DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-01-01
This book includes specifications and classifications from ASTM committees on paint and related coatings and materials; road and paving materials; wood; roofing, waterproofing and bituminous materials; rubber; soaps and other detergents; aromatic hydrocarbons and related chemicals; and electrical insulating liquids and gases. Also included are several related, important specifications and classifications from other organizations.
Thermoelectric Materials Development for Low Temperature Geothermal Power Generation
Tim Hansen
2016-01-29
Data includes characterization results for novel thermoelectric materials developed specifically for power generation from low temperature geothermal brines. Materials characterization data includes material density, thickness, resistance, Seebeck coefficient. This research was carried out by Novus Energy Partners in Cooperation with Southern Research Institute for a Department of Energy Sponsored Project.
Advanced Materials by Atom Transfer Radical Polymerization.
Matyjaszewski, Krzysztof
2018-06-01
Atom transfer radical polymerization (ATRP) has been successfully employed for the preparation of various advanced materials with controlled architecture. New catalysts with strongly enhanced activity permit more environmentally benign ATRP procedures using ppm levels of catalyst. Precise control over polymer composition, topology, and incorporation of site specific functionality enables synthesis of well-defined gradient, block, comb copolymers, polymers with (hyper)branched structures including stars, densely grafted molecular brushes or networks, as well as inorganic-organic hybrid materials and bioconjugates. Examples of specific applications of functional materials include thermoplastic elastomers, nanostructured carbons, surfactants, dispersants, functionalized surfaces, and biorelated materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mechanical properties of direct core build-up materials.
Combe, E C; Shaglouf, A M; Watts, D C; Wilson, N H
1999-05-01
This work was undertaken to measure mechanical properties of a diverse group of materials used for direct core build-ups, including a high copper amalgam, a silver cermet cement, a VLC resin composite and two composites specifically developed for this application. Compressive strength, elastic modulus, diametral tensile strength and flexural strength and modulus were measured for each material as a function of time up to 3 months, using standard specification tests designed for the materials. All the materials were found to meet the minimum specification requirements except in terms of flexural strength for the amalgam after 1 h and the silver cermet at all time intervals. There proved to be no obvious superior material in all respects for core build-ups, and the need exists for a specification to be established specifically for this application.
Nondestructive Evaluation of Airport Pavements. Volume I. Program References,
1979-09-01
greater than its original capacity (see test 13 on Fig. 2.5). During the material tests by Majidzadeh, the dynamic E-value of frozen subgrade soil was...Sample the base and subbase material by conventional spoon and identify the material by standard soil -aggregate classification and penetration...such as shaker table. The new testing specification is designed for all paving materials including subgrade soils . The specifications of material
Considerations for setting the specifications of vaccines.
Minor, Philip
2012-05-01
The specifications of vaccines are determined by the particular product and its method of manufacture, which raise issues unique to the vaccine in question. However, the general principles are shared, including the need to have sufficient active material to immunize a very high proportion of recipients, an acceptable level of safety, which may require specific testing or may come from the production process, and an acceptable low level of contamination with unwanted materials, which may include infectious agents or materials used in production. These principles apply to the earliest smallpox vaccines and the most recent recombinant vaccines, such as those against HPV. Manufacturing development includes more precise definitions of the product through improved tests and tighter control of the process parameters. Good manufacturing practice plays a major role, which is likely to increase in importance in assuring product quality almost independent of end-product specifications.
ESTEC wiring test programme materials related properties
NASA Technical Reports Server (NTRS)
Judd, M. D.
1994-01-01
Electrical wires are considered as EEE parts and are covered within the ESA SCC specification series (ESA SCC 3901/XXX). This specification defines the principal properties of the wires including insulation/lay-up and electrical properties. Some additional space related materials requirements are also included, requirements such as outgassing and silver plating thickness. If a project has additional materials requirements over and above those covered by the relevant SCC specification, then additional testing is required. This is especially true for crewed spacecraft. The following topics are discussed in this context: additional requirements for manned spacecraft; flammability; arc tracking; thermal decomposition; microbial surface growth; and ageing.
7 CFR 1755.98 - List of telecommunications specifications included in other 7 CFR parts.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 11 2010-01-01 2010-01-01 false List of telecommunications specifications included in... (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE TELECOMMUNICATIONS POLICIES ON SPECIFICATIONS, ACCEPTABLE MATERIALS, AND STANDARD CONTRACT FORMS § 1755.98 List of telecommunications specifications...
7 CFR 1755.98 - List of telecommunications specifications included in other 7 CFR parts.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 11 2011-01-01 2011-01-01 false List of telecommunications specifications included in... (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE TELECOMMUNICATIONS POLICIES ON SPECIFICATIONS, ACCEPTABLE MATERIALS, AND STANDARD CONTRACT FORMS § 1755.98 List of telecommunications specifications...
7 CFR 1755.98 - List of telecommunications specifications included in other 7 CFR parts.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 11 2012-01-01 2012-01-01 false List of telecommunications specifications included in... (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE TELECOMMUNICATIONS POLICIES ON SPECIFICATIONS, ACCEPTABLE MATERIALS, AND STANDARD CONTRACT FORMS § 1755.98 List of telecommunications specifications...
7 CFR 1755.98 - List of telecommunications specifications included in other 7 CFR parts.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 11 2013-01-01 2013-01-01 false List of telecommunications specifications included in... (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE TELECOMMUNICATIONS POLICIES ON SPECIFICATIONS, ACCEPTABLE MATERIALS, AND STANDARD CONTRACT FORMS § 1755.98 List of telecommunications specifications...
7 CFR 1755.98 - List of telecommunications specifications included in other 7 CFR parts.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 11 2014-01-01 2014-01-01 false List of telecommunications specifications included in... (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE TELECOMMUNICATIONS POLICIES ON SPECIFICATIONS, ACCEPTABLE MATERIALS, AND STANDARD CONTRACT FORMS § 1755.98 List of telecommunications specifications...
40 CFR 161.160 - Description of materials used to produce the product.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Chemistry Data Requirements § 161.160 Description of materials used to produce the product. The following... composition (and, if requested by the Agency, chemical and physical properties) of the ingredient, including a..., chemical or physical properties) of the starting material, including a copy of all technical specifications...
40 CFR 161.160 - Description of materials used to produce the product.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Chemistry Data Requirements § 161.160 Description of materials used to produce the product. The following... composition (and, if requested by the Agency, chemical and physical properties) of the ingredient, including a..., chemical or physical properties) of the starting material, including a copy of all technical specifications...
40 CFR 161.160 - Description of materials used to produce the product.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Chemistry Data Requirements § 161.160 Description of materials used to produce the product. The following... composition (and, if requested by the Agency, chemical and physical properties) of the ingredient, including a..., chemical or physical properties) of the starting material, including a copy of all technical specifications...
40 CFR 161.160 - Description of materials used to produce the product.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Chemistry Data Requirements § 161.160 Description of materials used to produce the product. The following... composition (and, if requested by the Agency, chemical and physical properties) of the ingredient, including a..., chemical or physical properties) of the starting material, including a copy of all technical specifications...
Gich, Jordi; Freixenet, Jordi; Garcia, Rafael; Vilanova, Joan Carles; Genís, David; Silva, Yolanda; Montalban, Xavier; Ramió-Torrentà, Lluís
2015-09-01
Cognitive rehabilitation is often delayed in multiple sclerosis (MS). To develop a free and specific cognitive rehabilitation programme for MS patients to be used from early stages that does not interfere with daily living activities. MS-line!, cognitive rehabilitation materials consisting of written, manipulative and computer-based materials with difficulty levels developed by a multidisciplinary team. Mathematical, problem-solving and word-based exercises were designed. Physical materials included spatial, coordination and reasoning games. Computer-based material included logic and reasoning, working memory and processing speed games. Cognitive rehabilitation exercises that are specific for MS patients have been successfully developed. © The Author(s), 2014.
Shape memory system with integrated actuation using embedded particles
Buckley, Patrick R [New York, NY; Maitland, Duncan J [Pleasant Hill, CA
2009-09-22
A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
Shape memory system with integrated actuation using embedded particles
Buckley, Patrick R [New York, NY; Maitland, Duncan J [Pleasant Hill, CA
2012-05-29
A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
Shape memory system with integrated actuation using embedded particles
Buckley, Patrick R.; Maitland, Duncan J.
2014-04-01
A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
GREEN OAK AS A SUSTAINABLE BUILDING MATERIAL
Technical documentation necessary for a project demonstrating the viability of green oak as a contemporary structural material. These will include material grading guidelines, mechanical testing, architectural construction documents and details, specifications, engineering cal...
Inorganic Photovoltaics Materials and Devices: Past, Present, and Future
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Bailey, Sheila G.; Rafaelle, Ryne P.
2005-01-01
This report describes recent aspects of advanced inorganic materials for photovoltaics or solar cell applications. Specific materials examined will be high-efficiency silicon, gallium arsenide and related materials, and thin-film materials, particularly amorphous silicon and (polycrystalline) copper indium selenide. Some of the advanced concepts discussed include multi-junction III-V (and thin-film) devices, utilization of nanotechnology, specifically quantum dots, low-temperature chemical processing, polymer substrates for lightweight and low-cost solar arrays, concentrator cells, and integrated power devices. While many of these technologies will eventually be used for utility and consumer applications, their genesis can be traced back to challenging problems related to power generation for aerospace and defense. Because this overview of inorganic materials is included in a monogram focused on organic photovoltaics, fundamental issues and metrics common to all solar cell devices (and arrays) will be addressed.
NASA Technical Reports Server (NTRS)
1996-01-01
The bibliography contains citations concerning analytical techniques using constitutive equations, applied to materials under stress. The properties explored with these techniques include viscoelasticity, thermoelasticity, and plasticity. While many of the references are general as to material type, most refer to specific metals or composites, or to specific shapes, such as flat plate or spherical vessels. (Contains 50-250 citations and includes a subject term index and title list.)
Removing Supplementary Materials from Montessori Classrooms Changed Child Outcomes
ERIC Educational Resources Information Center
Lillard, Angeline S.; Heise, Megan J.
2016-01-01
Montessori classrooms vary in the degree to which they adhere to Maria Montessori's model, including in the provision of materials. Specifically, some classrooms use only Montessori materials, whereas others supplement the Montessori materials with commercially available materials like puzzles and games. A prior study suggested such…
High rate, long cycle life battery electrode materials with an open framework structure
Wessells, Colin; Huggins, Robert; Cui, Yi; Pasta, Mauro
2015-02-10
A battery includes a cathode, an anode, and an aqueous electrolyte disposed between the cathode and the anode and including a cation A. At least one of the cathode and the anode includes an electrode material having an open framework crystal structure into which the cation A is reversibly inserted during operation of the battery. The battery has a reference specific capacity when cycled at a reference rate, and at least 75% of the reference specific capacity is retained when the battery is cycled at 10 times the reference rate.
Introduction to session on materials and structures
NASA Technical Reports Server (NTRS)
Vosteen, L. F.
1978-01-01
A review was given of the development of composites for aircraft. Supporting base technology and the Aircraft Energy Efficiency Composites Program are included. Specific topics discussed include: (1) environmental effects on materials; (2) material quality and chemical characterization; (3) design and analysis methods; (4) structural durability; (5) impact sensitivity; (6) carbon fiber electrical effects; and (7) composite components.
Occupation-Specific VESL Teaching Techniques. A VESL Staff Development Training Resource Packet.
ERIC Educational Resources Information Center
West, Linda; Wilkinson, Betty
Materials for a workshop on teaching vocational English as a Second Language (VESL) are gathered. An annotated outline presents the content and sequence of the workshop, including an icebreaker activity, general techniques for teaching occupation-specific vocabulary, sample lesson plans and accompanying instructional materials for teaching…
Training Manual: Vocational Skills. Vocational Strategies for Special Needs Students.
ERIC Educational Resources Information Center
Blanc, Doreen V.
Instructional materials included in this guide were developed to provide vocational services to mildly handicapped special needs students mainstreamed into regular schools. Material represents strategies or directions in specific areas of occupational education, rather than specific curriculum guides; it is addressed to both the teacher and the…
Considerations Before Writing a Public Library Building Program in Children's Services.
ERIC Educational Resources Information Center
Hektoen, Faith
Designed to be useful for the assessment of existing collections and facilities as well as for planning new libraries, these guidelines detail specific needs, considerations and possibilities, and specifications for both materials and area planning. The materials section includes separate treatment for various types of books and other…
Almeida, Jamie L.; Wang, Lili; Morrow, Jayne B.; Cole, Kenneth D.
2006-01-01
Bacillus anthracis spores have been used as biological weapons and the possibility of their further use requires surveillance systems that can accurately and reliably detect their presence in the environment. These systems must collect samples from a variety of matrices, process the samples, and detect the spores. The processing of the sample may include removal of inhibitors, concentration of the target, and extraction of the target in a form suitable for detection. Suitable reference materials will allow the testing of each of these steps to determine the sensitivity and specificity of the detection systems. The development of uniform and well-characterized reference materials will allow the comparison of different devices and technologies as well as assure the continued performance of detection systems. This paper discusses the special requirements of reference materials for Bacillus anthracis spores that could be used for testing detection systems. The detection of Bacillus anthracis spores is based on recognition of specific characteristics (markers) on either the spore surface or in the nucleic acids (DNA). We have reviewed the specific markers and their relevance to characterization of reference materials. We have also included the approach for the characterization of candidate reference materials that we are developing at the NIST laboratories. Additional applications of spore reference materials would include testing sporicidal treatments, techniques for sampling the environment, and remediation of spore-contaminated environments. PMID:27274929
A Comparative Analysis of Life-Cycle Assessment Tools for ...
We identified and evaluated five life-cycle assessment tools that community decision makers can use to assess the environmental and economic impacts of end-of-life (EOL) materials management options. The tools evaluated in this report are waste reduction mode (WARM), municipal solid waste-decision support tool (MSW-DST), solid waste optimization life-cycle framework (SWOLF), environmental assessment system for environmental technologies (EASETECH), and waste and resources assessment for the environment (WRATE). WARM, MSW-DST, and SWOLF were developed for US-specific materials management strategies, while WRATE and EASETECH were developed for European-specific conditions. All of the tools (with the exception of WARM) allow specification of a wide variety of parameters (e.g., materials composition and energy mix) to a varying degree, thus allowing users to model specific EOL materials management methods even outside the geographical domain they are originally intended for. The flexibility to accept user-specified input for a large number of parameters increases the level of complexity and the skill set needed for using these tools. The tools were evaluated and compared based on a series of criteria, including general tool features, the scope of the analysis (e.g., materials and processes included), and the impact categories analyzed (e.g., climate change, acidification). A series of scenarios representing materials management problems currently relevant to c
Architecture engineering of supercapacitor electrode materials
NASA Astrophysics Data System (ADS)
Chen, Kunfeng; Li, Gong; Xue, Dongfeng
2016-02-01
The biggest challenge for today’s supercapacitor systems readily possessing high power density is their low energy density. Their electrode materials with controllable structure, specific surface area, electronic conductivity, and oxidation state, have long been highlighted. Architecture engineering of functional electrode materials toward powerful supercapacitor systems is becoming a big fashion in the community. The construction of ion-accessible tunnel structures can microscopically increase the specific capacitance and materials utilization; stiff 3D structures with high specific surface area can macroscopically assure high specific capacitance. Many exciting findings in electrode materials mainly focus on the construction of ice-folded graphene paper, in situ functionalized graphene, in situ crystallizing colloidal ionic particles and polymorphic metal oxides. This feature paper highlights some recent architecture engineering strategies toward high-energy supercapacitor electrode systems, including electric double-layer capacitance (EDLC) and pseudocapacitance.
10 CFR 1045.17 - Classification levels.
Code of Federal Regulations, 2014 CFR
2014-01-01
... classification include detailed technical descriptions of critical features of a nuclear explosive design that... classification include designs for specific weapon components (not revealing critical features), key features of uranium enrichment technologies, or specifications of weapon materials. (3) Confidential. The Director of...
10 CFR 1045.17 - Classification levels.
Code of Federal Regulations, 2013 CFR
2013-01-01
... classification include detailed technical descriptions of critical features of a nuclear explosive design that... classification include designs for specific weapon components (not revealing critical features), key features of uranium enrichment technologies, or specifications of weapon materials. (3) Confidential. The Director of...
10 CFR 1045.17 - Classification levels.
Code of Federal Regulations, 2011 CFR
2011-01-01
... classification include detailed technical descriptions of critical features of a nuclear explosive design that... classification include designs for specific weapon components (not revealing critical features), key features of uranium enrichment technologies, or specifications of weapon materials. (3) Confidential. The Director of...
10 CFR 1045.17 - Classification levels.
Code of Federal Regulations, 2012 CFR
2012-01-01
... classification include detailed technical descriptions of critical features of a nuclear explosive design that... classification include designs for specific weapon components (not revealing critical features), key features of uranium enrichment technologies, or specifications of weapon materials. (3) Confidential. The Director of...
Creep-fatigue life prediction for engine hot section materials (isotropic)
NASA Technical Reports Server (NTRS)
Moreno, V.
1982-01-01
The objectives of this program are the investigation of fundamental approaches to high temperature crack initiation life prediction, identification of specific modeling strategies and the development of specific models for component relevant loading conditions. A survey of the hot section material/coating systems used throughout the gas turbine industry is included. Two material/coating systems will be identified for the program. The material/coating system designated as the base system shall be used throughout Tasks 1-12. The alternate material/coating system will be used only in Task 12 for further evaluation of the models developed on the base material. In Task II, candidate life prediction approaches will be screened based on a set of criteria that includes experience of the approaches within the literature, correlation with isothermal data generated on the base material, and judgements relative to the applicability of the approach for the complex cycles to be considered in the option program. The two most promising approaches will be identified. Task 3 further evaluates the best approach using additional base material fatigue testing including verification tests. Task 4 consists of technical, schedular, financial and all other reporting requirements in accordance with the Reports of Work clause.
Non-thermal plasma conversion of hydrocarbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strohm, James J.; Skoptsov, George L.; Musselman, Evan T.
A non-thermal plasma is generated to selectively convert a precursor to a product. More specifically, plasma forming material and a precursor material are provided to a reaction zone of a vessel. The reaction zone is exposed to microwave radiation, including exposing the plasma forming material and the precursor material to the microwave radiation. The exposure of the plasma forming material to the microwave radiation selectively converts the plasma forming material to a non-thermal plasma including formation of one or more streamers. The precursor material is mixed with the plasma forming material and the precursor material is exposed to the non-thermalmore » plasma including exposing the precursor material to the one or more streamers. The exposure of the precursor material to the streamers and the microwave radiation selectively converts the precursor material to a product.« less
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Casey, C. J.; Kourtides, D. A.; Parker, J. A.
1977-01-01
Approximately 300 materials were evaluated using a specific set of test conditions. Materials tested included wood, fibers, fabrics and synthetic polymers. Data obtained using 10 different sets of test conditions are presented.
48 CFR 852.236-89 - Buy American Act.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Notwithstanding a bidder's right to offer identifiable foreign construction material in its bid pursuant to FAR 52... listing of the specific foreign construction material he/she intends to use and a price for said material. Bidders must include bid prices for comparable domestic construction material. If VA determines not to...
Monolayer boron-aluminum compacted sheet material
NASA Technical Reports Server (NTRS)
Sumner, E. V.
1973-01-01
The manufacturing techniques, basic materials used, and equipment required to produce monolayer boron-aluminum composites are described. Tentative materials and process specifications are included. Improvements in bonding and filament spacing obtained through use of brazing powder in the fugitive binder are discussed.
Material Separation Using Dual-Energy CT: Current and Emerging Applications.
Patino, Manuel; Prochowski, Andrea; Agrawal, Mukta D; Simeone, Frank J; Gupta, Rajiv; Hahn, Peter F; Sahani, Dushyant V
2016-01-01
Dual-energy (DE) computed tomography (CT) offers the opportunity to generate material-specific images on the basis of the atomic number Z and the unique mass attenuation coefficient of a particular material at different x-ray energies. Material-specific images provide qualitative and quantitative information about tissue composition and contrast media distribution. The most significant contribution of DE CT-based material characterization comes from the capability to assess iodine distribution through the creation of an image that exclusively shows iodine. These iodine-specific images increase tissue contrast and amplify subtle differences in attenuation between normal and abnormal tissues, improving lesion detection and characterization in the abdomen. In addition, DE CT enables computational removal of iodine influence from a CT image, generating virtual noncontrast images. Several additional materials, including calcium, fat, and uric acid, can be separated, permitting imaging assessment of metabolic imbalances, elemental deficiencies, and abnormal deposition of materials within tissues. The ability to obtain material-specific images from a single, contrast-enhanced CT acquisition can complement the anatomic knowledge with functional information, and may be used to reduce the radiation dose by decreasing the number of phases in a multiphasic CT examination. DE CT also enables generation of energy-specific and virtual monochromatic images. Clinical applications of DE CT leverage both material-specific images and virtual monochromatic images to expand the current role of CT and overcome several limitations of single-energy CT. (©)RSNA, 2016.
Disability-Aware Adaptive and Personalised Learning for Students with Multiple Disabilities
ERIC Educational Resources Information Center
Nganji, Julius T.; Brayshaw, Mike
2017-01-01
Purpose: The purpose of this paper is to address how virtual learning environments (VLEs) can be designed to include the needs of learners with multiple disabilities. Specifically, it employs AI to show how specific learning materials from a huge repository of learning materials can be recommended to learners with various disabilities. This is…
NASA Technical Reports Server (NTRS)
1997-01-01
The bibliography contains citations concerning analytical techniques using constitutive equations, applied to materials under stress. The properties explored with these techniques include viscoelasticity, thermoelasticity, and plasticity. While many of the references are general as to material type, most refer to specific metals or composites, or to specific shapes, such as flat plate or spherical vessels.
Interlibrary Loan of Alternative Format Materials: A Balanced Sourcebook.
ERIC Educational Resources Information Center
Massis, Bruce E., Ed.; Vitzansky, Winnie, Ed.
This document presents perspectives on, and a reference guide to internationally interlending materials in alternate formats (recordings, braille, large print). A questionnaire was sent to the world's known libraries serving the blind; results of the survey include specific lending information from 29 countries including: South Africa, Hong Kong,…
Build Your Own Solar Air Heater.
ERIC Educational Resources Information Center
Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.
The solar air heater is a simple device for catching some of the sun's energy to heat a home. Procedures for making and installing such a heater are presented. Included is a materials list, including tools needed for constructing the heater, sources for obtaining further details, and a list of material specifications. (JN)
Rohr, Annette; McDonald, Jacob
2016-02-01
Air pollution is a complex mixture of gas-, vapor-, and particulate-phase materials comprised of inorganic and organic species. Many of these components have been associated with adverse health effects in epidemiological and toxicological studies, including a broad spectrum of carbonaceous atmospheric components. This paper reviews recent literature on the health impacts of organic aerosols, with a focus on specific sources of organic material; it is not intended to be a comprehensive review of all the available literature. Specific emission sources reviewed include engine emissions, wood/biomass combustion emissions, biogenic emissions and secondary organic aerosol (SOA), resuspended road dust, tire and brake wear, and cooking emissions. In addition, recent findings from large toxicological and epidemiological research programs are reviewed in the context of organic PM, including SPHERES, NPACT, NERC, ACES, and TERESA. A review of the extant literature suggests that there are clear health impacts from emissions containing carbon-containing PM, but difficulty remains in apportioning responses to certain groupings of carbonaceous materials, such as organic and elemental carbon, condensed and gas phases, and primary and secondary material. More focused epidemiological and toxicological studies, including increased characterization of organic materials, would increase understanding of this issue.
76 FR 26983 - Improving Wireless Coverage Through the Use of Signal Boosters
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-10
... Disabilities: To request materials in accessible formats for people with disabilities (braille, large [email protected] . 5. To request materials in accessible formats for people with disabilities (Braille, large... signal boosters. Specifically, the Commission proposes that marketing materials must include a...
High specific activity platinum-195m
Mirzadeh, Saed; Du, Miting; Beets, Arnold L.; Knapp, Jr., Furn F.
2004-10-12
A new composition of matter includes .sup.195m Pt characterized by a specific activity of at least 30 mCi/mg Pt, generally made by method that includes the steps of: exposing .sup.193 Ir to a flux of neutrons sufficient to convert a portion of the .sup.193 Ir to .sup.195m Pt to form an irradiated material; dissolving the irradiated material to form an intermediate solution comprising Ir and Pt; and separating the Pt from the Ir by cation exchange chromatography to produce .sup.195m Pt.
Method and system for fiber optic determination of gas concentrations in liquid receptacles
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet (Inventor)
2008-01-01
A system for determining gas compositions includes a probe, inserted into a source of gaseous material, the probe having a gas permeable sensor tip and being capable of sending and receiving light to and from the gaseous material, a sensor body, connected to the probe, situated outside of the source and a fiber bundle, connected to the sensor body and communicating light to and from the probe. The system also includes a laser source, connected to one portion of the fiber bundle and providing laser light to the fiber bundle and the probe a Raman spectrograph, connected to another portion of the fiber bundle, receiving light from the probe and filtering the received light into specific channels and a data processing unit, receiving and analyzing the received light in the specific channels and outputting concentration of specific gas species in the gaseous material based on the analyzed received light.
ERIC Educational Resources Information Center
Tillin, Alma M.; Quinly, William J.
Standards established by the Association for Educational Communications and Technology (AECT) set forth basic cataloging rules that apply to all types of nonprint materials. Included are all elements needed to identify, describe, and retrieve an article. Cataloging rules are applied to 18 specific media formats including audiorecording, films,…
Teacher's Directory of Reading Skill Aids and Materials.
ERIC Educational Resources Information Center
Dechant, Emerald
Intended to help reading teachers match pupil needs and deficiencies with specific instructional materials, this volume contains more than 2,000 print and audiovisual instructional materials for reading instruction. Citations, which include objectives, grade level, publisher, and format, are grouped into the following sections: (1) developing the…
NASA Technical Reports Server (NTRS)
Reynard, Keith W.
1996-01-01
The different systems that are in use for the major classes of engineering materials are summarized. The work was carried out within the scope of the Versailles project on advanced materials and standards (VAMAS). An inventory of national and international standards that give specifications for the materials and international standards are included. Comments on the increasing knowledge of, and the increasing demand for, data concerning the materials performance are included. Recommendations for future activities in the standardization of classification and designation systems are given.
ERIC Educational Resources Information Center
National Council of Teachers of English, Urbana, IL.
This guide contains 550 annotations for English anthologies, textbooks, workbooks, multimedia packages, and other materials for grades 7-12. Works of literature, audiovisual materials, and professional publications are included only when integrally related to specific, listed instructional materials. Entries are grouped into the following subject…
Pre-Retirement Rehearsal Project: A Bibliography of Pre-Retirement Planning.
ERIC Educational Resources Information Center
Ellenberg, Donna
This bibliography cites title, source/publisher, availability, and cost for information and materials on various aspects of pre-retirement planning. Materials may be specifically for the elderly/retired person or of general interest. Bibliographies and periodicals are included. These materials and information are listed under twenty-three…
40 CFR 725.239 - Use of specific microorganisms in activities conducted outside a structure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Bradyrhizobium japonicum. (2) Modification of traits. (i) The introduced genetic material must meet the criteria for poorly mobilizable listed in § 725.421(c). (ii) The introduced genetic material must consist only... sequences needed to move genetic material, including linkers, homopolymers, adaptors, transposons, insertion...
40 CFR 725.239 - Use of specific microorganisms in activities conducted outside a structure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Bradyrhizobium japonicum. (2) Modification of traits. (i) The introduced genetic material must meet the criteria for poorly mobilizable listed in § 725.421(c). (ii) The introduced genetic material must consist only... sequences needed to move genetic material, including linkers, homopolymers, adaptors, transposons, insertion...
40 CFR 725.239 - Use of specific microorganisms in activities conducted outside a structure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Bradyrhizobium japonicum. (2) Modification of traits. (i) The introduced genetic material must meet the criteria for poorly mobilizable listed in § 725.421(c). (ii) The introduced genetic material must consist only... sequences needed to move genetic material, including linkers, homopolymers, adaptors, transposons, insertion...
Resources for Teaching Word Identification.
ERIC Educational Resources Information Center
Schell, Leo M., Ed.; And Others
Only materials specifically designed to teach one or more of the following word identification skills were included in this booklet: sight words, context clues, phonic analysis, structural analysis, and dictionary skills. Materials for grades one through six are stressed, although a few materials suitable for secondary school students are listed.…
Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging
NASA Astrophysics Data System (ADS)
Barty, C. P. J.
2015-10-01
Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.
Michael A. Ritter; Keith F. Faherty
1999-01-01
This section addresses the design of two types of glulam timber bridges : beam bridges with transverse decks and longitudinal glulam deck (slab) bridges. The material presented in the section is based on the 1992 edition of the AASHTO Standard Specifications for Highway Bridges (AASHTO specifications), including interim specifications through 1993. When specific design...
Thermal Technology Development Activities at the Goddard Space Flight Center - 2001
NASA Technical Reports Server (NTRS)
Butler, Dan
2002-01-01
This presentation provides an overview of thermal technology development activities carried out at NASA's Goddard Space Flight Center during 2001. Specific topics covered include: two-phase systems (heat pipes, capillary pumped loops, vapor compression systems and phase change materials), variable emittance systems, advanced coatings, high conductivity materials and electrohydrodynamic (EHD) thermal coatings. The application of these activities to specific space missions is also discussed.
Ecological assessment of nano-enabled supercapacitors for automotive applications
NASA Astrophysics Data System (ADS)
Weil, M.; Dura, H.; Shimon, B.; Baumann, M.; Zimmermann, B.; Ziemann, S.; Lei, C.; Markoulidis, F.; Lekakou, T.; Decker, M.
2012-09-01
New materials on nano scale have the potential to overcome existing technical barriers and are one of the most promising key technologies to enable the decoupling of economic growth and resource consumption. Developing these innovative materials for industrial applications means facing a complex quality profile, which includes among others technical, economic, and ecological aspects. So far the two latter aspects are not sufficiently included in technology development, especially from a life cycle point of view. Supercapacitors are considered a promising option for electric energy storage in hybrid and full electric cars. In comparison with presently used lithium based electro chemical storage systems supercapacitors possess a high specific power, but a relatively low specific energy. Therefore, the goal of ongoing research is to develop a new generation of supercapacitors with high specific power and high specific energy. To reach this goal particularly nano materials are developed and tested on cell level. In the presented study the ecological implications (regarding known environmental effects) of carbon based nano materials are analysed using Life Cycle Assessment (LCA). Major attention is paid to efficiency gains of nano particle production due to scaling up of such processes from laboratory to industrial production scales. Furthermore, a developed approach will be displayed, how to assess the environmental impact of nano materials on an automotive system level over the whole life cycle.
DOT National Transportation Integrated Search
2013-05-01
This report showcases several new approaches of using materials science and structural mechanics to accomplish : sustainable design of concrete materials. The topics addressed include blended cements, fiber-reinforced concrete : (FRC), internal curin...
ERIC Educational Resources Information Center
American Alliance for Health, Physical Education, and Recreation, Washington, DC. Information and Research Utilization Center.
Intended as a resource guide for persons who include such subjects as arts, crafts, dance, and music in programs for the handicapped, resources are listed for printed materials, audiovisual materials, resource persons and organizations, and material and equipment suppliers. Brief literature reviews sum up the state of the art in the specific art…
Are patients comprehending? A critical assessment of online patient educational materials.
Bui, Thanh-Lan; Silva-Hirschberg, Catalina; Torres, Josefina; Armstrong, April W
2018-05-01
The primary aim of this study was to evaluate the readability, understandability, suitability and actionability of online psoriasis patient educational materials. A secondary aim was to identify areas for improvement. We conducted an evaluation study to assess online psoriasis patient educational materials from the American Academy of Dermatology and National Psoriasis Foundation available in July 2017. We used two validated assessment tools specific to online healthcare materials. Outcomes were expressed as percentages, where higher percentages corresponded to higher quality materials. Overall, the educational materials had a mean understandability score (72.7%) that was understandable; a suitability score (58.8%) that was adequate; a reading grade level (10.5) that was not readable; and an actionability score (54.7%) that was not actionable. Areas of improvement include reading grade level, visual aids, word choice, specific steps for actions and cultural appropriateness. Online psoriasis patient educational materials are understandable and suitable, but they are written above the American Medical Association and National Institutes of Health's recommended 6th-8th grade reading level and are not actionable. Materials can benefit from decreasing reading grade level, including more visual elements, incorporating more actionable items and being culturally inclusive.
76 FR 68225 - License Renewal Application for Purdue University
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-03
... each contention, the petitioner must provide a specific statement of the issue of law or fact to be... response to the application. The petition must also include a concise statement of the alleged facts or... exists with the applicant on a material issue of law or fact, including references to specific portions...
49 CFR 172.704 - Training requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... PROVISIONS, HAZARDOUS MATERIALS COMMUNICATIONS, EMERGENCY RESPONSE INFORMATION, TRAINING REQUIREMENTS, AND... communication standards of this subchapter. (2) Function-specific training. (i) Each hazmat employee must be... must include company security objectives, organizational security structure, specific security...
Second Aerospace Environmental Technology Conference
NASA Technical Reports Server (NTRS)
Whitaker, A. F. (Editor); Clark-Ingram, M. (Editor)
1997-01-01
The mandated elimination of CFC'S, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application, verification, compliant coatings including corrosion protection system and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.
Second Aerospace Environmental Technology Conference
NASA Technical Reports Server (NTRS)
Whitaker, A. F.; Clark-Ingram, M.; Hessler, S. L.
1997-01-01
The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.
Standard Specifications for Language Laboratory.
ERIC Educational Resources Information Center
North Carolina State Dept. of Administration, Raleigh.
Specifications are presented covering the components of electronic and electro-mechanical equipment, non-electrical materials for the teacher-student positions, and other items of a miscellaneous nature to provide for a complete, workable language laboratory facility. Instructions for the use of specifications are included for the purchaser,…
ERIC Educational Resources Information Center
Langer, Philip; Borg, Walter R.
This handbook is designed to acquaint the teacher educator with the training materials in classroom management prepared by the Utah State University Protocol Training Project. It deals with the protocol materials generally and with each module specifically, and includes the following sections: (a) an introduction to and rationale for protocol…
Toward the Development of a Model to Estimate the Readability of Credentialing-Examination Materials
ERIC Educational Resources Information Center
Badgett, Barbara A.
2010-01-01
The purpose of this study was to develop a set of procedures to establish readability, including an equation, that accommodates the multiple-choice item format and occupational-specific language related to credentialing examinations. The procedures and equation should be appropriate for learning materials, examination materials, and occupational…
Tamarisk coalition - native riparian plant materials program
Stacy Kolegas
2012-01-01
The Tamarisk Coalition (TC), a nonprofit organization dedicated to riparian restoration in the western United States, has created a Native Plant Materials Program to address the identified need for native riparian plant species for use in revegetation efforts on the Colorado Plateau. The specific components of the Native Plant Materials Program include: 1) provide seed...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lordi, Vincenzo
The aims of this project are to enable rational materials design for select high-payoff challenges in radiation detection materials by using state-of-the-art predictive atomistic modeling techniques. Three specific high-impact challenges are addressed: (i) design and optimization of electrical contact stacks for TlBr detectors to stabilize temporal response at room-temperature; (ii) identification of chemical design principles of host glass materials for large-volume, low-cost, highperformance glass scintillators; and (iii) determination of the electrical impacts of dislocation networks in Cd 1-xZn xTe (CZT) that limit its performance and usable single-crystal volume. The specific goals are to establish design and process strategies to achievemore » improved materials for high performance detectors. Each of the major tasks is discussed below in three sections, which include the goals for the task and a summary of the major results, followed by a listing of publications that contain the full details, including details of the methodologies used. The appendix lists 12 conference presentations given for this project, including 1 invited talk and 1 invited poster.« less
A Review on Recent Patents and Applications of Inorganic Material Binding Peptides.
Thota, Veeranjaneyulu; Perry, Carole C
2017-01-01
Although the popularity of using combinatorial display techniques for recognising unique peptides having high affinity for inorganic (nano) particles has grown rapidly, there are no systematic reviews showcasing current developments or patents on binding peptides specific to these materials. In this review, we summarize and discuss recent progress in patents on material binding peptides specifically exploring inorganic nano surfaces such as metals, metal oxides, minerals, carbonbased materials, polymer based materials, magnetic materials and semiconductors. We consider both the peptide display strategies used and the exploitation of the identified peptides in the generation of advanced nanomaterials. In order to get a clear picture on the number of patents and literature present to date relevant to inorganic material binding biomolecules and their applications, a thorough online search was conducted using national and worldwide databases. The literature search include standard bibliographic databases while patents included EPO Espacenet, WIPO patent scope, USPTO, Google patent search, Patent lens, etc. along with commercial databases such as Derwent and Patbase. Both English and American spellings were included in the searches. The initial number of patents found related to material binders were 981. After reading and excluding irrelevant patents such as organic binding peptides, works published before 2001, repeated patents, documents not in English etc., 51 highly relevant patents published from 2001 onwards were selected and analysed. These patents were further separated into six categories based on their target inorganic material and combinatorial library used. They include relevant patents on metal, metal oxide or combination binding peptides (19), magnetic and semiconductor binding peptides (8), carbon based (3), mineral (5), polymer (8) and other binders (9). Further, how these material specific binders have been used to synthesize simple to complex bio- or nano-materials, mediate the controlled biomineralization process, direct self-assembly and nanofabrication of ordered structures, facilitate the immobilization of functional biomolecules and construct inorganic-inorganic or organic-inorganic nano hybrids are concisely described. From analysis of recent literature and patents, we clearly show that biomimetic material binders are in the vanguard of new design approaches for novel nanomaterials with improved/ controlled physical and chemical properties that have no adverse effect on the structural or functional activities of the nanomaterials themselves. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Production of high specific activity silicon-32
Phillips, Dennis R.; Brzezinski, Mark A.
1994-01-01
A process for preparation of silicon-32 is provide and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution to from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidization state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.
High specific activity silicon-32
Phillips, Dennis R.; Brzezinski, Mark A.
1996-01-01
A process for preparation of silicon-32 is provided and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution to from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidization state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.
High specific activity silicon-32
Phillips, D.R.; Brzezinski, M.A.
1996-06-11
A process for preparation of silicon-32 is provided and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidation state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.
Chemical Fingerprinting of Materials Developed Due to Environmental Issues
NASA Technical Reports Server (NTRS)
Smith, Doris A.; McCool, A. (Technical Monitor)
2000-01-01
Instrumental chemical analysis methods are developed and used to chemically fingerprint new and modified External Tank materials made necessary by changing environmental requirements. Chemical fingerprinting can detect and diagnose variations in material composition. To chemically characterize each material, fingerprint methods are selected from an extensive toolbox based on the material's chemistry and the ability of the specific methods to detect the material's critical ingredients. Fingerprint methods have been developed for a variety of materials including Thermal Protection System foams, adhesives, primers, and composites.
Structural materials issues for the next generation fission reactors
NASA Astrophysics Data System (ADS)
Chant, I.; Murty, K. L.
2010-09-01
Generation-IV reactor design concepts envisioned thus far cater to a common goal of providing safer, longer lasting, proliferation-resistant, and economically viable nuclear power plants. The foremost consideration in the successful development and deployment of Gen-W reactor systems is the performance and reliability issues involving structural materials for both in-core and out-of-core applications. The structural materials need to endure much higher temperatures, higher neutron doses, and extremely corrosive environments, which are beyond the experience of the current nuclear power plants. Materials under active consideration for use in different reactor components include various ferritic/martensitic steels, austenitic stainless steels, nickel-base superalloys, ceramics, composites, etc. This article addresses the material requirements for these advanced fission reactor types, specifically addressing structural materials issues depending on the specific application areas.
NASA Astrophysics Data System (ADS)
Hug, William F.; Bhartia, Rohit; Taspin, Alexandre; Lane, Arthur; Conrad, Pamela; Sijapati, Kripa; Reid, Ray D.
2005-11-01
Laser induced native fluorescence (LINF) is the most sensitive method of detection of biological material including microorganisms, virus', and cellular residues. LINF is also a sensitive method of detection for many non-biological materials as well. The specificity with which these materials can be classified depends on the excitation wavelength and the number and location of observation wavelengths. Higher levels of specificity can be obtained using Raman spectroscopy but a much lower levels of sensitivity. Raman spectroscopy has traditionally been employed in the IR to avoid fluorescence. Fluorescence rarely occurs at wavelength below about 270nm. Therefore, when excitation occurs at a wavelength below 250nm, no fluorescence background occurs within the Raman fingerprint region for biological materials. When excitation occurs within electronic resonance bands of the biological target materials, Raman signal enhancement over one million typically occurs. Raman sensitivity within several hundred times fluorescence are possible in the deep UV where most biological materials have strong absorption. Since the Raman and fluorescence emissions occur at different wavelength, both spectra can be observed simultaneously, thereby providing a sensor with unique sensitivity and specificity capability. We will present data on our integrated, deep ultraviolet, LINF/Raman instruments that are being developed for several applications including life detection on Mars as well as biochemical warfare agents on Earth. We will demonstrate the ability to discriminate organic materials based on LINF alone. Together with UV resonance Raman, higher levels of specificity will be demonstrated. In addition, these instruments are being developed as on-line chemical sensors for industrial and municipal waste streams and product quality applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-19
..., the petitioner must provide a specific statement of the issue of law or fact to be raised or... application. The petition must also include a concise statement of the alleged facts or expert opinions which... applicant on a material issue of law or fact, including references to specific portions of the application...
Conference on the Development of Fire-Resistant Aircraft Passenger Seats
NASA Technical Reports Server (NTRS)
Fewell, L. L.; Kourtides, D. A.; Rosser, R. W.; Parker, J. A.
1976-01-01
Papers are presented dealing with the development of aircraft seats with the minimum fire risk. Criteria examined include: flame spread, heat release, and smoke and/or toxic fumes. Materials and performance specifications of all seat material options are provided.
The Community College Foundation Manual & Guide.
ERIC Educational Resources Information Center
Anderson, James M., Comp.; Snyder, Tom, Comp.
This collection of resources and information about community college foundations includes brief articles, selected data, materials from foundations, sample mission statements and articles of incorporation, sample forms and correspondence, relevant educational legislation, and other related materials from specific active foundations at two-year…
Abstracts of Review Articles and Educational Materials in Physiology
ERIC Educational Resources Information Center
Physiology Teacher, 1977
1977-01-01
Contained are 99 abstracts of review articles, texts, books, manuals, learning programs, and audiovisual material used in teaching physiology. Specific fields include cell physiology, circulation, comparative physiology, development and aging, endocrinology and metabolism, environmental and exercise physiology, gastrointestinal physiology, muscle…
Pyrolyzed-parylene based sensors and method of manufacture
NASA Technical Reports Server (NTRS)
Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Miserendino, Scott (Inventor); Konishi, Satoshi (Inventor)
2007-01-01
A method (and resulting structure) for fabricating a sensing device. The method includes providing a substrate comprising a surface region and forming an insulating material overlying the surface region. The method also includes forming a film of carbon based material overlying the insulating material and treating to the film of carbon based material to pyrolyzed the carbon based material to cause formation of a film of substantially carbon based material having a resistivity ranging within a predetermined range. The method also provides at least a portion of the pyrolyzed carbon based material in a sensor application and uses the portion of the pyrolyzed carbon based material in the sensing application. In a specific embodiment, the sensing application is selected from chemical, humidity, piezoelectric, radiation, mechanical strain or temperature.
Preliminary Specifications for Standard Concrete Ties and Fastenings for Transit Track
DOT National Transportation Integrated Search
1979-01-01
These revised specifications cover requirements for component materials, manufacturing procedures, and handling of mono-block and two-block concrete (prestressed) cross ties, pads, and insulators for rapid transit use. It also includes requirements f...
Method of preparing high specific activity platinum-195m
Mirzadeh, Saed; Du, Miting; Beets, Arnold L.; Knapp, Jr., Furn F.
2004-06-15
A method of preparing high-specific-activity .sup.195m Pt includes the steps of: exposing .sup.193 Ir to a flux of neutrons sufficient to convert a portion of the .sup.193 Ir to .sup.195m Pt to form an irradiated material; dissolving the irradiated material to form an intermediate solution comprising Ir and Pt; and separating the Pt from the Ir by cation exchange chromatography to produce .sup.195m Pt.
10 CFR 110.32 - Information required in an application for a specific license/NRC Form 7.
Code of Federal Regulations, 2010 CFR
2010-01-01
... equipment or material. (c) Country of origin of equipment or material, and any other countries that have... characteristics, route of transit of shipment, and ultimate disposition (including forms of management) of the...-level waste compact or State to accept the material for management purposes or disposal. (7) Description...
ERIC Educational Resources Information Center
Canadian Commission of Employment and Immigration, Ottawa (Ontario).
Second in a resource series (see note), this annotated bibliography provides detailed information on training curriculum and instructional materials for welding, brazing, and flame-cutting. The materials are divided into thirty-fie sections by topic and type. Specific topic areas include gas and arc welding; arc welding; oxyacetylene welding and…
ERIC Educational Resources Information Center
Condon, E. C.; And Others
Included in this bibliography are references to resources and materials available to the teacher and educator on human relations and cultural education. The bibliography is divided into three sections on culture, specific culture, and adult bilingual-bicultural education. The section on culture presents background information on the relation of…
Materials Selection for Aerospace Systems
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Cebon, David; Ashby, Mike
2012-01-01
A systematic design-oriented, five-step approach to material selection is described: 1) establishing design requirements, 2) material screening, 3) ranking, 4) researching specific candidates and 5) applying specific cultural constraints to the selection process. At the core of this approach is the definition performance indices (i.e., particular combinations of material properties that embody the performance of a given component) in conjunction with material property charts. These material selection charts, which plot one property against another, are introduced and shown to provide a powerful graphical environment wherein one can apply and analyze quantitative selection criteria, such as those captured in performance indices, and make trade-offs between conflicting objectives. Finding a material with a high value of these indices maximizes the performance of the component. Two specific examples pertaining to aerospace (engine blades and pressure vessels) are examined, both at room temperature and elevated temperature (where time-dependent effects are important) to demonstrate the methodology. The discussion then turns to engineered/hybrid materials and how these can be effectively tailored to fill in holes in the material property space, so as to enable innovation and increases in performance as compared to monolithic materials. Finally, a brief discussion is presented on managing the data needed for materials selection, including collection, analysis, deployment, and maintenance issues.
Langevin, Stanley A; Bent, Zachary W; Solberg, Owen D; Curtis, Deanna J; Lane, Pamela D; Williams, Kelly P; Schoeniger, Joseph S; Sinha, Anupama; Lane, Todd W; Branda, Steven S
2013-04-01
Use of second generation sequencing (SGS) technologies for transcriptional profiling (RNA-Seq) has revolutionized transcriptomics, enabling measurement of RNA abundances with unprecedented specificity and sensitivity and the discovery of novel RNA species. Preparation of RNA-Seq libraries requires conversion of the RNA starting material into cDNA flanked by platform-specific adaptor sequences. Each of the published methods and commercial kits currently available for RNA-Seq library preparation suffers from at least one major drawback, including long processing times, large starting material requirements, uneven coverage, loss of strand information and high cost. We report the development of a new RNA-Seq library preparation technique that produces representative, strand-specific RNA-Seq libraries from small amounts of starting material in a fast, simple and cost-effective manner. Additionally, we have developed a new quantitative PCR-based assay for precisely determining the number of PCR cycles to perform for optimal enrichment of the final library, a key step in all SGS library preparation workflows.
Aerospace Environmental Technology Conference
NASA Technical Reports Server (NTRS)
Whitaker, A. F. (Editor)
1995-01-01
The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The Executive Summary of this Conference is published as NASA CP-3297.
Materials Science Experiments on the International Space Station
NASA Technical Reports Server (NTRS)
Gillies, Donald C.
1999-01-01
The Performance Goal for NASA's Microgravity Materials Science Program reads "Use microgravity to establish and improve quantitative and predictive relationships between the structure, processing and properties of materials." The advent of the International Space Station will open up a new era in Materials Science Research including the ability to perform long term and frequent experiments in microgravity. As indicated the objective is to gain a greater understanding of issues of materials science in an environment in which the force of gravity can be effectively switched off. Thus gravity related issues of convection, buoyancy and hydrostatic forces can be reduced and the science behind the structure/processing/properties relationship can more easily be understood. The specific areas of research covered within the program are (1) the study of Nucleation and Metastable States, (2) Prediction and Control of Microstructure (including pattern formation and morphological stability), (3) Phase Separation and Interfacial Stability, (4) Transport Phenomena (including process modeling and thermophysical properties measurement), and (5) Crystal Growth, and Defect Generation and Control. All classes of materials, including metals and alloys, glasses and ceramics, polymers, electronic materials (including organic and inorganic single crystals), aerogels and nanostructures, are included in these areas. The principal experimental equipment available to the materials scientist on the International Space Station (ISS) will be the Materials Science Research Facility (MSRF). Each of these systems will be accommodated in a single ISS rack, which can operate autonomously, will accommodate telescience operations, and will provide real time data to the ground. Eventual plans call for three MSRF racks, the first of which will be shared with the European Space Agency (ESA). Under international agreements, ESA and other partners will provide some of the equipment, while NASA covers launch and integration costs. The MSRF facilities will include modular components, which can be exchanged to provide inserts specifically matched to the engineering requirements of the particular Principal Investigator. To defray costs and avoid duplication of engineering effort NASA is also pursuing the possibility of using facilities provided by international partners. By this means it is anticipated that all of the types of research outlined in the previous paragraph can be done on the ISS.
Comparative study of the physical properties of core materials.
Saygili, Gülbin; Mahmali, Sevil M
2002-08-01
This study was undertaken to measure physical properties of materials used for direct core buildups, including high-copper amalgam, visible light-cured resin composite, autocured titanium-containing composite, polyacid-modified composite, resin-modified glass-ionomer, and silver cermet cement. Compressive strength, diametral tensile strength, and flexural strength of six core materials of various material classes were measured for each material as a function of time up to 3 months at different storage conditions, using a standard specification test designed for the materials. Three different storage conditions (dry, humid, wet) at 37 degrees C were chosen. Materials were manipulated according to manufacturers' instructions for use as cores. Mean compressive, diametral tensile, and flexural strengths with associated standard deviations were calculated for each material. Multiple comparison and Newman-Keuls tests discerned many differences among materials. All materials were found to meet the minimum specification requirements, except in terms of flexural strength for amalgam after 1 hour and the silver cermet at all time intervals.
A Journalist's Guide to the Free Press.
ERIC Educational Resources Information Center
Ingelhart, Louis
1996-01-01
Summarizes the content of the federal constitution and various state constitutions regarding freedom of the press. Examines certain borderline issues, including actions and expressions, pornography, defamation, libel, and copyrighted material. States that regulation of unprotected material must be reasonable, specific, and clear. Discusses what…
CHARACTERISTICS OF FLORIDA FILL MATERIALS AND SOILS 1990
The report gives results of laboratory work by the University of Florida in support of the Foundation Fill Data Base project of the Foundation Fill Materials Specifications Task Area of the Florida Radon Research Program (FRRP). Work included determination of radon concentrations...
Code of Federal Regulations, 2010 CFR
2010-01-01
... allocable to a particular cost objective (i.e., a specific function, project, process, or organization) if...) Direct materials. (4) Other direct costs. (5) Processing materials and chemicals. (6) Power and other... equipment. (10) Added factor includes general and administrative costs and other support costs that are...
ERIC Educational Resources Information Center
Basalt Rock Co., Inc., Napa, CA.
Diagrammatic explanations of various concepts, processes, details, and potential material usages are presented. Specific material and element topics include--(1) the fabrication process, (2) basic structural components, (3) element usage, and (4) building construction procedures. Examples of the use of related elements are shown for typical school…
ERIC Educational Resources Information Center
National Council of Teachers of English, Urbana, IL.
This supplement to the "NCTE Guide to Teaching Materials for English, Grades 7-12" contains annotations for English anthologies, textbooks, workbooks, multimedia packages, and other materials for the junior high and high school levels. Works of literature, audiovisual materials, and professional publications are included when related to specific,…
Advances in Integrated Computational Materials Engineering "ICME"
NASA Astrophysics Data System (ADS)
Hirsch, Jürgen
The methods of Integrated Computational Materials Engineering that were developed and successfully applied for Aluminium have been constantly improved. The main aspects and recent advances of integrated material and process modeling are simulations of material properties like strength and forming properties and for the specific microstructure evolution during processing (rolling, extrusion, annealing) under the influence of material constitution and process variations through the production process down to the final application. Examples are discussed for the through-process simulation of microstructures and related properties of Aluminium sheet, including DC ingot casting, pre-heating and homogenization, hot and cold rolling, final annealing. New results are included of simulation solution annealing and age hardening of 6xxx alloys for automotive applications. Physically based quantitative descriptions and computer assisted evaluation methods are new ICME methods of integrating new simulation tools also for customer applications, like heat affected zones in welding of age hardening alloys. The aspects of estimating the effect of specific elements due to growing recycling volumes requested also for high end Aluminium products are also discussed, being of special interest in the Aluminium producing industries.
Performance prediction evaluation of ceramic materials in point-focusing solar receivers
NASA Technical Reports Server (NTRS)
Ewing, J.; Zwissler, J.
1979-01-01
A performance prediction was adapted to evaluate the use of ceramic materials in solar receivers for point focusing distributed applications. System requirements were determined including the receiver operating environment and system operating parameters for various engine types. Preliminary receiver designs were evolved from these system requirements. Specific receiver designs were then evaluated to determine material functional requirements.
16 CFR 1201.40 - Interpretation concerning bathtub and shower doors and enclosures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... materials in a window that is located over a bathtub or within a shower stall and in the exterior wall of a...” contain no specific exemption for glazing materials in such windows. If read literally, the Standard could include glazing materials in an exterior wall window located above a bathtub because that window could be...
46 CFR 107.305 - Plans and information.
Code of Federal Regulations, 2013 CFR
2013-10-01
... systems. Marine Engineering (z) Plans required for marine engineering equipment and systems by Subchapter F of this chapter. Electrical Engineering (aa) Plans required for electrical engineering equipment... materials that do not conform to ABS or ASTM specifications, complete specifications, including chemical and...
Proceedings of the Workshop on an Electromagnetic Positioning System in Space
NASA Technical Reports Server (NTRS)
Oran, W. A. (Editor)
1978-01-01
A workshop was convened to help determine if sufficient justification existed to proceed with the design of an electromagnetic (EM) positioning device for use in space. Those in attendance included experts in crystal growth, nucleation phenomena, containerless processing techniques, properties of materials, metallurgical techniques, and glass technology. Specific areas mentioned included the study of metallic glasses and investigations of the properties of high temperature materials.
Review on electrochromic devices for automotive glazing
NASA Astrophysics Data System (ADS)
Demiryont, Hulya
1991-12-01
Electrochromic materials have been intensively studied for applications of various switchable optical systems. These materials exhibit adjustable optical absorption upon reversible oxidation/reduction processes. Since a reversible oxidation/reduction phenomenon is provided by electrically-driven electrochemical reactions, these materials are known as electrochromics. There are many publications including proceedings, books, and review articles written on electrochromic (EC) materials and their applications. This paper focuses on conventional and some new electrochromic devices (ECD), their specifications, and applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, M.A.; Moskowitz, P.D.
1981-07-01
Sample analyses and detailed documentation are presented for a Reference Material System (RMS) to estimate health and environmental risks of different material cycles and energy systems. Data inputs described include: end-use material demands, efficiency coefficients, environmental emission coefficients, fuel demand coefficients, labor productivity estimates, and occupational health and safety coefficients. Application of this model permits analysts to estimate fuel use (e.g., Btu), occupational risk (e.g., fatalities), and environmental emissions (e.g., sulfur oxide) for specific material trajectories or complete energy systems. Model uncertainty is quantitatively defined by presenting a range of estimates for each data input. Systematic uncertainty not quantified relatesmore » to the boundaries chosen for analysis and reference system specification. Although the RMS can be used to analyze material system impacts for many different energy technologies, it was specifically used to examine the health and environmental risks of producing the following four types of photovoltaic devices: silicon n/p single-crystal cells produced by a Czochralski process; silicon metal/insulator/semiconductor (MIS) cells produced by a ribbon-growing process; cadmium sulfide/copper sulfide backwall cells produced by a spray deposition process; and gallium arsenide cells with 500X concentrator produced by a modified Czochralski process. Emission coefficients for particulates, sulfur dioxide and nitrogen dioxide; solid waste; total suspended solids in water; and, where applicable, air and solid waste residuals for arsenic, cadmium, gallium, and silicon are examined and presented. Where data are available the coefficients for particulates, sulfur oxides, and nitrogen oxides include both process and on-site fuel-burning emissions.« less
ERIC Educational Resources Information Center
Educational Media Council, Inc., New York, NY.
THIS 14-VOLUME SERIES INCLUDES TITLES AND DESCRIPTIONS FOR ALL CURRENT AND GENERALLY AVAILABLE EDUCATIONAL MEDIA, EXCLUDING STANDARD PRINT MATERIALS. EACH VOLUME COVERS A SPECIFIC SUBJECT AREA, LISTS TITLES ALPHABETICALLY AND BY SUBJECT, DESCRIBES EACH ENTRY, AND LISTS NAMES AND ADDRESSES OF SOURCES FOR THE MATERIALS. VOLUME 14 IS A CUMULATIVE…
The Industrial Revolution: An ERIC/ChESS Sample.
ERIC Educational Resources Information Center
Pinhey, Laura A.
2000-01-01
Provides a list, from the ERIC database, of teaching materials and background information on the Industrial Revolution. Specific topics include life in Lowell (Massachusetts), the global impact of the Industrial Revolution, and England's Industrial Revolution. Offers directions for obtaining the full text of these materials. (CMK)
NASA Astrophysics Data System (ADS)
Bucholz, Eric W.
In the field of tribology, the ability to predict, and ultimately control, frictional performance is of critical importance for the optimization of tribological systems. As such, understanding the specific mechanisms involved in the lubrication processes for different materials is a fundamental step in tribological system design. In this work, a combination of computational and experimental methods that include classical molecular dynamics (MD) simulations, atomic force microscopy (AFM) experiments, and multivariate statistical analyses provides fundamental insight into the tribological and mechanical properties of carbon-based and inorganic nanostructures, lamellar materials, and inorganic ceramic compounds. One class of materials of modern interest for tribological applications is nanoparticles, which can be employed either as solid lubricating films or as lubricant additives. In experimental systems, however, it is often challenging to attain the in situ observation of tribological interfaces necessary to identify the atomic-level mechanisms involved during lubrication and response to mechanical deformation. Here, classical MD simulations establish the mechanisms occurring during the friction and compression of several types of nanoparticles including carbon nano-onions, amorphous carbon nanoparticles, and inorganic fullerene-like MoS2 nanoparticles. Specifically, the effect of a nanoparticle's structural properties on the lubrication mechanisms of rolling, sliding, and lamellar exfoliation is indicated; the findings quantify the relative impact of each mechanism on the tribological and mechanical properties of these nanoparticles. Beyond identifying the lubrication mechanisms of known lubricating materials, the continual advancement of modern technology necessitates the identification of new candidate materials for use in tribological applications. To this effect, atomic-scale AFM friction experiments on the aluminosilicate mineral pyrophyllite demonstrate that pyrophyllite provides a low friction coefficient and low shear stresses as well as a high threshold to interfacial wear; this suggests the potential for use of pyrophyllite as a lubricious material under specific conditions. Also, a robust and accurate model for estimating the friction coefficients of inorganic ceramic materials that is based on the fundamental relationships between material properties is presented, which was developed using multivariate data mining algorithms. These findings provide the tribological community with a new means of quickly identifying candidate materials that may provide specific frictional properties for desired applications.
Silicon production process evaluations
NASA Technical Reports Server (NTRS)
1982-01-01
Engineering design of the third distillation column in the process was accomplished. The initial design is based on a 94.35% recovery of dichlorosilane in the distillate and a 99.9% recovery of trichlorosilane in the bottoms. The specified separation is achieved at a reflux ratio of 15 with 20 trays (equilibrium stages). Additional specifications and results are reported including equipment size, temperatures and pressure. Specific raw material requirements necessary to produce the silicon in the process are presented. The primary raw materials include metallurgical grade silicon, silicon tetrachloride, hydrogen, copper (catalyst) and lime (waste treatment). Hydrogen chloride is produced as by product in the silicon deposition. Cost analysis of the process was initiated during this reporting period.
Containerless experiments in fluid physics in microgravity
NASA Technical Reports Server (NTRS)
Trinh, E. H.
1990-01-01
The physical phenomena associated with the behavior of liquid samples freely suspended in low gravity must be thoroughly understood prior to undertaking detailed scientific studies of the materials under scrutiny. The characteristics of molten specimens under the action of containerless positioning stresses must be identified and separated from the specific phenomena relating to the absence of an overwhelming gravitational field. The strategy designed to optimize the scientific return of reliable experimental data from infrequent microgravity investigations should include the gradual and logical phasing of more sophisticated studies building on the accumulated results from previous flight experiments. Lower temperature fluid physics experiments using model materials can provide a great deal of information that can be useful in analyzing the behavior of high temperature melts. The phasing of the experimental capabilities should, therefore, also include a gradual build-up of more intricate and specialized diagnostic instrumentation and environmental control and monitoring capabilities. Basic physical investigations should also be distinguished from specific materials technology issues. The latter investigations require very specific high temperature (and high vacuum) devices that must be thoroughly mastered on the ground prior to implementing them in space.
Aerospace Environmental Technology Conference: Exectutive summary
NASA Technical Reports Server (NTRS)
Whitaker, A. F. (Editor)
1995-01-01
The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The papers from this conference are being published in a separate volume as NASA CP-3298.
Development of heat-storage building materials for passive-solar applications
NASA Astrophysics Data System (ADS)
Fletcher, J. W.
A heat storage building material to be used for passive solar applications and general load leveling within building spaces was developed. Specifically, PCM-filled plastic panels are to be developed as wallboard and ceiling panels. Three PCMs (CaCl2, 6H2O; Na2SO4, 10H2O; LiNO3, 3H2O are to be evaluated for use in the double walled, hollow channeled plastic panels. Laboratory development of the panels will include determination of filling and sealing techniques, behavior of the PCMs, container properties and materials compatibility. Testing will include vapor transmission, thermal cycle, dynamic performance, accelerated life and durability tests. In addition to development and testing, an applications analysis will be performed for specific passive solar applications. Conceptual design of a single family passive solar residence will be prepared and performance evaluated. Screening of the three PCM candidates is essentially complete.
Encapsulant Material For Solar Cell Module And Laminated Glass Applications
Hanoka, Jack I.
2000-09-05
An encapsulant material includes a layer of metallocene polyethylene disposed between two layers of ionomer. More specifically, the layer of metallocene polyethylene is disposed adjacent a rear surface of the first ionomer layer, and a second layer of ionomer is disposed adjacent a rear surface of the layer of metallocene polyethylene. The encapsulant material can be used in solar cell module and laminated glass applications.
Thermophysical Property Testing Using Transient Techniques.
1984-06-29
WORDS (Continue on reverse side if necessary and identify by block number) Specific heat HMX carbon/carbon Diffusivity RDX solid propellants Conductivity...energetic materials (AP, " HMX , RDX and HTPB) used in solid rocket fuel to carbon/carbon materials used as rocket nozzles. Studies on AP included single...32 4.1b HMX and RDX ............................35 a 4.2 Carbon/Carbon Materials ...................... 36 5.0 SUMMARY
Graphene-based smart materials
NASA Astrophysics Data System (ADS)
Yu, Xiaowen; Cheng, Huhu; Zhang, Miao; Zhao, Yang; Qu, Liangti; Shi, Gaoquan
2017-09-01
The high specific surface area and the excellent mechanical, electrical, optical and thermal properties of graphene make it an attractive component for high-performance stimuli-responsive or 'smart' materials. Complementary to these inherent properties, functionalization or hybridization can substantially improve the performance of these materials. Typical graphene-based smart materials include mechanically exfoliated perfect graphene, chemical vapour deposited high-quality graphene, chemically modified graphene (for example, graphene oxide and reduced graphene oxide) and their macroscopic assemblies or composites. These materials are sensitive to a range of stimuli, including gas molecules or biomolecules, pH value, mechanical strain, electrical field, and thermal or optical excitation. In this Review, we outline different graphene-based smart materials and their potential applications in actuators, chemical or strain sensors, self-healing materials, photothermal therapy and controlled drug delivery. We also introduce the working mechanisms of graphene-based smart materials and discuss the challenges facing the realization of their practical applications.
Improved ablative materials for the ASRM nozzle
NASA Technical Reports Server (NTRS)
Canfield, A.; Clinton, R. G.; Armour, W.; Koenig, J.
1992-01-01
Rayon precursor carbon-cloth phenolic was developed more than 30 years ago and is used in most nozzles today including the Poseidon, Trident, Peacekeeper, Small ICBM, Space Shuttle, and numerous tactical and space systems. Specifications and manufacturing controls were placed on these materials and, once qualified, a no-change policy was instituted. The current material is acceptable; however, prepreg variability does not always accommodate the requirements of automation. The advanced solid rocket motor requires material with less variability for automated manufacturing. An advanced solid rocket motor materials team, composed of NASA, Thiokol, Aerojet, SRI, and Lockheed specialists, along with materials suppliers ICI Fiberite/Polycarbon, BP Chemicals/Hitco, and Amoco, embarked on a program to improve the current materials. The program consisted of heat treatment studies and standard and low-density material improvements evaluation. Improvements evaluated included fiber/fabric heat treatments, weave variations, resin application methods, process controls, and monitors.
This procedure includes the specifications and requirements that must be followed by gas manufacturers during the preparation of compressed cylinder gas Certified Reference Materials (CRM). A CRM is a certified gas standard prepared at a concentration that does not exceed + or - ...
A Resource Guide for Information/Library Education in Developing Countries.
ERIC Educational Resources Information Center
Zahari, Noor Liza Ahmad
This annotated guide to resources on library and information science education in developing countries includes materials on library schools, training and education of library staff, and the progress of libraries in specific countries. Materials in the guide were selected from the indexes of Library Literature, Library and Information Science…
40 CFR 270.17 - Specific part B information requirements for surface impoundments.
Code of Federal Regulations, 2011 CFR
2011-07-01
... volume, physical, and chemical characteristics of the wastes, including their potential to migrate through soil or to volatilize or escape into the atmosphere; (2) The attenuative properties of underlying and surrounding soils or other materials; (3) The mobilizing properties of other materials co-disposed...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-02
... (Fragrance and Flavor Products); Mt. Olive, New Jersey Givaudan Fragrances Corporation (Givaudan) submitted a... materials and components and specific finished products described in the submitted notification (as... production equipment. The components and materials sourced from abroad include: cocoa beans extract (duty...
The Product as Change Agent: The Process of Development.
ERIC Educational Resources Information Center
Bank, Adrianne
Instructional product development--the purpose of which has been to create materials which produce in an identified population of users demonstrable changes in behavior, in accordance with prespecified and specific objectives--generally adheres to a pattern which includes planning, formulating, prototyping measures and materials, field testing,…
Cataloging, Processing, Administering AV Materials. A Model for Wisconsin Schools.
ERIC Educational Resources Information Center
Little, Robert D., Ed.
The objective of this cataloging manual is to recommend specific methods for cataloging audiovisual materials for use in individual school media centers. The following types of audiovisual aids are included: educational games, filmstrips, flat graphics, kits, models, motion pictures, realia, records, slides, sound filmstrips, tapes,…
Effect of Moisture Content on Thermal Properties of Porous Building Materials
NASA Astrophysics Data System (ADS)
Kočí, Václav; Vejmelková, Eva; Čáchová, Monika; Koňáková, Dana; Keppert, Martin; Maděra, Jiří; Černý, Robert
2017-02-01
The thermal conductivity and specific heat capacity of characteristic types of porous building materials are determined in the whole range of moisture content from dry to fully water-saturated state. A transient pulse technique is used in the experiments, in order to avoid the influence of moisture transport on measured data. The investigated specimens include cement composites, ceramics, plasters, and thermal insulation boards. The effect of moisture-induced changes in thermal conductivity and specific heat capacity on the energy performance of selected building envelopes containing the studied materials is then analyzed using computational modeling of coupled heat and moisture transport. The results show an increased moisture content as a substantial negative factor affecting both thermal properties of materials and energy balance of envelopes, which underlines the necessity to use moisture-dependent thermal parameters of building materials in energy-related calculations.
Inorganic nanostructured materials for high performance electrochemical supercapacitors
NASA Astrophysics Data System (ADS)
Liu, Sheng; Sun, Shouheng; You, Xiao-Zeng
2014-01-01
Electrochemical supercapacitors (ES) are a well-known energy storage system that has high power density, long life-cycle and fast charge-discharge kinetics. Nanostructured materials are a new generation of electrode materials with large surface area and short transport/diffusion path for ions and electrons to achieve high specific capacitance in ES. This mini review highlights recent developments of inorganic nanostructure materials, including carbon nanomaterials, metal oxide nanoparticles, and metal oxide nanowires/nanotubes, for high performance ES applications.
Inorganic nanostructured materials for high performance electrochemical supercapacitors.
Liu, Sheng; Sun, Shouheng; You, Xiao-Zeng
2014-02-21
Electrochemical supercapacitors (ES) are a well-known energy storage system that has high power density, long life-cycle and fast charge-discharge kinetics. Nanostructured materials are a new generation of electrode materials with large surface area and short transport/diffusion path for ions and electrons to achieve high specific capacitance in ES. This mini review highlights recent developments of inorganic nanostructure materials, including carbon nanomaterials, metal oxide nanoparticles, and metal oxide nanowires/nanotubes, for high performance ES applications.
Rural Workplace Literacy Demonstration Project. Welding Curriculum. Dorsey Trailers, Inc.
ERIC Educational Resources Information Center
Enterprise State Junior Coll., AL.
This curriculum guide contains workplace-specific instructional materials developed for use in a rural workplace literacy demonstration project, specifically with welders. Contents include a student assessment form, instructional objectives, pre- and posttests, learning activities (some locally developed and some selected from commercially…
Demonstrating the Curie Temperature in the Classroom
ERIC Educational Resources Information Center
Williams, David; Banks, Octavia; Eichmeyer, Livia; Wu, Cherrin
2018-01-01
Recent GCSE and IGCSE specifications include reference to both permanent and induced magnetism, giving the opportunity for novel classroom demonstrations based on ferromagnetism and paramagnetism, and the transition between these phases. Ferromagnetic materials lose their magnetism if raised above their Curie Temperature, a specific temperature…
NASA Technical Reports Server (NTRS)
Talham, Daniel R.; Adair, James H.
2005-01-01
Materials with directional properties are opening new horizons in a variety of applications including chemistry, electronics, and optics. Structural, optical, and electrical properties can be greatly augmented by the fabrication of composite materials with anisotropic microstructures or with anisotropic particles uniformly dispersed in an isotropic matrix. Examples include structural composites, magnetic and optical recording media, photographic film, certain metal and ceramic alloys, and display technologies including flat panel displays. The new applications and the need for model particles in scientific investigations are rapidly out-distancing the ability to synthesize anisotropic particles with specific chemistries and narrowly distributed physical characteristics (e.g. size distribution, shape, and aspect ratio).
Sun, sand, and citizenship: the marketing of gay tourism.
Coon, David R
2012-01-01
This article investigates trends in the marketing of gay and lesbian tourism. It reviews gay and lesbian travel guides from the 1960s to the 1990s before examining more recent travel materials including brochures and Web sites promoting specific American cities. These promotional materials are a valuable object of inquiry because they are uniquely situated at the intersection of discussions of sexuality, the market, representation, space, and citizenship. Through an aggregate semiotic analysis and ideological criticism, this article examines themes and concerns raised by the recent wave of gay tourism marketing, including questions of visibility, privacy, and assimilation. I argue that while marketers' recent attempts to lure gay and lesbian tourists to specific destinations may seem to suggest increased tolerance and societal inclusion, the specific strategies that they employ actually reveal the second-class citizen status still experienced by gays and lesbians within the rest of American society.
Performance analysis of radiation cooled dc transmission lines for high power space systems
NASA Technical Reports Server (NTRS)
Schwarze, G. E.
1985-01-01
As space power levels increase to meet mission objectives and also as the transmission distance between power source and load increases, the mass, volume, power loss, and operating voltage and temperature become important system design considerations. This analysis develops the dependence of the specific mass and percent power loss on hte power and voltage levels, transmission distance, operating temperature and conductor material properties. Only radiation cooling is considered since the transmission line is assumed to operate in a space environment. The results show that the limiting conditions for achieving low specific mass, percent power loss, and volume for a space-type dc transmission line are the permissible transmission voltage and operating temperature. Other means to achieve low specific mass include the judicious choice of conductor materials. The results of this analysis should be immediately applicable to power system trade-off studies including comparisons with ac transmission systems.
NASA Technical Reports Server (NTRS)
Hadaway, James B.
1997-01-01
This report details work performed by the Center for Applied Optics (CAO) at the University of Alabama in Huntsville (UAH) on the contract entitled 'Atomic Oxygen Task' for NASA's Marshall Space Flight Center (contract NAS8-38609, Delivery Order 109, modification number 1). Atomic oxygen effects on exposed materials remain a critical concern in designing spacecraft to withstand exposure in the Low Earth Orbit (LEO) environment. The basic objective of atomic oxygen research in NASA's Materials & Processes (M&P) Laboratory is to provide the solutions to material problems facing present and future space missions. The objective of this work was to provide the necessary research for the design of specialized experimental test configurations and development of techniques for evaluating in-situ space environmental effects, including the effects of atomic oxygen and electromagnetic radiation on candidate materials. Specific tasks were performed to address materials issues concerning accelerated environmental testing as well as specifically addressing materials issues of particular concern for LDEF analysis and Space Station materials selection.
Materials Challenges in Space Exploration
NASA Technical Reports Server (NTRS)
Bhat, Biliyar N.
2005-01-01
United States civil space program administered by National Aeronautics and Space Administration has a new strategic direction to explore the solar system. This new 'vision for space exploration' encompasses a broad range of human and robotic missions, including the Moon. Mars and destinations beyond. These missions require advanced systems and capabilities that will accelerate the development of many critical technologies, including advanced materials and structural concepts. Specifically, it is planned to develop high-performance materials for vehicle structures, propulsion systems, and space suits; structural concepts for modular assembly for space infrastructure: lightweight deployable and inflatable structures for large space systems and crew habitats; and highly integrated structural systems and advanced thermal management systems for reducing launch mass and volume. This paper will present several materials challenges in advanced space systems-high performance structural and thermal materials, space durable materials, radiation protection materials, and nano-structural materials. Finally, the paper will take a look at the possibility of utilizing materials in situ, i.e., processing materials on the surface of the Moon and Mars.
Martin, David P; Melby, Nicolas L; Jordan, Shinita M; Bednar, Anthony J; Kennedy, Alan J; Negrete, Maria E; Chappell, Mark A; Poda, Aimee R
2016-11-01
Engineered nanomaterials (ENMs) are being incorporated into a variety of consumer products due to unique properties that offer a variety of advantages over bulk materials. Understanding of the nano-specific risk associated with nano-enabled technologies, however, continues to lag behind research and development, registration with regulators, and commercialization. One example of a nano-enabled technology is nanosilver ink, which can be used in commercial ink-jet printers for the development of low-cost printable electronics. This investigation utilizes a tiered EHS framework to evaluate the potential nano-specific release, exposure and hazard associated with typical use of both nanosilver ink and printed circuits. The framework guides determination of the potential for ENM release from both forms of the technology in simulated use scenarios, including spilling of the ink, aqueous release (washing) from the circuits and UV light exposure. The as-supplied ink merits nano-specific consideration based on the presence of nanoparticles and their persistence in environmentally-relevant media. The material released from the printed circuits upon aqueous exposure was characterized by a number of analysis techniques, including ultracentrifugation and single particle ICP-MS, and the results suggest that a vast majority of the material was ionic in nature and nano-specific regulatory scrutiny may be less relevant. Published by Elsevier Ltd.
30 CFR 585.706 - How do I nominate a CVA for BOEM approval?
Code of Federal Regulations, 2014 CFR
2014-07-01
... technology (including computer programs, hardware, and testing materials and equipment); (5) Ability to perform the CVA functions for the specific project considering current commitments; (6) Previous... facilities; (2) Technical capabilities of the individual or the primary staff for the specific project; (3...
30 CFR 585.706 - How do I nominate a CVA for BOEM approval?
Code of Federal Regulations, 2013 CFR
2013-07-01
... technology (including computer programs, hardware, and testing materials and equipment); (5) Ability to perform the CVA functions for the specific project considering current commitments; (6) Previous... facilities; (2) Technical capabilities of the individual or the primary staff for the specific project; (3...
30 CFR 585.706 - How do I nominate a CVA for BOEM approval?
Code of Federal Regulations, 2012 CFR
2012-07-01
... technology (including computer programs, hardware, and testing materials and equipment); (5) Ability to perform the CVA functions for the specific project considering current commitments; (6) Previous... facilities; (2) Technical capabilities of the individual or the primary staff for the specific project; (3...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, D.K.; Gitt, M.; Williams, G.A.
1991-07-01
The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations.more » This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.« less
Waste minimization for commercial radioactive materials users generating low-level radioactive waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, D.K.; Gitt, M.; Williams, G.A.
1991-07-01
The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations.more » This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.« less
Dielectric properties of 3D-printed materials for anatomy specific 3D-printed MRI coils
NASA Astrophysics Data System (ADS)
Behzadnezhad, Bahareh; Collick, Bruce D.; Behdad, Nader; McMillan, Alan B.
2018-04-01
Additive manufacturing provides a low-cost and rapid means to translate 3D designs into the construction of a prototype. For MRI, this type of manufacturing can be used to construct various components including the structure of RF coils. In this paper, we characterize the material properties (dielectric constant and loss tangent) of several common 3D-printed polymers in the MRI frequency range of 63-300 MHz (for MRI magnetic field strengths of 1.5-7 T), and utilize these material properties in full-wave electromagnetic simulations to design and construct a very low-cost subject/anatomy-specific 3D-printed receive-only RF coil that fits close to the body. We show that the anatomy-specific coil exhibits higher signal-to-noise ratio compared to a conventional flat surface coil.
Findings and Recommendations from the NIST Workshop on Alternative Fuels and Materials: Biocorrosion
Mansfield, Elisabeth; Sowards, Jeffrey W.; Crookes-Goodson, Wendy J.
2015-01-01
In 2013, the Applied Chemicals and Materials Division of the National Institute of Standards and Technology (NIST) hosted a workshop to identify and prioritize research needs in the area of biocorrosion. Materials used to store and distribute alternative fuels have experienced an increase in corrosion due to the unique conditions caused by the presence of microbes and the chemistry of biofuels and biofuel precursors. Participants in this workshop, including experts from the microbiological, fuel, and materials communities, delved into the unique materials and chemical challenges that occur with production, transport, and storage of alternative fuels. Discussions focused on specific problems including: a) the changing composition of “drop-in” fuels and the impact of that composition on materials; b) the influence of microbial populations on corrosion and fuel quality; and c) state-of-the-art measurement technologies for monitoring material degradation and biofilm formation. PMID:26958436
Performance characterization of material identification systems
NASA Astrophysics Data System (ADS)
Brown, Christopher D.; Green, Robert L.
2006-10-01
In recent years a number of analytical devices have been proposed and marketed specifically to enable field-based material identification. Technologies reliant on mass, near- and mid-infrared, and Raman spectroscopies are available today, and other platforms are imminent. These systems tend to perform material recognition based on an on-board library of material signatures. While figures of merit for traditional quantitative analytical sensors are broadly established (e.g., SNR, selectivity, sensitivity, limit of detection/decision), measures of performance for material identification systems have not been systematically discussed. In this paper we present an approach to performance characterization similar in spirit to ROC curves, but including elements of precision-recall curves and specialized for the intended-use of material identification systems. Important experimental considerations are discussed, including study design, sources of bias, uncertainty estimation, and cross-validation and the approach as a whole is illustrated using a commercially available handheld Raman material identification system.
Mansfield, Elisabeth; Sowards, Jeffrey W; Crookes-Goodson, Wendy J
2015-01-01
In 2013, the Applied Chemicals and Materials Division of the National Institute of Standards and Technology (NIST) hosted a workshop to identify and prioritize research needs in the area of biocorrosion. Materials used to store and distribute alternative fuels have experienced an increase in corrosion due to the unique conditions caused by the presence of microbes and the chemistry of biofuels and biofuel precursors. Participants in this workshop, including experts from the microbiological, fuel, and materials communities, delved into the unique materials and chemical challenges that occur with production, transport, and storage of alternative fuels. Discussions focused on specific problems including: a) the changing composition of "drop-in" fuels and the impact of that composition on materials; b) the influence of microbial populations on corrosion and fuel quality; and c) state-of-the-art measurement technologies for monitoring material degradation and biofilm formation.
The Self-Identified Skills and Competencies of First-Line Nurse Managers
1992-06-01
teaching, with the exception of evaluation of patient education classes and materials. 17 Human Resources Development. 1) selection. with the exception of...specifically being able to evaluate patient education classes and materials; and 2) evaluating results, by being able to monitor the quality of care...for patient education materials and classes to be used on the unit. 2. Evaluate patient and family teaching including discharge planning. 3. Evaluate
The e-MapScholar project—an example of interoperability in GIScience education
NASA Astrophysics Data System (ADS)
Purves, R. S.; Medyckyj-Scott, D. J.; Mackaness, W. A.
2005-03-01
The proliferation of the use of digital spatial data in learning and teaching provides a set of opportunities and challenges for the development of e-learning materials suitable for use by a broad spectrum of disciplines in Higher Education. Effective e-learning materials must both provide engaging materials with which the learner can interact and be relevant to the learners' disciplinary and background knowledge. Interoperability aims to allow sharing of data and materials through the use of common agreements and specifications. Shared learning materials can take advantage of interoperable components to provide customisable components, and must consider issues in sharing data across institutional borders. The e-MapScholar project delivers teaching materials related to spatial data, which are customisable with respect to both context and location. Issues in the provision of such interoperable materials are discussed, including suitable levels of granularity of materials, the provision of tools to facilitate customisation and mechanisms to deliver multiple data sets and the metadata issues related to such materials. The examples shown make extensive use of the OpenGIS consortium specifications in the delivery of spatial data.
Center for Coal-Derived Low Energy Materials for Sustainable Construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jewell, Robert; Robl, Tom; Rathbone, Robert
2012-06-30
The overarching goal of this project was to create a sustained center to support the continued development of new products and industries that manufacture construction materials from coal combustion by-products or CCB’s (e.g., cements, grouts, wallboard, masonry block, fillers, roofing materials, etc). Specific objectives includes the development of a research kiln and associated system and the formulation and production of high performance low-energy, low-CO2 emitting calcium sulfoaluminate (CAS) cement that utilize coal combustion byproducts as raw materials.
NASA Technical Reports Server (NTRS)
Bok, L. D.
1973-01-01
The study included material selection and trade-off for the structural components of the wheel and brake optimizing weight vs cost and feasibility for the space shuttle type application. Analytical methods were used to determine section thickness for various materials, and a table was constructed showing weight vs. cost trade-off. The wheel and brake were further optimized by considering design philosophies that deviate from standard aircraft specifications, and designs that best utilize the materials being considered.
The advances and characteristics of high-power diode laser materials processing
NASA Astrophysics Data System (ADS)
Li, Lin
2000-10-01
This paper presents a review of the direct applications of high-power diode lasers for materials processing including soldering, surface modification (hardening, cladding, glazing and wetting modifications), welding, scribing, sheet metal bending, marking, engraving, paint stripping, powder sintering, synthesis, brazing and machining. The specific advantages and disadvantages of diode laser materials processing are compared with CO 2, Nd:YAG and excimer lasers. An effort is made to identify the fundamental differences in their beam/material interaction characteristics and materials behaviour. Also an appraisal of the future prospects of the high-power diode lasers for materials processing is given.
Performance of solar shields. [Skylab 1 micrometeoroid shield difficulties
NASA Technical Reports Server (NTRS)
Schwinghamer, R. J.
1974-01-01
The loss of the micrometeoroid shield from the Orbital Workshop section of Skylab 1 about 63 seconds after lift-off, was the catalyst for a prodigious effort to develop a substitute for the passive portion of the thermal control system. An intensive effort is described in which numerous potential thermal shield materials were assessed, and during which period ten specific shield designs were developed and carried through various stages of development and test. Thermal shield materials data are discussed, including optical, strength, fatigue, outgassing, tackiness, ultraviolet radiation, and material memory properties. Specifically addressed are thermal shield materials selection criteria and the design, development, and test requirements associated with the successful development of Skylab thermal shields, and specifically the two thermal shields subsequently deployed over the exposed gold foil skin of the Orbital Workshop. Also considered are the general performance and thermal improvements provided by both the parasol design deployed by the Skylab 1 crew, and the sail design deployed by the Skylab 2 crew.
Occupation-Specific VESL Needs Assessment. A VESL Staff Development Training Resource Packet.
ERIC Educational Resources Information Center
West, Linda; Wilkinson, Betty
Materials for a teacher workshop on assessing student needs for vocational English as a Second Language (VESL) are gathered. An annotated workshop outline presents the content and sequence of the workshop. Masters are provided for handouts and transparencies, which include an icebreaker activity, the workshop agenda, materials from the "Dictionary…
A Catalog of Curriculum Materials for Marine Environment Studies--Elementary and Secondary.
ERIC Educational Resources Information Center
Delaware Univ., Newark. Coll. of Marine Studies.
This partially annotated bibliography on marine environment contains a list of learning experiences and curriculum units for elementary and secondary students. A majority of materials were published in the 1970s. Subjects include biological oceanography, which deals with general and specific aspects of marine biology such as plankton,…
Industrial Electricity: Motors. Oklahoma Trade and Industrial Education.
ERIC Educational Resources Information Center
Teague, Cash; Pewewardy, Garner
This curriculum guide provides competency-based instructional materials for training in the field of industrial electricity. Materials are not geared to a specific grade level and may be used with secondary and postsecondary students as well as part- and full-time adult students. The guide includes three sections and ten instructional units. Each…
14 CFR Appendix F to Part 23 - Test Procedure
Code of Federal Regulations, 2011 CFR
2011-01-01
... materials used in electrical wire and cable insulation and in small parts, materials must be tested either... wire and cable insulation, the wire and cable specimens must be the same size as used in the airplane... specification (make and size) must be tested. The specimen of wire or cable (including insulation) must be...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-08
... similar to those estimated for transportation of radioactive material in other DOE NEPA documents. The air... radiological materials located at civilian sites worldwide. Part of the GTRI mission is implemented through... specific actions analyzed in DOE/EIS-0380-SA-02 include packaging the sealed sources (sometimes with a part...
Aids to English Language Teaching: Information Guide No. 4.
ERIC Educational Resources Information Center
British Council, London (England). English-Teaching Information Centre.
This is an annotated guide to English language instructional materials useful for both native and non-native speakers of English at primary and secondary levels. Materials relate to and are available in Great Britain; prices and addresses of publishers and suppliers are included. The sections cover: (1) Visual aids specifically designed for…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-13
....14(b), FTZ activity would be limited to the specific foreign-status materials and components and... housings; vertical auger tubes; chopper drive gearbox accessories; cotton picker frames and cabs; and, non... components and materials sourced from abroad include: sealant; sealant paste; oil drain assemblies; rubber...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-08
... avoiding the person's list maintenance obligations imposed by section 6112 and its corresponding... (and any corresponding regulations) that was in effect on the date the material advisor's list... material advisor's reasonable cause for failing to provide the list on a specific day include facts and...
A Guide to Free and Inexpensive Consumer Education Resources.
ERIC Educational Resources Information Center
Vickers, Carole A.
This guide contains sources of free or inexpensive consumer-education materials for use in schools or for adults. Specific contents include an annotated bibliography of 149 lists of publications dealing with consumer education materials; 77 articles in periodicals published in the 1970s; 53 audiovisuals or multimedia kits; 145 books about consumer…
Robust, self-assembled, biocompatible films
Swanson, Basil I; Anderson, Aaron S.; Dattelbaum, Andrew M.; Schmidt, Jurgen G.
2014-06-24
The present invention provides a composite material including a substrate having an oxide surface, and, a continuous monolayer on the oxide surface, the monolayer including a silicon atom from a trifunctional alkyl/alkenyl/alkynyl silane group that attaches to the oxide surface, an alkyl/alkenyl/alkynyl portion of at least three carbon atoms, a polyalkylene glycol spacer group, and either a reactive site (e.g., a recognition ligand) or a site resistant to non-specific binding (e.g., a methoxy or the like) at the terminus of each modified SAM. The present invention further provides a sensor element, a sensor array and a method of sensing, each employing the composite material. Patterning is also provided together with backfilling to minimize non-specific binding.
Chemical vapor deposition growth
NASA Technical Reports Server (NTRS)
Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.
1976-01-01
The chemical vapor deposition (CVD) method for the growth of Si sheet on inexpensive substrate materials is investigated. The objective is to develop CVD techniques for producing large areas of Si sheet on inexpensive substrate materials, with sheet properties suitable for fabricating solar cells meeting the technical goals of the Low Cost Silicon Solar Array Project. Specific areas covered include: (1) modification and test of existing CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using standard and near-standard processing techniques.
Standardization of shape memory alloy test methods toward certification of aerospace applications
NASA Astrophysics Data System (ADS)
Hartl, D. J.; Mabe, J. H.; Benafan, O.; Coda, A.; Conduit, B.; Padan, R.; Van Doren, B.
2015-08-01
The response of shape memory alloy (SMA) components employed as actuators has enabled a number of adaptable aero-structural solutions. However, there are currently no industry or government-accepted standardized test methods for SMA materials when used as actuators and their transition to commercialization and production has been hindered. This brief fast track communication introduces to the community a recently initiated collaborative and pre-competitive SMA specification and standardization effort that is expected to deliver the first ever regulatory agency-accepted material specification and test standards for SMA as employed as actuators for commercial and military aviation applications. In the first phase of this effort, described herein, the team is working to review past efforts and deliver a set of agreed-upon properties to be included in future material certification specifications as well as the associated experiments needed to obtain them in a consistent manner. Essential for the success of this project is the participation and input from a number of organizations and individuals, including engineers and designers working in materials and processing development, application design, SMA component fabrication, and testing at the material, component, and system level. Going forward, strong consensus among this diverse body of participants and the SMA research community at large is needed to advance standardization concepts for universal adoption by the greater aerospace community and especially regulatory bodies. It is expected that the development and release of public standards will be done in collaboration with an established standards development organization.
Vitreous humour - routine or alternative material for analysis in forensic medicine.
Markowska, Joanna; Szopa, Monika; Zawadzki, Marcin; Piekoszewski, Wojciech
2017-01-01
Biological materials used in toxicological analyses in forensic medicine traditionally include blood, urine and vitreous humour. Forensic use of the vitreous body is mostly due to the need to assess the endogenous concentration of ethyl alcohol in the process of human body decomposition. The vitreous body is an underestimated biological material, even though its biochemical properties and anatomical location make it suitable for specific forensic toxicology tests as a reliable material for the preparation of forensic expert opinions. Based on the available literature the paper gathers information on the biochemical structure of the vitreous body, ways to secure the material after collection and its use in postmortem diagnostics. Specific applications of the vitreous humour for biochemical and toxicological tests are discussed, with a focus on its advantages and limitations in forensic medical assessment which are attributable to its biochemical properties, anatomical location and limited scientific studies on the distribution of xenobiotics in the vitreous body.
30 CFR 285.706 - How do I nominate a CVA for MMS approval?
Code of Federal Regulations, 2011 CFR
2011-07-01
... for the specific project; (3) Size and type of organization or corporation; (4) In-house availability of, or access to, appropriate technology (including computer programs, hardware, and testing materials and equipment); (5) Ability to perform the CVA functions for the specific project considering...
General Metal Trades Book I. Units of Instruction. Teacher's Guide.
ERIC Educational Resources Information Center
East Texas State Univ., Commerce. Occupational Curriculum Lab.
This teacher's guide provides instructional materials for a 10-unit course in the General Metal Trades program. Each unit includes most or all of these basic components: performance objectives (unit and specific objectives), suggested teaching activities (a sheet outlining steps to follow to accomplish specific objectives), information sheets,…
NASA Astrophysics Data System (ADS)
Gong, Xing; Li, Rui; Sun, Maozhou; Ren, Qisen; Liu, Tong; Short, Michael P.
2016-12-01
Accelerator-driven systems (ADS) are a promising approach for nuclear waste disposal. Nevertheless, the principal candidate materials proposed for ADS construction, such as the ferritic/martensitic steel, T91, and austenitic stainless steels, 316L and 15-15Ti, are not fully compatible with the liquid lead-bismuth eutectic (LBE) coolant. Under some operating conditions, liquid metal embrittlement (LME) or liquid metal corrosion (LMC) may occur in these steels when exposed to LBE. These environmentally-induced material degradation effects pose a threat to ADS reactor safety, as failure of the materials could initiate a severe accident, in which fission products are released into the coolant. Meanwhile, parallel efforts to develop accident-tolerant fuels (ATF) in light water reactors (LWRs) could provide both general materials design philosophies and specific material solutions to the ADS program. In this paper, the potential contributions of the ATF materials development program to the ADS materials qualification program are evaluated and discussed in terms of service conditions and materials performance requirements. Several specific areas where coordinated development may benefit both programs, including composite materials and selected coatings, are discussed.
Capabilities of the Materials Contamination Team at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Burns, H. D.; Finckenor, M. M.; Boothe, R. E.; Albyn, K. C.; Finchum, C. A.
2003-01-01
The Materials Contamination Team of the Environmental Effects Group, Materials, Processes, and Manufacturing Department, has been recognized for its contribution to space flight, including space transportation, space science and flight projects, such as the reusable solid rocket motor, Chandra X-Ray Observatory, and the International Space Station. The Materials Contamination Team s realm of responsibility encompasses all phases of hardware development including design, manufacturing, assembly, test, transportation, launch-site processing, on-orbit exposure, return, and refurbishment if required. Contamination is a concern in the Space Shuttle with sensitivity bondlines and reactive fluid (liquid oxygen) compatibility as well as for sensitive optics, particularly spacecraft such as Hubble Space Telescope and Chandra X-Ray Observatory. The Materials Contamination Team has a variety of facilities and instrumentation capable of contaminant detection identification, and monitoring. The team addresses material applications dealing with environments, including production facilities, clean rooms, and on-orbit exposure. The team of engineers and technicians also develop and evaluates new surface cleanliness inspection technologies. Databases are maintained by the team for proces! materials as well as outgassing and optical compatibility test results for specific environments.
WHO Expert Committee on Specifications for Pharmaceutical Preparations.
2005-01-01
This report presents the recommendations of an international group of experts convened by the World Health Organization to consider matters concerning the quality assurance of pharmaceuticals and specifications for drug substances and dosage forms. Of particular relevance to drug regulatory authorities and pharmaceutical manufacturers, this report discusses the monographs on antiretrovirals proposed for inclusion in The International Pharmacopoeia and specifications for radiopharmaceuticals, quality specifications for antituberculosis drugs and the revision of the monograph on artemisinin derivatives, as well as quality control of reference materials, good manufacturing practices (GMP), inspection, distribution and trade and other aspects of quality assurance of pharmaceuticals, and regulatory issues. The report is complemented by a number of annexes, including an amendment to good manufacturing practices: main principles regarding the requirement for the sampling of starting materials, guidelines on good manufacturing practices regarding water for pharmaceutical use, guidelines on the sampling of pharmaceutical products and related materials and draft guidelines for registration of fixed-dose combination medicinal products.
research on several material systems for photovoltaic applications, including CdTe and transparent conductors. Research Interests Specific research interests include fabrication and characterization . 3, 353 (2012). M.O. Reese, A.A. Dameron, and M.D. Kempe, "Quantitative Calcium Resistivity
Advanced Nanoporous Materials for Micro-Gravimetric Sensing to Trace-Level Bio/Chemical Molecules
Xu, Pengcheng; Li, Xinxin; Yu, Haitao; Xu, Tiegang
2014-01-01
Functionalized nanoporous materials have been developed recently as bio/chemical sensing materials. Due to the huge specific surface of the nano-materials for molecular adsorption, high hopes have been placed on gravimetric detection with micro/nano resonant cantilevers for ultra-sensitive sensing of low-concentration bio/chemical substances. In order to enhance selectivity of the gravimetric resonant sensors to the target molecules, it is crucial to modify specific groups onto the pore-surface of the nano-materials. By loading the nanoporous sensing material onto the desired region of the mass-type transducers like resonant cantilevers, the micro-gravimetric bio/chemical sensors can be formed. Recently, such micro-gravimetric bio/chemical sensors have been successfully applied for rapid or on-the-spot detection of various bio/chemical molecules at the trace-concentration level. The applicable nanoporous sensing materials include mesoporous silica, zeolite, nanoporous graphene oxide (GO) and so on. This review article focuses on the recent achievements in design, preparation, functionalization and characterization of advanced nanoporous sensing materials for micro-gravimetric bio/chemical sensing. PMID:25313499
Weightless Environment Training Facility (WETF) Materials Coating Evaluation, Volume 1
NASA Technical Reports Server (NTRS)
1995-01-01
The Weightless Environment Training Facility Material Coating Evaluation project has included preparing, coating, testing, and evaluating 800 test panels of three differing substrates. Ten selected coating systems were evaluated in six separate exposure environments and subject to three tests for physical properties. Substrate materials were identified, the manner of surface preparation described, and exposure environments defined. Exposure environments included immersion exposure, cyclic exposure, and field exposure. Cyclic exposures, specifically QUV-Weatherometer and the KTA Envirotest were found to be the most agressive of the environments included in the study when all three evaluation criteria are considered. This was found to result primarily from chalking of the coatings under ultraviolet (UV) light exposure. Volumes 2 and 3 hold the 5 appendices to this report.
NASA Hydrogen Peroxide Propellant Hazards Technical Manual
NASA Technical Reports Server (NTRS)
Baker, David L.; Greene, Ben; Frazier, Wayne
2005-01-01
The Fire, Explosion, Compatibility and Safety Hazards of Hydrogen Peroxide NASA technical manual was developed at the NASA Johnson Space Center White Sands Test Facility. NASA Technical Memorandum TM-2004-213151 covers topics concerning high concentration hydrogen peroxide including fire and explosion hazards, material and fluid reactivity, materials selection information, personnel and environmental hazards, physical and chemical properties, analytical spectroscopy, specifications, analytical methods, and material compatibility data. A summary of hydrogen peroxide-related accidents, incidents, dose calls, mishaps and lessons learned is included. The manual draws from art extensive literature base and includes recent applicable regulatory compliance documentation. The manual may be obtained by United States government agencies from NASA Johnson Space Center and used as a reference source for hazards and safe handling of hydrogen peroxide.
CTOL Transport Technology, 1978. [conferences
NASA Technical Reports Server (NTRS)
1978-01-01
Technology generated by NASA and specifically associated with advanced conventional takeoff and landing transport aircraft is reported. Topics covered include: aircraft propulsion; structures and materials; and laminar flow control.
Toward patient-specific articular contact mechanics
Ateshian, Gerard A.; Henak, Corinne R.; Weiss, Jeffrey A.
2015-01-01
The mechanics of contacting cartilage layers is fundamentally important to understanding the development, homeostasis and pathology of diarthrodial joints. Because of the highly nonlinear nature of both the materials and the contact problem itself, numerical methods such as the finite element method are typically incorporated to obtain solutions. Over the course of five decades, we have moved from an initial qualitative understanding of articular cartilage material behavior to the ability to perform complex, three-dimensional contact analysis, including multiphasic material representations. This history includes the development of analytical and computational contact analysis methods that now provide the ability to perform highly nonlinear analyses. Numerical implementations of contact analysis based on the finite element method are rapidly advancing and will soon enable patient-specific analysis of joint contact mechanics using models based on medical image data. In addition to contact stress on the articular surfaces, these techniques can predict variations in strain and strain through the cartilage layers, providing the basis to predict damage and failure. This opens up exciting areas for future research and application to patient-specific diagnosis and treatment planning applied to a variety of pathologies that affect joint function and cartilage homeostasis. PMID:25698236
NASA Technical Reports Server (NTRS)
1980-01-01
A quality assurance program was developed which included specifications for celion/LARC-160 polyimide materials and quality control of materials and processes. The effects of monomers and/or polymer variables and prepeg variables on the processibility of celion/LARC prepeg were included. Processes for fabricating laminates, honeycomb core panels, and chopped fiber moldings were developed. Specimens and conduct tests were fabricated to qualify the processes for fabrication of demonstration components.
Radioactive materials released from nuclear power plants. Volume 13, Annual report 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Doty, K.; Lucadamo, K.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1992 have been compiled and reported. The summary data for the years 1973 through 1991 are included for comparison. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1992 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants. Annual report 1989: Volume 10
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Norden, K.; Congemi, J.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1989 have been compiled and reported. The summary data for the years 1970 through 1988 are included for comparison. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1989 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants: Annual report, 1993. Volume 14
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Doty, K.; Lucadamo, K.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1993 have been compiled and reported. The summary data for the years 1974 through 1992 are included for comparison. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1993 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Optimal Experiment Design for Thermal Characterization of Functionally Graded Materials
NASA Technical Reports Server (NTRS)
Cole, Kevin D.
2003-01-01
The purpose of the project was to investigate methods to accurately verify that designed , materials meet thermal specifications. The project involved heat transfer calculations and optimization studies, and no laboratory experiments were performed. One part of the research involved study of materials in which conduction heat transfer predominates. Results include techniques to choose among several experimental designs, and protocols for determining the optimum experimental conditions for determination of thermal properties. Metal foam materials were also studied in which both conduction and radiation heat transfer are present. Results of this work include procedures to optimize the design of experiments to accurately measure both conductive and radiative thermal properties. Detailed results in the form of three journal papers have been appended to this report.
Langevin, Stanley A.; Bent, Zachary W.; Solberg, Owen D.; Curtis, Deanna J.; Lane, Pamela D.; Williams, Kelly P.; Schoeniger, Joseph S.; Sinha, Anupama; Lane, Todd W.; Branda, Steven S.
2013-01-01
Use of second generation sequencing (SGS) technologies for transcriptional profiling (RNA-Seq) has revolutionized transcriptomics, enabling measurement of RNA abundances with unprecedented specificity and sensitivity and the discovery of novel RNA species. Preparation of RNA-Seq libraries requires conversion of the RNA starting material into cDNA flanked by platform-specific adaptor sequences. Each of the published methods and commercial kits currently available for RNA-Seq library preparation suffers from at least one major drawback, including long processing times, large starting material requirements, uneven coverage, loss of strand information and high cost. We report the development of a new RNA-Seq library preparation technique that produces representative, strand-specific RNA-Seq libraries from small amounts of starting material in a fast, simple and cost-effective manner. Additionally, we have developed a new quantitative PCR-based assay for precisely determining the number of PCR cycles to perform for optimal enrichment of the final library, a key step in all SGS library preparation workflows. PMID:23558773
Self-shaping composites with programmable bioinspired microstructures.
Erb, Randall M; Sander, Jonathan S; Grisch, Roman; Studart, André R
2013-01-01
Shape change is a prevalent function apparent in a diverse set of natural structures, including seed dispersal units, climbing plants and carnivorous plants. Many of these natural materials change shape by using cellulose microfibrils at specific orientations to anisotropically restrict the swelling/shrinkage of their organic matrices upon external stimuli. This is in contrast to the material-specific mechanisms found in synthetic shape-memory systems. Here we propose a robust and universal method to replicate this unusual shape-changing mechanism of natural systems in artificial bioinspired composites. The technique is based upon the remote control of the orientation of reinforcing inorganic particles within the composite using a weak external magnetic field. Combining this reinforcement orientational control with swellable/shrinkable polymer matrices enables the creation of composites whose shape change can be programmed into the material's microstructure rather than externally imposed. Such bioinspired approach can generate composites with unusual reversibility, twisting effects and site-specific programmable shape changes.
NASA Technical Reports Server (NTRS)
Wieserman, William R.; Schwarze, Gene E.; Niedra, Janis M.
2005-01-01
Magnetic component designers are always looking for improved soft magnetic core materials to increase the efficiency, temperature rating and power density of transformers, motors, generators and alternators, and energy density of inductors. In this paper, we report on the experimental investigation of commercially available cobalt-based amorphous alloys which, in their processing, were subjected to two different types of magnetic field anneals: A longitudinal magnetic field anneal or a transverse magnetic field anneal. The longitudinal field annealed material investigated was Metglas 2714A. The electrical and magnetic characteristics of this material were investigated over the frequency range of 1 to 200 kHz and temperature range of 23 to 150 C for both sine and square wave voltage excitation. The specific core loss was lower for the square than the sine wave voltage excitation for the same maximum flux density, frequency and temperature. The transverse magnetic field annealed core materials include Metglas 2714AF and Vacuumschmelze 6025F. These two materials were experimentally characterized over the frequency range of 10 to 200 kHz for sine wave voltage excitation and 23 C only. A comparison of the 2174A to 2714AF found that 2714AF always had lower specific core loss than 2714A for any given magnetic flux density and frequency and the ratio of specific core loss of 2714A to 2714AF was dependent on both magnetic flux density and frequency. A comparison was also made of the 2714A, 2714AF, and 6025F materials to two different tape thicknesses of the polycrystalline Supermalloy material and the results show that 2714AF and 6025F have the lowest specific core loss at 100 kHz over the magnetic flux density range of 0.1 to 0.4 Tesla.
Advanced NDE techniques for quantitative characterization of aircraft
NASA Technical Reports Server (NTRS)
Heyman, Joseph S.; Winfree, William P.
1990-01-01
Recent advances in nondestructive evaluation (NDE) at NASA Langley Research Center and their applications that have resulted in quantitative assessment of material properties based on thermal and ultrasonic measurements are reviewed. Specific applications include ultrasonic determination of bolt tension, ultrasonic and thermal characterization of bonded layered structures, characterization of composite materials, and disbonds in aircraft skins.
46 CFR 164.008-5 - Test report.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Test report. 164.008-5 Section 164.008-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Bulkhead Panels § 164.008-5 Test report. (a) The test report required by § 164.008-7 (e) and (g) shall include at least...
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Bureau of Elementary Curriculum Development.
This guide describes activities and materials which can be used in a mathematics laboratory approach to a basic mathematics program for grades 1-6. One-hundred thirteen activities pertaining to measurement concepts are described in terms of purpose, suggested grade levels, materials needed, and procedures. Some specific concepts include: linear…
Michelin Tire Company Workplace Literacy Curriculum.
ERIC Educational Resources Information Center
Alabama State Dept. of Education, Montgomery.
This packet provides generic versions of curriculum developed for the Michelin Tire Corporation workplace literacy program, specifically the mathematics portion. Altered material included in the packet protects proprietary information; some lessons include lines that take the place of deleted information. Other companies are recommended to use…
Improving Building Construction Specifications in State and Local Governments
NASA Technical Reports Server (NTRS)
1980-01-01
State and local governments can benefit from master specifications systems that centralize data on all types of building materials, products, and processes. Most of these systems are organized according to the MASTERFORMAT system, which, along with guide specifications that require the insertion or deletion of standardized information, resulted from the specific needs of users and providers. For jurisdictions preparing their own specifications, staff time and cost are reduced. For those subcontracting the preparation, master specifications provide a means of evaluating the specifications submitted. Current management specification systems described include SPECINTACT, OMSPEC, MASTERPEC, and the NAVFAC, Corps of Engineers, and GSA guide specifications.
XML Based Markup Languages for Specific Domains
NASA Astrophysics Data System (ADS)
Varde, Aparna; Rundensteiner, Elke; Fahrenholz, Sally
A challenging area in web based support systems is the study of human activities in connection with the web, especially with reference to certain domains. This includes capturing human reasoning in information retrieval, facilitating the exchange of domain-specific knowledge through a common platform and developing tools for the analysis of data on the web from a domain expert's angle. Among the techniques and standards related to such work, we have XML, the eXtensible Markup Language. This serves as a medium of communication for storing and publishing textual, numeric and other forms of data seamlessly. XML tag sets are such that they preserve semantics and simplify the understanding of stored information by users. Often domain-specific markup languages are designed using XML, with a user-centric perspective. Standardization bodies and research communities may extend these to include additional semantics of areas within and related to the domain. This chapter outlines the issues to be considered in developing domain-specific markup languages: the motivation for development, the semantic considerations, the syntactic constraints and other relevant aspects, especially taking into account human factors. Illustrating examples are provided from domains such as Medicine, Finance and Materials Science. Particular emphasis in these examples is on the Materials Markup Language MatML and the semantics of one of its areas, namely, the Heat Treating of Materials. The focus of this chapter, however, is not the design of one particular language but rather the generic issues concerning the development of domain-specific markup languages.
Instrument for Measuring Thermal Conductivity of Materials at Low Temperatures
NASA Technical Reports Server (NTRS)
Fesmire, James; Sass, Jared; Johnson, Wesley
2010-01-01
With the advance of polymer and other non-metallic material sciences, whole new series of polymeric materials and composites are being created. These materials are being optimized for many different applications including cryogenic and low-temperature industrial processes. Engineers need these data to perform detailed system designs and enable new design possibilities for improved control, reliability, and efficiency in specific applications. One main area of interest is cryogenic structural elements and fluid handling components and other parts, films, and coatings for low-temperature application. An important thermal property of these new materials is the apparent thermal conductivity (k-value).
Low work function materials for microminiature energy conversion and recovery applications
Zavadil, Kevin R.; Ruffner, Judith A.; King, Donald B.
2003-05-13
Low work function materials are disclosed together with methods for their manufacture and integration with electrodes used in thermionic conversion applications (specifically microminiature thermionic conversion applications). The materials include a mixed oxide system and metal in a compositionally modulated structure comprised of localized discontinuous structures of material that are deposited using techniques suited to IC manufacture, such as rf sputtering or CVD. The structures, which can include layers are then heated to coalescence yielding a thin film that is both durable and capable of electron emission under thermionic conversion conditions used for microminiature thermionic converters. Using the principles of the invention, thin film electrodes (emitters and collectors) required for microconverter technology are manufactured using a single process deposition so as to allow for full fabrication integration consistent with batch processing, and tailoring of emission/collection properties. In the preferred embodiment, the individual layers include mixed BaSrCaO, scandium oxide and tungsten.
Shape memory polymer (SMP) gripper with a release sensing system
Maitland, Duncan J.; Lee, Abraham P.; Schumann, Daniel L.; Silva, Luiz Da
2000-01-01
A system for releasing a target material, such as an embolic coil from an SMP located at the end of a catheter utilizing an optical arrangement for releasing the material. The system includes a laser, laser driver, display panel, photodetector, fiber optics coupler, fiber optics and connectors, a catheter, and an SMP-based gripper, and includes a release sensing and feedback arrangement. The SMP-based gripper is heated via laser light through an optic fiber causing the gripper to release a target material (e.g., embolic coil for therapeutic treatment of aneurysms). Various embodiments are provided for coupling the laser light into the SMP, which includes specific positioning of the coils, removal of the fiber cladding adjacent the coil, a metal coating on the SMP, doping the SMP with a gradient absorbing dye, tapering the fiber optic end, coating the SMP with low refractive index material, and locating an insert between the fiber optic and the coil.
Numerical solution methods for viscoelastic orthotropic materials
NASA Technical Reports Server (NTRS)
Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.
1988-01-01
Numerical solution methods for viscoelastic orthotropic materials, specifically fiber reinforced composite materials, are examined. The methods include classical lamination theory using time increments, direction solution of the Volterra Integral, Zienkiewicz's linear Prony series method, and a new method called Nonlinear Differential Equation Method (NDEM) which uses a nonlinear Prony series. The criteria used for comparison of the various methods include the stability of the solution technique, time step size stability, computer solution time length, and computer memory storage. The Volterra Integral allowed the implementation of higher order solution techniques but had difficulties solving singular and weakly singular compliance function. The Zienkiewicz solution technique, which requires the viscoelastic response to be modeled by a Prony series, works well for linear viscoelastic isotropic materials and small time steps. The new method, NDEM, uses a modified Prony series which allows nonlinear stress effects to be included and can be used with orthotropic nonlinear viscoelastic materials. The NDEM technique is shown to be accurate and stable for both linear and nonlinear conditions with minimal computer time.
NASA Technical Reports Server (NTRS)
Roelke, Richard J.
1992-01-01
Radial turbines have been used extensively in many applications including small ground based electrical power generators, automotive engine turbochargers and aircraft auxiliary power units. In all of these applications the turbine inlet temperature is limited to a value commensurate with the material strength limitations and life requirements of uncooled metal rotors. To take advantage of all the benefits that higher temperatures offer, such as increased turbine specific power output or higher cycle thermal efficiency, requires improved high temperature materials and/or blade cooling. Extensive research is on-going to advance the material properties of high temperature superalloys as well as composite materials including ceramics. The use of ceramics with their high temperature potential and low cost is particularly appealing for radial turbines. However until these programs reach fruition the only way to make significant step increases beyond the present material temperature barriers is to cool the radial blading.
Recent Advances in Biohybrid Materials for Tissue Engineering and Regenerative Medicine
NASA Astrophysics Data System (ADS)
Wan, Ying; Li, Xing; Wang, Shenqi
2016-07-01
Biohybrid materials play an important role in tissue engineering, artificial organs and regenerative medicine due to their regulation of cell function through specific cell-matrix interactions involving integrins, mostly those of fibroblasts and myofibroblasts, and ligands on the matrix surface, which have become current research focus. In this paper, recent progress of biohybrid materials, mainly including main types of biohybrid materials, rapid prototype (RP) technique for construction of 3D biohybrid materials, was reviewed in detail; moreover, their applications in tissue engineering, artificial organs and regenerative medicine were also reviewed in detail. At last, we address the challenges biohybrid materials may face.
Expert system verification and validation study
NASA Technical Reports Server (NTRS)
French, Scott W.; Hamilton, David
1992-01-01
Five workshops on verification and validation (V&V) of expert systems (ES) where taught during this recent period of performance. Two key activities, previously performed under this contract, supported these recent workshops (1) Survey of state-of-the-practice of V&V of ES and (2) Development of workshop material and first class. The first activity involved performing an extensive survey of ES developers in order to answer several questions regarding the state-of-the-practice in V&V of ES. These questions related to the amount and type of V&V done and the successfulness of this V&V. The next key activity involved developing an intensive hands-on workshop in V&V of ES. This activity involved surveying a large number of V&V techniques, conventional as well as ES specific ones. In addition to explaining the techniques, we showed how each technique could be applied on a sample problem. References were included in the workshop material, and cross referenced to techniques, so that students would know where to go to find additional information about each technique. In addition to teaching specific techniques, we included an extensive amount of material on V&V concepts and how to develop a V&V plan for an ES project. We felt this material was necessary so that developers would be prepared to develop an orderly and structured approach to V&V. That is, they would have a process that supported the use of the specific techniques. Finally, to provide hands-on experience, we developed a set of case study exercises. These exercises were to provide an opportunity for the students to apply all the material (concepts, techniques, and planning material) to a realistic problem.
Badalato, Nelly; Guillot, Alain; Sabarly, Victor; Dubois, Marc; Pourette, Nina; Pontoire, Bruno; Robert, Paul; Bridier, Arnaud; Monnet, Véronique; Sousa, Diana Z.; Durand, Sylvie; Mazéas, Laurent; Buléon, Alain; Bouchez, Théodore; Mortha, Gérard
2017-01-01
Lignocellulosic materials from municipal solid waste emerge as attractive resources for anaerobic digestion biorefinery. To increase the knowledge required for establishing efficient bioprocesses, dynamics of batch fermentation by the cellulolytic bacterium Ruminiclostridium cellulolyticum were compared using three cellulosic materials, paper handkerchief, cotton discs and Whatman filter paper. Fermentation of paper handkerchief occurred the fastest and resulted in a specific metabolic profile: it resulted in the lowest acetate-to-lactate and acetate-to-ethanol ratios. By shotgun proteomic analyses of paper handkerchief and Whatman paper incubations, 151 proteins with significantly different levels were detected, including 20 of the 65 cellulosomal components, 8 non-cellulosomal CAZymes and 44 distinct extracytoplasmic proteins. Consistent with the specific metabolic profile observed, many enzymes from the central carbon catabolic pathways had higher levels in paper handkerchief incubations. Among the quantified CAZymes and cellulosomal components, 10 endoglucanases mainly from the GH9 families and 7 other cellulosomal subunits had lower levels in paper handkerchief incubations. An in-depth characterization of the materials used showed that the lower levels of endoglucanases in paper handkerchief incubations could hypothetically result from its lower crystallinity index (50%) and degree of polymerization (970). By contrast, the higher hemicellulose rate in paper handkerchief (13.87%) did not result in the enhanced expression of enzyme with xylanase as primary activity, including enzymes from the “xyl-doc” cluster. It suggests the absence, in this material, of molecular structures that specifically lead to xylanase induction. The integrated approach developed in this work shows that subtle differences among cellulosic materials regarding chemical and structural characteristics have significant effects on expressed bacterial functions, in particular the cellulolysis machinery, resulting in different metabolic patterns and degradation dynamics. PMID:28114419
Big–deep–smart data in imaging for guiding materials design
Kalinin, Sergei V.; Sumpter, Bobby G.; Archibald, Richard K.
2015-09-23
Harnessing big data, deep data, and smart data from state-of-the-art imaging might accelerate the design and realization of advanced functional materials. Here we discuss new opportunities in materials design enabled by the availability of big data in imaging and data analytics approaches, including their limitations, in material systems of practical interest. We specifically focus on how these tools might help realize new discoveries in a timely manner. Such methodologies are particularly appropriate to explore in light of continued improvements in atomistic imaging, modelling and data analytics methods.
Big-deep-smart data in imaging for guiding materials design.
Kalinin, Sergei V; Sumpter, Bobby G; Archibald, Richard K
2015-10-01
Harnessing big data, deep data, and smart data from state-of-the-art imaging might accelerate the design and realization of advanced functional materials. Here we discuss new opportunities in materials design enabled by the availability of big data in imaging and data analytics approaches, including their limitations, in material systems of practical interest. We specifically focus on how these tools might help realize new discoveries in a timely manner. Such methodologies are particularly appropriate to explore in light of continued improvements in atomistic imaging, modelling and data analytics methods.
Big-deep-smart data in imaging for guiding materials design
NASA Astrophysics Data System (ADS)
Kalinin, Sergei V.; Sumpter, Bobby G.; Archibald, Richard K.
2015-10-01
Harnessing big data, deep data, and smart data from state-of-the-art imaging might accelerate the design and realization of advanced functional materials. Here we discuss new opportunities in materials design enabled by the availability of big data in imaging and data analytics approaches, including their limitations, in material systems of practical interest. We specifically focus on how these tools might help realize new discoveries in a timely manner. Such methodologies are particularly appropriate to explore in light of continued improvements in atomistic imaging, modelling and data analytics methods.
NASA Technical Reports Server (NTRS)
Fisher, A.; Staugaitis, C. L.
1974-01-01
The capabilities of the Materials Engineering Branch (MEB) of the Goddard Space Flight Center, Greenbelt, Maryland, are surveyed. The specific functions of spacecraft materials review, materials processing and information dissemination, and laboratory support, are outlined in the Activity Report. Further detail is provided by case histories of laboratory satellite support and equipment. Project support statistics are shown, and complete listings of MEB publications, patents, and tech briefs are included. MEB staff, and their respective discipline areas and spacecraft liaison associations, are listed.
Big–deep–smart data in imaging for guiding materials design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinin, Sergei V.; Sumpter, Bobby G.; Archibald, Richard K.
Harnessing big data, deep data, and smart data from state-of-the-art imaging might accelerate the design and realization of advanced functional materials. Here we discuss new opportunities in materials design enabled by the availability of big data in imaging and data analytics approaches, including their limitations, in material systems of practical interest. We specifically focus on how these tools might help realize new discoveries in a timely manner. Such methodologies are particularly appropriate to explore in light of continued improvements in atomistic imaging, modelling and data analytics methods.
ERIC Educational Resources Information Center
Napa Valley Unified School District, Napa, CA.
The materials include a handbook for development of worksite, job-specific literacy programs and a sample curriculum for vineyard workers in California. The handbook describes the Literacy Line! project, a mobile unit to carry English-as-a-Second-Language (ESL) and job-specific literacy instruction to employees at wineries and vineyards in the…
Space shuttle seal material and design development for earth storable propellant systems
NASA Technical Reports Server (NTRS)
1973-01-01
The results of a program to investigate and characterize seal materials suitable for space shuttle storable propellant systems are given. Two new elastomeric materials were identified as being potentially superior to existing state-of-the art materials for specific sealing applications. These materials were AF-E-124D and AF-E-411. AF-E-124D is a cured perfluorinated polymer suitable for use with dinitrogen tetroxide oxidizer, and hydrazine base fuels. AF-E-411 is an ethylene propylene terpolymer material for hydrazine base fuel service. Data are presented relative to low and high temperature characteristics as well as propellant exposure effects. Types of data included are: mechanical properties, stress strain curves, friction and wear characteristics, compression set and permeability. Sealing tests with a flat poppet-seal valve were conducted for verification of sealing capability. A bibliography includes over 200 references relating to seal design or materials and presents a concise tabulation of the more useful seal design data sources.
1D Piezoelectric Material Based Nanogenerators: Methods, Materials and Property Optimization
Li, Xing; Sun, Mei; Wei, Xianlong; Shan, Chongxin
2018-01-01
Due to the enhanced piezoelectric properties, excellent mechanical properties and tunable electric properties, one-dimensional (1D) piezoelectric materials have shown their promising applications in nanogenerators (NG), sensors, actuators, electronic devices etc. To present a clear view about 1D piezoelectric materials, this review mainly focuses on the characterization and optimization of the piezoelectric properties of 1D nanomaterials, including semiconducting nanowires (NWs) with wurtzite and/or zinc blend phases, perovskite NWs and 1D polymers. Specifically, the piezoelectric coefficients, performance of single NW-based NG and structure-dependent electromechanical properties of 1D nanostructured materials can be respectively investigated through piezoresponse force microscopy, atomic force microscopy and the in-situ scanning/transmission electron microcopy. Along with the introduction of the mechanism and piezoelectric properties of 1D semiconductor, perovskite materials and polymers, their performance improvement strategies are summarized from the view of microstructures, including size-effect, crystal structure, orientation and defects. Finally, the extension of 1D piezoelectric materials in field effect transistors and optoelectronic devices are simply introduced. PMID:29570639
ERIC Educational Resources Information Center
Macha, Dyne; Angelis, Paul
This bibliography includes textbooks useful for the teaching of written skills in English as a second language to college and university students. The major emphasis of the texts listed is the teaching of writing but some contain material on reading as well. The first section contains only texts designed specifically for second language use. The…
Summary and Findings of the ARL Dynamic Failure Forum
2016-09-29
short beam shear, quasi -static indentation, depth of penetration, and V50 limit velocity. o Experimental technique suggestions for improvement included...art in experimental , theoretical, and computational studies of dynamic failure. The forum also focused on identifying technologies and approaches...Army-specific problems. Experimental exploration of material behavior and an improved ability to parameterize material models is essential to improving
ERIC Educational Resources Information Center
Biktimirov, Ernest N.; Klassen, Kenneth J.
2008-01-01
The authors examined the relationship between student online activity, including access to specific course materials, and performance in a traditional face-to-face introductory finance course that a class Web site supported. The authors used 6 measures: (a) total hits, (b) hit consistency, (c) number of unique files that the students accessed, (d)…
Materials for Space: It's Challenging!
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.
2016-01-01
Space environments place tremendous demands on materials that must perform with exceptional reliability to realize the goals of human or robotic space exploration missions. Materials are subjected to extremes of temperature, pressure, radiation and mechanical loads during all phases of use, including takeoff and ascent, exposure to space or entry into an atmosphere, and operation in a planetary atmosphere. Space materials must be robust and enable the formation of lightweight structures or components that perform the required functions; materials that perform multiple functions are of particular interest. This talk will review the unique challenges for materials in space and some of the specific material capabilities that will be needed for future exploration missions. A description of needs and trends in thermal protection materials and systems will complete the talk.
Evaluation of Student Outcomes in Materials Science and Technology
NASA Technical Reports Server (NTRS)
Piippo, Steven
1996-01-01
This paper specifies 14 benchmarks and exit standards for the introduction of Materials Science and Technology in a secondary school education. Included is the standard that students should be able to name an example of each category of technological materials including metals, glass/ceramics, polymers (plastics) and composites. Students should know that each type of solid material has specific properties that can be measured. Students will learn that all solid materials have either a long range crystalline structure or a short range amorphous structure (i.e., glassy). They should learn the choice of materials for a particular application depends on the properties of the material, and the properties of the material depends on its crystal structure and microstructure. The microstructure may be modified by the methods by which the material is processed; students should explain this by the example of sintering a ceramic body to reduce its porosity and increase its densification and strength. Students will receive exposure to the world of work, post secondary educational opportunities, and in general a learning that will lead to a technologically literate intelligent citizen.
The challenge of developing structural materials for fusion power systems
NASA Astrophysics Data System (ADS)
Bloom, Everett E.
1998-10-01
Nuclear fusion can be one of the most attractive sources of energy from the viewpoint of safety and minimal environmental impact. Central in the goal of designing a safe, environmentally benign, and economically competitive fusion power system is the requirement for high performance, low activation materials. The general performance requirements for such materials have been defined and it is clear that materials developed for other applications (e.g. aerospace, nuclear fission, fossil energy systems) will not fully meet the needs of fusion. Advanced materials, with composition and microstructure tailored to yield properties that will satisfy the specific requirements of fusion must be developed. The international fusion programs have made significant progress towards this goal. Compositional requirements for low activation lead to a focus of development efforts on silicon carbide composites, vanadium alloys, and advanced martensitic steels as candidate structural material systems. Control of impurities will be critically important in actually achieving low activation but this appears possible. Neutron irradiation produces significant changes in the mechanical and physical properties of each of these material systems raising feasibility questions and design limitations. A focus of the research and development effort is to understand these effects, and through the development of specific compositions and microstructures, produce materials with improved and adequate performance. Other areas of research that are synergistic with the development of radiation resistant materials include fabrication, joining technology, chemical compatibility with coolants and tritium breeders and specific questions relating to the unique characteristics of a given material (e.g. coatings to reduce gas permeation in SiC composites) or design concept (e.g. electrical insulator coatings for liquid metal concepts).
19 CFR 10.206 - Value content requirement.
Code of Federal Regulations, 2010 CFR
2010-04-01
... in any beneficiary country as defined in § 10.202(a) in the production or manufacture of a new or... incurred in the growth, production, or manufacture of the material, including general expenses; (B) An..., production, manufacture, or assembly of the specific merchandise under consideration. Such costs include, but...
A Case Study of a College-Wide First-Year Undergraduate Engineering Course
ERIC Educational Resources Information Center
Aloul, Fadi; Zualkernan, Imran; Husseini, Ghaleb; El-Hag, Ayman; Al-Assaf, Yousef
2015-01-01
Introductory engineering courses are either programme specific or expose students to engineering as a broad discipline by including materials from various engineering programmes. A common introductory engineering course that spans different engineering programmes raises challenges, including the high cost of resources as well as the lack of…
Skov, Birgit Guldhammer; Kiss, Katalin; Ramsted, Julie; Linnemann, Dorte
2009-04-25
Cytologic examination of fine-needle aspiration (FNA) material is being used increasingly for the diagnosis of pulmonary lesions. Accurate distinction between nonsmall cell lung cancer (NSCLC), including subgroups, and small cell lung cancer and between primary lung cancer and metastases has therapeutic impact. However, the distinction between these groups may be difficult on smears. In this report, the authors describe a simple method, called cytoscrape (CS), which can be used on virtually any smear to produce material useful for ancillary methods, including immunohistochemistry. Aspirates from 47 patients who had possible malignant infiltrates identified on computed tomography scans of the chest were included. Smears were stained by May-Grunwald-Giemsa and Diff-Quick for diagnostic purposes. CS material was obtained by gently scraping cells off the slides. Clots were made, and the sections were stained for thyroid transcription factor-1 (TTF-1) and mucin. The utility of the CS technique was evaluated by assessing the sensitivity and specificity of the method and by quantifying the extra diagnostic information obtained by the method relative to smears alone. Malignant tumor cells in the CS material were identified in 43 aspirates (91%). Both the sensitivity and the specificity for TTF-1 were 100%. The sensitivity for mucin was 60%, and the specificity for mucin was 100%. The diagnoses made on smears were improved by CS in 31 patients (72%), in that more precise separation of subgroups of NSCLC was possible or information on primary tumors was obtained. The CS technique improved the diagnostic information from FNA in a clinically relevant way. The method is simple, quick, and inexpensive. (c) 2009 American Cancer Society.
Design and mechanisms of antifouling materials for surface plasmon resonance sensors.
Liu, Boshi; Liu, Xia; Shi, Se; Huang, Renliang; Su, Rongxin; Qi, Wei; He, Zhimin
2016-08-01
Surface plasmon resonance (SPR) biosensors have many possible applications, but are limited by sensor chip surface fouling, which blocks immobilization and specific binding by the recognizer elements. Therefore, there is a pressing need for the development of antifouling surfaces. In this paper, the mechanisms of antifouling materials were firstly discussed, including both theories (hydration and steric hindrance) and factors influencing antifouling effects (molecular structures and self-assembled monolayer (SAM) architectures, surface charges, molecular hydrophilicity, and grafting thickness and density). Then, the most recent advances in antifouling materials applied on SPR biosensors were systematically reviewed, together with the grafting strategies, antifouling capacity, as well as their merits and demerits. These materials included, but not limited to, zwitterionic compounds, polyethylene glycol-based, and polysaccharide-based materials. Finally, the prospective research directions in the development of SPR antifouling materials were discussed. Surface plasmon resonance (SPR) is a powerful tool in monitoring biomolecular interactions. The principle of SPR biosensors is the conversion of refractive index change caused by molecular binding into resonant spectral shifts. However, the fouling on the surface of SPR gold chips is ubiquitous and troublesome. It limits the application of SPR biosensors by blocking recognition element immobilization and specific binding. Hence, we write this paper to review the antifouling mechanisms and the recent advances of the design of antifouling materials that can improve the accuracy and sensitivity of SPR biosensors. To our knowledge, this is the first review focusing on the antifouling materials that were applied or had potential to be applied on SPR biosensors. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Moss, W.C.
1997-10-07
A thermoacoustic device is described having a thermal stack made from a piece of porous material which provides a desirable ratio of thermoacoustic area to viscous area, which has a low resistance to flow, which minimizes acoustic streaming and which has a high specific heat and low thermal conductivity. The thermal stack is easy and cheap to form and it can be formed in small sizes. Specifically, in one embodiment, a thermal stack which is formed by the natural structure of a porous material such as reticulated vitreous carbon is disclosed. The thermal stack is formed by machining a block of reticulated vitreous carbon into the required shape of the thermal stack. In a second embodiment, a micro-thermoacoustic device is disclosed which includes a thermal stack made of a piece of porous material such as reticulated vitreous carbon. In another embodiment, a heat exchanger is disclosed which is formed of a block of heat conductive open cell foam material. 13 figs.
Moss, William C.
1997-01-01
A thermoacoustic device having a thermal stack made from a piece of porous material which provides a desirable ratio of thermoacoustic area to viscous area, which has a low resistance to flow, which minimizes acoustic streaming and which has a high specific heat and low thermal conductivity is disclosed. The thermal stack is easy and cheap to form and it can be formed in small sizes. Specifically, in one embodiment, a thermal stack which is formed by the natural structure of a porous material such as reticulated vitreous carbon is disclosed. The thermal stack is formed by machining a block of reticulated vitreous carbon into the required shape of the thermal stack. In a second embodiment, a micro-thermoacoustic device is disclosed which includes a thermal stack made of a piece of porous material such as reticulated vitreous carbon. In another embodiment, a heat exchanger is disclosed which is formed of a block of heat conductive open cell foam material.
Layered Structural Co-Based MOF with Conductive Network Frames as a New Supercapacitor Electrode.
Yang, Jie; Ma, Zhihua; Gao, Weixue; Wei, Mingdeng
2017-01-12
Layered structural Co-MOF nanosheets were synthesized and then used as an electrode material for supercapacitors for the first time. This material exhibited a high specific capacitance, a good rate capability, and an excellent cycling stability. A maximum capacitance of 2564 F g -1 can be achieved at a current density of 1 Ag -1 . Moreover, the capacitance retention can be kept at 95.8 % respectively of its initial value after 3000 cycles. To the best of our knowledge, both the specific capacitance and the capacitance retention were the highest values reported for MOF materials as supercapacitor electrodes until now. Such a high supercapacitive performance might be attributed to the intrinsic characteristics of this kind of Co-MOF material, including its layered structure, conductive network frame, and thin nanosheet. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Saito, Theodore T.; Langenbeck, Sharon L.; Al-Jamily, Ghanim; Arnold, Joe; Barbee, Troy; Coulter, Dan; Dolgin, Ben; Fichter, Buck; George, Patricia; Gorenstein, Paul
1992-08-01
Materials and structures technology covers a wide range of technical areas. Some of the most pertinent issues for the Astrotech 21 missions include dimensionally stable structural materials, advanced composites, dielectric coatings, optical metallic coatings for low scattered light applications, low scattered light surfaces, deployable and inflatable structures (including optical), support structures in 0-g and 1-g environments, cryogenic optics, optical blacks, contamination hardened surfaces, radiation hardened glasses and crystals, mono-metallic telescopes and instruments, and materials characterization. Some specific examples include low coefficients of thermal expansion (CTE) structures (0.01 ppm/K), lightweight thermally stable mirror materials, thermally stable optical assemblies, high reliability/accuracy (1 micron) deployable structures, and characterization of nanometer level behavior of materials/structures for interferometry concepts. Large filled-aperture concepts will require materials with CTE's of 10(exp 9) at 80 K, anti-contamination coatings, deployable and erectable structures, composite materials with CTE's less than 0.01 ppm/K and thermal hysteresis, 0.001 ppm/K. Gravitational detection systems such as LAGOS will require rigid/deployable structures, dimensionally stable components, lightweight materials with low conductivity, and high stability optics. The Materials and Structures panel addressed these issues and the relevance of the Astrotech 21 mission requirements by dividing materials and structures technology into five categories. These categories, the necessary development, and applicable mission/program development phasing are summarized. For each of these areas, technology assessments were made and development plans were defined.
NASA Technical Reports Server (NTRS)
Pronchick, Stephen W.
1998-01-01
Materials that pyrolyze at elevated temperature have been commonly used as thermal protection materials in hypersonic flight, and advanced pyrolyzing materials for this purpose continue to be developed. Because of the large temperature gradients that can arise in thermal protection materials, significant thermal stresses can develop. Advanced applications of pyrolytic materials are calling for more complex heatshield configurations, making accurate thermal stress analysis more important, and more challenging. For non-pyrolyzing materials, many finite element codes are available and capable of performing coupled thermal-mechanical analyses. These codes do not, however, have a built-in capability to perform analyses that include pyrolysis effects. When a pyrolyzing material is heated, one or more components of the original virgin material pyrolyze and create a gas. This gas flows away from the pyrolysis zone to the surface, resulting in a reduction in surface heating. A porous residue, referred to as char, remains in place of the virgin material. While the processes involved can be complex, it has been found that a simple physical model in which virgin material reacts to form char and pyrolysis gas, will yield satisfactory analytical results. Specifically, the effects that must be modeled include: (1) Variation of thermal properties (density, specific heat, thermal conductivity) as the material composition changes; (2) Energy released or absorbed by the pyrolysis reactions; (3) Energy convected by the flow of pyrolysis gas from the interior to the surface; (4) The reduction in surface heating due to surface blowing; and (5) Chemical and mass diffusion effects at the surface between the pyrolysis gas and edge gas Computational tools for the one-dimensional thermal analysis these materials exist and have proven to be reliable design tools. The objective of the present work is to extend the analysis capabilities of pyrolyzing materials to axisymmetric configurations, and to couple thermal and mechanical analyses so that thermal stresses may be efficiently and accurately calculated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGinniss, V.D.; Sliemers, F.A.; Landstrom, D.K.
1980-07-31
This report is intended to organize and summarize prior and current literature concerning the weathering, aging, durability, degradation, and testing methodologies as applied to materials for plastic solar thermal collectors. Topics covered include (1) rate of aging of polymeric materials; (2) environmental factors affecting performance; (3) evaluation and prediction of service life; (4) measurement of physical and chemical properties; (5) discussion of evaluation techniques and specific instrumentation; (6) degradation reactions and mechanisms; (7) weathering of specific polymeric materials; and (8) exposure testing methodology. Major emphasis has been placed on defining the current state of the art in plastics degradation andmore » on identifying information that can be utilized in applying appropriate and effective aging tests for use in projecting service life of plastic solar thermal collectors. This information will also be of value where polymeric components are utilized in the construction of conventional solar collectors or any application where plastic degradation and weathering are prime factors in material selection.« less
NASA Technical Reports Server (NTRS)
1985-01-01
In the conference proceedings are 24 presented papers, their discussions, and material given in two panels. The presented papers address the general areas of the dynamics of rotorcraft or helicopters. Specific topics include the stability of rotors in hover and forward flight, the stability of coupled rotor-fuselage systems in hover, the loads on a rotor in forward flight including new developments in rotor loads calculations, and the calculation of rotorcraft vibration and means for its control or suppression. Material in the first panel deals with the successful application of dynamics technology to engineering development of flight vehicles. Material in the second panel is concerned with large data bases in the area of rotorocraft dynamics and how they are developed, managed, and used.
Preparation for microgravity - The role of the Microgravity Material Science Laboratory
NASA Technical Reports Server (NTRS)
Johnston, J. Christopher; Rosenthal, Bruce N.; Meyer, Maryjo B.; Glasgow, Thomas K.
1988-01-01
Experiments at the NASA Lewis Research Center's Microgravity Material Science Laboratory using physical and mathematical models to delineate the effects of gravity on processes of scientific and commercial interest are discussed. Where possible, transparent model systems are used to visually track convection, settling, crystal growth, phase separation, agglomeration, vapor transport, diffusive flow, and polymer reactions. Materials studied include metals, alloys, salts, glasses, ceramics, and polymers. Specific technologies discussed include the General Purpose furnace used in the study of metals and crystal growth, the isothermal dendrite growth apparatus, the electromagnetic levitator/instrumented drop tube, the high temperature directional solidification furnace, the ceramics and polymer laboratories and the center's computing facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... RESPONSE TO HAZARDOUS SUBSTANCE RELEASES Pt. 310, App. III Appendix III to Part 310—Form: Application for... tools and supplies and similar materials purchased specifically for, and expended during, the response May include such items as chemical foam to suppress a fire; food purchased specifically for an...
ERIC Educational Resources Information Center
Huang, Ping-Yu; Chen, Chien-Ming; Tsao, Nai-Lung; Wible, David
2015-01-01
Since it was published, Coxhead's (2000) Academic Word List (AWL) has been frequently used in English for academic purposes (EAP) classrooms, included in numerous teaching materials, and re-examined in light of various domain-specific corpora. Although well-received, the AWL has been criticized for ignoring some important facts that words still…
ERIC Educational Resources Information Center
Illinois State Office of the Superintendent of Public Instruction, Springfield.
THE INFORMATION INCLUDED IN THIS VERY DETAILED DOCUMENT IS INTENDED FOR TEACHERS AND ADMINISTRATORS PLANNING AND IMPLEMENTING PROGRAMS TO IMPROVE FOREIGN LANGUAGE INSTRUCTION. THE SPECIFICATIONS PRESENTED ARE MINIMUM, BUT THEY MEET THE REQUIREMENTS UNDER THE PROVISIONS OF TITLE III, NDEA. THE FIRST PART OUTLINES PROCEDURES FOR THE SELECTION AND…
Selective and Responsive Nanopore-Filled Membranes
2011-03-14
Materials Science and Engineering Poster Competition 15. Chen, H.; Elabd, Y.A. Ionic Liquid Polymers: Electrospinning and Solution Properties. Fall...hydrophilic ionic polymer gels within a hydrophobic polymer host matrix. The specific tasks of this project include (1) synthesizing stimuli...on polymer-polymer nanocomposites of hydrophilic ionic polymer gels within a hydrophobic polymer host matrix. The specific tasks of this project
Health and safety outreach materials in the form of an awareness kit. Designed specifically for state, local, and tribal air agencies working to reduce wood smoke pollution, it includes best burn tips, social media m
Encapsulant Material For Solar Cell Module And Laminated Glass Applications
Hanoka, Jack I.; Klemchuk, Peter P.
2001-02-13
An encapsulant material includes a layer of metallocene polyethylene disposed between two layers of an acid copolymer of polyethylene. More specifically, the layer of metallocene polyethylene is disposed adjacent a rear surface of the first layer of the acid copolymer of polyethylene, and a second layer of the acid copolymer of polyethlene is disposed adjacent a rear surface of the layer of metallocene polyethylene. The encapsulant material can be used in solar cell module and laminated glass applications.
Material selection indices for design of surgical instruments with long tubular shafts.
Nelson, Carl A
2013-02-01
In any medical device design process, material selection plays an important role. For devices which sustain mechanical loading, strength and stiffness requirements can be significant drivers of the design. This paper examines the specific case of minimally invasive surgical instruments, including robotic instruments, having long, tubular shafts. Material properties-based selection indices are derived for achieving high performance of these devices in terms of strength and stiffness, and the use of these indices for informing the medical device design problem is illustrated.
Silicon oxide based high capacity anode materials for lithium ion batteries
Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet
2017-03-21
Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.
1980-09-01
placement of dredged material is proposed, a quantitative analysis of the effects on the 1-percent chance flood be made. The analysis must include a...FPMWG will accept the site. b. Until a quantitative analysis is conducted, place- ment sites be selected following these guidelines. (1) Dredge4 material... Analysis of site-specific encroachments would continue to be made without considering the opposite bank impacts or the long-term cumulative effects. 5
Thermoelectric materials evaluation program. Technical summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinderman, J.D.
1979-04-01
Research progress on the thermoelectric materials evaluation program is reported covering the period January 1, 1976 to September 30, 1978. Topical reports are presented on (1) hot and cold end ..delta..T's, (2) hardware mobility, (3) p-leg sublimation suppression, (4) thermodynamic stability of p-legs, (5) n-leg material process improvements to reduce extraneous resistance, (6) n-leg cracking, (7) dynamic evaluation of converter, and (8) data base and degradation modes. Twenty attachments are included which present supporting drawings, specifications, procedures, and data. (WHK)
Cross-Linked Nanotube Materials with Variable Stiffness Tethers
NASA Technical Reports Server (NTRS)
Frankland, Sarah-Jane V.; Odegard, Gregory M.; Herzog, Matthew N.; Gates, Thomas S.; Fay, Catherine C.
2004-01-01
The constitutive properties of a cross-linked single-walled carbon nanotube material are predicted with a multi-scale model. The material is modeled as a transversely isotropic solid using concepts from equivalent-continuum modeling. The elastic constants are determined using molecular dynamics simulation. Some parameters of the molecular force field are determined specifically for the cross-linker from ab initio calculations. A demonstration of how the cross-linked nanotubes may affect the properties of a nanotube/polyimide composite is included using a micromechanical analysis.
Handbook of corrosion resistant piping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schweitzer, P.A.
1985-01-01
The book deals with pertinent design, installation, corrosion resistance, and economic factors necessary to determine the optimum system to handle specific corrodents. Each of the materials, both metallic and nonmetallic, is discussed individually. Suitable construction materials are indicated for over 500 corrodents. Available sizes, weights, and types of fittings are given for each material. Tables of permissible working pressures based on the Petroleum Refinery Piping Code, USAS B31.3, have been calculated for each alloy. Service ratings are included for everything discussed.
NASA Technical Reports Server (NTRS)
Wright, Geoff
1994-01-01
This report will discuss the design of a liquid hydrogen fuel tank constructed from composite materials. The focus of this report is to recommend a design for a fuel tank which will be able to withstand all static and dynamic forces during manned flight. Areas of study for the design include material selection, material structural analysis, heat transfer, thermal expansion, and liquid hydrogen diffusion. A structural analysis FORTRAN program was developed for analyzing the buckling and yield characteristics of the tank. A thermal analysis Excel spreadsheet was created to determine a specific material thickness which will minimize heat transfer through the wall of the tank. The total mass of the tank was determined by the combination of both structural and thermal analyses. The report concludes with the recommendation of a layered material tank construction. The designed system will include exterior insulation, combination of metal and organize composite matrices and honeycomb.
Materials selection guidelines for geothermal energy utilization systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, P.F. II; Conover, M.F.
1981-01-01
This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world aremore » presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)« less
Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine.
Chen, Shixuan; Li, Ruiquan; Li, Xiaoran; Xie, Jingwei
2018-05-02
Electrospinning provides an enabling nanotechnology platform for generating a rich variety of novel structured materials in many biomedical applications including drug delivery, biosensing, tissue engineering, and regenerative medicine. In this review article, we begin with a thorough discussion on the method of producing 1D, 2D, and 3D electrospun nanofiber materials. In particular, we emphasize on how the 3D printing technology can contribute to the improvement of traditional electrospinning technology for the fabrication of 3D electrospun nanofiber materials as drug delivery devices/implants, scaffolds or living tissue constructs. We then highlight several notable examples of electrospun nanofiber materials in specific biomedical applications including cancer therapy, guiding cellular responses, engineering in vitro 3D tissue models, and tissue regeneration. Finally, we finish with conclusions and future perspectives of electrospun nanofiber materials for drug delivery and regenerative medicine. Copyright © 2018 Elsevier B.V. All rights reserved.
3500-hour durability testing of ceramic materials for automotive gas turbine engines
NASA Technical Reports Server (NTRS)
Carruthers, W. D.; Richerson, D. W.; Benn, K. W.
1980-01-01
A two-year durability program was performed by AiResearch Phoenix to evaluate four commercially available ceramic materials under simulated automotive gas turbine combustor discharge conditions. These conditions included extended cyclic thermal exposures up to 2500 F and 3500 hr. The four materials selected for evaluation were Norton NCX-34 hot pressed silicon nitride, AiResearch RBN 101 reaction bonded silicon nitride, Carborundum pressureless sintered alpha-SiC and Pure Carbon Co. (British Nuclear Fuels, Ltd.) Refel reaction sintered silicon carbide. These materials were initially exposed to 350 hr/1750 cycles at 1200 and 1370 C. Subsequent exposures to 1050, 2100 and 3500 hr were performed on those materials maintaining 50% of baseline strength after the initial exposure. Additional evaluations of exposed bars included dimensional and weight changes, dye penetrant, specific damping capacity changes, SEM fractography, and X-ray diffraction.
Programmable light-controlled shape changes in layered polymer nanocomposites.
Zhu, Zhichen; Senses, Erkan; Akcora, Pinar; Sukhishvili, Svetlana A
2012-04-24
We present soft, layered nanocomposites that exhibit controlled swelling anisotropy and spatially specific shape reconfigurations in response to light irradiation. The use of gold nanoparticles grafted with a temperature-responsive polymer (poly(N-isopropylacrylamide), PNIPAM) with layer-by-layer (LbL) assembly allowed placement of plasmonic structures within specific regions in the film, while exposure to light caused localized material deswelling by a photothermal mechanism. By layering PNIPAM-grafted gold nanoparticles in between nonresponsive polymer stacks, we have achieved zero Poisson's ratio materials that exhibit reversible, light-induced unidirectional shape changes. In addition, we report rheological properties of these LbL assemblies in their equilibrium swollen states. Moreover, incorporation of dissimilar plasmonic nanostructures (solid gold nanoparticles and nanoshells) within different material strata enabled controlled shrinkage of specific regions of hydrogels at specific excitation wavelengths. The approach is applicable to a wide range of metal nanoparticles and temperature-responsive polymers and affords many advanced build-in options useful in optically manipulated functional devices, including precise control of plasmonic layer thickness, tunability of shape variations to the excitation wavelength, and programmable spatial control of optical response.
The behavior of biogenic silica-rich rocks and volcanic tuffs as pozzolanic additives in cement
NASA Astrophysics Data System (ADS)
Fragoulis, Dimitris; Stamatakis, Michael; Anastasatou, Marianthi
2015-04-01
Cements currently produced, include a variety of pozzolanic materials, aiming for lower clinker addition and utilization of vast deposits of certain raw materials and/or mining wastes and byproducts. The major naturally occurring pozzolanic materials include glassy tuffs, zeolitic tuffs, diatomites and volcanic lavas rich in glassy phase, such as perlites. Therefore, based on the available raw materials in different locations, the cement composition might vary according to the accessibility of efficient pozzolanic materials. In the present investigation, the behavior of pozzolanic cements produced with representative samples of the aforementioned materials was studied, following the characterization of the implemented pozzolanas with respect to their chemical and mineralogical characteristics. Laboratory cements were produced by co-grinding 75% clinker, 5% gypsum and 20% pozzolana, for the same period of time (45 min). Regarding pozzolanic materials, four different types of pozzolanas were utilized namely, diatomite, perlite, zeolite tuff and glassy tuff. More specifically, two diatomite samples originated from Australia and Greece, with high and low reactive silica content respectively, two perlite samples originated from Turkey and from Milos Island, Greece, with different reactive silica contents, a zeolite tuff sample originated from Turkey and a glassy tuff sample originated from Milos Island, Greece. The above pozzolana samples, which were ground in the laboratory ball mill for cement production performed differently during grinding and that was reflected upon the specific surface area (cm2/gr) values. The perlites and the glassy tuff were the hardest to grind, whereas, the zeolite tuff and the Australian diatomite were the easiest ones. However, the exceedingly high specific surface area of the Australian diatomite renders cement difficult to transport and tricky to use for concrete manufacturing, due to the high water demand of the cement mixture. Regarding late compressive strength, the worst performing cement was the one with the lowest reactive silica content with biogenic opal-A as the only reactive pozzolana constituent. Cements produced with perlites, raw materials consisting mainly of a glassy phase, were characterized by higher strength and a rather ordinary specific surface area. Cements produced with Turkish zeolite tuff and Milos glassy tuff exhibited higher late compressive strength than those mentioned above. The highest strength was achieved by the implementation of Australian diatomite for cement production. Its 28 day strength exceeded that of the control mixture consisting of 95% clinker and 5% gypsum. That could be attributed to both, high specific surface of cement and reactive SiO2 of diatomite. Therefore, a preliminary assessment regarding late strength of pozzolanic cements could be obtained by the consideration of two main parameters, namely: specific surface area of cement and reactive silica content of pozzolana.
Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells
Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher; Lane, George Hamilton; Morgan, Dane; Nevin, Josh; Ceder, Gerbrand; Persson, Kristin Aslaug; Eaglesham, David
2015-10-27
Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqeuous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.
Technical advisory guide (TAG) for microsurfacing pilot projects.
DOT National Transportation Integrated Search
2003-10-01
This document provides an overview of the types of microsurfacing presently used in California, including information on materials and specifications, mix design, project selection, details regarding construction, and a troubleshooting guide to assis...
Optimizing Mississippi aggregates for concrete bridge decks.
DOT National Transportation Integrated Search
2012-12-01
AASHTO M 43 Standard Specification for Sizes of Aggregate for Road and Bridge Construction : addresses particle size distribution of material included in various maximum nominal size aggregates. This : particle size distribution requires additi...
Prohibition of Oxidizers Aboard Aircraft
DOT National Transportation Integrated Search
1996-12-30
RSPA proposes to amend the Hazardous Material Regulations to prohibit the carriage of oxidizers, including compressed oxygen, in passenger carrying aircraft and in Class D compartments on cargo aircraft. This proposal specifically analyzes the prohib...
Creep fatigue life prediction for engine hot section materials (ISOTROPIC)
NASA Technical Reports Server (NTRS)
Nelson, R. S.; Schoendorf, J. F.; Lin, L. S.
1986-01-01
The specific activities summarized include: verification experiments (base program); thermomechanical cycling model; multiaxial stress state model; cumulative loading model; screening of potential environmental and protective coating models; and environmental attack model.
ERIC Educational Resources Information Center
May, Kathie
2002-01-01
Presents an activity in which students are assigned occupations that rely on specific minerals. To obtain the needed minerals, students learn how to trade services and commodities. Includes details on preparation, modeling behaviors, and printed materials. (DDR)
49 CFR 238.201 - Scope/alternative compliance.
Code of Federal Regulations, 2012 CFR
2012-10-01
... structural standards of this subpart (§ 238.203—static end strength; § 238.205—anti-climbing mechanism; § 238... by § 238.21(c); (ii) Information, including detailed drawings and materials specifications...
49 CFR 238.201 - Scope/alternative compliance.
Code of Federal Regulations, 2013 CFR
2013-10-01
... structural standards of this subpart (§ 238.203—static end strength; § 238.205—anti-climbing mechanism; § 238... by § 238.21(c); (ii) Information, including detailed drawings and materials specifications...
49 CFR 238.201 - Scope/alternative compliance.
Code of Federal Regulations, 2014 CFR
2014-10-01
... structural standards of this subpart (§ 238.203—static end strength; § 238.205—anti-climbing mechanism; § 238... by § 238.21(c); (ii) Information, including detailed drawings and materials specifications...
49 CFR 238.201 - Scope/alternative compliance.
Code of Federal Regulations, 2011 CFR
2011-10-01
... structural standards of this subpart (§ 238.203—static end strength; § 238.205—anti-climbing mechanism; § 238... by § 238.21(c); (ii) Information, including detailed drawings and materials specifications...
Contraband detection using acoustic technology
NASA Astrophysics Data System (ADS)
George, Robert D.; Gauthier, Ronald D.; Denslow, Kayte D.; Cinson, Anthony M.; Diaz, Aaron A.; Griffin, Molly
2008-03-01
Maritime security personnel have a need for advanced technologies to address issues such as identification, confirmation or classification of substances and materials in sealed containers, both non-invasively and nondestructively in field and first response operations. Such substances include items such as hazardous/flammable liquids, drugs, contraband, and precursor chemicals used in the fabrication of illicit materials. Our initial efforts focused specifically on a commercial portable acoustic detector technology that was evaluated under operational conditions in a maritime environment. Technical/operational limitations were identified and enhancements were incorporated that would address these limitations. In this paper, application-specific improvements and performance testing/evaluation results will be described. Such enhancements will provide personnel/users of the detector a significantly more reliable method of screening materials for contraband items that might be hidden in cargo containers.
NASA Astrophysics Data System (ADS)
Byeon, J. H.; Ahmed, F.; Ko, T. J.; lee, D. K.; Kim, J. S.
2018-03-01
As the industry develops, miniaturization and refinement of products are important issues. Precise machining is required for cutting, which is a typical method of machining a product. The factor determining the workability of the cutting process is the material of the tool. Tool materials include carbon tool steel, alloy tool steel, high-speed steel, cemented carbide, and ceramics. In the case of a carbide material, the smaller the particle size, the better the mechanical properties with higher hardness, strength and toughness. The specific heat, density, and thermal diffusivity are also changed through finer particle size of the material. In this study, finite element analysis was performed to investigate the change of heat generation and cutting power depending on the physical properties (specific heat, density, thermal diffusivity) of tool material. The thermal conductivity coefficient was obtained by measuring the thermal diffusivity, specific heat, and density of the material (180 nm) in which the particle size was finer and the particle material (0.05 μm) in the conventional size. The coefficient of thermal conductivity was calculated as 61.33 for 180nm class material and 46.13 for 0.05μm class material. As a result of finite element analysis using this value, the average temperature of exothermic heat of micronized particle material (180nm) was 532.75 °C and the temperature of existing material (0.05μm) was 572.75 °C. Cutting power was also compared but not significant. Therefore, if the thermal conductivity is increased through particle refinement, the surface power can be improved and the tool life can be prolonged by lowering the temperature generated in the tool during machining without giving a great influence to the cutting power.
Materials Compatibility Testing in Concentrated Hydrogen Peroxide
NASA Technical Reports Server (NTRS)
Boxwell, R.; Bromley, G.; Mason, D.; Crockett, D.; Martinez, L.; McNeal, C.; Lyles, G. (Technical Monitor)
2000-01-01
Materials test methods from the 1960's have been used as a starting point in evaluating materials for today's space launch vehicles. These established test methods have been modified to incorporate today's analytical laboratory equipment. The Orbital test objective was to test a wide range of materials to incorporate the revolution in polymer and composite materials that has occurred since the 1960's. Testing is accomplished in 3 stages from rough screening to detailed analytical tests. Several interesting test observations have been made during this testing and are included in the paper. A summary of the set-up, test and evaluation of long-term storage sub-scale tanks is also included. This sub-scale tank test lasted for a 7-month duration prior to being stopped due to a polar boss material breakdown. Chemical evaluations of the hydrogen peroxide and residue left on the polar boss surface identify the material breakdown quite clearly. The paper concludes with recommendations for future testing and a specific effort underway within the industry to standardize the test methods used in evaluating materials.
Syntactic Metals: A Survey of Current Technology
NASA Technical Reports Server (NTRS)
Erikson, Ray
2003-01-01
Syntactic metals are a relatively new development in materials science. Several approaches to synthesizing these materials have been tried, and the handful of researchers in this field are beginning to make progress in defining useful compositions and processes. Syntactic metals can provide materials with dramatically improved specific strength and stiffness over their parent alloys, while retaining the isotropy that makes ordinary metals preferable to fiber-reinforced laminated composites in many applications. This paper reviews syntactic material concepts in general, the current state of the art (including the author's own work in syntactic aluminum), and the direction of future developments.
[Detection of rubella virus RNA in clinical material by real time polymerase chain reaction method].
Domonova, É A; Shipulina, O Iu; Kuevda, D A; Larichev, V F; Safonova, A P; Burchik, M A; Butenko, A M; Shipulin, G A
2012-01-01
Development of a reagent kit for detection of rubella virus RNA in clinical material by PCR-RT. During development and determination of analytical specificity and sensitivity DNA and RNA of 33 different microorganisms including 4 rubella strains were used. Comparison of analytical sensitivity of virological and molecular-biological methods was performed by using rubella virus strains Wistar RA 27/3, M-33, "Orlov", Judith. Evaluation of diagnostic informativity of rubella virus RNAisolation in various clinical material by PCR-RT method was performed in comparison with determination of virus specific serum antibodies by enzyme immunoassay. A reagent kit for the detection of rubella virus RNA in clinical material by PCR-RT was developed. Analytical specificity was 100%, analytical sensitivity - 400 virus RNA copies per ml. Analytical sensitivity of the developed technique exceeds analytical sensitivity of the Vero E6 cell culture infection method in studies of rubella virus strains Wistar RA 27/3 and "Orlov" by 11g and 31g, and for M-33 and Judith strains is analogous. Diagnostic specificity is 100%. Diagnostic specificity for testing samples obtained within 5 days of rash onset: for peripheral blood sera - 20.9%, saliva - 92.5%, nasopharyngeal swabs - 70.1%, saliva and nasopharyngeal swabs - 97%. Positive and negative predictive values of the results were shown depending on the type of clinical material tested. Application of reagent kit will allow to increase rubella diagnostics effectiveness at the early stages of infectious process development, timely and qualitatively perform differential diagnostics of exanthema diseases, support tactics of anti-epidemic regime.
Almogren, A; Shakoor, Z; Adam, M H
2013-09-01
Detection of specific IgE antibodies against food materials indicates allergic sensitization. Some very widely consumed foods materials such as garlic and onion have rarely been investigated for their allergenic potential. To assess the presence of garlic and onion specific IgE antibodies in patients investigated for food allergy. Radioallergosorbent test (RAST) results of 108 patients with clinical suspicion of food allergy who were specifically screened for garlic and onion specific IgE antibodies along with other food allergens were analyzed retrospectively at King Khalid University Hospital between January 2008 and April 2009. This group of patients included 73 males and 35 females with mean age 27+13.2 years. Estimation of garlic and onion specific IgE antibodies was performed by radioallergosorbent test (RAST) using Pharmacia ImmunoCAP 250 analyzer. Out of the 108 patients 15 (13.8%) had garlic and onion specific IgE antibodies in their sera. Garlic specific IgE antibodies with the RAST scores between one to four were present in 14 and onion specific IgE were detected in 13 patients. For garlic specific IgEs majority of patients (08) had RAST score of one (0.35-0.69 kU/L) and for onion specific IgE antibodies seven patients had RAST score of two (0.70-3.49 kU/L). Among these patients 12 (80%) were found to have coexisting specific IgE antibodies against garlic and onion. The presence of garlic and onion specific IgE antibodies in a sizeable number of patients indicate sensitization and allergenic potential of these food materials.
Ford, Patrick; Santos, Eduardo; Ferrão, Paulo; Margarido, Fernanda; Van Vliet, Krystyn J; Olivetti, Elsa
2016-05-03
The challenges brought on by the increasing complexity of electronic products, and the criticality of the materials these devices contain, present an opportunity for maximizing the economic and societal benefits derived from recovery and recycling. Small appliances and computer devices (SACD), including mobile phones, contain significant amounts of precious metals including gold and platinum, the present value of which should serve as a key economic driver for many recycling decisions. However, a detailed analysis is required to estimate the economic value that is unrealized by incomplete recovery of these and other materials, and to ascertain how such value could be reinvested to improve recovery processes. We present a dynamic product flow analysis for SACD throughout Portugal, a European Union member, including annual data detailing product sales and industrial-scale preprocessing data for recovery of specific materials from devices. We employ preprocessing facility and metals pricing data to identify losses, and develop an economic framework around the value of recycling including uncertainty. We show that significant economic losses occur during preprocessing (over $70 M USD unrecovered in computers and mobile phones, 2006-2014) due to operations that fail to target high value materials, and characterize preprocessing operations according to material recovery and total costs.
ERIC Educational Resources Information Center
Burhansstipanov, Linda, Comp.; Barry, Kathleen Cooleen, Comp.
This directory provides information on cancer education materials that have been developed specifically for American Indians and Alaska Natives. The goal is to develop and implement culturally appropriate cancer prevention and control programs for Native Americans. The directory includes a matrix of cancer education materials that identifies…
Quantitation and detection of vanadium in biologic and pollution materials
NASA Technical Reports Server (NTRS)
Gordon, W. A.
1974-01-01
A review is presented of special considerations and methodology for determining vanadium in biological and air pollution materials. In addition to descriptions of specific analysis procedures, general sections are included on quantitation of analysis procedures, sample preparation, blanks, and methods of detection of vanadium. Most of the information presented is applicable to the determination of other trace elements in addition to vanadium.
Optical constants of concentrated aqueous ammonium sulfate.
NASA Technical Reports Server (NTRS)
Remsberg, E. E.
1973-01-01
Using experimental data obtained from applying spectroscopy to a 39-wt-% aqueous ammonium sulfate solution, it is shown that, even though specific aerosol optical constants appear quite accurate, spectral variations may exist as functions of material composition or concentration or both. Prudent users of optical constant data must then include liberal data error estimates when performing calculations or in interpreting spectroscopic surveys of collected aerosol material.
Evaluation of alternative phase change materials for energy storage in solar dynamic applications
NASA Technical Reports Server (NTRS)
Crane, R. A.; Dustin, M. O.
1988-01-01
The performance of fluoride salt and metallic thermal energy storage materials are compared in terms of basic performance as applied to solar dynamic power generation. Specific performance considerations include uniformity of cycle inlet temperature, peak cavity temperature, TES utilization, and system weights. Also investigated were means of enhancing the thermal conductivity of the salts and its effect on the system performance.
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and the Pacific.
This handbook, the second volume in a series of three publications on distance education, presents guidelines on structures and strategies in organizations and the processes of materials development. A checklist of specific items is included for each topic addressed. The first guidelines are addressed to policymakers and senior administrators and…
Material Characterization for Composite Materials in Load Bearing Wave Guides
2012-03-01
ISIS Integrated Sensor Is Structure MUSTRAP Multifunctional Structural Aperture MWCNT Multi-walled Carbon Nanotube SWCNT Single-walled Carbon...CNTs go through a specific process to coat them with nickel. The process includes conditioning the CNTs in different solutions and adding...a single-walled carbon nanotube (SWCNT), a multi-walled carbon nanotube ( MWCNT ), or a graphene nanoribbon (GNR). A SWCNT is a hollow cylindrical
Graphene-Based Materials for Lithium-Ion Hybrid Supercapacitors.
Ma, Yanfeng; Chang, Huicong; Zhang, Miao; Chen, Yongsheng
2015-09-23
Lithium-ion hybrid supercapacitors (LIHSs), also called Li-ion capacitors, have attracted much attention due to the combination of the rapid charge-discharge and long cycle life of supercapacitors and the high energy-storage capacity of lithium-ion batteries. Thus, LIHSs are expected to become the ultimate power source for hybrid and all-electric vehicles in the near future. As an electrode material, graphene has many advantages, including high surface area and porous structure, high electric conductivity, and high chemical and thermal stability, etc. Compared with other electrode materials, such as activated carbon, graphite, and metal oxides, graphene-based materials with 3D open frameworks show higher effective specific surface area, better control of channels, and higher conductivity, which make them better candidates for LIHS applications. Here, the latest advances in electrode materials for LIHSs are briefly summarized, with an emphasis on graphene-based electrode materials (including 3D graphene networks) for LIHS applications. An outlook is also presented to highlight some future directions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multidimensional Fuel Performance Code: BISON
DOE Office of Scientific and Technical Information (OSTI.GOV)
BISON is a finite element based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO fuel particles, and metallic rod and plate fuel (Refs. [a, b, c]). It solves the fully-coupled equations of thermomechanics and species diffusion and includes important fuel physics such as fission gas release and material property degradation with burnup. BISON is based on the MOOSE framework (Ref. [d]) and can therefore efficiently solve problems on 1-, 2- or 3-D meshes using standard workstations or large high performance computers. BISON is also coupled to a MOOSE-based mesoscale phasemore » field material property simulation capability (Refs. [e, f]). As described here, BISON includes the code library named FOX, which was developed concurrent with BISON. FOX contains material and behavioral models that are specific to oxide fuels.« less
Sensitivity analysis of the add-on price estimate for the edge-defined film-fed growth process
NASA Technical Reports Server (NTRS)
Mokashi, A. R.; Kachare, A. H.
1981-01-01
The analysis is in terms of cost parameters and production parameters. The cost parameters include equipment, space, direct labor, materials, and utilities. The production parameters include growth rate, process yield, and duty cycle. A computer program was developed specifically to do the sensitivity analysis.
Review of Adaptive Programmable Materials and Their Bioapplications.
Fan, Xiaoshan; Chung, Jing Yang; Lim, Yong Xiang; Li, Zibiao; Loh, Xian Jun
2016-12-14
Adaptive programmable materials have attracted increasing attention due to their high functionality, autonomous behavior, encapsulation, and site-specific confinement capabilities in various applications. Compared to conventional materials, adaptive programmable materials possess unique single-material architecture that can maintain, respond, and change their shapes and dimensions when they are subjected to surrounding environment changes, such as alternation in temperature, pH, and ionic strength. In this review, the most-recent advances in the design strategies of adaptive programmable materials are presented with respect to different types of architectural polymers, including stimuli-responsive polymers and shape-memory polymers. The diverse functions of these sophisticated materials and their significance in therapeutic agent delivery systems are also summarized in this review. Finally, the challenges for facile fabrication of these materials and future prospective are also discussed.
Rubberized asphalt concrete warranty pilot projects.
DOT National Transportation Integrated Search
2005-11-01
Between 2002 and 2004 Caltrans built five pilot projects through its rehabilitation program that contain : specifications for rubberized asphalt concrete (RAC) overlay and include a 5-year warranty on the RAC : materials and workmanship. The overall ...
Large space systems technology, 1981. [conferences
NASA Technical Reports Server (NTRS)
Boyer, W. J. (Compiler)
1982-01-01
A total systems approach including structures, analyses, controls, and antennas is presented as a cohesive, programmatic plan for large space systems. Specifically, program status, structures, materials, and analyses, and control of large space systems are addressed.
Internal Corrosion and Deposition Control
This chapter reviews the current knowledge of the science of corrosion control and control of scaling in drinking water systems. Topics covered include: types of corrosion; physical, microbial and chemical factors influencing corrosion; corrosion of specific materials; direct ...
Code of Federal Regulations, 2014 CFR
2014-10-01
... properly marked valve; and (iv) A UN pressure receptacle is marked with “USA” as a country of approval in...) manufactured to other than a DOT specification or a UN standard in accordance with part 178 of this subchapter.... (2) Cylinders (including UN pressure receptacles) transported to, from, or within the United States...
Code of Federal Regulations, 2012 CFR
2012-10-01
... properly marked valve; and (iv) A UN pressure receptacle is marked with “USA” as a country of approval in...) manufactured to other than a DOT specification or a UN standard in accordance with part 178 of this subchapter.... (2) Cylinders (including UN pressure receptacles) transported to, from, or within the United States...
Code of Federal Regulations, 2013 CFR
2013-10-01
... properly marked valve; and (iv) A UN pressure receptacle is marked with “USA” as a country of approval in...) manufactured to other than a DOT specification or a UN standard in accordance with part 178 of this subchapter.... (2) Cylinders (including UN pressure receptacles) transported to, from, or within the United States...
Code of Federal Regulations, 2010 CFR
2010-10-01
... properly marked valve; and (iv) A UN pressure receptacle is marked with “USA” as a country of approval in...) manufactured to other than a DOT specification or a UN standard in accordance with part 178 of this subchapter.... (2) Cylinders (including UN pressure receptacles) transported to, from, or within the United States...
Code of Federal Regulations, 2011 CFR
2011-10-01
... properly marked valve; and (iv) A UN pressure receptacle is marked with “USA” as a country of approval in...) manufactured to other than a DOT specification or a UN standard in accordance with part 178 of this subchapter.... (2) Cylinders (including UN pressure receptacles) transported to, from, or within the United States...
NASA Astrophysics Data System (ADS)
1980-10-01
Specifications are given for the shipping, marking, inspection, testing, and start up of equipment to be used in a proposed wood fuel cogeneration system in Maine. Couplings, mechanical drives, electric motors, spare parts, coatings, assembling, and materials handling and packaging are covered. Both OSHA and noise control regulations are included along with the ASME code.
Gravimetric chemical sensors based on silica-based mesoporous organic-inorganic hybrids.
Xu, Jiaqiang; Zheng, Qi; Zhu, Yongheng; Lou, Huihui; Xiang, Qun; Cheng, Zhixuan
2014-09-01
Silica-based mesoporous organic-inorganic hybrid material modified quartz crystal microbalance (QCM) sensors have been examined for their ability to achieve highly sensitive and selective detection. Mesoporous silica SBA-15 serves as an inorganic host with large specific surface area, facilitating gas adsorption, and thus leads to highly sensitive response; while the presence of organic functional groups contributes to the greatly improved specific sensing property. In this work, we summarize our efforts in the rational design and synthesis of novel sensing materials for the detection of hazardous substances, including simulant nerve agent, organic vapor, and heavy metal ion, and develop high-performance QCM-based chemical sensors.
A discrete-element model for viscoelastic deformation and fracture of glacial ice
NASA Astrophysics Data System (ADS)
Riikilä, T. I.; Tallinen, T.; Åström, J.; Timonen, J.
2015-10-01
A discrete-element model was developed to study the behavior of viscoelastic materials that are allowed to fracture. Applicable to many materials, the main objective of this analysis was to develop a model specifically for ice dynamics. A realistic model of glacial ice must include elasticity, brittle fracture and slow viscous deformations. Here the model is described in detail and tested with several benchmark simulations. The model was used to simulate various ice-specific applications with resulting flow rates that were compatible with Glen's law, and produced under fragmentation fragment-size distributions that agreed with the known analytical and experimental results.
Grote, Simon; Kleinebudde, Peter
2018-04-01
The influence of raw material particle morphology on the tabletabilty of dry granules was investigated. Therefore, dibasic calcium phosphate anhydrous was used as a model material. One milled grade, 2 agglomerated grades with different porosities, and a functionalized structure, that is, an agglomerate formed by very small primary particles, were included. Particle size, density, and specific surface area of raw materials were measured. The starting materials and 2 fractions of dry granules were compressed to tablets. The tabletability of granules was compared to that of the powders and the influence of specific compaction force, granule size, and lubrication on tablet tensile strength was evaluated. All materials showed a loss in tabletability induced by a previous compaction step but to a varying extent. Only in case of the functionalized calcium phosphate morphology, this effect depended on the specific compaction force. In contrast to the other materials, the tabletability of functionalized calcium phosphate was influenced by the granule size. This effect was not related to an overlubrication as internal and external lubrication resulted in similar tensile strengths. A clear influence of the particle morphology on tablet strength was demonstrated by the study. The functionalized structure showed aspects of a more plastic deformation behavior. The functionalized dibasic calcium phosphate and the more porous agglomerate performed as potential filler/binder in the field of roll compaction/dry granulation. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Future materials requirements for the high-energy-intensity production of aluminum
NASA Astrophysics Data System (ADS)
Welch, B. J.; Hyland, M. M.; James, B. J.
2001-02-01
Like all metallurgical industries, aluminum smelting has been under pressure from two fronts—to give maximum return on investment to the shareholders and to comply with environmental regulations by reducing greenhouse emissions. The smelting process has advanced by improving efficiency and productivity while continuing to seek new ways to extend the cell life. Materials selection (particularly the use of more graphitized cathodic electrodes) has enabled lower energy consumption, while optimization of the process and controlling in a narrow band has enabled increases in productivity and operations at higher current densities. These changes have, in turn, severely stressed the materials used for cell construction, and new problems are emerging that are resulting in a reduction of cell life. The target for aluminum electro-winning has been to develop an oxygen-evolving electrode, rather than one that evolves substantial amounts of carbon dioxide. Such an electrode, when combined with suitable wettable cathode material developments, would reduce operating costs by eliminating the need for frequent electrode change and would enable more productive cell designs and reduce plant size. The materials specifications for developing these are, however, an extreme challenge. Those specifications include minimized corrosion rate of any electrode into the electrolyte, maintaining an electronically conducting oxidized surface that is of low electrical resistance, meeting the metal purity targets, and enabling variable operating current densities. Although the materials specifications can readily be written, the processing and production of the materials is the challenge.
NASA Technical Reports Server (NTRS)
Welhart, E. K.
1976-01-01
This design note presents typical mechanical properties tabulated from industrial and governmental agencies' test programs. All data are correlated to specific products and all of the best known products are presented. The data include six epoxies, eight polyimides and one polyquinoxaline matrix material. Bron and graphite are the fiber reinforcements. Included are forty-two summaries of advanced (resin matrix) composite programs in existence in the United States. It is concluded that the selection of appropriate matrices, the geometric manner in which the fibers are incorporated in the matrix and the durability of the bond between fiber and matrix establish the end properties of the composite material and the performance of the fabricated structure.
NASA Astrophysics Data System (ADS)
Watkins, James
2013-03-01
Roll-to-roll (R2R) technologies provide routes for continuous production of flexible, nanostructured materials and devices with high throughput and low cost. We employ additive-driven self-assembly to produce well-ordered polymer/nanoparticle hybrid materials that can serve as active device layers, we use highly filled nanoparticle/polymer hybrids for applications that require tailored dielectric constant or refractive index, and we employ R2R nanoimprint lithography for device scale patterning. Specific examples include the fabrication of flexible floating gate memory and large area films for optical/EM management. Our newly constructed R2R processing facility includes a custom designed, precision R2R UV-assisted nanoimprint lithography (NIL) system and hybrid nanostructured materials coaters.
Materials Compatibility Testing in RSRM ODC: Free Cleaner Selection
NASA Technical Reports Server (NTRS)
Keen, Jill M.; Sagers, Neil W.; McCool, Alex (Technical Monitor)
2001-01-01
Government regulations have mandated production phase-outs of a number of solvents, including 1,1,1-trichloroethane, an ozone-depleting chemical (ODC). This solvent was used extensively in the production of the Reusable Solid Rocket Motors (RSRMs) for the Space Shuttle. Many tests have been performed to identify replacement cleaners. One major area of concern in the selection of a new cleaner has been compatibility. Some specific areas considered included cleaner compatibility with non-metallic surfaces, painted surfaces, support materials such as gloves and wipers as well as corrosive properties of the cleaners on the alloys used on these motors. The intent of this paper is to summarize the test logic, methodology, and results acquired from testing the many cleaner and material combinations.
Chiral Plasmonic Nanostructures Fabricated by Circularly Polarized Light.
Saito, Koichiro; Tatsuma, Tetsu
2018-05-09
The chirality of materials results in a wide variety of advanced technologies including image display, data storage, light management including negative refraction, and enantioselective catalysis and sensing. Here, we introduce chirality to plasmonic nanostructures by using circularly polarized light as the sole chiral source for the first time. Gold nanocuboids as precursors on a semiconductor were irradiated with circularly polarized light to localize electric fields at specific corners of the cuboids depending on the handedness of light and deposited dielectric moieties as electron oscillation boosters by the localized electric field. Thus, plasmonic nanostructures with high chirality were developed. The present bottom-up method would allow the large-scale and cost-effective fabrication of chiral materials and further applications to functional materials and devices.
Susset, Bernd; Grathwohl, Peter
2011-02-01
In this contribution we give a first general overview of results of recent studies in Germany which focused on contaminant leaching from various materials and reactive solute transport in the unsaturated soil zone to identify the key factors for groundwater risk assessment. Based on these results we developed new and improved existing methods for groundwater risk assessment which are used to derive a new regulatory concept for the upcoming "Decree for the Requirements of the Use of Alternative Mineral Building Materials in Technical Constructions and for the Amendment of the Federal Soil Protection and Contaminated Sites Ordinance" of the German Federal Ministry of Environment. The new concept aims at a holistic and scientifically sound assessment of the use of mineral recycling materials (e.g., mineral waste, excavated soils, slag and ashes, recycling products, etc.) in technical constructions (e.g., road dams) and permanent applications (e.g., backfilling and landscaping) which is based on a mechanistic understanding of leaching and transport processes. Fundamental for risk assessment are leaching standards for the mineral recycling materials. For each application of mineral recycling materials specific maximum concentrations of a substance in the seepage water at the bottom of an application were calculated. Technical boundary conditions and policy conventions derived from the "German precautionary groundwater and soil protection policy" were accounted to prevent adverse environmental effects on the media soil and groundwater. This includes the concentration decline of highly soluble substances (e.g., chloride and sulphate), retardation or attenuation of solutes, accumulation of contaminants in sub-soils and the hydraulic properties of recycling materials used for specific applications. To decide whether the use of a mineral recycling material is possible in a specific application, the leaching qualities were evaluated based on column percolation tests with various samples and compared with application-specific maximum concentrations. In the upcoming federal decree this simplified concept is realized using detailed tables which classify the leaching quality of mineral recycling materials and demonstrate potential application. A quality assurance system will be mandatory which defines specific testing programs (material properties and limit concentrations to be tested, number and schedule of testing) for the different mineral recycling materials using standardized methods (column percolation test). Copyright © 2010 Elsevier Ltd. All rights reserved.
Report of sampling and analysis results, Addison Army housing units, Addison, Illinois. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-09-01
The objectives of this sampling and analysis effort include further characterization of environmental contamination identified in an enhanced preliminary assessment carried out in 1989. The specific activities performed at this site were identification, evaluation of the condition, and collection of samples from specific suspected asbestos-containing materials, including floor tiles, pipe run and pipe fitting insulation, dust in the ductwork, and exterior siding, where present. These evaluation were necessary to clarify potential environmental issues identified in the earlier report, prior to the sale or realignment of the property.
NASA Technical Reports Server (NTRS)
Reilly, Thomas L. (Inventor); Jacobstein, A. Ronald (Inventor); Cramer, K. Elliott (Inventor)
2006-01-01
A method and apparatus for testing a material such as the water-wall tubes in boilers includes the use of a portable thermal line heater having radiation shields to control the amount of thermal radiation that reaches a thermal imager. A procedure corrects for variations in the initial temperature of the material being inspected. A method of calibrating the testing device to determine an equation relating thickness of the material to temperatures created by the thermal line heater uses empirical data derived from tests performed on test specimens for each material type, geometry, density, specific heat, speed at which the line heater is moved across the material and heat intensity.
Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doe, Robert E.; Downie, Craig M.; Fischer, Christopher
2016-01-19
Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negativemore » electrode active material is described.« less
Indigenous lunar construction materials
NASA Technical Reports Server (NTRS)
Rogers, Wayne; Sture, Stein
1991-01-01
The objectives are the following: to investigate the feasibility of the use of local lunar resources for construction of a lunar base structure; to develop a material processing method and integrate the method with design and construction of a pressurized habitation structure; to estimate specifications of the support equipment necessary for material processing and construction; and to provide parameters for systems models of lunar base constructions, supply, and operations. The topics are presented in viewgraph form and include the following: comparison of various lunar structures; guidelines for material processing methods; cast lunar regolith; examples of cast basalt components; cast regolith process; processing equipment; mechanical properties of cast basalt; material properties and structural design; and future work.
Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher
2016-07-26
Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negativemore » electrode active material is described.« less
76 FR 37887 - Office of Hazardous Materials Safety; Notice of Application for Special Permits
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-28
... number and be submitted in triplicate. If confirmation of receipt of comments is desired, include a self... specification packaging (cryoengines and assemblies of Maverick Missiles, Gudance Control Sections and Training...
Why does LTPP require site-specific traffic loading data?
DOT National Transportation Integrated Search
2013-01-01
This flyer summarizes recent documents and training materials concerning road weather management and surface transportation published since June 2011. It includes reports, flyers, pamphlets, and training courses to show the progress made in the manag...
Carcinogen Control in the Chemical Laboratory.
ERIC Educational Resources Information Center
Johnson, James S.
1981-01-01
Presents general and specific guidelines for handling carcinogens. Additional topics include: definition of potential occupational carcinogens; classification of carcinogens; inventory requirements; signs and labels for materials and laboratories; decontamination and disposal procedures; medical surveillance for employees working with controlled…
ERIC Educational Resources Information Center
Flannery, Carol A.
This manuscript provides information and problems for teaching mathematics to vocational education students. Problems reflect applications of mathematical concepts to specific technical areas. The materials are organized into six chapters. Chapter 1 covers basic arithmetic, including fractions, decimals, ratio and proportions, percentages, and…
Code of Federal Regulations, 2010 CFR
2010-01-01
... (including verification of identity based on fingerprinting), employment history, education, and personal..., training, or education to effectively utilize the specific Safeguards Information in the proceeding. Where... performing active operations on material such as chemical transformation, physical transformation, or transit...
24 CFR 3500.4 - Reliance upon rule, regulation or interpretation by HUD.
Code of Federal Regulations, 2010 CFR
2010-04-01
... issuance of HUD, Public Guidance Document, report to Congress, pleading, affidavit or other document in... or other material of any nature which is not specifically included in paragraph (a)(1) of this...
USDOT guidance summary for connected vehicle deployments : human use approval.
DOT National Transportation Integrated Search
2016-07-01
This document provides guidance material in regards to human use approval required for the CV Pilots DeploymentConcept Development Phase. Background is provided on relevant Federal guidance and Institutional Review Boards,including specific reference...
NASA Astrophysics Data System (ADS)
Xie, Qinxing; Huang, Xiaolin; Zhang, Yufeng; Wu, Shihua; Zhao, Peng
2018-06-01
The main components of a supercapacitor include two electrodes, electrolyte, and a separator, which are all essential to specify the energy storage capability of the device. In this work, two kinds of porous carbon materials have been fabricated via different routes using pomelo peel as raw material. The specific surface area are 1187 m2 g-1 for the nanosized worm-like carbon, and 1744 m2 g-1 for the nitrogen-enriched microsized carbon. Both carbon materials demonstrate excellent energy storage capability as electrodes for aqueous supercapacitors. According to the three-electrode measurements, the worm-like carbon exhibits a high specific capacitance of 316 F g-1 at 0.2 A g-1 in 6 M KOH, while the other exhibits 471 F g-1 due to the highly enriched nitrogen atoms in structure. In addition, two-electrode coin-type cells have been assembled with the carbon materials as electrodes and hydrophilic poly(vinylidene fluoride) porous membrane as the separator. The assembled cells exhibit high specific capacitances, excellent rate performance and superior cycling durability because of a synergistic effect of the high performance carbon electrodes and hydrophilic porous separator.
Plasma Sterilization Technology for Spacecraft Applications
NASA Technical Reports Server (NTRS)
Fraser, S. J.; Olson, R. L.; Leavens, W. M.
1975-01-01
The application of plasma gas technology to sterilization and decontamination of spacecraft components is considered. Areas investigated include: effective sterilizing ranges of four separate gases; lethal constituents of a plasma environment; effectiveness of plasma against a diverse group of microorganisms; penetrating efficiency of plasmas for sterilization; and compatibility of spacecraft materials with plasma environments. Results demonstrated that plasma gas, specifically helium plasma, is a highly effective sterilant and is compatible with spacecraft materials.
Ferroelectric infrared detector and method
Lashley, Jason Charles; Opeil, Cyril P.; Smith, James Lawrence
2010-03-30
An apparatus and method are provided for sensing infrared radiation. The apparatus includes a sensor element that is positioned in a magnetic field during operation to ensure a .lamda. shaped relationship between specific heat and temperature adjacent the Curie temperature of the ferroelectric material comprising the sensor element. The apparatus is operated by inducing a magnetic field on the ferroelectric material to reduce surface charge on the element during its operation.
Radioactive materials released from nuclear power plants. Annual report, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Benkovitz, C.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1980 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1980 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Norden, K.; Congemi, J.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1987 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1987 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.
Radioactive materials released from nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Benkovitz, C.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1979 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1979 release data are compared with previous year's releases in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants: Annual report, 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Norden, K.; Congemi, J.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1984 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1984 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants: Annual report, 1985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Norden, K.; Congemi, J.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1985 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1985 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Norden, K.; Congemi, J.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1988 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1988 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.
High-Energy-Density LCA-Coupled Structural Energetic Materials for Counter WMD Applications
2014-04-01
reactive ( thermite ) fillers as high-energy-density structural energetic materials. The specific objectives include performing fundamental studies to...a) investigate mechanics of dynamic densification and reaction initiation in Ta+Fe2O3 and Ta+Bi2O3 thermite powder mixtures and to (b) design and...initiation in the thermite filler and allow controlled fragmentation. Linear Cellular A; counter WMDs; shock-compression and impact-initiated reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamont, Stephen Philip; Brisson, Marcia; Curry, Michael
2011-02-17
Nuclear forensics assessments to determine material process history requires careful comparison of sample data to both measured and modeled nuclear material characteristics. Developing centralized databases, or nuclear forensics libraries, to house this information is an important step to ensure all relevant data will be available for comparison during a nuclear forensics analysis and help expedite the assessment of material history. The approach most widely accepted by the international community at this time is the implementation of National Nuclear Forensics libraries, which would be developed and maintained by individual nations. This is an attractive alternative toan international database since it providesmore » an understanding that each country has data on materials produced and stored within their borders, but eliminates the need to reveal any proprietary or sensitive information to other nations. To support the concept of National Nuclear Forensics libraries, the United States Department of Energy has developed a model library, based on a data dictionary, or set of parameters designed to capture all nuclear forensic relevant information about a nuclear material. Specifically, information includes material identification, collection background and current location, analytical laboratories where measurements were made, material packaging and container descriptions, physical characteristics including mass and dimensions, chemical and isotopic characteristics, particle morphology or metallurgical properties, process history including facilities, and measurement quality assurance information. While not necessarily required, it may also be valuable to store modeled data sets including reactor burn-up or enrichment cascade data for comparison. It is fully expected that only a subset of this information is available or relevant to many materials, and much of the data populating a National Nuclear Forensics library would be process analytical or material accountability measurement data as opposed to a complete forensic analysis of each material in the library.« less
In vivo bioresponses to silk proteins.
Thurber, Amy E; Omenetto, Fiorenzo G; Kaplan, David L
2015-12-01
Silks are appealing materials for numerous biomedical applications involving drug delivery, tissue engineering, or implantable devices, because of their tunable mechanical properties and wide range of physical structures. In addition to the functionalities needed for specific clinical applications, a key factor necessary for clinical success for any implanted material is appropriate interactions with the body in vivo. This review summarizes our current understanding of the in vivo biological responses to silks, including degradation, the immune and inflammatory response, and tissue remodeling with particular attention to vascularization. While we focus in this review on silkworm silk fibroin protein due to the large quantity of in vivo data thanks to its widespread use in medical materials and consumer products, spider silk information is also included if available. Silk proteins are degraded in the body on a time course that is dependent on the method of silk fabrication and can range from hours to years. Silk protein typically induces a mild inflammatory response that decreases within a few weeks of implantation. The response involves recruitment and activation of macrophages and may include activation of a mild foreign body response with the formation of multinuclear giant cells, depending on the material format and location of implantation. The number of immune cells present decreases with time and granulation tissue, if formed, is replaced by endogenous, not fibrous, tissue. Importantly, silk materials have not been demonstrated to induce mineralization, except when used in calcified tissues. Due to its ability to be degraded, silk can be remodeled in the body allowing for vascularization and tissue ingrowth with eventual complete replacement by native tissue. The degree of remodeling, tissue ingrowth, or other specific cell behaviors can be modulated with addition of growth or other signaling factors. Silk can also be combined with numerous other materials including proteins, synthetic polymers, and ceramics to enhance its characteristics for a particular function. Overall, the diverse array of silk materials shows excellent bioresponses in vivo with low immunogenicity and the ability to be remodeled and replaced by native tissue making it suitable for numerous clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Technology update: Tethered aerostat structural design and material developments
NASA Technical Reports Server (NTRS)
Witherow, R. G.
1975-01-01
Requirements exist for an extremely stable, high performance, all-weather tethered aerostat system. This requirement has been satisfied by a 250,000 cubic foot captive buoyant vehicle as demonstrated by over a year of successful field operations. This achievement required significant advancements in several technology areas including composite materials design, aerostatics and aerodynamics, structural design, electro-mechanical design, vehicle fabrication and mooring operations. This paper specifically addresses the materials and structural design aspects of pressurized buoyant vehicles as related to the general class of Lighter Than Air vehicles.
NASA Astrophysics Data System (ADS)
The present conference on advances in joining novel structural materials encompasses such material types as ceramics, plastics and composites, and new metallic materials. Specific issues addressed include the use of conductor electric explosion to join ceramics, the effects of brazing temperature on joint properties of SiC-fiber-reinforced Al-alloy-matrix composites, the in situ structure control of composite materials, and the weldability of polymeric materials that are heterogeneous as to chemical nature from the standpoint of morphology. Also addressed are the joining of the Al-Li alloy 8090, diffusion bonding of a creep-resistant Fe-ODS alloy, the adhesive bonding of zinc-coated steel sheets, welds in thermoplastic composite materials, and hot-melt joints for carbon-fiber-reinforced composites.
NASA Technical Reports Server (NTRS)
Zerlaut, Gene A.; Gilligan, J. E.; Harada, Y.
1965-01-01
In a previous research program for the Jet Propulsion- Laboratory, extensive studies led to the development and specifications of three zinc oxide-pigmented thermal-control coatings. The principal objectives of this program are: improvement of the three paints (as engineering materials), determination of the validity of our accelerated space-simulation testing, and continuation of the zinc oxide photolysis studies begun in the preceding program. Specific tasks that are discussed include: improvement of potassium silicate coatings as engineering materials and elucidation of their storage and handling problems; improvement of methyl silicone coatings as engineering materials; studies of zinc oxide photolysis to establish reasons for the observed stability of zinc oxide; and determination of space-simulation parameters such as long-term stability (to 8000 ESH), effect of coating surface temperature on the rate of degradation, and validity of accelerated testing (by reciprocity and wavelength dependency studies).
Recent progress in stem cell differentiation directed by material and mechanical cues.
Lin, Xunxun; Shi, Yuan; Cao, Yilin; Liu, Wei
2016-02-02
Stem cells play essential roles in tissue regeneration in vivo via specific lineage differentiation induced by environmental factors. In the past, biochemical signals were the focus of induced stem cell differentiation. As reported by Engler et al (2006 Cell 126 677-89), biophysical signal mediated stem cell differentiation could also serve as an important inducer. With the advancement of material science, it becomes a possible strategy to generate active biophysical signals for directing stem cell fate through specially designed material microstructures. In the past five years, significant progress has been made in this field, and these designed biophysical signals include material elasticity/rigidity, micropatterned structure, extracellular matrix (ECM) coated materials, material transmitted extracellular mechanical force etc. A large number of investigations involved material directed differentiation of mesenchymal stem cells, neural stem/progenitor cells, adipose derived stem cells, hematopoietic stem/progenitor cells, embryonic stem cells and other cells. Hydrogel based materials were commonly used to create varied mechanical properties via modifying the ratio of different components, crosslinking levels, matrix concentration and conjugation with other components. Among them, polyacrylamide (PAM) and polydimethylsiloxane (PDMS) hydrogels remained the major types of material. Specially designed micropatterning was not only able to create a unique topographical surface to control cell shape, alignment, cell-cell and cell-matrix contact for basic stem cell biology study, but also could be integrated with 3D bioprinting to generate micropattered 3D structure and thus to induce stem cell based tissue regeneration. ECM coating on a specific topographical structure was capable of inducing even more specific and potent stem cell differentiation along with soluble factors and mechanical force. The article overviews the progress of the past five years in this particular field.
Quality of Living: Environmental Viewpoints. Make Up Your Own Mind, Book 3.
ERIC Educational Resources Information Center
Pollis, Adamantia, Ed.
This book is the third in a series of discussion materials, this issue being part of an action project to increase environmental awareness. Over 60 readings are included that cover a wide variety of opinions and interpretations of specific environmental problems and related philosophic issues. Examples of topics discussed include population, land…
2004-09-01
required for a specific application. The list of applications is very extensive and includes: aircraft brakes, electrodes, high temperature molds, rocket...and includes: aircraft brakes, electrodes, high temperature molds, rocket nozzles and exit cones, tires, ink, nuclear reactors and fuel particles...produced. For example carbons can be hard (chars) or soft (blacks), strong (PAN fibers) or weak ( aerogel ), stiff (pitch fibers) or flexible
Be a Water Watcher: A Resource Guide for Water Conservation, K-12. 1985.
ERIC Educational Resources Information Center
Kominski, John
This guide provides teachers of kindergarten through high school with model lessons relating to water conservation. Age-appropriate suggestions are presented including songs, poems, skits, activity sheets, and field trips. Generic hints and information are included in addition to material which applies specifically to New York City, such as how to…
78 FR 52574 - Westinghouse Electric Company, LLC; Decommissioning Project; Hematite, Missouri
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-23
... statement of the issue of law or fact to be raised or controverted, as well as a brief explanation of the... must also include a concise statement of the alleged facts or expert opinions which support the... material issue of law or fact, including references to specific portions of the application for amendment...
Radiological/biological/aerosol removal system
Haslam, Jeffery J
2015-03-17
An air filter replacement system for existing buildings, vehicles, arenas, and other enclosed airspaces includes a replacement air filter for replacing a standard air filter. The replacement air filter has dimensions and air flow specifications that allow it to replace the standard air filter. The replacement air filter includes a filter material that removes radiological or biological or aerosol particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumann, Hilary Beatrix
1993-10-01
This thesis discusses characterization of two ferroelectric materials and the fabrication of bolometers. Potassium tantalate niobate (KTN) and potassium dihydrogen phosphate (KDP) are chosen because they can be optimized for operation near 100K. Chap. 2 reviews the physics underlying pyroelectric materials and its subclass of ferroelectric materials. Aspects of pyroelectric detection are discussed in Chap. 3 including measurement circuit, noise sources, and effects of materials properties on pyroelectric response. Chap. 4 discusses materials selection and specific characteristics of KTN and KDP; Chap. 5 describes materials preparation; and Chap. 6 presents detector configuration and a thermal analysis of the pyroelectric detector.more » Electrical techniques used to characterize the materials and devices and results are discussed in Chap. 7 followed by conclusions on feasibility of KDP and KTN pyroelectric detectors in Chap. 8.« less
Peacock, Harold B [Evans, GA; Imrich, Kenneth J [Grovetown, GA
2009-03-17
A sealing device that may expand more planar dimensions due to internal thermal expansion of a filler material. The sealing material is of a composition such that when desired environment temperatures and internal actuating pressures are reached, the sealing materials undergoes a permanent deformation. For metallic compounds, this permanent deformation occurs when the material enters the plastic deformation phase. Polymers, and other materials, may be using a sealing mechanism depending on the temperatures and corrosivity of the use. Internal pressures are generated by either rapid thermal expansion or material phase change and may include either liquid or solid to gas phase change, or in the gaseous state with significant pressure generation in accordance with the gas laws. Sealing material thickness and material composition may be used to selectively control geometric expansion of the seal such that expansion is limited to a specific facing and or geometric plane.
Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications
NASA Astrophysics Data System (ADS)
Heinz, Hendrik; Pramanik, Chandrani; Heinz, Ozge; Ding, Yifu; Mishra, Ratan K.; Marchon, Delphine; Flatt, Robert J.; Estrela-Lopis, Irina; Llop, Jordi; Moya, Sergio; Ziolo, Ronald F.
2017-02-01
Nanostructures of diverse chemical nature are used as biomarkers, therapeutics, catalysts, and structural reinforcements. The decoration with surfactants has a long history and is essential to introduce specific functions. The definition of surfactants in this review is very broad, following its lexical meaning ;surface active agents;, and therefore includes traditional alkyl modifiers, biological ligands, polymers, and other surface active molecules. The review systematically covers covalent and non-covalent interactions of such surfactants with various types of nanomaterials, including metals, oxides, layered materials, and polymers as well as their applications. The major themes are (i) molecular recognition and noncovalent assembly mechanisms of surfactants on the nanoparticle and nanocrystal surfaces, (ii) covalent grafting techniques and multi-step surface modification, (iii) dispersion properties and surface reactions, (iv) the use of surfactants to influence crystal growth, as well as (v) the incorporation of biorecognition and other material-targeting functionality. For the diverse materials classes, similarities and differences in surfactant assembly, function, as well as materials performance in specific applications are described in a comparative way. Major factors that lead to differentiation are the surface energy, surface chemistry and pH sensitivity, as well as the degree of surface regularity and defects in the nanoparticle cores and in the surfactant shell. The review covers a broad range of surface modifications and applications in biological recognition and therapeutics, sensors, nanomaterials for catalysis, energy conversion and storage, the dispersion properties of nanoparticles in structural composites and cement, as well as purification systems and classical detergents. Design principles for surfactants to optimize the performance of specific nanostructures are discussed. The review concludes with challenges and opportunities.
Separation of biogenic materials by electrophoresis under zero gravity (L-3)
NASA Technical Reports Server (NTRS)
Kuroda, Masao
1993-01-01
Electrophoresis separates electrically charged materials by imposing a voltage between electrodes. Though free-flow electrophoresis is used without carriers such as colloids to separate and purify biogenic materials including biogenic cells and proteins in blood, its resolving power and separation efficiency is very low on Earth due to sedimentation, flotation, and thermal convection caused by the specific gravity differences between separated materials and buffer solutions. The objective of this experiment is to make a comparative study of various electrophoresis conditions on the ground and in zero-gravity in order to ultimately develop a method for separating various important 'vial' components which are difficult to separate on the ground.
NASA Technical Reports Server (NTRS)
1977-01-01
During this quarter, flat-plate solar collector systems were considered and six basic construction elements were identified: outer coatings, superstrates, pottants, substrates, undercoats, and adhesives. Materials surveys were then initiated to discover either generic classes or/and specific products to function as each construction element. Cost data included in the surveys permit ready evaluation of each material. Silicones, fluorocarbons, glass, and acrylic polymers have the highest inherent weatherability of materials studied to date. Only acrylics, however, combine low costs, environmental resistance, and potential processability. This class will receive particular emphasis.
Baiguini, Alessandro; Colletta, Stefano; Rebella, Valentina
2011-01-01
For some time, packaging materials and articles intended to come into contact with food are included in the system of controls, early warnings and risk communication provided by the European Commission (EU) regulation 178/2002. Data analysis of the EU rapid alert system for food allows one to define a specific risk profile and to establish an effective plan for official control of materials intended to come into contact with food. In the 2008-2010 period the rapid alert system has ratified alert notifications, mostly related to plastic materials of Chinese origin.
77 FR 67678 - Content Specifications and Shielding Evaluations for Type B Transportation Packages
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-13
...The U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing for public comment Draft Regulatory Issue Summary (RIS) 2012-XX, ``Content Specifications and Shielding Evaluations for Type B Transportation Packages.'' This RIS clarifies the NRC's use of staff guidance in NUREG-1609, ``Standard Review Plan for Transport Packages for Radioactive Material,'' for the review of content specifications and shielding evaluations included in the Certificates of Compliance (CoC) and safety analysis reports (SARs) for Type B transportation packages.
[Contemporary history of medicine: issues and approaches].
Schlich, Thomas
2007-01-01
This paper illuminates specific aspects of writing contemporary history of medicine. The first section deals with specific methodological problems in the historiography of modem medicine. Topics discussed include the specific situation concerning contemporary source material, oral history, the use of theories in historiography, the problem of temporal proximity and the issue of the necessity of medical technical knowledge on part of the historian. In the second section the paper ends with a discussion of the purpose and objectives of contemporary history of medicine.
NASA Astrophysics Data System (ADS)
Jeena, M. T.; Bok, Taesoo; Kim, Si Hoon; Park, Sooham; Kim, Ju-Young; Park, Soojin; Ryu, Ja-Hyoung
2016-04-01
The electrochemical performance of Li-ion batteries (LIBs) can be highly tuned by various factors including the morphology of the anode material, the nature of the electrolyte, the binding material, and the percentage of conducting materials. Binding materials have been of particular interest to researchers over the decades as a means to further improve the cycle durability and columbic efficiency of LIBs. Such approaches include the introduction of different polymeric binders such as poly(acrylic acid) (PAA), carboxymethyl cellulose (CMC), and alginic acid (Alg) into the Si anode of LIBs. To achieve a better efficiency of LIBs, herein, we introduce a novel copolymer, poly(tert-butyl acrylate-co-triethoxyvinylsilane) (TBA-TEVS), as an efficient binder with stable cycle retention and excellent specific capacity. The binder forms a highly interconnected three-dimensional network upon thermal treatment as a result of de-protection of the tert-butyl group and the consequent inter-intra condensation reaction, which minimizes pulverization of the Si nanoparticles. Moreover, the siloxane group is expected to promote the formation of stable solid-electrolyte-interface (SEI) layers. A series of random copolymers were synthesized by varying the molar ratio of tert-butyl acrylate and triethoxyvinylsilane. Twenty-one percent of TEVS in the TBS-TEVS copolymer gave rise to a superior performance as a binder for Si anodes, where the anodes showed a stable specific capacity of 2551 mA h g-1 over hundreds of cycles and an initial columbic efficiency (ICE) of 81.8%.The electrochemical performance of Li-ion batteries (LIBs) can be highly tuned by various factors including the morphology of the anode material, the nature of the electrolyte, the binding material, and the percentage of conducting materials. Binding materials have been of particular interest to researchers over the decades as a means to further improve the cycle durability and columbic efficiency of LIBs. Such approaches include the introduction of different polymeric binders such as poly(acrylic acid) (PAA), carboxymethyl cellulose (CMC), and alginic acid (Alg) into the Si anode of LIBs. To achieve a better efficiency of LIBs, herein, we introduce a novel copolymer, poly(tert-butyl acrylate-co-triethoxyvinylsilane) (TBA-TEVS), as an efficient binder with stable cycle retention and excellent specific capacity. The binder forms a highly interconnected three-dimensional network upon thermal treatment as a result of de-protection of the tert-butyl group and the consequent inter-intra condensation reaction, which minimizes pulverization of the Si nanoparticles. Moreover, the siloxane group is expected to promote the formation of stable solid-electrolyte-interface (SEI) layers. A series of random copolymers were synthesized by varying the molar ratio of tert-butyl acrylate and triethoxyvinylsilane. Twenty-one percent of TEVS in the TBS-TEVS copolymer gave rise to a superior performance as a binder for Si anodes, where the anodes showed a stable specific capacity of 2551 mA h g-1 over hundreds of cycles and an initial columbic efficiency (ICE) of 81.8%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01559j
NASA Technical Reports Server (NTRS)
Carmichael, D. C.; Gaines, G. B.; Sliemers, F. A.; Kistler, C. W.; Igou, R. D.
1976-01-01
Published and unpublished information relating to encapsulation systems and materials properties was collected by searching the literature and appropriate data bases (over 1,300 documents were selected and reviewed) and by personal contacts including site and company visits. A data tabulation summarizing world experience with terrestrial photovoltaic arrays (50 installations) is presented in the report. Based on criteria of properties, processability, availability, and cost, candidate materials were identified which have potential for use in encapsulation systems for arrays with a lifetime of over 20 years high reliability, an efficiency greater than 10 percent, a total price less than $500/kW, and a production capacity of 500,000 kW/yr. The recommended materials (all commercially available) include, depending upon the device design, various borosilicate and soda-lime glasses and numerous polymerics suitable for specific encapsulation system functions.
Polymer Layered Silicate Nanocomposites: A Review
Mittal, Vikas
2009-01-01
This review aims to present recent advances in the synthesis and structure characterization as well as the properties of polymer layered silicate nanocomposites. The advent of polymer layered silicate nanocomposites has revolutionized research into polymer composite materials. Nanocomposites are organic-inorganic hybrid materials in which at least one dimension of the filler is less than 100 nm. A number of synthesis routes have been developed in the recent years to prepare these materials, which include intercalation of polymers or pre-polymers from solution, in-situ polymerization, melt intercalation etc. The nanocomposites where the filler platelets can be dispersed in the polymer at the nanometer scale owing to the specific filler surface modifications, exhibit significant improvement in the composite properties, which include enhanced mechanical strength, gas barrier, thermal stability, flame retardancy etc. Only a small amount of filler is generally required for the enhancement in the properties, which helps the composite materials retain transparency and low density.
Starch based polyurethanes: A critical review updating recent literature.
Zia, Fatima; Zia, Khalid Mahmood; Zuber, Mohammad; Kamal, Shagufta; Aslam, Nosheen
2015-12-10
Recent advancements in material science and technology made it obvious that use of renewable feed stock is the need of hour. Polymer industry steadily moved to get rid of its dependence on non-renewable resources. Starch, the second largest occurring biomass (renewable) on this planet provides a cheap and eco-friendly way to form huge variety of materials on blending with other biodegradable polymers. Specific structural versatility design for individual application and tailor-made properties have established the polyurethane (PU) as an important and popular class of synthetic biodegradable polymers. Blending of starch with polyurethane is relatively a developing area in PU chemistry but with lot of attraction for researchers. Herein, various starch based polyurethane materials including blends, grafts, copolymers, composites and nano-composites, as well as the prospects and latest developments are discussed. Additionally, an overview of starch based polymeric materials, including their potential applications are presented. Copyright © 2015 Elsevier Ltd. All rights reserved.
High-temperature strain cell for tomographic imaging
MacDowell, Alastair A.; Nasiatka, James; Haboub, Abdel; Ritchie, Robert O.; Bale, Hrishikesh A.
2015-06-16
This disclosure provides systems, methods, and apparatus related to the high temperature mechanical testing of materials. In one aspect, a method includes providing an apparatus. The apparatus may include a chamber. The chamber may comprise a top portion and a bottom portion, with the top portion and the bottom portion each joined to a window material. A first cooled fixture and a second cooled fixture may be mounted to the chamber and configured to hold the sample in the chamber. A plurality of heating lamps may be mounted to the chamber and positioned to heat the sample. The sample may be placed in the first and the second cooled fixtures. The sample may be heated to a specific temperature using the heating lamps. Radiation may be directed though the window material, the radiation thereafter interacting with the sample and exiting the chamber through the window material.
Methods of biological dosimetry employing chromosome-specific staining
Gray, Joe W.; Pinkel, Daniel
2000-01-01
Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Further, methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. Still further, the invention provides for automated means to detect and analyse chromosomal abnormalities.
Methods And Compositions For Chromosome-Specific Staining
Gray, Joe W.; Pinkel, Daniel
2003-08-19
Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Further, methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. Still further, the invention provides for automated means to detect and analyse chromosomal abnormalities.
Compositions for chromosome-specific staining
Gray, Joe W.; Pinkel, Daniel
1998-01-01
Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Further, methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. Still further, the invention provides for automated means to detect and analyse chromosomal abnormalities.
Compositions for chromosome-specific staining
Gray, J.W.; Pinkel, D.
1998-05-26
Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. The methods produce staining patterns that can be tailored for specific cytogenetic analyses. The probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. The invention provides for automated means to detect and analyze chromosomal abnormalities. 17 figs.
NASA Astrophysics Data System (ADS)
Nayak, Bishnupriya; Menon, S. V. G.
2018-01-01
Enthalpy-based equation of state based on a modified soft sphere model for the fluid phase, which includes vaporization and ionization effects, is formulated for highly porous materials. Earlier developments and applications of enthalpy-based approach had not accounted for the fact that shocked states of materials with high porosity (e.g., porosity more than two for Cu) are in the expanded fluid region. We supplement the well known soft sphere model with a generalized Lennard-Jones formula for the zero temperature isotherm, with parameters determined from cohesive energy, specific volume and bulk modulus of the solid at normal condition. Specific heats at constant pressure, ionic and electronic enthalpy parameters and thermal excitation effects are calculated using the modified approach and used in the enthalpy-based equation of state. We also incorporate energy loss from the shock due to expansion of shocked material in calculating porous Hugoniot. Results obtained for Cu, even up to initial porosities ten, show good agreement with experimental data.
Dae Seok Na; Lee, Hwang; Sun Uk Kim; Chang Nam Hwang; Sang Ho Lee; Ji Yoon Kang; Jai Kyeong Kim; James Jungho Pak
2008-07-01
Various materials including glass and polymers have been widely used for stem cell culture due to their biocompatibility. However, the roles of these materials are fundamentally limited because they cannot realize or imitate the complex biological functions of living tissues, except in very simple cases. Here, the development of a bio-derived material suitable for stem cell culture and improvement of differentiation efficiency to specific cell lineages with no stimulating agents by using a chorion obtained from a fertilized zebrafish egg through the removal of the yolk and embryonic cell mass from the egg is reported. Mouse P19 EC stem cells introduced into the empty chorion form a uniform embryoid body (EB) without addition of any inducing agent. It is demonstrated that the zebrafish chorion with nanopores improves efficiencies greatly in the EB formation, cell proliferation, and lineage-specific differentiations compared to those of the conventional hanging drop culture method.
Bimetallic Metal-Organic Frameworks for Controlled Catalytic Graphitization of Nanoporous Carbons
Tang, Jing; Salunkhe, Rahul R.; Zhang, Huabin; Malgras, Victor; Ahamad, Tansir; Alshehri, Saad M.; Kobayashi, Naoya; Tominaka, Satoshi; Ide, Yusuke; Kim, Jung Ho; Yamauchi, Yusuke
2016-01-01
Single metal-organic frameworks (MOFs), constructed from the coordination between one-fold metal ions and organic linkers, show limited functionalities when used as precursors for nanoporous carbon materials. Herein, we propose to merge the advantages of zinc and cobalt metals ions into one single MOF crystal (i.e., bimetallic MOFs). The organic linkers that coordinate with cobalt ions tend to yield graphitic carbons after carbonization, unlike those bridging with zinc ions, due to the controlled catalytic graphitization by the cobalt nanoparticles. In this work, we demonstrate a feasible method to achieve nanoporous carbon materials with tailored properties, including specific surface area, pore size distribution, degree of graphitization, and content of heteroatoms. The bimetallic-MOF-derived nanoporous carbon are systematically characterized, highlighting the importance of precisely controlling the properties of the carbon materials. This can be done by finely tuning the components in the bimetallic MOF precursors, and thus designing optimal carbon materials for specific applications. PMID:27471193
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, Donald R.
ISO Technical Report (TR) 14187 provides an introduction to (and examples of) the information that can be obtained about nanostructured materials using surface-analysis tools. In addition, both general issues and challenges associated with characterising nanostructured materials and the specific opportunities and challenges associated with individual analytical methods are identified. As the size of objects or components of materials approaches a few nanometres, the distinctions among 'bulk', 'surface' and 'particle' analysis blur. This Technical Report focuses on issues specifically relevant to surface chemical analysis of nanostructured materials. The report considers a variety of analysis methods but focuses on techniques that aremore » in the domain of ISO/TC 201 including Auger electron spectroscopy, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and scanning probe microscopy. Measurements of nanoparticle surface properties such as surface potential that are often made in a solution are not discussed.« less
NIF optical materials and fabrication technologies: an overview
NASA Astrophysics Data System (ADS)
Campbell, John H.; Hawley-Fedder, Ruth A.; Stolz, Christopher J.; Menapace, Joseph A.; Borden, Michael R.; Whitman, Pamela K.; Yu, June; Runkel, Michael J.; Riley, Michael O.; Feit, Michael D.; Hackel, Richard P.
2004-05-01
The high-energy/high-power section of the NIF laser system contains 7360 meter-scale optics. Advanced optical materials and fabrication technologies needed to manufacture the NIF optics have been developed and put into production at key vendor sites. Production rates are up to 20 times faster and per-optic costs 5 times lower than could be achieved prior to the NIF. In addition, the optics manufactured for NIF are better than specification giving laser performance better than the design. A suite of custom metrology tools have been designed, built and installed at the vendor sites to verify compliance with NIF optical specifications. A brief description of the NIF optical wavefront specifications for the glass and crystal optics is presented. The wavefront specifications span a continuous range of spatial scale-lengths from 10 μm to 0.5 m (full aperture). We have continued our multi-year research effort to improve the lifetime (i.e. damage resistance) of bulk optical materials, finished optical surfaces and multi-layer dielectric coatings. New methods for post-processing the completed optic to improve the damage resistance have been developed and made operational. This includes laser conditioning of coatings, glass surfaces and bulk KDP and DKDP and well as raster and full aperture defect mapping systems. Research on damage mechanisms continues to drive the development of even better optical materials.
14 CFR § 1203.400 - Specific classifying guidance.
Code of Federal Regulations, 2014 CFR
2014-01-01
... and operational information and material, and in some exceptional cases scientific information falling... activities), intelligence sources or methods, or cryptology; (d) Foreign relations or foreign activities of the United States, including confidential sources; (e) Scientific, technological, or economic matters...
ERIC Educational Resources Information Center
Proud, Jim
This bibliography lists 168 articles, books, and instructional materials for anyone interested in learning more about the LOGO programming language. Items listed range from research reports and program descriptions to lesson plans and activities. Specific titles include "A Beginner's Guide to LOGO"; "LOGO Music"; "Printing…
Open graded friction courses for HMA pavements.
DOT National Transportation Integrated Search
2013-12-01
A laboratory study was conducted to evaluate OGFC mixtures meeting current Mississippi specifications. In addition, materials included a second 12.5 mm gradation and an asphalt rubber binder. The additional 12.5mm gradation was selected to evaluate a...
75 FR 8297 - Huron-Manistee National Forests, Michigan, USA and State South Branch 1-8 Well
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-24
... materials, including stimulation and completion fluids, would be contained in steel tanks and disposed of by... reviewer's concerns and contentions. The submission of timely and specific comments can affect a reviewer's...
Development Communication Report. No. 47, Autumn 1984.
ERIC Educational Resources Information Center
Development Communication Report, 1984
1984-01-01
This newsletter describes development projects that utilize varied media, including microcomputers, videotape, and print materials, and discusses development communications issues. Specific articles are as follows: "Microcomputers for Education in the Developing World" (Kurt D. Moses); "Social Marketing: Two Views, Two…
ERIC Educational Resources Information Center
Schmalz, Georgann
1985-01-01
Building specifications for birdhouses (nesting boxes) are given for 11 species (chickadee, titmouse, nuthatch, Carolina wren, house wren, downy woodpecker, hairy woodpecker, flicker, bluebird, screech owl, and wood duck) including length, width, depth, entrance diameter, and height above the ground. Pointers for construction, materials, and…
Validation of contractor HMA testing data in the materials acceptance process.
DOT National Transportation Integrated Search
2010-08-01
"This study conducted an analysis of the SCDOT HMA specification. A Research Steering Committee comprised of SCDOT, FHWA, and Industry representatives provided oversight of the process. The research process included a literature review, a brief surve...
De Smet, Lieselot; Vancoillie, Gertjan; Minshall, Peter; Lava, Kathleen; Steyaert, Iline; Schoolaert, Ella; Van De Walle, Elke; Dubruel, Peter; De Clerck, Karen; Hoogenboom, Richard
2018-03-16
Here, we introduce a novel concept for the fabrication of colored materials with significantly reduced dye leaching through covalent immobilization of the desired dye using plasma-generated surface radicals. This plasma dye coating (PDC) procedure immobilizes a pre-adsorbed layer of a dye functionalized with a radical sensitive group on the surface through radical addition caused by a short plasma treatment. The non-specific nature of the plasma-generated surface radicals allows for a wide variety of dyes including azobenzenes and sulfonphthaleins, functionalized with radical sensitive groups to avoid significant dye degradation, to be combined with various materials including PP, PE, PA6, cellulose, and PTFE. The wide applicability, low consumption of dye, relatively short procedure time, and the possibility of continuous PDC using an atmospheric plasma reactor make this procedure economically interesting for various applications ranging from simple coloring of a material to the fabrication of chromic sensor fabrics as demonstrated by preparing a range of halochromic materials.
Chapter 19: Catalysis by Metal Carbides and Nitrides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaidle, Joshua A; Nash, Connor P; Yung, Matthew M
Early transition metal carbides and nitrides (ETMCNs), materials in which carbon or nitrogen occupies interstitial sites within a parent metal lattice, possess unique physical and chemical properties that motivate their use as catalysts. Specifically, these materials possess multiple types of catalytic sites, including metallic, acidic, and basic sites, and as such, exhibit reactivities that differ from their parent metals. Moreover, their surfaces are dynamic under reaction conditions. This chapter reviews recent (since 2010) experimental and computational investigations into the catalytic properties of ETMCN materials for applications including biomass conversion, syngas and CO2 upgrading, petroleum and natural gas refining, and electrocatalyticmore » energy conversion, energy storage, and chemicals production, and attempts to link catalyst performance to active site identity/surface structure in order to elucidate the present level of understanding of structure-function relationships for these materials. The chapter concludes with a perspective on leveraging the unique properties of these materials to design and develop improved catalysts through a dedicated, multidisciplinary effort.« less
Guo, Wenbo; Wu, Lidong; Fan, Kai; Nie, Dongxia; He, Weijing; Yang, Junhua; Zhao, Zhihui; Han, Zheng
2017-11-03
Graphene-based materials have been studied in many applications, owing to the excellent electrical, mechanical, and thermal properties of graphene. In the current study, an environmentally friendly approach to the preparation of a reduced graphene oxide-gold nanoparticle (rGO-AuNP) nanocomposite was developed by using L-cysteine and vitamin C as reductants under mild reaction conditions. The rGO-AuNP material showed a highly selective separation ability for 6 naturally occurring aflatoxins, which are easily adsorbed onto traditional graphene materials but are difficult to be desorbed. The specificity of the nanocomposite was evaluated in the separation of 6 aflatoxin congeners (aflatoxin B1, aflatoxin B2, aflatoxin G1, aflatoxin G2, aflatoxin M1 and aflatoxin M2) from 23 other biotoxins (including, ochratoxin A, citrinin, and deoxynivalenol). The results indicated that this material was specific for separating aflatoxin congeners. The synthesized material was further validated by determining the recovery (77.6-105.0%), sensitivity (limit of detection in the range of 0.05-0.21 μg kg -1 ), and precision (1.5-11.8%), and was then successfully applied to the separation of aflatoxins from real-world maize, wheat and rice samples.
Interplay between materials and microfluidics
NASA Astrophysics Data System (ADS)
Hou, Xu; Zhang, Yu Shrike; Santiago, Grissel Trujillo-De; Alvarez, Mario Moisés; Ribas, João; Jonas, Steven J.; Weiss, Paul S.; Andrews, Anne M.; Aizenberg, Joanna; Khademhosseini, Ali
2017-04-01
Developments in the field of microfluidics have triggered technological revolutions in many disciplines, including chemical synthesis, electronics, diagnostics, single-cell analysis, micro- and nanofabrication, and pharmaceutics. In many of these areas, rapid growth is driven by the increasing synergy between fundamental materials development and new microfluidic capabilities. In this Review, we critically evaluate both how recent advances in materials fabrication have expanded the frontiers of microfluidic platforms and how the improved microfluidic capabilities are, in turn, furthering materials design. We discuss how various inorganic and organic materials enable the fabrication of systems with advanced mechanical, optical, chemical, electrical and biointerfacial properties — in particular, when these materials are combined into new hybrids and modular configurations. The increasing sophistication of microfluidic techniques has also expanded the range of resources available for the fabrication of new materials, including particles and fibres with specific functionalities, 3D (bio)printed composites and organoids. Together, these advances lead to complex, multifunctional systems, which have many interesting potential applications, especially in the biomedical and bioengineering domains. Future exploration of the interactions between materials science and microfluidics will continue to enrich the diversity of applications across engineering as well as the physical and biomedical sciences.
An Analysis of Nondestructive Evaluation Techniques for Polymer Matrix Composite Sandwich Materials
NASA Technical Reports Server (NTRS)
Cosgriff, Laura M.; Roberts, Gary D.; Binienda, Wieslaw K.; Zheng, Diahua; Averbeck, Timothy; Roth, Donald J.; Jeanneau, Philippe
2006-01-01
Structural sandwich materials composed of triaxially braided polymer matrix composite material face sheets sandwiching a foam core are being utilized for applications including aerospace components and recreational equipment. Since full scale components are being made from these sandwich materials, it is necessary to develop proper inspection practices for their manufacture and in-field use. Specifically, nondestructive evaluation (NDE) techniques need to be investigated for analysis of components made from these materials. Hockey blades made from sandwich materials and a flat sandwich sample were examined with multiple NDE techniques including thermographic, radiographic, and shearographic methods to investigate damage induced in the blades and flat panel components. Hockey blades used during actual play and a flat polymer matrix composite sandwich sample with damage inserted into the foam core were investigated with each technique. NDE images from the samples were presented and discussed. Structural elements within each blade were observed with radiographic imaging. Damaged regions and some structural elements of the hockey blades were identified with thermographic imaging. Structural elements, damaged regions, and other material variations were detected in the hockey blades with shearography. Each technique s advantages and disadvantages were considered in making recommendations for inspection of components made from these types of materials.
Developing New TCOs for Renewable Applications
NASA Astrophysics Data System (ADS)
Ginley, David
2013-03-01
Transparent conducting oxides are enabling for a broad range of optoelectronic technologies. Not only are conductivity and transparency critical but many other factors are critical including: carrier type, processing conditions, work function, chemical stability, and interface properties. The historical set of materials cannot meet all these needs. This has driven a renaissance in new materials development and approaches to transparent contacts. We will discuss these new developments in general and in the context of photovoltaics specifically. We will present results on new materials and also the development bilayer structrues that enable charge selective contacts. Materials set includes amorphous materials for hybrid solar cells like InZnO and ZnSnO, it includes Nb and Ta doped TiO2 as a high refractive index TCO and it includes the use of thin n- and p-type oxides as electron and hole selective contacts such as has been demonstrated for organic photovotaics. This work is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Contract No. DE-AC36-08GO28308 to NREL as a part of the DOE Energy Frontier Research Center ``Center for Inverse Design'' and through the US Department of Energy under Contract no. DOE-AC36-08GO28308 through the National Center for Photovoltaics.
High Tc superconducting materials and devices
NASA Technical Reports Server (NTRS)
Haertling, Gene H.
1990-01-01
The high Tc Y1Ba2Cu3O(7-x) ceramic materials, initially developed in 1987, are now being extensively investigated for a variety of engineering applications. The superconductor applications which are presently identified as of most interest to NASA-LaRC are low-noise, low thermal conductivity grounding links; large-area linear Meissner-effect bearings; and sensitive, low-noise sensors and leads. Devices designed for these applications require the development of a number of processing and fabrication technologies. Included among the technologies most specific to the present needs are tapecasting, melt texturing, magnetic field grain alignment, superconductor/polymer composite fabrication, thin film MOD (metal-organic decomposition) processing, screen printing of thick films, and photolithography of thin films. The overall objective of the program was to establish a high Tc superconductivity laboratory capability at NASA-LaRC and demonstrate this capability by fabricating superconducting 123 material via bulk and thin film processes. Specific objectives include: order equipment and set up laboratory; prepare 1 kg batches of 123 material via oxide raw material; construct tapecaster and tapecaster 123 material; fabricate 123 grounding link; fabricate 123 composite for Meissner linear bearing; develop 123 thin film processes (nitrates, acetates); establish Tc and Jc measurement capability; and set up a commercial use of space program in superconductivity at LaRC. In general, most of the objectives of the program were met. Finally, efforts to implement a commercial use of space program in superconductivity at LaRC were completed and at least two industrial companies have indicated their interest in participating.
Thermodynamic data for biomass conversion and waste incineration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domalski, E.S.; Jobe, T.L. Jr; Milne, T.A.
1986-09-01
The general purpose of this collection of thermodynamic data of selected materials is to make property information available to the engineering community on chemical mixtures, polymers, composite materials, solid wastes, biomass, and materials not easily identifiable by a single stoichiometric formula. More than 700 materials have been compiled covering properties such as specific heat, gross heat of combustion, heat of fusion, heat of vaporization, and vapor pressure. The information was obtained from the master files of the NBS Chemical Thermodynamics Data Center, the annual issues of the Bulletin of Chemical Thermodynamics, intermittent examinations of the Chemical Abstracts subject indexes, individualmore » articles by various authors, and other general reference sources. The compilation is organized into several broad categories; materials are listed alphabetically within each category. For each material, the physical state, information as to the composition or character of the material, the kind of thermodynamic property reported, the specific property values for the material, and citations to the reference list are given. In addition, appendix A gives an empirical formula that allows heats of combustion of carbonaceous materials to be predicted with surprising accuracy when the elemental composition is known. A spread sheet illustrates this predictability with examples from this report and elsewhere. Appendix B lists some reports containing heats of combustion not included in this publication. Appendix C contains symbols, units, conversion factors, and atomic weights used in evaluating and compiling the thermodynamic data.« less
Composite materials comprising two jonal functions and methods for making the same
Fareed, Ali Syed; Garnier, John Edward; Schiroky, Gerhard Hans; Kennedy, Christopher Robin; Sonuparlak, Birol
2001-01-01
The present invention generally relates to mechanisms for preventing undesirable oxidation (i.e., oxidation protection mechanisms) in composite bodies. The oxidation protection mechanisms include getterer materials which are added to the composite body which gather or scavenge undesirable oxidants which may enter the composite body. The getterer materials may be placed into at least a portion of the composite body such that any undesirable oxidant approaching, for example, a fiber reinforcement, would be scavenged by (e.g., reacted with) the getterer. The getterer materials) may form at least one compound which acts as a passivation layer, and/or is able to move by bulk transport (e.g., by viscous flow as a glassy material) to a crack, and sealing the crack, thereby further enhancing the oxidation protection of the composite body. One or more ceramic filler materials which serve as reinforcements may have a plurality of super-imposed coatings thereon, at least one of which coatings may function as or contain an oxidation protection mechanism. Specifically, a coating comprising boron nitride which has been engineered or modified to contain some silicon exhibits improved corrosion resistance, specifically to oxygen and moisture. The coated materials may be useful as reinforcing materials in high performance composites to provide improved mechanical properties such as fracture toughness. The present invention also relates to improved composites which incorporate these materials, and to their methods of manufacture.
Radioactive materials released from nuclear power plants. Annual report 1991, Volume 12
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Doty, K.; Congemi, J.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1991 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1991 release data are summarized in tabular form. Data Covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants. Annual report, 1982. Volume 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Norden, K.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1982 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1982 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants. Volume 11: Annual report, 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Doty, K.; Congemi, J.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1990 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1990 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants. Annual report 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Benkovitz, C.
Releases of radioactive materials in airborne and liquid effluents from commerical light water reactors during 1978 have been compiled and reported. Data on soild waste shipments as well as selected operating information have been included. This report supplements earlier annual reports by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1978 release data are compared with previous years releases in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants. Annual report 1981. Vol. 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Benkovitz, C.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1981 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1981 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants. Annual report, 1983. Volume 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Norden, K.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1983 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1983 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
On the Use of Accelerated Aging Methods for Screening High Temperature Polymeric Composite Materials
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Grayson, Michael A.
1999-01-01
A rational approach to the problem of accelerated testing of high temperature polymeric composites is discussed. The methods provided are considered tools useful in the screening of new materials systems for long-term application to extreme environments that include elevated temperature, moisture, oxygen, and mechanical load. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for specific aging mechanisms.
Jiang, Shun-Yuan; Sun, Hong-Bing; Sun, Hui; Ma, Yu-Ying; Chen, Hong-Yu; Zhu, Wen-Tao; Zhou, Yi
2016-03-01
This paper aims to explore a comprehensive assessment method combined traditional Chinese medicinal material specifications with quantitative quality indicators. Seventy-six samples of Notopterygii Rhizoma et Radix were collected on market and at producing areas. Traditional commercial specifications were described and assigned, and 10 chemical components and volatile oils were determined for each sample. Cluster analysis, Fisher discriminant analysis and correspondence analysis were used to establish the relationship between the traditional qualitative commercial specifications and quantitative chemical indices for comprehensive evaluating quality of medicinal materials, and quantitative classification of commercial grade and quality grade. A herb quality index (HQI) including traditional commercial specifications and chemical components for quantitative grade classification were established, and corresponding discriminant function were figured out for precise determination of quality grade and sub-grade of Notopterygii Rhizoma et Radix. The result showed that notopterol, isoimperatorin and volatile oil were the major components for determination of chemical quality, and their dividing values were specified for every grade and sub-grade of the commercial materials of Notopterygii Rhizoma et Radix. According to the result, essential relationship between traditional medicinal indicators, qualitative commercial specifications, and quantitative chemical composition indicators can be examined by K-mean cluster, Fisher discriminant analysis and correspondence analysis, which provide a new method for comprehensive quantitative evaluation of traditional Chinese medicine quality integrated traditional commodity specifications and quantitative modern chemical index. Copyright© by the Chinese Pharmaceutical Association.
A Class of Organopolysulfides As Liquid Cathode Materials for High-Energy-Density Lithium Batteries.
Bhargav, Amruth; Bell, Michaela Elaine; Karty, Jonathan; Cui, Yi; Fu, Yongzhu
2018-06-27
Sulfur-based cathodes are promising to enable high-energy-density lithium-sulfur batteries; however, elemental sulfur as active material faces several challenges, including undesirable volume change (∼80%) when completely reduced and high dependence on liquid electrolyte wherein an electrolyte/sulfur ratio >10 μL mg -1 is required for high material utilization. These limit the attainable energy densities of these batteries. Herein, we introduce a new class of phenyl polysulfides C 6 H 5 S x C 6 H 5 (4 ≤ x ≤ 6) as liquid cathode materials synthesized in a facile and scalable route to mitigate these setbacks. These polysulfides possess sufficiently high theoretical specific capacities, specific energies, and energy densities. Spectroscopic techniques verify their chemical composition and computation shows that the volume change when reduced is about 37%. Lithium half-cell testing shows that phenyl hexasulfide (C 6 H 5 S 6 C 6 H 5 ) can provide a specific capacity of 650 mAh g -1 and capacity retention of 80% through 500 cycles at 1 C rate along with superlative performance up to 10 C. Furthermore, 1302 Wh kg -1 and 1720 Wh L -1 are achievable at a low electrolyte/active material ratio, i.e., 3 μL mg -1 . This work adds new members to the cathode family for Li-S batteries, reduces the gap between the theoretical and practical energy densities of batteries, and provides a new direction for the development of alternative high-capacity cathode materials.
Advances in photonic MOEMS-MEMS device thinning and polishing
NASA Astrophysics Data System (ADS)
McAneny, James J.; Kennedy, Mark; McGroggan, Tom
2010-02-01
As devices continue to increase in density and complexity, ever more stringent specifications are placed on the wafer scale equipment manufacturers to produce higher quality and higher output. This results in greater investment and more resource being diverted into producing tools and processes which can meet the latest demanding criteria. Substrate materials employed in the fabrication process range from Silicon through InP and include GaAs, InSb and other optical networking or waveguide materials. With this diversity of substrate materials presented, controlling the geometries and surfaces grows progressively more challenging. This article highlights the key parameters which require close monitoring and control in order to produce highly precise wafers as part of the fabrication process. Several as cut and commercially available standard polished wafer materials were used in empirical trials to test tooling options in generating high levels of geometric control over the dimensions while producing high quality surface finishes. Specific attention was given to the measurement and control of: flatness; parallelism/TTV; surface roughness and final target thickness as common specifications required by the industry. By combining the process variables of: plate speed, download pressure, slurry flow rate and concentration, pad type and wafer travel path across the polish pad, the effect of altering these variables was recorded and analysed to realize the optimum process conditions for the materials under test. The results being then used to design improved methods and tooling for the thinning and polishing of photonic materials applied to MOEMS-MEMS device fabrication.
State-of-the-Art Materials for Ultrasound-Triggered Drug Delivery
Sirsi, Shashank; Borden, Mark
2014-01-01
Ultrasound is a unique and exciting theranostic modality that can be used to track drug carriers, trigger drug release and improve drug deposition with high spatial precision. In this review, we briefly describe the mechanisms of interaction between drug carriers and ultrasound waves, including cavitation, streaming and hyperthermia, and how those interactions can promote drug release and tissue uptake. We then discuss the rational design of some state-of-the-art materials for ultrasound-triggered drug delivery and review recent progress for each drug carrier, focusing on the delivery of chemotherapeutic agents such as doxorubicin. These materials include nanocarrier formulations, such as liposomes and micelles, designed specifically for ultrasound-triggered drug release, as well as microbubbles, microbubble-nanocarrier hybrids, microbubble-seeded hydrogels and phase-change agents. PMID:24389162
Vacuum deposition and curing of liquid monomers
Affinito, J.D.
1993-11-09
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of standard polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
Loading and conjugating cavity biostructures
Hainfeld, J.F.
1997-11-25
Methods for the preparation and use of a biological delivery system are disclosed. The method of preparation includes the loading of a non-biological material into a biostructure having a load-bearing structure. The method also includes the removal of some of the biostructure`s contents and the loading of a non-biological material into the biostructure. The biostructure is biologically compatible with the host, and preferably is derived from the host, the host`s species or a related species. The loaded biostructure is used directly, or it can be targeted to specific cells, tissues and/or organs within a host. The targeted biostructure can be used to deliver the non-biological material to a specified tissue, organ or cell within a host for diagnostic, therapeutic or other purposes. 11 figs.
Vacuum deposition and curing of liquid monomers
Affinito, J.D.
1995-03-07
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of ``standard`` polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
NASA Technical Reports Server (NTRS)
Esposito, J. J.; Zabora, R. F.
1975-01-01
Pertinent mechanical and physical properties of six high conductivity metals were determined. The metals included Amzirc, NARloy Z, oxygen free pure copper, electroformed copper, fine silver, and electroformed nickel. Selection of these materials was based on their possible use in high performance reusable rocket nozzles. The typical room temperature properties determined for each material included tensile ultimate strength, tensile yield strength, elongation, reduction of area, modulus of elasticity, Poisson's ratio, density, specific heat, thermal conductivity, and coefficient of thermal expansion. Typical static tensile stress-strain curves, cyclic stress-strain curves, and low-cycle fatigue life curves are shown. Properties versus temperature are presented in graphical form for temperatures from 27.6K (-410 F) to 810.9K (1000 F).
Laser direct writing of micro- and nano-scale medical devices
Gittard, Shaun D; Narayan, Roger J
2010-01-01
Laser-based direct writing of materials has undergone significant development in recent years. The ability to modify a variety of materials at small length scales and using short production times provides laser direct writing with unique capabilities for fabrication of medical devices. In many laser-based rapid prototyping methods, microscale and submicroscale structuring of materials is controlled by computer-generated models. Various laser-based direct write methods, including selective laser sintering/melting, laser machining, matrix-assisted pulsed-laser evaporation direct write, stereolithography and two-photon polymerization, are described. Their use in fabrication of microstructured and nanostructured medical devices is discussed. Laser direct writing may be used for processing a wide variety of advanced medical devices, including patient-specific prostheses, drug delivery devices, biosensors, stents and tissue-engineering scaffolds. PMID:20420557
Loading and conjugating cavity biostructures
Hainfeld, J.F.
1995-08-22
Methods for the preparation and use of a biological delivery system are disclosed. The method of preparation includes the loading of a non-biological material into a biostructure having a load-bearing structure. The method also includes the removal of some of the biostructure`s contents and the loading of a non-biological material into the biostructure. The biostructure is biologically compatible with the host, and preferably is derived from the host, the host`s species or a related species. The loaded biostructure is used directly, or it can be targeted to specific cells, tissues and/or organs within a host. The targeted biostructure can be used to deliver the non-biological material to a specified tissue, organ or cell within a host for diagnostic, therapeutic or other purposes. 11 figs.
Cooling apparatus and couplings therefor
NASA Technical Reports Server (NTRS)
Lomax, Curtis (Inventor); Webbon, Bruce (Inventor)
1993-01-01
The present invention relates generally to the field of thermal transfer and, more specifically, to a direct-interface, fusible heat sink for non-venting, regenerable, and self-contained thermal regulation. A quick connect coupling includes a male and a female portion. The female portion is frozen in a container of solid-phase coolant fluid, i.e., water, so that passages in the housing are blocked by ice initially. The ice is melted by direct interface with liquid coolant fluid delivered from the male portion. The present invention has advantages in that the phase change material remains sealed at all times, including during regeneration. Also, it uses quick-disconnect couplings that allow the phase change material to completely fill the container and is easily handled in microgravity without spills, leakage, or handling of phase change material.
Vacuum deposition and curing of liquid monomers
Affinito, John D.
1993-01-01
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
Vacuum deposition and curing of liquid monomers apparatus
Affinito, John D.
1996-01-01
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
Vacuum deposition and curing of liquid monomers
Affinito, John D.
1995-01-01
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
NASA Astrophysics Data System (ADS)
Lander, Michael L.
2003-05-01
The Laser Hardened Materials Evaluation Laboratory (LHMEL) has been characterizing material responses to laser energy in support of national defense programs and the aerospace industry for the past 26 years. This paper reviews the overall resources available at LHMEL to support fundamental materials testing relating to impulse coupling measurement and to explore beamed energy launch concepts. Located at Wright-Patterson Air Force Base, Ohio, LHMEL is managed by the Air Force Research Laboratory Materials Directorate AFRL/MLPJ and operated by Anteon Corporation. The facility's advanced hardware is centered around carbon dioxide lasers producing output power up to 135kW and neodymium glass lasers producing up to 10 kilojoules of repetitively pulsed output. The specific capabilities of each laser device and related optical systems are discussed. Materials testing capabilities coupled with the laser systems are also described including laser output and test specimen response diagnostics. Environmental simulation capabilities including wind tunnels and large-volume vacuum chambers relevant to beamed energy propulsion are also discussed. This paper concludes with a summary of the procedures and methods by which the facility can be accessed.
Artist Material BRDF Database for Computer Graphics Rendering
NASA Astrophysics Data System (ADS)
Ashbaugh, Justin C.
The primary goal of this thesis was to create a physical library of artist material samples. This collection provides necessary data for the development of a gonio-imaging system for use in museums to more accurately document their collections. A sample set was produced consisting of 25 panels and containing nearly 600 unique samples. Selected materials are representative of those commonly used by artists both past and present. These take into account the variability in visual appearance resulting from the materials and application techniques used. Five attributes of variability were identified including medium, color, substrate, application technique and overcoat. Combinations of these attributes were selected based on those commonly observed in museum collections and suggested by surveying experts in the field. For each sample material, image data is collected and used to measure an average bi-directional reflectance distribution function (BRDF). The results are available as a public-domain image and optical database of artist materials at art-si.org. Additionally, the database includes specifications for each sample along with other information useful for computer graphics rendering such as the rectified sample images and normal maps.
Development of educational image databases and e-books for medical physics training.
Tabakov, S; Roberts, V C; Jonsson, B-A; Ljungberg, M; Lewis, C A; Wirestam, R; Strand, S-E; Lamm, I-L; Milano, F; Simmons, A; Deane, C; Goss, D; Aitken, V; Noel, A; Giraud, J-Y; Sherriff, S; Smith, P; Clarke, G; Almqvist, M; Jansson, T
2005-09-01
Medical physics education and training requires the use of extensive imaging material and specific explanations. These requirements provide an excellent background for application of e-Learning. The EU projects Consortia EMERALD and EMIT developed five volumes of such materials, now used in 65 countries. EMERALD developed e-Learning materials in three areas of medical physics (X-ray diagnostic radiology, nuclear medicine and radiotherapy). EMIT developed e-Learning materials in two further areas: ultrasound and magnetic resonance imaging. This paper describes the development of these e-Learning materials (consisting of e-books and educational image databases). The e-books include tasks helping studying of various equipment and methods. The text of these PDF e-books is hyperlinked with respective images. The e-books are used through the readers' own Internet browser. Each Image Database (IDB) includes a browser, which displays hundreds of images of equipment, block diagrams and graphs, image quality examples, artefacts, etc. Both the e-books and IDB are engraved on five separate CD-ROMs. Demo of these materials can be taken from www.emerald2.net.
Research and education on fiber-based materials for nanofluidics at Clemson University
NASA Astrophysics Data System (ADS)
Kornev, Konstantin G.
2007-11-01
Advanced materials and the science and engineering related to their design, process, test and manufacture represents one of the fast growing sectors of the Materials Science and Engineering field. Awareness of existing process, performance, manufacturing or recycle-ability issues and limitations, often dictates the next generation of advances needed to improve existing or create new materials. To compete in this growing science and technology area, trained experts must possess strong academic skills in their discipline as well as advanced communication, networking and cultural teamwork experience. Clemson's School of Materials Science and Engineering (MSE), is continuing to expand our program to focus on unique capabilities which support local, regional and national needs in advanced materials. Specifically, MSE at Clemson is evolving to highlight intrinsic strengths in research and education areas related to optical materials, advanced fibers and composites (based on inorganic, organic and natural fibers), biomaterials and devices, and architectural and restoration material science (including the conservation and preservation of maritime structures). Additionally, we continue to invest in our expertise in materials design and fabrication, which has historically supported our well known programs in ceramics and textiles. In addition to a brief review of the School's forward-looking challenges to remain competitive among strong southeast regional materials science programs, this presentation will also highlight recent technical advances in fiber-based materials for nanofluidic applications. Specifically we will present recent results on design of fiber-based nanofluidics for sensor applications and we will discuss some physical phenomena associated with liquid transport at nanoscale.
CCARES: A computer algorithm for the reliability analysis of laminated CMC components
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.; Gyekenyesi, John P.
1993-01-01
Structural components produced from laminated CMC (ceramic matrix composite) materials are being considered for a broad range of aerospace applications that include various structural components for the national aerospace plane, the space shuttle main engine, and advanced gas turbines. Specifically, these applications include segmented engine liners, small missile engine turbine rotors, and exhaust nozzles. Use of these materials allows for improvements in fuel efficiency due to increased engine temperatures and pressures, which in turn generate more power and thrust. Furthermore, this class of materials offers significant potential for raising the thrust-to-weight ratio of gas turbine engines by tailoring directions of high specific reliability. The emerging composite systems, particularly those with silicon nitride or silicon carbide matrix, can compete with metals in many demanding applications. Laminated CMC prototypes have already demonstrated functional capabilities at temperatures approaching 1400 C, which is well beyond the operational limits of most metallic materials. Laminated CMC material systems have several mechanical characteristics which must be carefully considered in the design process. Test bed software programs are needed that incorporate stochastic design concepts that are user friendly, computationally efficient, and have flexible architectures that readily incorporate changes in design philosophy. The CCARES (Composite Ceramics Analysis and Reliability Evaluation of Structures) program is representative of an effort to fill this need. CCARES is a public domain computer algorithm, coupled to a general purpose finite element program, which predicts the fast fracture reliability of a structural component under multiaxial loading conditions.
Cryogenic Thermal Conductivity Measurements on Candidate Materials for Space Missions
NASA Technical Reports Server (NTRS)
Tuttle, JIm; Canavan, Ed; Jahromi, Amir
2017-01-01
Spacecraft and instruments on space missions are built using a wide variety of carefully-chosen materials. In addition to having mechanical properties appropriate for surviving the launch environment, these materials generally must have thermal conductivity values which meet specific requirements in their operating temperature ranges. Space missions commonly propose to include materials for which the thermal conductivity is not well known at cryogenic temperatures. We developed a test facility in 2004 at NASAs Goddard Space Flight Center to measure material thermal conductivity at temperatures between 4 and 300 Kelvin, and we have characterized many candidate materials since then. The measurement technique is not extremely complex, but proper care to details of the setup, data acquisition and data reduction is necessary for high precision and accuracy. We describe the thermal conductivity measurement process and present results for several materials.
Cryogenic thermal conductivity measurements on candidate materials for space missions
NASA Astrophysics Data System (ADS)
Tuttle, James; Canavan, Edgar; Jahromi, Amir
2017-12-01
Spacecraft and instruments on space missions are built using a wide variety of carefully-chosen materials. It is common for NASA engineers to propose new candidate materials which have not been totally characterized at cryogenic temperatures. In many cases a material's cryogenic thermal conductivity must be known before selecting it for a specific space-flight application. We developed a test facility in 2004 at NASA's Goddard Space Flight Center to measure the longitudinal thermal conductivity of materials at temperatures between 4 and 300 K, and we have characterized many candidate materials since then. The measurement technique is not extremely complex, but proper care to details of the setup, data acquisition and data reduction is necessary for high precision and accuracy. We describe the thermal conductivity measurement process and present results for ten engineered materials, including alloys, polymers, composites, and a ceramic.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-12
... same all over the world. It consists of slowly and carefully forming and welding high-end stainless... specifications. This merchandise includes, but is not limited to, the American Society for Testing and Materials...
A Right Now Project: How To Get Ready To Go Metric in Your School District
ERIC Educational Resources Information Center
Izzi, John
1973-01-01
Itemizes planning proposals to facilitate conversion of the educational system to metrics, including administrative committees and personnel training courses. Suggestions for purchasing materials and equipment refer the reader to several specific titles. (WM)
ERIC Educational Resources Information Center
2001
This book presents 22 preschool buildings from all over the world, selected on the basis of how well they approximate an ideal preschool where children and educators live harmoniously in exceptional settings. The projects also include technological innovations (experimental materials, specific construction details) and visible ecological…
Human Ecology: Curriculum Review.
ERIC Educational Resources Information Center
Bybee, Rodger W.
1984-01-01
Describes nine commercially available programs which represent one aspect or a portion of the human ecology theme. Other information supplied for each program includes: program objectives; methods of instruction; specific subjects, grade, and ability levels; materials produced and purchasable; program implementation; teacher preparation; program…
Mentoring: A Representative Bibliography.
ERIC Educational Resources Information Center
Norton, Cheryl S.
This annotated bibliography provides a representative sample of the available literature on mentoring. It reviews both qualitative and quantitative research, and covers specific mentoring programs, program implementation, and testimonials to the benefits of mentoring. Materials covered include 40 journal articles, conference papers, books, and…
Culture Kits for the Elementary Classroom.
ERIC Educational Resources Information Center
Hickey, M. Gail
1997-01-01
Outlines an instructional unit where students construct culture kits illustrating a specific culture. Culture kits are constructed out of realia and other material including maps, travel brochures, photographs, newspapers, souvenirs, and other items. Discusses collecting these items and possible multicultural applications. (MJP)
ERIC Educational Resources Information Center
Cliff, Janet M.
1990-01-01
Reviews 163 sources on Navajo games, play, and toys. Includes an annotated bibliography of those materials. Examines relationships between games and religion, origin myths, and ceremonies. Discusses attitudes toward games, gambling, and cheating; and the dichotomy between children's and adults' games. Describes specific toys, games, and play…
Constitutive models for static and dynamic response of geotechnical materials
NASA Astrophysics Data System (ADS)
Nemat-Nasser, S.
1983-11-01
The objective of this research program has been to develop realistic macroscopic constitutive relations which describe static and dynamic properties of geotechnical materials (soils and rocks). To this end a coordinated theoretical and experimental activity has been followed. The theoretical work includes a balanced combination of statistical microscopic (at the grain size level) modeling and a nonclassical elasto-plastic macroscopic formulation. The latter includes the effects of internal friction, plastic compressibility, and pressure sensitivity, as well as anisotropy which is commonly observed in geotechnical materials. The following specific goals have been sought: (1) to develop three-dimensional constitutive relations under ordinary or high pressures (such as those induced by blasting or tectonic forces which may cause a large amount of densification by relative motion and possible crushing of grains); and (2) to examine and characterize the behavior of saturated granular materials under dynamic loading. The latter item includes characterization of possible liquefaction and subsidence which may be induced in granular materials under confining pressure by ground vibration or passage of waves. The theoretical work has been carefully coordinated with key experiments in order to: (1) understand the basic physics of the process, both at macroscopic and microscopic levels; (2) to verify the corresponding theoretical predictions; and (3) to establish relevant material parameters.
NASA Astrophysics Data System (ADS)
Saleeb, A. F.; Natsheh, S. H.; Owusu-Danquah, J. S.; Dhakal, B.
2017-05-01
In this work, we address two of the main challenges encountered in constitutive modeling of the thermomechanical behaviors of actuation-based shape memory alloys. Firstly, the complexity of behavior under cyclic thermomechanical loading is properly handled, particularly with regard to assessing the long-term dimensional stability. Secondly, we consider the marked differences in behavior distinguishing virgin-versus-trained SMA material. To this end, we utilize a set of experimental data comprehensive in scope to cover all the anticipated operational conditions for one and same SMA alloy, having a specific chemical composition with fixed heat treatment. More specifically, this includes twenty-four different tests from the recent SMA experimental literature for the Ni49.9Ti50.1 material having austenite finish temperature above 100 °C. Under all the different conditions investigated, the model results were found to be in very good agreement with the experimental measurements.
NASA Technical Reports Server (NTRS)
Jordan, Kelvin; Clinton, Raymond; Jeelani, Shaik
1989-01-01
The effects of moisture and surface finish on the mechanical and physical properties of the interfacial bond between the carbon/phenolic (C/P) and glass/phenolic (G/P) composite materials are presented. Four flat panel laminates were fabricated using the C/P and G/P materials. Of the four laminates, one panel was fabricated in which the C/P and G/P materials were cured simultaneously. It was identified as the cocure. The remaining laminates were processed with an initial simultaneous cure of the three C/P billets. Two surface finishes, one on each half, were applied to the top surface. Prior to the application and cure of the G/P material to the machined surface of the three C/P panels, each was subjected to the specific environmental conditioning. Types of conditioning included: (1) nominal fabrication environment, (2) a prescribed drying cycle, and (3) a total immersion in water at 160 F. Physical property tests were performed on specimens removed from the C/P materials of each laminate for determination of the specific gravity, residual volatiles and and resin content. Comparisons of results with shuttle solid rocket motor (SRM) nozzle material specifications verified that the materials used in fabricating the laminates met acceptance criteria and were representative of SRM nozzle materials. Mechanical property tests were performed at room temperature on specimens removed from the G/P, the C/P and the interface between the two materials for each laminate. The double-notched shear strength test was used to determine the ultimate interlaminar shear strength. Results indicate no appreciable difference in the C/P material of the four laminates with the exception of the cocure laminate, where 20 percent reduction in the strength was observed. The most significant effect and the ultimate strength was significantly reduced in the wet material. No appreciable variation was noted between the surface finishes in the wet laminate.
Guidelines for integrating population education into primary education and literacy programmes.
1989-01-01
In recent seminars and workshops in the Asia and Pacific region the integration of population education into primary schools and literacy programs were the main topics. In most of the countries in this area separate courses in population education appear to be unfeasible for primary and secondary schools. In the nonformal area experience has indicated that population education acquires more meaning and relevance if it is integrated into an ongoing development program. The integration approach requires knowledge of the contents of the accommodating subjects or programs and knowledge of the contents of the accommodating subjects or programs and knowledge of the contents of population education. Guidelines suggested include the following steps in developing an integrated curriculum and instructional materials. First determine the needs, characteristics and other background information needed on the target group. Next prioritize the problems and needs of the target group, and formulate educational objectives from the identified needs and problems. Next determine and sequence the curriculum contents and then determine specific population education objectives and contents for integration, and what specific materials have to be developed. Then identify the specific type of format of materials to be developed, and write the first draft of the material. Also prepare illustrations and other art and graphic materials. Then the draft material should be reviewed and translated into the language of the target audience if needed. The materials should then be pretested, or field tested, using a sample of the intended users. To make sure the materials are reaching the target groups and being used effectively, a user's guide should be prepared and teachers and facilitators, as well as supervisors, should be prepared on the use of the material. In addition, a distribution and utilization plan should be prepared. Nonformal education materials can be distributed through libraries, reading center, residences of village leaders, neighborhood stores, and direct mail. The material distribution and utilization should be monitored and evaluated.
Plastics in automobiles. (Latest citations from Materials Business File). Published Search
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The bibliography contains citations concerning the use of plastic to replace metallic parts in automobiles. Citations discuss the advantages of easy assembly, part consolidation, weight savings, durability, aesthetics, and economics. Examples of specific applications, types of plastic and their formulation are included. (Contains a minimum of 187 citations and includes a subject term index and title list.)
Plastics in automobiles. (Latest citations from Materials Business file). Published Search
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The bibliography contains citations concerning the use of plastic to replace metallic parts in automobiles. Citations discuss the advantages of easy assembly, part consolidation, weight savings, durability, aesthetics, and economics. Examples of specific applications, types of plastic and their formulation are included. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)
ERIC Educational Resources Information Center
New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.
This bulletin of student worksheets complements teacher strategies for Theme III entitled, "Changes in Thought and Action Led to the Emergence of the Modern World." The worksheets contain materials corresponding to specific strategies, and the questions which accompany each worksheet are included on the appropriate strategy page. Included are…
Multifunctional cellulase and hemicellulase
Fox, Brian G.; Takasuka, Taichi; Bianchetti, Christopher M.
2015-09-29
A multifunctional polypeptide capable of hydrolyzing cellulosic materials, xylan, and mannan is disclosed. The polypeptide includes the catalytic core (cc) of Clostridium thermocellum Cthe_0797 (CelE), the cellulose-specific carbohydrate-binding module CBM3 of the cellulosome anchoring protein cohesion region (CipA) of Clostridium thermocellum (CBM3a), and a linker region interposed between the catalytic core and the cellulose-specific carbohydrate binding module. Methods of using the multifunctional polypeptide are also disclosed.
Code of Federal Regulations, 2010 CFR
2010-10-01
... provisions specified in column 7 of the § 172.101 table. (a) Rail cars: Class DOT 103, 104, 105, 109, 111...; Specification IM 101, IM 102, and UN portable tanks when a T Code is specified in Column (7) of the § 172.101... authorized according to the IBC packaging code specified for the specific hazardous material in Column (7) of...
Composite material having high thermal conductivity and process for fabricating same
Colella, N.J.; Davidson, H.L.; Kerns, J.A.; Makowiecki, D.M.
1998-07-21
A process is disclosed for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost. 7 figs.
Process for fabricating composite material having high thermal conductivity
Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.
2001-01-01
A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.
Composite material having high thermal conductivity and process for fabricating same
Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.
1998-01-01
A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.
NASA geometry data exchange specification for computational fluid dynamics (NASA IGES)
NASA Technical Reports Server (NTRS)
Blake, Matthew W.; Kerr, Patricia A.; Thorp, Scott A.; Jou, Jin J.
1994-01-01
This document specifies a subset of an existing product data exchange specification that is widely used in industry and government. The existing document is called the Initial Graphics Exchange Specification. This document, a subset of IGES, is intended for engineers analyzing product performance using tools such as computational fluid dynamics (CFD) software. This document specifies how to define mathematically and exchange the geometric model of an object. The geometry is represented utilizing nonuniform rational B-splines (NURBS) curves and surfaces. Only surface models are represented; no solid model representation is included. This specification does not include most of the other types of product information available in IGES (e.g., no material properties or surface finish properties) and does not provide all the specific file format details of IGES. The data exchange protocol specified in this document is fully conforming to the American National Standard (ANSI) IGES 5.2.
Engineering liposomal nanoparticles for targeted gene therapy.
Zylberberg, C; Gaskill, K; Pasley, S; Matosevic, S
2017-08-01
Recent mechanistic studies have attempted to deepen our understanding of the process by which liposome-mediated delivery of genetic material occurs. Understanding the interactions between lipid nanoparticles and cells is still largely elusive. Liposome-mediated delivery of genetic material faces systemic obstacles alongside entry into the cell, endosomal escape, lysosomal degradation and nuclear uptake. Rational design approaches for targeted delivery have been developed to reduce off-target effects and enhance transfection. These strategies, which have included the modification of lipid nanoparticles with target-specific ligands to enhance intracellular uptake, have shown significant promise at the proof-of-concept stage. Control of physical and chemical specifications of liposome composition, which includes lipid-to-DNA charge, size, presence of ester bonds, chain length and nature of ligand complexation, is integral to the performance of targeted liposomes as genetic delivery agents. Clinical advances are expected to rely on such systems in the therapeutic application of liposome nanoparticle-based gene therapy. Here, we discuss the latest breakthroughs in the development of targeted liposome-based agents for the delivery of genetic material, paying particular attention to new ligand and cationic lipid design as well as recent in vivo advances.
[Analysis of varieties and standards of Scrophulariaceae plants used in Tibetan medicine].
Cao, Lan; Mu, Ze-jing; Zhong, Wei-hong; Zhong, Wei-jin; He, Jun-wei; Du, Xiao-lang; Zhong, Guo-yue
2015-12-01
In this paper, the popular domestic varieties and quality standard of Scrophulariaceae plants used in Tibetan medicine were analyzed. The results showed that there were 11 genera and 99 species (including varieties), as well as 28 medicinal materials varieties of Scrophulariaceae plants were recorded in the relevant literatures. In relevant Tibetan standards arid literatures, there are great differences in varieties, sources, parts, and efficacies of medicinal plant. Among them, about 41.4% (including 41 species) of endemic plants, about 15.2% (including 15 species) of the original plants have medicinal standard legal records, except the medicinal materials of Scrophalaria ningpoensis, Lagotis brevituba, Picrorhiza scrophulariiflora, Veronica eriogyne general, most varieties have not completed quality standard. Consequently it is necessary to reinforce the herbal textual, resources and the use present situation investigation, the effects of the species resources material foundation and biological activity, quality standard, specification the medical terms of the plants, and promote Tibetan medicinal vareties-terminologies-sources such as the criterion and quality standard system for enriching the varieties of Tibetan medicinal materials and Chinese medicinal resources.
A computer program for predicting nonlinear uniaxial material responses using viscoplastic models
NASA Technical Reports Server (NTRS)
Chang, T. Y.; Thompson, R. L.
1984-01-01
A computer program was developed for predicting nonlinear uniaxial material responses using viscoplastic constitutive models. Four specific models, i.e., those due to Miller, Walker, Krieg-Swearengen-Rhode, and Robinson, are included. Any other unified model is easily implemented into the program in the form of subroutines. Analysis features include stress-strain cycling, creep response, stress relaxation, thermomechanical fatigue loop, or any combination of these responses. An outline is given on the theoretical background of uniaxial constitutive models, analysis procedure, and numerical integration methods for solving the nonlinear constitutive equations. In addition, a discussion on the computer program implementation is also given. Finally, seven numerical examples are included to demonstrate the versatility of the computer program developed.
Electric Propulsion Technology Development for the Jupiter Icy Moons Orbiter Project
NASA Technical Reports Server (NTRS)
2004-01-01
During 2004, the Jupiter Icy Moons Orbiter project, a part of NASA's Project Prometheus, continued efforts to develop electric propulsion technologies. These technologies addressed the challenges of propelling a spacecraft to several moons of Jupiter. Specific challenges include high power, high specific impulse, long lived ion thrusters, high power/high voltage power processors, accurate feed systems, and large propellant storage systems. Critical component work included high voltage insulators and isolators as well as ensuring that the thruster materials and components could operate in the substantial Jupiter radiation environment. A review of these developments along with future plans is discussed.
NASA Technical Reports Server (NTRS)
Eisner, M. (Editor)
1975-01-01
The importance of zero gravity environment in the development and production of new and improved materials is considered along with the gravitational effects on phase changes or critical behavior in a variety of materials. Specific experiments discussed include: fine scale phase separation in zero gravity; glass formation in zero gravity; effects of gravitational perturbations on determination of critical exponents; and light scattering from long wave fluctuations in liquids in zero gravity. It is concluded that the space shuttle/spacelab system is applicable to various fields of interest.
Ceramic regenerator systems development program
NASA Technical Reports Server (NTRS)
Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.; Rao, V. D.
1978-01-01
Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability tests/in industrial gas turbine engines. A regenerator core made from aluminum silicate shows minimal evidence of chemical attack damage after 7804 hours of engine test at 800 C and another showed little distress after 4983 hours at 982 C. The results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included.
Materials for geothermal production
NASA Astrophysics Data System (ADS)
Kukacka, L. E.
Advances in the development of new materials continue to be made in the geothermal materials project. Many successes have already been accrued and the results used commercially. In FY-91, work was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities performed included lightweight CO2 resistant well cements, thermally conductive and scale resistant protective liner systems, chemical systems for lost circulation control, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems. Efforts to transfer the technologies developed in these efforts to other energy-related sectors of the economy continued, and considerable success was achieved.
Design of space-type electronic power transformers
NASA Technical Reports Server (NTRS)
Ahearn, J. F.; Lagadinos, J. C.
1977-01-01
Both open and encapsulated varieties of high reliability, low weight, and high efficiency moderate and high voltage transformers were investigated to determine the advantages and limitations of their construction in the ranges of power and voltage required for operation in the hard vacuum environment of space. Topics covered include: (1) selection of the core material; (2) preliminary calculation of core dimensions; (3) selection of insulating materials including magnet wire insulation, coil forms, and layer and interwinding insulation; (4) coil design; (5) calculation of copper losses, core losses and efficiency; (6) calculation of temperature rise; and (7) optimization of design with changes in core selection or coil design as required to meet specifications.
Carpenter, Delesha M; Roberts, Courtney A; Westrick, Salisa C; Ferreri, Stefanie P; Kennelty, Korey A; Look, Kevin A; Abraham, Olufunmilola; Wilson, Courtenay
2017-11-21
Many community pharmacists are uncomfortable educating patients about naloxone, an opioid reversal agent. To examine whether training materials prepare pharmacists to counsel patients and caregivers about naloxone, online naloxone education materials for pharmacists in the 13 states with standing orders were analyzed. Two coders reviewed 12 naloxone training programs and extracted data for 15 topics that were clustered in four categories: background/importance, naloxone products, business/operations, and communication. Programs that included communication content were coded for whether they: 1) suggested specific verbiage for naloxone counseling; 2) recommended evidence-based communication practices; and 3) included example naloxone conversations. Most programs covered the majority of topics, with the exception of extended treatment for individuals who overdose and naloxone storage/expiration information. Eleven programs addressed pharmacist-patient communication, although information on communication was often limited. Only one program included an example pharmacist-patient naloxone conversation, but the conversation was 10 min long and occurred in a private room, limiting its applicability to most community pharmacies. Online naloxone training materials for pharmacists include limited content on how to communicate with patients and caregivers. Training materials that include more in-depth content on communication may increase pharmacists' confidence to discuss the topics of overdose and naloxone. Copyright © 2017 Elsevier Inc. All rights reserved.
Lecrenier, M C; Marbaix, H; Dieu, M; Veys, P; Saegerman, C; Raes, M; Baeten, V
2016-12-15
Animal by-products are valuable protein sources in animal nutrition. Among them are blood products and blood meal, which are used as high-quality material for their beneficial effects on growth and health. Within the framework of the feed ban relaxation, the development of complementary methods in order to refine the identification of processed animal proteins remains challenging. The aim of this study was to identify specific biomarkers that would allow the detection of bovine blood products and processed animal proteins using tandem mass spectrometry. Seventeen biomarkers were identified: nine peptides for bovine plasma powder; seven peptides for bovine haemoglobin powder, including six peptides for bovine blood meal; and one peptide for porcine blood. They were not detected in several commercial compound feed or feed materials, such as blood by-products of other animal origins, milk-derived products and fish meal. These biomarkers could be used for developing a species-specific and blood-specific detection method. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kim, Jae-Woo; Choi, Sang H.; Lillehei, Peter T.; King, Glen C.; Elliott, James R.; Chu, Sang-Hyon; Park, Yeonjoon; Watt, Gerald D.
2004-01-01
Nanoparticle arrays biologically derived from an electrochemically-controlled site-specific biomineralization were fabricated on a gold substrate through the immobilization process of biomolecules. The work reported herein includes the immobilization of ferritin with various surface modifications, the electrochemical biomineralization of ferritins with different inorganic cores, the fabrication of self-assembled arrays with the immobilized ferritin, and the electrochemical characterization of various core materials. Protein immobilization on the substrate is achieved by anchoring ferritins with dithiobis-N-succinimidyl propionate (DTSP). A reconstitution process of electrochemical site-specific biomineralization with a protein cage loads ferritins with different core materials such as Pt, Co, Mn, and Ni. The ferritin acts as a nano-scale template, a biocompatible cage, and a separator between the nanoparticles. The nano-sized metalcored ferritins on a gold substrate displayed a good electrochemical activity for the electron transport and storage, which is suitable for bioelectronics applications such as biofuel cell, bionanobattery, biosensors, etc. Keywords: Ferritin, immobilization, site-specific reconstitution, biomineralization, and bioelectronics
NASA Astrophysics Data System (ADS)
Wehling, T. O.; Black-Schaffer, A. M.; Balatsky, A. V.
2014-01-01
A wide range of materials, like d-wave superconductors, graphene, and topological insulators, share a fundamental similarity: their low-energy fermionic excitations behave as massless Dirac particles rather than fermions obeying the usual Schrodinger Hamiltonian. This emergent behavior of Dirac fermions in condensed matter systems defines the unifying framework for a class of materials we call "Dirac materials''. In order to establish this class of materials, we illustrate how Dirac fermions emerge in multiple entirely different condensed matter systems and we discuss how Dirac fermions have been identified experimentally using electron spectroscopy techniques (angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy). As a consequence of their common low-energy excitations, this diverse set of materials shares a significant number of universal properties in the low-energy (infrared) limit. We review these common properties including nodal points in the excitation spectrum, density of states, specific heat, transport, thermodynamic properties, impurity resonances, and magnetic field responses, as well as discuss many-body interaction effects. We further review how the emergence of Dirac excitations is controlled by specific symmetries of the material, such as time-reversal, gauge, and spin-orbit symmetries, and how by breaking these symmetries a finite Dirac mass is generated. We give examples of how the interaction of Dirac fermions with their distinct real material background leads to rich novel physics with common fingerprints such as the suppression of back scattering and impurity-induced resonant states.
Gas sensitive materials for gas detection and method of making
Trakhtenberg, Leonid Israilevich; Gerasimov, Genrikh Nikolaevich; Gromov, Vladimir Fedorovich; Rozenberg, Valeriya Isaakovna
2012-12-25
A gas sensitive material comprising SnO2 nanocrystals doped with In2O3 and an oxide of a platinum group metal, and a method of making the same. The platinum group metal is preferably Pd, but also may include Pt, Ru, Ir, and combinations thereof. The SnO2 nanocrystals have a specific surface of 7 or greater, preferably about 20 m2/g, and a mean particle size of between about 10 nm and about 100 nm, preferably about 40 nm. A gas detection device made from the gas sensitive material deposited on a substrate, the gas sensitive material configured as a part of a current measuring circuit in communication with a heat source.
Picosecond laser welding of similar and dissimilar materials.
Carter, Richard M; Chen, Jianyong; Shephard, Jonathan D; Thomson, Robert R; Hand, Duncan P
2014-07-01
We report picosecond laser welding of similar and dissimilar materials based on plasma formation induced by a tightly focused beam from a 1030 nm, 10 ps, 400 kHz laser system. Specifically, we demonstrate the welding of fused silica, borosilicate, and sapphire to a range of materials including borosilicate, fused silica, silicon, copper, aluminum, and stainless steel. Dissimilar material welding of glass to aluminum and stainless steel has not been previously reported. Analysis of the borosilicate-to-borosilicate weld strength compares well to those obtained using similar welding systems based on femtosecond lasers. There is, however, a strong requirement to prepare surfaces to a high (10-60 nm Ra) flatness to ensure a successful weld.
Precision measurements of linear scattering density using muon tomography
NASA Astrophysics Data System (ADS)
Åström, E.; Bonomi, G.; Calliari, I.; Calvini, P.; Checchia, P.; Donzella, A.; Faraci, E.; Forsberg, F.; Gonella, F.; Hu, X.; Klinger, J.; Sundqvist Ökvist, L.; Pagano, D.; Rigoni, A.; Ramous, E.; Urbani, M.; Vanini, S.; Zenoni, A.; Zumerle, G.
2016-07-01
We demonstrate that muon tomography can be used to precisely measure the properties of various materials. The materials which have been considered have been extracted from an experimental blast furnace, including carbon (coke) and iron oxides, for which measurements of the linear scattering density relative to the mass density have been performed with an absolute precision of 10%. We report the procedures that are used in order to obtain such precision, and a discussion is presented to address the expected performance of the technique when applied to heavier materials. The results we obtain do not depend on the specific type of material considered and therefore they can be extended to any application.
Fabrication method for cores of structural sandwich materials including star shaped core cells
Christensen, Richard M.
1997-01-01
A method for fabricating structural sandwich materials having a core pattern which utilizes star and non-star shaped cells. The sheets of material are bonded together or a single folded sheet is used, and bonded or welded at specific locations, into a flat configuration, and are then mechanically pulled or expanded normal to the plane of the sheets which expand to form the cells. This method can be utilized to fabricate other geometric cell arrangements than the star/non-star shaped cells. Four sheets of material (either a pair of bonded sheets or a single folded sheet) are bonded so as to define an area therebetween, which forms the star shaped cell when expanded.
76 FR 4864 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-27
...: National Institute of Standards and Technology (NIST). Title: BEES (Building for Environmental and Economic.... Needs and Uses: Building for Environmental and Economic Sustainability (BEES) Please is a voluntary... may be evaluated scientifically using the BEES software. These data include product-specific materials...
ERIC Educational Resources Information Center
Marine Corps Inst., Washington, DC.
Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on warehousing operations is designed to provide instruction in the procedures used in warehousing operations. Introductory materials include specific information for MCI students and a study guide (guidelines to complete the course). The 22-hour…
16 CFR 312.5 - Parental consent.
Code of Federal Regulations, 2014 CFR
2014-01-01
... available technology, to ensure that the person providing consent is the child's parent. (2) Existing... Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS CHILDREN'S ONLINE... children, including consent to any material change in the collection, use, or disclosure practices to which...
16 CFR 312.5 - Parental consent.
Code of Federal Regulations, 2013 CFR
2013-01-01
... calculated, in light of available technology, to ensure that the person providing consent is the child's... Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS CHILDREN'S ONLINE... from children, including consent to any material change in the collection, use, and/or disclosure...
16 CFR 312.5 - Parental consent.
Code of Federal Regulations, 2012 CFR
2012-01-01
... calculated, in light of available technology, to ensure that the person providing consent is the child's... Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS CHILDREN'S ONLINE... from children, including consent to any material change in the collection, use, and/or disclosure...
16 CFR 312.5 - Parental consent.
Code of Federal Regulations, 2011 CFR
2011-01-01
... calculated, in light of available technology, to ensure that the person providing consent is the child's... Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS CHILDREN'S ONLINE... from children, including consent to any material change in the collection, use, and/or disclosure...
16 CFR 312.5 - Parental consent.
Code of Federal Regulations, 2010 CFR
2010-01-01
... calculated, in light of available technology, to ensure that the person providing consent is the child's... Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS CHILDREN'S ONLINE... from children, including consent to any material change in the collection, use, and/or disclosure...
Design and evaluation of brushless electrical generators
NASA Technical Reports Server (NTRS)
Collins, F. A.; Ellis, J. N.
1970-01-01
Ten design manuals assembled and nine computer programs are developed for evaluation of proposed designs of brushless rotating electrical generators. Design manual package provides all information required for generator design, and computer programs permit calculation of performance of specific designs including effects of materials.
Diarrhea Management Training in Early Childhood Settings.
ERIC Educational Resources Information Center
Winnail, Scott D.; Artz, Lynn M.; Geiger, Brian F.; Petri, Cynthia J.; Bailey, Rebecca; Mason, J.W.
2001-01-01
Addresses the health of young children and how to safely and effectively care for children with diarrhea in the home and in early child care settings. Discusses specific intervention and program activities, including specially designed materials for mixing homemade oral rehydration usage. (Author/SD)
19 CFR 10.710 - Value-content requirement.
Code of Federal Regulations, 2011 CFR
2011-04-01
... allocable to the specific goods; (iii) Research, development, design, engineering, and blueprint costs... or value of the materials produced in Jordan, plus the direct costs of processing operations... disposal. (d) Direct costs of processing operations—(1) Items included. For purposes of paragraph (a) of...
ERIC Educational Resources Information Center
North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational Education Services.
Developed to address the needs of the apparel industry, this fashion merchandising curriculum guide is designed to assist marketing educators in effective instructional delivery. Introductory materials include the following: a course blueprint that illustrates units of instruction, core competencies in each unit, and specific objectives for each…
Continued implementation of high performance thin overlays in Texas districts.
DOT National Transportation Integrated Search
2017-06-22
As part of Research Project 0-5598, outputs include guidelines and specifications on how a district can design and construct long-life overlays using the concept of balanced mix design; and training materials describing the best ways to select, desig...
Review on advanced composite materials boring mechanism and tools
NASA Astrophysics Data System (ADS)
Shi, Runping; Wang, Chengyong
2010-12-01
With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling composite materials.
Review on advanced composite materials boring mechanism and tools
NASA Astrophysics Data System (ADS)
Shi, Runping; Wang, Chengyong
2011-05-01
With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling composite materials.
Schmied, Emily; Parada, Humberto; Horton, Lucy; Ibarra, Leticia; Ayala, Guadalupe
2015-10-01
Entre Familia: Reflejos de Salud was a successful family-based randomized controlled trial designed to improve dietary behaviors and intake among U.S. Latino families, specifically fruit and vegetable intake. The novel intervention design merged a community health worker (promotora) model with an entertainment-education component. This process evaluation examined intervention implementation and assessed relationships between implementation factors and dietary change. Participants included 180 mothers randomized to an intervention condition. Process evaluation measures were obtained from participant interviews and promotora notes and included fidelity, dose delivered (i.e., minutes of promotora in-person contact with families, number of promotora home visits), and dose received (i.e., participant use of and satisfaction with intervention materials). Outcome variables included changes in vegetable intake and the use of behavioral strategies to increase dietary fiber and decrease dietary fat intake. Participant satisfaction was high, and fidelity was achieved; 87.5% of families received the planned number of promotora home visits. In the multivariable model, satisfaction with intervention materials predicted more frequent use of strategies to increase dietary fiber (p ≤ .01). Trends suggested that keeping families in the prescribed intervention timeline and obtaining support from other social network members through sharing of program materials may improve changes. Study findings elucidate the relationship between specific intervention processes and dietary changes. © 2015 Society for Public Health Education.
ERTS-A data as a teaching and research tool in the Department of Geology
NASA Technical Reports Server (NTRS)
Grybeck, D. (Principal Investigator)
1973-01-01
The author has identified the following significant results. The ERTS-1 materials continue to be used in a number of courses including Geology of Alaska, Economic Geology, and Structural Geology. In addition, specific talks about the ERTS-1 material were given at a seminar at the Geophysical Institute, to the Geology Department, to numerous individuals, and were extensively used in a popularized talk on the Geology of Alaska to the local Historical Society.
NASA Technical Reports Server (NTRS)
Kimmel, W. M.; Kuhn, N. S.; Berry, R. F.; Newman, J. A.
2001-01-01
An overview and status of current activities seeking alternatives to 200 grade 18Ni Steel CVM alloy for cryogenic wind tunnel models is presented. Specific improvements in material selection have been researched including availability, strength, fracture toughness and potential for use in transonic wind tunnel testing. Potential benefits from utilizing damage tolerant life-prediction methods, recently developed fatigue crack growth codes and upgraded NDE methods are also investigated. Two candidate alloys are identified and accepted for cryogenic/transonic wind tunnel models and hardware.
External Device to Incrementally Skid the Habitat (E-DISH)
NASA Technical Reports Server (NTRS)
Brazell, J. W.; Introne, Steve; Bedell, Lisa; Credle, Ben; Holp, Graham; Ly, Siao; Tait, Terry
1994-01-01
A Mars habitat transport system was designed as part of the NASA Mars exploration program. The transport system, the External Device to Incrementally Skid the Habitat (E - DISH), will be used to transport Mars habitats from their landing sites to the colony base and will be detached after unloading. The system requirements for Mars were calculated and scaled for model purposes. Specific model materials are commonly found and recommendations for materials for the Mars design are included.
Porous polymeric materials for hydrogen storage
Yu, Luping [Hoffman Estates, IL; Liu, Di-Jia [Naperville, IL; Yuan, Shengwen [Chicago, IL; Yang, Junbing [Westmont, IL
2011-12-13
Porous polymers, tribenzohexazatriphenylene, poly-9,9'-spirobifluorene, poly-tetraphenyl methane and their derivatives for storage of H.sub.2 prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO.sub.2/steam oxidation and supercritical water treatment.
Porous polymeric materials for hydrogen storage
Yu, Luping; Liu, Di-Jia; Yuan, Shengwen; Yang, Junbing
2013-04-02
A porous polymer, poly-9,9'-spirobifluorene and its derivatives for storage of H.sub.2 are prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO.sub.2/steam oxidation and supercritical water treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunch, Kyle J.; Williams, Laura S.; Jones, Anthony M.
The 2010 ratification of the New START Treaty has been widely regarded as a noteworthy national security achievement for both the Obama administration and the Medvedev-Putin regime, but deeper cuts are envisioned under future arms control regimes. Future verification needs will include monitoring the storage of warhead components and fissile materials and verifying dismantlement of warheads, pits, secondaries, and other materials. From both the diplomatic and technical perspectives, verification under future arms control regimes will pose new challenges. Since acceptable verification technology must protect sensitive design information and attributes, non-nuclear non-sensitive signatures may provide a significant verification tool without themore » use of additional information barriers. The use of electromagnetic signatures to monitor nuclear material storage containers is a promising technology with the potential to fulfill these challenging requirements. Research performed at Pacific Northwest National Laboratory (PNNL) has demonstrated that low frequency electromagnetic signatures of sealed metallic containers can be used to confirm the presence of specific components on a “yes/no” basis without revealing classified information. Arms control inspectors might use this technique to verify the presence or absence of monitored items, including both nuclear and non-nuclear materials. Although additional research is needed to study signature aspects such as uniqueness and investigate container-specific scenarios, the technique potentially offers a rapid and cost-effective tool to verify reduction and dismantlement of U.S. and Russian nuclear weapons.« less
A system structure for predictive relations in penetration mechanics
NASA Astrophysics Data System (ADS)
Korjack, Thomas A.
1992-02-01
The availability of a software system yielding quick numerical models to predict ballistic behavior is a requisite for any research laboratory engaged in material behavior. What is especially true about accessibility of rapid prototyping for terminal impaction is the enhancement of a system structure which will direct the specific material and impact situation towards a specific predictive model. This is of particular importance when the ranges of validity are at stake and the pertinent constraints associated with the impact are unknown. Hence, a compilation of semiempirical predictive penetration relations for various physical phenomena has been organized into a data structure for the purpose of developing a knowledge-based decision aided expert system to predict the terminal ballistic behavior of projectiles and targets. The ranges of validity and constraints of operation of each model were examined and cast into a decision tree structure to include target type, target material, projectile types, projectile materials, attack configuration, and performance or damage measures. This decision system implements many penetration relations, identifies formulas that match user-given conditions, and displays the predictive relation coincident with the match in addition to a numerical solution. The physical regimes under consideration encompass the hydrodynamic, transitional, and solid; the targets are either semi-infinite or plate, and the projectiles include kinetic and chemical energy. A preliminary databases has been constructed to allow further development of inductive and deductive reasoning techniques applied to ballistic situations involving terminal mechanics.
Peck, Michael W.; Plowman, June; Aldus, Clare F.; Wyatt, Gary M.; Penaloza Izurieta, Walter; Stringer, Sandra C.; Barker, Gary C.
2010-01-01
The highly potent botulinum neurotoxins are responsible for botulism, a severe neuroparalytic disease. Strains of nonproteolytic Clostridium botulinum form neurotoxins of types B, E, and F and are the main hazard associated with minimally heated refrigerated foods. Recent developments in quantitative microbiological risk assessment (QMRA) and food safety objectives (FSO) have made food safety more quantitative and include, as inputs, probability distributions for the contamination of food materials and foods. A new method that combines a selective enrichment culture with multiplex PCR has been developed and validated to enumerate specifically the spores of nonproteolytic C. botulinum. Key features of this new method include the following: (i) it is specific for nonproteolytic C. botulinum (and does not detect proteolytic C. botulinum), (ii) the detection limit has been determined for each food tested (using carefully structured control samples), and (iii) a low detection limit has been achieved by the use of selective enrichment and large test samples. The method has been used to enumerate spores of nonproteolytic C. botulinum in 637 samples of 19 food materials included in pasta-based minimally heated refrigerated foods and in 7 complete foods. A total of 32 samples (5 egg pastas and 27 scallops) contained spores of nonproteolytic C. botulinum type B or F. The majority of samples contained <100 spores/kg, but one sample of scallops contained 444 spores/kg. Nonproteolytic C. botulinum type E was not detected. Importantly, for QMRA and FSO, the construction of probability distributions will enable the frequency of packs containing particular levels of contamination to be determined. PMID:20709854
Peck, Michael W; Plowman, June; Aldus, Clare F; Wyatt, Gary M; Izurieta, Walter Penaloza; Stringer, Sandra C; Barker, Gary C
2010-10-01
The highly potent botulinum neurotoxins are responsible for botulism, a severe neuroparalytic disease. Strains of nonproteolytic Clostridium botulinum form neurotoxins of types B, E, and F and are the main hazard associated with minimally heated refrigerated foods. Recent developments in quantitative microbiological risk assessment (QMRA) and food safety objectives (FSO) have made food safety more quantitative and include, as inputs, probability distributions for the contamination of food materials and foods. A new method that combines a selective enrichment culture with multiplex PCR has been developed and validated to enumerate specifically the spores of nonproteolytic C. botulinum. Key features of this new method include the following: (i) it is specific for nonproteolytic C. botulinum (and does not detect proteolytic C. botulinum), (ii) the detection limit has been determined for each food tested (using carefully structured control samples), and (iii) a low detection limit has been achieved by the use of selective enrichment and large test samples. The method has been used to enumerate spores of nonproteolytic C. botulinum in 637 samples of 19 food materials included in pasta-based minimally heated refrigerated foods and in 7 complete foods. A total of 32 samples (5 egg pastas and 27 scallops) contained spores of nonproteolytic C. botulinum type B or F. The majority of samples contained <100 spores/kg, but one sample of scallops contained 444 spores/kg. Nonproteolytic C. botulinum type E was not detected. Importantly, for QMRA and FSO, the construction of probability distributions will enable the frequency of packs containing particular levels of contamination to be determined.
Lifetime Assessment of the NEXT Ion Thruster
NASA Technical Reports Server (NTRS)
VanNoord, Jonathan L.
2010-01-01
Ion thrusters are low thrust, high specific impulse devices with required operational lifetimes on the order of 10,000 to 100,000 hr. The NEXT ion thruster is the latest generation of ion thrusters under development. The NEXT ion thruster currently has a qualification level propellant throughput requirement of 450 kg of xenon, which corresponds to roughly 22,000 hr of operation at the highest throttling point. Currently, a NEXT engineering model ion thruster with prototype model ion optics is undergoing a long duration test to determine wear characteristics and establish propellant throughput capability. The NEXT thruster includes many improvements over previous generations of ion thrusters, but two of its component improvements have a larger effect on thruster lifetime. These include the ion optics with tighter tolerances, a masked region and better gap control, and the discharge cathode keeper material change to graphite. Data from the NEXT 2000 hr wear test, the NEXT long duration test, and further analysis is used to determine the expected lifetime of the NEXT ion thruster. This paper will review the predictions for all of the anticipated failure mechanisms. The mechanisms will include wear of the ion optics and cathode s orifice plate and keeper from the plasma, depletion of low work function material in each cathode s insert, and spalling of material in the discharge chamber leading to arcing. Based on the analysis of the NEXT ion thruster, the first failure mode for operation above a specific impulse of 2000 sec is expected to be the structural failure of the ion optics at 750 kg of propellant throughput, 1.7 times the qualification requirement. An assessment based on mission analyses for operation below a specific impulse of 2000 sec indicates that the NEXT thruster is capable of double the propellant throughput required by these missions.
Self-shaping composites with programmable bioinspired microstructures
NASA Astrophysics Data System (ADS)
Erb, Randall M.; Sander, Jonathan S.; Grisch, Roman; Studart, André R.
2013-04-01
Shape change is a prevalent function apparent in a diverse set of natural structures, including seed dispersal units, climbing plants and carnivorous plants. Many of these natural materials change shape by using cellulose microfibrils at specific orientations to anisotropically restrict the swelling/shrinkage of their organic matrices upon external stimuli. This is in contrast to the material-specific mechanisms found in synthetic shape-memory systems. Here we propose a robust and universal method to replicate this unusual shape-changing mechanism of natural systems in artificial bioinspired composites. The technique is based upon the remote control of the orientation of reinforcing inorganic particles within the composite using a weak external magnetic field. Combining this reinforcement orientational control with swellable/shrinkable polymer matrices enables the creation of composites whose shape change can be programmed into the material’s microstructure rather than externally imposed. Such bioinspired approach can generate composites with unusual reversibility, twisting effects and site-specific programmable shape changes.
78 FR 26090 - Content Specifications and Shielding Evaluations for Type B Transportation Packages
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-03
...The U.S. Nuclear Regulatory Commission (NRC) is issuing Regulatory Issue Summary (RIS) 2013-04, ``Content Specifications and Shielding Evaluations for Type B Transportation Packages.'' This RIS clarifies the NRC's use of staff guidance in NUREG-1609, ``Standard Review Plan for Transport Packages for Radioactive Material,'' for the review of content specifications and shielding evaluations included in the Certificates of Compliance (CoC) and safety analysis reports (SARs) for Type B transportation packages. The RIS does not impose any additional regulatory requirements on NRC licensees.
Survey of Materials for Fusion Fission Hybrid Reactors Vol 1 Rev. 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, Joseph Collin
2007-07-03
Materials for fusion-fission hybrid reactors fall into several broad categories, including fuels, blanket and coolant materials, cladding, structural materials, shielding, and in the specific case of inertial-confinement fusion systems, laser and optical materials. This report surveys materials in all categories of materials except for those required for lasers and optics. Preferred collants include two molten salt mixtures known as FLIBE (Li2BeF4) and FLINABE (LiNaBeF4). In the case of homogenous liquid fuels, UF4 can be dissolved in these molten salt mixtures. The transmutation of lithium in this coolant produces very corrosive hydrofluoric acid species (HF and TF), which can rapidly degrademore » structural materials. Broad ranges of high-melting radiation-tolerant structural material have been proposed for fusion-fission reactor structures. These include a wide variety of steels and refractory alloys. Ferritic steels with oxide-dispersion strengthening and graphite have been given particular attention. Refractory metals are found in Groups IVB and VB of the periodic table, and include Nb, Ta, Cr, Mo, and W, as serve as the basis of refractory alloys. Stable high-melting composites and amorphous metals may also be useful. Since amorphous metals have no lattice structure, neutron bombardment cannot dislodge atoms from lattice sites, and the materials would be immune from this specific mode of degradation. The free energy of formation of fluorides of the alloying elements found in steels and refractory alloys can be used to determine the relative stability of these materials in molten salts. The reduction of lithium transmutation products (H + and T +) drives the electrochemical corrosion process, and liberates aggressive fluoride ions that pair with ions formed from dissolved structural materials. Corrosion can be suppressed through the use of metallic Be and Li, though the molten salt becomes laden with colloidal suspensions of Be and Li corrosion products in the process. Alternatively, imposed currents and other high-temperature cathodic protection systems are envisioned for protection of the structural materials. This novel concept could prove to be enabling technology for such high-temperature molten-salt reactors. The use of UF 4 as a liquid-phase homogenous fuel is also complicated by redox control. For example, the oxidation of tetravalent uranium to hexavalent uranium could result in the formation of volatile UF 6. This too could be controlled through electrochemically manipulated oxidation and reduction reactions. In situ studies of pertinent electrochemical reactions in the molten salts are proposed, and are relevant to both the corrosive attack of structural materials, as well as the volatilization of fuel. Some consideration is given to the potential advantages of gravity fed falling-film blankets. Such systems may be easier to control than vortex systems, but would require that cylindrical reaction vessels be oriented with the centerline normal to the gravitational field.« less
NASA Technical Reports Server (NTRS)
Bao, Han P.
1995-01-01
Fabricating primary aircraft and spacecraft structures using advanced composite materials entail both benefits and risks. The benefits come from much improved strength-to-weight ratios and stiffness-to-weight ratios, potential for less part count, ability to tailor properties, chemical and solvent resistance, and superior thermal properties. On the other hand, the risks involved include high material costs, lack of processing experience, expensive labor, poor reproducibility, high toxicity for some composites, and a variety of space induced risks. The purpose of this project is to generate a manufacturing database for a selected number of materials with potential for space applications, and to rely on this database to develop quantitative approaches to screen candidate materials and processes for space applications on the basis of their manufacturing risks including costs. So far, the following materials have been included in the database: epoxies, polycyanates, bismalemides, PMR-15, polyphenylene sulfides, polyetherimides, polyetheretherketone, and aluminum lithium. The first four materials are thermoset composites; the next three are thermoplastic composites, and the last one is is a metal. The emphasis of this database is on factors affecting manufacturing such as cost of raw material, handling aspects which include working life and shelf life of resins, process temperature, chemical/solvent resistance, moisture resistance, damage tolerance, toxicity, outgassing, thermal cycling, and void content, nature or type of process, associate tooling, and in-process quality assurance. Based on industry experience and published literature, a relative ranking was established for each of the factors affecting manufacturing as listed above. Potential applications of this database include the determination of a delta cost factor for specific structures with a given process plan and a general methodology to screen materials and processes for incorporation into the current conceptual design optimization of future spacecrafts as being coordinated by the Vehicle Analysis Branch where this research is being conducted.
Search and design of nonmagnetic centrosymmetric layered crystals with large local spin polarization
NASA Astrophysics Data System (ADS)
Liu, Qihang; Zhang, Xiuwen; Jin, Hosub; Lam, Kanber; Im, Jino; Freeman, Arthur J.; Zunger, Alex
2015-06-01
Until recently, spin polarization in nonmagnetic materials was the exclusive territory of noncentrosymmetric structures. It was recently shown that a form of "hidden spin polarization" (named the "Rashba-2" or "R-2" effect) could exist in globally centrosymmetric crystals provided the individual layers belong to polar point group symmetries. This realization could considerably broaden the range of materials that might be considered for spin-polarization spintronic applications to include the hitherto "forbidden spintronic compound" that belongs to centrosymmetric symmetries. Here we take the necessary steps to transition from such general, material-agnostic condensed matter theory arguments to material-specific "design principles" that could aid future laboratory search of R-2 materials. Specifically, we (i) classify different prototype layered structures that have been broadly studied in the literature in terms of their expected R-2 behavior, including the B i2S e3 -structure type (a prototype topological insulator), Mo S2 -structure type (a prototype valleytronic compound), and LaBiO S2 -structure type (a host of superconductivity upon doping); (ii) formulate the properties that ideal R-2 compounds should have in terms of combination of their global unit cell symmetries with specific point group symmetries of their constituent "sectors"; and (iii) use first-principles band theory to search for compounds from the prototype family of LaOBi S2 -type structures that satisfy these R-2 design metrics. We initially consider both stable and hypothetical M'O M X2 (M': Sc, Y, La, Ce, Pr, Nd, Al, Ga, In, Tl; M: P, As, Sb, Bi; X: S, Se, Te) compounds to establish an understanding of trends of R-2 with composition, and then indicate the predictions that are expected to be stable and synthesizable. We predict large spin splittings (up to ˜200 meV for holes in LaOBiT e2 ) as well as surface Rashba states. Experimental testing of such predictions is called for.
Coatings could protect composites from hostile space environment
NASA Technical Reports Server (NTRS)
Whitaker, Ann F.
1991-01-01
An experiment has been conducted on about 100 different material/process combinations, most of which were candidates for use in solar arrays having high power-to-weight ratios. These substances were exposed to the LEO environment during Long-Duration Exposure Facility Experiment A0171 in order to evaluate the synergistic effects of the LEO environment on the materials' mechanical, electrical, and optical properties. Materials evaluated include solar cells, cover slips having antireflectance coatings, adhesives, encapsulants, reflective materials, mast and harness materials, structural composites, and thermal control thin films. About one-sixth of the experiment tray was devoted to composite-material tensile specimens, which were specifically to be studied for changes in their mechanical properties. Preliminary results of the surface-damage evaluation are presented. These surface effects are dominated by atomic-oxygen erosion and micrometeoroid/space debris impacts.
Gwede, Clement K; Davis, Stacy N; Quinn, Gwendolyn P; Koskan, Alexis M; Ealey, Jamila; Abdulla, Rania; Vadaparampil, Susan T; Elliott, Gloria; Lopez, Diana; Shibata, David; Roetzheim, Richard G; Meade, Cathy D
2013-12-01
Colorectal cancer screening (CRCS) rates are low among men and women who seek health care at federally qualified health centers (FQHCs). This study explores health care providers' perspectives about their patient's motivators and impediments to CRCS and receptivity to preparatory education. A mixed methods design consisting of in-depth interviews, focus groups, and a short survey is used in this study. The participants of this study are 17 health care providers practicing in FQHCs in the Tampa Bay area. Test-specific patient impediments and motivations were identified including fear of abnormal findings, importance of offering less invasive fecal occult blood tests, and need for patient-centered test-specific educational materials in clinics. Opportunities to improve provider practices were identified including providers' reliance on patients' report of symptoms as a cue to recommend CRCS and overemphasis of clinic-based guaiac stool tests. This study adds to the literature on CRCS test-specific motivators and impediments. Providers offered unique approaches for motivating patients to follow through with recommended CRCS and were receptive to in-clinic patient education. Findings readily inform the design of educational materials and interventions to increase CRCS in FQHCs.
Vega, Juan M; Yu, Weichang; Han, Fangpu; Kato, Akio; Peters, Eric M; Zhang, Zhanyuan J; Birchler, James A
2008-04-01
The Cre/loxP site-specific recombination system has been applied in various plant species including maize (Zea mays) for marker gene removal, gene targeting, and functional genomics. A BIBAC vector system was adapted for maize transformation with a large fragment of genetic material including a herbicide resistance marker gene, a 30 kb yeast genomic fragment as a marker for fluorescence in situ hybridization (FISH), and a 35S-lox-cre recombination cassette. Seventy-five transgenic lines were generated from Agrobacterium-mediated transformation of a maize Hi II line with multiple B chromosomes. Eighty-four inserts have been localized among all 10 A chromosome pairs by FISH using the yeast DNA probe together with a karyotyping cocktail. No inserts were found on the B chromosomes; thus a bias against the B chromosomes by the Agrobacterium-mediated transformation was revealed. The expression of a cre gene was confirmed in 68 of the 75 transgenic lines by a reporter construct for cre/lox mediated recombination. The placement of the cre/lox site-specific recombination system in many locations in the maize genome will be valuable materials for gene targeting and chromosome engineering.
Materials for engine applications above 3000 deg F: An overview
NASA Technical Reports Server (NTRS)
Shaw, Nancy J.; Dicarlo, James A.; Jacobson, Nathan S.; Levine, Stanley R.; Nesbitt, James A.; Probst, Hubert B.; Sanders, William A.; Stearns, Carl A.
1987-01-01
Materials for future generations of aeropropulsion systems will be required to perform at ever-increasing temperatures and have properties superior to the current state of the art. Improved engine efficiency can reduce specific fuel consumption and thus increase range and reduce operating costs. The ultimate payoff gain is expected to come when materials are developed which can perform without cooling at gas temperatures to 2200 C (4000 F). An overview is presented of materials for applications above 1650 C (3000 F), some pertinent physical property data, and the rationale used: (1) to arrive at recommendations of material systems that qualify for further investigation, and (2) to develop a proposed plan of research. From an analysis of available thermochemical data it was included that such materials systems must be composed of oxide ceramics. The required structural integrity will be achieved by developing these materials into fiber-reinforced ceramic composites.
Badica, Petre; Crisan, Adrian; Aldica, Gheorghe; Endo, Kazuhiro; Borodianska, Hanna; Togano, Kazumasa; Awaji, Satoshi; Watanabe, Kazuo; Sakka, Yoshio; Vasylkiv, Oleg
2011-02-01
Superconducting materials have contributed significantly to the development of modern materials science and engineering. Specific technological solutions for their synthesis and processing helped in understanding the principles and approaches to the design, fabrication and application of many other materials. In this review, we explore the bidirectional relationship between the general and particular synthesis concepts. The analysis is mostly based on our studies where some unconventional technologies were applied to different superconductors and some other materials. These technologies include spray-frozen freeze-drying, fast pyrolysis, field-assisted sintering (or spark plasma sintering), nanoblasting, processing in high magnetic fields, methods of control of supersaturation and migration during film growth, and mechanical treatments of composite wires. The analysis provides future research directions and some key elements to define the concept of 'beautiful' technology in materials science. It also reconfirms the key position and importance of superconductors in the development of new materials and unconventional synthesis approaches.
NAFTA literature at the International Trade Commission library
NASA Technical Reports Server (NTRS)
Root, Elizabeth A.
1994-01-01
Most of the US official materials regarding NAFTA originate in the Executive Office of the President, especially the Office of the United States Trade Representative. These materials can be purchased from the U.S.G.P.O. There were also numerous Congressional hearings; many of which are probably now out of print, government agencies and the public are welcome to make copies of the ones in the collections of the ITC libraries. One of the most important sources of materials available in electronic format is the National Trade Data Base, produced by the Department of Commerce. This is a collection of at least 120 separate files containing documents relating to trade. It includes several files specifically on NAFTA, including the text of the treaty. It is available as two CD-ROM's, issued monthly, or on Internet.
Vacuum deposition and curing of liquid monomers apparatus
Affinito, J.D.
1996-08-20
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of ``standard`` polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface. 3 figs.
Supporting documentation for requested exceptions to standing orders 96-36 (East) and 96-34 (West)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schofield, J.S.
1997-01-16
On November 1, 1996 the U.S. Department of Energy (DOE), Richland Operations Office (RL) approved the Flammable Gas Unreviewed Safety Question (USQ) (Wagoner 1996). The Tank Waste Remediation System issued (Hall 1996) two standing orders (96-36 East; and 96-34 West) to implement the requirements and authorization for continued operations included in the RL letter (Wagoner 199E). These standing orders included several requirements for the control of ignition sources (Appendix B, Section 7.0 ``Ignition Source Controls``) that include requirements for the design and operation of ``...equipment and materials used in the conduct of work...`` in Tank Farms. A verbatim compliance reviewmore » of these ignition source controls identified several pieces of equipment and materials which have been used routinely in Tanks Farms for many years in support of safe operation that either could not: meet the equivalent design or safety provisions included in the standing orders (Hall 1996), or 21. be modified in a timely manner to meet safety and programmatic commitments. When the standing order was prepared it was anticipated that there would be a need to approve temporary exceptions. Appendix B, Section 7.0 of the standing order (Hall 1996) reads in part as follows: ``For activities where compliance will require modification to equipment or new materials, any temporary exceptions specifically allowed by RL until full compliance with the standing order is accomplished, are listed in Table 3.`` This document provides a specific listing of the items of equipment or material that could not meet the above two criteria. Also included in a table for each item is the following information: 1. the applicable control in the standing orders that could not be met, 2. under what conditions (when) the control could not be met, 3. a discussion of the applicability of the standing order, 4. a discussion of the risk associated with continued use of the equipment or material, and 5. a discussion of the impact of not allowing continued use of the equipment or material. The purpose of this supporting document is to provide a record of the information used to support a decision to grant temporary exceptions to the requirements in the standing order.« less
Artificial Muscle (AM) Cilia Array for Underwater Systems
2016-12-15
structures, including cilia-like structures. Specifically, a custom 3D printer was created that utilizes custom-made Nafion filament for 30 printing of custom... printing ) of IPMC material to create custom-shaped AM structures, including cilia-like structures. Various custom-shaped AM structures were fabricated via...integrating square cross-section IPMC actuators with a printed circuit board power delivery system. IV. Concise Accomplishments Performance
ERIC Educational Resources Information Center
Poole, Frazer G., Ed.
The texts of the papers given at the Library Equipment Institute, as well as the presentations of the panelists and the discussions between members of the audience and the program speakers, are included. Diagrams and other illustrative materials accompany the text. Specific topics include--(1) furnishings, (2) illumination, (3) audio, (4)…
Garcia, Justine; Yang, ZhiLin; Mongrain, Rosaire; Leask, Richard L; Lachapelle, Kevin
2018-01-01
3D printing is a new technology in constant evolution. It has rapidly expanded and is now being used in health education. Patient-specific models with anatomical fidelity created from imaging dataset have the potential to significantly improve the knowledge and skills of a new generation of surgeons. This review outlines five technical steps required to complete a printed model: They include (1) selecting the anatomical area of interest, (2) the creation of the 3D geometry, (3) the optimisation of the file for the printing and the appropriate selection of (4) the 3D printer and (5) materials. All of these steps require time, expertise and money. A thorough understanding of educational needs is therefore essential in order to optimise educational value. At present, most of the available printing materials are rigid and therefore not optimum for flexibility and elasticity unlike biological tissue. We believe that the manipuation and tuning of material properties through the creation of composites and/or blending materials will eventually allow for the creation of patient-specific models which have both anatomical and tissue fidelity. PMID:29354281
Bioinspired Collagen Scaffolds in Cranial Bone Regeneration: From Bedside to Bench
Volpicelli, Elizabeth J.
2018-01-01
Calvarial defects are common reconstructive dilemmas secondary to a variety of etiologies including traumatic brain injury, cerebrovascular disease, oncologic resection, and congenital anomalies. Reconstruction of the calvarium is generally undertaken for the purposes of cerebral protection, contour restoration for psychosocial well-being, and normalization of neurological dysfunction frequently found in patients with massive cranial defects. Current methods for reconstruction using autologous grafts, allogeneic grafts, or allo-plastic materials have significant drawbacks that are unique to each material. The combination of wide medical relevance and the need for a better clinical solution render defects of the cranial skeleton an ideal target for development of regenerative strategies focused on calvarial bone. With the improved understanding of the instructive properties of tissue-specific extracellular matrices and the advent of precise nanoscale modulation in materials science, strategies in regenerative medicine have shifted in paradigm. Previously considered to be simple carriers of stem cells and growth factors, increasing evidence exists for differential materials directing lineage specific differentiation of progenitor cells and tissue regeneration. In this work, we review the clinical challenges for calvarial reconstruction, the anatomy and physiology of bone, and extracellular matrix-inspired, collagen-based materials that have been tested for in vivo cranial defect healing. PMID:28585295
Fuel conditioning facility zone-to-zone transfer administrative controls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, C. L.
2000-06-21
The administrative controls associated with transferring containers from one criticality hazard control zone to another in the Argonne National Laboratory (ANL) Fuel Conditioning Facility (FCF) are described. FCF, located at the ANL-West site near Idaho Falls, Idaho, is used to remotely process spent sodium bonded metallic fuel for disposition. The process involves nearly forty widely varying material forms and types, over fifty specific use container types, and over thirty distinct zones where work activities occur. During 1999, over five thousand transfers from one zone to another were conducted. Limits are placed on mass, material form and type, and container typesmore » for each zone. Ml material and containers are tracked using the Mass Tracking System (MTG). The MTG uses an Oracle database and numerous applications to manage the database. The database stores information specific to the process, including material composition and mass, container identification number and mass, transfer history, and the operators involved in each transfer. The process is controlled using written procedures which specify the zone, containers, and material involved in a task. Transferring a container from one zone to another is called a zone-to-zone transfer (ZZT). ZZTs consist of four distinct phases, select, request, identify, and completion.« less
Garcia, Justine; Yang, ZhiLin; Mongrain, Rosaire; Leask, Richard L; Lachapelle, Kevin
2018-01-01
3D printing is a new technology in constant evolution. It has rapidly expanded and is now being used in health education. Patient-specific models with anatomical fidelity created from imaging dataset have the potential to significantly improve the knowledge and skills of a new generation of surgeons. This review outlines five technical steps required to complete a printed model: They include (1) selecting the anatomical area of interest, (2) the creation of the 3D geometry, (3) the optimisation of the file for the printing and the appropriate selection of (4) the 3D printer and (5) materials. All of these steps require time, expertise and money. A thorough understanding of educational needs is therefore essential in order to optimise educational value. At present, most of the available printing materials are rigid and therefore not optimum for flexibility and elasticity unlike biological tissue. We believe that the manipuation and tuning of material properties through the creation of composites and/or blending materials will eventually allow for the creation of patient-specific models which have both anatomical and tissue fidelity.
C D debris: Construction and dismantling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, R.
1994-04-01
After years of sophisticated recycling efforts in the field of construction and demolition (C D) debris cleanup, today's construction sites are beginning to show signs of a change in philosophy: Today's lumber scraps and concrete rubble are tomorrow's raw materials. With this transformation from refuse to resource, the image of the wrecking ball sending concrete, metal, roofing material, and drywall cascading as one into a twisted heap on the ground may soon become a thing of the past. While the wrecking ball will still be there at many sites, the piles of C D it produces are getting cleaner andmore » more homogeneous -- a crucial factor in the marketing success of any commodity. As the bulky nature of the material elicits more landfill bans each year and tip fees continue to climb, many new building projects are placing a greater emphasis on C D debris reuse and recycling, beginning with the bid specification itself. Along with all the other details in the construction or demolition contract, it is becoming popular to include assessment of what C D materials will be produced and to list in the specification package, up front, the planned end uses for the materials before the first sledgehammer falls.« less
Davis, Lynne C; Rane, Shruti; Hiscock, Merrill
2013-01-01
A longstanding question in working memory (WM) research concerns the fractionation of verbal and nonverbal processing. Although some contemporary models include both domain-specific and general-purpose mechanisms, the necessity to postulate differential processing of verbal and nonverbal material remains unclear. In the present two-experiment series we revisit the order reconstruction paradigm that Jones, Farrand, Stuart, and Morris (1995) used to support a unitary model of WM. Goals were to assess (1) whether serial position curves for dot positions differ from curves for letter names; and (2) whether selective interference can be demonstrated. Although we replicated Jones et al.'s finding of similar serial position curves for the two tasks, this similarity could reflect the demands of the order reconstruction paradigm rather than undifferentiated processing of verbal and nonverbal stimuli. Both generalised and material-specific interference was found, which can be attributed to competition between primary and secondary tasks for attentional resources. As performance levels for the combined primary and secondary tasks exceed active WM capacity limits, primary task items apparently are removed from active memory during processing of the secondary list and held temporarily in maintenance storage. We conclude that active WM is multimodal but maintenance stores may be domain specific.
Encapsulation in the food industry: a review.
Gibbs, B F; Kermasha, S; Alli, I; Mulligan, C N
1999-05-01
Encapsulation involves the incorporation of food ingredients, enzymes, cells or other materials in small capsules. Applications for this technique have increased in the food industry since the encapsulated materials can be protected from moisture, heat or other extreme conditions, thus enhancing their stability and maintaining viability. Encapsulation in foods is also utilized to mask odours or tastes. Various techniques are employed to form the capsules, including spray drying, spray chilling or spray cooling, extrusion coating, fluidized bed coating, liposome entrapment, coacervation, inclusion complexation, centrifugal extrusion and rotational suspension separation. Each of these techniques is discussed in this review. A wide variety of foods is encapsulated--flavouring agents, acids bases, artificial sweeteners, colourants, preservatives, leavening agents, antioxidants, agents with undesirable flavours, odours and nutrients, among others. The use of encapsulation for sweeteners such as aspartame and flavours in chewing gum is well known. Fats, starches, dextrins, alginates, protein and lipid materials can be employed as encapsulating materials. Various methods exist to release the ingredients from the capsules. Release can be site-specific, stage-specific or signalled by changes in pH, temperature, irradiation or osmotic shock. In the food industry, the most common method is by solvent-activated release. The addition of water to dry beverages or cake mixes is an example. Liposomes have been applied in cheese-making, and its use in the preparation of food emulsions such as spreads, margarine and mayonnaise is a developing area. Most recent developments include the encapsulation of foods in the areas of controlled release, carrier materials, preparation methods and sweetener immobilization. New markets are being developed and current research is underway to reduce the high production costs and lack of food-grade materials.
Substrate Material for Holographic Emulsions Utilizing Fluorinated Polyimide Film
NASA Technical Reports Server (NTRS)
Gierow, Paul A. (Inventor); Clayton, William R. (Inventor); St.Clair, Anne K. (Inventor)
1999-01-01
A new holographic substrate utilizing flexible. optically transparent fluorinated polyimides. Said substrates have 0 extremely low birefringence which results in a high signal to noise ratio in subsequent holograms. Specific examples of said fluorinated polyimides include 6FDA+APB and 6FDA+4BDAF.
Educational Research in North-East India: A Source Material.
ERIC Educational Resources Information Center
Malhotra, Nirmal; Mittal, Pratibha
The Northeast region of India has a distinct geophysical structure and concomitant socio-economic development. New educational development initiatives for Northeastern states include bridging gaps in basic minimum services, enhancing teachers training facilities, and preparing state specific holistic plans. This annotated bibliography represents…
Textile & Apparel Production, Management, and Services: Curriculum Guide.
ERIC Educational Resources Information Center
Killman, Letitia
This curriculum guide contains materials for a course that provides occupationally specific training designed to develop knowledge and skills for employment in the textile and apparel industries. Contents include an introduction; the Texas Essential Knowledge and Skills (TEKS) covered; sample course outlines; instructional strategies organized…
Code of Federal Regulations, 2012 CFR
2012-07-01
... meet applicable State and Federal seed or introduced species statutes, and shall not include poisonous... for the type of plant materials selected to meet specific site conditions and climate. Any disturbed... postmining land use, the permittee shall plant trees adapted for local site conditions and climate. Trees...
Code of Federal Regulations, 2014 CFR
2014-07-01
... meet applicable State and Federal seed or introduced species statutes, and shall not include poisonous... for the type of plant materials selected to meet specific site conditions and climate. Any disturbed... postmining land use, the permittee shall plant trees adapted for local site conditions and climate. Trees...
Code of Federal Regulations, 2013 CFR
2013-07-01
... meet applicable State and Federal seed or introduced species statutes, and shall not include poisonous... for the type of plant materials selected to meet specific site conditions and climate. Any disturbed... postmining land use, the permittee shall plant trees adapted for local site conditions and climate. Trees...
Services for Older Adults: Curriculum Guide.
ERIC Educational Resources Information Center
Mumme, Debbie
This curriculum guide contains materials for a course that provides occupationally specific training designed to develop knowledge and skills for employment in the area of services for older adults. Contents include an introduction, the Texas Essential Knowledge and Skills (TEKS) covered; sample course outlines; instructional strategies organized…
Code of Federal Regulations, 2013 CFR
2013-01-01
... display tariff material in either electronic or paper media. Record means an electronic tariff data set... baggage, and including such associated data as arbitraries, footnotes, routings, and fare class... specific area of a record used for a particular category of data. Filer means an air carrier, foreign air...
Code of Federal Regulations, 2010 CFR
2010-01-01
... display tariff material in either electronic or paper media. Record means an electronic tariff data set... baggage, and including such associated data as arbitraries, footnotes, routings, and fare class... specific area of a record used for a particular category of data. Filer means an air carrier, foreign air...
Code of Federal Regulations, 2011 CFR
2011-01-01
... display tariff material in either electronic or paper media. Record means an electronic tariff data set... baggage, and including such associated data as arbitraries, footnotes, routings, and fare class... specific area of a record used for a particular category of data. Filer means an air carrier, foreign air...
Code of Federal Regulations, 2012 CFR
2012-01-01
... display tariff material in either electronic or paper media. Record means an electronic tariff data set... baggage, and including such associated data as arbitraries, footnotes, routings, and fare class... specific area of a record used for a particular category of data. Filer means an air carrier, foreign air...
Code of Federal Regulations, 2014 CFR
2014-01-01
... display tariff material in either electronic or paper media. Record means an electronic tariff data set... baggage, and including such associated data as arbitraries, footnotes, routings, and fare class... specific area of a record used for a particular category of data. Filer means an air carrier, foreign air...
The University of Georgia Chemical Waste Disposal Program.
ERIC Educational Resources Information Center
Dreesen, David W.; Pohlman, Thomas J.
1980-01-01
Describes a university-wide program directed at reducing the improper storage and disposal of toxic chemical wastes from laboratories. Specific information is included on the implementation of a waste pick-up service, safety equipment, materials and methods for packaging, and costs of the program. (CS)
Tech Talk for Social Studies Teachers: Ancient Egypt.
ERIC Educational Resources Information Center
Pahl, Ronald H.
1998-01-01
Presents an annotated bibliography of 10 Web sites concerning ancient Egypt that have materials appropriate for social studies classes. Includes virtual tours of Egypt and specific temples, explorations of the pyramids, archaeological and geographic information, and information on the Egyptian "Book of the Dead." (MJP)
48 CFR 1845.7101-3 - Unit acquisition cost.
Code of Federal Regulations, 2010 CFR
2010-10-01
... services for designs, plans, specifications, and surveys. (6) Acquisition and preparation costs of... acquisition cost is under $100,000, it shall be reported as under $100,000. (g) Software acquisition costs include software costs incurred up through acceptance testing and material internal costs incurred to...
Methods and Materials for Teaching the Gifted.
ERIC Educational Resources Information Center
Karnes, Frances A., Ed.; Bean, Suzanne M., Ed.
This book is designed to provide strategies and resources for differentiating the instruction of gifted learners. It addresses characteristics and needs of gifted learners, instructional planning and evaluation, strategies for best practices, and supporting and enhancing gifted programs. Specific chapters include: (1) "Gifted and Talented…
32 CFR 636.33 - Vehicle safety inspection criteria.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION (SPECIFIC INSTALLATIONS) Fort... the front and rear. This requirement does not apply to any motorcycle or motor-driven cycle... starburst or spider webbing effect greater than 3 inches by 3 inches. No opaque or solid material including...
32 CFR 636.33 - Vehicle safety inspection criteria.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION (SPECIFIC INSTALLATIONS) Fort... the front and rear. This requirement does not apply to any motorcycle or motor-driven cycle... starburst or spider webbing effect greater than 3 inches by 3 inches. No opaque or solid material including...
32 CFR 636.33 - Vehicle safety inspection criteria.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION (SPECIFIC INSTALLATIONS) Fort... the front and rear. This requirement does not apply to any motorcycle or motor-driven cycle... starburst or spider webbing effect greater than 3 inches by 3 inches. No opaque or solid material including...
Controlled Release Applications of Organometals.
ERIC Educational Resources Information Center
Thayer, John S.
1981-01-01
Reviews two classes of controlled release organometals: (1) distributional, to distribute bioactive materials to control a certain target organism; and (2) protective, to protect surface or interior of some structure from attach by organisms. Specific examples are given including a discussion of controlled release for schistosomiasis. (SK)
Capabilities of the Materials Contamination Team at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Burns, Howard; Albyn, Keith; Edwards, David; Boothe, Richard; Finchum, Charles; Finckenor, Miria
2003-01-01
The Materials Contamination Team at the Marshall Space Flight Center (MSFC) has been recognized for its contributions supporting the National Aeronautics and Space Administration (NASA) spacecraft development programs. These programs include the Reusable Solid Rocket Motor (RSRM), Chandra X-Ray Observatory, and the International Space Station (ISS). The Environmental Effects Group, with the Materials Contamination Team and the Space Environmental Effects Team has been an integral part of NASA's success by the testing, evaluation, and qualification of materials, hardware, and processes. This paper focuses on the capabilities of the Materials Contamination Team. The Materials Contamination Team's realm of responsibility includes establishing contamination control during all phases of hardware development, including design, manufacturing, assembly, test, transportation, launch site processing, on-orbit exposure, return, and refurbishment. The team continues its mission of reducing the risk of equipment failure due to molecular or particulate contamination. Contamination is a concern in the Space Shuttle with sensitive bond-lines and reactive fluid (liquid oxygen) compatibility as well as for spacecraft with sensitive optics, such as Hubble Space Telescope and Chandra X-ray Observatory. The Materials Contamination Team has a variety of facilities and instrumentation capable of contaminant detection, identification, and monitoring. The team addresses material applications dealing with environments, including production facilities, clean rooms, and on-orbit exposure. The optically stimulated electron emission (OSEE) system, the Ultraviolet (UV) fluorescence (UVF) surface contamination detection, and the Surface Optics Corporation 400 (SOC 400) portable hand-held Fourier Transform Infrared (FTIR) spectrometer are state-of-the-art tools for in-process molecular contamination detection. The team of engineers and technicians also develop contamination calibration standards and evaluate new surface cleanliness inspection technologies. The team utilizes facilities for on-orbit simulation testing of materials for outgassing and molecular film deposition characteristics in the presence of space environmental effects, such as Atomic Oxygen (AO) and UV radiation exposure. The Materials Contamination Team maintains databases for process materials as well as outgassing and optical compatibility test results for specific environments.
Thermal Expansion Studies of Selected High Temperature Thermoelectric Materials
NASA Technical Reports Server (NTRS)
Ravi, Vilupanur; Firdosy, Samad; Caillat, Thierry; Brandon, Erik; Van Der Walde, Keith; Maricic, Lina; Sayir, Ali
2008-01-01
Radioisotope thermoelectric generators (RTGs) generate electrical power by converting the heat released from the nuclear decay of radioactive isotopes (typically plutonium-238) into electricity using a thermoelectric converter. RTGs have been successfully used to power a number of space missions and have demonstrated their reliability over an extended period of time (tens of years) and are compact, rugged, radiation resistant, scalable, and produce no noise, vibration or torque during operation. System conversion efficiency for state-of-practice RTGs is about 6% and specific power less than or equal to 5.1 W/kg. Higher specific power would result in more on-board power for the same RTG mass, or less RTG mass for the same on-board power. The Jet Propulsion Laboratory has been leading, under the advanced thermoelectric converter (ATEC) project, the development of new high-temperature thermoelectric materials and components for integration into advanced, more efficient RTGs. Thermoelectric materials investigated to date include skutterudites, the Yb14MnSb11 compound, and SiGe alloys. The development of long-lived thermoelectric couples based on some of these materials has been initiated and is assisted by a thermo-mechanical stress analysis to ensure that all stresses under both fabrication and operation conditions will be within yield limits for those materials. Several physical parameters are needed as input to this analysis. Among those parameters, the coefficient of thermal expansion (CTE) is critically important. Thermal expansion coefficient measurements of several thermoelectric materials under consideration for ATEC are described in this paper. The stress response at the interfaces in material stacks subjected to changes in temperature is discussed, drawing on work from the literature and project-specific tools developed here. The degree of CTE mismatch and the associated effect on the formation of stress is highlighted.
Cost-driven materials selection criteria for redox flow battery electrolytes
NASA Astrophysics Data System (ADS)
Dmello, Rylan; Milshtein, Jarrod D.; Brushett, Fikile R.; Smith, Kyle C.
2016-10-01
Redox flow batteries show promise for grid-scale energy storage applications but are presently too expensive for widespread adoption. Electrolyte material costs constitute a sizeable fraction of the redox flow battery price. As such, this work develops a techno-economic model for redox flow batteries that accounts for redox-active material, salt, and solvent contributions to the electrolyte cost. Benchmark values for electrolyte constituent costs guide identification of design constraints. Nonaqueous battery design is sensitive to all electrolyte component costs, cell voltage, and area-specific resistance. Design challenges for nonaqueous batteries include minimizing salt content and dropping redox-active species concentration requirements. Aqueous battery design is sensitive to only redox-active material cost and cell voltage, due to low area-specific resistance and supporting electrolyte costs. Increasing cell voltage and decreasing redox-active material cost present major materials selection challenges for aqueous batteries. This work minimizes cost-constraining variables by mapping the battery design space with the techno-economic model, through which we highlight pathways towards low price and moderate concentration. Furthermore, the techno-economic model calculates quantitative iterations of battery designs to achieve the Department of Energy battery price target of 100 per kWh and highlights cost cutting strategies to drive battery prices down further.
NASA Astrophysics Data System (ADS)
Sánchez, Mirna L.; Giménez, Claudia Y.; Delgado, Juan F.; Martínez, Leandro J.; Grasselli, Mariano
2017-12-01
Novel chromatographic materials for protein purification with high adsorption capacity and fouling resistance are highly demanded to improve downstream processes. Here, we describe a novel adsorptive material based on reticulated polyurethane foam (rPUF) coated with a functional hydrogel layer. rPUF provides physical rigidity through its macroscopic structure, whereas the hydrogel layer provides capacity to adsorb proteins by specific interactions. The hydrogel coating process was performed by the dip-coating method, using a polyvinyl alcohol (PVA) solution. The PVA hydrogel was linked to the rPUF material by using a radiation-induced crosslinking process in aqueous ethanol solution. The ethanol in the solvent mixture allowed a balance between PVA swelling and PVA dissolution during the irradiation step. The resulting material showed higher thermal stability than the non-irradiated one. In addition, a simultaneous radiation-induced grafting polymerization (SRIGP) was done by simple addition of glycidyl methacrylate monomer into the irradiation solution. In a further step, sulfonic ligands were included specifically in the hydrogel layer, which contained around 200% of PVA respect to the original rPUF. Materials were characterized by FT-IR, thermogravimetric analysis, SEM microscopy and EDX analysis. The cation-exchange rPUF material was functionally characterized by the Langmuir isotherm and a dynamic adsorption experiment to analyze the chromatographic properties for protein purification processes.
NASA Astrophysics Data System (ADS)
Whitacre, J. F.; Wiley, T.; Shanbhag, S.; Wenzhuo, Y.; Mohamed, A.; Chun, S. E.; Weber, E.; Blackwood, D.; Lynch-Bell, E.; Gulakowski, J.; Smith, C.; Humphreys, D.
2012-09-01
An approach to making large format economical energy storage devices based on a sodium-interactive set of electrodes in a neutral pH aqueous electrolyte is described. The economics of materials and manufacturing are examined, followed by a description of an asymmetric/hybrid device that has λ-MnO2 positive electrode material and low cost activated carbon as the negative electrode material. Data presented include materials characterization of the active materials, cyclic voltammetry, galvanostatic charge/discharge cycling, and application-specific performance of an 80 V, 2.4 kW h pack. The results indicate that this set of electrochemical couples is stable, low cost, requires minimal battery management control electronics, and therefore has potential for use in stationary applications where device energy density is not a concern.
NASA Astrophysics Data System (ADS)
Carrier, B. L.; Beaty, D. W.
2017-12-01
NASA's Mars 2020 rover is scheduled to land on Mars in 2021 and will be equipped with a sampling system capable of collecting rock cores, as well as a specialized drill bit for collecting unconsolidated granular material. A key mission objective is to collect a set of samples that have enough scientific merit to justify returning to Earth. In the case of granular materials, we would like to catalyze community discussion on what we would do with these samples if they arrived in our laboratories, as input to decision-making related to sampling the regolith. Numerous scientific objectives have been identified which could be achieved or significantly advanced via the analysis of martian rocks, "regolith," and gas samples. The term "regolith" has more than one definition, including one that is general and one that is much more specific. For the purpose of this analysis we use the term "granular materials" to encompass the most general meaning and restrict "regolith" to a subset of that. Our working taxonomy includes the following: 1) globally sourced airfall dust (dust); 2) saltation-sized particles (sand); 3) locally sourced decomposed rock (regolith); 4) crater ejecta (ejecta); and, 5) other. Analysis of martian granular materials could serve to advance our understanding areas including habitability and astrobiology, surface-atmosphere interactions, chemistry, mineralogy, geology and environmental processes. Results of these analyses would also provide input into planning for future human exploration of Mars, elucidating possible health and mechanical hazards caused by the martian surface material, as well as providing valuable information regarding available resources for ISRU and civil engineering purposes. Results would also be relevant to matters of planetary protection and ground-truthing orbital observations. We will present a preliminary analysis of the following, in order to generate community discussion and feedback on all issues relating to: What are the specific reasons (and their priorities) for collecting samples of granular materials? How do those reasons translate to sampling priorities? In what condition would these samples be expected to be received? What is our best projection of the approach by which these samples would be divided, prepared, and analyzed to achieve our objectives?
Illicit drug detection using energy dispersive x-ray diffraction
NASA Astrophysics Data System (ADS)
Cook, E. J.; Griffiths, J. A.; Koutalonis, M.; Gent, C.; Pani, S.; Horrocks, J. A.; George, L.; Hardwick, S.; Speller, R.
2009-05-01
Illicit drugs are imported into countries in myriad ways, including via the postal system and courier services. An automated system is required to detect drugs in parcels for which X-ray diffraction is a suitable technique as it is non-destructive, material specific and uses X-rays of sufficiently high energy to penetrate parcels containing a range of attenuating materials. A database has been constructed containing the measured powder diffraction profiles of several thousand materials likely to be found in parcels. These include drugs, cutting agents, packaging and other innocuous materials. A software model has been developed using these data to predict the diffraction profiles which would be obtained by X-ray diffraction systems with a range of suggested detector (high purity germanium, CZT and scintillation), source and collimation options. The aim of the model was to identify the most promising system geometries, which was done with the aid of multivariate analysis (MVA). The most promising systems were constructed and tested. The diffraction profiles of a range of materials have been measured and used to both validate the model and to identify the presence of drugs in sample packages.
A comparative analysis of neurosurgical online education materials to assess patient comprehension.
Agarwal, Nitin; Chaudhari, Amit; Hansberry, David R; Tomei, Krystal L; Prestigiacomo, Charles J
2013-10-01
Americans have increasingly utilized the internet as a first-line resource for a variety of information, including healthcare-oriented materials. Therefore, these online resources should be written at a level the average American can understand. Patient education resources specifically written for and available to the public were downloaded from the American Association of Neurological Surgeons website and assessed for their level of readability using the Flesch Reading Ease, Flesch-Kincaid Grade Level, Simple Measure of Gobbledygook Grading, Coleman-Liau Index, and Gunning-Fog Index. A total of 71 subsections from different neurosurgical specialties were reviewed, including Cerebrovascular, Spine and Peripheral Nerves, Neurotrauma and Critical Care, Pain, Pediatric, Stereotactic and Functional, and Tumor material. All neurosurgical subspecialty education material provided on the American Association of Neurological Surgeons website was uniformly written at a level that was too high, as assessed by all modalities. In order to reach a larger patient population, patient education materials on the American Association of Neurological Surgeons website should be revised with the goal of simplifying readability. Copyright © 2013 Elsevier Ltd. All rights reserved.
Development and use of culture systems to modulate specific cell responses
NASA Astrophysics Data System (ADS)
Martin, Yves
Culture surfaces that induce specific localized cell responses are required to achieve tissue-like cell growth in three-dimensional (3D) environments, as well as to develop more efficient cell-based diagnostic techniques, noticeably when working with fragile cells such as stem cells or platelets. As such, Chapter 1 of this thesis work is devoted to the review of 3D cell-material interactions in vitro and the corresponding existing culture systems available to achieve in vivo-like cell responses. More adequate 3D culture systems will need to be developed to mimic several characteristics of in vivo environments, including lowered non-specific cell-material interactions and localized biochemical signaling. The experimental work in this thesis is based on the hypothesis that well-studied and optimized surface treatments will be able to lower non-specific cell-material interactions and allow local chemical modification in order to achieve specific localized cell-material interactions for different applications. As such, in Chapter 2 and Chapter 3 of this thesis, surface treatments were developed using plasma polymerization and covalent immobilization of a low-fouling polymer (i.e., poly(ethylene glycol)) and characterized and optimized using a large number of techniques including atomic force microscopy, quartz crystal microbalance, surface plasmon resonance, x-ray photoelectron spectroscopy and fluorescence-based techniques. The main plasma polymerization parameter important for surface chemical content, specifically nitrogen to carbon content, was identified as being glow discharge power, while reaction time and power determined plasma film thickness. Moreover, plasma films were shown to be stable in aqueous environments. Covalently-bound poly(ethylene glycol) (PEG) layers physicochemical and mechanical properties are dependent on fabrication methods. Polymer concentration in solution is an important indicator of final layer properties, and use of a theta solvent induces complex aggregation phenomena in solution yielding layers with widely different properties. Chemically available primary amine groups are also shown to be present, paving the way for the immobilization of bio-active molecules. An application of low-fouling locally modified surfaces is given in Chapter 4 by the development of a novel diagnostic surface to evaluate platelet activation which is until now very difficult as platelets are readily activated by in vitro manipulations. Significant results from volunteer donors indicate that this diagnostic instrument has the potential to allow the rapid estimation of platelet activation levels in whole blood.
Ultrasonic fluid densitometry and densitometer
Greenwood, Margaret S.; Lail, Jason C.
1998-01-01
The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.
Ultrasonic fluid densitometry and densitometer
Greenwood, M.S.; Lail, J.C.
1998-01-13
The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.