces supported lower total bacterial counts (16 ± 45 vs 105 ± 430 CFU cm -2 , n = 214, P < 0·001) and a lower occurrence of Staphylococcus aureus (2·6 vs 14%, n = 157, P < 0·01) and Gram-negatives (21 vs 34%, n = 214, P < 0·05) respectively than did reference surfaces, whereas the occurrence of enterococci (15%, n = 214, P > 0·05) was similar. The studied products could be assigned to three categories according to their bacterial loads as follows (P < 0·001): floor drain lids (300 ± 730 CFU cm -2 , n = 32), small area touch surfaces (8·0 ± 7·1 to 62 ± 160 CFU cm -2 , n = 90) and large area touch surfaces (1·1 ± 1·1 to 1·7 ± 2·4 CFU cm -2 , n = 92). In conclusion, copper touch surface products can function as antibacterial materials to reduce the bacterial load, especially on frequently touched small surfaces. The efficiency of copper as an antimicrobial material has been noted in laboratory studies and in the hospital environment. The present study further shows that copper exerted an antibacterial effect in different facilities, i.e. in a hospital, a kindergarten, an office building and in a retirement home for the elderly. The study suggests that copper has potential use as an antibacterial material and therefore might serve as a means to lower the incidence of transmission of infectious agents from inanimate surfaces in different facilities, with everyday functions. © 2016 The Society for Applied Microbiology.
Manufacture, distribution, and handling of nitrate salts for solar-thermal applications
NASA Astrophysics Data System (ADS)
Fiorucci, L. C.; Goldstein, S. L.
1982-11-01
The low cost and attractive physical properties of molten sodium/potassium nitrate salts were shown to be one of the most cost effective fluids for heat absorption and thermal energy storage in Solar Central Receiver (SCR) systems. Information related to the availability, transport, handling, and utilization of these salts for commercial size SCR applications is provided. The following items are reviewed: existing manufacturing processes for natural and synthetic nitrates; the upstream availability of raw materials; downstream existing and projected demand for these products in other sectors of the economy; and relevant handling and distribution technologies. Safety considerations and issues more directly related to the SCR facility, such as initial system charging, salt maintenance and regeneration, and disposal are also reviewed. Options for supply, surge storage, and initial charging are discussed for the 1 MWt to 300 MWe range of solar plant sizes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.
The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by themore » Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.« less
NASA Astrophysics Data System (ADS)
Nakamura, Hiroo; Riccardi, B.; Loginov, N.; Ara, K.; Burgazzi, L.; Cevolani, S.; Dell'Orco, G.; Fazio, C.; Giusti, D.; Horiike, H.; Ida, M.; Ise, H.; Kakui, H.; Matsui, H.; Micciche, G.; Muroga, T.; Nakamura, Hideo; Shimizu, K.; Sugimoto, M.; Suzuki, A.; Takeuchi, H.; Tanaka, S.; Yoneoka, T.
2004-08-01
During the three year key element technology phase of the International Fusion Materials Irradiation Facility (IFMIF) project, completed at the end of 2002, key technologies have been validated. In this paper, these results are summarized. A water jet experiment simulating Li flow validated stable flow up to 20 m/s with a double reducer nozzle. In addition, a small Li loop experiment validated stable Li flow up to 14 m/s. To control the nitrogen content in Li below 10 wppm will require surface area of a V-Ti alloy getter of 135 m 2. Conceptual designs of diagnostics have been carried out. Moreover, the concept of a remote handling system to replace the back wall based on `cut and reweld' and `bayonet' options has been established. Analysis by FMEA showed safe operation of the target system. Recent activities in the transition phase, started in 2003, and plan for the next phase are also described.
2016-09-13
NASA astronaut Kate Rubins works on Selectable Optical Diagnostics Instrument Experiment Diffusion Coefficient Mixture-3 (SODI) DCMix-3 Installation inside the station’s Microgravity Science Glovebox. The glovebox is one of the major dedicated science facilities inside the Destiny laboratory and provides a sealed environment for conducting science and technology experiments. The glovebox is particularly suited for handling hazardous materials when the crew is present.
US Navy incurs ongoing asbestos removal costs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barber, J.
1983-07-04
Asbestos insulation removal from the Philadelphia Naval Shipyard and a Coast Guard facility at Fort Totten, Queens could cost the Navy over $400 million by the time all asbestos hazards are identified and removed. Much of the cost is due to equipment shutdown during the process and the handling and disposal of asbestos material. Concern over health hazards from exposure to asbestos and recent lawsuits claiming damage prompted the removal. (DCK)
Powder Processing of High Temperature Cermets and Carbides at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Salvail, Pat; Panda, Binayak; Hickman, Robert R.
2007-01-01
The Materials and Processing Laboratory at NASA Marshall Space Flight Center is developing Powder Metallurgy (PM) processing techniques for high temperature cermet and carbide material consolidation. These new group of materials would be utilized in the nuclear core for Nuclear Thermal Rockets (NTR). Cermet materials offer several advantages for NTR such as retention of fission products and fuels, better thermal shock resistance, hydrogen compatibility, high thermal conductivity, and high strength. Carbide materials offer the highest operating temperatures but are sensitive to thermal stresses and are difficult to process. To support the effort, a new facility has been setup to process refractory metal, ceramic, carbides and depleted uranium-based powders. The facility inciudes inert atmosphere glove boxes for the handling of reactive powders, a high temperature furnace, and powder processing equipment used for blending, milling, and sieving. The effort is focused on basic research to identify the most promising compositions and processing techniques. Several PM processing methods including Cold and Hot Isostatic Pressing are being evaluated to fabricate samples for characterization and hot hydrogen testing.
1964-08-14
Aerial view of Gasdynamics facility in 1964 and the 20 inch helium tunnel Part of the Thermal Protection Laboratory used to research materials for heat shield applications and for aerodynamic heating and materials studies of vehicles in planetary atmospheres. This laboratory is comprised of five separate facilities: an Aerodynamic Heating Tunnel, a Heat Transfer Tunnel, two Supersonic Turbulent Ducts, and a High-Power CO2 Gasdynamic Laser. All these facilities are driven by arc-heaters, with the exception of the large, combustion-type laser. The arc-heated facilities are powered by a 20 Megawatt DC power supply. Their effluent gas stream (test gases; Air, N2, He, CO2 and mixtures; flow rates from 0.05 to 5.0 lbs/sec) discharges into a five-stage stream-ejector-driven vacuum system. The vacuum system and power supply are common to the test faciities in building N-238. All of the facilities have high pressure water available at flow rates up to 4, 000 gals/min. The data obtained from these facilities are recorded on magnetic tape or oscillographs. All forms of data can be handled whether from thermo-couples, pressure cells, pyrometers, or radiometers, etc. in addition, closed circuit T. V. monitors and various film cameras are available. (operational since 1962)
ALTERNATE METHODS OF MANURE HANDLING
The objectives of this research project were to (a) construct an inexpensive storage facility for solid dairy cow manure, (b) evaluate its performance and the extent of pollutants in runoff from storage facilities, and (c) determine current manure handling practices in Vermont an...
The report defines and characterizes types of medical waste, discusses the impacts of burning medical waste on combustor emissions, and outlines important handling and operating considerations. Facility-specific design, handling, and operating practiced are also discussed for mun...
33 CFR 127.1209 - Respiratory protection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Respiratory protection. 127.1209... Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1209 Respiratory protection. Each waterfront facility handling LHG must provide equipment for respiratory protection for each employee of the...
33 CFR 127.1209 - Respiratory protection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Respiratory protection. 127.1209... Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1209 Respiratory protection. Each waterfront facility handling LHG must provide equipment for respiratory protection for each employee of the...
33 CFR 127.1209 - Respiratory protection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Respiratory protection. 127.1209... Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1209 Respiratory protection. Each waterfront facility handling LHG must provide equipment for respiratory protection for each employee of the...
33 CFR 127.1209 - Respiratory protection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Respiratory protection. 127.1209... Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1209 Respiratory protection. Each waterfront facility handling LHG must provide equipment for respiratory protection for each employee of the...
33 CFR 127.1209 - Respiratory protection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Respiratory protection. 127.1209... Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1209 Respiratory protection. Each waterfront facility handling LHG must provide equipment for respiratory protection for each employee of the...
Mygind, Anna; El-Souri, Mira; Rossing, Charlotte; Thomsen, Linda Aagaard
2018-04-01
To develop and test an educational programme on quality and safety in medication handling for staff in residential facilities for the disabled. The continuing pharmacy education instructional design model was used to develop the programme with 22 learning objectives on disease and medicines, quality and safety, communication and coordination. The programme was a flexible, modular seven + two days' course addressing quality and safety in medication handling, disease and medicines, and medication supervision and reconciliation. The programme was tested in five Danish municipalities. Municipalities were selected based on their application for participation; each independently selected a facility for residents with mental and intellectual disabilities, and a facility for residents with severe mental illnesses. Perceived effects were measured based on a questionnaire completed by participants before and after the programme. Effects on motivation and confidence as well as perceived effects on knowledge, skills and competences related to medication handling, patient empowerment, communication, role clarification and safety culture were analysed conducting bivariate, stratified analyses and test for independence. Of the 114 participants completing the programme, 75 participants returned both questionnaires (response rate = 66%). Motivation and confidence regarding quality and safety in medication handling significantly improved, as did perceived knowledge, skills and competences on 20 learning objectives on role clarification, safety culture, medication handling, patient empowerment and communication. The programme improved staffs' motivation and confidence and their perceived ability to handle residents' medication safely through improved role clarification, safety culture, medication handling and patient empowerment and communication skills. © 2017 Royal Pharmaceutical Society.
Code of Federal Regulations, 2010 CFR
2010-07-01
...(s) for the type of oil handled, stored, or transported at the facility (non-persistent (Group I) or... oil handled, stored, or transported at the facility (non-persistent (Group I) or persistent (Groups II... Factors for Petroleum Oil Groups Non-Persistent Oil: Group I 1.0 Persistent Oil: Group II 1.8 Group III 2...
Code of Federal Regulations, 2013 CFR
2013-07-01
...(s) for the type of oil handled, stored, or transported at the facility (non-persistent (Group I) or... oil handled, stored, or transported at the facility (non-persistent (Group I) or persistent (Groups II... Factors for Petroleum Oil Groups Non-Persistent Oil: Group I 1.0 Persistent Oil: Group II 1.8 Group III 2...
Code of Federal Regulations, 2011 CFR
2011-07-01
...(s) for the type of oil handled, stored, or transported at the facility (non-persistent (Group I) or... oil handled, stored, or transported at the facility (non-persistent (Group I) or persistent (Groups II... Factors for Petroleum Oil Groups Non-Persistent Oil: Group I 1.0 Persistent Oil: Group II 1.8 Group III 2...
NASA Technical Reports Server (NTRS)
Rummel, John D.
2001-01-01
Before martian soil and rock samples can be distributed to the research community, the returned materials will initially be quarantined and examined in a proposed BSL-4 containment facility to assure that no putative martian microorganisms or attendant potential biohazards exist. During the initial quarantine, state-of-the-art life detection and biohazard testing of the returned martian samples will be conducted. Life detection, as defined here in regard to Mars sample return missions, is the detection of living organisms and/or materials that have been derived from living organisms that may be present in the sample.
Slow clean-up for fast reactor
NASA Astrophysics Data System (ADS)
Banks, Michael
2008-05-01
The year 2300 is so distant that one may be forgiven for thinking of it only in terms of science fiction. But this is the year that workers at the Dounreay power station in Northern Scotland - the UK's only centre for research into "fast" nuclear reactors - term as the "end point" by which time the site will be completely clear of radioactive material. More than 180 facilities - including the iconic dome that housed the Dounreay Fast Reactor (DFR) - were built at at the site since it opened in 1959, with almost 50 having been used to handle radioactive material.
An Integrated Science Glovebox for the Gateway Habitat
NASA Technical Reports Server (NTRS)
Calaway, M. J.; Evans, C. A.; Garrison, D. H.; Bell, M. S.
2018-01-01
Next generation habitats for deep space exploration of cislunar space, the Moon, and ultimately Mars will benefit from on-board glovebox capability. Such a glovebox facility will maintain sample integrity for a variety of scientific endeavors whether for life science, materials science, or astromaterials. Glovebox lessons learned from decades of astromaterials curation, ISS on-board sample handling, and robust analog missions provide key design and operational factors for inclusion in on-going habitat development.
Engineering Challenges for Closed Ecological System facilities
NASA Astrophysics Data System (ADS)
Dempster, William; Nelson, Mark; Allen, John P.
2012-07-01
Engineering challenges for closed ecological systems include methods of achieving closure for structures of different materials, and developing methods of allowing energy (for heating and cooling) and information transfer through the materially closed structure. Methods of calculating degree of closure include measuring degradation rates of inert trace gases introduced into the system. An allied problem is developing means of locating where leaks are located so that they may be repaired and degree of closure maintained. Once closure is achieved, methods of dealing with the pressure differentials between inside and outside are needed: from inflatable structures which might adjust to the pressure difference to variable volume chambers attached to the life systems component. These issues are illustrated through the engineering employed at Biosphere 2, the Biosphere 2 Test Module and the Laboratory Biosphere and a discussion of methods used by other closed ecological system facility engineers. Ecological challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, healthy air and water and preventing the loss of crucial elements from active circulation. In biospheric facilities the challenge is also to produce analogue to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils.
NASA Technical Reports Server (NTRS)
Fischer, Holger
2009-01-01
NASA's White Sands Test Facility has six core environmental compliance capabilities: remote hazardous testing of reactive, explosive and toxic materials and fluids; hypergolic fluids materials and systems testing; oxygen materials and system testing; hypervelocity impact testing; flight hardware processing; and, propulsion testing. The facility's permit status and challenges are reviewed. Historic operations and practices dating from the 1960s through the early 1980s resulted in contamination of the facility's groundwater. An environmental restoration effort has been employed to protect public health and the health of the workforce. The restoration seeks to properly handle hazardous materials and waste processes; determine the nature and extent of the contamination; stop the migration of contaminated groundwater; stabilize the plume front which has been assessed as the greatest risk to public health; and, clean-up the environment to restore it to preexisting conditions. The Plume Front Treatment System is operational and seeks to stop the westward movement of the plume to protect drinking water and irrigation well. Specifically, the treatment system will extract contaminated water from the aquifer, remove chemical using the best available technology, and return (inject) the treated water back to the aquifer. The Mid-Plume Interception Treatment System also seeks to stop the migration of containment, as well as to evaluate new technologies to accelerate cleanup, such as bioremediation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...
PIMS sequencing extension: a laboratory information management system for DNA sequencing facilities.
Troshin, Peter V; Postis, Vincent Lg; Ashworth, Denise; Baldwin, Stephen A; McPherson, Michael J; Barton, Geoffrey J
2011-03-07
Facilities that provide a service for DNA sequencing typically support large numbers of users and experiment types. The cost of services is often reduced by the use of liquid handling robots but the efficiency of such facilities is hampered because the software for such robots does not usually integrate well with the systems that run the sequencing machines. Accordingly, there is a need for software systems capable of integrating different robotic systems and managing sample information for DNA sequencing services. In this paper, we describe an extension to the Protein Information Management System (PIMS) that is designed for DNA sequencing facilities. The new version of PIMS has a user-friendly web interface and integrates all aspects of the sequencing process, including sample submission, handling and tracking, together with capture and management of the data. The PIMS sequencing extension has been in production since July 2009 at the University of Leeds DNA Sequencing Facility. It has completely replaced manual data handling and simplified the tasks of data management and user communication. Samples from 45 groups have been processed with an average throughput of 10000 samples per month. The current version of the PIMS sequencing extension works with Applied Biosystems 3130XL 96-well plate sequencer and MWG 4204 or Aviso Theonyx liquid handling robots, but is readily adaptable for use with other combinations of robots. PIMS has been extended to provide a user-friendly and integrated data management solution for DNA sequencing facilities that is accessed through a normal web browser and allows simultaneous access by multiple users as well as facility managers. The system integrates sequencing and liquid handling robots, manages the data flow, and provides remote access to the sequencing results. The software is freely available, for academic users, from http://www.pims-lims.org/.
33 CFR 127.1507 - Water systems for fire protection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Water systems for fire protection... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Firefighting Equipment § 127.1507 Water systems for fire protection. (a) Each waterfront facility handling LHG must have a supply of water and a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Tests. 127.1407 Section 127.1407... Facilities Handling Liquefied Hazardous Gas Maintenance § 127.1407 Tests. (a) Each operator of a waterfront facility handling LHG shall conduct a static liquid-pressure test of the piping, hoses, and loading arms of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Tests. 127.1407 Section 127.1407... Facilities Handling Liquefied Hazardous Gas Maintenance § 127.1407 Tests. (a) Each operator of a waterfront facility handling LHG shall conduct a static liquid-pressure test of the piping, hoses, and loading arms of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Tests. 127.1407 Section 127.1407... Facilities Handling Liquefied Hazardous Gas Maintenance § 127.1407 Tests. (a) Each operator of a waterfront facility handling LHG shall conduct a static liquid-pressure test of the piping, hoses, and loading arms of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Tests. 127.1407 Section 127.1407... Facilities Handling Liquefied Hazardous Gas Maintenance § 127.1407 Tests. (a) Each operator of a waterfront facility handling LHG shall conduct a static liquid-pressure test of the piping, hoses, and loading arms of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Tests. 127.1407 Section 127.1407... Facilities Handling Liquefied Hazardous Gas Maintenance § 127.1407 Tests. (a) Each operator of a waterfront facility handling LHG shall conduct a static liquid-pressure test of the piping, hoses, and loading arms of...
NASA Astrophysics Data System (ADS)
Cauchi, Marija; Aberle, O.; Assmann, R. W.; Bertarelli, A.; Carra, F.; Cornelis, K.; Dallocchio, A.; Deboy, D.; Lari, L.; Redaelli, S.; Rossi, A.; Salvachua, B.; Mollicone, P.; Sammut, N.
2014-02-01
The correct functioning of a collimation system is crucial to safely operate highly energetic particle accelerators, such as the Large Hadron Collider (LHC). The requirements to handle high intensity beams can be demanding. In this respect, investigating the consequences of LHC particle beams hitting tertiary collimators (TCTs) in the experimental regions is a fundamental issue for machine protection. An experimental test was designed to investigate the robustness and effects of beam accidents on a fully assembled collimator, based on accident scenarios in the LHC. This experiment, carried out at the CERN High-Radiation to Materials (HiRadMat) facility, involved 440 GeV proton beam impacts of different intensities on the jaws of a horizontal TCT. This paper presents the experimental setup and the preliminary results obtained, together with some first outcomes from visual inspection and a comparison of such results with numerical simulations.
NASA Astrophysics Data System (ADS)
Chawla, Viveak Kumar; Chanda, Arindam Kumar; Angra, Surjit
2018-03-01
The flexible manufacturing system (FMS) constitute of several programmable production work centers, material handling systems (MHSs), assembly stations and automatic storage and retrieval systems. In FMS, the automatic guided vehicles (AGVs) play a vital role in material handling operations and enhance the performance of the FMS in its overall operations. To achieve low makespan and high throughput yield in the FMS operations, it is highly imperative to integrate the production work centers schedules with the AGVs schedules. The Production schedule for work centers is generated by application of the Giffler and Thompson algorithm under four kind of priority hybrid dispatching rules. Then the clonal selection algorithm (CSA) is applied for the simultaneous scheduling to reduce backtracking as well as distance travel of AGVs within the FMS facility. The proposed procedure is computationally tested on the benchmark FMS configuration from the literature and findings from the investigations clearly indicates that the CSA yields best results in comparison of other applied methods from the literature.
It's Time to Develop a New "Draft Test Protocol" for a Mars Sample Return Mission (or Two…).
Rummel, John D; Kminek, Gerhard
2018-04-01
The last time NASA envisioned a sample return mission from Mars, the development of a protocol to support the analysis of the samples in a containment facility resulted in a "Draft Test Protocol" that outlined required preparations "for the safe receiving, handling, testing, distributing, and archiving of martian materials here on Earth" (Rummel et al., 2002 ). This document comprised a specific protocol to be used to conduct a biohazard test for a returned martian sample, following the recommendations of the Space Studies Board of the US National Academy of Sciences. Given the planned launch of a sample-collecting and sample-caching rover (Mars 2020) in 2 years' time, and with a sample return planned for the end of the next decade, it is time to revisit the Draft Test Protocol to develop a sample analysis and biohazard test plan to meet the needs of these future missions. Key Words: Biohazard detection-Mars sample analysis-Sample receiving facility-Protocol-New analytical techniques-Robotic sample handling. Astrobiology 18, 377-380.
Burnard, C L; Pitchford, W S; Hocking Edwards, J E; Hazel, S J
2015-08-01
An understanding of the perceived importance of a variety of factors affecting the ease of handling of sheep and the interactions between these factors is valuable in improving profitability and welfare of the livestock. Many factors may contribute to animal behaviour during handling, and traditionally these factors have been assessed in isolation under experimental conditions. A human social component to this phenomenon also exists. The aim of this study was to gain a deeper understanding of the importance of a variety of factors affecting ease of handling, and the interactions between these from the perspective of the livestock transporter. Qualitative interviews were used to investigate the factors affecting sheep behaviour during handling. Interview transcripts underwent thematic analysis. Livestock transporters discussed the effects of attitudes and behaviours towards sheep, helpers, facilities, distractions, environment, dogs and a variety of sheep factors including breed, preparation, experience and sex on sheep behaviour during handling. Transporters demonstrated care and empathy and stated that patience and experience were key factors determining how a person might deal with difficult sheep. Livestock transporters strongly believed facilities (ramps and yards) had the greatest impact, followed by sheep experience (naivety of the sheep to handling and transport) and breed. Transporters also discussed the effects of distractions, time of day, weather, dogs, other people, sheep preparation, body condition and sheep sex on ease of handling. The concept of individual sheep temperament was indirectly expressed.
HEDL FACILITIES CATALOG 400 AREA
DOE Office of Scientific and Technical Information (OSTI.GOV)
MAYANCSIK BA
1987-03-01
The purpose of this project is to provide a sodium-cooled fast flux test reactor designed specifically for irradiation testing of fuels and materials and for long-term testing and evaluation of plant components and systems for the Liquid Metal Reactor (LMR) Program. The FFTF includes the reactor, heat removal equipment and structures, containment, core component handling and examination, instrumentation and control, and utilities and other essential services. The complex array of buildings and equipment are arranged around the Reactor Containment Building.
Ebrahimi, Ahmad; Kia, Reza; Komijan, Alireza Rashidi
2016-01-01
In this article, a novel integrated mixed-integer nonlinear programming model is presented for designing a cellular manufacturing system (CMS) considering machine layout and part scheduling problems simultaneously as interrelated decisions. The integrated CMS model is formulated to incorporate several design features including part due date, material handling time, operation sequence, processing time, an intra-cell layout of unequal-area facilities, and part scheduling. The objective function is to minimize makespan, tardiness penalties, and material handling costs of inter-cell and intra-cell movements. Two numerical examples are solved by the Lingo software to illustrate the results obtained by the incorporated features. In order to assess the effects and importance of integration of machine layout and part scheduling in designing a CMS, two approaches, sequentially and concurrent are investigated and the improvement resulted from a concurrent approach is revealed. Also, due to the NP-hardness of the integrated model, an efficient genetic algorithm is designed. As a consequence, computational results of this study indicate that the best solutions found by GA are better than the solutions found by B&B in much less time for both sequential and concurrent approaches. Moreover, the comparisons between the objective function values (OFVs) obtained by sequential and concurrent approaches demonstrate that the OFV improvement is averagely around 17 % by GA and 14 % by B&B.
30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...
30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...
30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...
30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...
CARRIER PREPARATION BUILDING MATERIALS HANDLING SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.F. Loros
2000-06-28
The Carrier Preparation Building Materials Handling System receives rail and truck shipping casks from the Carrier/Cask Transport System, and inspects and prepares the shipping casks for return to the Carrier/Cask Transport System. Carrier preparation operations for carriers/casks received at the surface repository include performing a radiation survey of the carrier and cask, removing/retracting the personnel barrier, measuring the cask temperature, removing/retracting the impact limiters, removing the cask tie-downs (if any), and installing the cask trunnions (if any). The shipping operations for carriers/casks leaving the surface repository include removing the cask trunnions (if any), installing the cask tie-downs (if any), installingmore » the impact limiters, performing a radiation survey of the cask, and installing the personnel barrier. There are four parallel carrier/cask preparation lines installed in the Carrier Preparation Building with two preparation bays in each line, each of which can accommodate carrier/cask shipping and receiving. The lines are operated concurrently to handle the waste shipping throughputs and to allow system maintenance operations. One remotely operated overhead bridge crane and one remotely operated manipulator is provided for each pair of carrier/cask preparation lines servicing four preparation bays. Remotely operated support equipment includes a manipulator and tooling and fixtures for removing and installing personnel barriers, impact limiters, cask trunnions, and cask tie-downs. Remote handling equipment is designed to facilitate maintenance, dose reduction, and replacement of interchangeable components where appropriate. Semi-automatic, manual, and backup control methods support normal, abnormal, and recovery operations. Laydown areas and equipment are included as required for transportation system components (e.g., personnel barriers and impact limiters), fixtures, and tooling to support abnormal and recovery operations. The Carrier Preparation Building Materials Handling System interfaces with the Cask/Carrier Transport System to move the carriers to and from the system. The Carrier Preparation Building System houses the equipment and provides the facility, utility, safety, communications, and auxiliary systems supporting operations and protecting personnel.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Whey handling. 58.443 Section 58.443 Agriculture... Procedures § 58.443 Whey handling. (a) Adequate sanitary facilities shall be provided for the handling of whey. If outside, necessary precautions shall be taken to minimize flies, insects and development of...
DOE-EM-45 PACKAGING OPERATIONS AND MAINTENANCE COURSE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, R.; England, J.
2010-05-28
Savannah River National Laboratory - Savannah River Packaging Technology (SRNL-SRPT) delivered the inaugural offering of the Packaging Operations and Maintenance Course for DOE-EM-45's Packaging Certification Program (PCP) at the University of South Carolina Aiken on September 1 and 2, 2009. Twenty-nine students registered, attended, and completed this training. The DOE-EM-45 Packaging Certification Program (PCP) sponsored the presentation of a new training course, Packaging Maintenance and Operations, on September 1-2, 2009 at the University of South Carolina Aiken (USC-Aiken) campus in Aiken, SC. The premier offering of the course was developed and presented by the Savannah River National Laboratory, and attendedmore » by twenty-nine students across the DOE, NNSA and private industry. This training informed package users of the requirements associated with handling shipping containers at a facility (user) level and provided a basic overview of the requirements typically outlined in Safety Analysis Report for Packaging (SARP) Chapters 1, 7, and 8. The course taught packaging personnel about the regulatory nature of SARPs to help reduce associated and often costly packaging errors. Some of the topics covered were package contents, loading, unloading, storage, torque requirements, maintaining records, how to handle abnormal conditions, lessons learned, leakage testing (including demonstration), and replacement parts. The target audience for this course was facility operations personnel, facility maintenance personnel, and field quality assurance personnel who are directly involved in the handling of shipping containers. The training also aimed at writers of SARP Chapters 1, 7, and 8, package designers, and anyone else involved in radioactive material packaging and transportation safety. Student feedback and critiques of the training were very positive. SRNL will offer the course again at USC Aiken in September 2010.« less
Yoshida, M; Yoshizawa, M; Minami, K
1990-09-01
The efficiencies of contamination source, defined in ISO Report 7506-1, were experimentally determined for such materials as flooring, polyethylene, smear-tested filter paper and stainless steel plate. 5 nuclides of 147Pm, 60Co, 137Cs, 204Tl and 90Sr-Y were used to study beta-ray energy dependence of the efficiency, and 241Am as alpha-ray emitter. The charge-up effect in the measurement by a window-less 2 pi-proportional counter was evaluated to obtain reliable surface emission rate. The measured efficiencies for non-permeable materials, except for two cases, are more than 0.5 even for 147Pm. The ISO recommendations were shown to be conservative enough on the basis of present results.
NASA Hydrogen Peroxide Propellant Hazards Technical Manual
NASA Technical Reports Server (NTRS)
Baker, David L.; Greene, Ben; Frazier, Wayne
2005-01-01
The Fire, Explosion, Compatibility and Safety Hazards of Hydrogen Peroxide NASA technical manual was developed at the NASA Johnson Space Center White Sands Test Facility. NASA Technical Memorandum TM-2004-213151 covers topics concerning high concentration hydrogen peroxide including fire and explosion hazards, material and fluid reactivity, materials selection information, personnel and environmental hazards, physical and chemical properties, analytical spectroscopy, specifications, analytical methods, and material compatibility data. A summary of hydrogen peroxide-related accidents, incidents, dose calls, mishaps and lessons learned is included. The manual draws from art extensive literature base and includes recent applicable regulatory compliance documentation. The manual may be obtained by United States government agencies from NASA Johnson Space Center and used as a reference source for hazards and safe handling of hydrogen peroxide.
Best Practices for Core Facilities: Handling External Customers
Hockberger, Philip; Meyn, Susan; Nicklin, Connie; Tabarini, Diane; Turpen, Paula; Auger, Julie
2013-01-01
This article addresses the growing interest among U.S. scientific organizations and federal funding agencies in strengthening research partnerships between American universities and the private sector. It outlines how core facilities at universities can contribute to this partnership by offering services and access to high-end instrumentation to both nonprofit organizations and commercial organizations. We describe institutional policies (best practices) and procedures (terms and conditions) that are essential for facilitating and enabling such partnerships. In addition, we provide an overview of the relevant federal regulations that apply to external use of academic core facilities and offer a set of guidelines for handling them. We conclude by encouraging directors and managers of core facilities to work with the relevant organizational offices to promote and nurture such partnerships. If handled appropriately, we believe such partnerships can be a win-win situation for both organizations that will support research and bolster the American economy. PMID:23814500
30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Accumulations of methane and coal dust on... Miscellaneous § 75.1709 Accumulations of methane and coal dust on surface coal-handling facilities. [Statutory Provisions] Adequate measures shall be taken to prevent methane and coal dust from accumulating in excessive...
14 CFR 158.49 - Handling of PFC's.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Handling of PFC's. 158.49 Section 158.49... PASSENGER FACILITY CHARGES (PFC'S) Collection, Handling, and Remittance of PFC's § 158.49 Handling of PFC's... amount of PFC revenue in the covered air carrier's account at the time the bankruptcy petition is filed...
14 CFR 158.49 - Handling of PFC's.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Handling of PFC's. 158.49 Section 158.49... PASSENGER FACILITY CHARGES (PFC'S) Collection, Handling, and Remittance of PFC's § 158.49 Handling of PFC's... amount of PFC revenue in the covered air carrier's account at the time the bankruptcy petition is filed...
14 CFR 158.49 - Handling of PFC's.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Handling of PFC's. 158.49 Section 158.49... PASSENGER FACILITY CHARGES (PFC'S) Collection, Handling, and Remittance of PFC's § 158.49 Handling of PFC's... amount of PFC revenue in the covered air carrier's account at the time the bankruptcy petition is filed...
14 CFR 158.49 - Handling of PFC's.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Handling of PFC's. 158.49 Section 158.49... PASSENGER FACILITY CHARGES (PFC'S) Collection, Handling, and Remittance of PFC's § 158.49 Handling of PFC's... amount of PFC revenue in the covered air carrier's account at the time the bankruptcy petition is filed...
14 CFR 158.49 - Handling of PFC's.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Handling of PFC's. 158.49 Section 158.49... PASSENGER FACILITY CHARGES (PFC'S) Collection, Handling, and Remittance of PFC's § 158.49 Handling of PFC's... amount of PFC revenue in the covered air carrier's account at the time the bankruptcy petition is filed...
1992-06-01
The first United States Microgravity Laboratory (USML-1) provided scientific research in materials science, fluid dynamics, biotechnology, and combustion science in a weightless environment inside the Spacelab module. This photograph is a close-up view of the Glovebox in operation during the mission. The Spacelab Glovebox, provided by the European Space Agency, offers experimenters new capabilities to test and develop science procedures and technologies in microgravity. It enables crewmembers to handle, transfer, and otherwise manipulate materials in ways that are impractical in the open Spacelab. The facility is equipped with three doors: a central port through which experiments are placed in the Glovebox and two glovedoors on both sides with an attachment for gloves or adjustable cuffs and adapters for cameras. The Glovebox has an enclosed compartment that offers a clean working space and minimizes the contamination risks to both Spacelab and experiment samples. Although fluid containment and ease of cleanup are major benefits provided by the facility, it can also contain powders and bioparticles; toxic, irritating, or potentially infectious materials; and other debris produced during experiment operations. The facility is equipped with photographic/video capabilities and permits mounting a microscope. For the USML-1 mission, the Glovebox experiments fell into four basic categories: fluid dynamics, combustion science, crystal growth, and technology demonstration. The USML-1 flew aboard the STS-50 mission in June 1992.
Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; ...
2014-11-01
Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m 2 over areas of 9×12 and 1×10 cm 2, respectively. This paper will present the overallmore » design and implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36×36×18 cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.« less
Cellular Manufacturing System with Dynamic Lot Size Material Handling
NASA Astrophysics Data System (ADS)
Khannan, M. S. A.; Maruf, A.; Wangsaputra, R.; Sutrisno, S.; Wibawa, T.
2016-02-01
Material Handling take as important role in Cellular Manufacturing System (CMS) design. In several study at CMS design material handling was assumed per pieces or with constant lot size. In real industrial practice, lot size may change during rolling period to cope with demand changes. This study develops CMS Model with Dynamic Lot Size Material Handling. Integer Linear Programming is used to solve the problem. Objective function of this model is minimizing total expected cost consisting machinery depreciation cost, operating costs, inter-cell material handling cost, intra-cell material handling cost, machine relocation costs, setup costs, and production planning cost. This model determines optimum cell formation and optimum lot size. Numerical examples are elaborated in the paper to ilustrate the characterictic of the model.
Clinical solid waste management practices and its impact on human health and environment - A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain, Md. Sohrab; Santhanam, Amutha; Nik Norulaini, N.A.
2011-04-15
Research highlights: > Appropriate waste management technology for safe handling and disposal of clinical solid waste. > Infectious risk assessment on unsafe handling of clinical solid waste. > Recycling-reuse program of clinical solid waste materials. > Effective sterilization technology to reduce exposure of infectious risk. - Abstract: The management of clinical solid waste (CSW) continues to be a major challenge, particularly, in most healthcare facilities of the developing world. Poor conduct and inappropriate disposal methods exercised during handling and disposal of CSW is increasing significant health hazards and environmental pollution due to the infectious nature of the waste. This articlemore » summarises a literature review into existing CSW management practices in the healthcare centers. The information gathered in this paper has been derived from the desk study of open literature survey. Numerous researches have been conducted on the management of CSW. Although, significant steps have been taken on matters related to safe handling and disposal of the clinical waste, but improper management practice is evident from the point of initial collection to the final disposal. In most cases, the main reasons of the mismanagement of CSW are the lack of appropriate legislation, lack of specialized clinical staffs, lack of awareness and effective control. Furthermore, most of the healthcare centers of the developing world have faced financial difficulties and therefore looking for cost effective disposal methods of clinical waste. This paper emphasizes to continue the recycle-reuse program of CSW materials after sterilization by using supercritical fluid carbon dioxide (SF-CO2) sterilization technology at the point of initial collection. Emphasis is on the priority to inactivate the infectious micro-organisms in CSW. In that case, waste would not pose any threat to healthcare workers. The recycling-reuse program would be carried out successfully with the non-specialized clinical staffs. Therefore, the adoption of SF-CO2 sterilization technology in management of clinical solid waste can reduce exposure to infectious waste, decrease labor, lower costs, and yield better compliance with regulatory. Thus healthcare facilities can both save money and provide a safe environment for patients, healthcare staffs and clinical staffs.« less
PIMS sequencing extension: a laboratory information management system for DNA sequencing facilities
2011-01-01
Background Facilities that provide a service for DNA sequencing typically support large numbers of users and experiment types. The cost of services is often reduced by the use of liquid handling robots but the efficiency of such facilities is hampered because the software for such robots does not usually integrate well with the systems that run the sequencing machines. Accordingly, there is a need for software systems capable of integrating different robotic systems and managing sample information for DNA sequencing services. In this paper, we describe an extension to the Protein Information Management System (PIMS) that is designed for DNA sequencing facilities. The new version of PIMS has a user-friendly web interface and integrates all aspects of the sequencing process, including sample submission, handling and tracking, together with capture and management of the data. Results The PIMS sequencing extension has been in production since July 2009 at the University of Leeds DNA Sequencing Facility. It has completely replaced manual data handling and simplified the tasks of data management and user communication. Samples from 45 groups have been processed with an average throughput of 10000 samples per month. The current version of the PIMS sequencing extension works with Applied Biosystems 3130XL 96-well plate sequencer and MWG 4204 or Aviso Theonyx liquid handling robots, but is readily adaptable for use with other combinations of robots. Conclusions PIMS has been extended to provide a user-friendly and integrated data management solution for DNA sequencing facilities that is accessed through a normal web browser and allows simultaneous access by multiple users as well as facility managers. The system integrates sequencing and liquid handling robots, manages the data flow, and provides remote access to the sequencing results. The software is freely available, for academic users, from http://www.pims-lims.org/. PMID:21385349
Marshall Space Flight Center solid waste characterization and recycling improvement study
NASA Technical Reports Server (NTRS)
Eley, Michael H.; Crews, Lavonne; Johnston, Ben; Lee, David; Colebaugh, James
1995-01-01
The MSFC Facilities Office, which is responsible for disposing of all waste generated by MSFC, issued a delivery order to the University of Alabama in Huntsville (UAH) to characterize current MSFC waste streams and to evaluate their existing recycling program. The purpose of the study was to define the nature, quantity, and types of waste produced and to generate ideas for improving the present recycling program. Specifically, the following tasks were to be performed: Identify various surplus and waste materials--as identified by the Contracting Officer's Technical Representative (COTR)--by source, location, and type; Analyze MSFC's current methods for handling, storage, transport, and disposition of waste and surplussed materials; Determine the composition of various surplus and waste materials as to type and quantities from various sources and locations; Analyze different methods for the disposition of various surplus and waste materials, including quality, quantity, preparation, transport cost, and value; Study possible alternatives to current methods of handling, storage, transport, and disposition of surplus and waste materials to improve the quality and quantities recycled or sold and to reduce and minimize the quantities of surplus and waste material currently being disposed of or stored; Provide recommendations for source and centralized segregation and aggregation of materials for recycling and/or disposition; and The analysis could include identification and laboratory level evaluation of methods and/or equipment, including capital costs, operating costs, maintenance requirements, life cycle and return on investment for systems to support the waste reduction program mission.
WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.C. Khamamkar
2000-06-23
The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will bemore » designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR Operations Monitoring and Control System for supervisory monitoring and control signals. The system interfaces with all facility support loads such as heating, ventilation, and air conditioning, office, fire protection, monitoring and control, safeguards and security, and communications subsystems.« less
Safety in Elevators and Grain Handling Facilities. Module SH-27. Safety and Health.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This student module on safety in elevators and grain handling facilities is one of 50 modules concerned with job safety and health. Following the introduction, 15 objectives (each keyed to a page in the text) the student is expected to accomplish are listed (e.g., Explain how explosion suppression works). Then each objective is taught in detail,…
21 CFR 1250.38 - Toilet and lavatory facilities for use of food-handling employees.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Toilet and lavatory facilities for use of food-handling employees. 1250.38 Section 1250.38 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION INTERSTATE CONVEYANCE...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false How will NARA handle my request to use public areas in the National Archives Building? 1280.82 Section 1280.82 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION NARA FACILITIES USE OF NARA FACILITIES What...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false How will NARA handle my request to use public areas in the National Archives Building? 1280.82 Section 1280.82 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION NARA FACILITIES USE OF NARA FACILITIES What...
Guide of good practices for occupational radiological protection in plutonium facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-06-01
This Technical Standard (TS) does not contain any new requirements. Its purpose is to provide guides to good practice, update existing reference material, and discuss practical lessons learned relevant to the safe handling of plutonium. the technical rationale is given to allow US Department of Energy (DOE) health physicists to adapt the recommendations to similar situations throughout the DOE complex. Generally, DOE contractor health physicists will be responsible to implement radiation protection activities at DOE facilities and DOE health physicists will be responsible for oversight of those activities. This guidance is meant to be useful for both efforts. This TSmore » replaces PNL-6534, Health Physics Manual of Good Practices for Plutonium Facilities, by providing more complete and current information and by emphasizing the situations that are typical of DOE`s current plutonium operations; safe storage, decontamination, and decommissioning (environmental restoration); and weapons disassembly.« less
Code of Federal Regulations, 2014 CFR
2014-01-01
... FACILITY CHARGES (PFC'S) Collection, Handling, and Remittance of PFC's § 158.41 General. This subpart contains the requirements for notification, collection, handling and remittance of PFC's. ...
Code of Federal Regulations, 2013 CFR
2013-01-01
... FACILITY CHARGES (PFC'S) Collection, Handling, and Remittance of PFC's § 158.41 General. This subpart contains the requirements for notification, collection, handling and remittance of PFC's. ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... FACILITY CHARGES (PFC'S) Collection, Handling, and Remittance of PFC's § 158.41 General. This subpart contains the requirements for notification, collection, handling and remittance of PFC's. ...
Code of Federal Regulations, 2011 CFR
2011-01-01
... FACILITY CHARGES (PFC'S) Collection, Handling, and Remittance of PFC's § 158.41 General. This subpart contains the requirements for notification, collection, handling and remittance of PFC's. ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... FACILITY CHARGES (PFC'S) Collection, Handling, and Remittance of PFC's § 158.41 General. This subpart contains the requirements for notification, collection, handling and remittance of PFC's. ...
33 CFR 154.1216 - Facility classification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Facility classification. 154.1216... Vegetable Oils Facilities § 154.1216 Facility classification. (a) The Coast Guard classifies facilities that... classification of a facility that handles, stores, or transports animal fats or vegetable oils. The COTP may...
33 CFR 154.1216 - Facility classification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Facility classification. 154.1216... Vegetable Oils Facilities § 154.1216 Facility classification. (a) The Coast Guard classifies facilities that... classification of a facility that handles, stores, or transports animal fats or vegetable oils. The COTP may...
33 CFR 154.1216 - Facility classification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Facility classification. 154.1216... Vegetable Oils Facilities § 154.1216 Facility classification. (a) The Coast Guard classifies facilities that... classification of a facility that handles, stores, or transports animal fats or vegetable oils. The COTP may...
Materials Handling. Module SH-01. Safety and Health.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This student module on materials handling is one of 50 modules concerned with job safety and health. It presents the procedures for safe materials handling. Discussed are manual handling methods (lifting and carrying by hand) and mechanical lifting (lifting by powered trucks, cranes or conveyors). Following the introduction, 15 objectives (each…
Risk ranking of LANL nuclear material storage containers for repackaging prioritization.
Smith, Paul H; Jordan, Hans; Hoffman, Jenifer A; Eller, P Gary; Balkey, Simon
2007-05-01
Safe handling and storage of nuclear material at U.S. Department of Energy facilities relies on the use of robust containers to prevent container breaches and subsequent worker contamination and uptake. The U.S. Department of Energy has no uniform requirements for packaging and storage of nuclear materials other than those declared excess and packaged to DOE-STD-3013-2000. This report describes a methodology for prioritizing a large inventory of nuclear material containers so that the highest risk containers are repackaged first. The methodology utilizes expert judgment to assign respirable fractions and reactivity factors to accountable levels of nuclear material at Los Alamos National Laboratory. A relative risk factor is assigned to each nuclear material container based on a calculated dose to a worker due to a failed container barrier and a calculated probability of container failure based on material reactivity and container age. This risk-based methodology is being applied at LANL to repackage the highest risk materials first and, thus, accelerate the reduction of risk to nuclear material handlers.
9 CFR 3.27 - Facilities, outdoor.
Code of Federal Regulations, 2010 CFR
2010-01-01
... WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Guinea Pigs and Hamsters Facilities and Operating Standards § 3.27 Facilities, outdoor. (a) Hamsters shall not be housed in outdoor facilities. (b) Guinea pigs shall not be housed in outdoor facilities unless...
DECONTAMINATION AND BENEFICIAL USE OF DREDGED MATERIALS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
STERN, E.A.; LODGE, J.; JONES, K.W.
2000-12-03
Our group is leading a large-sale demonstration of dredged material decontamination technologies for the New York/New Jersey Harbor. The goal of the project is to assemble a complete system for economic transformation of contaminated dredged material into an environmentally-benign material used in the manufacture of a variety of beneficial use products. This requires the integration of scientific, engineering, business, and policy issues on matters that include basic knowledge of sediment properties, contaminant distribution visualization, sediment toxicity, dredging and dewatering techniques, decontamination technologies, and product manufacturing technologies and marketing. A summary of the present status of the system demonstrations including themore » use of both existing and new manufacturing facilities is given here. These decontamination systems should serve as a model for use in dredged material management plans of regions other than NY/NJ Harbor, such as Long Island Sound, where new approaches to the handling of contaminated sediments are desirable.« less
Flexible automation of cell culture and tissue engineering tasks.
Knoll, Alois; Scherer, Torsten; Poggendorf, Iris; Lütkemeyer, Dirk; Lehmann, Jürgen
2004-01-01
Until now, the predominant use cases of industrial robots have been routine handling tasks in the automotive industry. In biotechnology and tissue engineering, in contrast, only very few tasks have been automated with robots. New developments in robot platform and robot sensor technology, however, make it possible to automate plants that largely depend on human interaction with the production process, e.g., for material and cell culture fluid handling, transportation, operation of equipment, and maintenance. In this paper we present a robot system that lends itself to automating routine tasks in biotechnology but also has the potential to automate other production facilities that are similar in process structure. After motivating the design goals, we describe the system and its operation, illustrate sample runs, and give an assessment of the advantages. We conclude this paper by giving an outlook on possible further developments.
Patient handling system for carbon ion beam scanning therapy
Shirai, Toshiyuki; Takei, Yuka; Furukawa, Takuji; Inaniwa, Taku; Matsuzaki, Yuka; Kumagai, Motoki; Murakami, Takeshi; Noda, Koji
2012-01-01
Our institution established a new treatment facility for carbon ion beam scanning therapy in 2010. The major advantages of scanning beam treatment compared to the passive beam treatment are the following: high dose conformation with less excessive dose to the normal tissues, no bolus compensator and patient collimator/ multi‐leaf collimator, better dose efficiency by reducing the number of scatters. The new facility was designed to solve several problems encountered in the existing facility, at which several thousand patients were treated over more than 15 years. Here, we introduce the patient handling system in the new treatment facility. The new facility incorporates three main systems, a scanning irradiation system (S‐IR), treatment planning system (TPS), and patient handling system (PTH). The PTH covers a wide range of functions including imaging, geometrical/position accuracy including motion management (immobilization, robotic arm treatment bed), layout of the treatment room, treatment workflow, software, and others. The first clinical trials without respiratory gating have been successfully started. The PTH allows a reduction in patient stay in the treatment room to as few as 7 min. The PTH plays an important role in carbon ion beam scanning therapy at the new institution, particularly in the management of patient handling, application of image‐guided therapy, and improvement of treatment workflow, and thereby allows substantially better treatment at minimum cost. PACS numbers: 87.56.‐v; 87.57.‐s; 87.55.‐x PMID:23149784
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallegos, G; Daniels, J; Wegrecki, A
2006-04-24
This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showingmore » the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as ''high explosives'' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the on-site test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and transportation that would be required if the wastes were treated off site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallegos, G; Daniels, J; Wegrecki, A
2007-10-01
This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showingmore » the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as 'high explosives' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the onsite test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and transportation that would be required if the wastes were treated off site.« less
NASA Technical Reports Server (NTRS)
Montegani, F. J.
1974-01-01
Methods of handling one-third-octave band noise data originating from the outdoor full-scale fan noise facility and the engine acoustic facility at the Lewis Research Center are presented. Procedures for standardizing, retrieving, extrapolating, and reporting these data are explained. Computer programs are given which are used to accomplish these and other noise data analysis tasks. This information is useful as background for interpretation of data from these facilities appearing in NASA reports and can aid data exchange by promoting standardization.
NASA Technical Reports Server (NTRS)
Witte, W. G., Jr.
1985-01-01
One of the experiments aboard the NASA Long Duration Exposure Facility (LDEF) consists of a tray of approximately one hundred tensile specimens of several candidate space structure composite materials. During the LDEF flight the materials will be subjected to the space environment and to possible contamination during launch and recovery. Tensile tests of representative samples were made before the LDEF flight to obtain baseline data. Similar tests will be made on control specimens stored on earth for the length of the LDEF flight and on recovered flight specimens. This manual codifies the details of testing, data acquisition, and handling used in obtaining the baseline data so that the same procedures and equipment will be used on the subsequent tests.
Techniques for tritium recovery from carbon flakes and dust at the JET active gas handling system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruenhagen, S.; Perevezentsev, A.; Brennan, P. D.
2008-07-15
Detritiation of highly tritium contaminated carbon and metal material used as first wall armour is a key issue for fusion machines like JET and ITER. Re-deposited carbon and hydrogen in the form of flakes and dust can lead to a build-up of the tritium inventory and therefore this material must be removed and processed. The high tritium concentration of the flake and dust material collected from the JET vacuum vessel makes it unsuitable for direct waste disposal without detritiation. A dedicated facility to process the tritiated carbon flake material and recover the tritium has been designed and built. In severalmore » test runs active material was successfully processed and de-tritiated in the new facility. Samples containing only carbon and hydrogen isotopes have been completely oxidized without any residue. Samples containing metallic impurities, e.g. beryllium, require longer processing times, adjusted processing parameters and yield an oxide residue. The detritiation factor was 2x10{sup 4}. In order to simulate in-vessel and ex-vessel detritiation techniques, the detritiation of a carbon flake sample by isotopic exchange in a hydrogen atmosphere was investigated. 2.8% of tritium was recovered by this means. (authors)« less
Armstrong, Jenna L; Day, Gregory A; Park, Ji Young; Stefaniak, Aleksandr B; Stanton, Marcia L; Deubner, David C; Kent, Michael S; Schuler, Christine R; Virji, M Abbas
2014-01-01
Inhalation of beryllium is associated with the development of sensitization; however, dermal exposure may also be important. The primary aim of this study was to elucidate relationships among exposure pathways in four different manufacturing and finishing facilities. Secondary aims were to identify jobs with increased levels of beryllium in air, on skin, and on surfaces; identify potential discrepancies in exposure pathways, and determine if these are related to jobs with previously identified risk. Beryllium was measured in air, on cotton gloves, and on work surfaces. Summary statistics were calculated and correlations among all three measurement types were examined at the facility and job level. Exposure ranking strategies were used to identify jobs with higher exposures. The highest air, glove, and surface measurements were observed in beryllium metal production and beryllium oxide ceramics manufacturing jobs that involved hot processes and handling powders. Two finishing and distribution facilities that handle solid alloy products had lower exposures than the primary production facilities, and there were differences observed among jobs. For all facilities combined, strong correlations were found between air-surface (rp ≥ 0.77), glove-surface (rp ≥ 0.76), and air-glove measurements (rp ≥ 0.69). In jobs where higher risk of beryllium sensitization or disease has been reported, exposure levels for all three measurement types were higher than in jobs with lower risk, though they were not the highest. Some jobs with low air concentrations had higher levels of beryllium on glove and surface wipe samples, suggesting a need to further evaluate the causes of the discrepant levels. Although such correlations provide insight on where beryllium is located throughout the workplace, they cannot identify the direction of the pathways between air, surface, or skin. Ranking strategies helped to identify jobs with the highest combined air, glove, and/or surface exposures. All previously identified high-risk jobs had high air concentrations, dermal mass loading, or both, and none had low dermal and air. We have found that both pathways are relevant. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: a file describing the forms of beryllium materials encountered during production and characteristics of the aerosols by process areas.].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyrpekl, V., E-mail: vaclav.tyrpekl@ec.europa.eu, E-mail: vaclav.tyrpekl@gmail.com; Berkmann, C.; Holzhäuser, M.
Spark plasma sintering (SPS) is a rapidly developing method for densification of powders into compacts. It belongs to the so-called “field assisted sintering techniques” that enable rapid sintering at much lower temperatures than the classical approaches of pressureless sintering of green pellets or hot isostatic pressing. In this paper, we report the successful integration of a SPS device into a hermetic glovebox for the handling of highly radioactive material containing radioisotopes of U, Th, Pu, Np, and Am. The glovebox implantation has been facilitated by the replacement of the hydraulic system to apply pressure with a compact electromechanical unit. Themore » facility has been successfully tested using UO{sub 2} powder. Pellets with 97% of the theoretical density were obtained at 1000 °C for 5 min, significantly lower than the ∼1600 °C for 5-10 h used in conventional pellet sintering.« less
40 CFR 60.434 - Monitoring of operations and recordkeeping.
Code of Federal Regulations, 2012 CFR
2012-07-01
... affected facility using waterborne ink systems or solvent-borne ink systems with solvent recovery systems...) If affected facilities share the same raw ink storage/handling system with existing facilities...
40 CFR 60.434 - Monitoring of operations and recordkeeping.
Code of Federal Regulations, 2014 CFR
2014-07-01
... affected facility using waterborne ink systems or solvent-borne ink systems with solvent recovery systems...) If affected facilities share the same raw ink storage/handling system with existing facilities...
40 CFR 60.434 - Monitoring of operations and recordkeeping.
Code of Federal Regulations, 2013 CFR
2013-07-01
... affected facility using waterborne ink systems or solvent-borne ink systems with solvent recovery systems...) If affected facilities share the same raw ink storage/handling system with existing facilities...
Handling and Shipping. ERIC Processing Manual, Section IV.
ERIC Educational Resources Information Center
Brandhorst, Ted, Ed.; And Others
Rules and guidelines are provided for the handling and shipping of document and journal article information intended for announcement in ERIC's abstract journals "Resources in Education" and "Current Index to Journals in Education." The handling and shipping involved takes place between the ERIC Facility and the ERIC…
Valdor, Paloma F; Puente, Araceli; Gómez, Aina G; Ondiviela, Bárbara; Juanes, José A
2017-01-30
The environmental risk analysis of aquatic systems includes the evaluation of the likelihood that adverse ecological effects may occur as a result of exposure to one or more stressors. In harbor areas, pollution is provided by a complex mixture of substances with different levels of toxicity, persistence and bioaccumulation, which complicates the hazards characterization and their multiple effects. A study of the relationship between the environmental impact and the environmental risk assessment at a specific isolated oil handling facility was undertaken. The environmental risk of the oil handling facility, considering the consequences of specific pollutants, was estimated and the associated environmental impact was quantified based on a 'weights of evidence' approach. The contamination quantified at the potentially affected area around the monobuoy of Tarragona has proved to be related with environmental risk estimations but the lines of evidence obtained do not allow us to assert that the activity developed at this facility has an associated environmental impact. Copyright © 2016 Elsevier Ltd. All rights reserved.
25 CFR 170.905 - How can tribes obtain training in handling hazardous material?
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 1 2011-04-01 2011-04-01 false How can tribes obtain training in handling hazardous... Transportation § 170.905 How can tribes obtain training in handling hazardous material? (a) Tribes cannot use IRR Program funds to train personnel to handle radioactive and hazardous material. (b) Tribes can seek...
9 CFR 3.25 - Facilities, general.
Code of Federal Regulations, 2010 CFR
2010-01-01
... WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Guinea Pigs and Hamsters Facilities and Operating Standards § 3.25 Facilities, general. (a) Structural strength. Indoor and outdoor housing facilities for guinea pigs or hamsters shall be structurally sound and...
Mital, A
1999-01-01
Manual handling of materials continues to be a hazardous activity, leading to a very significant number of severe overexertion injuries. Designing jobs that are within the physical capabilities of workers is one approach ergonomists have adopted to redress this problem. As a result, several job design procedures have been developed over the years. However, these procedures are limited to designing or evaluating only pure lifting jobs or only the lifting aspect of a materials handling job. This paper describes a general procedure that may be used to design or analyse materials handling jobs that involve several different kinds of activities (e.g. lifting, lowering, carrying, pushing, etc). The job design/analysis procedure utilizes an elemental approach (breaking the job into elements) and relies on databases provided in A Guide to Manual Materials Handling to compute associated risk factors. The use of the procedure is demonstrated with the help of two case studies.
14 CFR 420.67 - Storage or handling of liquid propellants.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Storage or handling of liquid propellants. 420.67 Section 420.67 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Licensee § 420.67 Storage or handling of liquid propellants. (a) For an explosive hazard facility where...
14 CFR 420.67 - Storage or handling of liquid propellants.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Storage or handling of liquid propellants. 420.67 Section 420.67 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Licensee § 420.67 Storage or handling of liquid propellants. (a) For an explosive hazard facility where...
14 CFR 420.67 - Storage or handling of liquid propellants.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Storage or handling of liquid propellants. 420.67 Section 420.67 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Licensee § 420.67 Storage or handling of liquid propellants. (a) For an explosive hazard facility where...
MSRR Rack Materials Science Research Rack
NASA Technical Reports Server (NTRS)
Reagan, Shawn
2017-01-01
The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and the European Space Agency (ESA) for materials science investigations on the International Space Station (ISS). The MSRR is managed at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The MSRR facility subsystems were manufactured by Teledyne Brown Engineering (TBE) and integrated with the ESA/EADS-Astrium developed Materials Science Laboratory (MSL) at the MSFC Space Station Integration and Test Facility (SSITF) as part of the Systems Development Operations Support (SDOS) contract. MSRR was launched on STS-128 in August 2009, and is currently installed in the U. S. Destiny Laboratory Module on the ISS. Materials science is an integral part of developing new, safer, stronger, more durable materials for use throughout everyday life. The goal of studying materials processing in space is to develop a better understanding of the chemical and physical mechanisms involved, and how they differ in the microgravity environment of space. To that end, the MSRR accommodates advanced investigations in the microgravity environment of the ISS for basic materials science research in areas such as solidification of metals and alloys. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials Science Laboratory (MSL) which accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample-Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400 C. Once an SCA is installed, the experiment can be run by automatic command or science conducted via telemetry commands from the ground. This facility is available to support materials science investigations through programs such as the US National Laboratory, Technology Development, NASA Research Announcements, and others. TBE and MSFC are currently developing NASA Sample Cartridge Assemblies (SCA's) with a planned availability for launch in 2017.
10 CFR 1016.24 - Special handling of classified material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Special handling of classified material. 1016.24 Section 1016.24 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) SAFEGUARDING OF RESTRICTED DATA Physical Security § 1016.24 Special handling of classified material. When the Restricted Data contained in material...
10 CFR 1016.24 - Special handling of classified material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Special handling of classified material. 1016.24 Section 1016.24 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) SAFEGUARDING OF RESTRICTED DATA Physical Security § 1016.24 Special handling of classified material. When the Restricted Data contained in material...
Garg, Arun; Kapellusch, Jay M
2012-08-01
The aim of this study was to evaluate long-term efficacy of an ergonomics program that included patient-handling devices in six long-term care facilities (LTC) and one chronic care hospital (CCH). Patient handling is recognized as a major source of musculoskeletal disorders (MSDs) among nursing personnel, and several studies have demonstrated effectiveness of patient-handling devices in reducing those MSDs. However, most studies have been conducted in a single facility, for a short period, and/or without a comprehensive ergonomics program. Patient-handling devices along with a comprehensive ergonomics program was implemented in six LTC facilities and one CCH. Pre- and postintervention injury data were collected for 38.9 months (range = 29 to 54 months) and 51.2 months (range = 36 to 60 months), respectively. Postintervention patient-handling injuries decreased by 59.8% (rate ratio [RR] = 0.36, 95% confidence interval [CI] [0.28, 0.49], p < .001), lost workdays by 86.7% (RR = 0.16, 95% CI [0.13, 0.18], p < .001), modified-duty days by 78.8% (RR = 0.25, 95% CI [0.22, 0.28], p < .001), and workers' compensation costs by 90.6% (RR = 0.12, 95% CI [0.09, 0.15], p < .001). Perceived stresses to low back and shoulders among nursing staff were fairly low. A vast majority of patients found the devices comfortable and safe. Longer transfer times with the use of devices was not an issue. Implementation of patient-handling devices along with a comprehensive program can be effective in reducing MSDs among nursing personnel. Strategies to expand usage of patient-handling devices in most health care settings should be explored.
40 CFR 60.400 - Applicability and designation of affected facility.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Performance for Phosphate Rock Plants § 60.400 Applicability and designation of affected facility. (a) The provisions of this subpart are applicable to the following affected facilities used in phosphate rock plants..., calciners, grinders, and ground rock handling and storage facilities, except those facilities producing or...
40 CFR 60.400 - Applicability and designation of affected facility.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Performance for Phosphate Rock Plants § 60.400 Applicability and designation of affected facility. (a) The provisions of this subpart are applicable to the following affected facilities used in phosphate rock plants..., calciners, grinders, and ground rock handling and storage facilities, except those facilities producing or...
40 CFR 60.400 - Applicability and designation of affected facility.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Performance for Phosphate Rock Plants § 60.400 Applicability and designation of affected facility. (a) The provisions of this subpart are applicable to the following affected facilities used in phosphate rock plants..., calciners, grinders, and ground rock handling and storage facilities, except those facilities producing or...
40 CFR 60.400 - Applicability and designation of affected facility.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Performance for Phosphate Rock Plants § 60.400 Applicability and designation of affected facility. (a) The provisions of this subpart are applicable to the following affected facilities used in phosphate rock plants..., calciners, grinders, and ground rock handling and storage facilities, except those facilities producing or...
40 CFR 60.400 - Applicability and designation of affected facility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Performance for Phosphate Rock Plants § 60.400 Applicability and designation of affected facility. (a) The provisions of this subpart are applicable to the following affected facilities used in phosphate rock plants..., calciners, grinders, and ground rock handling and storage facilities, except those facilities producing or...
MGBX - PS Crouch with experiment module
2016-08-12
STS083-346-024 (4-8 April 1997) --- Payload specialist Roger K. Crouch performs the activation for the Mid Deck Glove Box (MGBX). Made to accommodate a variety of hardware and materials testing, the facility offers physical isolation and a negative air pressure environment so that items that are not suitable for handling in the open Spacelab can be protected. One experiment that was performed on STS-83 is the Internal Flows in a Free Drop (IFFD), an experiment that investigates rotation and position control of drops by varying acoustic pressures.
“Modular Biospheres” New testbed platforms for public environmental education and research
NASA Astrophysics Data System (ADS)
Nelson, M.; Dempster, W. F.; Allen, J. P.
This paper will review the potential of a relatively new type of testbed platform for environmental education and research because of the unique advantages resulting from their material closure and separation from the outside environment. These facilities which we term "modular biospheres", have emerged from research centered on space life support research but offer a wider range of application. Examples of this type of facility include the Bios-3 facility in Russia, the Japanese CEEF (Closed Ecological Experiment Facility), the NASA Kennedy Space Center Breadboard facility, the Biosphere 2 Test Module and the Laboratory Biosphere. Modular biosphere facilities offer unique research and public real-time science education opportunities. Ecosystem behavior can be studied since initial state conditions can be precisely specified and tracked over different ranges of time. With material closure (apart from very small air exchange rate which can be determined), biogeochemical cycles between soil and soil microorganisms, water, plants, and atmosphere can be studied in detail. Such studies offer a major advance from studies conducted with phytotrons which because of their small size, limit the number of organisms to a very small number, and which crucially do not have a high degree of atmospheric, water and overall material closure. Modular biospheres take advantage of the unique properties of closure, as representing a distinct system "metabolism" and therefore are essentially a "mini-world". Though relatively large in comparison with most phytotrons and ecological microcosms, which are now standard research and educational tools, modular biospheres are small enough that they can be economically reconfigured to reflect a changing research agenda. Some design elements include lighting via electric lights and/or sunlight, hydroponic or soil substrate for plants, opaque or glazed structures, and variable volume chambers or other methods to handle atmospheric pressure differences between the facility and the outside environment.
36 CFR 9.45 - Handling of wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... MINERALS MANAGEMENT Non-Federal Oil and Gas Rights § 9.45 Handling of wastes. Oilfield brine, and all other...), facilities, cultural resources, wildlife, and vegetation of or visitors of the unit. ...
9 CFR 318.18 - Handling of certain material for mechanical processing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Handling of certain material for mechanical processing. 318.18 Section 318.18 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... PREPARATION OF PRODUCTS General § 318.18 Handling of certain material for mechanical processing. Material to...
33 CFR 126.15 - What conditions must a designated waterfront facility meet?
Code of Federal Regulations, 2011 CFR
2011-07-01
... NFPA 307, chapter 5. (2) Containers. Containers packed with dangerous cargo that are vertically stacked... HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES... facility transfers dangerous cargo between sunset and sunrise, it must have outdoor lighting that...
33 CFR 126.15 - What conditions must a designated waterfront facility meet?
Code of Federal Regulations, 2010 CFR
2010-07-01
... NFPA 307, chapter 5. (2) Containers. Containers packed with dangerous cargo that are vertically stacked... HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES... facility transfers dangerous cargo between sunset and sunrise, it must have outdoor lighting that...
33 CFR 126.15 - What conditions must a designated waterfront facility meet?
Code of Federal Regulations, 2012 CFR
2012-07-01
... NFPA 307, chapter 5. (2) Containers. Containers packed with dangerous cargo that are vertically stacked... HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES... facility transfers dangerous cargo between sunset and sunrise, it must have outdoor lighting that...
33 CFR 126.15 - What conditions must a designated waterfront facility meet?
Code of Federal Regulations, 2014 CFR
2014-07-01
... NFPA 307, chapter 5. (2) Containers. Containers packed with dangerous cargo that are vertically stacked... HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES... facility transfers dangerous cargo between sunset and sunrise, it must have outdoor lighting that...
33 CFR 126.15 - What conditions must a designated waterfront facility meet?
Code of Federal Regulations, 2013 CFR
2013-07-01
... NFPA 307, chapter 5. (2) Containers. Containers packed with dangerous cargo that are vertically stacked... HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES... facility transfers dangerous cargo between sunset and sunrise, it must have outdoor lighting that...
Facility Accounting: Hammering Out a Capital Replacement Budget.
ERIC Educational Resources Information Center
Readinger, Jay
1996-01-01
Most facility and finance managers cannot adequately handle school infrastructure issues because they lack the tools to describe the problem appropriately. Facility accounting gives managers accurate deferral and projected replacement costs, using nationally recognized life-cycle and cost data. Facility accounting enables proper management of…
The handling, hazards, and maintenance of heavy liquids in the geologic laboratory
Hauff, Phoebe L.; Airey, Joseph
1980-01-01
In geologic laboratories the organic heavy liquids bromoform, methylene iodide, tetrabromoethane, and clerici compounds have been used for years in mineral separation processes. Because the volume of use of these compounds is low, insufficient data is available on their toxic properties. This report is an attempt to summarize the known data from published and industry sources. The physical properties, hazards of handling,proper storage facilities, and adequate protective Clothing are discussed for each compound as well as for their common and less-common solvents. Toxicity data for these materials is listed along with exposure symptoms and suggested first aid treatments. Safety for the worker is emphasized. Three reclamation methods which recover the solvent used as a dilutant and purify the heavy liquid are discussed and illustrated. These include: the water cascade, re fluxing-distillation-condensation, and flash evaporation methods. Various techniques for restoration and stabilization of these heavy liquids are also included.
40 CFR 63.748 - Standards: Handling and storage of waste.
Code of Federal Regulations, 2014 CFR
2014-07-01
...: Handling and storage of waste. Except as provided in § 63.741(e), the owner or operator of each facility subject to this subpart that produces a waste that contains HAP shall conduct the handling and transfer of... waste. 63.748 Section 63.748 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...
40 CFR 63.748 - Standards: Handling and storage of waste.
Code of Federal Regulations, 2010 CFR
2010-07-01
...: Handling and storage of waste. Except as provided in § 63.741(e), the owner or operator of each facility subject to this subpart that produces a waste that contains HAP shall conduct the handling and transfer of... waste. 63.748 Section 63.748 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...
40 CFR 63.748 - Standards: Handling and storage of waste.
Code of Federal Regulations, 2012 CFR
2012-07-01
...: Handling and storage of waste. Except as provided in § 63.741(e), the owner or operator of each facility subject to this subpart that produces a waste that contains HAP shall conduct the handling and transfer of... waste. 63.748 Section 63.748 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...
The relationship between emotional intelligence competencies and preferred conflict-handling styles.
Morrison, Jeanne
2008-11-01
The purpose of this study was to determine if a relationship exists between emotional intelligence (EI) and preferred conflict-handling styles of registered nurses. Conflict cannot be eliminated from the workplace therefore learning appropriate conflict-handling skills is important. Ninety-four registered nurses working in three south Mississippi healthcare facilities participated in this quantitative study. Ninety-two valid sets of data instruments were collected for this study. Higher levels of EI positively correlated with collaborating and negatively with accommodating. The issue of occupational stress and conflict among nurses is a major concern. It is imperative nurses learn how to effectively handle conflict in the work environment. Developing the competencies of EI and understanding how to effectively handle conflict is necessary for nurses working in a highly stressful occupation. Effective leadership management includes conflict management and collaboration. The art of relationship management is necessary when handling other people's emotions. When conflict is approached with high levels of EI, it creates an opportunity for learning effective interpersonal skills. Understanding how EI levels and conflict skills correlate can be used to improve interpersonal relationships in a healthcare facility.
RETROFITTING CONTROL FACILITIES FOR WET-WEATHER FLOW CONTROL
Available technologies were evaluated to demonstrate the feasibility and cost effectiveness of retrofitting existing facilities to handle wet-weather flow (WWF). Cost/benefit relationships were compared to construction of new conventional control and treatment facilities. Desktop...
RETROFITTING CONTROL FACILITIES FOR WET-WEATHER FLOW TREATMENT
Available technologies were evaluated to demonstrate the technical feasibility and cost effectiveness of retrofitting existing facilities to handle wet-weather flow. Cost/benefit relationships were also compared to construction of new conventional control and treatment facilities...
CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.F. Beesley
The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative designmore » process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.« less
ERIC Educational Resources Information Center
National Bureau of Standards (DOC), Washington, DC.
This handbook is designed to help users of radioactive materials to handle the radioactive material without exposing themselves or others to radiation doses in excess of maximum permissible limits. The discussion of radiation levels is in terms of readings from dosimeters and survey instruments. Safety in the handling of radioactive materials in…
Planning Requirements for Small School Facilities.
ERIC Educational Resources Information Center
Davis, J. Clark; McQueen, Robert
The unique requirements of small school facilities, designed to handle multiple curricular functions within the same operational space, necessitate the creation of educational specifications tying the curriculum to that portion of the facility in which each curriculum component will be implemented. Thus, in planning the facility the major concern…
NASA Astrophysics Data System (ADS)
Kumar, Ravi; Singh, Surya Prakash
2017-11-01
The dynamic cellular facility layout problem (DCFLP) is a well-known NP-hard problem. It has been estimated that the efficient design of DCFLP reduces the manufacturing cost of products by maintaining the minimum material flow among all machines in all cells, as the material flow contributes around 10-30% of the total product cost. However, being NP hard, solving the DCFLP optimally is very difficult in reasonable time. Therefore, this article proposes a novel similarity score-based two-phase heuristic approach to solve the DCFLP optimally considering multiple products in multiple times to be manufactured in the manufacturing layout. In the first phase of the proposed heuristic, a machine-cell cluster is created based on similarity scores between machines. This is provided as an input to the second phase to minimize inter/intracell material handling costs and rearrangement costs over the entire planning period. The solution methodology of the proposed approach is demonstrated. To show the efficiency of the two-phase heuristic approach, 21 instances are generated and solved using the optimization software package LINGO. The results show that the proposed approach can optimally solve the DCFLP in reasonable time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osmanlioglu, Ahmet Erdal
Available in abstract form only. Full text of publication follows: Naturally occurring radioactive material (NORM) in concentrated forms arises both in industry and in nature where natural radioisotopes accumulate at particular sites. Technically enhanced naturally occurring radioactive materials (TE-NORM) often occurs in an acidic environment where precipitates containing radionuclides plate out onto pipe walls, filters, tank linings, etc. Because of the radionuclides are selectively deposited at these sites, radioactivity concentration is extremely higher than the natural concentration. This paper presents characterization and related considerations of TE-NORM wastes in Turkey. Generally, accumulation conditions tend to favour the build-up of radium. Asmore » radium is highly radio-toxic, handling, treatment, storage and disposal of such material requires careful management. Turkey has the only low level waste processing and storage facility (WPSF) in Istanbul. This facility has interim storage buildings and storage area for storage of packaged radioactive waste which are containing artificial radioisotopes, but there is an increasing demand for the storage to accept bulk concentrated TE-NORM wastes from iron-steel and related industries. Most of these wastes generated from scrap metal piles which are imported from other countries. These wastes generally contain radium. (authors)« less
NASA Astrophysics Data System (ADS)
Messham, R. L.; Tucker, W. K.
1986-09-01
A metalorganic chemical vapor deposition (MOCVD) facility designed to safely handle highly toxic and pyrophoric growth materials is described. The system concept is based on remote operation, passive flow restriction, and forced air dilution to maintain safe gas concentrations under normal running and catastrophic system failure conditions. MOCVD is a key materials technology for advanced high-frequency optical and microwave devices. At this time, the use of highly toxic arsine as an arsenic source is dictated by critical device purity, reproducibility, and doping control requirements. The handling and use of this gas is a primary feature in the design of any safe facility for MOCVD growth of high-quality GaAs/AlGaAs. After a critical review of presently available effluent treatment techniques, it was concluded that a combination of flow restriction and dilution presented the most reliable treatment. Measured flow rates through orifices from 0.002 to 0.005 inch in diameter were compared to calculated values. A 0.002 inch orifice located in the cylinder valve or CGA fitting, combined with a cylinder of pure liquid arsine (205 psi), limits the maximum gas flow to ≪1 lpm. Such a flow can then be vented through a dedicated exhaust system where an additional forced injection of diluting air reduces the gas concentration to acceptable levels. In the final Westinghouse R&D Center design, the use of low-pressure pure arsine, flow restriction, and stack air injection has reduced the maximum stack exist gas concentration to below 25% of the IDLH level for arsine under total and catastrophic MOCVD facility equipment failure conditions. The elimination of potential problems with purging behind such orifices using carefully designed purging procedures and a microprocessor-controlled purging system are described. The IDLH level is defined by the OSHA and NIOSH standards completion program and represents the maximum level from which one could escape within 30 min without any escape-impairing symptoms or irreversible health effects.
Property measurements and solidification studies by electrostatic levitation.
Paradis, Paul-François; Yu, Jianding; Ishikawa, Takehiko; Yoda, Shinichi
2004-11-01
The National Space Development Agency of Japan has recently developed several electrostatic levitation furnaces and implemented new techniques and procedures for property measurement, solidification studies, and atomic structure research. In addition to the contamination-free environment for undercooled and liquid metals and semiconductors, the newly developed facilities possess the unique capabilities of handling ceramics and high vapor pressure materials, reducing processing time, and imaging high luminosity samples. These are exemplified in this paper with the successful processing of BaTiO(3). This allowed measurement of the density of high temperature solid, liquid, and undercooled phases. Furthermore, the material resulting from containerless solidification consisted of micrometer-size particles and a glass-like phase exhibiting a giant dielectric constant exceeding 100,000.
LH2 airport requirements study
NASA Technical Reports Server (NTRS)
Brewer, G. D. (Editor)
1976-01-01
A preliminary assessment of the facilities and equipment which will be required at a representative airport is provided so liquid hydrogen LH2 can be used as fuel in long range transport aircraft in 1995-2000. A complete facility was conceptually designed, sized to meet the projected air traffic requirement. The facility includes the liquefaction plant, LH2, storage capability, and LH2 fuel handling system. The requirements for ground support and maintenance for the LH2 fueled aircraft were analyzed. An estimate was made of capital and operating costs which might be expected for the facility. Recommendations were made for design modifications to the reference aircraft, reflecting results of the analysis of airport fuel handling requirements, and for a program of additional technology development for air terminal related items.
Mars aqueous chemistry experiment
NASA Technical Reports Server (NTRS)
Clark, Benton C.; Mason, Larry W.
1993-01-01
The Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. Progress for the first year MACE PIDDP is reported in two major areas of effort: (1) fluids handling concepts, definition, and breadboard fabrication and (2) aqueous chemistry ion sensing technology and test facility integration. A fluids handling breadboard was designed, fabricated, and tested at Mars ambient pressure. The breadboard allows fluid manipulation scenarios to be tested under the reduced pressure conditions expected in the Martian atmosphere in order to validate valve operations, orchestrate analysis sequences, investigate sealing integrity, and to demonstrate efficacy of the fluid handling concept. Additional fluid manipulation concepts have also been developed based on updated MESUR spacecraft definition. The Mars Aqueous Chemistry Experiment Ion Selective Electrode (ISE) facility was designed as a test bed to develop a multifunction interface for measurements of chemical ion concentrations in aqueous solution. The interface allows acquisition of real time data concerning the kinetics and heats of salt dissolution, and transient response to calibration and solubility events. An array of ion selective electrodes has been interfaced and preliminary calibration studies performed.
Mars aqueous chemistry experiment
NASA Astrophysics Data System (ADS)
Clark, Benton C.; Mason, Larry W.
1993-06-01
The Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. Progress for the first year MACE PIDDP is reported in two major areas of effort: (1) fluids handling concepts, definition, and breadboard fabrication and (2) aqueous chemistry ion sensing technology and test facility integration. A fluids handling breadboard was designed, fabricated, and tested at Mars ambient pressure. The breadboard allows fluid manipulation scenarios to be tested under the reduced pressure conditions expected in the Martian atmosphere in order to validate valve operations, orchestrate analysis sequences, investigate sealing integrity, and to demonstrate efficacy of the fluid handling concept. Additional fluid manipulation concepts have also been developed based on updated MESUR spacecraft definition. The Mars Aqueous Chemistry Experiment Ion Selective Electrode (ISE) facility was designed as a test bed to develop a multifunction interface for measurements of chemical ion concentrations in aqueous solution. The interface allows acquisition of real time data concerning the kinetics and heats of salt dissolution, and transient response to calibration and solubility events. An array of ion selective electrodes has been interfaced and preliminary calibration studies performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horak, W.C.; Reisman, A.; Purvis, E.E. III
1997-07-01
The Soviet Union established a system of specialized regional facilities to dispose of radioactive waste generated by sources other than the nuclear fuel cycle. The system had 16 facilities in Russia, 5 in Ukraine, one in each of the other CIS states, and one in each of the Baltic Republics. These facilities are still being used. The major generators of radioactive waste they process these are research and industrial organizations, medical and agricultural institution and other activities not related to nuclear power. Waste handled by these facilities is mainly beta- and gamma-emitting nuclides with half lives of less than 30more » years. The long-lived and alpha-emitting isotopic content is insignificant. Most of the radwaste has low and medium radioactivity levels. The facilities also handle spent radiation sources, which are highly radioactive and contain 95-98 percent of the activity of all the radwaste buried at these facilities.« less
NASA Technical Reports Server (NTRS)
1975-01-01
The extent was investigated to which experiment hardware and operational requirements can be met by automatic control and material handling devices; payload and system concepts that make extensive use of automation technology are defined. Hardware requirements for each experiment were established and tabulated, and investigations of applicable existing hardware were documented. The capabilities and characteristics of industrial automation equipment, controls, and techniques are presented in the form of a summary of applicable equipment characteristics in three basic mutually-supporting formats. Facilities for performing groups of experiments are defined along with four levitation groups and three furnace groups; major hardware elements required to implement them were identified. A conceptual design definition of ten different automated processing facilities is presented along with the specific equipment to implement each facility and the design layouts of the different units. Constraints and packaging, weight, and power requirements for six payloads postulated for shuttle missions in the 1979 to 1982 time period were examined.
Robotics in a controlled, ecological life support system
NASA Technical Reports Server (NTRS)
Miles, Gaines E.; Krom, Kimberly J.
1993-01-01
Controlled, Ecological Life Support Systems (CELSS) that utilize plants to provide food, water and oxygen could consume considerable amounts of labor unless crop production, recovery and processing are automated. Robotic manipulators equipped with special end-effectors and programmed to perform the sensing and materials handling tasks would minimize the amount of astronaut labor required. The Human Rated Test Facility (HRTF) planned for Johnson Space Center could discover and demonstrate techniques of crop production which can be reliably integrated with machinery to minimize labor requirements. Before the physical components (shelves, lighting fixtures, etc.) can be selected, a systems analysis must be performed to determine which alternative processes should be followed and how the materials handling tasks should be automated. Given that the current procedures used to grow crops in a CELSS may not be the best methods to automate, then what are the alternatives? How may plants be grown, harvested, processed for food, and the inedible components recycled? What commercial technologies current exist? What research efforts are underway to develop new technologies which might satisfy the need for automation in a CELSS? The answers to these questions should prove enlightening and provide some of the information necessary to perform the systems analysis. The planting, culturing, gathering, threshing and separation, food processing, and recovery of inedible portions of wheat were studied. The basic biological and materials handling processes of each task are defined and discussed. Current practices at Johnson Space Center and other NASA centers are described and compared to common production practices in the plant production industry. Technologies currently being researched which might be applicable are identified and illustrated. Finally, based on this knowledge, several scenarios are proposed for automating the tasks for wheat.
9 CFR 3.50 - Facilities, general.
Code of Federal Regulations, 2011 CFR
2011-01-01
... WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment and Transportation of Rabbits... housing facilities for rabbits shall be structurally sound and shall be maintained in good repair, to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, S.
During the period from fiscal year (FY) 2009 to FY 2011, there were a total of 21 incidents involving radioactively contaminated shipment trailers and 9 contaminated waste packages received at the Nevada National Security Site (NNSS) Area 5 Radioactive Waste Management Site (RWMS). During this time period, the EnergySolutions (ES) Clive, Utah, disposal facility had a total of 18 similar incidents involving trailer and package contamination issues. As a result of the increased occurrence of such incidents, DOE Environmental Management Headquarters (EM/HQ) Waste Management organization (EM-30) requested that the Energy Facility Contractors’ Group (EFCOG) Waste Management Working Group (WMWG) conductmore » a detailed review of these incidents and report back to EM-30 regarding the results of this review, including providing any recommendations formulated as a result of the evaluation of current site practices involving handling and management of radioactive material and waste shipments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Womac, Alvin; Groothuis, Mitch; Westover, Tyler
2013-09-24
This project evaluates and compares comprehensive feedstock logistics systems (FLS), where a FLS is defined to comprehensively span from biomass material standing in a field to conveyance of a uniform, industrial-milled product into the throat of a biomass conversion facility (BCF). Elements of the bulk-format FLS evaluated in this project include: field-standing switchgrass dry chopped into bulk format on the farm, hauled (either loose or bulk compacted) to storage, stored with confining overburden in a protective facility, reclaimed and conveyed to bulk-format discharge, bulk compacted into an ejector trailer, and conveyed as bulk flow into the BCF. In this FLSmore » evaluation, bulk storage bins served as a controlled and sensored proxy for large commercial stacks protected from moisture with a membrane cover.« less
Long-term pavement performance project laboratory materials testing and handling guide
DOT National Transportation Integrated Search
2007-09-01
The Long Term Pavement Performance (LTPP) Laboratory Material Testing Guide was originally prepared for laboratory material handling and testing of material specimens and samples of asphalt materials, portland cement concrete, aggregates, and soils u...
NASA Technical Reports Server (NTRS)
Spivey, Reggie A.; Spearing, Scott F.; Jordan, Lee P.; McDaniel S. Greg
2012-01-01
The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas. The MSG is a very versatile and capable research facility on the ISS. The Microgravity Science Glovebox (MSG) on the International Space Station (ISS) has been used for a large body or research in material science, heat transfer, crystal growth, life sciences, smoke detection, combustion, plant growth, human health, and technology demonstration. MSG is an ideal platform for gravity-dependent phenomena related research. Moreover, the MSG provides engineers and scientists a platform for research in an environment similar to the one that spacecraft and crew members will actually experience during space travel and exploration. The MSG facility is ideally suited to provide quick, relatively inexpensive access to space for National Lab type investigations.
Yasui, Shojiro
2014-01-01
The accident at the Fukushima Daiichi Atomic Power Plant that accompanied the Great East Japan Earthquake on March 11, 2011, released a large amount of radioactive material. To rehabilitate the contaminated areas, the government of Japan decided to carry out decontamination work and manage the waste resulting from decontamination. In the summer of 2013, the Ministry of the Environment planned to begin a full-scale process for waste disposal of contaminated soil and wastes removed as part of the decontamination work. The existing regulations were not developed to address such a large amount of contaminated wastes. The Ministry of Health, Labour and Welfare (MHLW), therefore, had to amend the existing regulations for waste disposal workers. The amendment of the general regulation targeted the areas where the existing exposure situation overlaps the planned exposure situation. The MHLW established the demarcation lines between the two regulations to be applied in each situation. The amendment was also intended to establish provisions for the operation of waste disposal facilities that handle large amounts of contaminated materials. Deliberation concerning the regulation was conducted when the facilities were under design; hence, necessary adjustments should be made as needed during the operation of the facilities.
Fleet Sizing of Automated Material Handling Using Simulation Approach
NASA Astrophysics Data System (ADS)
Wibisono, Radinal; Ai, The Jin; Ratna Yuniartha, Deny
2018-03-01
Automated material handling tends to be chosen rather than using human power in material handling activity for production floor in manufacturing company. One critical issue in implementing automated material handling is designing phase to ensure that material handling activity more efficient in term of cost spending. Fleet sizing become one of the topic in designing phase. In this research, simulation approach is being used to solve fleet sizing problem in flow shop production to ensure optimum situation. Optimum situation in this research means minimum flow time and maximum capacity in production floor. Simulation approach is being used because flow shop can be modelled into queuing network and inter-arrival time is not following exponential distribution. Therefore, contribution of this research is solving fleet sizing problem with multi objectives in flow shop production using simulation approach with ARENA Software
7 CFR 205.271 - Facility pest management practice standard.
Code of Federal Regulations, 2011 CFR
2011-01-01
... organically produced products or ingredients with the substance used. (e) The handler of an organic handling... MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Organic Production and Handling...
GUIDE TO SEPTAGE TREATMENT AND DISPOSAL
This guide presents information on the handling, treatment, and disposal of septage in a format easily used by administrators of waste management programs, septage haulers, and managers or operators of septage handling facilities. The guide does not provide detailed engineering d...
30 CFR 250.108 - What requirements must I follow for cranes and other material-handling equipment?
Code of Federal Regulations, 2012 CFR
2012-07-01
... other material-handling equipment? 250.108 Section 250.108 Mineral Resources BUREAU OF SAFETY AND... material-handling equipment? (a) All cranes installed on fixed platforms must be operated in accordance... Cranes, API RP 2D (as incorporated by reference in § 250.198). (b) All cranes installed on fixed...
30 CFR 250.108 - What requirements must I follow for cranes and other material-handling equipment?
Code of Federal Regulations, 2014 CFR
2014-07-01
... other material-handling equipment? 250.108 Section 250.108 Mineral Resources BUREAU OF SAFETY AND... material-handling equipment? (a) All cranes installed on fixed platforms must be operated in accordance... Cranes, API RP 2D (as incorporated by reference in § 250.198). (b) All cranes installed on fixed...
30 CFR 250.108 - What requirements must I follow for cranes and other material-handling equipment?
Code of Federal Regulations, 2013 CFR
2013-07-01
... other material-handling equipment? 250.108 Section 250.108 Mineral Resources BUREAU OF SAFETY AND... material-handling equipment? (a) All cranes installed on fixed platforms must be operated in accordance... Cranes, API RP 2D (as incorporated by reference in § 250.198). (b) All cranes installed on fixed...
Handling of thermal paper: Implications for dermal exposure to bisphenol A and its alternatives
Bernier, Meghan R.
2017-01-01
Bisphenol A (BPA) is an endocrine disrupting chemical used in a wide range of consumer products including photoactive dyes used in thermal paper. Recent studies have shown that dermal absorption of BPA can occur when handling these papers. Yet, regulatory agencies have largely dismissed thermal paper as a major source of BPA exposure. Exposure estimates provided by agencies such as the European Food Safety Authority (EFSA) are based on assumptions about how humans interact with this material, stating that ‘typical’ exposures for adults involve only one handling per day for short periods of time (<1 minute), with limited exposure surfaces (three fingertips). The objective of this study was to determine how individuals handle thermal paper in one common setting: a cafeteria providing short-order meals. We observed thermal paper handling in a college-aged population (n = 698 subjects) at the University of Massachusetts’ dining facility. We find that in this setting, individuals handle receipts for an average of 11.5 min, that >30% of individuals hold thermal paper with more than three fingertips, and >60% allow the paper to touch their palm. Only 11% of the participants we observed were consistent with the EFSA model for time of contact and dermal surface area. Mathematical modeling based on handling times we measured and previously published transfer coefficients, concentrations of BPA in paper, and absorption factors indicate the most conservative estimated intake from handling thermal paper in this population is 51.1 ng/kg/day, similar to EFSA’s estimates of 59 ng/kg/day from dermal exposures. Less conservative estimates, using published data on concentrations in thermal paper and transfer rates to skin, indicate that exposures are likely significantly higher. Based on our observational data, we propose that the current models for estimating dermal BPA exposures are not consistent with normal human behavior and should be reevaluated. PMID:28570582
Handling of thermal paper: Implications for dermal exposure to bisphenol A and its alternatives.
Bernier, Meghan R; Vandenberg, Laura N
2017-01-01
Bisphenol A (BPA) is an endocrine disrupting chemical used in a wide range of consumer products including photoactive dyes used in thermal paper. Recent studies have shown that dermal absorption of BPA can occur when handling these papers. Yet, regulatory agencies have largely dismissed thermal paper as a major source of BPA exposure. Exposure estimates provided by agencies such as the European Food Safety Authority (EFSA) are based on assumptions about how humans interact with this material, stating that 'typical' exposures for adults involve only one handling per day for short periods of time (<1 minute), with limited exposure surfaces (three fingertips). The objective of this study was to determine how individuals handle thermal paper in one common setting: a cafeteria providing short-order meals. We observed thermal paper handling in a college-aged population (n = 698 subjects) at the University of Massachusetts' dining facility. We find that in this setting, individuals handle receipts for an average of 11.5 min, that >30% of individuals hold thermal paper with more than three fingertips, and >60% allow the paper to touch their palm. Only 11% of the participants we observed were consistent with the EFSA model for time of contact and dermal surface area. Mathematical modeling based on handling times we measured and previously published transfer coefficients, concentrations of BPA in paper, and absorption factors indicate the most conservative estimated intake from handling thermal paper in this population is 51.1 ng/kg/day, similar to EFSA's estimates of 59 ng/kg/day from dermal exposures. Less conservative estimates, using published data on concentrations in thermal paper and transfer rates to skin, indicate that exposures are likely significantly higher. Based on our observational data, we propose that the current models for estimating dermal BPA exposures are not consistent with normal human behavior and should be reevaluated.
40 CFR 60.434 - Monitoring of operations and recordkeeping.
Code of Federal Regulations, 2011 CFR
2011-07-01
... recordkeeping. 60.434 Section 60.434 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... affected facility using waterborne ink systems or solvent-borne ink systems with solvent recovery systems...) If affected facilities share the same raw ink storage/handling system with existing facilities...
40 CFR 60.434 - Monitoring of operations and recordkeeping.
Code of Federal Regulations, 2010 CFR
2010-07-01
... recordkeeping. 60.434 Section 60.434 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... affected facility using waterborne ink systems or solvent-borne ink systems with solvent recovery systems...) If affected facilities share the same raw ink storage/handling system with existing facilities...
A facile route to ketene-functionalized polymers for general materials applications
NASA Astrophysics Data System (ADS)
Leibfarth, Frank A.; Kang, Minhyuk; Ham, Myungsoo; Kim, Joohee; Campos, Luis M.; Gupta, Nalini; Moon, Bongjin; Hawker, Craig J.
2010-03-01
Function matters in materials science, and methodologies that provide paths to multiple functionality in a single step are to be prized. Therefore, we introduce a robust and efficient strategy for exploiting the versatile reactivity of ketenes in polymer chemistry. New monomers for both radical and ring-opening metathesis polymerization have been developed, which take advantage of Meldrum's acid as both a synthetic building block and a thermolytic precursor to dialkyl ketenes. The ketene-functionalized polymers are directly detected by their characteristic infrared absorption and are found to be stable under ambient conditions. The inherent ability of ketenes to provide crosslinking via dimerization and to act as reactive chemical handles via addition, provides simple methodology for application in complex materials challenges. Such versatile characteristics are illustrated by covalently attaching and patterning a dye through microcontact printing. The strategy highlights the significant opportunities afforded by the traditionally neglected ketene functional group in polymer chemistry.
Ergonomic material-handling device
Barsnick, Lance E.; Zalk, David M.; Perry, Catherine M.; Biggs, Terry; Tageson, Robert E.
2004-08-24
A hand-held ergonomic material-handling device capable of moving heavy objects, such as large waste containers and other large objects requiring mechanical assistance. The ergonomic material-handling device can be used with neutral postures of the back, shoulders, wrists and knees, thereby reducing potential injury to the user. The device involves two key features: 1) gives the user the ability to adjust the height of the handles of the device to ergonomically fit the needs of the user's back, wrists and shoulders; and 2) has a rounded handlebar shape, as well as the size and configuration of the handles which keep the user's wrists in a neutral posture during manipulation of the device.
Mars Sample Handling Functionality
NASA Astrophysics Data System (ADS)
Meyer, M. A.; Mattingly, R. L.
2018-04-01
The final leg of a Mars Sample Return campaign would be an entity that we have referred to as Mars Returned Sample Handling (MRSH.) This talk will address our current view of the functional requirements on MRSH, focused on the Sample Receiving Facility (SRF).
Public Participation Guide: Container Handling in the Port of Durban, South Africa
This case study describes the public participation process that was conducted in the context of an Integrated Environmental Management exercise related to the proposed expansion of container handling facilities at the Port of Durban, South Africa.
Compliance with the Aerospace MACT Standard at Lockheed Martin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurucz, K.L.; Vicars, S.; Fetter, S.
1997-12-31
Actions taken and planned at four Lockheed Martin Corporation (LMC) facilities to comply with the Aerospace MACT Standard are reviewed. Many LMC sites have taken proactive steps to reduce emissions and implement low VOC coating technology. Significant administrative, facility, and material challenges remain to achieve compliance with the upcoming NESHAP and Control Technology Guideline (CTG) standards. The facilities discussed herein set up programs to develop and implement compliance strategies. These facilities manufacture military aircraft, missiles, satellites, rockets, and electronic guidance and communications systems. Some of the facilities are gearing up for new production lines subject to new source MACT standards.more » At this time the facilities are reviewing compliance status of all primers, topcoats, maskants and solvents subject to the standard. Facility personnel are searching for the most efficient methods of satisfying the recordkeeping, reporting and monitoring, sections of the standards while simultaneously preparing or reviewing their Title V permit applications. Facility decisions on paint booths are the next highest priority. Existing dry filter paint booths will be subject to the filtration standard for existing paint booths which requires the use of two-stage filters. Planned paint booths for the F-22 program, and other new booths must comply with the standard for new and rebuilt booths which requires three stage or HEPA filters. Facilities looking to replace existing water wash paint booths, and those required to retrofit the air handling equipment to accommodate the two-stage filters, are reviewing issues surrounding the rebuilt source definition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, T.; Nakamura, H.; Kawamura, Y.
JAEA (Japan Atomic Energy Agency) manages 2 tritium handling laboratories: Tritium Processing Laboratory (TPL) in Tokai and DEMO-RD building in Rokkasho. TPL has been accumulating a gram level tritium safety handling experiences without any accidental tritium release to the environment for more than 25 years. Recently, our activities have focused on 3 categories, as follows. First, the development of a detritiation system for ITER. This task is the demonstration test of a wet Scrubber Column (SC) as a pilot scale (a few hundreds m{sup 3}/h of processing capacity). Secondly, DEMO-RD tasks are focused on investigating the general issues required formore » DEMO-RD design, such as structural materials like RAFM (Reduced Activity Ferritic/Martensitic steels) and SiC/SiC, functional materials like tritium breeder and neutron multiplier, and tritium. For the last 4 years, we have spent a lot of time and means to the construction of the DEMO-RD facility and to its licensing, so we have just started the actual research program with tritium and other radioisotopes. This tritium task includes tritium accountancy, tritium basic safety research such as tritium interactions with various materials, which will be used for DEMO-RD and durability. The third category is the recovery work from the Great East Japan earthquake (2011 earthquake). It is worth noting that despite the high magnitude of the earthquake, TPL was able to confine tritium properly without any accidental tritium release.« less
MHSS: a material handling system simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomernacki, L.; Hollstien, R.B.
1976-04-07
A Material Handling System Simulator (MHSS) program is described that provides specialized functional blocks for modeling and simulation of nuclear material handling systems. Models of nuclear fuel fabrication plants may be built using functional blocks that simulate material receiving, storage, transport, inventory, processing, and shipping operations as well as the control and reporting tasks of operators or on-line computers. Blocks are also provided that allow the user to observe and gather statistical information on the dynamic behavior of simulated plants over single or replicated runs. Although it is currently being developed for the nuclear materials handling application, MHSS can bemore » adapted to other industries in which material accountability is important. In this paper, emphasis is on the simulation methodology of the MHSS program with application to the nuclear material safeguards problem. (auth)« less
Sliwinski-Korell, A; Lutz, F
1998-04-01
In the last years the standards for professional handling of hazardous material as well as health and safety in the veterinary practice became considerably more stringent. This is expressed in various safety regulations, particularly the decree of hazardous material and the legislative directives concerning health and safety at work. In part 1, a definition based on the law for hazardous material is given and the potential risks are mentioned. The correct documentation regarding the protection of the purchase, storage, working conditions and removal of hazardous material and of the personal is explained. General rules for the handling of hazardous material are described. In part 2, particular emphasis is put on the handling of flammable liquids, disinfectants, cytostatica, pressurised gas, liquid nitrogen, narcotics, mailing of potentially infectious material and safe disposal of hazardous waste. Advice about possible unrecognized hazards and references is also given.
Robotics for Nuclear Material Handling at LANL:Capabilities and Needs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harden, Troy A; Lloyd, Jane A; Turner, Cameron J
Nuclear material processing operations present numerous challenges for effective automation. Confined spaces, hazardous materials and processes, particulate contamination, radiation sources, and corrosive chemical operations are but a few of the significant hazards. However, automated systems represent a significant safety advance when deployed in place of manual tasks performed by human workers. The replacement of manual operations with automated systems has been desirable for nearly 40 years, yet only recently are automated systems becoming increasingly common for nuclear materials handling applications. This paper reviews several automation systems which are deployed or about to be deployed at Los Alamos National Laboratory formore » nuclear material handling operations. Highlighted are the current social and technological challenges faced in deploying automated systems into hazardous material handling environments and the opportunities for future innovations.« less
40 CFR 1700.10 - No-discharge zones by EPA prohibition.
Code of Federal Regulations, 2011 CFR
2011-07-01
... DEFENSE; UNIFORM NATIONAL DISCHARGE STANDARDS FOR VESSELS OF THE ARMED FORCES UNIFORM NATIONAL DISCHARGE... the facilities and the available water depth at the facilities. (v) Information showing that handling...
36 CFR 1234.24 - How does NARA process a waiver request?
Code of Federal Regulations, 2010 CFR
2010-07-01
... ADMINISTRATION RECORDS MANAGEMENT FACILITY STANDARDS FOR RECORDS STORAGE FACILITIES Handling Deviations From NARA... alternative offers at least equal protection to Federal records, NARA will consult the appropriate industry... actions and time frames for bringing the facility into compliance are reasonable. (2) If NARA questions...
36 CFR 1234.24 - How does NARA process a waiver request?
Code of Federal Regulations, 2011 CFR
2011-07-01
... ADMINISTRATION RECORDS MANAGEMENT FACILITY STANDARDS FOR RECORDS STORAGE FACILITIES Handling Deviations From NARA... alternative offers at least equal protection to Federal records, NARA will consult the appropriate industry... actions and time frames for bringing the facility into compliance are reasonable. (2) If NARA questions...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-17
... natural gas. 211112 Natural gas liquid extraction facilities. Petrochemical Production....... 32511... facilities. 211112 Natural gas liquid extraction facilities. Suppliers of Industrial 325120 Industrial gas... reference in EPA's procedures for handling data collected under the Mandatory Greenhouse Gas Reporting Rule...
40 CFR 1700.9 - No-discharge zones by State prohibition.
Code of Federal Regulations, 2011 CFR
2011-07-01
... DEFENSE; UNIFORM NATIONAL DISCHARGE STANDARDS FOR VESSELS OF THE ARMED FORCES UNIFORM NATIONAL DISCHARGE... water depth at the facilities. (v) Information showing that handling of the discharge at the facilities...
40 CFR 1700.9 - No-discharge zones by State prohibition.
Code of Federal Regulations, 2010 CFR
2010-07-01
... DEFENSE; UNIFORM NATIONAL DISCHARGE STANDARDS FOR VESSELS OF THE ARMED FORCES UNIFORM NATIONAL DISCHARGE... water depth at the facilities. (v) Information showing that handling of the discharge at the facilities...
Mars Sample Handling Protocol Workshop Series: Workshop 4
NASA Technical Reports Server (NTRS)
Race Margaret S. (Editor); DeVincenzi, Donald L. (Editor); Rummel, John D. (Editor); Acevedo, Sara E. (Editor)
2001-01-01
In preparation for missions to Mars that will involve the return of samples to Earth, it will be necessary to prepare for the receiving, handling, testing, distributing, and archiving of martian materials here on Earth. Previous groups and committees have studied selected aspects of sample return activities, but specific detailed protocols for the handling and testing of returned samples must still be developed. To further refine the requirements for sample hazard testing and to develop the criteria for subsequent release of sample materials from quarantine, the NASA Planetary Protection Officer convened a series of workshops in 2000-2001. The overall objective of the Workshop Series was to produce a Draft Protocol by which returned martian sample materials can be assessed for biological hazards and examined for evidence of life (extant or extinct) while safeguarding the purity of the samples from possible terrestrial contamination. This report also provides a record of the proceedings of Workshop 4, the final Workshop of the Series, which was held in Arlington, Virginia, June 5-7, 2001. During Workshop 4, the sub-groups were provided with a draft of the protocol compiled in May 2001 from the work done at prior Workshops in the Series. Then eight sub-groups were formed to discuss the following assigned topics: Review and Assess the Draft Protocol for Physical/Chemical Testing Review and Assess the Draft Protocol for Life Detection Testing Review and Assess the Draft Protocol for Biohazard Testing Environmental and Health/Monitoring and Safety Issues Requirements of the Draft Protocol for Facilities and Equipment Contingency Planning for Different Outcomes of the Draft Protocol Personnel Management Considerations in Implementation of the Draft Protocol Draft Protocol Implementation Process and Update Concepts This report provides the first complete presentation of the Draft Protocol for Mars Sample Handling to meet planetary protection needs. This Draft Protocol, which was compiled from deliberations and recommendations from earlier Workshops in the Series, represents a consensus that emerged from the discussions of all the sub-groups assembled over the course of the five Workshops of the Series. These discussions converged on a conceptual approach to sample handling, as well as on specific analytical requirements. Discussions also identified important issues requiring attention, as well as research and development needed for protocol implementation.
33 Shafts Category of Transuranic Waste Stored Below Ground within Area G
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargis, Kenneth Marshall; Monk, Thomas H
This report compiles information to support the evaluation of alternatives and analysis of regulatory paths forward for the 33 shafts. The historical information includes a form completed by waste generators for each waste package (Reference 6) that included a waste description, estimates of Pu-239 and uranium-235 (U-235) based on an accounting technique, and calculations of mixed fission products (MFP) based on radiation measurements. A 1979 letter and questionnaire (Reference 7) provides information on waste packaging of hot cell waste and the configuration of disposal shafts as storage in the 33 Shafts was initiated. Tables of data by waste package weremore » developed during a review of historical documents that was performed in 2005 (Reference 8). Radiological data was coupled with material-type data to estimate the initial isotopic content of each waste package and an Oak Ridge National Laboratory computer code was used to calculate 2009 decay levels. Other sources of information include a waste disposal logbook for the 33 shafts (Reference 9), reports that summarize remote-handled waste generated at the CMR facility (Reference 10) and placement of waste in the 33 shafts (Reference 11), a report on decommissioning of the LAMPRE reactor (Reference 12), interviews with an employee and manager involved in placing waste in the 33 shafts (References 13 and 14), an interview with a long-time LANL employee involved in waste operations (Reference 15), a 2002 plan for disposition of remote-handled TRU waste (Reference 16), and photographs obtained during field surveys of several shafts in 2007. The WIPP Central Characterization Project (CCP) completed an Acceptable Knowledge (AK) summary report for 16 canisters of remote-handled waste from the CMR Facility that contains information relevant to the 33 Shafts on hot-cell operations and timeline (Reference 17).« less
Adaptive management: a paradigm for remediation of public facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janecky, David R; Whicker, Jeffrey J; Doerr, Ted B
2009-01-01
Public facility restoration planning traditionally focused on response to natural disasters and hazardous materials accidental releases. These plans now need to integrate response to terrorist actions. Therefore, plans must address a wide range of potential vulnerabilities. Similar types of broad remediation planning are needed for restoration of waste and hazardous material handling areas and facilities. There are strong similarities in damage results and remediation activities between unintentional and terrorist actions; however, the uncertainties associated with terrorist actions result in a re-evaluation of approaches to planning. Restoration of public facilities following a release of a hazardous material is inherently far moremore » complex than in confined industrial settings and has many unique technical, economic, social, and political challenges. Therefore, they arguably involve a superset of drivers, concerns and public agencies compared to other restoration efforts. This superset of conditions increases complexity of interactions, reduces our knowledge of the initial conditions, and even condenses the timeline for restoration response. Therefore, evaluations of alternative restoration management approaches developed for responding to terrorist actions provide useful knowledge for large, complex waste management projects. Whereas present planning documents have substantial linearity in their organization, the 'adaptive management' paradigm provides a constructive parallel operations paradigm for restoration of facilities that anticipates and plans for uncertainty, multiple/simUltaneous public agency actions, and stakeholder participation. Adaptive management grew out of the need to manage and restore natural resources in highly complex and changing environments with limited knowledge about causal relationships and responses to restoration actions. Similarities between natural resource management and restoration of a facility and surrounding area(s) after a disruptive event suggest numerous advantages over preset linearly-structured plans by incorporating the flexibility and overlap of processes inherent in effective facility restoration. We discuss three restoration case studies (e.g., the Hart Senate Office Building anthrax restoration, Rocky Flats actinide remediation, and hurricane destruction restoration), that implement aspects of adaptive management but not a formal approach. We propose that more formal adoption of adaptive management principles could be a basis for more flexible standards to improve site-specific remediation plans under conditions of high uncertainty.« less
14 CFR 420.65 - Handling of solid propellants.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Handling of solid propellants. 420.65 Section 420.65 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... from the closest debris or explosive hazard source in an explosive hazard facility. ...
14 CFR 420.65 - Handling of solid propellants.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Handling of solid propellants. 420.65 Section 420.65 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... from the closest debris or explosive hazard source in an explosive hazard facility. ...
14 CFR 420.65 - Handling of solid propellants.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Handling of solid propellants. 420.65 Section 420.65 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... from the closest debris or explosive hazard source in an explosive hazard facility. ...
15. VIEW OF THE SPECIAL SHROUDING AND AIR HANDLING SYSTEM ...
15. VIEW OF THE SPECIAL SHROUDING AND AIR HANDLING SYSTEM USED IN BERYLLIUM PRODUCTION. (3/30/89) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO
Material handling systems for the fluidized-bed combustion boiler at Rivesville, West Virginia
NASA Technical Reports Server (NTRS)
Branam, J. G.; Rosborough, W. W.
1977-01-01
The 300,000 lbs/hr steam capacity multicell fluidized-bed boiler (MFB) utilizes complex material handling systems. The material handling systems can be divided into the following areas: (1) coal preparation; transfer and delivery, (2) limestone handling system, (3) fly-ash removal and (4) bed material handling system. Each of the above systems are described in detail and some of the potential problem areas are discussed. A major potential problem that exists is the coal drying system. The coal dryer is designed to use 600 F preheated combustion air as drying medium and the dryer effluent is designed to enter a hot electrostatic precipitator (730 F) after passage through a cyclone. Other problem areas to be discussed include the steam generator coal and limestone feed system which may have operating difficulties with wet coal and/or coal fines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-06-01
The pilot plant is developed for ERDA low-level contact-handled transuranic waste, ERDA remote-handled intermediate-level transuranic waste, and for high-level waste experiments. All wastes placed in the WIPP arrive at the site processed and packaged; no waste processing is done at the WIPP. All wastes placed into the WIPP are retrievable. The proposed site for WIPP lies 26 miles east of Carlsbad, New Mexico. This document includes the executive summary and a detailed description of the facilities and systems. (DLC)
Full length view of the Spacelab module
2016-08-12
STS083-312-031 (4-8 April 1997) --- Payload specialist Gregory T. Linteris (left) is seen at the Mid Deck Glove Box (MGBX), while astronaut Donald A. Thomas, mission specialist, works at the Expedite the Processing of Experiments to Space Station (EXPRESS) rack. MGBX is a facility that allows scientists the capability of doing tests on hardware and materials that are not approved to be handled in the open Spacelab. It is equipped with photographic, video and data recording capability, allowing a complete record of experiment operations. Experiments performed on STS-83 were Bubble Drop Nonlinear Dynamics and Fiber Supported Droplet Combustion. EXPRESS is designed to provide accommodations for Sub-rack payloads on Space Station. For STS-83, it held two payloads. The Physics of Hard Colloidal Spheres (PHaSE) and ASTRO-Plant Generic Bioprocessing Apparatus (ASTRO-PGBA), a facility with light and atmospheric controls which supports plant growth for commercial research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Carlo, Francesco; Gürsoy, Doğa; Ching, Daniel J.
There is a widening gap between the fast advancement of computational methods for tomographic reconstruction and their successful implementation in production software at various synchrotron facilities. This is due in part to the lack of readily available instrument datasets and phantoms representative of real materials for validation and comparison of new numerical methods. Recent advancements in detector technology made sub-second and multi-energy tomographic data collection possible [1], but also increased the demand to develop new reconstruction methods able to handle in-situ [2] and dynamic systems [3] that can be quickly incorporated in beamline production software [4]. The X-ray Tomography Datamore » Bank, tomoBank, provides a repository of experimental and simulated datasets with the aim to foster collaboration among computational scientists, beamline scientists, and experimentalists and to accelerate the development and implementation of tomographic reconstruction methods for synchrotron facility production software by providing easy access to challenging dataset and their descriptors.« less
Semiparametric Modeling of Daily Ammonia Levels in Naturally Ventilated Caged-Egg Facilities
Gutiérrez-Zapata, Diana María; Galeano-Vasco, Luis Fernando; Cerón-Muñoz, Mario Fernando
2016-01-01
Ammonia concentration (AMC) in poultry facilities varies depending on different environmental conditions and management; however, this is a relatively unexplored subject in Colombia (South America). The objective of this study was to model daily AMC variations in a naturally ventilated caged-egg facility using generalized additive models. Four sensor nodes were used to record AMC, temperature, relative humidity and wind speed on a daily basis, with 10 minute intervals for 12 weeks. The following variables were included in the model: Heat index, Wind, Hour, Location, Height of the sensor to the ground level, and Period of manure accumulation. All effects included in the model were highly significant (p<0.001). The AMC was higher during the night and early morning when the wind was not blowing (0.0 m/s) and the heat index was extreme. The average and maximum AMC were 5.94±3.83 and 31.70 ppm, respectively. Temperatures above 25°C and humidity greater than 80% increased AMC levels. In naturally ventilated caged-egg facilities the daily variations observed in AMC primarily depend on cyclic variations of the environmental conditions and are also affected by litter handling (i.e., removal of the bedding material). PMID:26812150
NASA Technical Reports Server (NTRS)
Kriegler, F. J.
1973-01-01
The improvement and extension of the capabilities of the Environmental Research Institute of Michigan processing facility in handling multispectral data are discussed. Improvements consisted of implementing hardware modifications which permitted more rapid access to the recorded data through improved numbering and indexing of such data. In addition, techniques are discussed for handling data from sources other than the ERIM M-5 and M-7 scanner systems.
UK to train 100 PhD students in data science
NASA Astrophysics Data System (ADS)
Allen, Michael
2017-12-01
A new PhD programme to develop techniques to handle the vast amounts of data being generated by experiments and facilities has been launched by the UK's Science and Technology Facilities Council (STFC).
Water quality facility investigation : summary report.
DOT National Transportation Integrated Search
2006-12-01
The genesis for this research project was a desire to comply with the National Pollutant Discharge Elimination : System (NPDES) as cost effectively as possible. The construction of stormwater handling and treatment facilities is : costly because of t...
9 CFR 71.20 - Approval of livestock facilities.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., 4700 River Road Unit 36, Riverdale, MD 20737-1231. AGREEMENT—APPROVED LIVESTOCK FACILITY FOR HANDLING...) Quarantined pens shall be clearly labeled with paint or placarded with the word “Quarantined” or the name of...
77 FR 42700 - Procurement List; Additions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-20
...-NIB-0011--Splitting Maul--6 lb, Sledge Eye, 36'' Fiberglass Handle NSN: 5120-00-NIB-0012--Splitting Maul--8 lb, Sledge Eye, 36'' Fiberglass Handle NSN:: Keystone Vocational Services, Inc., Sharon, PA... Service Type/Location: Laundry and Dry Cleaning Service, Buckley AFB Lodging & Medical Facilities, Buckley...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Handle. 925.10 Section 925.10 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and..., deliver (including delivery to a storage facility), transport, or in any way to place grapes in the...
Critical parts are stored and shipped in environmentally controlled reusable container
NASA Technical Reports Server (NTRS)
Kummerfeld, K. R.
1966-01-01
Environmentally controlled, hermetically sealed, reusable metal cabinet with storage drawers is used to ship and store sensitive electronic, pneumatic, or hydraulic parts or medical supplies under extreme weather or handling conditions. This container is compatible with on-site and transportation handling facilities.
14 CFR 158.53 - Collection compensation.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) AIRPORTS PASSENGER FACILITY CHARGES (PFC'S) Collection, Handling, and Remittance of PFC's § 158.53 Collection compensation. (a) As compensation for collecting, handling, and remitting the PFC revenue, the collecting air carrier is entitled to: (1) $0.11 of each PFC collected. (2) Any interest or other investment...
14 CFR 158.53 - Collection compensation.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) AIRPORTS PASSENGER FACILITY CHARGES (PFC'S) Collection, Handling, and Remittance of PFC's § 158.53 Collection compensation. (a) As compensation for collecting, handling, and remitting the PFC revenue, the collecting air carrier is entitled to: (1) $0.11 of each PFC collected. (2) Any interest or other investment...
14 CFR 158.53 - Collection compensation.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) AIRPORTS PASSENGER FACILITY CHARGES (PFC'S) Collection, Handling, and Remittance of PFC's § 158.53 Collection compensation. (a) As compensation for collecting, handling, and remitting the PFC revenue, the collecting air carrier is entitled to: (1) $0.11 of each PFC collected. (2) Any interest or other investment...
14 CFR 158.53 - Collection compensation.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) AIRPORTS PASSENGER FACILITY CHARGES (PFC'S) Collection, Handling, and Remittance of PFC's § 158.53 Collection compensation. (a) As compensation for collecting, handling, and remitting the PFC revenue, the collecting air carrier is entitled to: (1) $0.11 of each PFC collected. (2) Any interest or other investment...
Industrial research for transmutation scenarios
NASA Astrophysics Data System (ADS)
Camarcat, Noel; Garzenne, Claude; Le Mer, Joël; Leroyer, Hadrien; Desroches, Estelle; Delbecq, Jean-Michel
2011-04-01
This article presents the results of research scenarios for americium transmutation in a 22nd century French nuclear fleet, using sodium fast breeder reactors. We benchmark the americium transmutation benefits and drawbacks with a reference case consisting of a hypothetical 60 GWe fleet of pure plutonium breeders. The fluxes in the various parts of the cycle (reactors, fabrication plants, reprocessing plants and underground disposals) are calculated using EDF's suite of codes, comparable in capabilities to those of other research facilities. We study underground thermal heat load reduction due to americium partitioning and repository area minimization. We endeavor to estimate the increased technical complexity of surface facilities to handle the americium fluxes in special fuel fabrication plants, americium fast burners, special reprocessing shops, handling equipments and transport casks between those facilities.
Generation of bioaerosols during manual mail unpacking and sorting.
Brandl, H; Bachofen, R; Bischoff, M
2005-01-01
The dynamics of bioaerosol generation in specific occupational environments where mail is manually unpacked and sorted was investigated. Total number of airborne particles was determined in four different size classes (0.3-0.5, 0.5-1, 1-5 and >5 microm) by laser particle counting. Time dependent formation of bioaerosols was monitored by culturing methods and by specific staining followed by flow cytometry. Besides handling of regular mail, specially prepared letters ('spiked letters') were added to the mailbags to deliberately release powdered materials from letters and to simulate high impact loads. These letters contained various dry powdered biological and nonbiological materials such as milk powder, mushrooms, herbs and cat litter. Regarding the four size classes, particulate aerosol composition before mail handling was determined as 83.2 +/- 1.0, 15.2 +/- 0.7, 1.7 +/- 0.4 and 0.04 +/- 0.02%, respectively, whereas the composition changed during sorting to 66.8 +/- 7.9, 22.3 +/- 3.6, 10.4 +/- 4.0 and 0.57 +/- 0.27%, respectively. Mail processing resulted in an increase in culturable airborne bacteria and fungi. Maximum concentrations of bacteria reached 450 CFU m(-3), whereas 270 CFU of fungi were detected. Indoor particle concentrations steadily increased during mail handling mostly associated with particles of diameters >1 microm. However, it was not possible to distinguish spiked letters from nonspiked by simple particle counting and CFU determinations. The dynamics of bioaerosol generation have to be addressed when monitoring specific occupational environments (such as mail sorting facilities) regarding the occurrence of biological particles.
NASA Astrophysics Data System (ADS)
Artíñano, B.; Gómez-Moreno, F. J.; Pujadas, M.; Moreno, N.; Alastuey, A.; Querol, X.; Martín, F.; Guerra, A.; Luaces, J. A.; Basora, J.
Bulk material handling can be a significant source of particles in harbor areas. The atmospheric impact of a number of loading/unloading activities of diverse raw materials has been assessed from continuous measurements of ambient particle concentrations recorded close to the emission sources. Two experimental campaigns have been carried out in the Tarragona port to document the impact of specific handling operations and bulk materials. Dusty bulk materials such as silica-manganese powder, tapioca, coal, clinker and lucerne were dealt with during the experiments. The highest impacts on ambient particle concentrations were recorded during handling of clinker. For this material and silica-manganese powder, high concentrations were recorded in the fine grain size (<2.5 μm). The lowest impacts on particulate matter concentrations were recorded during handling of tapioca and lucerne, mainly in the coarse grain size (2-5-10 μm). The effectiveness of several emission abatement measures, such as ground watering to diminish coal particle resuspension, was demonstrated to reduce ambient concentrations by up to two orders of magnitude. The importance of other good practices in specific handling operations, such as controlling the height of the shovel discharge, was also evidenced by these experiments. The results obtained can be further utilized as a useful experimental database for emission factor estimations.
NASA Astrophysics Data System (ADS)
Seha, S.; Zamberi, J.; Fairu, A. J.
2017-10-01
Material handling system (MHS) is an important part for the productivity plant and has recognized as an integral part of today’s manufacturing system. Currently, MHS has growth tremendously with its technology and equipment type. Based on the case study observation, the issue involving material handling system contribute to the reduction of production efficiency. This paper aims to propose a new design of integration between material handling and manufacturing layout by investigating the influences of layout and material handling system. A method approach tool using Delmia Quest software is introduced and the simulation result is used to assess the influences of the integration between material handling system and manufacturing layout in the performance of automotive assembly line. The result show, the production of assembly line output increases more than 31% from the current system. The source throughput rate average value went up to 252 units per working hour in model 3 and show the effectiveness of the pick-to-light system as efficient storage equipment. Thus, overall result shows, the application of AGV and the pick-to-light system gave a large significant effect in the automotive assembly line. Moreover, the change of layout also shows a large significant improvement to the performance.
Dairy cow handling facilities and the perception of Beef Quality Assurance on Colorado dairies.
Adams, A E; Olea-Popelka, F J; Grandin, T; Woerner, D R; Roman-Muniz, I N
2014-02-01
A survey was conducted on Colorado dairies to assess attitudes and practices regarding Dairy Beef Quality Assurance (DBQA). The objectives were to (1) assess the need for a new handling facility that would allow all injections to be administered via DBQA standards; (2) establish if Colorado dairy producers are concerned with DBQA; and (3) assess differences in responses between dairy owners and herdsmen. Of the 95 dairies contacted, 20 (21%) agreed to participate, with a median herd size of 1,178. When asked to rank the following 7 traits--efficiency, animal safety, human safety, ease of animal handling, ease of operation, inject per Beef Quality Assurance (BQA) procedures, and cost--in order of priority when designing a new handling facility, human and animal safety were ranked highest in priority (first or second) by the majority of participants, with ease of animal handling and efficiency ranked next. Interestingly, the administration of injections per BQA standards was ranked sixth or seventh by most participants. Respondents estimated the average annual income from the sale of cull cows to be 4.6% of all dairy income, with 50% receiving at least one carcass discount or condemnation in the past 12 mo. Although almost all of the participating dairy farmers stated that the preferred injection site for medications was the neck region, a significant number admitted to using alternate injection sites. In contrast, no difference was found between responses regarding the preferred and actual location for intravenous injections. Although most participating producers are aware of BQA injection guidelines, they perceive efficiency as more important, which could result in injections being administered in locations not promoted by BQA. Dairy owners and herdsmen disagreed in whether or not workers had been injured in the animal handling area in the last 12 mo. Handling facilities that allow for an efficient and safe way to administer drugs according to BQA guidelines and educational opportunities that highlight the effect of improved DBQA on profitability could prove useful. Dairy producers play a key role in ensuring that dairy beef is safe and high quality, and just as they are committed to producing safe and nutritious milk for their customers, they should be committed to producing the best quality beef. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
David A. King
2011-06-27
Summary of recent ORAU decommissioning activities at the Oak Ridge National Laboratory (ORNL) and the East Tennessee Technology Park (ETTP). Project objective was to generate approved Waste Lot Profiles for legacy facilities scheduled for demolition and shipment to the Environmental Management Waste Management Facility (EMWMF) or appropriate alternate facility. The form and content of process knowledge (PK) reports were developed with input from the EMWMF Waste Acceptance Criteria (WAC) Attainment Team and regulators. PK may be defined as the knowledge of the design and the history of operations that occurs during the life cycle of a facility (paraphrased from SRNLmore » guidance) - similar to the MARSSIM historical site assessment. Some types of PK data used to decommission ORNL and ETTP facilities include: (1) Design drawings; (2) Historical documents [e.g., History of the Oak Ridge National Laboratory by Thomas (1963) and A Brief History of the Chemical Technical Division (ORNL/M-2733)]; (3) Historical photographs; (4) Radiological survey reports; (5) Facility-specific databases - (a) Spill history, (b) Waste Information Tracking System (WITS), and (c) Hazardous Materials Management Information System (HMMIS); (6) Facility walkdown summary reports; and (7) Living memory data. Facility walkdowns are critical for worker safety planning and to assure on-the-ground-conditions match historical descriptions. For Oak Ridge operations, investigators also document the nature and number of items requiring special handling or disposition planning, such as the following: (1) Items containing polychlorinated biphenyls, asbestos, lead, or refrigerants; (2) Items with physical WAC restriction (e.g., large items, pipes, and concrete); and (3) Too 'hot' for EMWMF. Special emphasis was made to interview facility managers, scientists, technicians, or anyone with direct knowledge of process-related activities. Interviews often led to more contact names and reports but also offered anecdotal accounts of releases, process-related operations, maintenance activities, and other relevant information not addressed in the written record. 'Fun' part of PK data gathering. Often got not-so-useful information such as, 'The operations manager was a jerk and we all hated him.' PK data are used to indicate the presence or absence of contaminants. Multiple lines of investigation are necessary for characterization planning and to help determine which disposal facility is best suited for targeted wastes. The model used by ORAU assisted remediation contractors and EMWMF managers by identifying anomalous waste and items requiring special handling.« less
Results Of Automating A Photolithography Cell In A Clean Tunnel
NASA Astrophysics Data System (ADS)
June, David H.
1987-01-01
A prototype automated photobay was installed in an existing fab area utilizing flexible material handling techniques within a clean tunnel. The project objective was to prove design concepts of automated cassette-to-cassette handling within a clean tunnel that isolated operators from the wafers being processed. Material handling was by monorail track transport system to feed cassettes to pick and place robots. The robots loaded and unloaded cassettes of wafers to each of the various pieces of process equipment. The material handling algorithms, recipe downloading and statistical process control functions were all performed by custom software on the photobay cell controller.
77 FR 76815 - Handling of Animals; Contingency Plans
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-31
... contingency plan system be implemented to accommodate small businesses. As a practical matter, one would... No. APHIS-2006-0159] RIN 0579-AC69 Handling of Animals; Contingency Plans AGENCY: Animal and Plant... regulations to add requirements for contingency planning and training of personnel by research facilities and...
Simon, G E; Hoar, B R; Tucker, C B
2016-08-01
Epidemiological studies can be used to identify risk factors for livestock welfare concerns but have not been conducted in the cow-calf sector for this purpose. The objectives of this study were to investigate the relationships of 1) herd-level management, facilities, and producer perspectives with cattle health and behavior and stockperson handling and 2) stockperson handling on cattle behavior at the individual cow level. Cow ( = 3,065) health and behavior and stockperson handling during a routine procedure (e.g., pregnancy checks) were observed on 30 California ranches. Management and producer perspectives were evaluated using an interview, and handling facility features were recorded at the chute. After predictors were screened for univariable associations, multivariable models were built for cattle health (i.e., thin body condition, lameness, abrasions, hairless patches, swelling, blind eyes, and dirtiness) and behavior (i.e., balking, vocalizing, stumbling and falling in the chute and while exiting the restraint, and running out of the restraint) and stockperson handling (i.e., electric prod use, moving aid use, tail twisting, and mis-catching cattle). When producers empathized more toward an animal's pain experience, there was a lower risk of swelling (odds ratio [OR] = 0.7) but a higher risk of lameness (OR = 1.3), which may indicate a lack of awareness of the latter. Training stockpersons using the Beef Quality Assurance program had a protective effect on cow cleanliness and mis-catching in the restraint (OR = 0.2 and OR = 0.5, respectively). Hydraulic chutes increased the risk of vocalizations (OR = 2.7), possibly because these systems can apply greater pressure to the sides of the animal than manual restraints. When a moving aid was used to move an individual cow, it increased the risk of her balking, but when hands, in particular, were used, the risk of balking decreased across the herd (OR = 34.1 and OR = 0.3, respectively). Likewise, individual cows were at a greater risk of balking, vocalizing, stumbling and falling in the chute, and stumbling and running at exit when they were touched with an electric prod (OR = 11.0, OR = 3.3, OR = 1.9, OR = 2.3, OR = 1.8, and OR = 1.7, respectively). Although the implications of using moving aids are unclear, reducing the use of electric prods could improve cattle handling. In conclusion, cattle handling was influenced by a number of facility and stockperson factors: personnel training, facility design, and electric prod use are key areas for future improvements.
RETROFITTING CONTROL FACILITIES FOR WET WEATHER FLOW TREATMENT
Available technologies were evaluated to demonstrate the technical feasibility and cost-effectiveness of retrofitting existing facilities to handle wet-weather flow. Cost/benefit relationships were also compared to construction of new conventional control and treatment facilitie...
30 CFR 254.27 - What information must I include in the “Dispersant use plan” appendix?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL-SPILL RESPONSE REQUIREMENTS FOR FACILITIES LOCATED SEAWARD OF THE COAST LINE Oil-Spill Response Plans for Outer Continental Shelf Facilities... the oils handled, stored, or transported at the facility; (b) A summary of toxicity data for these...
ERIC Educational Resources Information Center
Bolin, William Everet; Orsak, Charles G., Jr.
Designed for student use in "Materials, Materials Handling, and Fabrication Processes," one of 11 courses in a 2-year associate degree program in solar technology, this manual provides readings, exercises, worksheets, bibliographies, and illustrations for 13 course modules. The manual, which corresponds to an instructor guide for the…
[In-hospital management of victims of chemical weapons of mass destruction].
Barelli, Alessandro; Gargano, Flavio; Proietti, Rodolfo
2005-01-01
Emergency situations caused by chemical weapons of mass destruction add a new dimension of risk to those handling and treating casualties. The fundamental difference between a hazardous materials incident and conventional emergencies is the potential for risk from contamination to health care professionals, patients, equipment and facilities of the Emergency Department. Accurate and specific guidance is needed to describe the procedures to be followed by emergency medical personnel to safely care for a patient, as well as to protect equipment and people. This review is designed to familiarize readers with the concepts, terminology and key operational considerations that affect the in-hospital management of incidents by chemical weapons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The possible need to develop a solid waste management/resource recovery facility in Christian County, Kentucky is assessed. The present solid waste management operations are described and an outline of options available in the area of resource recovery and cost estimates for waste management alternatives are given. The construction of a transfer station to handle wastes hauled from a distance is discussed. Specific incineration waste heat recovery systems discussed briefly are: modular controlled air incinerators, modular refractory incinerators, rotary waterwall combustor-boiler, and waterwall incineration - unprocessed waste units. Environmental impacts are considered. An investigation was conducted on separating the raw refusemore » into its major components and recycling materials of value. (MCW)« less
NASA Technical Reports Server (NTRS)
Howe, G.; Saunders, D.
1983-01-01
Users of the CDC 7600 at Ames are assisted in making the transition to the CRAY-1. Similarities and differences in the basic JCL are summarized, and a dozen or so examples of typical batch jobs for the two systems are shown in parallel. Some changes to look for in FORTRAN programs and in the use of UPDATE are also indicated. No attempt is made to cover magnetic tape handling. The material here should not be considered a substitute for reading the more conventional manuals or the User's Guide for the Advanced Computational Facility, available from the Computer Information Center.
Environmental analysis Waste Isolation Pilot Plant (WIPP) cost reduction proposals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Waste Isolation Pilot Plant (WIPP) is a research and development facility to demonstrate the safe disposal of radioactive wastes resulting from the defense activities and programs of the United States government. The facility is planned to be developed in bedded salt at the Los Medanos site in southeastern New Mexico. The environmental consequences of contruction and operation of the WIPP facility are documented in ''Final Environmental Impact Statement, Waste Isolation Pilot Plant''. The proposed action addressed by this environmental analysis is to simplify and reduce the scope of the WIPP facility as it is currently designed. The proposed changesmore » to the existing WIPP design are: limit the waste storage rate to 500,000 cubic feet per year; eliminate one shaft and revise the underground ventilation system; eliminate the underground conveyor system; combine the Administration Building, the Underground Personnel Building and the Waste Handling Building office area; simplify the central monitoring system; simplify the security control systems; modify the Waste Handling Building; simplify the storage exhaust system; modify the above ground salt handling logistics; simplify the power system; reduce overall site features; simplify the Warehouse/Shops Building and eliminate the Vehicle Maintenance Building; and allow resource recovery in Control Zone IV.« less
NASA Technical Reports Server (NTRS)
Calaway, Michael J.; Allen, Carlton C.; Allton, Judith H.
2014-01-01
Future robotic and human spaceflight missions to the Moon, Mars, asteroids, and comets will require curating astromaterial samples with minimal inorganic and organic contamination to preserve the scientific integrity of each sample. 21st century sample return missions will focus on strict protocols for reducing organic contamination that have not been seen since the Apollo manned lunar landing program. To properly curate these materials, the Astromaterials Acquisition and Curation Office under the Astromaterial Research and Exploration Science Directorate at NASA Johnson Space Center houses and protects all extraterrestrial materials brought back to Earth that are controlled by the United States government. During fiscal year 2012, we conducted a year-long project to compile historical documentation and laboratory tests involving organic investigations at these facilities. In addition, we developed a plan to determine the current state of organic cleanliness in curation laboratories housing astromaterials. This was accomplished by focusing on current procedures and protocols for cleaning, sample handling, and storage. While the intention of this report is to give a comprehensive overview of the current state of organic cleanliness in JSC curation laboratories, it also provides a baseline for determining whether our cleaning procedures and sample handling protocols need to be adapted and/or augmented to meet the new requirements for future human spaceflight and robotic sample return missions.
Park, Jihoon; Kang, Taesun; Jin, Suhyun; Heo, Yong; Kim, Kyungran; Lee, Kyungsuk; Tsai, Perngjy; Yoon, Chungsik
2016-01-01
Livestock workers are involved in a variety of tasks, such as caring for animals, maintaining the breeding facilities, cleaning, and manure handling, and are exposed to health and safety risks. Hydrogen sulfide is considered the most toxic by-product of the manure handling process at livestock facilities. Except for several reports in developed countries, the statistics and cause of asphyxiation incidents in farms have not been collected and reported systematically, although the number of these incidents is expected to increase in developing and underdeveloped countries. In this study, the authors compiled the cases of work-related asphyxiation incidents at livestock manure storage facilities and analyzed the main causes. In this survey, a total of 17 incidents were identified through newspapers or online searches and public reports. Thirty workers died and eight were injured due to work-related tasks and rescue attempts from 1998 to 2013 in Korea. Of the 30 fatalities, 18 occurred during manure handling/maintenance tasks and 12 during rescue attempts. All incidents except for one case occurred during the warm season from the late spring (April) to early autumn (September) when manure is likely to decompose rapidly. It is important to train employees involved in the operation of the facilities (i.e., owners, managers, employees) regarding the appropriate prevention strategies for confined space management, such as hazard identification before entry, periodical facility inspection, restriction of unnecessary access, proper ventilation, and health and safety. Sharing information or case reports on previous incidents could also help prevent similar cases from occurring and reduce the number of fatalities and injuries.
49 CFR 176.182 - Conditions for handling on board ship.
Code of Federal Regulations, 2010 CFR
2010-10-01
... such person clear of any areas where Class 1 (explosive) materials are being handled. (f) Smoking. (1) Smoking is prohibited on the vessel while Class 1 (explosive) materials are being handled or stowed except in places designated by the master of the vessel. (2) Conspicuous notices prohibiting smoking must be...
9 CFR 381.309 - Finished product inspection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... alternative documented procedures for handling process deviations. (1) Incubation of shelf stable canned product—(i) Incubator. The establishment shall provide incubation facilities which include an accurate... the facility. The Program is responsible for the security of the incubator. (ii) Incubation...
9 CFR 381.309 - Finished product inspection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... alternative documented procedures for handling process deviations. (1) Incubation of shelf stable canned product—(i) Incubator. The establishment shall provide incubation facilities which include an accurate... the facility. The Program is responsible for the security of the incubator. (ii) Incubation...
9 CFR 381.309 - Finished product inspection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... alternative documented procedures for handling process deviations. (1) Incubation of shelf stable canned product—(i) Incubator. The establishment shall provide incubation facilities which include an accurate... the facility. The Program is responsible for the security of the incubator. (ii) Incubation...
Two Springfield, Mass. Facilities Agree to Improve Handling and Reporting of Hazardous Chemicals
Two facilities located in Springfield, Mass. have agreed with the U.S. EPA to come into compliance with federal requirements designed to protect the public and first responders from exposure to hazardous chemicals.
21 CFR 58.81 - Standard operating procedures.
Code of Federal Regulations, 2010 CFR
2010-04-01
... LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Testing Facilities Operation § 58.81 Standard operating procedures. (a) A testing facility shall have standard operating procedures in writing setting... following: (1) Animal room preparation. (2) Animal care. (3) Receipt, identification, storage, handling...
21 CFR 58.81 - Standard operating procedures.
Code of Federal Regulations, 2013 CFR
2013-04-01
... LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Testing Facilities Operation § 58.81 Standard operating procedures. (a) A testing facility shall have standard operating procedures in writing setting... following: (1) Animal room preparation. (2) Animal care. (3) Receipt, identification, storage, handling...
21 CFR 58.81 - Standard operating procedures.
Code of Federal Regulations, 2012 CFR
2012-04-01
... LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Testing Facilities Operation § 58.81 Standard operating procedures. (a) A testing facility shall have standard operating procedures in writing setting... following: (1) Animal room preparation. (2) Animal care. (3) Receipt, identification, storage, handling...
21 CFR 58.81 - Standard operating procedures.
Code of Federal Regulations, 2014 CFR
2014-04-01
... LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Testing Facilities Operation § 58.81 Standard operating procedures. (a) A testing facility shall have standard operating procedures in writing setting... following: (1) Animal room preparation. (2) Animal care. (3) Receipt, identification, storage, handling...
Decommissioning of the 247-F Fuel Manufacturing Facility at the Savannah River Site (SRS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, Joseph K.; Chostner, Stephen M.
Building 247-F at SRS was a roughly 110,000 ft{sup 2} two-story facility designed and constructed during the height of the cold war naval buildup to provide additional naval nuclear fuel manufacturing capacity in early 1980's. The manufacturing process employed a wide variety of acids, bases, and other hazardous materials. As the need for naval fuel declined, the facility was shut down and underwent initial deactivation, which was completed in 1990. All process systems were flushed with water and drained using the existing process drain valves. However, since these drains were not always installed at the lowest point in piping andmore » equipment systems, a significant volume of liquid remained after initial deactivation. After initial deactivation, a non-destructive assay of the process area identified approximately 17 ({+-}100%) kg of uranium held up in equipment and piping. The facility was placed in Surveillance and Maintenance mode until 2003, when the decision was made to perform final deactivation, and then decommission the facility. The following lessons were learned as a result of the D and D of building 247-F. Successful D and D of a major radiochemical process building requires significant up-front planning by a team of knowledgeable personnel led by a strong project manager. The level of uncertainty and resultant risk to timely, cost effective project execution was found to be high. Examples of the types of problems encountered which had high potential to adversely impact cost and schedule performance are described below. Low level and sanitary waste acceptance criteria do not allow free liquids in waste containers. These liquids, which are often corrosive, must be safely removed from the equipment before it is loaded to waste containers. Drained liquids must be properly managed, often as hazardous or mixed waste. Tapping and draining of process lines is a dangerous operation, which must be performed carefully. The temptation to become complacent when breaking into lines is great. Incidents of personnel exposure to liquids during draining are likely. Records from the initial 1990 deactivation led early work planners to assume the facility was cold, dark and dry. This turned out to be a poor assumption. Work instructions had to be modified to require that engineers evaluate each of several hundred process lines to identify the low point, where a tap and drain system could be installed to allow positive verification that the line was empty before the line was cut for removal. During the period between facility shut down in 1990 and the start of final deactivation in 2003, roof leaks had developed, allowing rain water to enter building 247-F, which provided an environment for mold growth. Sampling confirmed the presence of Stachybotrys chartarum, a toxic indoor mold that grows on wet cellulosic material, such as drywall paper. D and D workers in areas where this hazard was identified were required to where proper personal protective equipment, which complicated work execution. Discovery of the potential presence of uniquely hazardous chemicals such as shock sensitive compounds and toxic uranium hexafluoride became issues which required investigation and special handling strategies. Team access to subject matter experts, who could quickly provide the required guidance for safe material handling, was critical to keeping the project on schedule. In old legacy facilities, it is possible that the D and D workers will be exposed to undocumented energy sources such as energized electrical conductors and pipes containing hazardous materials that originate outside the boundaries of the facility. Significant effort must be expended on adequate mechanical and electrical isolation. Subdividing the facility into well defined zones for which detailed zone-specific end points could be developed proved to be a highly effective project management strategy. Waste management must be carefully planned. The rate of waste generation as the facility is converted from a structure to waste can frequently exceed the D and D team's resources to characterize, package, store and transport the waste to a disposal facility in a timely manner. This can lead to schedule delays and/or increased project cost.« less
Particle size distribution: A key factor in estimating powder dustiness.
López Lilao, Ana; Sanfélix Forner, Vicenta; Mallol Gasch, Gustavo; Monfort Gimeno, Eliseo
2017-12-01
A wide variety of raw materials, involving more than 20 samples of quartzes, feldspars, nephelines, carbonates, dolomites, sands, zircons, and alumina, were selected and characterised. Dustiness, i.e., a materials' tendency to generate dust on handling, was determined using the continuous drop method. These raw materials were selected to encompass a wide range of particle sizes (1.6-294 µm) and true densities (2650-4680 kg/m 3 ). The dustiness of the raw materials, i.e., their tendency to generate dust on handling, was determined using the continuous drop method. The influence of some key material parameters (particle size distribution, flowability, and specific surface area) on dustiness was assessed. In this regard, dustiness was found to be significantly affected by particle size distribution. Data analysis enabled development of a model for predicting the dustiness of the studied materials, assuming that dustiness depended on the particle fraction susceptible to emission and on the bulk material's susceptibility to release these particles. On the one hand, the developed model allows the dustiness mechanisms to be better understood. In this regard, it may be noted that relative emission increased with mean particle size. However, this did not necessarily imply that dustiness did, because dustiness also depended on the fraction of particles susceptible to be emitted. On the other hand, the developed model enables dustiness to be estimated using just the particle size distribution data. The quality of the fits was quite good and the fact that only particle size distribution data are needed facilitates industrial application, since these data are usually known by raw materials managers, thus making additional tests unnecessary. This model may therefore be deemed a key tool in drawing up efficient preventive and/or corrective measures to reduce dust emissions during bulk powder processing, both inside and outside industrial facilities. It is recommended, however, to use the developed model only if particle size, true density, moisture content, and shape lie within the studied ranges.
NASA Astrophysics Data System (ADS)
Kumar, V. Suresh; Kumar, R.; Sivaraman, N.; Ravisankar, G.; Vasudeva Rao, P. R.
2010-09-01
The design and development of a novel supercritical extraction experimental facility adapted for safe operation in a glove box for the recovery of radioactive elements from waste is described. The apparatus incorporates a high pressure extraction vessel, reciprocating pumps for delivering supercritical fluid and reagent, a back pressure regulator, and a collection chamber. All these components of the system have been specially designed for glove box adaptation and made modular to facilitate their replacement. Confinement of these materials must be ensured in a glove box to protect the operator and prevent contamination to the work area. Since handling of radioactive materials under high pressure (30 MPa) and temperature (up to 333 K) is involved in this process, the apparatus needs elaborate safety features in the design of the equipment, as well as modification of a standard glove box to accommodate the system. As a special safety feature to contain accidental leakage of carbon dioxide from the extraction vessel, a safety vessel has been specially designed and placed inside the glove box. The extraction vessel was enclosed in the safety vessel. The safety vessel was also incorporated with pressure sensing and controlling device.
A unique facility for V/STOL aircraft hover testing. [Langley Impact Dynamics Research Facility
NASA Technical Reports Server (NTRS)
Culpepper, R. G.; Murphy, R. D.; Gillespie, E. A.; Lane, A. G.
1979-01-01
The Langley Impact Dynamics Research Facility (IDRF) was modified to obtain static force and moment data and to allow assessment of aircraft handling qualities during dynamic tethered hover flight. Test probe procedures were also established. Static lift and control measurements obtained are presented along with results of limited dynamic tethered hover flight.
The cost analysis of material handling in Chinese traditional praying paper production plant
NASA Astrophysics Data System (ADS)
Nasution, H.; Budiman, I.; Salim, A.
2018-02-01
Chinese traditional praying paper industry is an industry which produced Chinese traditional religion praying paper. This kind of industry is rarely examined since it was only in Small and Medium Enterprise (SME’s- form). This industry produced various kinds of Chinese traditional paper products. The purpose of this research is to increase the amount of production, reduce waiting time and moving time, and reduce material handling cost. The research was conducted at prime production activities, consists of: calculate the capacity of the material handler, the frequency of movement, cost of material handling, and total cost of material handling. This displacement condition leads to an ineffective and inefficient production process. The alternative was developed using production judgment and aisle standard. Based on the observation results, it is possible to reduce displacement in the production. Using alternative which by-passed displacement from a rolled paper in the temporary warehouse to cutting and printing workstation, it can reduce material handling cost from 2.26 million rupiahs to 2.00 million rupiahs only for each batch of production. This result leads to increasing of production quantity, reducing waiting and moving time about 10% from the current condition.
A Comprehensive Staff Approach to Problem Wandering.
ERIC Educational Resources Information Center
Rader, Joanne
1987-01-01
Describes specific comprehensive program implemented in intermediate care facility/skilled nursing facility that reduced problematic wandering by patients, increased patient freedom and safety, and increased staff skill and comfort in handling wandering behaviors. Describes program components, problem identification, prevention programs,…
Method of preparing and handling chopped plant materials
Bransby, David I.
2002-11-26
The method improves efficiency of harvesting, storage, transport, and feeding of dry plant material to animals, and is a more efficient method for harvesting, handling and transporting dry plant material for industrial purposes, such as for production of bioenergy, and composite panels.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Supervision of Class 1 (explosive) materials during loading, unloading, handling and stowage. 176.108 Section 176.108 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimada, M.; Taylor, C. N.; Pawelko, R. J.
2016-04-01
The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials with tritium [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. The plasma-material-interaction (PMI) determines a boundary condition for diffusing tritium into bulk PFCs, and the tritium PMI is crucial for enhancing fundamental sciences that dictate tritium fuel cycles and safety and are high importance to an FNSF and DEMO. Recentlymore » the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.« less
25 CFR 31.7 - Handling of student funds in Federal school facilities.
Code of Federal Regulations, 2010 CFR
2010-04-01
... procedures and provide for a system of accounting for the student funds commensurate with the age and grade level of the students yet adequate for financial control purposes and shall stipulate the maximum... personal and group funds and for the accounting or bookkeeping records. (c) Employees handling student...
Unitizing goods on pallets and slipsheets
J. F. Laundrie
1986-01-01
Packaging, handling, and shipping methods and facilities have changed drastically since World War II. Today, most products are individually packaged and then combined into unitized loads for more efficient handling, storage, and shipping. The purpose of this manual is to promote the most effective use of wood and wood fiber in current packaging and shipping practices...
Differences among nursing homes in outcomes of a safe resident handling program
Kurotvski, Alicia; Gore, Rebecca; Buchholz, Bryan; Punnett, Laura
2018-01-01
A large nursing home corporation implemented a safe resident handling program (SRHP) in 2004–2007. We evaluated its efficacy over a 2-year period by examining differences among 5 centers in program outcomes and potential predictors of those differences. We observed nursing assistants (NAs), recording activities and body postures at 60-second intervals on personal digital assistants at baseline and at 3-month, 12-month, and 24-month follow-ups. The two outcomes computed were change in equipment use during resident handling and change in a physical workload index that estimated spinal loading due to body postures and handled loads. Potential explanatory factors were extracted from post-observation interviews, investigator surveys of the workforce, from administrative data, and employee satisfaction surveys. The facility with the most positive outcome measures was associated with many positive changes in explanatory factors and the facility with the fewest positive outcome measures experienced negative changes in the same factors. These findings suggest greater SRHP benefits where there was lower NA turnover and agency staffing; less time pressure; and better teamwork, staff communication, and supervisory support. PMID:22833329
Development of a trash handling subsystem for a manned spacecraft
NASA Technical Reports Server (NTRS)
Burnett, M.
1980-01-01
A prototype laboratory system to shred and transport trash material within a spacecraft was designed and demonstrated. In addition to handling the normal trash materials, the system demonstrated the ability to handle or reject (if it is too tough) glass, metal and ceramics without damaging the system. The system is not dependent on liquids for the shredding and transportation and can transport slurried, damp or dry material. The resulting system offers a greater system flexibility with operational reliability.
Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, Robert Ernest; Dion, Heather M.; Dry, Donald E.
LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable formore » nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).« less
NASA Technical Reports Server (NTRS)
1997-01-01
The NASA Safety Standard, which establishes a uniform process for hydrogen system design, materials selection, operation, storage, and transportation, is presented. The guidelines include suggestions for safely storing, handling, and using hydrogen in gaseous (GH2), liquid (LH2), or slush (SLH2) form whether used as a propellant or non-propellant. The handbook contains 9 chapters detailing properties and hazards, facility design, design of components, materials compatibility, detection, and transportation. Chapter 10 serves as a reference and the appendices contained therein include: assessment examples; scaling laws, explosions, blast effects, and fragmentation; codes, standards, and NASA directives; and relief devices along with a list of tables and figures, abbreviations, a glossary and an index for ease of use. The intent of the handbook is to provide enough information that it can be used alone, but at the same time, reference data sources that can provide much more detail if required.
ERIC Educational Resources Information Center
Ballard, Ken
2000-01-01
Discusses planning points when negotiating joint ventures for designing public recreational facilities. The obstacle and impact of money in the negotiations is examined as are handling the definition of operational responsibilities, personnel and maintenance, program and service delivery, and progress of the partnership and facility itself. (GR)
ERIC Educational Resources Information Center
Scheideman, Dale; Dufresne, Ray
2001-01-01
Nevada's Clark County, the fastest growing school district in the nation, uses a life-cycle facilities management approach that monitors the individual components of each building on a database. The district's 10-year building program is addressing facilities infrastructure renewal, deferred maintenance, replacement, and new school construction.…
McDiarmid, Melissa A; Condon, Marian
2005-07-01
The health risks posed to health care workers (HCW) handling antineoplastic and other hazardous drugs (HDs) are well established. However, despite nearly 20 years of professional practice standards, compliance with safe handling procedures is poor. We present documentation of undercompliance with recommended safety procedures for HDs. Then, we examine a similar problem, HCW compliance with blood-borne pathogen universal precautions (UP) and its partial solution tied to the strength of a facility's safety culture. Lessons learned here may be applicable to the HD issue. It is proposed that analyzing a facility's safety culture may enlarge our understanding of the barriers contributing to HD under-compliance and suggest strategies to improve it. The Safety Culture paradigm offers many targets for intervention to enhance and promote worker compliance with safe HD handling practices thus mitigating internal exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
2000-06-30
The DOE proposes to construct, operate, and decontaminate/decommission a TRU Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste. This document analyzes the potential environmental impacts associated with five alternatives--No Action, the Low-Temperature Drying Alternative (Preferred Alternative), themore » Vitrification Alternative, the Cementation Alternative, and the Treatment and Waste Storage at Oak Ridge National Laboratory (ORNL) Alternative.« less
2014-01-01
Background Food borne diseases are major health problems in developed and developing countries including Ethiopia. The problem is more noticeable in developing countries due to prevailing poor food handling and sanitation practices, inadequate food safety laws, weak regulatory systems, lack of financial resources to invest on safer equipments, and lack of education for food handlers. Methods The objective of this study was to assess food handling practice and associated factors among food handlers working in food and drinking establishments of Dangila town, North West Ethiopia. Cross-sectional quantitative study design was conducted among 406 food handlers working in 105 food and drink establishments from July to August 2013 in Dangila town. Data were collected using face to face interview with pretested structured questionnaire and physical observation. Result The mean age of the respondents was 22.7 ± 4.2 years of which 62.8% of the food handlers were females. Two hundred thirteen (52.5%) of food handlers had good food handling practices. Marital status (AOR = 7.52, 95% CI, 1.45-38.97), monthly income (AOR = 0.395, 95% CI, 0.25-0.62), knowledge about food handling (AOR = 1.69, 95% CI, 1.05-2.73), existence of shower facility (AOR = 1.89, 95% CI, 1.12-3.21) and separate dressing room (AOR = 1.97, 95% CI, 1.11-3.49) were found to be significantly associated with good food handling Practices. Conclusion Above half of food handlers had good food handling practices. Marital status, monthly income, knowledge status, existence of shower facility, existence of separate dressing room and presence of insect and rodent were factors associated with food handling Practices. PMID:24908104
NASA Technical Reports Server (NTRS)
Reller, J. O., Jr.
1976-01-01
Data handling, communications, and documentation aspects of the ASSESS mission are described. Most experiments provided their own data handling equipment, although some used the airborne computer for backup, and one experiment required real-time computations. Communications facilities were set up to simulate those to be provided between Spacelab and the ground, including a downlink TV system. Mission documentation was kept to a minimum and proved sufficient. Examples are given of the basic documents of the mission.
Yue, Shiyu; Li, Jing; Wang, Lei; ...
2018-03-05
Here, we report on the synthesis of submicron Li 1+xV 3O 8 fibers through a facile mixed ethanol/water solution-mediated solvothermal route in the absence of surfactants. All the raw materials used are commercially available, relatively inexpensive, and low-toxic, and these can be handled in an ambient atmosphere, rendering this synthetic route as reasonably facile and efficient. To ensure a desirable and acceptable sample crystallinity and purity, we introduced a postannealing treatment at 500°C. The monoclinic phase formation of the fiber sample was probed in detail using a series of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, infrared spectroscopy, X-raymore » photoelectron spectroscopy, high resolution transmission electron microscopy, and selected area electron diffraction measurements. Both morphology and chemical composition could be carefully and systematically tuned in terms of generating a class of novel, pure, and well-defined motifs of Li 1+xV 3O 8. A plausible mechanism for the formation of submicron-diameter fibers has been discussed in addition to the expected phase transformation within our Li-V-O materials. Our comprehensive study should provide for needed fundamental insights into putting forth a viable synthesis strategy for the generation of well-defined morphological variants of layered oxide materials for battery applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Shiyu; Li, Jing; Wang, Lei
Here, we report on the synthesis of submicron Li 1+xV 3O 8 fibers through a facile mixed ethanol/water solution-mediated solvothermal route in the absence of surfactants. All the raw materials used are commercially available, relatively inexpensive, and low-toxic, and these can be handled in an ambient atmosphere, rendering this synthetic route as reasonably facile and efficient. To ensure a desirable and acceptable sample crystallinity and purity, we introduced a postannealing treatment at 500°C. The monoclinic phase formation of the fiber sample was probed in detail using a series of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, infrared spectroscopy, X-raymore » photoelectron spectroscopy, high resolution transmission electron microscopy, and selected area electron diffraction measurements. Both morphology and chemical composition could be carefully and systematically tuned in terms of generating a class of novel, pure, and well-defined motifs of Li 1+xV 3O 8. A plausible mechanism for the formation of submicron-diameter fibers has been discussed in addition to the expected phase transformation within our Li-V-O materials. Our comprehensive study should provide for needed fundamental insights into putting forth a viable synthesis strategy for the generation of well-defined morphological variants of layered oxide materials for battery applications.« less
Investigation of criticality safety control infraction data at a nuclear facility
Cournoyer, Michael E.; Merhege, James F.; Costa, David A.; ...
2014-10-27
Chemical and metallurgical operations involving plutonium and other nuclear materials account for most activities performed at the LANL's Plutonium Facility (PF-4). The presence of large quantities of fissile materials in numerous forms at PF-4 makes it necessary to maintain an active criticality safety program. The LANL Nuclear Criticality Safety (NCS) Program provides guidance to enable efficient operations while ensuring prevention of criticality accidents in the handling, storing, processing and transportation of fissionable material at PF-4. In order to achieve and sustain lower criticality safety control infraction (CSCI) rates, PF-4 operations are continuously improved, through the use of Lean Manufacturing andmore » Six Sigma (LSS) business practices. Employing LSS, statistically significant variations (trends) can be identified in PF-4 CSCI reports. In this study, trends have been identified in the NCS Program using the NCS Database. An output metric has been developed that measures ADPSM Management progress toward meeting its NCS objectives and goals. Using a Pareto Chart, the primary CSCI attributes have been determined in order of those requiring the most management support. Data generated from analysis of CSCI data help identify and reduce number of corresponding attributes. In-field monitoring of CSCI's contribute to an organization's scientific and technological excellence by providing information that can be used to improve criticality safety operation safety. This increases technical knowledge and augments operational safety.« less
29 CFR 1926.953 - Material handling.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the.... During framing operations, employees shall not work under a pole or a structure suspended by a crane, A-frame or similar equipment unless the pole or structure is adequately supported. (g) Attaching the load...
29 CFR 1926.953 - Material handling.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the.... During framing operations, employees shall not work under a pole or a structure suspended by a crane, A-frame or similar equipment unless the pole or structure is adequately supported. (g) Attaching the load...
29 CFR 1926.953 - Material handling.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the.... During framing operations, employees shall not work under a pole or a structure suspended by a crane, A-frame or similar equipment unless the pole or structure is adequately supported. (g) Attaching the load...
Haralur, Satheesh B.; Al-Qahtani, Ali S.; Al-Qarni, Marie M.; Al-Homrany, Rami M.; Aboalkhair, Ayyob E.; Madalakote, Sujatha S.
2015-01-01
Aim: To study the awareness, attitude, practice and facilities among the different categories of dental laboratories in Abha city. Materials and Methods: A total of 80 dental technicians were surveyed in the study. The dental laboratories included in the study were teaching institute (Group I), Government Hospital (Group II), Private Dental Clinic (Group III) and Independent laboratory (Group IV). The pre-tested anonymous questionnaire was used to understand knowledge, attitude, facilities, practice and orientation regarding biomedical waste management. Results: The knowledge of biomedical waste categories, colour coding and segregation was better among Group I (55-65%) and Group II (65-75%). The lowest standard of waste disposal was practiced at Group IV (15-20%) and Group III (25-35%). The availability of disposal facilities was poor at Group IV. The continuous education on biomedical waste management lacked in all the Groups. Conclusion: The significant improvement in disposal facilities was required at Group III and Group IV laboratories. All dental technicians were in need of regular training of biomedical waste management. Clinical Significance: The dental laboratories are an integral part of dental practice. The dental laboratories are actively involved in the generation, handling and disposal of biomedical waste. Hence, it is important to assess the biomedical waste management knowledge, attitude, facilities and practice among different categories of dental laboratories. PMID:26962373
Honey Lake Power Facility under construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-12-01
Geothermal energy and wood waste are primary energy sources for the 30 megawatt, net, Honey Lake Power Facility, a cogeneration power plant. The facility 60% completed in January 1989, will use 1,300 tons per day of fuel obtained from selective forest thinnings and from logging residue combined with mill wastes. The power plant will be the largest industrial facility to use some of Lassen County's geothermal resources. The facility will produce 236 million kilowatt-hours of electricity annually. The plant consists of a wood-fired traveling grate furnace with a utility-type high pressure boiler. Fluids from a geothermal well will pass throughmore » a heat exchange to preheat boiler feedwater. Used geothermal fluid will be disposed of in an injection well. Steam will be converted to electrical power through a 35.5-megawatt turbine generator and transmitted 22 miles to Susanville over company-owned and maintained transmission lines. The plant includes pollution control for particulate removal, ammonia injection for removal of nitrogen oxides, and computer-controlled combustion systems to control carbon monoxide and hydrocarbons. The highly automated wood yard consists of systems to remove metal, handle oversized material, receive up to six truck loads of wood products per hour, and continuously deliver 58 tons per hour of fuel through redundant systems to ensure maximum on-line performance. The plant is scheduled to become operational in mid-1989.« less
Safeguards-by-Design:Guidance for High Temperature Gas Reactors (HTGRs) With Prismatic Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark Schanfein; Casey Durst
2012-11-01
Introduction and Purpose The following is a guidance document from a series prepared for the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), under the Next Generation Safeguards Initiative (NGSI), to assist facility designers and operators in implementing international Safeguards-by-Design (SBD). SBD has two main objectives: (1) to avoid costly and time consuming redesign work or retrofits of new nuclear fuel cycle facilities and (2) to make the implementation of international safeguards more effective and efficient at such facilities. In the long term, the attainment of these goals would save industry and the International Atomic Energy Agency (IAEA)more » time, money, and resources and be mutually beneficial. This particular safeguards guidance document focuses on prismatic fuel high temperature gas reactors (HTGR). The purpose of the IAEA safeguards system is to provide credible assurance to the international community that nuclear material and other specified items are not diverted from peaceful nuclear uses. The safeguards system consists of the IAEA’s statutory authority to establish safeguards; safeguards rights and obligations in safeguards agreements and additional protocols; and technical measures implemented pursuant to those agreements. Of foremost importance is the international safeguards agreement between the country and the IAEA, concluded pursuant to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). According to a 1992 IAEA Board of Governors decision, countries must: notify the IAEA of a decision to construct a new nuclear facility as soon as such decision is taken; provide design information on such facilities as the designs develop; and provide detailed design information based on construction plans at least 180 days prior to the start of construction, and on "as-built" designs at least 180 days before the first receipt of nuclear material. Ultimately, the design information will be captured in an IAEA Design Information Questionnaire (DIQ), prepared by the facility operator, typically with the support of the facility designer. The IAEA will verify design information over the life of the project. This design information is an important IAEA safeguards tool. Since the main interlocutor with the IAEA in each country is the State Regulatory Authority/SSAC (or Regional Regulatory Authority, e.g. EURATOM), the responsibility for conveying this design information to the IAEA falls to the State Regulatory Authority/SSAC. For the nuclear industry to reap the benefits of SBD (i.e. avoid cost overruns and construction schedule slippages), nuclear facility designers and operators should work closely with the State Regulatory Authority and IAEA as soon as a decision is taken to build a new nuclear facility. Ideally, this interaction should begin during the conceptual design phase and continue throughout construction and start-up of a nuclear facility. Such early coordination and planning could influence decisions on the design of the nuclear material processing flow-sheet, material storage and handling arrangements, and facility layout (including safeguards equipment), etc.« less
9 CFR 71.20 - Approval of livestock facilities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... manufacturer for fly control. (17) Sheep and goats: —This facility will handle breeding sheep or goats... sheep that are not also designated high-risk animals or to sheep or goats designated under 9 CFR part 79... maintained by the facility for a period of 2 years, or for a period of 5 years in the case of sheep or goats...
9 CFR 71.20 - Approval of livestock facilities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... manufacturer for fly control. (17) Sheep and goats: —This facility will handle breeding sheep or goats... sheep that are not also designated high-risk animals or to sheep or goats designated under 9 CFR part 79... maintained by the facility for a period of 2 years, or for a period of 5 years in the case of sheep or goats...
Longe, Ezechiel O
2012-06-01
A survey of healthcare waste management practices and their implications for health and the environment was carried out. The study assessed waste management practices in 20 healthcare facilities ranging in capacity from 40 to 600 beds in Ikorodu and metropolitan Lagos, Lagos State, Nigeria. The prevailing healthcare waste management status was analysed. Management issues on quantities and proportion of different constituents of waste, segregation, collection, handling, transportation, treatment and disposal methods were assessed. The waste generation averaged 0.631 kg bed(-1) day(-1) over the survey area. The waste stream from the healthcare facilities consisted of general waste (59.0%), infectious waste (29.7%), sharps and pathological (8.9%), chemical (1.45%) and others (0.95%). Sharps/pathological waste includes disposable syringes. In general, the waste materials were collected in a mixed form, transported and disposed of along with municipal solid waste with attendant risks to health and safety. Most facilities lacked appropriate treatment systems for a variety of reasons that included inadequate funding and little or no priority for healthcare waste management as well as a lack of professionally competent waste managers among healthcare providers. Hazards associated with healthcare waste management and shortcomings in the existing system were identified.
Critical need for MFE: the Alcator DX advanced divertor test facility
NASA Astrophysics Data System (ADS)
Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Wolf, S.; Bonoli, P.; Fiore, C.; Granetz, R.; Greenwald, M.; Hutchinson, I.; Hubbard, A.; Hughes, J.; Lin, Y.; Lipschultz, B.; Parker, R.; Porkolab, M.; Reinke, M.; Rice, J.; Shiraiwa, S.; Terry, J.; Theiler, C.; Wallace, G.; White, A.; Whyte, D.; Wukitch, S.
2013-10-01
Three critical challenges must be met before a steady-state, power-producing fusion reactor can be realized: how to (1) safely handle extreme plasma exhaust power, (2) completely suppress material erosion at divertor targets and (3) do this while maintaining a burning plasma core. Advanced divertors such as ``Super X'' and ``X-point target'' may allow a fully detached, low temperature plasma to be produced in the divertor while maintaining a hot boundary layer around a clean plasma core - a potential game-changer for magnetic fusion. No facility currently exists to test these ideas at the required parallel heat flux densities. Alcator DX will be a national facility, employing the high magnetic field technology of Alcator combined with high-power ICRH and LHCD to test advanced divertor concepts at FNSF/DEMO power exhaust densities and plasma pressures. Its extended vacuum vessel contains divertor cassettes with poloidal field coils for conventional, snowflake, super-X and X-point target geometries. Divertor and core plasma performance will be explored in regimes inaccessible in conventional devices. Reactor relevant ICRF and LH drivers will be developed, utilizing high-field side launch platforms for low PMI. Alcator DX will inform the conceptual development and accelerate the readiness-for-deployment of next-step fusion facilities.
Wafer bonded virtual substrate and method for forming the same
Atwater, Jr., Harry A.; Zahler, James M [Pasadena, CA; Morral, Anna Fontcuberta i [Paris, FR
2007-07-03
A method of forming a virtual substrate comprised of an optoelectronic device substrate and handle substrate comprises the steps of initiating bonding of the device substrate to the handle substrate, improving or increasing the mechanical strength of the device and handle substrates, and thinning the device substrate to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. The handle substrate is typically Si or other inexpensive common substrate material, while the optoelectronic device substrate is formed of more expensive and specialized electro-optic material. Using the methodology of the invention a wide variety of thin film electro-optic materials of high quality can be bonded to inexpensive substrates which serve as the mechanical support for an optoelectronic device layer fabricated in the thin film electro-optic material.
Wafer bonded virtual substrate and method for forming the same
NASA Technical Reports Server (NTRS)
Atwater, Jr., Harry A. (Inventor); Zahler, James M. (Inventor); Morral, Anna Fontcuberta i (Inventor)
2007-01-01
A method of forming a virtual substrate comprised of an optoelectronic device substrate and handle substrate comprises the steps of initiating bonding of the device substrate to the handle substrate, improving or increasing the mechanical strength of the device and handle substrates, and thinning the device substrate to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. The handle substrate is typically Si or other inexpensive common substrate material, while the optoelectronic device substrate is formed of more expensive and specialized electro-optic material. Using the methodology of the invention a wide variety of thin film electro-optic materials of high quality can be bonded to inexpensive substrates which serve as the mechanical support for an optoelectronic device layer fabricated in the thin film electro-optic material.
9 CFR 3.52 - Facilities, outdoor.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Facilities, outdoor. 3.52 Section 3.52 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment and Transportation of Rabbits...
9 CFR 3.50 - Facilities, general.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Facilities, general. 3.50 Section 3.50 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment and Transportation of Rabbits...
Code of Federal Regulations, 2014 CFR
2014-07-01
... natural gas (LNG) means a liquid or semisolid consisting mostly of methane and small quantities of ethane...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS General § 127.005 Definitions. As used in this part: Active means accomplishing the transfer of LHG or LNG...
Code of Federal Regulations, 2013 CFR
2013-07-01
... natural gas (LNG) means a liquid or semisolid consisting mostly of methane and small quantities of ethane...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS General § 127.005 Definitions. As used in this part: Active means accomplishing the transfer of LHG or LNG...
9 CFR 3.102 - Facilities, indoor.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Facilities, indoor. 3.102 Section 3.102 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of...
9 CFR 3.102 - Facilities, indoor.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Facilities, indoor. 3.102 Section 3.102 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of...
9 CFR 3.102 - Facilities, indoor.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Facilities, indoor. 3.102 Section 3.102 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spearing, Dane Robert
These are slides from a facility overview presentation for visiting agencies to Los Alamos National Laboratory (LANL). The TA-55 Plutonium Facility (PF-4) is discussed in detail. PF-4 is a unique resource for US plutonium programs. The basic design is flexible and has adapted to changing national needs. It is a robust facility with strong safety and security implementation. It supports a variety of national programs. It will continue for many years into the future. Sigma is then discussed in detail, which handles everything from hydrogen to uranium. It has been in long term service to the Nation (nearly 60 years).more » It has a flexible authorization basis to handle almost the entire periodic table. It has a wide breadth of prototyping and characterization capabilities. It has integrated program and line management.« less
ASNC upgrade for nuclear material accountancy of ACPF
NASA Astrophysics Data System (ADS)
Seo, Hee; Ahn, Seong-Kyu; Lee, Chaehun; Oh, Jong-Myeong; Yoon, Seonkwang
2018-02-01
A safeguards neutron coincidence counter for nuclear material accountancy of the Advanced spent-fuel Conditioning Process Facility (ACPF), known as the ACP Safeguards Neutron Counter (ASNC), was upgraded to improve its remote-handling and maintenance capabilities. Based on the results of the previous design study, the neutron counter was completely rebuilt, and various detector parameters for neutron coincidence counting (i.e., high-voltage plateau, efficiency profile, dead time, die-away time, gate length, doubles gate fraction, and stability) were experimentally determined. The measurement data showed good agreement with the MCNP simulation results. To the best of the authors' knowledge, the ASNC is the only safeguards neutron coincidence counter in the world that is installed and operated in a hot-cell. The final goals to be achieved were (1) to evaluate the uncertainty level of the ASNC in nuclear material accountancy of the process materials of the oxide-reduction process for spent fuels and (2) to evaluate the applicability of the neutron coincidence counting technique within a strong radiation field (e.g., in a hot-cell environment).
Implementation of focused ion beam (FIB) system in characterization of nuclear fuels and materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Aitkaliyeva; J. W. Madden; B. D. Miller
2014-10-01
Beginning in 2007, a program was established at the Idaho National Laboratory to update key capabilities enabling microstructural and micro-chemical characterization of highly irradiated and/or radiologically contaminated nuclear fuels and materials at scales that previously had not been achieved for these types of materials. Such materials typically cannot be contact handled and pose unique hazards to instrument operators, facilities, and associated personnel. One of the first instruments to be acquired was a Dual Beam focused ion beam (FIB)-scanning electron microscope (SEM) to support preparation of transmission electron microscopy and atom probe tomography samples. Over the ensuing years, techniques have beenmore » developed and operational experience gained that has enabled significant advancement in the ability to characterize a variety of fuel types including metallic, ceramic, and coated particle fuels, obtaining insights into in-reactor degradation phenomena not obtainable by any other means. The following article describes insights gained, challenges encountered, and provides examples of unique results obtained in adapting Dual Beam FIB technology to nuclear fuels characterization.« less
41 CFR 102-42.75 - How are gifts containing hazardous materials handled?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false How are gifts containing...-UTILIZATION, DONATION, AND DISPOSAL OF FOREIGN GIFTS AND DECORATIONS General Provisions Special Disposals § 102-42.75 How are gifts containing hazardous materials handled? Gifts containing hazardous materials...
9 CFR 354.222 - Floors, walls, ceilings, etc.
Code of Federal Regulations, 2014 CFR
2014-01-01
... prepared or handled shall be constructed of or finished with materials impervious to moisture, so they can... prepared or handled shall be smooth and constructed of materials impervious to moisture to a height of 6... finished with moisture-resistant material. (c) Ceilings. Ceilings must be moisture-resistant in rooms where...
9 CFR 354.222 - Floors, walls, ceilings, etc.
Code of Federal Regulations, 2012 CFR
2012-01-01
... prepared or handled shall be constructed of or finished with materials impervious to moisture, so they can... prepared or handled shall be smooth and constructed of materials impervious to moisture to a height of 6... finished with moisture-resistant material. (c) Ceilings. Ceilings must be moisture-resistant in rooms where...
9 CFR 354.222 - Floors, walls, ceilings, etc.
Code of Federal Regulations, 2013 CFR
2013-01-01
... prepared or handled shall be constructed of or finished with materials impervious to moisture, so they can... prepared or handled shall be smooth and constructed of materials impervious to moisture to a height of 6... finished with moisture-resistant material. (c) Ceilings. Ceilings must be moisture-resistant in rooms where...
9 CFR 354.222 - Floors, walls, ceilings, etc.
Code of Federal Regulations, 2011 CFR
2011-01-01
... prepared or handled shall be constructed of or finished with materials impervious to moisture, so they can... prepared or handled shall be smooth and constructed of materials impervious to moisture to a height of 6... finished with moisture-resistant material. (c) Ceilings. Ceilings must be moisture-resistant in rooms where...
29 CFR 1926.953 - Material handling.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the... stored in temporary containers other than those required in § 1926.152, such as pillow tanks. (f) Framing. During framing operations, employees shall not work under a pole or a structure suspended by a crane, A...
29 CFR 1926.953 - Material handling.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the... stored in temporary containers other than those required in § 1926.152, such as pillow tanks. (f) Framing. During framing operations, employees shall not work under a pole or a structure suspended by a crane, A...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, D. H.; Reigel, M. M.
A full-scale formed core sampler was designed and functionally tested for use in the Saltstone Disposal Facility (SDF). Savannah River National Laboratory (SRNL) was requested to compare properties of the formed core samples and core drilled samples taken from adjacent areas in the full-scale sampler. While several physical properties were evaluated, the primary property of interest was hydraulic conductivity. Differences in hydraulic conductivity between the samples from the formed core sampler and those representing the bulk material were noted with respect to the initial handling and storage of the samples. Due to testing conditions, the site port samples were exposedmore » to uncontrolled temperature and humidity conditions prior to testing whereas the formed core samples were kept in sealed containers with minimal exposure to an uncontrolled environment prior to testing. Based on the results of the testing, no significant differences in porosity or density were found between the formed core samples and those representing the bulk material in the test stand.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, T.
2016-05-20
ZionSolutions is in the process of decommissioning the Zion Nuclear Power Station (ZNPS). After decommissioning is completed, the site will contain two reactor Containment Buildings, the Fuel Handling Building and Transfer Canals, Auxiliary Building, Turbine Building, Crib House/Forebay, and a Waste Water Treatment Facility that have been demolished to a depth of 3 feet below grade. Additional below ground structures remaining will include the Main Steam Tunnels and large diameter intake and discharge pipes. These additional structures are not included in the modeling described in this report, but the inventory remaining (expected to be very low) will be included withmore » one of the structures that are modeled as designated in the Zion Station Restoration Project (ZSRP) License Termination Plan (LTP). The remaining underground structures will be backfilled with clean material. The final selection of fill material has not been made.« less
Proposed space shuttle cargo handling criteria at the operational site (preliminary)
NASA Technical Reports Server (NTRS)
Beck, P. E.
1972-01-01
The criteria for cargo handling at the operational site of space shuttles are presented, based on assumed program requirements. The concepts for the following functions are described: maintenance and checkout facility, transfer to launch pad, and launch pad. The requirements for the ground equipment are given along with the general sequences for cargo loading.
ERIC Educational Resources Information Center
Leffert, Kenneth L.; And Others
This instructor guide and the corresponding student reference contain 10 lessons to enhance an Agricultural Science I course for grade 9. The lessons cover the following topics: introduction, psychology and handling, conformation and selection, genetics and reproduction, herd health, hoof care, nutrition, equipment and facilities, handling horses,…
A Statewide Profile of Adult Basic Education.
ERIC Educational Resources Information Center
Essex, Martin W.; And Others
A survey of 72 adult basic education (ABE) programs in Ohio was conducted during the 1968-69 school year. Sixty-nine directors handled 447 ABE classes; however, about 40% were handled by three of them. Public school classrooms were the most frequently used facilities (68%). Night classes accounted for 85%. Most of the directors' time was devoted…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-18
...OSHA is correcting its sling standard for construction titled ``Rigging Equipment for Material Handling'' by removing the rated capacity tables and making minor, nonsubstantive revisions to the regulatory text.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Mark A.
The development of our Integrated Actinide Sample Preparation Laboratory (IASPL) commenced in 1998 driven by the need to perform transmission electron microscopy studies on naturally aged plutonium and its alloys looking for the microstructural effects of the radiological decay process (1). Remodeling and construction of a laboratory within the Chemistry and Materials Science Directorate facilities at LLNL was required to turn a standard radiological laboratory into a Radiological Materials Area (RMA) and Radiological Buffer Area (RBA) containing type I, II and III workplaces. Two inert atmosphere dry-train glove boxes with antechambers and entry/exit fumehoods (Figure 1), having a baseline atmospheremore » of 1 ppm oxygen and 1 ppm water vapor, a utility fumehood and a portable, and a third double-walled enclosure have been installed and commissioned. These capabilities, along with highly trained technical staff, facilitate the safe operation of sample preparation processes and instrumentation, and sample handling while minimizing oxidation or corrosion of the plutonium. In addition, we are currently developing the capability to safely transfer small metallographically prepared samples to a mini-SEM for microstructural imaging and chemical analysis. The gloveboxes continue to be the most crucial element of the laboratory allowing nearly oxide-free sample preparation for a wide variety of LLNL-based characterization experiments, which includes transmission electron microscopy, electron energy loss spectroscopy, optical microscopy, electrical resistivity, ion implantation, X-ray diffraction and absorption, magnetometry, metrological surface measurements, high-pressure diamond anvil cell equation-of-state, phonon dispersion measurements, X-ray absorption and emission spectroscopy, and differential scanning calorimetry. The sample preparation and materials processing capabilities in the IASPL have also facilitated experimentation at world-class facilities such as the Advanced Photon Source at Argonne National Laboratory, the European Synchrotron Radiation Facility in Grenoble, France, the Stanford Synchrotron Radiation Facility, the National Synchrotron Light Source at Brookhaven National Laboratory, the Advanced Light Source at Lawrence Berkeley National Laboratory, and the Triumph Accelerator in Canada.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulz, C.; Givens, C.; Bhatt, R.
2003-02-24
Idaho National Engineering and Environmental Laboratory (INEEL) is conducting an effort to characterize approximately 620 drums of remote-handled (RH-) transuranic (TRU) waste currently in its inventory that were generated at the Argonne National Laboratory-East (ANL-E) Alpha Gamma Hot Cell Facility (AGHCF) between 1971 and 1995. The waste was generated at the AGHCF during the destructive examination of irradiated and unirradiated fuel pins, targets, and other materials from reactor programs at ANL-West (ANL-W) and other Department of Energy (DOE) reactors. In support of this effort, Shaw Environmental and Infrastructure (formerly IT Corporation) developed an acceptable knowledge (AK) collection and management programmore » based on existing contact-handled (CH)-TRU waste program requirements and proposed RH-TRU waste program requirements in effect in July 2001. Consistent with Attachments B-B6 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) and th e proposed Class 3 permit modification (Attachment R [RH-WAP] of this permit), the draft AK Summary Report prepared under the AK procedure describes the waste generating process and includes determinations in the following areas based on AK: physical form (currently identified at the Waste Matrix Code level); waste stream delineation; applicability of hazardous waste numbers for hazardous waste constituents; and prohibited items. In addition, the procedure requires and the draft summary report contains information supporting determinations in the areas of defense relationship and radiological characterization.« less
Key ecological challenges for closed systems facilities
NASA Astrophysics Data System (ADS)
Nelson, Mark; Dempster, William F.; Allen, John P.
2013-07-01
Closed ecological systems are desirable for a number of purposes. In space life support systems, material closure allows precious life-supporting resources to be kept inside and recycled. Closure in small biospheric systems facilitates detailed measurement of global ecological processes and biogeochemical cycles. Closed testbeds facilitate research topics which require isolation from the outside (e.g. genetically modified organisms; radioisotopes) so their ecological interactions and fluxes can be studied separate from interactions with the outside environment. But to achieve and maintain closure entails solving complex ecological challenges. These challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet, recycling nutrients and maintaining soil fertility, the maintenance of healthy air and water and preventing the loss of critical elements from active circulation. In biospheric facilities, the challenge is also to produce analogues to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils. Other challenges include the dynamics and genetics of small populations, the psychological challenges for small isolated human groups and backup technologies and strategic options which may be necessary to ensure long-term operation of closed ecological systems.
Advanced High-Temperature Flexible TPS for Inflatable Aerodynamic Decelerators
NASA Technical Reports Server (NTRS)
DelCorso, Joseph A.; Cheatwood, F. McNeil; Bruce, Walter E., III; Hughes, Stephen J.; Calomino, Anthony M.
2011-01-01
Typical entry vehicle aeroshells are limited in size by the launch vehicle shroud. Inflatable aerodynamic decelerators allow larger aeroshell diameters for entry vehicles because they are not constrained to the launch vehicle shroud diameter. During launch, the hypersonic inflatable aerodynamic decelerator (HIAD) is packed in a stowed configuration. Prior to atmospheric entry, the HIAD is deployed to produce a drag device many times larger than the launch shroud diameter. The large surface area of the inflatable aeroshell provides deceleration of high-mass entry vehicles at relatively low ballistic coefficients. Even for these low ballistic coefficients there is still appreciable heating, requiring the HIAD to employ a thermal protection system (TPS). This TPS must be capable of surviving the heat pulse, and the rigors of fabrication handling, high density packing, deployment, and aerodynamic loading. This paper provides a comprehensive overview of flexible TPS tests and results, conducted over the last three years. This paper also includes an overview of each test facility, the general approach for testing flexible TPS, the thermal analysis methodology and results, and a comparison with 8-foot High Temperature Tunnel, Laser-Hardened Materials Evaluation Laboratory, and Panel Test Facility test data. Results are presented for a baseline TPS layup that can withstand a 20 W/cm2 heat flux, silicon carbide (SiC) based TPS layup, and polyimide insulator TPS layup. Recent work has focused on developing material layups expected to survive heat flux loads up to 50 W/cm2 (which is adequate for many potential applications), future work will consider concepts capable of withstanding more than 100 W/cm2 incident radiant heat flux. This paper provides an overview of the experimental setup, material layup configurations, facility conditions, and planned future flexible TPS activities.
Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jie; Liao, Lei; Shi, Feifei
Significant increases in the energy density of batteries must be achieved by exploring new materials and cell configurations. Lithium metal and lithiated silicon are two promising high-capacity anode materials. Unfortunately, both of these anodes require a reliable passivating layer to survive the serious environmental corrosion during handling and cycling. Here we developed a surface fluorination process to form a homogeneous and dense LiF coating on reactive anode materials, with in situ generated fluorine gas, by using a fluoropolymer, CYTOP, as the precursor. The process is effectively a “reaction in the beaker”, avoiding direct handling of highly toxic fluorine gas. Formore » lithium metal, this LiF coating serves as a chemically stable and mechanically strong interphase, which minimizes the corrosion reaction with carbonate electrolytes and suppresses dendrite formation, enabling dendrite-free and stable cycling over 300 cycles with current densities up to 5 mA/cm 2. Lithiated silicon can serve as either a pre-lithiation additive for existing lithium-ion batteries or a replacement for lithium metal in Li–O 2 and Li–S batteries. However, lithiated silicon reacts vigorously with the standard slurry solvent N-methyl-2-pyrrolidinone (NMP), indicating it is not compatible with the real battery fabrication process. With the protection of crystalline and dense LiF coating, Li xSi can be processed in anhydrous NMP with a high capacity of 2504 mAh/g. With low solubility of LiF in water, this protection layer also allows Li xSi to be stable in humid air (~40% relative humidity). Furthermore, this facile surface fluorination process brings huge benefit to both the existing lithium-ion batteries and next-generation lithium metal batteries.« less
Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability
Zhao, Jie; Liao, Lei; Shi, Feifei; ...
2017-07-26
Significant increases in the energy density of batteries must be achieved by exploring new materials and cell configurations. Lithium metal and lithiated silicon are two promising high-capacity anode materials. Unfortunately, both of these anodes require a reliable passivating layer to survive the serious environmental corrosion during handling and cycling. Here we developed a surface fluorination process to form a homogeneous and dense LiF coating on reactive anode materials, with in situ generated fluorine gas, by using a fluoropolymer, CYTOP, as the precursor. The process is effectively a “reaction in the beaker”, avoiding direct handling of highly toxic fluorine gas. Formore » lithium metal, this LiF coating serves as a chemically stable and mechanically strong interphase, which minimizes the corrosion reaction with carbonate electrolytes and suppresses dendrite formation, enabling dendrite-free and stable cycling over 300 cycles with current densities up to 5 mA/cm 2. Lithiated silicon can serve as either a pre-lithiation additive for existing lithium-ion batteries or a replacement for lithium metal in Li–O 2 and Li–S batteries. However, lithiated silicon reacts vigorously with the standard slurry solvent N-methyl-2-pyrrolidinone (NMP), indicating it is not compatible with the real battery fabrication process. With the protection of crystalline and dense LiF coating, Li xSi can be processed in anhydrous NMP with a high capacity of 2504 mAh/g. With low solubility of LiF in water, this protection layer also allows Li xSi to be stable in humid air (~40% relative humidity). Furthermore, this facile surface fluorination process brings huge benefit to both the existing lithium-ion batteries and next-generation lithium metal batteries.« less
SUBGRADE MONOLITHIC ENCASEMENT STABILIZATION OF CATEGORY 3 LOW LEVEL WASTE (LLW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
PHILLIPS, S.J.
2004-02-03
A highly efficient and effective technology has been developed and is being used for stabilization of Hazard Category 3 low-level waste at the U.S. Department of Energy's Hanford Site. Using large, structurally interconnected monoliths, which form one large monolith that fills a waste disposal trench, the patented technology can be used for final internment of almost any hazardous, radioactive, or toxic waste or combinations of these waste materials packaged in a variety of sizes, shapes, and volumes within governmental regulatory limits. The technology increases waste volumetric loading by 100 percent, area use efficiency by 200 percent, and volumetric configuration efficiencymore » by more than 500 percent over past practices. To date, in excess of 2,010 m{sup 3} of contact-handled and remote-handled low-level radioactive waste have been interned using this patented technology. Additionally, in excess of 120 m{sup 3} of low-level radioactive waste requiring stabilization in low-diffusion coefficient waste encasement matrix has been disposed using this technology. Greater than five orders of magnitude in radiation exposure reduction have been noted using this method of encasement of Hazard Category 3 waste. Additionally, exposure monitored at all monolith locations produced by the slip form technology is less than 1.29 x E-07 C {center_dot} kg{sup -1}. Monolithic encasement of Hazard Category 3 low-level waste and other waste category materials may be successfully accomplished using this technology at nominally any governmental or private sector waste disposal facility. Additionally, other waste materials consisting of hazardous, radioactive, toxic, or mixed waste materials can be disposed of using the monolithic slip form encasement technology.« less
A quantitative method for optimized placement of continuous air monitors.
Whicker, Jeffrey J; Rodgers, John C; Moxley, John S
2003-11-01
Alarming continuous air monitors (CAMs) are a critical component for worker protection in facilities that handle large amounts of hazardous materials. In nuclear facilities, continuous air monitors alarm when levels of airborne radioactive materials exceed alarm thresholds, thus prompting workers to exit the room to reduce inhalation exposures. To maintain a high level of worker protection, continuous air monitors are required to detect radioactive aerosol clouds quickly and with good sensitivity. This requires that there are sufficient numbers of continuous air monitors in a room and that they are well positioned. Yet there are no published methodologies to quantitatively determine the optimal number and placement of continuous air monitors in a room. The goal of this study was to develop and test an approach to quantitatively determine optimal number and placement of continuous air monitors in a room. The method we have developed uses tracer aerosol releases (to simulate accidental releases) and the measurement of the temporal and spatial aspects of the dispersion of the tracer aerosol through the room. The aerosol dispersion data is then analyzed to optimize continuous air monitor utilization based on simulated worker exposure. This method was tested in a room within a Department of Energy operated plutonium facility at the Savannah River Site in South Carolina, U.S. Results from this study show that the value of quantitative airflow and aerosol dispersion studies is significant and that worker protection can be significantly improved while balancing the costs associated with CAM programs.
Hazard Control Extensions in a COTS Based Data Handling System
NASA Astrophysics Data System (ADS)
Vogel, Torsten; Rakers, Sven; Gronowski, Matthias; Schneegans, Joachim
2011-08-01
EML is an electromagnetic levitator for containerless processing of conductive samples on the International Space Station. This material sciences experiment is running in the European Drawer Rack (EDR) facility. The objective of this experiment is to gain insight into the parameters of liquid metal samples and their crystallisation processes without the influence of container walls. To this end the samples are electromagnetically positioned in a coil system and then heated up beyond their melting point in an ultraclean environment.The EML programme is currently under development by Astrium Space Transportation in Friedrichshafen and Bremen; jointly funded by ESA and DLR (on behalf of BMWi, contract 50WP0808). EML consists of four main modules listed in Table 1. The paper focuses mainly on the architecture and design of the ECM module and its contribution to a safe operation of the experiment. The ECM is a computer system that integrates the power supply to the EML experiment, control functions and video handling and compression features. Experiment control is performed by either telecommand or the execution of predefined experiment scripts.
40 CFR 60.470 - Applicability and designation of affected facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Performance for Asphalt Processing and Asphalt Roofing Manufacture § 60.470 Applicability and designation of... mineral handling and storage facility at asphalt roofing plants; and each asphalt storage tank and each blowing still at asphalt processing plants, petroleum refineries, and asphalt roofing plants. (b) Any...
40 CFR 60.470 - Applicability and designation of affected facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Performance for Asphalt Processing and Asphalt Roofing Manufacture § 60.470 Applicability and designation of... mineral handling and storage facility at asphalt roofing plants; and each asphalt storage tank and each blowing still at asphalt processing plants, petroleum refineries, and asphalt roofing plants. (b) Any...
40 CFR 60.470 - Applicability and designation of affected facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Performance for Asphalt Processing and Asphalt Roofing Manufacture § 60.470 Applicability and designation of... mineral handling and storage facility at asphalt roofing plants; and each asphalt storage tank and each blowing still at asphalt processing plants, petroleum refineries, and asphalt roofing plants. (b) Any...
40 CFR 60.470 - Applicability and designation of affected facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Performance for Asphalt Processing and Asphalt Roofing Manufacture § 60.470 Applicability and designation of... mineral handling and storage facility at asphalt roofing plants; and each asphalt storage tank and each blowing still at asphalt processing plants, petroleum refineries, and asphalt roofing plants. (b) Any...
40 CFR 60.470 - Applicability and designation of affected facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Performance for Asphalt Processing and Asphalt Roofing Manufacture § 60.470 Applicability and designation of... mineral handling and storage facility at asphalt roofing plants; and each asphalt storage tank and each blowing still at asphalt processing plants, petroleum refineries, and asphalt roofing plants. (b) Any...
Code of Federal Regulations, 2011 CFR
2011-07-01
... without containers or labels, and that is received and handled without mark or count. Bunkers means a..., part A. Cargo means any goods, wares, or merchandise carried, or to be carried, for consideration... interested in the vessel, facility, or OCS facility, except dredge spoils. Cargo vessel means a vessel that...
Code of Federal Regulations, 2012 CFR
2012-07-01
... without containers or labels, and that is received and handled without mark or count. Bunkers means a..., part A. Cargo means any goods, wares, or merchandise carried, or to be carried, for consideration... interested in the vessel, facility, or OCS facility, except dredge spoils. Cargo vessel means a vessel that...
Code of Federal Regulations, 2013 CFR
2013-07-01
... without containers or labels, and that is received and handled without mark or count. Bunkers means a..., part A. Cargo means any goods, wares, or merchandise carried, or to be carried, for consideration... interested in the vessel, facility, or OCS facility, except dredge spoils. Cargo vessel means a vessel that...
Code of Federal Regulations, 2014 CFR
2014-07-01
... without containers or labels, and that is received and handled without mark or count. Bunkers means a..., part A. Cargo means any goods, wares, or merchandise carried, or to be carried, for consideration... interested in the vessel, facility, or OCS facility, except dredge spoils. Cargo vessel means a vessel that...
9 CFR 3.65 - Terminal facilities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment and Transportation of Rabbits... commingle shipments of live rabbits with inanimate cargo. All animal holding areas of a terminal facility where shipments of rabbits are maintained shall be cleaned and sanitized as prescribed in § 3.56 of the...
NASA Astrophysics Data System (ADS)
Dobos, P.; Tamás, P.; Illés, B.
2016-11-01
Adequate establishment and operation of warehouse logistics determines the companies’ competitiveness significantly because it effects greatly the quality and the selling price of the goods that the production companies produce. In order to implement and manage an adequate warehouse system, adequate warehouse position, stock management model, warehouse technology, motivated work force committed to process improvement and material handling strategy are necessary. In practical life, companies have paid small attantion to select the warehouse strategy properly. Although it has a major influence on the production in the case of material warehouse and on smooth costumer service in the case of finished goods warehouse because this can happen with a huge loss in material handling. Due to the dynamically changing production structure, frequent reorganization of warehouse activities is needed, on what the majority of the companies react basically with no reactions. This work presents a simulation test system frames for eligible warehouse material handling strategy selection and also the decision method for selection.
Community pharmacists as educators in Danish residential facilities: a qualitative study.
Mygind, Anna; El-Souri, Mira; Pultz, Kirsten; Rossing, Charlotte; Thomsen, Linda A
2017-08-01
To explore experiences with engaging community pharmacists in educational programmes on quality and safety in medication handling in residential facilities for the disabled. A secondary analysis of data from two Danish intervention studies where community pharmacists were engaged in educational programmes. Data included 10 semi-structured interviews with staff, five semi-structured interviews and three open-ended questionnaires with residential facility managers, and five open-ended questionnaires to community pharmacists. Data were thematically coded to identify key points pertaining to the themes 'pharmacists as educators' and 'perceived effects of engaging pharmacists in competence development'. As educators, pharmacists were successful as medicines experts. Some pharmacists experienced pedagogical challenges. Previous teaching experience and obtained knowledge of the local residential facility before teaching often provided sufficient pedagogical skills and tailored teaching to local needs. Effects of engaging community pharmacists included in most instances improved cooperation between residential facilities and community pharmacies through a trustful relationship and improved dialogue about the residents' medication. Other effects included a perception of improved patient safety, teaching skills and branding of the pharmacy. Community pharmacists provide a resource to engage in educational programmes on medication handling in residential facilities, which may facilitate improved cooperation between community pharmacies and residential facilities. However, development of pedagogical competences and understandings of local settings are prerequisites for facilities and pharmacists to experience the programmes as successful. © 2016 Royal Pharmaceutical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coates, Cameron W; Eisele, Gerhard R
2011-01-01
The Russian Federation (RF) is committed to implementing a comprehensive drug testing program under its Personnel Reliability Program (PRP) for military personnel involved in handling sensitive nuclear materials. This commitment leads to a number of mandatory requirements for the laboratory conducting the confirmation testing to ensure the legitimacy and integrity of the testing process. These requirements are established by the RF Duma to ensure that individuals conducting these tests have adequate training, certifications, and experience to conduct narcotic confirmation tests. This paper describes the facility requirements and personnel qualifications needed for conducting comprehensive drug abuse confirmation testing. Details regarding themore » personnel training and laboratory experience in the theory and practice of analytical forensic toxicology of drugs of abuse will be presented, as well as the facility requirements for the laboratory conducting such tests. Chain-of-custody, from sample receipt through completion of testing, reporting of results, and continuing until final disposition of specimens will be addressed.« less
TomoBank: a tomographic data repository for computational x-ray science
De Carlo, Francesco; Gürsoy, Doğa; Ching, Daniel J.; ...
2018-02-08
There is a widening gap between the fast advancement of computational methods for tomographic reconstruction and their successful implementation in production software at various synchrotron facilities. This is due in part to the lack of readily available instrument datasets and phantoms representative of real materials for validation and comparison of new numerical methods. Recent advancements in detector technology made sub-second and multi-energy tomographic data collection possible [1], but also increased the demand to develop new reconstruction methods able to handle in-situ [2] and dynamic systems [3] that can be quickly incorporated in beamline production software [4]. The X-ray Tomography Datamore » Bank, tomoBank, provides a repository of experimental and simulated datasets with the aim to foster collaboration among computational scientists, beamline scientists, and experimentalists and to accelerate the development and implementation of tomographic reconstruction methods for synchrotron facility production software by providing easy access to challenging dataset and their descriptors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dragolici, C.A.; Zorliu, A.; Popa, V.
2007-07-01
The Russian Research Reactor Fuel Return (RRRFR) program is promoted by IAEA and DOE in order to repatriate of irradiated research reactor fuel originally supplied by Russia to facilities outside the country. Developed under the framework of the Global Threat Reduction Initiative (GTRI) the take-back program [1] common goal is to reduce both proliferation and security risks by eliminating or consolidating inventories of high-risk material. The main objective of this program is to support the return to Russian Federation of fresh or irradiated HEU and LEU fuel. Being part of this project, Romania is fulfilling its tasks by examining transportmore » and transfer cask options, assessment of transport routes, and providing cost estimates for required equipment and facility modifications. Spent Nuclear Fuel (SNF) testing, handling, packing and shipping are the most common interests on which the National Institute of Research and Development for Physics and Nuclear Engineering 'Horia Hulubei' (IFIN-HH) is focusing at the moment. (authors)« less
2000-07-07
KENNEDY SPACE CENTER, FLA. -- After successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is lifted out of the chamber. A rotation and handling fixture holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- After successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is lifted out of the chamber. A rotation and handling fixture holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, after successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, is lifted up and away from the chamber. A rotation and handling fixture holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, after successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, is lifted up and away from the chamber. A rotation and handling fixture holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
A proposed intense slow positron source based on 58Co
NASA Astrophysics Data System (ADS)
Brown, Benjamin L.; Denison, Art; Makowitz, Henry; Gidley, Dave; Frieze, Bill; Griffin, Henry; Encarnación, Pedro
1994-06-01
Positron beams have proven very useful for condensed matter and surface research. The highest intensity of the current operating positron beams is ˜109 slow e+/second. The goal of our proposal is to build an Intense Slow Positron Source (ISPS) demonstration beam (Phase I) of unprecedented brightness at the Idaho National Engineering Laboratory, INEL (up to 1010 slow e+/s at 5 keV over a <0.03 cm. diameter). This Phase I beam will prove the principles necessary to build a larger facility scale ISPS Phase II beam which will have a potential of 1013 e+/s, or ≳1012 e+/s over 0.03 cm. The INEL is an ideal location for the ISPS because of the fast breeder reactor EBR-II, which is perfectly suited to creating the positron emitting isotope 58Co, and the excellent radioactive materials handling capability and expertise. Sufficient expertise is available at INEL for the construction and operation of a user facility (Phase II).
Anil Kumar, C. N.; Sakthivel, M.; Elangovan, R. K.; Arularasu, M.
2015-01-01
One of many hazardous workplaces includes the construction sites as they involve several dangerous tasks. Many studies have revealed that material handling equipment is a major cause of accidents at these sites. Though safety measures are being followed and monitored continuously, accident rates are still high as either workers are unaware of hazards or the safety regulations are not being strictly followed. This paper analyses the safety management systems at construction sites through means of questionnaire surveys with employees, specifically referring to safety of material handling equipment. Based on results of the questionnaire surveys, two construction sites were selected for a safety education program targeting worker safety related to material handling equipment. Knowledge levels of the workers were gathered before and after the program and results obtained were subjected to a t-test analysis to mark significance level of the conducted safety education program. PMID:26446572
Dust prevention in bulk material transportation and handling
NASA Astrophysics Data System (ADS)
Kirichenko, A. V.; Kuznetsov, A. L.; Pogodin, V. A.
2017-10-01
The environmental problem of territory and atmosphere pollution caused by transportation and handling of dust-generating bulk cargo materials is quite common for the whole world. The reducing of weight of fine class coal caused by air blowing reaches the level of 0.5-0.6 t per railcar over the 500 km transportation distance, which is equal to the loss of 1 % of the total weight. The studies showed that all over the country in the process of the railroad transportation, the industry loses 3-5 metric tonnes of coal annually. There are several common tactical measurers to prevent dust formation: treating the dust-producing materials at dispatch point with special liquid solutions; watering the stacks and open handling points of materials; frequent dust removing and working area cleaning. Recently there appeared several new radical measures for pollution prevention in export of ore and coal materials via sea port terminals, specifically: wind-dust protection screens, the container cargo handling system of delivery materials to the hold of the vessels. The article focuses on the discussion of these measures.
Vatovec, Christine; Senier, Laura; Bell, Michael
2013-09-01
Healthcare organizations are increasingly examining the impacts of their facilities and operations on the natural environment, their workers, and the broader community, but the ecological impacts of specific healthcare services provided within these institutions have not been assessed. This paper provides a qualitative assessment of healthcare practices that takes into account the life-cycle impacts of a variety of materials used in typical medical care. We conducted an ethnographic study of three medical inpatient units: a conventional cancer ward, palliative care unit, and a hospice center. Participant observations (73 participants) of healthcare and support staff including physicians, nurses, housekeepers, and administrators were made to inventory materials and document practices used in patient care. Semi-structured interviews provided insight into common practices. We identified three major domains that highlight the cumulative environmental, occupational health, and public health impacts of medical supplies and pharmaceuticals used at our research sites: (1) medical supply procurement; (2) generation, handling, and disposal of medical waste; and (3) pharmaceutical handling and disposal. Impacts discovered through ethnographic inquiry included occupational exposures to chemotherapy and infectious waste, and public health exposures to pharmaceutical waste. This study provides new insight into the environmental, occupational, and public health impacts resulting from medical practices. In many cases, the lack of clear guidance and regulations regarding environmental impacts contributed to elevated harms to the natural environment, workers, and the broader community.
33 CFR 126.29 - Supervision and control of dangerous cargo.
Code of Federal Regulations, 2013 CFR
2013-07-01
... dangerous cargo. 126.29 Section 126.29 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.29 Supervision and control of dangerous cargo. (a) Authority. The Captain of the Port is authorized to require...
33 CFR 126.29 - Supervision and control of dangerous cargo.
Code of Federal Regulations, 2011 CFR
2011-07-01
... dangerous cargo. 126.29 Section 126.29 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.29 Supervision and control of dangerous cargo. (a) Authority. The Captain of the Port is authorized to require...
33 CFR 126.29 - Supervision and control of dangerous cargo.
Code of Federal Regulations, 2012 CFR
2012-07-01
... dangerous cargo. 126.29 Section 126.29 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.29 Supervision and control of dangerous cargo. (a) Authority. The Captain of the Port is authorized to require...
40 CFR 60.433 - Performance test and compliance provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... facilities routinely share the same raw ink storage/handling system with existing facilities, then temporary measurement procedures for segregating the raw inks, related coatings, VOC solvent, and water used at the... the purpose of measuring bulk storage tank quantities of each color of raw ink and each related...
40 CFR 60.433 - Performance test and compliance provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... facilities routinely share the same raw ink storage/handling system with existing facilities, then temporary measurement procedures for segregating the raw inks, related coatings, VOC solvent, and water used at the... the purpose of measuring bulk storage tank quantities of each color of raw ink and each related...
40 CFR 60.433 - Performance test and compliance provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... facilities routinely share the same raw ink storage/handling system with existing facilities, then temporary measurement procedures for segregating the raw inks, related coatings, VOC solvent, and water used at the... the purpose of measuring bulk storage tank quantities of each color of raw ink and each related...
9 CFR 166.5 - Licensed garbage-treatment facility standards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Licensed garbage-treatment facility standards. 166.5 Section 166.5 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... where insects and rodents may breed is prohibited. (b) Equipment used for handling untreated garbage...
40 CFR 264.37 - Arrangements with local authorities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Arrangements with local authorities... FACILITIES Preparedness and Prevention § 264.37 Arrangements with local authorities. (a) The owner or... familiarize local hospitals with the properties of hazardous waste handled at the facility and the types of...
40 CFR 264.37 - Arrangements with local authorities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Arrangements with local authorities... FACILITIES Preparedness and Prevention § 264.37 Arrangements with local authorities. (a) The owner or... familiarize local hospitals with the properties of hazardous waste handled at the facility and the types of...
OPERATIONS AND RESEARCH AT THE U.S. EPA INCINERATION RESEARCH FACILITY: ANNUAL REPORT FOR FY94
The U.S. Environmental Protection Agency’s Incineration Research Facility (IRF) in Jefferson, Arkansas, is an experimental facifity that houses a pilot-scale rotary kiln incineration system (RKS) and the associated waste handling, emission control, process control, and safety equ...
Response to in-depth safety audit of the L Lake sampling station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gladden, J.B.
1986-10-15
An in-depth safety audit of several of the facilities and operations supporting the Biological Monitoring Program on L Lake was conducted. Subsequent to the initial audit, the audit team evaluated the handling of samples taken for analysis of Naegleria fowleri at the 704-U laboratory facility.
33 CFR 105.265 - Security measures for handling cargo.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., containers, or other cargo transport units entering the facility match the delivery note or equivalent cargo..., containers or other cargo transport units, and cargo storage areas within the facility for evidence of... cargo. 105.265 Section 105.265 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...
33 CFR 105.265 - Security measures for handling cargo.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., containers, or other cargo transport units entering the facility match the delivery note or equivalent cargo..., containers or other cargo transport units, and cargo storage areas within the facility for evidence of... cargo. 105.265 Section 105.265 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...
33 CFR 105.265 - Security measures for handling cargo.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., containers, or other cargo transport units entering the facility match the delivery note or equivalent cargo..., containers or other cargo transport units, and cargo storage areas within the facility for evidence of... cargo. 105.265 Section 105.265 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...
33 CFR 105.265 - Security measures for handling cargo.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., containers, or other cargo transport units entering the facility match the delivery note or equivalent cargo..., containers or other cargo transport units, and cargo storage areas within the facility for evidence of... cargo. 105.265 Section 105.265 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...
33 CFR 105.265 - Security measures for handling cargo.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., containers, or other cargo transport units entering the facility match the delivery note or equivalent cargo..., containers or other cargo transport units, and cargo storage areas within the facility for evidence of... cargo. 105.265 Section 105.265 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...
7 CFR 1436.9 - Loan amount and loan application approvals.
Code of Federal Regulations, 2011 CFR
2011-01-01
... data is not applicable to the storage need, a reasonable acreage projection may be made for newly... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS FARM STORAGE FACILITY LOAN... by the FSA State committee. (b) The net cost for all storage facilities and handling equipment: (1...
7 CFR 1436.9 - Loan amount and loan application approvals.
Code of Federal Regulations, 2014 CFR
2014-01-01
... data is not applicable to the storage need, a reasonable acreage projection may be made for newly... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS FARM STORAGE FACILITY LOAN... by the FSA State committee. (b) The net cost for all storage facilities and handling equipment: (1...
7 CFR 1436.9 - Loan amount and loan application approvals.
Code of Federal Regulations, 2010 CFR
2010-01-01
... data is not applicable to the storage need, a reasonable acreage projection may be made for newly... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS FARM STORAGE FACILITY LOAN... by the FSA State committee. (b) The net cost for all storage facilities and handling equipment: (1...
7 CFR 1436.9 - Loan amount and loan application approvals.
Code of Federal Regulations, 2013 CFR
2013-01-01
... data is not applicable to the storage need, a reasonable acreage projection may be made for newly... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS FARM STORAGE FACILITY LOAN... by the FSA State committee. (b) The net cost for all storage facilities and handling equipment: (1...
7 CFR 1436.9 - Loan amount and loan application approvals.
Code of Federal Regulations, 2012 CFR
2012-01-01
... data is not applicable to the storage need, a reasonable acreage projection may be made for newly... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS FARM STORAGE FACILITY LOAN... by the FSA State committee. (b) The net cost for all storage facilities and handling equipment: (1...
14 CFR 158.51 - Remittance of PFC's.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Remittance of PFC's. 158.51 Section 158.51... PASSENGER FACILITY CHARGES (PFC'S) Collection, Handling, and Remittance of PFC's § 158.51 Remittance of PFC's. Passenger facility charges collected by carriers shall be remitted to the public agency on a...
14 CFR 158.51 - Remittance of PFC's.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Remittance of PFC's. 158.51 Section 158.51... PASSENGER FACILITY CHARGES (PFC'S) Collection, Handling, and Remittance of PFC's § 158.51 Remittance of PFC's. Passenger facility charges collected by carriers shall be remitted to the public agency on a...
14 CFR 158.51 - Remittance of PFC's.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Remittance of PFC's. 158.51 Section 158.51... PASSENGER FACILITY CHARGES (PFC'S) Collection, Handling, and Remittance of PFC's § 158.51 Remittance of PFC's. Passenger facility charges collected by carriers shall be remitted to the public agency on a...
14 CFR 158.51 - Remittance of PFC's.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Remittance of PFC's. 158.51 Section 158.51... PASSENGER FACILITY CHARGES (PFC'S) Collection, Handling, and Remittance of PFC's § 158.51 Remittance of PFC's. Passenger facility charges collected by carriers shall be remitted to the public agency on a...
14 CFR 158.51 - Remittance of PFC's.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Remittance of PFC's. 158.51 Section 158.51... PASSENGER FACILITY CHARGES (PFC'S) Collection, Handling, and Remittance of PFC's § 158.51 Remittance of PFC's. Passenger facility charges collected by carriers shall be remitted to the public agency on a...