Science.gov

Sample records for materials microwave properties

  1. MICROWAVE INSPECTION TECHNIQUES FOR DETERMINING ABLATIVE SHIELD THICKNESS AND CERAMIC MATERIALS PROPERTIES.

    DTIC Science & Technology

    CERAMIC MATERIALS , NONDESTRUCTIVE TESTING, MICROWAVES, HEAT SHIELDS, ABLATION, THICKNESS, REENTRY VEHICLES, MICROWAVE EQUIPMENT, DIELECTRIC PROPERTIES, ATTENUATION, WAVE PROPAGATION, REFLECTION, X BAND, COATINGS.

  2. Microwave Moisture Sensing of Seedcotton: Part 1: Seedcotton Microwave Material Properties

    PubMed Central

    Pelletier, Mathew G.; Wanjura, John D.; Holt, Greg A.

    2016-01-01

    Moisture content at harvest is a key parameter that impacts quality and how well the cotton crop can be stored without degrading before processing. It is also a key parameter of interest for harvest time field trials as it can directly influence the quality of the harvested crop as well as skew the results of in-field yield and quality assessments. Microwave sensing of moisture has several unique advantages over lower frequency sensing approaches. The first is that microwaves are insensitive to variations in conductivity, due to presence of salts or minerals. The second advantage is that microwaves can peer deep inside large bulk packaging to assess the internal moisture content without performing a destructive tear down of the package. To help facilitate the development of a microwave moisture sensor for seedcotton; research was performed to determine the basic microwave properties of seedcotton. The research was performed on 110 kg micro-modules, which are of direct interest to research teams for use in ongoing field-based research projects. It should also prove useful for the enhancement of existing and future yield monitor designs. Experimental data was gathered on the basic relations between microwave material properties and seedcotton over the range from 1.0 GHz to 2.5 GHz and is reported on herein. This research is part one of a two-part series that reports on the fundamental microwave properties of seedcotton as moisture and density vary naturally during the course of typical harvesting operations; part two will utilize this data to formulate a prediction algorithm to form the basis for a prototype microwave moisture sensor. PMID:27827857

  3. Microwave Moisture Sensing of Seedcotton: Part 1: Seedcotton Microwave Material Properties.

    PubMed

    Pelletier, Mathew G; Wanjura, John D; Holt, Greg A

    2016-11-02

    Moisture content at harvest is a key parameter that impacts quality and how well the cotton crop can be stored without degrading before processing. It is also a key parameter of interest for harvest time field trials as it can directly influence the quality of the harvested crop as well as skew the results of in-field yield and quality assessments. Microwave sensing of moisture has several unique advantages over lower frequency sensing approaches. The first is that microwaves are insensitive to variations in conductivity, due to presence of salts or minerals. The second advantage is that microwaves can peer deep inside large bulk packaging to assess the internal moisture content without performing a destructive tear down of the package. To help facilitate the development of a microwave moisture sensor for seedcotton; research was performed to determine the basic microwave properties of seedcotton. The research was performed on 110 kg micro-modules, which are of direct interest to research teams for use in ongoing field-based research projects. It should also prove useful for the enhancement of existing and future yield monitor designs. Experimental data was gathered on the basic relations between microwave material properties and seedcotton over the range from 1.0 GHz to 2.5 GHz and is reported on herein. This research is part one of a two-part series that reports on the fundamental microwave properties of seedcotton as moisture and density vary naturally during the course of typical harvesting operations; part two will utilize this data to formulate a prediction algorithm to form the basis for a prototype microwave moisture sensor.

  4. Microwave Processing of Materials

    DTIC Science & Technology

    1994-01-01

    of peak output power of 100 megawatts at 10 GHz. Microwave Fundamentals 11 RESONANT HELIX TWT STO KLYSTRON CTf C 0 Grid oShadow Grid PPM FOCUS SPACE C...Rather, broadband and high-temperature measurement techniques that have been used in conjunction with microwave processing of materials-specifically... Broadband Dielectric Properties Measurement Techniques. Pp. 527-539 in Materials Research Society Symposium Proceedings, Vol. 269, Microwave Processing

  5. Synthesis and microwave absorption properties of graphene/nickel composite materials

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Yu, Mingxun; Zhang, Wei; Zhang, Baoqin; Dong, Lifeng

    2015-03-01

    Graphene/nickel composite materials were successfully prepared via a one-step in situ reduction from nickel chloride, graphene oxide, and hydrazine at 80 °C for 3 h. Face-centered cubic Ni nanostructures with uniform size and high dispersion assembled on graphene sheets. Through the measurement of complex relative permittivity and permeability, their microwave absorption properties were evaluated. In comparison with pure Ni nanoparticles and graphene, the composite materials demonstrated much better characteristics of microwave absorption. The lowest reflection loss value of the composites with a thickness of 3 mm can reach -23.3 dB at 7.5 GHz. Our research reveals that graphene/Ni composites are promising microwave absorption materials with desirable absorption properties and reduced material weight.

  6. Double negative electromagnetic property of granular composite materials in the microwave range

    NASA Astrophysics Data System (ADS)

    Tsutaoka, Takanori; Kasagi, Teruhiro; Yamamoto, Shinichiro; Hatakeyama, Kenichi

    2015-06-01

    The double negative (DNG) electromagnetic property, i.e. the simultaneous negative permittivity and permeability, of granular composite materials has been studied in the microwave frequency range. The negative permittivity spectrum can be realized by the low frequency plasma oscillation which is generated in the percolated metal particle chain as well as the dielectric resonance of the induced dipole in the isolated metal particle clusters. Meanwhile, the negative permeability spectrum can be obtained by the magnetic resonance of the embedded ferromagnetic particles in the granular composite structure. By combining these negative electromagnetic properties, the DNG characteristics can be produced in the granular composite material. The DNG properties of the Cu/Yttrium Iron Garnet (Cu/YIG) granular composite materials under external magnetic field will be presented; the negative refractive index of the Cu/YIG composite material will also be discussed.

  7. Spin canting effect and microwave absorption properties of Sm-Mn substituted nanosized material

    NASA Astrophysics Data System (ADS)

    Sadiq, Imran; Naseem, Shahzad; Naeem Ashiq, Muhammad; Asif Iqbal, M.; Ali, Irshad; Khan, M. A.; Niaz, Shanawar; Rana, M. U.

    2015-12-01

    In order to understand the substitutional effect of rare earth element Sm3+ and divalent Mn2+ on structural, magnetic and microwave absorption properties of hexagonal ferrites, a series of Sr2-x Smx Ni2 Fe28-yMnyO46 X-type hexagonal ferrites with concentration (x=0.00, 0.02, 0.04, 0.06, 0.08, 0.10 and y=0, 0.1, 0.2, 0.3, 0.4, 0.5) was synthesized by the sol-gel method. The XRD analysis shows that the material crystallized into single X-type hexagonal phase. The absorption bands at low wave number in FTIR curves are the characteristics of the X-type hexagonal ferrites. Decreasing trend in the magnetic properties with the substitution of Sm-Mn contents was also observed, which may be attributed to the oxidation of Mn2+ ions into Mn3+ ions and spin canting effect of rare earth element Sm3+. The reflection loss peak shifted towards the low frequency and microwave absorption properties of the material enhanced with the substitution of Sm-Mn contents which reflects its applications in super high frequency (SHF) devices. The attenuation constant curves are in good agreement with the reflection loss peak.

  8. Temperature dependent magnetic and microwave absorption properties of doubly substituted nanosized material

    NASA Astrophysics Data System (ADS)

    Sadiq, Imran; Naseem, Shahzad; Rana, M. U.; Ashiq, Muhammad Naeem; Ali, Irshad

    2015-07-01

    The sol gel method has been adopted to synthesize a series of X-type hexagonal ferrites with concentration Sr2-x Gdx Ni2 Fe28-yCdyO46 (x=0.00, 0.02, 0.04, 0.06, 0.08, 0.10 and y=0, 0.1, 0.2, 0.3, 0.4, 0.5). The XRD analysis reveals the single phase of the prepared material and the lattice constants a (Å) and c (Å) varies with additives. The crystallite size of the present investigated ferrite is found in the range of 20-30 nm measured from TEM image. The enhancement in the magnetic properties (saturation magnetization, remanance magnetization and coercivity) can be observed with the increase of dopping concentration and the coercivity lies in the range of (484.22-887.47) G. The saturation and remanance magnetization decreases monotonically with the temperature which is the characteristic of the hexagonal ferrites. The Gd-Cd substituted sample possesses low values of complex relative permittivity and permeability than the pure samples. The material exhibits maximum microwave absorption -23 dB at 11.87 GHz and attenuation peak is in good agreement with the reflection loss value. The microwave absorption properties reflect the applications of this material in super high frequency devices (SHF).

  9. Influence of the dielectric property on microwave oven heating patterns: application to food materials.

    PubMed

    Peyre, F; Datta, A; Seyler, C

    1997-01-01

    Patterns of power absorption in a microwave oven for a range of dielectric properties of relevance to food processing were investigated. The governing Maxwell's equations with boundary conditions and a TE10 excitation were solved using a finite element method. Food properties were varied from values at their frozen state to values at high temperatures, as would be typical in a thawing process. For low-loss materials such as frozen foods, the high quality factor makes the heating significantly higher only when the size and shape of the load permit a dielectric cavity resonance in the load. Otherwise, the heating pattern will follow the modal electric field pattern of the oven. For moderate loss materials, the patterns will come from the modes of the dielectric cavity. The bandwidths of these modes are larger than the low-loss situation and their overlap results in a heating pattern that is somewhat more uniform. For high-loss materials, the concept of modes is no longer useful as the very large number of modes strongly overlap. The rapidly decaying field and power loss in the high-loss material can probably be characterized as an exponential decay.

  10. Study on preparation and microwave absorption property of the core-nanoshell composite materials doped with La.

    PubMed

    Wei, Liqiu; Che, Ruxin; Jiang, Yijun; Yu, Bing

    2013-12-01

    Microwave absorbing material plays a great role in electromagnetic pollution controlling, electromagnetic interference shielding and stealth technology, etc. The core-nanoshell composite materials doped with La were prepared by a solid-state reaction method, which is applied to the electromagnetic wave absorption. The core is magnetic fly-ash hollow cenosphere, and the shell is the nanosized ferrite doped with La. The thermal decomposition process of the sample was investigated by thermogravimetry and differential thermal analysis. The morphology and components of the composite materials were investigated by the X-ray diffraction analysis, the microstructure was observed by scanning electron microscope and transmission electron microscope. The results of vibrating sample magnetometer analysis indicated that the exchange-coupling interaction happens between ferrite of magnetic fly-ash hollow cenosphere and nanosized ferrite coating, which caused outstanding magnetic properties. The microwave absorbing property of the sample was measured by reflectivity far field radar cross section of radar microwave absorbing material with vector network analyzer. The results indicated that the exchange-coupling interaction enhanced magnetic loss of composite materials. Therefore, in the frequency of 5 GHz, the reflection coefficient can achieve -24 dB. It is better than single material and is consistent with requirements of the microwave absorbing material at the low-frequency absorption.

  11. Microwave properties of ferromagnetic nanostructures.

    PubMed

    Valenzuela, R; Alvarez, G; Mata-Zamora, M E

    2008-06-01

    A review of the dynamic properties of nanostructured ferromagnetic materials at microwave frequencies (1-40 GHz) is presented. Since some confusion has recently appeared between giant magnetoimpedance (GMI) and ferromagnetic resonance (FMR), a detailed analysis is made in order to establish their differences. A brief review of a novel microwave absorption mode, the low-field microwave absorption (LFA) is then presented, together with a discussion about its similarities with GMI. Recent results on high-frequency measurements on nanogranular thin films and FMR in nanowire arrays are finally addressed.

  12. Electromagnetic property of SiO2-coated carbonyl iron/polyimide composites as heat resistant microwave absorbing materials

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu; Zhu, Dongmei; Zhou, Wancheng; Luo, Fa

    2015-02-01

    Heat resistant microwave absorbing materials were prepared by compression molding method, using polyimide resin as matrix and SiO2 coated carbonyl iron (CI) as filler. The SiO2 coated CI particles were prepared by Stober process. The microwave absorbing properties and the effect of heat treatment on the electromagnetic properties of SiO2 coated CI/polyimide composites were investigated. When the content of SiO2 coated CI is 60 wt%, the value of minimum reflection loss decreases from -25 dB to -33 dB with the thickness increases from 1.5 mm to 2.1 mm. According to the thermal-gravimetric analyses (TGA) curves, the polyimide matrix can be used at 300 °C for long time. The complex permittivity of the composites slightly increases while the complex permeability almost keeps constant after heat treatment at 300 °C for 10 h, which indicating that the composites can be used at elevated temperature as microwave absorbing materials at the same time have good heat resistance and microwave absorption.

  13. Two-dimensional nanosheets of MoS2: a promising material with high dielectric properties and microwave absorption performance

    NASA Astrophysics Data System (ADS)

    Ning, Ming-Qiang; Lu, Ming-Ming; Li, Jing-Bo; Chen, Zhuo; Dou, Yan-Kun; Wang, Cheng-Zhi; Rehman, Fida; Cao, Mao-Sheng; Jin, Hai-Bo

    2015-09-01

    In this study, few-layered MoS2 nanosheets (MoS2-NS) were obtained via the top-down exfoliation method from bulk MoS2 (MoS2-Bulk), and the dielectric properties and microwave absorption performance of MoS2-NS were first reported. The dimension-dependent dielectric properties and microwave absorption performance of MoS2 were investigated by presenting a comparative study between MoS2-NS and MoS2-Bulk. Our results show that the imaginary permittivity (ε'') of MoS2-NS/wax is twice as large as that of MoS2-Bulk/wax. The minimum reflection loss (RL) value of MoS2-NS/wax with 60 wt% loading is -38.42 dB at a thickness of 2.4 mm, which is almost 4 times higher than that of MoS2-Bulk/wax, and the corresponding bandwidth with effective attenuation (<-10 dB) of MoS2-NS/wax is up to 4.1 GHz (9.6-13.76 GHz). The microwave absorption performance of MoS2-NS is comparable to those reported in carbon-related nanomaterials. The enhanced microwave absorption performance of MoS2-NS is attributed to the defect dipole polarization arising from Mo and S vacancies and its higher specific surface area. These results suggest that MoS2-NS is a promising candidate material not only in fundamental studies but also in practical microwave applications.In this study, few-layered MoS2 nanosheets (MoS2-NS) were obtained via the top-down exfoliation method from bulk MoS2 (MoS2-Bulk), and the dielectric properties and microwave absorption performance of MoS2-NS were first reported. The dimension-dependent dielectric properties and microwave absorption performance of MoS2 were investigated by presenting a comparative study between MoS2-NS and MoS2-Bulk. Our results show that the imaginary permittivity (ε'') of MoS2-NS/wax is twice as large as that of MoS2-Bulk/wax. The minimum reflection loss (RL) value of MoS2-NS/wax with 60 wt% loading is -38.42 dB at a thickness of 2.4 mm, which is almost 4 times higher than that of MoS2-Bulk/wax, and the corresponding bandwidth with effective attenuation (<-10

  14. Using Microwave and Macroscopic Samples of Dielectric Solids to Study the Photonic Properties of Disordered Photonic Bandgap Materials

    PubMed Central

    Hashemizad, Seyed Reza; Tsitrin, Sam; Yadak, Polin; He, Yingquan; Cuneo, Daniel; Williamson, Eric Paul; Liner, Devin; Man, Weining

    2014-01-01

    Recently, disordered photonic materials have been suggested as an alternative to periodic crystals for the formation of a complete photonic bandgap (PBG). In this article we will describe the methods for constructing and characterizing macroscopic disordered photonic structures using microwaves. The microwave regime offers the most convenient experimental sample size to build and test PBG media. Easily manipulated dielectric lattice components extend flexibility in building various 2D structures on top of pre-printed plastic templates. Once built, the structures could be quickly modified with point and line defects to make freeform waveguides and filters. Testing is done using a widely available Vector Network Analyzer and pairs of microwave horn antennas. Due to the scale invariance property of electromagnetic fields, the results we obtained in the microwave region can be directly applied to infrared and optical regions. Our approach is simple but delivers exciting new insight into the nature of light and disordered matter interaction. Our representative results include the first experimental demonstration of the existence of a complete and isotropic PBG in a two-dimensional (2D) hyperuniform disordered dielectric structure. Additionally we demonstrate experimentally the ability of this novel photonic structure to guide electromagnetic waves (EM) through freeform waveguides of arbitrary shape. PMID:25285416

  15. Dependence of microwave absorption properties on ferrite volume fraction in MnZn ferrite/rubber radar absorbing materials

    NASA Astrophysics Data System (ADS)

    Gama, Adriana M.; Rezende, Mirabel C.; Dantas, Christine C.

    2011-11-01

    We report the analysis of measurements of the complex magnetic permeability ( μr) and dielectric permittivity ( ɛr) spectra of a rubber radar absorbing material (RAM) with various MnZn ferrite volume fractions. The transmission/reflection measurements were carried out in a vector network analyzer. Optimum conditions for the maximum microwave absorption were determined by substituting the complex permeability and permittivity in the impedance matching equation. Both the MnZn ferrite content and the RAM thickness effects on the microwave absorption properties, in the frequency range of 2-18 GHz, were evaluated. The results show that the complex permeability and permittivity spectra of the RAM increase directly with the ferrite volume fraction. Reflection loss calculations by the impedance matching degree (reflection coefficient) show the dependence of this parameter on both thickness and composition of RAM.

  16. Investigation of mechanical and thermal properties of microwave-sintered lunar simulant materials using 2.45 GHz radiation

    NASA Technical Reports Server (NTRS)

    Meek, T. T.

    1990-01-01

    The mechanical and thermal properties of lunar simulant material were investigated. An alternative method of examining thermal shock in microwave-sintered lunar samples was researched. A computer code was developed that models how the fracture toughness of a thermally shocked lunar simulant sample is related to the sample hardness as measured by a micro-hardness indentor apparatus. This technique enables much data to be gathered from a few samples. Several samples were sintered at different temperatures and for different times at the temperatures. The melting and recrystallization characteristics of a well-studied binary system were also investigated to see if the thermodynamic barrier for the nucleation of a crystalline phase may be affected by the presence of a microwave field. The system chosen was the albite (sodium alumino silicate) anorthite system (calcium alumino silicate). The results of these investigations are presented.

  17. The physicochemical properties of microwave-assisted encapsulated anthocyanins from Ipomoea batatas as affected by different wall materials

    PubMed Central

    Mohd Nawi, Norazlina; Muhamad, Ida Idayu; Mohd Marsin, Aishah

    2015-01-01

    This study focuses on the impact of different wall materials on the physicochemical properties of microwave-assisted encapsulated anthocyanins from Ipomoea batatas. Using the powder characterization technique, purple sweet potato anthocyanin (PSPAs) powders were analysed for moisture content, water activity, dissolution time, hygroscopicity, color and morphology. PSPAs were produced using different wall materials: maltodextrin (MD), gum arabic (GA) and a combination of gum arabic and maltodextrin (GA + MD) at a 1:1 ratio. Each of the wall materials was homogenized to the core material at a core/wall material ratio of 5 and were microencapsulated by microwave-assisted drying at 1100 W. Results indicated that encapsulated powder with the GA and MD combination presented better quality of powder with the lowest value of moisture content and water activity. With respect to morphology, the microcapsule encapsulated with GA + MD showed several dents in coating surrounding its core material, whereas other encapsulated powders showed small or slight dents entrapped onto the bioactive compound. Colorimetric analysis showed changes in values of L, a*, b*, hue and chroma in the reconstituted powder compared to the initial powder. PMID:25838887

  18. Preparation and low-frequency microwave-absorbing properties of MWCNTs/Co-Ni/Fe3O4 hybrid material

    NASA Astrophysics Data System (ADS)

    Lu, Shao-Wei; Yuan, Chao-Jun; Jia, Cai-Xia; Ma, Ke-Ming; Wang, Xiao-Qiang

    2016-04-01

    MWCNTs/Co-Ni/Fe3O4 hybrid material has been successfully prepared by electroless plating and coprecipitation method, which is applied to the low-frequency microwave absorption. Their surface morphology, structure, magnetism and electromagnetic properties in the low-frequency range of 1-4GHz were characterized by field-emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and vector network analyzer. Results indicated that magnetic Co-Ni/Fe3O4 particles were attached on the surface of multi-walled carbon nanotubes successfully. The saturation magnetization of MWCNTs/Co-Ni/Fe3O4 hybrid materials was 68.6emu/g and the coercivity is 17.9 Oe. The electromagnetic and microwave absorbing properties analysis in the low-frequency range of 1-4GHz indicated that the hybrid material exhibited excellent magnetic loss and the maximum reflection loss could reach -13.57dB at 1.51GHz with 1.05GHz bandwidth below -5dB.

  19. The effect of grain size on the biocompatibility, cell-materials interface, and mechanical properties of microwave-sintered bioceramics.

    PubMed

    Veljović, Djordje; Colić, Miodrag; Kojić, Vesna; Bogdanović, Gordana; Kojić, Zvezdana; Banjac, Andrijana; Palcevskis, Eriks; Petrović, Rada; Janaćković, Djordje

    2012-11-01

    The effect of decreasing the grain size on the biocompatibility, cell-material interface, and mechanical properties of microwave-sintered monophase hydroxyapatite bioceramics was investigated in this study. A nanosized stoichiometric hydroxyapatite powder was isostatically pressed at high pressure and sintered in a microwave furnace in order to obtain fine grained dense bioceramics. The samples sintered at 1200°C, with a density near the theoretical one, were composed of micron-sized grains, while the grain size decreased to 130 nm on decreasing the sintering temperature to 900°C. This decrease in the grain size certainly led to increases in the fracture toughness by much as 54%. An in vitro investigation of biocompatibility with L929 and human MRC-5 fibroblast cells showed noncytotoxic effects for both types of bioceramics, while the relative cell proliferation rate, cell attachment and metabolic activity of the fibroblasts were improved with decreasing of grain size. An initial in vivo investigation of biocompatibility by the primary cutaneous irritation test showed that both materials exhibited no irritation properties.

  20. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  1. Shielding properties of composite materials based on epoxy resin with graphene nanoplates in the microwave frequency range

    NASA Astrophysics Data System (ADS)

    Volynets, N. I.; Bychenok, D. S.; Lyubimov, A. G.; Kuzhir, P. P.; Maksimenko, S. A.; Baturkin, S. A.; Klochkov, A. Ya.; Mastrucci, M.; Micciulla, F.; Bellucci, S.

    2016-12-01

    Analysis of the electromagnetic properties of composite materials based on epoxy resin with the addition of 0.5 wt % graphene nanoplates in the frequency range of 26-37 GHz is performed. The influence of types of epoxy resin with different viscosities and the type of solvent used (ethanol, acetone) on the electromagnetic response in this frequency range are determined. It is established that the least viscous epoxy resin, Epikote 828, and solvent ethanol are most effective for creation of a shielding covering in the microwave range. Composite materials with optimal composition provide attenuation of the electromagnetic signal at a level at least 10 dB in power for a film thickness of 1.1 mm.

  2. Microwavable thermal energy storage material

    DOEpatents

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  3. Microwavable thermal energy storage material

    DOEpatents

    Salyer, Ival O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  4. Microwave sintering of ceramic materials

    NASA Astrophysics Data System (ADS)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  5. Plasma-assisted microwave processing of materials

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin (Inventor); Ylin, Tzu-yuan (Inventor); Jackson, Henry (Inventor)

    1998-01-01

    A microwave plasma assisted method and system for heating and joining materials. The invention uses a microwave induced plasma to controllably preheat workpiece materials that are poorly microwave absorbing. The plasma preheats the workpiece to a temperature that improves the materials' ability to absorb microwave energy. The plasma is extinguished and microwave energy is able to volumetrically heat the workpiece. Localized heating of good microwave absorbing materials is done by shielding certain parts of the workpiece and igniting the plasma in the areas not shielded. Microwave induced plasma is also used to induce self-propagating high temperature synthesis (SHS) process for the joining of materials. Preferably, a microwave induced plasma preheats the material and then microwave energy ignites the center of the material, thereby causing a high temperature spherical wave front from the center outward.

  6. Microwave assisted synthesis of nanocrystalline Fe-phosphates electrode materials and their electrochemical properties.

    PubMed

    Kim, D H; Kang, J W; Jung, I O; Im, J S; Kim, E J; Song, S J; Lee, J S; Kim, J

    2008-10-01

    LiFePO4 nanocrystalline particles were synthesized using microwave assisted polyol process within a fast reaction time of 20 minutes without any further heating as a post step. The synthesized LiFePO4 nanocrystalline particles showed mono-dispersed rod and orthorhombic-like shapes with a size of 60 approximately 180 nm. The refined X-ray diffraction pattern of the sample was indexed well to the olivine crystal structure (space group: Pnma) without any impurity phases. The LiFePO4 nanocrystalline particles show a capacity of 161 mAh/g in a voltage range of 2.5-4.2 V with a current density of 0.1 mA/cm2 without any observable capacity fading in extended cycles of 100th. A cyclic voltammetry analysis exhibits distinctly sharp peaks corresponding to the typical LiFePO4/FePO4 redox couples and demonstrates a good reversibility of the sample.

  7. Correlation Between Material Properties of Ferroelectric Thin Films and Design Parameters for Microwave Device Applications: Modeling Examples and Experimental Verification

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; VanKeuls, Fred W.; Subramanyam, Guru; Mueller, Carl H.; Romanofsky, Robert R.; Rosado, Gerardo

    2000-01-01

    The application of thin ferroelectric films for frequency and phase agile components is the topic of interest of many research groups worldwide. Consequently, proof-of-concepts (POC) of different tunable microwave components using either (HTS, metal)/ferroelectric thin film/dielectric heterostructures or (thick, thin) film "flip-chip" technology have been reported. Either as ferroelectric thin film characterization tools or from the point of view of circuit implementation approach, both configurations have their respective advantages and limitations. However, we believe that because of the progress made so far using the heterostructure (i.e., multilayer) approach, and due to its intrinsic features such as planar configuration and monolithic integration, a study on the correlation of circuit geometry aspects and ferroelectric material properties could accelerate the insertion of this technology into working systems. In this paper, we will discuss our study performed on circuits based on microstrip lines at frequencies above 10 GHz, where the multilayer configuration offers greater ease of insertion due to circuit's size reduction. Modeled results of relevant circuit parameters such as the characteristic impedance, effective dielectric constant, and attenuation as a function of ferroelectric film's dielectric constant, tans, and thickness, will be presented for SrTiO3 and Ba(x)Sr(1-x)TiO3 ferroelectric films. A comparison between the modeled and experimental data for some of these parameters will be presented.

  8. Microwave properties of thermochromic metal oxide surfaces

    NASA Astrophysics Data System (ADS)

    Ousbäck, Jan-Olof; Kariis, Hans

    2006-09-01

    Thermochromic metal oxides with a Mott transition, such as vanadium dioxide (VO II) exhibit an extensive alteration in their infrared reflectivity when heated above the transition temperature. For VO II the infrared reflectivity increases as the material becomes more metal-like above the transition temperature at 68°C. Given these dynamic electromagnetic properties in the IR-range, it is interesting to study the reflection of the material also in other wavelength ranges. The microwave properties of VO II as a function of temperature have been investigated here. Measurements were made with an automated network analyzer combined with an electrical heating unit. Reflection properties of VO II in the microwave region were determined. Above the transition temperature, an increase in the reflection of the surface was observed. The VO II became more metal-like in the whole measured microwave frequency range, as in the infrared region. It is concluded that VO II not only can be used to adapt the thermal emissivity of a surface but also to control the microwave reflectivity. Possible applications are switchable radomes, switchable radarabsorbers and heat protection for antenna apertures.

  9. Method of sintering materials with microwave radiation

    DOEpatents

    Kimrey, Jr., Harold D.; Holcombe, Jr., Cressie E.; Dykes, Norman L.

    1994-01-01

    A method of sintering ceramic materials following: A compacted article comprising inorganic particles coated with carbon is provided, the carbon providing improved microwave coupling. The compacted article is then heated by microwave radiation to a temperature and for a period of time sufficient to sinter the compacted article.

  10. Investigation of dielectric properties of different cake formulations during microwave and infrared-microwave combination baking.

    PubMed

    Sakiyan, Ozge; Sumnu, Gulum; Sahin, Serpil; Meda, Venkatesh

    2007-05-01

    Dielectric properties can be used to understand the behavior of food materials during microwave processing. Dielectric properties influence the level of interaction between food and high frequency electromagnetic energy. Dielectric properties are, therefore, important in the design of foods intended for microwave preparation. In this study, it was aimed to determine the variation of dielectric properties of different cake formulations during baking in microwave and infrared-microwave combination oven. In addition, the effects of formulation and temperature on dielectric properties of cake batter were examined. Dielectric constant and loss factor of cake samples were shown to be dependent on formulation, baking time, and temperature. The increase in baking time and temperature decreased dielectric constant and loss factor of all formulations. Fat content was shown to increase dielectric constant and loss factor of cakes.

  11. Investigation of microwave dielectric properties of biodiesel components.

    PubMed

    Muley, Pranjali D; Boldor, Dorin

    2013-01-01

    Advanced microwave technology has the potential to significantly enhance the biodiesel production process. Knowledge of dielectric properties of materials plays a major role in microwave design for any process. Dielectric properties (ε' and ε") of biodiesel precursors: soybean oil, alcohols and catalyst and their different mixtures were measured using a vector network analyzer and a slim probe in an open ended coaxial probe method at four different temperatures (30, 45, 60 and 75 °C) and in the frequency range of 280 MHz to 4.5 GHz. Results indicate that the microwave dielectric properties depend significantly on both temperature and frequency. Addition of catalyst significantly affected the dielectric properties. Dielectric properties behaved differently when oil, alcohol and catalyst was mixed at room temperature before heating and when the oil and the alcohol catalyst mixture was heated separately to a pre-determined temperature before mixing. These results can be used in designing microwave based transesterification system.

  12. Microwave processing of lunar materials: potential applications

    SciTech Connect

    Meek, T.T.; Cocks, F.H.; Vaniman, D.T.; Wright, R.A.

    1984-01-01

    The microwave processing of lunar materials holds promise for the production of either water, oxygen, primary metals, or ceramic materials. Extra high frequency microwave (EHF) at between 100 and 500 gigahertz have the potential for selective coupling to specific atomic species and a concomitant low energy requirement for the extraction of specific materials, such as oxygen, from lunar ores. The coupling of ultra high frequency (UHF) (e.g., 2.45 gigahertz) microwave frequencies to hydrogen-oxygen bonds might enable the preferential and low energy cost removal (as H/sub 2/O) of implanted protons from the sun or of adosrbed water which might be found in lunar dust in permanently shadowed polar areas. Microwave melting and selective phase melting of lunar materials could also be used either in the preparation of simplified ceramic geometries (e.g., bricks) with custom-tailored microstructures, or for the direct preparation of hermetic walls in underground structures. Speculatively, the preparation of photovoltaic devices based on lunar materials, especially ilmenite, may be a potential use of microwave processing on the moon. Preliminary experiments on UHF melting of terrestrial basalt, basalt/ilmenite and mixtures show that microwave processing is feasible.

  13. Excellent microwave absorption property of Graphene-coated Fe nanocomposites

    PubMed Central

    Zhao, Xingchen; Zhang, Zhengming; Wang, Liaoyu; Xi, Kai; Cao, Qingqi; Wang, Dunhui; Yang, Yi; Du, Youwei

    2013-01-01

    Graphene has evoked extensive interests for its abundant physical properties and potential applications. It is reported that the interfacial electronic interaction between metal and graphene would give rise to charge transfer and change the electronic properties of graphene, leading to some novel electrical and magnetic properties in metal-graphene heterostructure. In addition, large specific surface area, low density and high chemical stability make graphene act as an ideal coating material. Taking full advantage of the aforementioned features of graphene, we synthesized graphene-coated Fe nanocomposites for the first time and investigated their microwave absorption properties. Due to the charge transfer at Fe-graphene interface in Fe/G, the nanocomposites show distinct dielectric properties, which result in excellent microwave absorption performance in a wide frequency range. This work provides a novel approach for exploring high-performance microwave absorption material as well as expands the application field of graphene-based materials. PMID:24305606

  14. Microwave processing of materials. Final report

    SciTech Connect

    McMillan, A.D.; Lauf, R.J.; Garard, R.S.

    1997-11-01

    A Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Systems, Inc. (LMES) and Lambda Technologies, Inc. (Lambda) of Raleigh, N.C., was initiated in May 1995. [Lockheed Martin Energy Research, Corp. (LMER) has replaced LMES]. The completion data for the Agreement was December 31, 1996. The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace (VFMF); and (2) microwave curing of polymer composites. The VFMF, whose initial conception and design was funded by the Advanced Industrial Concepts (AIC) Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies.

  15. Fabrication and microwave absorbing properties of NixPy nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Haoran; Wan, Lei; Chen, Yaqiong; Hu, Wenbin; Liu, Lei; Zhong, Cheng; Deng, Yida

    2015-06-01

    Materials possessing microwave absorbing properties have been a researching hotspot for their important applications amid a high frequency electromagnetic waves environment. This paper focuses on the preparation of a series of NixPy(x:y = 2.65-2.73) nanotubes (NTs) and their corresponding microwave absorbing properties. After being heat-treated, different NixPy phases would appear, without damaging their initial hollow morphologies. These processes were accompanied with the alteration of related physical properties. Low enough minimum reflection loss (RL) has been achieved in all of these samples, with -48.63 dB as the lowest one being obtained at the non-heat-treated sample. Besides, a large proportion of the microwave frequency band could be covered on the 450 °C heat-treated sample (over a 4.5 GHz bandwidth). These are indicative of the superior microwave absorbing nature of NixPy NTs.

  16. Microwave heating of lunar materials. Appendix A

    NASA Technical Reports Server (NTRS)

    Meek, Thomas T.

    1992-01-01

    Microwave heating of nonmetallic inorganic material has been of interest for many years. Von Hippel in the late 1940's and early 1950's investigated how microwave radiation up to 10 GHz couples to various insulator materials. Perhaps the most work has been done by Wayne Tinga at the University of Edmonton. Most of the work to date has been done at the two frequency bands allowed in industrial use (0.915 GHz and 2.45 GHz). However some work has recently been carried out at 28 GHz and 60 GHz. Work done in this area at Los Alamos National Laboratory is discussed.

  17. Spin-Crossover Materials towards Microwave Radiation Switches

    PubMed Central

    Kucheriv, Olesia I.; Oliynyk, Viktor V.; Zagorodnii, Volodymyr V.; Launets, Vilen L.; Gural’skiy, Il’ya A.

    2016-01-01

    Microwave electromagnetic radiation that ranges from one meter to one millimetre wavelengths is finding numerous applications for wireless communication, navigation and detection, which makes materials able to tune microwave radiation getting widespread interest. Here we offer a new way to tune GHz frequency radiation by using spin-crossover complexes that are known to change their various physical properties under the influence of diverse external stimuli. As a result of electronic re-configuration process, microwave absorption properties differ for high spin and low spin forms of the complex. The evolution of a microwave absorption spectrum for the switchable compound within the region of thermal transition indicates that the high-spin and the low-spin forms are characterized by a different attenuation of electromagnetic waves. Absorption and reflection coefficients were found to be higher in the high-spin state comparing to the low-spin state. These results reveal a considerable potential for the implementation of spin-crossover materials into different elements of microwave signal switching and wireless communication. PMID:27910956

  18. Spin-Crossover Materials towards Microwave Radiation Switches.

    PubMed

    Kucheriv, Olesia I; Oliynyk, Viktor V; Zagorodnii, Volodymyr V; Launets, Vilen L; Gural'skiy, Il'ya A

    2016-12-02

    Microwave electromagnetic radiation that ranges from one meter to one millimetre wavelengths is finding numerous applications for wireless communication, navigation and detection, which makes materials able to tune microwave radiation getting widespread interest. Here we offer a new way to tune GHz frequency radiation by using spin-crossover complexes that are known to change their various physical properties under the influence of diverse external stimuli. As a result of electronic re-configuration process, microwave absorption properties differ for high spin and low spin forms of the complex. The evolution of a microwave absorption spectrum for the switchable compound within the region of thermal transition indicates that the high-spin and the low-spin forms are characterized by a different attenuation of electromagnetic waves. Absorption and reflection coefficients were found to be higher in the high-spin state comparing to the low-spin state. These results reveal a considerable potential for the implementation of spin-crossover materials into different elements of microwave signal switching and wireless communication.

  19. Electromagnetic properties of Fe53Ni47 and Fe53Ni47/Cu granular composite materials in the microwave range

    NASA Astrophysics Data System (ADS)

    Massango, Herieta; Tsutaoka, Takanori; Kasagi, Teruhiro

    2016-09-01

    The electromagnetic proprieties of Fe53Ni47 granular composite materials and Fe53Ni47/Cu hybrid granular composites have been studied by measuring the relative complex permeability and permittivity spectra as well as the ac electrical conductivity. In the Fe53Ni47 composite, the variation of the ac conductivity at 1 kHz with the particle volume content shows an insulator-metal transition at the percolation threshold at 61 vol% particle content. A negative permeability spectrum due to the magnetic resonance in Fe53Ni47 particles was observed in the 85 vol% composite. Meanwhile, the negative permittivity spectrum caused by the plasmoinc state of the percolated Fe53Ni47 particle clusters appears at 90 vol%. The Fe53Ni47/Cu hybrid composite containing 85 vol% of Fe53Ni47/Cu hybrid particle as filers shows the percolative metallic properties; the ac conductivity increases with increasing the Cu particle volume fraction in the Fe53Ni47/Cu particle system. The negative permittivity spectrum appears above the Cu particle volume fraction of 0.16; the double negative characteristic was observed at that of 0.20 and 0.24 hybrid composites in the frequency range from 300 MHz to 1.8 GHz in the absence of the external magnetic field.

  20. Scanning microwave microscopy technique for nanoscale characterization of magnetic materials

    NASA Astrophysics Data System (ADS)

    Joseph, C. H.; Sardi, G. M.; Tuca, S. S.; Gramse, G.; Lucibello, A.; Proietti, E.; Kienberger, F.; Marcelli, R.

    2016-12-01

    In this work, microwave characterization of magnetic materials using the scanning microwave microscopy (SMM) technique is presented. The capabilities of the SMM are employed for analyzing and imaging local magnetic properties of the materials under test at the nanoscale. The analyses are performed by acquiring both amplitude and phase of the reflected microwave signal. The changes in the reflection coefficient S11 are related to the local properties of the material under investigation, and the changes in its magnetic properties have been studied as a function of an external DC magnetic bias. Yttrium iron garnet (YIG) films deposited by RF sputtering and grown by liquid phase epitaxial (LPE) on gadolinium gallium garnet (GGG) substrates and permalloy samples have been characterized. An equivalent electromagnetic transmission line model is discussed for the quantitative analysis of the local magnetic properties. We also observed the hysteretic behavior of the reflection coefficient S11 with an external bias field. The imaging and spectroscopy analysis on the experimental results are evidently indicating the possibilities of measuring local changes in the intrinsic magnetic properties on the surface of the material.

  1. Materials processing using a variable frequency microwave furnace

    SciTech Connect

    Lauf, R.J.; Bible, D.W.; Maddox, S.R.; Everleigh, C.A.; Espinosa, R.J.; Johnson, A.C.

    1993-12-31

    We describe a materials processing system that uses a high power traveling wave tube (TWT) as the microwave source. The TWT provides approximately one octave bandwidth and variable power levels up to 2 kW into a multimode cavity. By controlling the frequency, efficient coupling to the load can be maintained even as the load`s dielectric properties change. Alternatively, can be used as a means of mode stirring at rates far beyond those attainable through mechanical stirring. The system has been tested for sintering alumina ceramics, annealing a tungsten penetrator alloy, curing epoxy resin, and depositing diamond films from a microwave plasma.

  2. Electrically tunable materials for microwave applications

    SciTech Connect

    Ahmed, Aftab Goldthorpe, Irene A.; Khandani, Amir K.

    2015-03-15

    Microwave devices based on tunable materials are of vigorous current interest. Typical applications include phase shifters, antenna beam steering, filters, voltage controlled oscillators, matching networks, and tunable power splitters. The objective of this review is to assist in the material selection process for various applications in the microwave regime considering response time, required level of tunability, operating temperature, and loss tangent. The performance of a variety of material types are compared, including ferroelectric ceramics, polymers, and liquid crystals. Particular attention is given to ferroelectric materials as they are the most promising candidates when response time, dielectric loss, and tunability are important. However, polymers and liquid crystals are emerging as potential candidates for a number of new applications, offering mechanical flexibility, lower weight, and lower tuning voltages.

  3. MICROWAVE MEASUREMENT OF REFRACTORY MATERIALS AT HIGH-TEMPERATURE

    SciTech Connect

    Kharkovsky, S.; Zoughi, R.; Smith, J.; Davis, B.; Limmer, R.

    2009-03-03

    Knowledge of the electrical behavior of refractory materials may enable the development and optimization of microwave nondestructive techniques to detect and evaluate changes in their physical properties while the materials are in service. This paper presents the results of a limited and preliminary investigation in which two refractory materials (dense chrome and dense zircon) were subjected to increasing temperature in a furnace and in which a frequency-modulated continuous-wave radar operating in the frequency range of 8-18 GHz radar was used to evaluate their attenuation properties.

  4. Microwave Processing of Polymeric Materials

    DTIC Science & Technology

    1992-04-01

    on the polymer structure. In simple liquids, the relationship of dielectric constant and dipole moment has been successfully expressed by the Onsager ...of the chain will vary continuously in time. However, the Onsager theory is not sufficient to describe the dielectric properties of polymer molecules...to be determined. Fr;hlich (4) modified the Onsager theory by incorporating the Kirkwood reduction factor into the Onsager equation which resulted in

  5. Microwave Surface Acoustic Wave Materials.

    DTIC Science & Technology

    1980-02-01

    can exist 12 ’ 13 in a quartz-like or berlinite structure, a cristobalite structure and a tridymite structure. For many materials, these structural... preparation and fabrication problems are more involved in these structures. Due to the fact that experi- mentally and theoretically proven single crystal...layered structures for SAW devices. 91 L 15. Crystal Preparation on’Berlinite for SAW Applications U Date - August 2, 1977 Place- Mann Laboratories

  6. Microwave impregnation of porous materials with thermal energy storage materials

    SciTech Connect

    Benson, D.K.; Burrows, R.W.

    1991-03-13

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent tc the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  7. Microwave impregnation of porous materials with thermal energy storage materials

    SciTech Connect

    Benson, D.K.; Burrows, R.W.

    1992-12-31

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  8. Microwave impregnation of porous materials with thermal energy storage materials

    DOEpatents

    Benson, David K.; Burrows, Richard W.

    1993-01-01

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  9. Microwave impregnation of porous materials with thermal energy storage materials

    DOEpatents

    Benson, D.K.; Burrows, R.W.

    1993-04-13

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  10. A container for heat treating materials in microwave ovens

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.; Kimrey, H.D. Jr.; Mills, J.E.

    1988-01-26

    The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed to top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation for reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achievable in the oven without the container.

  11. Loss mechanism and microwave absorption properties of hierarchical NiCo2O4 nanomaterial

    NASA Astrophysics Data System (ADS)

    Zhou, Min; Lu, Fei; Lv, Tianyi; Yang, Xing; Xia, Weiwei; Shen, Xiaoshuang; He, Hui; Zeng, Xianghua

    2015-06-01

    Understanding the loss mechanism of microwave absorption is of great significance for the design and fabrication of low-cost, high-efficient and light-weight microwave absorbing materials. In this study, the microwave absorption of a hierarchical NiCo2O4 nanomaterial synthesized via a hydrothermal method and a subsequent annealing process was investigated in detail. The effects of the annealing temperature on the phase evaluation and microwave absorption properties were also investigated to reveal the microwave loss mechanism of NiCo2O4 nanostructures. The results show that the Debye relaxation and superior electric conductivity of NiCo2O4 are beneficial to its excellent microwave absorption performance. This study will be useful for the fundamental understanding of microwave absorption in NiCo2O4 nanomaterial, and for the design of a novel microwave absorbent.

  12. Calorimetry study of microwave absorption of some solid materials.

    PubMed

    He, Chun Lin; Ma, Shao Jian; Su, Xiu Juan; Chen, Yan Qing; Liang, Yu Shi

    2013-01-01

    In practice, the dielectric constant of a material varies the applied frequency the material composition, particle size, purity, temperature, physical state (solid or liquid), and moisture content. All of these parameters might change during processing, therefore, it is difficult to predict how well a material will absorb microwave energy in a given process. When the temperature is measured by a digital thermometer, it could not accurately reflect the true temperature of the bulk materials, especially for mixed materials. Thus, in this paper we measured the microwave absorption characteristics of different materials by calorimetry. The microwave power levels, irradiation times, and masses of the materials were varied. It was difficult to predict the microwave energy absorption characteristics of reagent-grade inorganic compounds based on their color, metallic cation, or water stoichiometry. CuO, MnO2, Fe3O4, and MnSO4 x H2O (Taishan) strongly absorbed microwave energy. Most of the remaining inorganic compounds were poor absorbers, with silica hardly absorbing any microwave energy. Carbon-based materials had significantly different microwave absorption characteristics. Activated carbon and coke were especially sensitive to microwaves, but different types of coal were poor absorbers. The jamesonite concentrate absorbed microwave energy strongly, while the zinc concentrate was a poor absorber.

  13. Microwave Absorbing Properties of Metallic Glass/Polymer Composites

    DTIC Science & Technology

    2011-09-01

    Technical Report ARWSB-TR-11022 Microwave Absorbing Properties of Metallic Glass/Polymer Composites Stephen Bartolucci...Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Microwave Absorbing Properties of Metallic Glass/Polymer Composites 5a. CONTRACT...this study, the microwave absorption characteristics of metallic glass / polymer composites were investigated. Electromagnetic wave absorption

  14. Hydrogen recovery from extraterrestrial materials using microwave energy

    SciTech Connect

    Tucker, D.S.; Vaniman, D.T.; Anderson, J.L.; Clinard, F.W. Jr.; Feber, R.C. Jr.; Frost, H.M.; Meek, T.T.; Wallace, T.C.

    1984-01-01

    The feasibility of recovering hydrogen from extraterrestrial materials (lunar and Martian soils, asteroids) using microwave energy is presented. Reasons for harvesting and origins and locations of hydrogen are reviewed. Problems of hydrogen recovery are discussed in terms of hydrogen release characteristics and microwave coupling to insulating materials. From results of studies of hydrogen diffusivities (oxides, glasses) and tritium release (oxides) as well as studies of microwave coupling to ilmenite, alkali basalt and ceramic oxides it is concluded that using microwave energy in hydrogen recovery from extraterrestrial materials could be the basis for a workable process.

  15. Trends of microwave dielectric materials for antenna application

    NASA Astrophysics Data System (ADS)

    Sulong, T. A. T.; Osman, R. A. M.; Idris, M. S.

    2016-07-01

    Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such as high or appropriate permittivity (ɛr), high quality factor (Q f ≥ 5000GH z) and good temperature coefficient of resonant frequency (τf). This paper review of various dielectric ceramic materials used as microwave dielectric materials and related parameters for antenna applications.

  16. Ferrite Materials for Advanced Multifunction Microwave Systems Applications

    DTIC Science & Technology

    2006-07-05

    TITLE AND SUBTITLE 5. FUNDING NUMBERS Ferrite Materials for Advanced Multifunction Microwave Systems Applications Award No. (Grant) N00014-03-1-0070 PR...were also used in this work. (200 words) 14. SUBJECT TERMS 15. NUMBER OF PAGES Microwave ferrites , yttrium iron garnet, lithium ferrites , hexagonal...Unlimited COVER PAGE FINAL REPORT to the UNITED STATES OFFICE OF NAVAL RESEARCH Ferrite Materials for Advanced Multifunction Microwave Systems

  17. Mechanisms of Microwave Induced Damage in Biologic Materials

    DTIC Science & Technology

    1989-01-01

    Activities and Microwave Exposures Ornithine decarboxylase (ODC), an enzyme involved in the production of the polyamines putrescine and spermidine, has...f 0 0 Mechanisms of Microwave Induced N Damage in Biologic Materials I ,<DTIC .. E LECTEI I Annual Report S FEB08 1990 U January, 1989 m D EFFECTS OF...Clasufication) (U) Mechanisms of Microwave Induced Damage in Biologic Materials I 12. PERSONAL AUTHOR(S) .3a. TYPE OF REPORT 13b. TIME COVERED 14

  18. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  19. Topological properties of microwave magnetoelectric fields.

    PubMed

    Berezin, M; Kamenetskii, E O; Shavit, R

    2014-02-01

    Collective excitations of electron spins in a ferromagnetic sample dominated by the magnetic dipole-dipole interaction strongly influence the field structure of microwave radiation. A small quasi-two-dimensional ferrite disk with magnetic-dipolar-mode (MDM) oscillation spectra can behave as a source of specific fields in vacuum, termed magnetoelectric (ME) fields. A coupling between the time-varying electric and magnetic fields in the ME-field structures is different from such a coupling in regular electromagnetic fields. The ME fields are characterized by strong energy confinement at a subwavelength region of microwave radiation, topologically distinctive power-flow vortices, and helicity parameters [E. O. Kamenetskii, R. Joffe, and R. Shavit, Phys. Rev. E 87, 023201 (2013)]. We study topological properties of microwave ME fields by loading a MDM ferrite particle with different dielectric samples. We establish a close connection between the permittivity parameters of dielectric environment and the topology of ME fields. We show that the topology of ME fields is strongly correlated with the Fano-resonance spectra observed at terminals of a microwave structure. We reveal specific thresholds in the Fano-resonance spectra appearing at certain permittivity parameters of dielectric samples. We show that ME fields originated from MDM ferrite disks can be distinguished by topological portraits of the helicity parameters and can have a torsion degree of freedom. Importantly, the ME-field phenomena can be viewed as implementations of space-time coordinate transformations on waves.

  20. Container for heat treating materials in microwave ovens

    SciTech Connect

    Holcombe, C.E.; Dykes, N.L.; Kimrey, H.D. Jr.; Mills, J.E.

    1989-03-07

    The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed of top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achieveable in the oven without the container.

  1. Container for heat treating materials in microwave ovens

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Kimrey, Jr., Harold D.; Mills, James E.

    1989-01-01

    The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed of top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achieveable in the oven without the container.

  2. Microwave absorption properties of pyrolytic carbon nanofilm

    PubMed Central

    2013-01-01

    We analyzed the electromagnetic (EM) shielding effectiveness in the Ka band (26 to 37 GHz) of highly amorphous nanometrically thin pyrolytic carbon (PyC) films with lateral dimensions of 7.2 × 3.4 mm2, which consists of randomly oriented and intertwined graphene flakes with a typical size of a few nanometers. We discovered that the manufactured PyC films, whose thickness is thousand times less than the skin depth of conventional metals, provide a reasonably high EM attenuation. The latter is caused by absorption losses that can be as high as 38% to 20% in the microwave frequency range. Being semi-transparent in visible and infrared spectral ranges and highly conductive at room temperature, PyC films emerge as a promising material for manufacturing ultrathin microwave (e.g., Ka band) filters and shields. PMID:23388194

  3. Container for heat treating materials in microwave ovens

    SciTech Connect

    Holcombe, C.E.; Dykes, N.L.; Kimrey, H.D. Jr.; Mills, J.E.

    1989-03-07

    This patent describes a container for heating refractory material in a microwave oven to receive microwave radiation from microwave radiation emitting means disposed on at least one of vertically separated sides of a volume in the oven. The container positionable within and essentially filling the vertical expanse of the volume and comprising top wall means and bottom wall means each formed of a material substantially transparent to and non-coupling with microwave radiation, vertical wall means disposed between and contacting the top wall means and the bottom wall means for defining therewith an enclosed chamber. The vertical wall means being formed of graphite or a graphite composite characterized by being substantially opaque to and non-coupling with microwave radiation for reflecting microwave radiation inwardly into the chamber.

  4. Technique for Performing Dielectric Property Measurements at Microwave Frequencies

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Jackson, Henry W.

    2010-01-01

    A paper discusses the need to perform accurate dielectric property measurements on larger sized samples, particularly liquids at microwave frequencies. These types of measurements cannot be obtained using conventional cavity perturbation methods, particularly for liquids or powdered or granulated solids that require a surrounding container. To solve this problem, a model has been developed for the resonant frequency and quality factor of a cylindrical microwave cavity containing concentric cylindrical samples. This model can then be inverted to obtain the real and imaginary dielectric constants of the material of interest. This approach is based on using exact solutions to Maxwell s equations for the resonant properties of a cylindrical microwave cavity and also using the effective electrical conductivity of the cavity walls that is estimated from the measured empty cavity quality factor. This new approach calculates the complex resonant frequency and associated electromagnetic fields for a cylindrical microwave cavity with lossy walls that is loaded with concentric, axially aligned, lossy dielectric cylindrical samples. In this approach, the calculated complex resonant frequency, consisting of real and imaginary parts, is related to the experimentally measured quantities. Because this approach uses Maxwell's equations to determine the perturbed electromagnetic fields in the cavity with the material(s) inserted, one can calculate the expected wall losses using the fields for the loaded cavity rather than just depending on the value of the fields obtained from the empty cavity quality factor. These additional calculations provide a more accurate determination of the complex dielectric constant of the material being studied. The improved approach will be particularly important when working with larger samples or samples with larger dielectric constants that will further perturb the cavity electromagnetic fields. Also, this approach enables the ability to have a

  5. Inexpensive Microwave Moisture Sensor for Granular Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A prototype microwave moisture sensor is described that was assembled from relatively inexpensive microwave components and tested for sensing moisture content in corn and wheat. Components include off-the-shelf voltage-controlled oscillator, isolator, power splitter, two 19-dBi microstrip patch ant...

  6. Microwave Moisture Meter for Granular and Particulate Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A low-cost microwave moisture meter operating at a single frequency for instantaneous and nondestructive determination of moisture content of granular and particulate materials was developed, calibrated and tested with different kinds of grain and seed. The meter operates at a single microwave freq...

  7. Apparatus and method for microwave processing of materials

    DOEpatents

    Johnson, A.C.; Lauf, R.J.; Bible, D.W.; Markunas, R.J.

    1996-05-28

    Disclosed is a variable frequency microwave heating apparatus designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency heating apparatus is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity depending upon the material, including the state thereof, from which the workpiece is fabricated. The variable frequency microwave heating apparatus includes a microwave signal generator and a high-power microwave amplifier or a microwave voltage-controlled oscillator. A power supply is provided for operation of the high-power microwave oscillator or microwave amplifier. A directional coupler is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 10 figs.

  8. Apparatus and method for microwave processing of materials

    DOEpatents

    Johnson, Arvid C.; Lauf, Robert J.; Bible, Don W.; Markunas, Robert J.

    1996-01-01

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency heating apparatus (10) is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity (34) depending upon the material, including the state thereof, from which the workpiece (36) is fabricated. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a microwave voltage-controlled oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  9. Microwave dielectric behavior of vegetation material

    NASA Technical Reports Server (NTRS)

    Elrayes, Mohamed A.; Ulaby, Fawwaz T.

    1987-01-01

    The microwave dielectric behavior of vegetation was examined through the development of theoretical models involving dielectric dispersion by both bound and free water and supported by extensive dielectric measurements conducted over a wide range of conditions. The experimental data were acquired using an open-ended coaxial probe that was developed for sensing the dielectric constant of thin layers of materials, such as leaves, from measurements of the complex reflection coefficient using a network analyzer. The probe system was successfully used to record the spectral variation of the dielectric constant over a wide frequency range extending from 0.5 to 20.4 GHz at numerous temperatures between -40 to +40 C. The vegetation samples were measured over a wide range of moisture conditions. To model the dielectric spectrum of the bound water component of the water included in vegetation, dielectric measurements were made for several sucrose-water solutions as analogs for the situation in vegetation. The results were used in conjunction with the experimental data for leaves to determine some of the constant coefficients in the theoretical models. Two models, both of which provide good fit to the data, are proposed.

  10. Microwave dielectric sensing of bulk density of granular materials

    NASA Astrophysics Data System (ADS)

    Trabelsi, Samir; Kraszewski, Andrzej W.; Nelson, Stuart O.

    2001-12-01

    A nondestructive dielectric method for sensing bulk density of granular materials is presented. The bulk density is determined from measurement of the dielectric properties of these materials at a single microwave frequency without knowledge of their moisture content and temperature. Bulk density calibration equations are generated from a complex-plane representation of the dielectric properties normalized with respect to bulk density. The effectiveness of the method is shown through measurement of the dielectric properties at 7 GHz for materials with significant compositional and structural differences, i.e. wheat, oats, corn and soybeans, over wide ranges of moisture content and temperature. The standard error of calibration and the relative error calculated for each material indicate that the method is as accurate as or better than commonly used methods for on-line density determination. Because the density is expressed in terms of the relative complex permittivity, the method can be applied regardless of the measurement technique (using transmission lines, a resonant cavity, admittance or impedance).

  11. Microwave sensors for nondestructive testing of materials

    NASA Astrophysics Data System (ADS)

    Lasri, Tuami; Glay, David; Mamouni, Ahmed; Leroy, Yves

    1999-10-01

    Much of today's applications in nondestructive testing by microwaves use an automatic network analyzer. As a result, there is a need for systems to reduce the cost of this kind of techniques. Fortunately, now we can benefit from the cost reduction of the microwave components, induced by the considerable development of the communication market, around 2 and 10 GHz. So, it seems reasonable to think that microwaves will take advantage of this new situation to assert themselves in this application field. In this context we conceive and develop original equipment competitive in term of price and reliability.

  12. Microwave properties of high transition temperature superconducting thin films

    NASA Technical Reports Server (NTRS)

    Gordon, W. L.

    1991-01-01

    Extensive studies of the interaction of microwaves with YBa2Cu3O(7-delta), Bi-based, and Tl-based superconducting thin films deposited in several microwave substrates were performed. The data were obtained by measuring the microwave power transmitted through the film in the normal and the superconducting state and by resonant cavity techniques. The main motives were to qualify and understand the physical parameters such as the magnetic penetration depth, the complex conductivity, and the surface impedance, of high temperature superconducting (HTS) materials at microwave frequencies. Based on these parameters, the suitability of these HTS thin films is discussed for microwave applications.

  13. Conducting polymer composite materials for smart microwave windows

    NASA Astrophysics Data System (ADS)

    Barnes, Alan; Lees, K.; Wright, Peter V.; Chambers, Barry

    1999-07-01

    Samples of poly(aniline)-silver-polymer electrolyte particulate composites have been characterized at microwave frequencies when small d.c. electric fields are applied across them in both coaxial line and waveguide measurement test sets. The experimental data shows that the initial conductivity of the materials is dependent on the concentration of sliver metal and suggest that changes in resistance due to chemical switching take place, at least in part, in the manufacture of the composites. When silver is used as the electrodes, the experimental data show that changes in the slope of the cyclic voltammograms coincide with large changes in microwave reflectivity or transmission consistent with increasing conductivity of the composites when fields are applied. The reverse change occurs when the fields are removed. Measurements have shown that the composites are able to switch between the two impedance stats in times of less than one second for well over a million cycles with no apparent depreciation in material properties. Large area films have also been prepared and studied using the 'free space' technique.

  14. Microwave dielectric properties of boreal forest trees

    NASA Technical Reports Server (NTRS)

    Xu, G.; Ahern, F.; Brown, J.

    1993-01-01

    The knowledge of vegetation dielectric behavior is important in studying the scattering properties of the vegetation canopy and radar backscatter modelling. Until now, a limited number of studies have been published on the dielectric properties in the boreal forest context. This paper presents the results of the dielectric constant as a function of depth in the trunks of two common boreal forest species: black spruce and trembling aspen, obtained from field measurements. The microwave penetration depth for the two species is estimated at C, L, and P bands and used to derive the equivalent dielectric constant for the trunk as a whole. The backscatter modelling is carried out in the case of black spruce and the results are compared with the JPL AIRSAR data. The sensitivity of the backscatter coefficient to the dielectric constant is also examined.

  15. A PORTABLE MICROWAVE INTERFERENCE SCANNING SYSTEM FOR NONDESTRUCTIVE TESTING OF MULTI-LAYERED DIELECTRIC MATERIALS

    SciTech Connect

    Schmidt, K. F.; Little, J. R.; Ellingson, W. A.; Green, W.

    2009-03-03

    A portable, microwave interference scanning system, that can be used in situ, with one-sided, non-contact access, has been developed. It has demonstrated capability of damage detection on composite ceramic armor. Specimens used for validation included specially fabricated surrogates, and non-ballistic impact-damaged specimens. Microwave data results were corroborated with high resolution direct-digital x-ray imaging. Microwave interference scanning detects cracks, laminar features and material properties variations. This paper will present details of the system and discuss results obtained.

  16. Cumulative effect of microwave sterilization on the physical properties of microwave polymerized and conventional heat-polymerized acrylic resin

    PubMed Central

    Shafeeq, S. Mohammed; Karthikeyan, S.; Reddy, Subash M.; Karthigeyan, Suma; Manikandan, R.; Thangavelu, Arthiie

    2016-01-01

    Aims: To evaluate and compare the flexural strength and impact strength of conventional and microwave cured denture base resins before and after repeated sterilization using microwave energy to consider microwave curing as an alternative to the conventional method of sterilization. Materials and Methods: The conventional heat cure acrylic resin (DPI heat cure material) Group A and microwave-polymerized acrylic resin (Vipi Wave Acrylic resin) Group B were used to fabricate 100 acrylic resins samples using a standard metal die of (86 mm × 11 mm × 3 mm) dimensions. The criterion was flexural strength and impact strength testing which had Group A and Group B samples; 50 samples for flexural strength and 50 samples for impact strength measurement. For each criterion, five control samples were taken for Group A and Group B. The samples were stored in water before experimenting. The test samples were subject to four cycles of microwave sterilization; followed by flexural strength testing with a 3-point flexural test in universal testing machine (UNITEK 94100) and impact strength testing with impact testing machine (ENKAY Pr09/E1/16). Results: The physical properties had significant changes for conventionally cured denture base resins, whereas no changes found for microwave-cured resins after repeated sterilization cycles. PMID:27829757

  17. Influence of Water content of RF and Microwave Dielectric Properties of Foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ABSTRACT The importance of dielectric properties of food materials is discussed with respect to their influence on the heating of materials by radio-frequency and microwave energy and their use for rapid, nondestructive sensing of quality characteristics of such materials. Data are presented graph...

  18. Ultrasonic material property determinations

    NASA Technical Reports Server (NTRS)

    Serabian, S.

    1986-01-01

    The use and potential offered by ultrasonic velocity and attenuation measurements to determine and/or monitor material properties is explored. The basis for such unique measurements along with examples of materials from a variety of industries are presented.

  19. Effects of Microwave Radiation on Selected Mechanical Properties of Silk

    NASA Astrophysics Data System (ADS)

    Reed, Emily Jane

    Impressive mechanical properties have served to peak interest in silk as an engineering material. In addition, the ease with which silk can be altered through processing has led to its use in various biomaterial applications. As the uses of silk branch into new territory, it is imperative (and inevitable) to discover the boundary conditions beyond which silk no longer performs as expected. These boundary conditions include factors as familiar as temperature and humidity, but may also include other less familiar contributions, such as exposure to different types of radiation. The inherent variations in mechanical properties of silk, as well as its sensitivity to moisture, suggest that in an engineering context silk is best suited for use in composite materials; that way, silk can be shielded from ambient moisture fluctuations, and the surrounding matrix allows efficient load transfer from weaker fibers to stronger ones. One such application is to use silk as a reinforcing fiber in epoxy composites. When used in this way, there are several instances in which exposure to microwave radiation is likely (for example, as a means of speeding epoxy cure rates), the effects of which remain mostly unstudied. It will be the purpose of this dissertation to determine whether selected mechanical properties of B. mori cocoon silk are affected by exposure to microwave radiation, under specified temperature and humidity conditions. Results of our analyses are directly applicable wherever exposure of silk to microwave radiation is possible, including in fiber reinforced epoxy composites (the entire composite may be microwaved to speed epoxy cure time), or when silk is used as a component in the material used to construct the radome of an aircraft (RADAR units use frequencies in the microwave range of the electromagnetic spectrum), or when microwave energy is used to sterilize biomaterials (such as cell scaffolds) made of silk. In general, we find that microwave exposure does not

  20. Uniform bulk Material Processing using Multimode Microwave Radiation

    SciTech Connect

    Varma, Ravi; Vaughan, Worth E.

    1999-06-18

    An apparatus for generating uniform heating in material contained in a cylindrical vessel is described. TE{sub 10}-mode microwave radiation is coupled into a cylindrical microwave transition such that microwave radiation having TE{sub 11}-, TE{sub 01}- and TM{sub 01}-cylindrical modes is excited therein. By adjusting the intensities of these modes, substantially uniform heating of materials contained in a cylindrical drum which is coupled to the microwave transition through a rotatable choke can be achieved. The use of a poor microwave absorbing insulating cylindrical insert, such as aluminum oxide, for separating the material in the container from the container walls and for providing a volume through which air is circulated is expected to maintain the container walls at room temperature. The use of layer of highly microwave absorbing material, such as SiC, inside of the insulating insert and facing the material to be heated is calculated to improve the heating pattern of the present apparatus.

  1. Uniform bulk material processing using multimode microwave radiation

    DOEpatents

    Varma, Ravi; Vaughn, Worth E.

    2000-01-01

    An apparatus for generating uniform heating in material contained in a cylindrical vessel is described. TE.sub.10 -mode microwave radiation is coupled into a cylindrical microwave transition such that microwave radiation having TE.sub.11 -, TE.sub.01 - and TM.sub.01 -cylindrical modes is excited therein. By adjusting the intensities of these modes, substantially uniform heating of materials contained in a cylindrical drum which is coupled to the microwave transition through a rotatable choke can be achieved. The use of a poor microwave absorbing insulating cylindrical insert, such as aluminum oxide, for separating the material in the container from the container walls and for providing a volume through which air is circulated is expected to maintain the container walls at room temperature. The use of layer of highly microwave absorbing material, such as SiC, inside of the insulating insert and facing the material to be heated is calculated to improve the heating pattern of the present apparatus.

  2. New Magnetic Materials and Phenomena for Radar and Microwave Signal Processing Devices - Bulk and Thin Film Ferrites and Metallic Films

    DTIC Science & Technology

    2009-02-15

    methods have been used to produce in-plane c-axis (IPCA) oriented barium ferrite (BaM) films on o-plane (1120) sapphire substrates with low microwave ...New magnetic materials and phenomena for radar and microwave signal processing devices - bulk and thin film ferrites and metallic films 6. AUTHOR(S...excitation properties in delay line structures. (173 words) 14. SUBJECT TERMS Microwave ferrites , yttrium iron garnet, hexagonal ferrites

  3. Microwave Palaeointensity Experiments On Terrestrial and Martian Material

    NASA Astrophysics Data System (ADS)

    Shaw, J.; Hill, M.; Gratton, M.

    The microwave palaeointensity technique was developed in Liverpool University (Walton et al 1996) and has successfully been applied to archaeological ceramics and recent lavas (Shaw et al 1996, 1999.; Hill et al 1999,2000). These published results show that microwave analysis provides accurate palaeointensity determinations com- bined with a very high success rate. Most recently the technique has been successfully applied to Martian material (Shaw et al, 2001) to look for the existence of an internal Martian dynamo early in Martian history. New experiments have been carried out us- ing microwaves to demagnetise synthetic muti-component TRM's and new palaeoin- tensity experiments providing a comparison between microwave analysis of laboratory TRM's and conventional thermal Thellier analysis of microwave generated mTRM's. These experiments demonstrate the equivalence of microwave and thermally gener- ated TRM's. D. Walton, S Snape, T.C. Rolph, J. Shaw and J.A. Share, Application of ferromagnetic resonance heating to palaeointensity determinations.1996, Phys Earth Planet Int,94, 183-186. J. Shaw, D. Walton, S Yang, T.C.Rolph, and J.A. Share. Microwave Archaeointensities from Peruvian Ceramics. 1996, Geophys. J. Int,124,241-244 J. Shaw, S. Yang, T. C. Rolph, and F. Y. Sun. A comparison of archaeointensity results from Chinese ceramics using Microwave and conventional ThellierSs and ShawSs methods.,1999, G J Int.136, 714-718 M. Hill, and J. Shaw, 1999, Palaeointensity results for Historic Lavas from Mt. Etna using microwave demagnetisation/remagnetisation in a modified Thellier type exper- iment. G. J. Int, 139, 583-590 M. J. Hill, and J. Shaw, 2000. Magnetic field intensity study of the 1960 Kilauea lava flow, Hawaii, using the microwave palaeointensity technique, Geophys. J. Int., 142, 487-504. J. Shaw, M. Hill, and S. J. Openshaw, 2001, Investigating the ancient Martian magnetic field using microwaves, Earth and Planetary Science Letters 190 (2001) 103-109

  4. OPTIMIZING A PORTABLE MICROWAVE INTERFERENCE SCANNING SYSTEM FOR NONDESTRUCTIVE TESTING OF MULTI-LAYERED DIELECTRIC MATERIALS

    SciTech Connect

    Schmidt, K. F. Jr.; Little, J. R. Jr.; Ellingson, W. A.; Green, W.

    2010-02-22

    The projected microwave energy pattern, wave guide geometry, positioning methods and process variables have been optimized for use of a portable, non-contact, lap-top computer-controlled microwave interference scanning system on multi-layered dielectric materials. The system can be used in situ with one-sided access and has demonstrated capability of damage detection on composite ceramic armor. Specimens used for validation included specially fabricated surrogates, and ballistic impact-damaged specimens. Microwave data results were corroborated with high resolution direct-digital x-ray imaging. Microwave interference scanning detects cracks, laminar features and material properties variations. This paper presents the details of the system, the optimization steps and discusses results obtained.

  5. Microwave nondestructive detection of chloride in cement based materials

    NASA Astrophysics Data System (ADS)

    Benally, Aaron D.; Bois, Karl J.; Nowak, Paul S.; Zoughi, Reza

    1999-12-01

    Preliminary results pertaining to the near-field microwave nondestructive detection and evaluation of chloride in cement paste and mortar specimens are presented. The technique used for this purpose utilizes an open-ended rectangular waveguide at the aperture of which the reflection properties of the specimens are measured. It is shown that the magnitude of reflection coefficient is a useful parameter for detecting chloride in these specimens. Furthermore, the difference in the amount of chloride present in these various specimens, at the time of mixing, can also be determined. Reflection property measurements were conducted in S-band (2.6 GHz-3.95 GHz) and X-band (8.2-12.4 GHz) for two sets of four mortar specimens with 0.50 and 0.60 water-to-cement ratio and varying salt (NaCl) contents added to the mixing water used in producing these specimens. It is shown that the reflection properties of these materials vary considerably as a function of their chloride content. Also, by monitoring the daily variation in the reflection coefficient of each specimen during the curing period, the effect of chloride on curing can be nondestructively ascertained. Finally, it is shown that the detection and evaluation of chloride content in cement based materials can be performed using a simple comparative process with respect to a non-contaminated specimen.

  6. Microwave nondestructive detection of chloride in cement based materials

    SciTech Connect

    Benally, Aaron D.; Bois, Karl J.; Zoughi, Reza; Nowak, Paul S.

    1999-12-02

    Preliminary results pertaining to the near-field microwave nondestructive detection and evaluation of chloride in cement paste and mortar specimens are presented. The technique used for this purpose utilizes an open-ended rectangular waveguide at the aperture of which the reflection properties of the specimens are measured. It is shown that the magnitude of reflection coefficient is a useful parameter for detecting chloride in these specimens. Furthermore, the difference in the amount of chloride present in these various specimens, at the time of mixing, can also be determined. Reflection property measurements were conducted in S-band (2.6 GHz-3.95 GHz) and X-band (8.2-12.4 GHz) for two sets of four mortar specimens with 0.50 and 0.60 water-to-cement ratio and varying salt (NaCl) contents added to the mixing water used in producing these specimens. It is shown that the reflection properties of these materials vary considerably as a function of their chloride content. Also, by monitoring the daily variation in the reflection coefficient of each specimen during the curing period, the effect of chloride on curing can be nondestructively ascertained. Finally, it is shown that the detection and evaluation of chloride content in cement based materials can be performed using a simple comparative process with respect to a non-contaminated specimen.

  7. The microwave effects on the properties of alumina at high frequencies of microwave sintering

    NASA Astrophysics Data System (ADS)

    Sudiana, I. Nyoman; Mitsudo, Seitaro; Sako, Katsuhide; Inagaki, Shunsuke; Ngkoimani, La Ode; Usman, Ida; Aripin, H.

    2016-03-01

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a `non-thermal effect` which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materials by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.

  8. Characterization method of dielectric properties of free falling drops in a microwave processing cavity and its application in microwave internal gelation

    NASA Astrophysics Data System (ADS)

    Cabanes-Sempere, M.; Catalá-Civera, J. M.; Peñaranda-Foix, F. L.; Cozzo, C.; Vaucher, S.; Pouchon, M. A.

    2013-09-01

    Microwave internal gelation (MIG) is a chemical process proposed for the production of nuclear particle fuel. The internal gelation reaction is triggered by a temperature increase of aqueous droplets falling by gravity by means of non-contact microwave heating. Due to the short residence time of a solution droplet in a microwave heating cavity, a detailed knowledge of the interaction between microwaves and chemical solution (shaped in small drops) is required. This paper describes a procedure that enables the measurement of the dielectric properties of aqueous droplets that freely fall through a microwave cavity. These measurements provide the information to determine the optimal values of the parameters (such as frequency and power) that dictate the heating of such a material under microwaves.

  9. Comparison of properties of sintered and sintered reaction-bonded silicon nitride fabricated by microwave and conventional heating

    SciTech Connect

    Tiegs, T.N.; Kiggans, J.O. Jr.; Lin, H.T.; Willkens, C.A.

    1994-10-01

    A comparison of microwave and conventional processing of silicon nitride-based ceramics was performed to identify any differences between the two, such as improved fabrication parameters or increased mechanical properties. Two areas of thermal processing were examined: (1) sintered silicon nitride (SSN) and (2) sintered reaction-bonded silicon nitride (SRBSN). The SSN powder compacts showed improved densification and enhanced grain growth. SRBSN materials were fabricated in the microwave with a one-step process using cost-effective raw materials. The SRBSN materials had properties appropriate for structural applications. Observed increases in fracture toughness for the microwave processed SRBSN materials were attributable to enhanced elongated grain growth.

  10. Comparison of properties of sintered and sintered reaction-bonded silicon nitride fabricated by microwave and conventional heating

    SciTech Connect

    Tiegs, T.N.; Kiggans, J.O. Jr.; Lin, H.T.

    1995-10-01

    A comparison of microwave and conventional processing of silicon nitride-based ceramics was performed to identify any differences between the two, such as improved fabrication parameters or increased mechanical properties. Two areas of thermal processing were examined: sintered silicon nitride (SSN) and sintered reaction-bonded silicon nitride (SRBSN). The SSN powder compacts showed improved densification and enhanced grain growth. SRBSN materials were fabricated in the microwave with a one-step process using cost-effective raw materials. The SRBSN materials had properties appropriate for structural applications. Observed increases in fracture toughness for the microwave processed SRBSN materials were attributable to enhanced elongated grain growth.

  11. Microwave Properties of Yttrium BARIUM(2) COPPER(3) OXYGEN(7-X)/INSULATOR Heterostructures

    NASA Astrophysics Data System (ADS)

    Findikoglu, Alp Tugrul

    The purpose of the work presented in this dissertation is not only to provide detailed information about the electrodynamic properties of high-T_{c} superconductors but also to assess their potential for technological applications at microwave frequencies. This work adopts a device approach to investigate the microwave properties of high-T_{c} thin films and high-T_{c}/insulator heterostructures, concentrating equally on issues relating to materials, physics, and device technology. Microwave measurements on YBa_2 Cu_3O_{ 7-x} (YBCO) films patterned into meander lines show that the electrodynamic properties of these films are significantly different from those of conventional superconductors such as Nb, but they nevertheless exhibit much lower microwave loss than normal metals such as Cu at low temperatures (<80 K). Dielectric resonator measurements on the YBCO/insulator heterostructures indicate that sample preparation conditions and the geometry of the sample structure have a significant effect on the microwave response. Samples with well-oxygenated layers and clean interfaces behave as predicted by simple models. A detailed study of the dc electric field effect on the microwave response of these heterostructures shows that field modulated changes in both the complex conductivity of the YBCO layers (superconducting hole filling and depletion) and the dielectric properties of the insulating layers (electric field dependence of the dielectric constant) contribute to the overall microwave response.

  12. Containerless synthesis of ceramic materials using microwave heating

    NASA Technical Reports Server (NTRS)

    Dunn, B.; Crouch-Baker, S.

    1990-01-01

    It was demonstrated that microwave heating technique may be employed for the synthesis of a number of multicomponent ceramic oxide-based materials, e.g., YBa2Cu3O7 and CuFe2O4. A characteristic, and potentially extremely useful, feature of such synthesis is that they occur in significantly less time than that required using conventional furnace-based techniques. However, the information obtained to date is necessarily rather empirical, and systematic investigations of the use of microwave heating for the synthesis of ceramic materials are required. The synthesis of ceramic materials at high temperatures are often affected by unwanted, deleterious reactions of the reactants and/or products with the reaction container. Consequently, it is of interest to investigate the high temperature synthesis of ceramic materials using microwave heating in a containerless environment.

  13. Microwave absorption properties of multiwalled carbon nanotube/FeNi nanopowders as light-weight microwave absorbers

    NASA Astrophysics Data System (ADS)

    Wen, Fusheng; Zhang, Fang; Xiang, Jianyong; Hu, Wentao; Yuan, Shijun; Liu, Zhongyuan

    2013-10-01

    Multiwalled carbon nanotubes (MWCNTs) and FeNi nanopowders have been facilely synthesized by a simple chemical method. Excellent microwave absorption properties have been obtained due to a proper combination of complex permittivity and permeability which result from the high resistivity of the sintered composite of MWCNTs and the magnetic FeNi nanopowders. The minimum reflection loss (RL) is less than -20 dB at 2.72-18.0 GHz with a thickness between 1.21 and 6.00 mm for 40 wt% MWCNT/FeNi composites, and a minimum RL value of -47.6 dB is observed at 12.09 GHz on a specimen with a matching thickness of 1.79 mm. The frequency of microwave absorption complies with the quarter-wavelength (λ/4) matching model. The MWCNT/FeNi nanopowders are a promising candidate for lightweight microwave absorption materials.

  14. Microwave sintering of nanopowder ZnNb2O6: Densification, microstructure and microwave dielectric properties

    NASA Astrophysics Data System (ADS)

    Bafrooei, H. Barzegar; Nassaj, E. Taheri; Hu, C. F.; Huang, Q.; Ebadzadeh, T.

    2014-12-01

    High density ZnNb2O6 ceramics were successfully fabricated by microwave sintering of ZnO-Nb2O5 and ZnNb2O6 nanopowders. Phase formation, microstructure and microwave electrical properties of the microwave sintered (MS) and microwave reaction sintered (MRS) specimens were examined using X-ray diffraction, field emission scanning electron microscopy and microwave dielectric properties measurement. Specimens were sintered in a temperature range from 950 to 1075 °C for 30 min at an interval of 25 °C using a microwave furnace operated at 2.45 GHz frequency, 3 kW power. XRD pattern revealed the formation of pure columbite phase of ZnNb2O6. The SEM micrographs show grain growth and reduction in porosity of specimens with the increase in sintering temperature. Good combination of microwave dielectric properties (εr~23.6, Qf~64,300 GHz and τf~-66 ppm/°C and εr~24, Qf~75,800 GHz and τf~-64 ppm/°C) was obtained for MS- and MRS-prepared samples at 1000 °C and 1050 °C for 30 min, respectively.

  15. Building Materials Property Table

    SciTech Connect

    2010-04-16

    This information sheet describes a table of some of the key technical properties of many of the most common building materials taken from ASHRAE Fundamentals - 2001, Moisture Control in Buildings, CMHC, NRC/IRC, IEA Annex 24, and manufacturer data.

  16. High Temperature Microwave Dielectric Properties of JSC-1AC Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Allan, Shawn M.; Merritt, Brandon J.; Griffin, Brittany F.; Hintze, Paul E.; Shulman, Holly S.

    2011-01-01

    Microwave heating has many potential lunar applications including sintering regolith for lunar surface stabilization and heating regolith for various oxygen production reactors. The microwave properties of lunar simulants must be understood so this technology can be applied to lunar operations. Dielectric properties at microwave frequencies for a common lunar simulant, JSC-1AC, were measured up to 1100 C, which is approximately the melting point. The experimentally determined dielectric properties included real and imaginary permittivity (epsilon', epsilon"), loss tangent (tan delta), and half-power depth, the di stance at which a material absorbs 50% of incident microwave energy. Measurements at 2.45 GHz revealed tan delta of JSC-1A increases from 0.02 at 25 C to 0.31 at 110 C. The corresponding half-power depth decreases from a peak of 286 mm at 110 C, to 13 mm at 1100 C. These data indicate that JSC-1AC becomes more absorbing, and thus a better microwave heater as temperature increases. A half-power depth maximum at 100-200 C presents a barrier to direct microwave heating at low temperatures. Microwave heating experiments confirm the sluggish heating effect of weak absorption below 200 C, and increasingly strong absorption above 200 C, leading to rapid heating and melting of JSC-1AC.

  17. Microwave dielectric properties of dry rocks

    NASA Technical Reports Server (NTRS)

    Ulaby, Fawwaz T.; Dobson, Myron C.; East, Jack R.; Bengal, Thomas H.; Garvin, James B.; Evans, Diane L.

    1990-01-01

    A combination of techniques was used to measure the dielectric properties of 80 rock samples in the microwave region. The real part (RP) of the relative dielectric constant was measured in 0.1-GHz steps from 0.5 to 18 GHz, and the imaginary part (IP) was measured at five frequencies between 1.6 and 16 GHz. The bulk density rho(b) was also measured for all the samples, and the bulk chemical composition (BCC) was determined for 56 of the samples. RP is found to be frequency-independent at 0.5-18 GHz for all samples, and rho(b) accounts for about 50 percent of the observed variance. For silicate rocks, as much as 78 percent of the variance is explained by the combination of rho(b) and the fractional contents of oxides when the silicates are subgrouped by genesis. In contrast, IP decreases with increasing frequency for most rock samples, and no statistically significant relationships are found between IP and rho(b). For subgrouped silicate rocks, 60 percent of the variance in IP can be explained by BCC.

  18. An optical model for the microwave properties of sea ice

    NASA Technical Reports Server (NTRS)

    Gloersen, P.; Larabee, J. K.

    1981-01-01

    The complex refractive index of sea ice is modeled and used to predict the microwave signatures of various sea ice types. Results are shown to correspond well with the observed values of the complex index inferred from dielectic constant and dielectric loss measurements performed in the field, and with observed microwave signatures of sea ice. The success of this modeling procedure vis a vis modeling of the dielectric properties of sea ice constituents used earlier by several others is explained. Multiple layer radiative transfer calculations are used to predict the microwave properties of first-year sea ice with and without snow, and multiyear sea ice.

  19. Dielectric, ferroelectric and mechanical Properties of Microwave Sintered Bi based High temperature Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Angalakurthi, Rambabu; Raju, K. C. James

    2011-10-01

    The sintering of advanced ceramics requires fast heating in order to avoid both grain growth and inter diffusion. In this context, the microwave sintering is a powerful method since it enables sintering in a short time. This paper reports the synthesis and characterization of Strontium Bismuth Titanate (SBTi) system. The material powder was prepared by solid state route and sintering was carried out by both conventional and microwave furnaces. Morphological, dielectric, ferroelectric and mechanical properties were studied for both samples. The dielectric constant and loss tangent of the conventional and microwave sintered samples have ranged between (185-195) & (0.005-0.007) and (195-220) & (0.004-0.006) respectively when measured at 1MHz frequency. The microwave sintering of the SBTi ceramics leads to higher densification (97% of the theoretical density), fine microstructure, and good mechanical and ferroelectric properties in much shorter duration of time compared to that of the conventional sintering process.

  20. Performance of superconducting microwave devices passivated with dielectric materials

    SciTech Connect

    Henderson, M.L.; Kohl, P.A.; Eddy, M.M.; Zuck, B.F.

    1997-09-01

    We present a set of experiments which show that three dielectric processing variables in particular affect the performance of superconducting microwave devices: processing time and temperature, moisture content of the dielectric material, and surface interactions with the high temperature superconductor (HTS). The changes in microwave performance of a straight-line microstrip resonator before and after passivation were quantified by measurements of the loaded and unloaded quality factors for each resonator. Dielectric materials of varying moisture content were used. The dielectrics were processed at different times and temperatures. This study shows that the degradation of the microwave devices can be minimized by choosing dielectrics which (i) have a low moisture content, (ii) interact as little as possible with the HTS surface, and (iii) can be rapidly processed at relatively low temperatures. {copyright} {ital 1997 American Institute of Physics.}

  1. Microwave remote sensing of snowpack properties

    NASA Technical Reports Server (NTRS)

    Rango, A. (Editor)

    1980-01-01

    Topic concerning remote sensing capabilities for providing reliable snow cover data and measurement of snow water equivalents are discussed. Specific remote sensing technqiues discussed include those in the microwave region of the electromagnetic spectrum.

  2. Dielectric properties of agricultural materials and their application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book is prepared as a comprehensive source of information on dielectric properties of agricultural materials for scientific researchers and engineers involved in practical application of radio-frequency and microwave energy for potential problem solutions. Dielectric properties of materials det...

  3. System design development for microwave and millimeter-wave materials processing

    NASA Astrophysics Data System (ADS)

    Feher, Lambert; Thumm, Manfred

    2002-06-01

    The most notable effect in processing dielectrics with micro- and millimeter-waves is volumetric heating of these materials, offering the opportunity of very high heating rates for the samples. In comparison to conventional heating where the heat transfer is diffusive and depends on the thermal conductivity of the material, the microwave field penetrates the sample and acts as an instantaneous heat source at each point of the sample. By this unique property, microwave heating at 2.45 GHz and 915 MHz ISM (Industrial, Medical, Scientific) frequencies is established as an important industrial technology since more than 50 years ago. Successful application of microwaves in industries has been reported e.g. by food processing systems, domestic ovens, rubber industry, vacuum drying etc. The present paper shows some outlines of microwave system development at Forschungszentrum Karlsruhe, IHM by transferring properties from the higher frequency regime (millimeter-waves) to lower frequency applications. Anyway, the need for using higher frequencies like 24 GHz (ISM frequency) for industrial applications has to be carefully verified with respect to special physical/engineering advantages or to limits the standard microwave technology meets for the specific problem.

  4. Dielectric Characterization of PCL-Based Thermoplastic Materials for Microwave Diagnostic and Therapeutic Applications

    PubMed Central

    Aguilar, Suzette M.; Shea, Jacob D.; Al-Joumayly, Mudar A.; Van Veen, Barry D.; Behdad, Nader; Hagness, Susan C.

    2011-01-01

    We propose the use of a polycaprolactone (PCL)-based thermoplastic mesh as a tissue-immobilization interface for microwave imaging and microwave hyperthermia treatment. An investigation of the dielectric properties of two PCL-based thermoplastic materials in the frequency range of 0.5 – 3.5 GHz is presented. The frequency-dependent dielectric constant and effective conductivity of the PCL-based thermoplastics are characterized using measurements of microstrip transmission lines fabricated on substrates comprised of the thermoplastic meshes. We also examine the impact of the presence of a PCL-based thermoplastic mesh on microwave breast imaging. We use a numerical test bed comprised of a previously reported three-dimensional anatomically realistic breast phantom and a multi-frequency microwave inverse scattering algorithm. We demonstrate that the PCL-based thermoplastic material and the assumed biocompatible medium of vegetable oil are sufficiently well matched such that the PCL layer may be neglected by the imaging solution without sacrificing imaging quality. Our results suggest that PCL-based thermoplastics are promising materials as tissue immobilization structures for microwave diagnostic and therapeutic applications. PMID:21622068

  5. Dielectric characterization of PCL-based thermoplastic materials for microwave diagnostic and therapeutic applications.

    PubMed

    Aguilar, Suzette M; Shea, Jacob D; Al-Joumayly, Mudar A; Van Veen, Barry D; Behdad, Nader; Hagness, Susan C

    2012-03-01

    We propose the use of a polycaprolactone (PCL)-based thermoplastic mesh as a tissue-immobilization interface for microwave imaging and microwave hyperthermia treatment. An investigation of the dielectric properties of two PCL-based thermoplastic materials in the frequency range of 0.5-3.5 GHz is presented. The frequency-dependent dielectric constant and effective conductivity of the PCL-based thermoplastics are characterized using measurements of microstrip transmission lines fabricated on substrates comprised of the thermoplastic meshes. We also examine the impact of the presence of a PCL-based thermoplastic mesh on microwave breast imaging. We use a numerical test bed comprised of a previously reported 3-D anatomically realistic breast phantom and a multi-frequency microwave inverse scattering algorithm. We demonstrate that the PCL-based thermoplastic material and the assumed biocompatible medium of vegetable oil are sufficiently well matched such that the PCL layer may be neglected by the imaging solution without sacrificing imaging quality. Our results suggest that PCL-based thermoplastics are promising materials as tissue immobilization structures for microwave diagnostic and therapeutic applications.

  6. Development of low loss hexaferrite materials for microwave applications

    NASA Astrophysics Data System (ADS)

    Su, Zhijuan

    Hexaferrites have been widely used in microwave and millimeter wave devices as permanent magnets and as gyromagnetic materials, e.g., in circulators, filters, isolators, inductors, and phase shifters. As a critical component in radar and modern wireless communication systems, it is the microwave circulator that has drawn much attention. Many efforts have been made to design light and miniature circulators with self-biased ferrite materials. We report the magnetic and structural properties of a series of W-type barium hexaferrites of composition BaZn2-xCoxFe16O27 where x=0.15, 0.20, and 0.25. The anisotropy field of these BaW ferrites decreased with the substitution of divalent Co ions, while, they maintained crystallographic c-axis texture. The measured anisotropy field was ~10 kOe, and a hysteresis loop squareness Mr/Ms=79% was obtained due to well-controlled grain size within the range of single domain scale. U-type barium hexaferrite thin films were deposited on (0001) sapphire substrates by pulsed laser deposition. The results indicate a measured anisotropy field of ~8 kOe, and the saturation magnetization (4piMs) of 3.6 kG. More interestingly, an optimal post-deposition annealing of the films results in a strong (0, 0, n) crystallographic texture and a high squareness (Mr/Ms= 92%) out of the film plane. Furthermore, the highly self-biased ferrite films exhibited low FMR linewidth of ~200 Oe. Improved performance and miniaturization are needed to meet the ever-increasing demands of devices used in ultra-high frequency (UHF), L-band, and S-band, which are of particular interest in a variety of commercial and defense related applications. Utilizing materials possessing high permeability and permittivity with low magnetic losses is a promising solution. As a critical component in radar and modern wireless communication systems, antenna elements with compact size are constantly sought. Ferrite composites of the nominal composition Ba3Co2+xIrxFe24-2xO41 were studied

  7. Microwave Nondestructive Evaluation of Dielectric Materials with a Metamaterial Lens

    NASA Technical Reports Server (NTRS)

    Shreiber, Daniel; Gupta, Mool; Cravey, Robin L.

    2008-01-01

    A novel microwave Nondestructive Evaluation (NDE) sensor was developed in an attempt to increase the sensitivity of the microwave NDE method for detection of defects small relative to a wavelength. The sensor was designed on the basis of a negative index material (NIM) lens. Characterization of the lens was performed to determine its resonant frequency, index of refraction, focus spot size, and optimal focusing length (for proper sample location). A sub-wavelength spot size (3 dB) of 0.48 lambda was obtained. The proof of concept for the sensor was achieved when a fiberglass sample with a 3 mm diameter through hole (perpendicular to the propagation direction of the wave) was tested. The hole was successfully detected with an 8.2 cm wavelength electromagnetic wave. This method is able to detect a defect that is 0.037 lambda. This method has certain advantages over other far field and near field microwave NDE methods currently in use.

  8. A Study on a Microwave-Driven Smart Material Actuator

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Chu, Sang-Hyon; Kwak, M.; Cutler, A. D.

    2001-01-01

    NASA s Next Generation Space Telescope (NGST) has a large deployable, fragmented optical surface (greater than or = 2 8 m in diameter) that requires autonomous correction of deployment misalignments and thermal effects. Its high and stringent resolution requirement imposes a great deal of challenge for optical correction. The threshold value for optical correction is dictated by lambda/20 (30 nm for NGST optics). Control of an adaptive optics array consisting of a large number of optical elements and smart material actuators is so complex that power distribution for activation and control of actuators must be done by other than hard-wired circuitry. The concept of microwave-driven smart actuators is envisioned as the best option to alleviate the complexity associated with hard-wiring. A microwave-driven actuator was studied to realize such a concept for future applications. Piezoelectric material was used as an actuator that shows dimensional change with high electric field. The actuators were coupled with microwave rectenna and tested to correlate the coupling effect of electromagnetic wave. In experiments, a 3x3 rectenna patch array generated more than 50 volts which is a threshold voltage for 30-nm displacement of a single piezoelectric material. Overall, the test results indicate that the microwave-driven actuator concept can be adopted for NGST applications.

  9. Effect of heat treatment on microwave absorption properties of Ni-Zn-Mg-La ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Wei, Shicheng; Xu, Binshi; Wang, Yujiang; Tian, Haoliang; Tong, Hui

    2014-01-01

    Spinel structure Ni-Zn-Mg-La ferrites have been prepared by the sol-gel route and investigated as a radar absorbing material (RAM) in a frequency range of 1-18 GHz. The structure and morphological studies on the nanoparticles of the ferrites have been carried out using X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The complex permeability and complex permittivity are measured by a network analyzer. The electromagnetic wave loss and microwave absorbing property are studied as a function of frequency, annealing temperature and thickness of the absorber. The results indicate that electromagnetic wave loss of the ferrite only annealed at 850 °C shows two peaks. The reflection loss varies with the change of the annealing temperature. The absorber annealed at 850 °C exhibits the best microwave absorbing properties, which is suitable for microwave absorption materials.

  10. Microwave material characterization of alkali-silica reaction (ASR) gel in cementitious materials

    NASA Astrophysics Data System (ADS)

    Hashemi, Ashkan

    Since alkali-silica reaction (ASR) was recognized as a durability challenge in cement-based materials over 70 years ago, numerous methods have been utilized to prevent, detect, and mitigate this issue. However, quantifying the amount of produced ASR byproducts (i.e., ASR gel) in-service is still of great interest in the infrastructure industry. The overarching objective of this dissertation is to bring a new understanding to the fundamentals of ASR formation from a microwave dielectric property characterization point-of-view, and more importantly, to investigate the potential for devising a microwave nondestructive testing approach for ASR gel detection and evaluation. To this end, a comprehensive dielectric mixing model was developed with the potential for predicting the effective dielectric constant of mortar samples with and without the presence of ASR gel. To provide pertinent inputs to the model, critical factors on the influence of ASR gel formation on dielectric and reflection properties of several mortar samples were investigated at R, S, and X-band. Effects of humidity, alkali content, and long-term curing conditions on ASR-prone mortars were also investigated. Additionally, dielectric properties of chemically different synthetic ASR gel were also determined. All of these, collectively, served as critical inputs to the mixing model. The resulting developed dielectric mixing model has the potential to be further utilized to quantify the amount of produced ASR gel in cement-based materials. This methodology, once becomes more mature, will bring new insight to the ASR reaction, allowing for advancements in design, detection and mitigation of ASR, and eventually has the potential to become a method-of-choice for in-situ infrastructure health-monitoring of existing structures.

  11. X-Band Microwave Reflection Properties of Samarium/Bismuth-Substituted Barium Lanthanum Titanate Ceramics

    NASA Astrophysics Data System (ADS)

    Bahel, Shalini; Pubby, Kunal; Narang, Sukhleen Bindra

    2017-01-01

    Samarium/bismuth-substituted barium lanthanum titanate ceramics with chemical composition Ba4 (La_{1 - y - z} Smy Biz )_{9.33} Ti_{18} O_{54} (y = 0.5, 0.7; z = 0.05, 0.10, 0.15), intended as microwave reflecting materials, have been investigated in microwave X-band (8.2 GHz to 12.4 GHz) and the effect of substitution on their dielectric properties, i.e., dielectric constant and dielectric loss tangent, has been studied by vector network analyzer. Dielectric analysis showed that the dielectric constant increased with increasing samarium as well as bismuth content. Dielectric relaxation was observed for all samples in the scanned frequency range. Microwave reflection and transmission analysis of ceramic pellets of thickness 4 mm was carried out using two methods, i.e., open- and short-circuit approach, both indicating very high values of reflected power and very low values of transmitted power for all the doped materials in comparison with the base composition. The doped compositions are therefore potential microwave shielding materials for use in anechoic chambers, microwave laboratories, and radar equipment. Double-layer reflectors are also proposed, having better reflection properties (˜99% reflection) compared with single-layer reflectors.

  12. Heteronanostructured Co@carbon nanotubes-graphene ternary hybrids: synthesis, electromagnetic and excellent microwave absorption properties

    PubMed Central

    Qi, Xiaosi; Hu, Qi; Cai, Hongbo; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie; Zhong, Wei; Du, Youwei

    2016-01-01

    In order to explore high efficiency microwave absorption materials, heteronanostructured Co@carbon nanotubes-graphene (Co@CNTs-G) ternary hybrids were designed and produced through catalytic decomposition of acetylene at the designed temperature (400, 450, 500 and 550 °C) over Co3O4/reduced graphene oxide (Co3O4/RGO). By regulating the reaction temperatures, different CNT contents of Co@CNTs-G ternary hybrids could be synthesized. The investigations indicated that the as-prepared heteronanostructured Co@CNTs-G ternary hybrids exhibited excellent microwave absorption properties, and their electromagnetic and microwave absorption properties could be tuned by the CNT content. The minimum reflection loss (RL) value reached approximately −65.6, −58.1, −41.1 and −47.5 dB for the ternary hybrids synthesized at 400, 450, 500 and 550 °C, respectively. And RL values below −20 dB (99% of electromagnetic wave attenuation) could be obtained over the as-prepared Co@CNTs-G ternary hybrids in the large frequency range. Moreover, based on the obtained results, the possible enhanced microwave absorption mechanisms were discussed in details. Therefore, a simple approach was proposed to explore the high performance microwave absorbing materials as well as to expand the application field of graphene-based materials. PMID:27892515

  13. X-Band Microwave Reflection Properties of Samarium/Bismuth-Substituted Barium Lanthanum Titanate Ceramics

    NASA Astrophysics Data System (ADS)

    Bahel, Shalini; Pubby, Kunal; Narang, Sukhleen Bindra

    2017-03-01

    Samarium/bismuth-substituted barium lanthanum titanate ceramics with chemical composition Ba4 (La_{1 - y - z} Smy Biz )_{9.33} Ti_{18} O_{54} ( y = 0.5, 0.7; z = 0.05, 0.10, 0.15), intended as microwave reflecting materials, have been investigated in microwave X-band (8.2 GHz to 12.4 GHz) and the effect of substitution on their dielectric properties, i.e., dielectric constant and dielectric loss tangent, has been studied by vector network analyzer. Dielectric analysis showed that the dielectric constant increased with increasing samarium as well as bismuth content. Dielectric relaxation was observed for all samples in the scanned frequency range. Microwave reflection and transmission analysis of ceramic pellets of thickness 4 mm was carried out using two methods, i.e., open- and short-circuit approach, both indicating very high values of reflected power and very low values of transmitted power for all the doped materials in comparison with the base composition. The doped compositions are therefore potential microwave shielding materials for use in anechoic chambers, microwave laboratories, and radar equipment. Double-layer reflectors are also proposed, having better reflection properties (˜99% reflection) compared with single-layer reflectors.

  14. Heteronanostructured Co@carbon nanotubes-graphene ternary hybrids: synthesis, electromagnetic and excellent microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Qi, Xiaosi; Hu, Qi; Cai, Hongbo; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie; Zhong, Wei; Du, Youwei

    2016-11-01

    In order to explore high efficiency microwave absorption materials, heteronanostructured Co@carbon nanotubes-graphene (Co@CNTs-G) ternary hybrids were designed and produced through catalytic decomposition of acetylene at the designed temperature (400, 450, 500 and 550 °C) over Co3O4/reduced graphene oxide (Co3O4/RGO). By regulating the reaction temperatures, different CNT contents of Co@CNTs-G ternary hybrids could be synthesized. The investigations indicated that the as-prepared heteronanostructured Co@CNTs-G ternary hybrids exhibited excellent microwave absorption properties, and their electromagnetic and microwave absorption properties could be tuned by the CNT content. The minimum reflection loss (RL) value reached approximately ‑65.6, ‑58.1, ‑41.1 and ‑47.5 dB for the ternary hybrids synthesized at 400, 450, 500 and 550 °C, respectively. And RL values below ‑20 dB (99% of electromagnetic wave attenuation) could be obtained over the as-prepared Co@CNTs-G ternary hybrids in the large frequency range. Moreover, based on the obtained results, the possible enhanced microwave absorption mechanisms were discussed in details. Therefore, a simple approach was proposed to explore the high performance microwave absorbing materials as well as to expand the application field of graphene-based materials.

  15. Microwave-assisted synthesis of graphene-Ni composites with enhanced microwave absorption properties in Ku-band

    NASA Astrophysics Data System (ADS)

    Zhu, Zetao; Sun, Xin; Li, Guoxian; Xue, Hairong; Guo, Hu; Fan, Xiaoli; Pan, Xuchen; He, Jianping

    2015-03-01

    Recently, graphene has been applied as a new microwave absorber because of its high dielectric loss and low density. Nevertheless, the high dielectric constant of pristine graphene has caused unbalanced electromagnetic parameters and results in a bad impedance matching characteristic. In this study, we report a facile microwave-assisted heating approach to produce reduced graphene oxide-nickel (RGO-Ni) composites. The phase and morphology of as-synthesized RGO-Ni composites are characterized by XRD, Raman, FESEM and TEM. The results show that Ni nanoparticles with a diameter around 20 nm are grown densely and uniformly on the RGO sheets. In addition, enhanced microwave absorption properties in Ku-band of RGO-Ni composites is mainly due to the synergistic effect of dielectric loss and magnetic loss and the dramatically electron polarizations caused by the formation of large conductive network. The minimum reflection loss of RGO-Ni-2 composite with the thickness of 2 mm can reaches -42 dB at 17.6 GHz. The RGO-Ni composite is an attractive candidate for the new type of high performance microwave absorbing material.

  16. Microwave measurement and modeling of the dielectric properties of vegetation

    NASA Astrophysics Data System (ADS)

    Shrestha, Bijay Lal

    Some of the important applications of microwaves in the industrial, scientific and medical sectors include processing and treatment of various materials, and determining their physical properties. The dielectric properties of the materials of interest are paramount irrespective of the applications, hence, a wide range of materials covering food products, building materials, ores and fuels, and biological materials have been investigated for their dielectric properties. However, very few studies have been conducted towards the measurement of dielectric properties of green vegetations, including commercially important plant crops such as alfalfa. Because of its high nutritional value, there is a huge demand for this plant and its processed products in national and international markets, and an investigation into the possibility of applying microwaves to improve both the net yield and quality of the crop can be beneficial. Therefore, a dielectric measurement system based upon the probe reflection technique has been set up to measure dielectric properties of green plants over a frequency range from 300 MHz to 18 GHz, moisture contents from 12%, wet basis to 79%, wet basis, and temperatures from -15°C to 30°C. Dielectric properties of chopped alfalfa were measured with this system over frequency range of 300 MHz to 18 GHz, moisture content from 11.5%, wet basis, to 73%, wet basis, and density over the range from 139 kg m-3 to 716 kg m-3 at 23°C. The system accuracy was found to be +/-6% and +/-10% in measuring the dielectric constant and loss factor respectively. Empirical, semi empirical and theoretical models that require only moisture content and operating frequency were determined to represent the dielectric properties of both leaves and stems of alfalfa at 22°C. The empirical models fitted the measured dielectric data extremely well. The root mean square error (RMSE) and the coefficient of determination (r2) for dielectric constant and loss factor of leaves

  17. Rhenium material properties

    NASA Technical Reports Server (NTRS)

    Biaglow, James A.

    1995-01-01

    Tensile data were obtained from four different types of rhenium at ambient and elevated temperatures. The four types of rhenium included chemical vapor deposition (CVD) and three powder metallurgy (PM) types, i.e., rolled sheet and pressed and sintered bars, with and without hot isostatic pressure (HIP) treatment. Results revealed a wide range of values with ultimate strengths at ambient temperatures varying from 663 MPa for CVD rhenium to 943 MPa for rolled sheet. A similar spread was also obtained for material tested at 1088 K and 1644 K. The wide variance observed with the different materials indicated that the rhenium manufacturing process, material composition and prior handling strongly dictated its properties. In addition to tensile properties, CVD, pressed and sintered material and HIP rhenium successfully completed 100 cycles of low cycle fatigue. Creep data were also obtained showing that CVD and pressed and sintered rhenium could sustain five hours of testing under a tension of 27.5 MPa at 1922 K.

  18. Rhenium material properties

    SciTech Connect

    Biaglow, J.A.

    1995-09-01

    Tensile data were obtained from four different types of rhenium at ambient and elevated temperatures. The four types of rhenium included chemical vapor deposition (CVD) and three powder metallurgy (PM) types, i.e., rolled sheet and pressed and sintered bars, with and without hot isostatic pressure (HIP) treatment. Results revealed a wide range of values with ultimate strengths at ambient temperatures varying from 663 MPa for CVD rhenium to 943 MPa for rolled sheet. A similar spread was also obtained for material tested at 1088 K and 1644 K. The wide variance observed with the different materials indicated that the rhenium manufacturing process, material composition and prior handling strongly dictated its properties. In addition to tensile properties, CVD, pressed and sintered material and HIP rhenium successfully completed 100 cycles of low cycle fatigue. Creep data were also obtained showing that CVD and pressed and sintered rhenium could sustain five hours of testing under a tension of 27.5 MPa at 1922 K.

  19. Development of microwave absorbing materials prepared from a polymer binder including Japanese lacquer and epoxy resin

    NASA Astrophysics Data System (ADS)

    Iwamaru, T.; Katsumata, H.; Uekusa, S.; Ooyagi, H.; Ishimura, T.; Miyakoshi, T.

    Microwave absorption composites were synthesized from a poly urushiol epoxy resin (PUE) mixed with one of microwave absorbing materials; Ni-Zn ferrite, Soot, Black lead, and carbon nano tube (CNT) to investigate their microwave absorption properties. PUE binders were specially made from Japanese lacquer and epoxy resin, where Japanese lacquer has been traditionally used for bond and paint because it has excellent beauty. Japanese lacquer solidifies with oxygen contained in air's moisture, which has difficulty in making composite, but we improved Japanese lacquer's solidification properties by use of epoxy resin. We made 10 mm thickness composite samples and cut them into toroidal shape to measure permittivity, permeability, and reflection loss in frequencies ranging from 50 Hz to 20 GHz. Electric magnetic absorber's composites synthesized from a PUE binders mixed either with Soot or CNT showed significantly higher wave absorption over -27 dB than the others at frequencies around 18 GHz, although Japanese lacquer itself doesn't affect absorption. This means Japanese lacquer can be used as binder materials for microwave absorbers.

  20. Novel microwave magnetic and magnetoelectric composite materials and devices

    NASA Astrophysics Data System (ADS)

    Pettiford, Carl I.

    Bulk microwave magnetic materials and devices have been widely used in different RF/microwave devices such as inductors, filters, circulars, isolators, and phase shifters. With the even increasing level of integration of RFIC and MMIC, there is an urgent need for new microwave magnetic thin film materials and new integrated RF/microwave magnetic devices. In this thesis, we have addressed these needs in three different areas: (1) exchange biased ferromagnetic/anti-ferromagnetic multilayer thin films with enhanced anisotropy fields, (2) magneto-electric heterostructures and devices, and (3) metamaterial multilayers for FMR enhancement, tunability, and plane wave absorption. Metallic soft magnetic thin films have been demonstrated to have high saturation magnetization, large permeability and relatively high self-biased ferromagnetic resonance (FMR) frequencies, showing great promise for applications in integrated RF and microwave magnetic devices. One problem for these metallic magnetic films is however their relatively low anisotropy fields that are typically in the range of 10˜30 Oe, which severely limit their application frequency range. In this work, we investigated the exchange coupled ferromagnetic/anti-ferromagnetic/ferromagnetic CoFe/PtMn/CoFe multilayer films. These CoFe/PtMn/CoFe multilayer films showed a significantly enhanced anisotropy field of 160 Oe, which was 5˜10 times of that of the FeCo films. In addition, a narrow FMR linewidth of 45 Oe at X-band was achieved in the CoFe/PtMn/CoFe trilayer. The exchange coupling in the ferromagnetic/anti-ferromagnetic/ferromagnetic trilayers leads to a significantly enhanced anisotropy field that is crucial for the application of metallic magnetic films in integrated magnetic RF/microwave devices. The magnetoelectric coupling of novel YIG/PZT, FeCoB/PZT and FeGaB/PZT multiferroic heterostructures were investigated at DC and at microwave frequencies. An electrostatically tunable band-reject filter device was

  1. Microwave Power Absorption in Materials for Ferrous Metallurgy

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei; Li, Zhizhong; Lin, Xiaolong; Yang, Mengshen; Hwang, Jiann-Yang; Zhang, Yuanbo; Li, Guanghui; Jiang, Tao

    2017-02-01

    The characteristics of microwave power absorption in materials for ferrous metallurgy, including iron oxides (Fe2O3, Fe3O4 and Fe0.925O) and bitumite, were explored by evaluating their dielectric loss ( Q E) and/or magnetic loss ( Q H) distributions in the 0.05-m-thick slabs of the corresponding materials exposed to 1.2-kW and 2.45-GHz microwave radiation at temperatures below 1100°C. It is revealed that the dielectric loss contributes primarily to the power absorption in Fe2O3, Fe0.925O and the bitumite at all of the examined temperatures. Their Q E values at room temperature and slab surface are 9.1311 × 103 W m-3, 23.7025 × 103 W m-3, and 49.5999 × 103 W m-3, respectively, showing that the materials have the following heating rate initially under microwave irradiation: bitumite > Fe0.925O > Fe2O3. Compared with the other materials, Fe3O4 has much stronger power absorption, primarily originated from its magnetic loss (e.g., Q H = 1.0615 × 106 W m-3, Q H/ Q E = 2.4185 at 24°C and slab surface), below its Curie point, above which the magnetic susceptibility approaches to zero, thereby causing a very small Q H value at even the surface ( Q H = 1.0416 × 105 W m-3 at 880°C). It is also demonstrated that inhomogeneous power distributions occur in all the slabs and become more pronounced with increasing temperature mainly due to rapid increase in permittivity. Characterizing power absorption in the oxides and the coal is expected to offer a strategic guide for improving use of microwave energy in ferrous metallurgy.

  2. Microwave Power Absorption in Materials for Ferrous Metallurgy

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei; Li, Zhizhong; Lin, Xiaolong; Yang, Mengshen; Hwang, Jiann-Yang; Zhang, Yuanbo; Li, Guanghui; Jiang, Tao

    2016-11-01

    The characteristics of microwave power absorption in materials for ferrous metallurgy, including iron oxides (Fe2O3, Fe3O4 and Fe0.925O) and bitumite, were explored by evaluating their dielectric loss (Q E) and/or magnetic loss (Q H) distributions in the 0.05-m-thick slabs of the corresponding materials exposed to 1.2-kW and 2.45-GHz microwave radiation at temperatures below 1100°C. It is revealed that the dielectric loss contributes primarily to the power absorption in Fe2O3, Fe0.925O and the bitumite at all of the examined temperatures. Their Q E values at room temperature and slab surface are 9.1311 × 103 W m-3, 23.7025 × 103 W m-3, and 49.5999 × 103 W m-3, respectively, showing that the materials have the following heating rate initially under microwave irradiation: bitumite > Fe0.925O > Fe2O3. Compared with the other materials, Fe3O4 has much stronger power absorption, primarily originated from its magnetic loss (e.g., Q H = 1.0615 × 106 W m-3, Q H/Q E = 2.4185 at 24°C and slab surface), below its Curie point, above which the magnetic susceptibility approaches to zero, thereby causing a very small Q H value at even the surface (Q H = 1.0416 × 105 W m-3 at 880°C). It is also demonstrated that inhomogeneous power distributions occur in all the slabs and become more pronounced with increasing temperature mainly due to rapid increase in permittivity. Characterizing power absorption in the oxides and the coal is expected to offer a strategic guide for improving use of microwave energy in ferrous metallurgy.

  3. Microwave sintering of ceramics

    SciTech Connect

    Snyder, W.B.

    1989-01-01

    Successful adaptation of microwave heating to the densification of ceramic materials require a marriage of microwave and materials technologies. Using an interdisciplinary team of microwave and materials engineers, we have successfully demonstrated the ability to density ceramic materials over a wide range of temperatures. Microstructural evolution during microwave sintering has been found to be significantly different from that observed in conventional sintering. Our results and those of others indicate that microwave sintering has the potential to fabricate components to near net shape with mechanical properties equivalent to hot pressed or hot isostatically pressed material. 6 refs., 11 figs.

  4. Full microwave synthesis of advanced Li-rich manganese based cathode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Shaojun; Zhang, Saisai; Wu, Zhijun; Wang, Ting; Zong, Jianbo; Zhao, Mengxi; Yang, Gang

    2017-01-01

    In technologically important Li-rich layered cathode materials, the synthesis time is a critical determinant to overcome the practical difficulties. Normal technology costs at least one day or even more to obtain final Li-rich cathode material. Full microwave synthesis is performed here to obtain final Li1.2Mn0.56Ni0.16Co0.08O2 within 60 min with high time-efficiency and power economization. The as-prepared Li-rich oxides keep the spherical hierarchical structure of the precursor. Compared to the same material obtained by traditional calcination, it exhibits well-formed layered structure with higher ordered ion arrangement. X-ray photoelectron spectroscopy (XPS) indicates that microwave assisted heating contributes to a more ordered and stable surface with desired Mn, Co, Ni element states and less impurity. Thus, the as-prepared material reveals remarkable electrochemical property with high discharge capacity of 159.3 mAh g-1 at high current density of 2000 mA g-1. And 88.6% specific capacity is remained after 300 cycles at such high current density. Furthermore, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT) are carried out to overall investigate and estimate the material. It is concluded that such full microwave synthesis is really promising as one of the dominant way to obtain Li-rich layered cathode material for applications.

  5. Structure-Property Correlations in Microwave Joining of Inconel 718

    NASA Astrophysics Data System (ADS)

    Bansal, Amit; Sharma, Apurbba Kumar; Kumar, Pradeep; Das, Shantanu

    2015-09-01

    The butt joining of Inconel 718 plates at 981°C solution treated and aged (981STA) condition was carried out using the microwave hybrid heating technique with Inconel 718 powder as a filler material. The developed joints were free from any microfissures (cracks) and were metallurgically bonded through complete melting of the powder particles. The as-welded joints were subjected to postweld heat treatments, including direct-aged, 981STA and 1080STA. The microstructural features of the welded joints were investigated using a field emission-scanning electron microscope equipped with x-ray elemental analysis. Microhardness and room-temperature tensile properties of the welded joints were evaluated. The postweld heat-treated specimens exhibited higher microhardness and tensile strength than the as-welded specimens due to the formation of strengthening precipitates in the microstructure after postweld heat treatments. The microhardness of the fusion zone of the joint in 1080STA condition was higher than all welded conditions due to the complete dissolution of Laves phase after 1080STA treatment. However, the tensile strength of the welded specimen in 981STA condition was higher than all welded conditions. The tensile strength in 1080STA condition was lower than that in 981STA condition because of the grain coarsening that took place after 1080STA condition. The fractography of the fractured surfaces was carried out to determine the structure-property-fracture correlation.

  6. Frequency-agile microwave components using ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Colom-Ustariz, Jose G.; Rodriguez-Solis, Rafael; Velez, Salmir; Rodriguez-Acosta, Snaider

    2003-04-01

    The non-linear electric field dependence of ferroelectric thin films can be used to design frequency and phase agile components. Tunable components have traditionally been developed using mechanically tuned resonant structures, ferrite components, or semiconductor-based voltage controlled electronics, but they are limited by their frequency performance, high cost, hgih losses, and integration into larger systems. In contrast, the ferroelectric-based tunable microwave component can easily be integrated into conventional microstrip circuits and attributes such as small size, light weight, and low-loss make these components attractive for broadband and multi-frequency applications. Components that are essential elements in the design of a microwave sensor can be fabricated with ferroelectric materials to achieve tunability over a broad frequency range. It has been reported that with a thin ferroelectric film placed between the top conductor layer and the dielectric material of a microstrip structure, and the proper DC bias scheme, tunable components above the Ku band can be fabricated. Components such as phase shifters, coupled line filters, and Lange couplers have been reported in the literature using this technique. In this wokr, simulated results from a full wave electromagnetic simulator are obtained to show the tunability of a matching netowrk typically used in the design of microwave amplifiers and antennas. In addition, simulated results of a multilayer Lange coupler, and a patch antenna are also presented. The results show that typical microstrip structures can be easily modified to provide frequency agile capabilities.

  7. Microwave properties of a quiet sea

    NASA Technical Reports Server (NTRS)

    Stacey, J.

    1985-01-01

    The microwave flux responses of a quiet sea are observed at five microwave frequencies and with both horizontal and vertical polarizations at each frequency--a simultaneous 10 channel receiving system. The measurements are taken from Earth orbit with an articulating antenna. The 10 channel responses are taken simultaneously since they share a common articulating collector with a multifrequency feed. The plotted flux responses show: (1) the effects of the relative, on-axis-gain of the collecting aperture for each frequency; (2) the effects of polarization rotation in the output responses of the receive when the collecting aperture mechanically rotates about a feed that is fixed; (3) the difference between the flux magnitudes for the horizontal and vertical channels, at each of the five frequencies, and for each pointing position, over a 44 degree scan angle; and (4) the RMS value of the clutter--as reckoned over the interval of a full swath for each of the 10 channels. The clutter is derived from the standard error of estimate of the plotted swath response for each channel. The expected value of the background temperature is computed for each of the three quiet seas. The background temperature includes contributions from the cosmic background, the downwelling path, the sea surface, and the upwelling path.

  8. Engineering Topological Many-Body Materials in Microwave Cavity Arrays

    NASA Astrophysics Data System (ADS)

    Anderson, Brandon M.; Ma, Ruichao; Owens, Clai; Schuster, David I.; Simon, Jonathan

    2016-10-01

    We present a scalable architecture for the exploration of interacting topological phases of photons in arrays of microwave cavities, using established techniques from cavity and circuit quantum electrodynamics. A time-reversal symmetry-breaking (nonreciprocal) flux is induced by coupling the microwave cavities to ferrites, allowing for the production of a variety of topological band structures including the α =1 /4 Hofstadter model. To induce photon-photon interactions, the cavities are coupled to superconducting qubits; we find these interactions are sufficient to stabilize a ν =1 /2 bosonic Laughlin puddle. Exact diagonalization studies demonstrate that this architecture is robust to experimentally achievable levels of disorder. These advances provide an exciting opportunity to employ the quantum circuit toolkit for the exploration of strongly interacting topological materials.

  9. Microstructure and microwave absorption properties of MWCNTs reinforced magnesium matrix composites fabriccated by FSP

    NASA Astrophysics Data System (ADS)

    Chen, Yu-hua; Mao, Yu-qing; Xie, Ji-lin; Zhan, Zi-lin; Yu, Liang

    2017-01-01

    Multiwall carbon nanotubes (MWCNTs) reinforced magnesium matrix (MWCNTs/Mg) composites were successfully fabricated by friction stir processing (FSP). Microstructure and microwave-absorption properties of WCNTs/Mg composites are studied. The results show that with increasing the MWCNTs content to 7.1% in volume fraction, the agglomeration of MWCNTs is found in the WCNTs/Mg composites. The addition of MWCNTs has little effect on microwave-absorption properties. With increasing the frequency from 2 GHz to 18 GHz, the microwave absorption of the composites decreases. Compared with the absorption loss of the MWCNTs, the reflection loss of base material takes the most part of the loss of the microwave, and the increase of the reflection loss can promote electromagnetic shielding properties of the composites. Moreover, the electromagnetic shielding properties of the composites are less than -85 dB in the lower frequency range from 0.1 MHz to 3 GHz. With increasing the content of MWCNTs, the electrical conductivity of the composites is decreased, and the electromagnetic shielding properties is slightly enhanced.

  10. Microwave absorbance properties of zirconium–manganese substituted cobalt nanoferrite as electromagnetic (EM) wave absorbers

    SciTech Connect

    Khan, Kishwar Rehman, Sarish

    2014-02-01

    Highlights: • Good candidates for EM materials with low reflectivity. • Good candidates for broad bandwidth at microwave frequency. • Microwave absorbing bandwidth was modulated simply by manipulating the Zr–Mn. • Higher the Zr–Mn content, the higher absorption rates for the electromagnetic radiation. • The predicted reflection loss shows that this can be used for thin ferrite absorber. - Abstract: Nanocrystalline Zr–Mn (x) substituted Co ferrite having chemical formula CoFe{sub 2−2x}Zr{sub x}Mn{sub x}O{sub 4} (x = 0.1–0.4) was prepared by co-precipitation technique. Combining properties such as structural, electrical, magnetic and reflection loss characteristics. Crystal structure and surface morphology of the calcined samples were characterized by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). By using two point probe homemade resistivity apparatus to find resistivity of the sample. Electromagnetic (EM) properties are measured through RF impedance/materials analyzer over 1 MHz–3 GHz. The room-temperature dielectric measurements show dispersion behavior with increasing frequency from 100 Hz to 3 MHz. Magnetic properties confirmed relatively strong dependence of saturation magnetization on Zr–Mn composition. Curie temperature is also found to decrease linearly with addition of Zr–Mn. Furthermore, comprehensive analysis of microwave reflection loss (RL) is carried out as a function of substitution, frequency, and thickness. Composition accompanying maximum microwave absorption is suggested.

  11. PETI-298 Prepared by Microwave Synthesis: Neat Resin and Composite Properties

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G.; Connell, John W.; Li, Chao-Jun; Wu, Wei; Criss, Jim M., Jr.

    2004-01-01

    PETI-298 is a high temperature/high performance matrix resin that is processable into composites by resin transfer molding (RTM), resin infusion and vacuum assisted RTM techniques. It is typically synthesized in a polar aprotic solvent from the reaction of an aromatic anhydride and a combination of diamines and endcapped with phenylethynylphthalic anhydride. Microwave synthesis of PETI-298 was investigated as a means to eliminate solvent and decrease reaction time. The monomers were manually mixed and placed in a microwave oven for various times to determine optimum reaction conditions. The synthetic process was subsequently scaled-up to 330g. Three batches were synthesized and combined to give 1 kg of material that was characterized for thermal and rheological properties and compared to PETI-298 prepared by the classic solution based synthetic method. The microwave synthesized PETI-298 was subsequently used to fabricate flat laminates on T650 carbon fabric by RTM. The composite panels were analyzed and mechanical properties determined and compared with those fabricated from PETI-298 prepared by the classic solution method. The microwave synthesis process and characterization of neat resin and carbon fiber reinforced composites fabricated by RTM will be presented. KEY WORDS: Resin Transfer Molding, High Temperature Polymers, Phenylethynyl Terminated Imides, Microwave Synthesis

  12. Apparatus with moderating material for microwave heat treatment of manufactured components

    DOEpatents

    Ripley, Edward B.

    2011-05-10

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  13. Microwave absorption properties and mechanism of cagelike ZnO /SiO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Cao, Mao-Sheng; Shi, Xiao-Ling; Fang, Xiao-Yong; Jin, Hai-Bo; Hou, Zhi-Ling; Zhou, Wei; Chen, Yu-Jin

    2007-11-01

    In this paper, cagelike ZnO /SiO2 nanocomposites were prepared and their microwave absorption properties were investigated in detail. Dielectric constants and losses of the pure cagelike ZnO nanostructures were measured in a frequency range of 8.2-12.4GHz. The measured results indicate that the cagelike ZnO nanostructures are low-loss material for microwave absorption in X band. However, the cagelike ZnO /SiO2 nanocomposites exhibit a relatively strong attenuation to microwave in X band. Such strong absorption is related to the unique geometrical morphology of the cagelike ZnO nanostructures in the composites. The microcurrent network can be produced in the cagelike ZnO nanostructures, which contributes to the conductive loss.

  14. Determination of microwave complex permittivity of particulate materials

    NASA Astrophysics Data System (ADS)

    Wu, Mingzhong; Yao, Xi; Zhai, Jiwei; Zhang, Liangying

    2001-11-01

    A practical method for determining the broadband microwave complex permittivity of particulate materials is described. In this method, particulate materials are dispersed randomly in paraffin wax; thin disc samples are prepared for measurement from the particle-wax mixtures. During measurements, the samples are backed by a conducting plane, and an open-ended coaxial probe is used to determine the permittivity of the samples. A mixture equation is used to calculate the permittivity of the particulate materials from the permittivity of the samples. The validity of six well known mixture equations is examined. The experimental results indicate that only the QCA-CP and Bruggeman mixture equations can accurately describe the microwave permittivity of the particle-wax mixtures over the wide particle concentration range. To validate this described method, the complex permittivities of PbTiO3 and Pb(Zr0.53Ti0.47)O3 particles are determined over a frequency range of 0.2 to 6 GHz. The determined results are found to be in agreement with the coaxial transmission/reflection measurement results. The advantages and limitations of this method are also discussed in this paper.

  15. Nitrogen-Doped Carbon Fiber Paper by Active Screen Plasma Nitriding and Its Microwave Heating Properties.

    PubMed

    Zhu, Naishu; Ma, Shining; Sun, Xiaofeng

    2016-12-28

    In this paper, active screen plasma nitriding (ASPN) treatment was performed on polyacrylonitrile carbon fiber papers. Electric resistivity and microwave loss factor of carbon fiber were described to establish the relationship between processing parameters and fiber's ability to absorb microwaves. The surface processing effect of carbon fiber could be characterized by dynamic thermal mechanical analyzer testing on composites made of carbon fiber. When the process temperature was at 175 °C, it was conducive to obtaining good performance of dynamical mechanical properties. The treatment provided a way to change microwave heating properties of carbon fiber paper by performing different treatment conditions, such as temperature and time parameters. Atomic force microscope, scanning electron microscope, and X-ray photoelectron spectroscopy analysis showed that, during the course of ASPN treatment on carbon fiber paper, nitrogen group was introduced and silicon group was removed. The treatment of nitrogen-doped carbon fiber paper represented an alternative promising candidate for microwave curing materials used in repairing and heating technology, furthermore, an efficient dielectric layer material for radar-absorbing structure composite in metamaterial technology.

  16. Microwave synthesis and thermal properties of polyacrylate derivatives containing itaconic anhydride moieties

    PubMed Central

    2012-01-01

    Background Microwave irradiation as an alternative heat source is now a well-known method in synthetic chemistry. Microwave heating has emerged as a powerful technique to promote a variety of chemical reactions, offering reduced pollution, low cost and offer high yields together with simplicity in processing and handling. On the other hand, copolymers containing both hydrophilic and hydrophobic segments are drawing considerable attention because of their possible use in biological systems. Various copolymer compositions can produce a very large number of different arrangements, producing materials of varying chemical and physical properties. Thus, the hydrophilicity of copolymers can be modified by changing the amount of incorporated itaconic anhydride. Results A series of methyl methacrylate (MMA) and acrylamide (AA) copolymers containing itaconic anhydride (ITA) were synthesized by microwave irradiation employing a multimode reactor (Synthos 3000 Aton Paar, GmbH, 1400 W maximum magnetron) as well as conventional method. The thermal properties of the copolymers were evaluated by different techniques. Structure-thermal property correlation based on changing the itaconic anhydride ratio was demonstrated. Results revealed that the incorporation of itaconic anhydride into the polymeric backbone of all series affect the thermal stability of copolymers. In addition, the use of the microwave method offers high molecular weight copolymers which lead eventually to an increase in thermal stability. Conclusions Microwave irradiation method showed advantages for the produced copolymers compared to that prepared by conventional method, where it can offer a copolymer in short time, high yield, more pure compounds and more thermally stable copolymers, rather than conventional method. Also, microwave irradiation method gives higher molecular weight due to prevention of the chain transfer. Moreover, as the itaconic anhydride content increases the thermal stability and Tg increase

  17. Microwave absorption properties of double-layer composites using CoZn/NiZn/MnZn-ferrite and titanium dioxide

    NASA Astrophysics Data System (ADS)

    Das, Sukanta; Nayak, G. C.; Sahu, S. K.; Routray, P. C.; Roy, A. K.; Baskey, H.

    2015-03-01

    Zinc substituted ferrite powders Me0.5Zn0.5Fe2O4 (Me=Co, Mn and Ni) were prepared by the sol-gel auto-combustion method. The present study highlights development of Single layer and double layer composite microwave absorbing materials using Ferrites, Titanium dioxide and Epoxy matrix. Moreover microwave absorption property, i.e. reflection loss evaluated at X-band frequency. XRD analysis of the filler particles were carried out to evaluate crystal structure, average crystallite diameter. Morphology of the filler particles were studied with FESEM. Hysteresis behavior of the ferrites samples were studied with Vibrating Sample Magnetometer. The most important parameter governing the absorption properties of microwave absorbers i.e. permittivity and permeability studied in a vector network analyzer. Measured reflection loss value of single-layer NiZn-ferrite based microwave absorber reaches -11.2 dB at 12.05 GHz. Whereas, reflection loss value of double-layer CoZn-ferrite/ TiO2 based microwave absorber reaches -24.3 dB at 12.02 GHz. The result shows that microwave absorption property and bandwidth of absorption of double-layer microwave absorber was found to improve comparison to single layer.

  18. Microwave absorption properties of Ni/(C, silicides) nanocapsules

    PubMed Central

    2012-01-01

    The microwave absorption properties of Ni/(C, silicides) nanocapsules prepared by an arc discharge method have been studied. The composition and the microstructure of the Ni/(C, silicides) nanocapsules were determined by means of X-ray diffraction, X-ray photoelectric spectroscopy, and transmission electron microscope observations. Silicides, in the forms of SiOx and SiC, mainly exist in the shells of the nanocapsules and result in a large amount of defects at the ‘core/shell’ interfaces as well as in the shells. The complex permittivity and microwave absorption properties of the Ni/(C, silicides) nanocapsules are improved by the doped silicides. Compared with those of Ni/C nanocapsules, the positions of maximum absorption peaks of the Ni/(C, silicides) nanocapsules exhibit large red shifts. An electric dipole model is proposed to explain this red shift phenomenon. PMID:22548846

  19. Impact of hydrogen forming gas annealing on microwave properties of Ba(Zn1/3Ta2/3)O3 dielectric ceramics

    NASA Astrophysics Data System (ADS)

    Sezer, N.; Saka, E.

    2016-03-01

    The effect of H2 forming gas annealing on the microwave properties of Ba(Zn1/3Ta2/3)O3 (BZT) dielectric ceramics has been studied. The structural, microwave, DC electrical and optical properties were analyzed by experiment results. With elevated temperature annealing, the microwave loss of BZT was increased. This trend correlated with high DC conductivity of annealed samples, as well as dampened phonons found in Raman spectra. These evidences, together, prove that the enhancement of oxygen vacancy defects induced by oxygen deficient sintering environment is one of the main extrinsic root causes for the high microwave loss in practical ceramic materials.

  20. Microwave conductance properties of aligned multiwall carbon nanotube textile sheets

    NASA Astrophysics Data System (ADS)

    Brown, Brian L.; Martinez, Patricia; Zakhidov, Anvar A.; Shaner, Eric A.; Lee, Mark

    2015-07-01

    Understanding the conductance properties of multi-walled carbon nanotube (MWNT) textile sheets in the microwave regime is essential for their potential use in high-speed and high-frequency applications. To expand current knowledge, complex high-frequency conductance measurements from 0.01 to 50 GHz and across temperatures from 4.2 K to 300 K and magnetic fields up to 2 T were made on textile sheets of highly aligned MWNTs with strand alignment oriented both parallel and perpendicular to the microwave electric field polarization. Sheets were drawn from 329 and 520 μm high MWNT forests that resulted in different DC resistance anisotropy. For all samples, the microwave conductance can be modeled approximately by a shunt capacitance in parallel with a frequency-independent conductance, but with no inductive contribution. This is consistent with diffusive Drude conduction as the primary transport mechanism up to 50 GHz. Further, it is found that the microwave conductance is essentially independent of both temperature and magnetic field.

  1. The microwave adsorption behavior and microwave-assisted heteroatoms doping of graphene-based nano-carbon materials.

    PubMed

    Tang, Pei; Hu, Gang; Gao, Yongjun; Li, Wenjing; Yao, Siyu; Liu, Zongyuan; Ma, Ding

    2014-08-11

    Microwave-assisted heating method is used to treat graphite oxide (GO), pyrolytic graphene oxide (PGO) and hydrogen-reduced pyrolytic graphene oxide (HPGO). Pure or doped graphene are prepared in the time of minutes and a thermal deoxygenization reduction mechanism is proposed to understand their microwave adsorption behaviors. These carbon materials are excellent catalysts in the reduction of nitrobenzene. The defects are believed to play an important role in the catalytic performance.

  2. The microwave adsorption behavior and microwave-assisted heteroatoms doping of graphene-based nano-carbon materials

    NASA Astrophysics Data System (ADS)

    Tang, Pei; Hu, Gang; Gao, Yongjun; Li, Wenjing; Yao, Siyu; Liu, Zongyuan; Ma, Ding

    2014-08-01

    Microwave-assisted heating method is used to treat graphite oxide (GO), pyrolytic graphene oxide (PGO) and hydrogen-reduced pyrolytic graphene oxide (HPGO). Pure or doped graphene are prepared in the time of minutes and a thermal deoxygenization reduction mechanism is proposed to understand their microwave adsorption behaviors. These carbon materials are excellent catalysts in the reduction of nitrobenzene. The defects are believed to play an important role in the catalytic performance.

  3. Materials properties data base computerization

    NASA Technical Reports Server (NTRS)

    Baur, R. G.; Donthnier, M. L.; Moran, M. C.; Mortman, I.; Pinter, R. S.

    1984-01-01

    Material property data plays a key role in the design of jet engine components. Consistency, accuracy and efficient use of material property data is of prime importance to the engineering community. The system conception, development, implementation, and future plans for computer software that captures the Material Properties Handbook into a scientific data base are described. The engineering community is given access to raw data and property curves, display of multiple curves for material evaluation and selection, direct access by design analysis computer programs, display of the material specification, and a historical repository for the material evolution. The impact of this activity includes significant productivity gains and cost reductions; all users have access to the same information nd provides consistent, rapid response to the needs of the engineering community. Future plans include incorporating the materials properties data base into a network environment to access information from other data bases and download information to engineering work stations.

  4. Dielectric Properties of Sol-Gel Derived Barium Strontium Titanate and Microwave Sintering of Ceramics

    NASA Astrophysics Data System (ADS)

    Selmi, Fathi A.

    This thesis consists of two areas of research: (1) sol-gel processing of Ba_{rm 1-x}Sr_{rm x} TiO_3 ceramics and their dielectric properties measurement; and (2) microwave versus conventional sintering of ceramics such as Al_2 O_3, Ba_{ rm 1-x}Sr_{rm x}TiO_3, Sb-doped SnO _2 and YBa_2Cu _3O_7. Sol-gel powders of BaTiO_3, SrTiO_3, and their solid solutions were synthesized by the hydrolysis of titanium isopropoxide and Ba and Sr methoxyethoxides. The loss tangent and dielectric constant of both sol-gel and conventionally prepared and sintered Ba_{rm 1-x}Sr _{rm x}TiO _3 ceramics were investigated at high frequencies. The sol-gel prepared ceramics showed higher dielectric constant and lower loss compared to those prepared conventionally. Ba _{rm 1-x}Sr _{rm x}TiO_3 ceramics were tunable with applied bias, indicating the potential use of this material for phase shifter applications. Porous Ba_{0.65}Sr _{0.35}TiO_3 was also investigated to lower the dielectric constant. Microwave sintering of alpha -Al_2O_3 and SrTiO_3 was investigated using an ordinary kitchen microwave oven (2.45 GHz; 600 Watts). The use of microwaves with good insulation of alpha -Al_2O_3 and SrTiO_3 samples resulted in their rapid sintering with good final densities of 96 and 98% of the theoretical density, respectively. A comparison of grain size for conventionally and microwave sintered SrTiO_3 samples did not show a noticeable difference. However, the grain size of microwave sintered alpha-Al_2O _3 was found to be larger than that of conventionally sintered sample. These results show that rapid sintering of ceramics can be achieved by using microwave radiation. The sintering behavior of coprecipitated Sb-doped SnO_2 was investigated using microwave power absorption. With microwave power, samples were sintered at 1450^circC for 20 minutes and showed a density as high as 99.9% of theoretical. However, samples fired in a conventional electric furnace at the same temperature for 4 hours showed only

  5. Fundamental Materials Studies for Advanced High Power Microwave and Terahertz Vacuum Electronic Radiation Sources

    DTIC Science & Technology

    2014-12-10

    Models for Microstrip Computer-Aided Design,” in Microwave Symposium Digest , 1980 IEEE MTT-S International, 1980, p. 407. [2] B.B. Yang, S.L...AFRL-OSR-VA-TR-2014-0359 Fundamental Materials Studies for Advanced High Power Microwave and Terahertz John Booske UNIVERSITY OF WISCONSIN SYSTEM...12-2014 Final Technical Performance Report October 1, 2011 - September 30, 2014 Fundamental Materials Studies for Advanced High Power Microwave and

  6. Surface modification of plasmonic nanostructured materials with thiolated oligonucleotides in 10 seconds using selective microwave heating

    PubMed Central

    Abel, Biebele; Aslan, Kadir

    2013-01-01

    This study demonstrates the proof-of-principle of rapid surface modification of plasmonic nanostructured materials with oligonucleotides using low power microwave heating. Due to their interesting optical and electronic properties, silver nanoparticle films (SNFs, 2 nm thick) deposited onto glass slides were used as the model plasmonic nanostructured materials. Rapid surface modification of SNFs with oligonucleotides was carried out using two strategies (1) Strategy 1: for ss-oligonucleotides, surface hybridization and (2) Strategy 2: for ds-oligonucleotides, solution hybridization), where the samples were exposed to 10, 15, 30 and 60 seconds microwave heating. To assess the efficacy of our new rapid surface modification technique, identical experiments carried out without the microwave heating (i.e., conventional method), which requires 24 hours for the completion of the identical steps. It was found that SNFs can be modified with ss- and ds-oligonucleotides in 10 seconds, which typically requires several hours of incubation time for the chemisorption of thiol groups on to the planar metal surface using conventional techniques. PMID:23645933

  7. Microwave axial dielectric properties of carbon fiber

    PubMed Central

    Hong, Wen; Xiao, Peng; Luo, Heng; Li, Zhuan

    2015-01-01

    Randomly distributed carbon fibers (CFs) reinforced epoxy resin composites are prepared by the pouring method, the dielectric properties of CF composites with different fiber content and length have been performed in the frequency range from 8.2 to 12.4 GHz. The complex permittivity of the composite increases with the fiber length, which is attributed to the decrease of depolarization field, and increases with the volume fraction, which is attributed to the increase of polarization. A formula, based on the theory of Reynolds-Hugh, is proposed to calculate the effective permittivity of CF composites, and validated by the experiments. The proposed formula is further applied to derive the axial permittivity of CF and analyze the effect of fiber length on the axial permittivity. PMID:26477579

  8. Optimisation of the electromagnetic matching of manganese dioxide/multi-wall carbon nanotube composites as dielectric microwave-absorbing materials

    NASA Astrophysics Data System (ADS)

    Ting, Tzu-Hao; Chiang, Chih-Chia; Lin, Po-Chuan; Lin, Chia-Huei

    2013-08-01

    An optimised composite sample was prepared using two dielectric materials manganese dioxide (MnO2) and multi-wall carbon nanotubes (MWNTs) in an epoxy-resin matrix. Structural characterisations of both the synthesised manganese dioxide (MnO2) and the multi-wall carbon nanotubes (MWNTs) were performed by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The microwave absorption properties of dielectric composites with different weight fractions of MnO2 were investigated by measuring the complex permittivity, the complex permeability and the reflection loss in the 2-18 and 18-40 GHz microwave frequency ranges using the free space method. The complex permittivity varied with the MnO2 content, and the results show that a high concentration of fillers increased the dielectric constant. Therefore, the appropriate combination of components and experimental conditions can produce materials with specific characteristic for use as wide-band microwave absorbers.

  9. Mechanical Properties of MEMS Materials

    DTIC Science & Technology

    2004-03-01

    thermal strain for polysilicon (data points) compared with bulk silicon (Thermophysical Properties of Matter, Volume 13, Y. S. Touloukian , Editor...AFRL-IF-RS-TR-2004-76 Final Technical Report March 2004 MECHANICAL PROPERTIES OF MEMS MATERIALS Johns Hopkins University...TITLE AND SUBTITLE MECHANICAL PROPERTIES OF MEMS MATERIALS 6. AUTHOR(S) W. N. Sharpe, Jr., K. J. Hemker - Dept of Mechanical Engineering R. L

  10. Microwave Ignited Combustion Synthesis as a Joining Technique for Dissimilar Materials

    NASA Astrophysics Data System (ADS)

    Rosa, Roberto; Colombini, Elena; Veronesi, Paolo; Poli, Giorgio; Leonelli, Cristina

    2012-05-01

    Microwave energy has been exploited to ignite combustion synthesis (CS) reactions of properly designed powders mixtures, in order to rapidly reach the joining between different kinds of materials, including metals (Titanium and Inconel) and ceramics (SiC). Beside the great advantage offered by CS itself, i.e., rapid and highly localized heat generation, the microwaves selectivity in being absorbed by micrometric metallic powders and not by bulk metallic components represents a further intriguing aspect in advanced materials joining applications, namely the possibility to avoid the exposition to high temperatures of the entire substrates to be joined. Moreover, in case of microwaves absorbing substrates, the competitive microwaves absorption by both substrates and powdered joining material, leads to the possibility of adhesion, interdiffusion and chemical bonding enhancements. In this study, both experimental and numerical simulation results are used to highlight the great potentialities of microwave ignited CS in the joining of advanced materials.

  11. Facile Synthesis of Fe3O4/GCs Composites and Their Enhanced Microwave Absorption Properties.

    PubMed

    Jian, Xian; Wu, Biao; Wei, Yufeng; Dou, Shi Xue; Wang, Xiaolin; He, Weidong; Mahmood, Nasir

    2016-03-09

    Graphene has good stability and adjustable dielectric properties along with tunable morphologies, and hence can be used to design novel and high-performance functional materials. Here, we have reported a facile synthesis method of nanoscale Fe3O4/graphene capsules (GCs) composites using the combination of catalytic chemical vapor deposition (CCVD) and hydrothermal process. The resulting composite has the advantage of unique morphology that offers better synergism among the Fe3O4 particles as well as particles and GCs. The microwave-absorbing characteristics of developed composites were investigated through experimentally measured electromagnetic properties and simulation studies based on the transmission line theory, explained on the basis of eddy current, natural and exchange resonance, as well as dielectric relaxation processes. The composites bear minimum RL value of -32 dB at 8.76 GHz along with the absorption bandwidth range from 5.4 to 17 GHz for RL lower than -10 dB. The better performance of the composite based on the reasonable impedance characteristic, existence of interfaces around the composites, and the polarization of free carriers in 3D GCs that make the as-prepared composites capable of absorbing microwave more effectively. These results offer an effective way to design high-performance functional materials to facilitate the research in electromagnetic shielding and microwave absorption.

  12. Snow property measurements correlative to microwave emission at 35 GHz

    NASA Technical Reports Server (NTRS)

    Davis, Robert E.; Dozier, Jeff; Chang, Alfred T. C.

    1987-01-01

    Snow microstructure, measured by plane section analysis, and snow wetness, measured by the dilution method, are used to calculate input parameters for a microwave emission model that uses the radiative transfer method. The scattering and absorbing properties are calculated by Mie theory. The effects of different equivalent sphere conversions, adjustments for near-field interference, and different snow wetness characterizations are compared for various snow conditions. The concentric shell geometry of liquid water in snow yields higher emissivities and better model results than the separate-sphere configuration for liquid water contents greater than 0.05, while at lower liquid water contents the separate-sphere treatment gives better results.

  13. Microwave absorption properties of graphite flakes-phenolic resin composite

    NASA Astrophysics Data System (ADS)

    Gogoi, Jyoti P.; Gogoi, Pragyan J.; Bhattacharyya, Nidhi S.

    2013-01-01

    In the present investigation, microwave absorption properties of a conductor back single layer designed on graphite flakes (GF)-novolac phenolic resin (NPR) composites is studied. The complex permittivity of the developed composite enhance for higher GF percentages. The reflection loss(RL) measured using E8362C VNA shows a maximum RL values -25 dB at 9.8 GHz for 7 wt. % composition with -10 dB bandwidth of 0.3 GHz. The developed composites are being light weight and cost effective shows potential to be used as dielectric absorber.

  14. Microwave properties of ice from The Great Lakes

    NASA Technical Reports Server (NTRS)

    Vickers, R. S.

    1975-01-01

    The increasing use of radar systems as remote sensors of ice thickness has revealed a lack of basic data on the microwave properties of fresh-water ice. A program, in which the complex dielectric constant was measured for a series of ice samples taken from the Great Lakes, is described. The measurements were taken at temperatures of -5, -10, and -15 C. It is noted that the ice has considerable internal layered structure, and the effects of the layering are examined. Values of 3.0 to 3.2 are reported for the real part of the dielectric constant, with an error bar of + or - 0.01.

  15. Digestion of titanium bearing geologic materials involving microwaves.

    PubMed

    Tripathi, Anju; Chattopadhyay, Partha

    2007-10-01

    An environmentally friendly and rapid digestion procedure involving 10 mL of acid mixture (HNO3 : HCl : HF = 2:2:1) for 0.1 g of sample in closed vessel microwave digester following heating program : 250W for 10 min., hold time 2 min., 600 W for 17 min, and Ventilation time 10 min was developed. The operating parameters were varied and optimized by factorial design approach using "Steepest Ascent" method. The validity of the recommended digestion procedure were examined by analyzing several well characterized standard reference materials such as diabase (W2), basalt (BIR-1, JB-3, BHVO-1), granite (G2), gabbro (JGb-1), Mn-nodule (Nod-A-1, Nod-P-1), sediment (STSD-4, LKSD-2), limestone (KH-2), soil (SAu-1), ilmenite (IGS-31), rutile (IGS-32), Zircon (IGS-35) and titanium dioxide (SRM-154b) employing both inductively coupled plasma-atomic emission spectrometry (ICP-AES) and well known spectrophotometric method. An excellent agreement between the methods and the certified values of standard reference materials suggest that the digestion procedure can be used for quality control and allied purposes.

  16. Tunable microwave absorbing nano-material for X-band applications

    NASA Astrophysics Data System (ADS)

    Sadiq, Imran; Naseem, Shahzad; Ashiq, Muhammad Naeem; Khan, M. A.; Niaz, Shanawer; Rana, M. U.

    2016-03-01

    The effect of rare earth elements substitution in Sr1.96RE0.04Co2Fe27.80Mn0.2O46 (RE=Ce, Gd, Nd, La and Sm) X-type hexagonal ferrites prepared by using sol gel autocombustion method was studied. The XRD and FTIR analysis show the single phase of the prepared material. The lattice constants a (Å) and c (Å) varies with the additives. The particle size measured by Scherer formula for all the samples varies in the range of 54-100 nm and confirmed by the TEM analysis. The average grain size measured by SEM analysis lies in the range of 0.672-1.01 μm for all the samples. The Gd-substituted ferrite has higher value of coercivity (526.06 G) among all the samples which could be a good material for longitudinal recording media. The results also indicate that the Gd-substituted sample has maximum reflection loss of -25.2 dB at 11.878 GHz, can exhibit the best microwave absorption properties among all the substituted samples. Furthermore, the minimum value of reflection loss shifts towards the lower and higher frequencies with the substitution of rare earth elements which confirms that the microwave absorption properties can be tuned with the substitution of rare earth elements in pure ferrites. The peak value of attenuation constant at higher frequency agrees well the reflection loss data.

  17. Controlled Synthesis and Microwave Absorption Property of Chain-Like Co Flower

    PubMed Central

    Wang, Chao; Hu, Surong; Han, Xijiang; Huang, Wen; Tian, Lunfu

    2013-01-01

    Chain-like Co flower is synthesized by simply modulating the reaction conditions via a facile liquid-phase reduction method. The morphology evolution process and transformation mechanism from particle to flower and finally to chain-like flower have been systematically investigated. [001] is the preferred growth orientation due to the existence of easy magnetic axis. The microwave loss mechanism can be attributed to the synergistic effect of magnetic loss and dielectric loss, while magnetic loss is the main loss mechanism. In addition, the special microstructure of chain-like Co flower may further enhance microwave attenuation. The architectural design of functional material morphology is critical for improving its property toward future application. PMID:23437073

  18. Microwave sintering studies on low loss (Zn, Mg)TiO3 dielectric resonator materials.

    PubMed

    Sirugudu, Roopas Kiran; Vemuri, Rama Krishna Murthy; Murty, B S

    2013-01-01

    Low dielectric loss Zn07Mg0.3TiO3 and MgTiO3 microwave dielectric resonators were prepared by the conventional solid state reaction method. The microwave interaction with these materials has been studied using both single-mode and multimode microwave furnaces operating at a frequency of 2.45 GHz. Microwave sintering could be achieved using a multimode microwave furnace only, whereas, interaction with a single-mode furnace showed plasma generation. Phase formation was observed by X-ray diffraction. Microwave dielectric characteristics such as dielectric constant (epsilon'), quality factor (Q x f) and temperature coefficient of resonant frequency (tauf) of microwave sintered samples were measured using a vector network analyzer and compared with conventional sintered ones. Microstructure of all the conventional and microwave sintered samples was observed using high resolution scanning electron microscope. Although epsilon' and tauf of the conventional and microwave sintered samples are found to be comparable, the quality factor (the vital characteristic of dielectric resonators) of microwave sintered samples are observed to be much lower than those obtained by conventional sintering. The difference in these values is discussed with respect to the grain size.

  19. Microwave applications and characterization of the microwave properties of high temperature superconducting films

    NASA Technical Reports Server (NTRS)

    Strayer, D. M.; Bautista, J. J.; Riley, A. L.; Dick, G. J.; Housley, R. L.

    1990-01-01

    The development by NASA JPL of high-temperature superconductors (HTSs) for use in microwave circuit elements is discussed. The synthesis of HTS films and characterization of their microwave absorption are reviewed. Applications to cryogenic low-noise receivers, spacecraft microwave systems, and low-noise oscillators are considered.

  20. Increasing of the endurance of polymeric construction materials with the multilevel hierarchical structure in the microwave electromagnetic field

    NASA Astrophysics Data System (ADS)

    Zlobina, I. V.; Muldasheva, G. K.; Bekrenev, N. V.

    2016-11-01

    Here are shown the results of the effect of the microwave electromagnetic field frequency 2450 MHz and the power density 4-5, 17-18, and 30-32 W/cm3 on properties of composite materials, reinforced plastics, and additive rubber. It is found that the microwave processing with the specific power 17-18 W/cm3 increases the duration of the operation of a rod carbon construction under a load by 1.5-4.5 times. The endurance of rods made of MBS plastics increases by 2-3 times under load. The yielding of sealing rubber after the treatment in the microwave electromagnetic field increases from 18 to 70% with the applied load. This increases the stability of the specimen characteristics after putting them at temperatures from -25 to +40°C.

  1. Microwave processed NiMg ferrite: Studies on structural and magnetic properties

    NASA Astrophysics Data System (ADS)

    Chandra Babu Naidu, K.; Madhuri, W.

    2016-12-01

    Ferrites are magnetic semiconductors realizing an important role in electrical and electronic circuits where electrical and magnetic property coupling is required. Though ferrite materials are known for a long time, there is a large scope in the improvement of their properties (vice sintering and frequency dependence of electrical and magnetic properties) with the current technological trends. Forth coming technology is aimed at miniaturization and smart gadgets, electrical components like inductors and transformers cannot be included in integrated circuits. These components are incorporated into the circuit as surface mount devices whose fabrication involves low temperature co-firing of ceramics and microwave monolithic integrated circuits technologies. These technologies demand low temperature sinter-ability of ferrites. This article presents low temperature microwave sintered Ni-Mg ferrites of general chemical formula Ni1-xMgxFe2O4 (x=0, 0.2, 0.4, 0.5, 0.6, 0.8, 1) for potential applications as transformer core materials. The series of ferrites are characterized using X-ray diffractometer, scanning electron microscopy, Fourier transform infrared and vibrating sample magnetometer for investigating structural, morphological and magnetic properties respectively. The initial permeability is studied with magnesium content, temperature and frequency in the temperature range of 308 K-873 K and 42 Hz-5 MHz.

  2. Microwave grafted, composite and coprocessed materials: drug delivery applications.

    PubMed

    Kaur, Loveleen; Singh, Inderbir

    2016-12-01

    Novel modified pharmaceutical materials with desired functionalities are required for the development of drug delivery systems. Excipients are no more inert ingredients but these are playing crucial roles in modifying physicochemical properties of drugs and for imparting desired functionalities in the delivery system. In this review article, modified materials such as grafted, composite and coprocessed have been discussed along with the updated reported literature on the same. Applications of grafted materials as drug release retardant, mucoadhesive polymer and tablet superdisintegrant have been elaborated. Use of composite materials in the development of transdermal films, hydrogels, microspheres, beads and nanoparticles have been discussed. Methods for the preparation of coprocessed materials along with commercial products of different coprocessed excipients have also been enlisted.

  3. Structure, composition and microwave dielectric properties of bismuth zinc niobate pyrochlore thin films

    NASA Astrophysics Data System (ADS)

    Wang, Zhao; Ren, Wei; Zhan, Xuelei; Shi, Peng; Wu, Xiaoqing

    2014-11-01

    (Bi1.5Zn0.5)(Zn0.5Nb1.5)O7 (BZN) pyrochlore thin films were deposited onto both Pt/TiO2/SiO2/Si and polycrystalline alumina substrates using pulsed laser deposition technique and then post-annealed using rapid thermal processing. The deposition temperature varies from 300 °C to 600 °C, and all the BZN films showed cubic pyrochlore structure after annealing at 650 °C for 30 min in air. The influence of the substrate associated with crystal structure is significant in the as-deposited films and disappears after post-annealing. The dielectric properties as a function of frequency up to the microwave frequency in both films were measured by LCR meter and split-post dielectric resonator technique. It is found that the BZN film deposited at 400 °C and post-annealed at 650 °C shows excellent dielectric properties with low loss in the microwave frequency range. This result indicates that the BZN thin film is a potential microwave material.

  4. Electromagnetic properties and microwave absorption properties of BaTiO 3-carbonyl iron composite in S and C bands

    NASA Astrophysics Data System (ADS)

    Rui-gang, Yang

    2011-07-01

    BaTiO3 powders are prepared by sol-gel method. The carbonyl iron powder is prepared via thermal decomposition of iron pentacarbonyl. Then BaTiO3-carbonyl iron composite with different mixture ratios was prepared using the as-prepared material. The structure, morphology, and properties of the composites are characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, scanning electron microscopy (SEM), and a network analyzer. The complex permittivity and reflection loss of the composites have been measured at different microwave frequencies in S- and C-bands employing vector network analyzer model PNA 3629D vector. The effect of the mass ratio of BaTiO3/carbonyl iron on the microwave loss properties of the composites is investigated. A possible microwave absorbing mechanism of BaTiO3-carbonyl iron composite has been proposed. The BaTiO3-carbonyl iron composite can find applications in suppression of electromagnetic interference, and reduction of radar signature.

  5. Studies of snowpack properties by passive microwave radiometry

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Hall, D. K.; Foster, J. L.; Rango, A.; Schmugge, T. J.

    1979-01-01

    Research involving the microwave characteristics of snow was undertaken in order to expand the information content currently available from remote sensing, namely the measurement of snowcovered area. Microwave radiation emitted from beneath the snow surface can be sensed and thus permits information on internal snowpack properties to be inferred. The intensity of radiation received is a function of the average temperature and emissivity of the snow layers and is commonly referred to as the brightness temperature (T sub B). The T sub B varies with snow grain and crystal sizes, liquid water content, and snowpack temperature. The T sub B of the 0.8 cm wavelength channel was found to decrease more so with increasing snow depth than the 1.4 cm channel. More scattering of the shorter wavelength radiation occurs thus resulting in a lower T sub B for shorter wavelengths in a dry snowpack. The longer 21.0 cm wavelength was used to assess the condition of the underlying ground.

  6. Studies of snowpack properties by passive microwave radiometry

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Hall, D. K.; Foster, J. L.; Rango, A.; Schmugge, T. J.

    1978-01-01

    Research involving the microwave characteristics of snow was undertaken in order to expand the information content currently available from remote sensing, namely the measurement of snowcovered area. Microwave radiation emitted from beneath the snow surface can be sensed and thus permits information on internal snowpack properties to be inferred. The intensity of radiation received is a function of the average temperature and emissivity of the snow layers and is commonly referred to as the brightness temperature (T sub b). The T sub b varies with snow grain and crystal sizes, liquid water content and snowpack temperature. The T sub b of the 0.8 cm wavelength channel was found to decrease moreso with increasing snow depth than the 1.4 cm channel. More scattering of the shorter wavelength radiation occurs thus resulting in a lower T sub b for shorter wavelengths in a dry snowpack. The longer 21.0 cm wavelength was used to assess the condition of the underlying ground. Ultimately it may be possible to estimate snow volume over large areas using calibrated brightness temperatures and consequently improve snowmelt runoff predictions.

  7. Microwave assisted synthesis & properties of nano HA-TCP biphasic calcium phosphate

    NASA Astrophysics Data System (ADS)

    Ghomash Pasand, E.; Nemati, A.; Solati-Hashjin, M.; Arzani, K.; Farzadi, A.

    2012-05-01

    Biphasic calcium phosphate (BCP) nanopowders were synthesized by using microwave and non-microwave irradiation assisted processes. The synthesized powders were pressed under a pressure of 90 MPa, and then were sintered at 1000-1200°C for 1 h. The mechanical properties of the samples were investigated. The formed phases and microstructures were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the synthesis time was shorter, along with a more homogeneous microstructure, when the microwave irradiation assisted method was applied. The compression strength and the Young's modulus of the samples synthesized with microwave irradiation were about 60 MPa and 3 GPa, but those of the samples synthesized without microwave irradiation were about 30 MPa and 2 GPa, respectively. XRD patterns of the microwave irradiation assisted and non-microwave irradiation assisted nanopowders showed the coexistence of hydroxyapatite (HA) and tricalcium phosphate (TCP) phases in the system.

  8. The structural, magnetic and microwave properties of spherical and flake shaped carbonyl iron particles as thin multilayer microwave absorbers

    NASA Astrophysics Data System (ADS)

    Khani, Omid; Shoushtari, Morteza Zargar; Ackland, Karl; Stamenov, Plamen

    2017-04-01

    An increase in microwave permeability is a prerequisite for reducing the thickness of radar absorber coatings. The aim of this paper is to increase the magnetic loss of commercial carbonyl iron particles for fabricating wideband microwave absorbers with a multilayer structure. For this purpose, carbonyl iron particles were milled and their static and dynamic magnetic properties were studied before and after milling. A distinct morphological change from spherical to flake-like particles is measured with increased milling time, whereas no distinct changes in magnetic properties are measured with increased milling time. The imaginary part of the permeability (μ״) of the milled carbonyl iron particles increased from 1.23 to 1.88 and showed a very broad peak over the entire frequency range 1-18 GHz. The experimental results were modeled using the Rousselle effective medium theory (EMT) in the Neo formulation. The theoretical predictions showed good agreement with the experimental results. Two layer absorbers were designed according to the measured microwave parameters and the multilayer design. The results revealed that a thin multilayer with a thickness of 1.75 mm can effectively absorb microwaves in both the entire X and Ku frequency bands. The results suggest that microwave absorbers with excellent absorption properties could be mass-produced, using commercial carbonyl iron particles.

  9. [Effect of microwave on migration in the model environment of chemicals from materials that come into contact with foodstuffs].

    PubMed

    Aĭdinov, G V; Istomin, A V; Simileĭskaia, B S; Klimenko, O V; Berezina, T A; Efimushkina, L I

    2011-01-01

    Under the influence of microwaves is migration of chemical and metals used in manufacture for these furnaces. This confirms the need for research to develop modes of training materials used in the manufacture of utensils used in microwave ovens.

  10. Properties of aircraft tire materials

    NASA Technical Reports Server (NTRS)

    Dodge, Richard N.; Clark, Samuel K.

    1988-01-01

    A summary is presented of measured elastomeric composite response suitable for linear structural and thermoelastic analysis in aircraft tires. Both real and loss properties are presented for a variety of operating conditions including the effects of temperature and frequency. Suitable micro-mechanics models are used for predictions of these properties for other material combinations and the applicability of laminate theory is discussed relative to measured values.

  11. Research of microwave scattering properties of snow fields

    NASA Technical Reports Server (NTRS)

    Angelakos, D. J.

    1978-01-01

    The results obtained in the research program of microwave scattering properties of snow fields are presented. Experimental results are presented showing backscatter dependence on frequency (5.8-8.0 GHz), angle of incidence (0-60 degrees), snow wetness (time of day), and frequency modulation (0-500 MHz). Theoretical studies are being made of the inverse scattering problem yielding some preliminary results concerning the determination of the dielectric constant of the snow layer. The experimental results lead to the following conclusions: snow layering affects backscatter, layer response is significant up to 45 degrees of incidence, wetness modifies snow layer effects, frequency modulation masks the layer response, and for the proper choice of probing frequency and for nominal snow depths, it appears to be possible to measure the effective dielectric constant and the corresponding water content of a snow pack.

  12. Estimation of soil hydraulic properties with microwave techniques

    NASA Technical Reports Server (NTRS)

    Oneill, P. E.; Gurney, R. J.; Camillo, P. J.

    1985-01-01

    Useful quantitative information about soil properties may be obtained by calibrating energy and moisture balance models with remotely sensed data. A soil physics model solves heat and moisture flux equations in the soil profile and is driven by the surface energy balance. Model generated surface temperature and soil moisture and temperature profiles are then used in a microwave emission model to predict the soil brightness temperature. The model hydraulic parameters are varied until the predicted temperatures agree with the remotely sensed values. This method is used to estimate values for saturated hydraulic conductivity, saturated matrix potential, and a soil texture parameter. The conductivity agreed well with a value measured with an infiltration ring and the other parameters agreed with values in the literature.

  13. Synthesis, Characterization, and Microwave Absorption Properties of Reduced Graphene Oxide/Strontium Ferrite/Polyaniline Nanocomposites.

    PubMed

    Luo, Juhua; Shen, Pan; Yao, Wei; Jiang, Cuifeng; Xu, Jianguang

    2016-12-01

    Strontium ferrite nanoparticles were prepared by a coprecipitation method, and reduced graphene oxide/strontium ferrite/polyaniline (R-GO/SF/PANI) ternary nanocomposites were prepared by in situ polymerization method. The morphology, structure, and magnetic properties of the ternary nanocomposites were investigated by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), TEM, Raman, and VSM. The microwave-absorbing properties of the composites were measured by a vector network analyzer. The XRD patterns show the single phase of strontium hexaferrite without other intermediate phases. TEM photographs reveal that strontium ferrite nanoparticles are uniformly dispersed on the surfaces of R-GO sheets. The R-GO/SF/PANI nanocomposite exhibited the best absorption property with the optimum matching thickness of 1.5 mm in the frequency of 2-18 GHz. The value of the maximum RL was -45.00 dB at 16.08 GHz with the 5.48-GHz bandwidth. The excellent absorption properties of R-GO/SF/PANI nanocomposites indicated their great potential as microwave-absorbing materials.

  14. Synthesis, Characterization, and Microwave Absorption Properties of Reduced Graphene Oxide/Strontium Ferrite/Polyaniline Nanocomposites

    NASA Astrophysics Data System (ADS)

    Luo, Juhua; Shen, Pan; Yao, Wei; Jiang, Cuifeng; Xu, Jianguang

    2016-03-01

    Strontium ferrite nanoparticles were prepared by a coprecipitation method, and reduced graphene oxide/strontium ferrite/polyaniline (R-GO/SF/PANI) ternary nanocomposites were prepared by in situ polymerization method. The morphology, structure, and magnetic properties of the ternary nanocomposites were investigated by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), TEM, Raman, and VSM. The microwave-absorbing properties of the composites were measured by a vector network analyzer. The XRD patterns show the single phase of strontium hexaferrite without other intermediate phases. TEM photographs reveal that strontium ferrite nanoparticles are uniformly dispersed on the surfaces of R-GO sheets. The R-GO/SF/PANI nanocomposite exhibited the best absorption property with the optimum matching thickness of 1.5 mm in the frequency of 2-18 GHz. The value of the maximum RL was -45.00 dB at 16.08 GHz with the 5.48-GHz bandwidth. The excellent absorption properties of R-GO/SF/PANI nanocomposites indicated their great potential as microwave-absorbing materials.

  15. Metal-free carbon nanotubes: synthesis, and enhanced intrinsic microwave absorption properties

    PubMed Central

    Qi, Xiaosi; Xu, Jianle; Hu, Qi; Deng, Yu; Xie, Ren; Jiang, Yang; Zhong, Wei; Du, Youwei

    2016-01-01

    In order to clearly understand the intrinsic microwave absorption properties of carbon nanomaterials, we proposed an efficient strategy to synthesize high purity metal-free carbon nanotubes (CNTs) over water-soluble K2CO3 particles through chemical vapor decomposition and water-washing process. The comparison results indicated the leftover catalyst caused negative effects in intrinsic microwave absorption properties of CNTs, while an enhanced microwave absorption performance could be observed over the metal-free CNT sample. Moreover, the results indicated that the microwave absorption properties could be tuned by the CNT content. Therefore, we provided a simple route to investigate the intrinsic properties of CNTs and a possible enhanced microwave absorbing mechanism. PMID:27324290

  16. Metal-free carbon nanotubes: synthesis, and enhanced intrinsic microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Qi, Xiaosi; Xu, Jianle; Hu, Qi; Deng, Yu; Xie, Ren; Jiang, Yang; Zhong, Wei; Du, Youwei

    2016-06-01

    In order to clearly understand the intrinsic microwave absorption properties of carbon nanomaterials, we proposed an efficient strategy to synthesize high purity metal-free carbon nanotubes (CNTs) over water-soluble K2CO3 particles through chemical vapor decomposition and water-washing process. The comparison results indicated the leftover catalyst caused negative effects in intrinsic microwave absorption properties of CNTs, while an enhanced microwave absorption performance could be observed over the metal-free CNT sample. Moreover, the results indicated that the microwave absorption properties could be tuned by the CNT content. Therefore, we provided a simple route to investigate the intrinsic properties of CNTs and a possible enhanced microwave absorbing mechanism.

  17. Design of an ellipsoidal mirror for freewave characterization of materials at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Rojo, M.; Muñoz, J.; Molina-Cuberos, G. J.; García-Collado, Á. J.; Margineda, J.

    2016-03-01

    Free-wave characterization of the electromagnetic properties of materials at microwave frequencies requires that scattering at the edges of the samples and/or holder be minimized. Here, an ellipsoidal mirror is designed and characterized in order to decrease the size of the beam, thereby avoiding the scattering problems, even when relatively small samples are used. In the experimental configuration, both the emitting antenna and sample are located at the mirror focuses. Since both the emitted and reflected (focused) beams are Gaussian in nature, we make use of Gaussian beam theory to carry out the design. The mirror parameters are optimized by numerical simulations (COMSOL Multiphysics®) and then experimentally tested. An experimental setup is presented for dielectric, magnetic and chiral measurement in the 4.5-18 GHz band.

  18. Microwave absorption properties of FeCo-coated carbon fibers with varying morphologies

    NASA Astrophysics Data System (ADS)

    Wan, Yizao; Xiao, Jian; Li, Chunzhi; Xiong, Guangyao; Guo, Ruisong; Li, Lili; Han, Ming; Luo, Honglin

    2016-02-01

    Hybridizing carbon materials with magnetic metals and oxides has attracted much attention for enhanced microwave absorption. In this study, a magnetic Fe-Co alloy was coated on the surface of carbon fibers (FeCo@CFs) by electrodeposition. For the first time, different Fe-Co coating morphologies (thin plate, irregular particle, and pyramid) were obtained by adjusting the plating temperature. The morphology, structure, magnetic properties, and complex permittivity and permeability of the FeCo@CFs were determined as a function of plating temperature. Results show that the FeCo@CFs with different coating morphologies exhibit different magnetic properties and complex permittivity. The FeCo@CFs with plate-like morphology demonstrate the best absorption performance. It has been shown that the absorption of FeCo@CFs can be controlled by adjusting the morphology of Fe-Co coating, which provides a new and effective way to endow Fe-Co-coated carbon fibers with good microwave absorption properties.

  19. Satellite material contaminant optical properties

    NASA Technical Reports Server (NTRS)

    Wood, B. E.; Bertrand, W. T.; Seiber, B. L.; Kiech, E. L.; Falco, P. M.; Holt, J. D.

    1990-01-01

    The Air Force Wright Research and Development Center and the Arnold Engineering Development Center are continuing a program for measuring optical effects of satellite material outgassing products on cryo-optic surfaces. Presented here are infrared (4000 to 700 cm(-1)) transmittance data for contaminant films condensed on a 77 K geranium window. From the transmittance data, the contaminant film refractive and absorptive indices (n, k) were derived using an analytical thin-film interference model with a nonlinear least-squares algorithm. To date 19 materials have been studied with the optical contents determined for 13 of those. The materials include adhesives, paints, composites, films, and lubricants. This program is continuing and properties for other materials will be available in the future.

  20. Microwave synthesis and electrochemical properties of lithium manganese borate as cathode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Ma, Ting; Muslim, Arzugul; Su, Zhi

    2015-05-01

    Nano structured LiMnBO3/C cathode materials are synthesized by a fast microwave solid-state reaction method using MnCO3, Li2CO3, H3BO3 and glucose as starting materials for the first time. The crystal structure, morphology and electrochemical properties of LiMnBO3/C composites are characterized by X-ray diffraction (XRD), raman spectroscopy (Ramon), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and charge-discharge tests. The result shows that not only monoclinic LiMnBO3/C but also hexagonal LiMnBO3/C cathode materials can be successfully synthesized by microwave solid-state method with power of 240 W in different time. Compared with h-LiMnBO3/C and mixed phase LiMnBO3/C, m-LiMnBO3/C displays lower charge-transfer resistance and the Warburg impedance, so it reveals a higher first discharge capacity of 156.3 mAh g-1 at 0.05 C within 1.8V-4.6 V, The value increases up to 173.2 mAh g-1 caused by the activation process. Even after 50 cycles, the discharge capacity of m-LiMnBO3/C still remains at 148.2 mAh g-1.

  1. Investigations of Non-Thermal Interactions Between Microwave Fields and Ionic Ceramic Materials

    NASA Astrophysics Data System (ADS)

    Freeman, Samuel Anthony

    Reports of enhanced mass transport and solid-state reaction rates during microwave processing have been reported in the literature for a variety of ceramic, glass, and polymer materials. These empirical observations of microwave enhancements have been broadly called the "microwave effect," even though no satisfactory theory existed to explain them. This dissertation describes a series of theoretical and experimental investigations of possible causes for enhanced mass transport in ceramic materials heated in microwave furnaces. The scientific method followed was to examine many of the assumptions used (either implicitly or explicitly) in the models and rate equations of mass transport processes and to challenge some of these assumptions in light of the conditions existing in microwave-heated materials. the investigations fall into two categories: (1) studies of enhanced mass transport coefficients; and (2) studies of enhanced driving forces. The investigations of increased transport coefficients first considered two temperature issues. Temperature measurement of a microwave-heated object is nontrivial, and so some consideration of temperature mismeasurement effects is described. Furthermore, the average thermal energy may not be completely related to the probability of high-energy diffusion events; therefore the possibility of athermal energy distributions is examined. Finally, the microwave field effects on activation energy barriers (and therefore diffusion probabilities) is considered. Experimental investigations of these effects using ionic current measurements is also described. Both the theoretical an experimental results indicate that transport coefficients are not affected by microwave heating, although temperature mismeasurement can account for some apparent enhancement. For microwave-enhanced driving forces, transport driven by temperature gradients in microwave-heated bodies is first examined and found to be unimportant. However, a new model for a

  2. Manufacture of electrical and magnetic graded and anisotropic materials for novel manipulations of microwaves

    PubMed Central

    Grant, P. S.; Castles, F.; Lei, Q.; Wang, Y.; Janurudin, J. M.; Isakov, D.; Speller, S.; Dancer, C.; Grovenor, C. R. M.

    2015-01-01

    Spatial transformations (ST) provide a design framework to generate a required spatial distribution of electrical and magnetic properties of materials to effect manipulations of electromagnetic waves. To obtain the electromagnetic properties required by these designs, the most common materials approach has involved periodic arrays of metal-containing subwavelength elements. While aspects of ST theory have been confirmed using these structures, they are often disadvantaged by narrowband operation, high losses and difficulties in implementation. An all-dielectric approach involves weaker interactions with applied fields, but may offer more flexibility for practical implementation. This paper investigates manufacturing approaches to produce composite materials that may be conveniently arranged spatially, according to ST-based designs. A key aim is to highlight the limitations and possibilities of various manufacturing approaches, to constrain designs to those that may be achievable. The article focuses on polymer-based nano- and microcomposites in which interactions with microwaves are achieved by loading the polymers with high-permittivity and high-permeability particles, and manufacturing approaches based on spray deposition, extrusion, casting and additive manufacture. PMID:26217051

  3. Tunable dielectric properties and excellent microwave absorbing properties of elliptical Fe3O4 nanorings

    NASA Astrophysics Data System (ADS)

    Tong, Guoxiu; Liu, Yun; Cui, Tingting; Li, Yana; Zhao, Yanting; Guan, Jianguo

    2016-02-01

    Elliptical Fe3O4 nanorings (NRs) with continuously tunable axes that range from 40 nm to 145 nm in length were prepared through a precursor-directed synthetic route to determine the electromagnetic responses generated at 2-18 GHz. The tunability of the dielectric properties of Fe3O4 NRs depends on the long axis rather than on the specific surface area, internal stress, and grain size. Elliptical Fe3O4 NRs exhibit the excellent microwave absorbing properties due to the unique ring-like configuration, which significantly enhances permittivity, multiple scattering, oscillation resonance absorption, microantenna radiation, and interference. These findings indicate that ring-like nanostructures are promising for devising effective microwave absorbers.

  4. Monitoring snowpack properties by passive microwave sensors on board of aircraft and satellites

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Foster, J. L.; Hall, D. K.; Rango, A.

    1980-01-01

    Snowpack properties such as water equivalent and snow wetness may be inferred from variations in measured microwave brightness temperatures. This is because the emerged microwave radiation interacts directly with snow crystals within the snowpack. Using vertically and horizontally polarized brightness temperatures obtained from the multifrequency microwave radiometer (MFMR) on board a NASA research aircraft and the electrical scanning microwave radiometer (ESMR) and scanning multichannel microwave radiometer (SMMR) on board the Nimbus 5, 6, and 7 satellites, linear relationships between snow depth or water equivalent and microwave brightness temperature were developed. The presence of melt water in the snowpack generally increases the brightness temperatures, which can be used to predict snowpack priming and timing of runoff.

  5. Dynamic properties of ceramic materials

    SciTech Connect

    Grady, D.E.; Wise, J.L.

    1993-09-01

    Controlled impact methods have been employed to obtain dynamic response properties of armor materials. Experimental data have been obtained for high-strength ceramics. Continued analysis of time-resolved velocity interferometer measurements has produced systematic material-property data for Hugoniot and release response, initial and post-yield strength, pressure-induced phase transformation, and dynamic fracture strength. A new technique has been developed to measure hydrodynamic properties of ceramic through shock-wave experiments on metal-ceramic composites and data obtained for silicon carbide. Additional data on several titanium diboride ceramics and high-quality aluminum oxide ceramic have been acquired, and issues regarding the influence of microstructure on dynamic properties have emerged. Comparison of dynamic (Hugoniot elastic limit) strength and indentation hardness data has been performed and important correlations revealed. Innovative impact experiments on confined and unconfined alumina rods using axial and transverse VISAR diagnostics have been demonstrated which permit acquisition of multiaxial dynamic response data. Dynamic failure properties of a high-density aluminosilicate glass, similar in composition to the intergranular glassy phase of some aluminas, have been investigated with regard to yield, spall, and failure-wave propagation.

  6. Mechanical, Dielectric, and Microwave-Absorption Properties of Alumina Ceramic Containing Dispersed Ti3SiC2

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Luo, Fa; Su, Jinbu; Zhou, Wancheng; Zhu, Dongmei

    2015-03-01

    Dense Al2O3 ceramics containing dispersed Ti3SiC2 were fabricated by hot-pressed sintering. Effects of Ti3SiC2 content on the mechanical, dielectric, and microwave-absorption properties of the ceramics were investigated. The bulk density, flexural strength, and dielectric constant were enhanced by increasing the Ti3SiC2 content. The complex permittivity increased dramatically when the Ti3SiC2 content was above the percolation threshold. The dielectric performance of the ceramics at high temperatures was also studied. The results revealed increases in both the real and imaginary parts with increasing temperature. Ceramic 2.2 mm thick containing 10% ( w/ w) Ti3SiC2 had the optimum microwave-absorption properties. The absorption bandwidth below -5 dB was in the range 8.2-12.4 GHz with a minimum value of -20 dB at 9.56 GHz. Although the reflection loss increased with the increasing temperature, the ceramic still had favorable microwave-absorption properties throughout the X-band. This study contributes to the development of the microwave absorption materials for high-temperature application.

  7. The research of ceramic materials for applications in the glass industry including microwave heating techniques

    NASA Astrophysics Data System (ADS)

    Kogut, K.; Kasprzyk, K.; Zboromirska-Wnukiewicz, B.; Ruziewicz, T.

    2016-02-01

    The melting of a glass is a very energy-intensive process. Selection of energy sources, the heating technique and the method of heating recovery are a fundamental issue from the furnace design point of view of and economic effectiveness of the process. In these processes the problem constitutes the lack of the appropriate ceramic materials that would meet the requirements. In this work the standard ceramic materials were examined and verified. The possibilities of application of microwave techniques were evaluated. In addition the requirements regarding the parameters of new ceramic materials applied for microwave technologies were determined.

  8. Microwave Sintering of Bi2Te3- and PbTe-Based Alloys: Structure and Thermoelectric Properties

    NASA Astrophysics Data System (ADS)

    Arreguin-Zavala, J.; Vasilevskiy, D.; Turenne, S.; Masut, R. A.

    2013-07-01

    Microwave sintering is well known as an expeditious process in applications involving ceramics and biomaterials. For powders in the nanometer range, rapid microwave heating could reduce material exposure to elevated temperatures, thus preserving nanostructures in the resulting materials. To investigate the potential of this technique for thermoelectric (TE) materials, we have prepared samples of bismuth-telluride- and lead-telluride-based alloys from powders, for both materials, having sizes of partially agglomerated particles distributed from 0.15 μm to 7 μm. Sintering of the cold-pressed powders was carried out in a microwave furnace for 900 s at temperatures in the range of 583 K to 623 K for bismuth telluride and 793 K to 813 K for lead telluride specimens. For optimized sintering times and temperatures, the samples obtained showed relative densities of almost 95%. Scanning electron microscopy shows some residual porosity and a reduction of grain size, up to a factor of 5 for PbTe, compared with optimized hot-extruded specimens. For bismuth telluride samples, the TE performance in the range of 300 K to 460 K is poor, which is attributed to the arbitrary texture obtained from cold pressing of a highly anisotropic alloy prior to its sintering. In contrast, PbTe exhibits isotropic properties, hence deficiency of texturing is not expected to have a negative impact on its TE properties. Harman measurements show a value of ZT = 0.42 at 617 K for PbTe p-type sintered samples, which is comparable to hot-extruded alloys from similar powders. The present work demonstrates that microwave sintering is a promising alternative to other powder consolidation techniques for polycrystalline materials exhibiting isotropic TE properties.

  9. Novel materials, fabrication techniques and algorithms for microwave and THz components, systems and applications

    NASA Astrophysics Data System (ADS)

    Liang, Min

    This dissertation presents the investigation of several additive manufactured components in RF and THz frequency, as well as the applications of gradient index lens based direction of arrival (DOA) estimation system and broadband electronically beam scanning system. Also, a polymer matrix composite method to achieve artificially controlled effective dielectric properties for 3D printing material is studied. Moreover, the characterization of carbon based nano-materials at microwave and THz frequency, photoconductive antenna array based Terahertz time-domain spectroscopy (THz-TDS) near field imaging system, and a compressive sensing based microwave imaging system is discussed in this dissertation. First, the design, fabrication and characterization of several 3D printed components in microwave and THz frequency are presented. These components include 3D printed broadband Luneburg lens, 3D printed patch antenna, 3D printed multilayer microstrip line structure with vertical transition, THz all-dielectric EMXT waveguide to planar microstrip transition structure and 3D printed dielectric reflectarrays. Second, the additive manufactured 3D Luneburg Lens is employed for DOA estimation application. Using the special property of a Luneburg lens that every point on the surface of the Lens is the focal point of a plane wave incident from the opposite side, 36 detectors are mounted around the surface of the lens to estimate the direction of arrival (DOA) of a microwave signal. The direction finding results using a correlation algorithm show that the averaged error is smaller than 1º for all 360 degree incident angles. Third, a novel broadband electronic scanning system based on Luneburg lens phased array structure is reported. The radiation elements of the phased array are mounted around the surface of a Luneburg lens. By controlling the phase and amplitude of only a few adjacent elements, electronic beam scanning with various radiation patterns can be easily achieved

  10. Mechanisms of Microwave Induced Damage in Biologic Materials

    DTIC Science & Technology

    1992-10-01

    Logarithmically growing cultures of murine L929 cells were maintained in Eagle’s minimum essential culture medium with 5 % fetal bovine serum. Daudi cells were...grown in RPMI 1640 medium supplemented with 20% fetal bovine serum. Cells were plated 24 h prior to microwave exposure. To avoid serum stimulation of ODC...growing cultures of murine L929 cells, maintained in Eagle’s minimum essential culture medium with 5% fetal bovine serum, were plated 24 h prior to

  11. Microwave-assisted synthesis and antioxidant properties of hydrazinyl thiazolyl coumarin derivatives

    PubMed Central

    2012-01-01

    Background Coumarin derivatives exhibit a wide range of biological properties including promising antioxidant activity. Furthermore, microwave-assisted organic synthesis has delivered rapid routes to N- and O-containing heterocycles, including coumarins and thiazoles. Combining these features, the use of microwave-assisted processes will provide rapid access to a targeted coumarin library bearing a hydrazino pharmacophore for evaluation of antioxidant properties Results Microwave irradiation promoted 3 of the 4 steps in a rapid, convergent synthesis of a small library of hydrazinyl thiazolyl coumarin derivatives, all of which exhibited significant antioxidant activity comparable to that of the natural antioxidant quercetin, as established by DPPH and ABTS radical assays Conclusions Microwave dielectric heating provides a rapid and expedient route to a series of hydrazinyl thiazolyl coumarins to investigate their radical scavenging properties. Given their favourable properties, in comparison with known antioxidants, these coumarin derivatives are promising leads for further development and optimization. PMID:22510146

  12. Microwave plasma chemical synthesis of nanocrystalline carbon film structures and study their properties

    NASA Astrophysics Data System (ADS)

    Bushuev, N.; Yafarov, R.; Timoshenkov, V.; Orlov, S.; Starykh, D.

    2015-08-01

    The self-organization effect of diamond nanocrystals in polymer-graphite and carbon films is detected. The carbon materials deposition was carried from ethanol vapors out at low pressure using a highly non-equilibrium microwave plasma. Deposition processes of carbon film structures (diamond, graphite, graphene) is defined. Deposition processes of nanocrystalline structures containing diamond and graphite phases in different volume ratios is identified. The solid film was obtained under different conditions of microwave plasma chemical synthesis. We investigated the electrical properties of the nanocrystalline carbon films and identified it's from various factors. Influence of diamond-graphite film deposition mode in non-equilibrium microwave plasma at low pressure on emission characteristics was established. This effect is justified using the cluster model of the structure of amorphous carbon. It was shown that the reduction of bound hydrogen in carbon structures leads to a decrease in the threshold electric field of emission from 20-30 V/m to 5 V/m. Reducing the operating voltage field emission can improve mechanical stability of the synthesized film diamond-graphite emitters. Current density emission at least 20 A/cm2 was obtained. Nanocrystalline carbon film materials can be used to create a variety of functional elements in micro- and nanoelectronics and photonics such as cold electron source for emission in vacuum devices, photonic devices, cathodoluminescent flat display, highly efficient white light sources. The obtained graphene carbon net structure (with a net size about 6 μm) may be used for the manufacture of large-area transparent electrode for solar cells and cathodoluminescent light sources

  13. Toward carbon-nanotube-based theranostic agents for microwave detection and treatment of breast cancer: enhanced dielectric and heating response of tissue-mimicking materials.

    PubMed

    Mashal, Alireza; Sitharaman, Balaji; Li, Xu; Avti, Pramod K; Sahakian, Alan V; Booske, John H; Hagness, Susan C

    2010-08-01

    The experimental results reported in this paper suggest that single-walled carbon nanotubes (SWCNTs) have the potential to enhance dielectric contrast between malignant and normal tissue for microwave detection of breast cancer and facilitate selective heating of malignant tissue for microwave hyperthermia treatment of breast cancer. In this study, we constructed tissue-mimicking materials with varying concentrations of SWCNTs and characterized their dielectric properties and heating response. At SWCNT concentrations of less than 0.5% by weight, we observed significant increases in the relative permittivity and effective conductivity. In microwave heating experiments, we observed significantly greater temperature increases in mixtures containing SWCNTs. These temperature increases scaled linearly with the effective conductivity of the mixtures. This work is a first step towards the development of functionalized, tumor-targeting SWCNTs as theranostic (integrated therapeutic and diagnostic) agents for microwave breast cancer detection and treatment.

  14. Microstructural and mechanical properties of camel longissimus dorsi muscle during roasting, braising and microwave heating.

    PubMed

    Yarmand, M S; Nikmaram, P; Djomeh, Z Emam; Homayouni, A

    2013-10-01

    This study was conducted to investigate the effects of various heating methods, including roasting, braising and microwave heating, on mechanical properties and microstructure of longissimus dorsi (LD) muscle of the camel. Shear value and compression force increased during microwave heating more than roasting and braising. Results obtained from scanning electron microscopy (SEM) showed more damage from roasting than in either braising or microwave heating. Granulation and fragmentation were clear in muscle fibers after roasting. The perimysium membrane of connective tissue was damaged during braising, while roasting left the perimysium membrane largely intact. The mechanical properties and microstructure of muscle can be affected by changes in water content during cooking.

  15. Study of Opto-electronic Properties of a Single Microtubule in the Microwave Regime

    DTIC Science & Technology

    2013-01-09

    Annual Report for AOARD Grant FA2386-11-1-0001 “Research Title” Study of opto-electronic properties of a single microtubule in the microwave regime...SUBTITLE Study of opto-electronic properties of a single microtubule in the microwave regime 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...signature [porcine (brain neuron), human (MCF 7 active breast cancer cell), fungi 26 (Agaricus bisporus mashroom,) and plant (six days old soybean

  16. High temperature acoustic and hybrid microwave/acoustic levitators for materials processing

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin

    1990-01-01

    The physical acoustics group at the Jet Propulsion Laboratory developed a single mode acoustic levitator technique for advanced containerless materials processing. The technique was successfully demonstrated in ground based studies to temperatures of about 1000 C in a uniform temperature furnace environment and to temperatures of about 1500 C using laser beams to locally heat the sample. Researchers are evaluating microwaves as a more efficient means than lasers for locally heating a positioned sample. Recent tests of a prototype single mode hybrid microwave/acoustic levitator successfully demonstrated the feasibility of using microwave power as a heating source. The potential advantages of combining acoustic positioning forces and microwave heating for containerless processing investigations are presented in outline form.

  17. Microcrystalline-cellulose and polypropylene based composite: A simple, selective and effective material for microwavable packaging.

    PubMed

    Ummartyotin, S; Pechyen, C

    2016-05-20

    Cellulose based composite was successfully designed as active packaging with additional feature of microwavable properties. Small amount of cellulose with 10 μm in diameter was integrated into polypropylene matrix. The use of maleic anhydride was employed as coupling agent. Thermal and mechanical properties of cellulose based composite were superior depending on polypropylene matrix. Crystallization temperature and compressive strength were estimated to be 130 °C and 5.5 MPa. The crystal formation and its percentage were therefore estimated to be 50% and it can be predicted on the feasibility of microwavable packaging. Morphological properties of cellulose based composite presented the good distribution and excellent uniformity. It was remarkable to note that cellulose derived from cotton can be prepared as composite with polypropylene matrix. It can be used as packaging for microwave application.

  18. Thermoelectric properties of correlated materials

    NASA Astrophysics Data System (ADS)

    Tomczak, Jan; Haule, Kristjan; Miyake, Takashi; Georges, Antoine; Kotliar, Gabriel

    2011-03-01

    The discovery of large Seebeck coefficients in transition metal compounds such as FeSi, FeSb2, or the iron pnictides, has stirred renewed interest in the potential merits of electronic correlation effects for thermoelectric properties. The notorious sensitivity in this class of materials to small changes in composition (doping, chemical pressure) and external stimuli (temperature, pressure), makes a reliable and, possibly, predictive description cumbersome, while at the same time providing an arena of possibilities in the search for high performance thermoelectrics. Based on state-of-the-art electronic structure methods (density functional theory with the dynamical mean field theory) we here compute the thermoelectric response for several of the above mentioned exemplary materials from first principles. With the ultimate goal to understand the origin of a large thermoelectricity in these systems, we discuss various many-body renormalizations, and identify correlation controlled ingredients that are pivotal for thermopower enhancements.

  19. Controlled growth of Cu-Ni nanowires and nanospheres for enhanced microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Dong, Lifeng; Zhang, Baoqin; Yu, Mingxun; Liu, Jingquan

    2016-03-01

    Copper is a good dielectric loss material but has low stability, whereas nickel is a good magnetic loss material and is corrosion resistant but with low conductivity, therefore Cu-Ni hybrid nanostructures have synergistic advantages as microwave absorption (MA) materials. Different Cu/Ni molar ratios of bimetallic nanowires (Cu13@Ni7, Cu5@Ni5 and Cu7@Ni13) and nanospheres (Cu13@Ni7, Cu5@Ni5 and Cu1@Ni3) have been successfully synthesized via facile reduction of hydrazine under similar reaction conditions, and the morphology can be easily tuned by varying the feed ratio or the complexing agent. Apart from the concentrations of Cu2+ and Ni2+, the reduction parameters are similar for all samples to confirm the effects of the Cu/Ni molar ratio and morphology on MA properties. Ni is incorporated into the Cu-Ni nanomaterials as a shell over the Cu core at low temperature, as proved by XRD, SEM, TEM and XPS. Through the complex relative permittivity and permeability, reflection loss was evaluated, which revealed that the MA capacity greatly depended on the Cu/Ni molar ratio and morphology. For Cu@Ni nanowires, as the molar ratio of Ni shell increased the MA properties decreased accordingly. However, for Cu@Ni nanospheres, the opposite trend was found, that is, as the molar ratio of the Ni shell increased the MA properties increased.

  20. Preparation and characterization of novel glass-ceramic tile with microwave absorption properties from iron ore tailings

    NASA Astrophysics Data System (ADS)

    Yao, Rui; Liao, SongYi; Dai, ChangLu; Liu, YuChen; Chen, XiaoYu; Zheng, Feng

    2015-03-01

    A novel glass-ceramic tile consisting of one glass-ceramic layer (GC) attaining microwave absorption properties atop ceramic substrate was prepared through quench-heat treatment route derived from iron ore tailings (IOTs) and commercial raw materials (purity range 73-99%). X-ray diffraction (XRD), SEM, Energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), Physical property measurement system (PPMS) and Vector network analyzer (VNA) measurements were carried out to investigate phase, microstructure, magnetic and microwave absorption aspects of the glass-ceramic layer. Roughly 80.6±1.7 wt% borosilicate glass and 19.4±1.7 wt% spinel ferrite with chemical formula of (Zn2+0.17Fe3+0.83)[Fe3+1.17Fe2+0.06Ni2+0.77]O4 were found among the tested samples. Absorption of Electromagnetic wave by 3 mm thick glass-ceramic layer at frequency of 2-18 GHz reached peak reflection loss (RL) of -17.61 dB (98.27% microwave absorption) at 10.31 GHz. Altering the thickness of the glass-ceramic layer can meet the requirements of different level of microwave absorption.

  1. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    DOEpatents

    Meek, Thomas T.; Blake, Rodger D.

    1987-01-01

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.

  2. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    DOEpatents

    Meek, T.T.; Blake, R.D.

    1985-04-03

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.

  3. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    DOEpatents

    Meek, T.T.; Blake, R.D.

    1987-09-22

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate. 2 figs.

  4. Microwave processing of cement and concrete materials – towards an industrial reality?

    SciTech Connect

    Buttress, Adam Jones, Aled; Kingman, Sam

    2015-02-15

    Each year a substantial body of literature is published on the use of microwave to process cement and concrete materials. Yet to date, very few if any have lead the realisation of a commercial scale industrial system and is the context under which this review has been undertaken. The state-of the–art is evaluated for opportunities, and the key barriers to the development of new microwave-based processing techniques to enhance production, processing and recycling of cement and concrete materials. Applications reviewed include pyro-processing of cement clinker; accelerated curing, non-destructive testing and evaluation (NDT&E), and end-of-life processing including radionuclide decontamination.

  5. Microwave-induced porosity and bioactivation of chitosan-PEGDA scaffolds: morphology, mechanical properties and osteogenic differentiation.

    PubMed

    Demitri, Christian; Giuri, Antonella; De Benedictis, Vincenzo Maria; Raucci, Maria Grazia; Giugliano, Daniela; Sannino, Alessandro; Ambrosio, Luigi

    2017-01-01

    In this study, a new foaming method, based on physical foaming combined with microwave-induced curing, is proposed in combination with a surface bioactivation to develop scaffold for bone tissue regeneration. In the first step of the process, a stable physical foaming was induced using a surfactant (Pluronic) as blowing agent of a homogeneous blend of Chitosan and polyethylene glycol diacrylate (PEGDA700) solutions. In the second step, the porous structure of the foaming was chemically stabilized by radical polymerization induced by homogeneous heating of the sample in a microwave reactor. In this step, 2,2-azobis[2-(2-imidazolin-2yl)propane]dihydrochloride was used as thermoinitiator (TI). Chitosan and PEGDA were mixed in different blends to investigate the influence of the composition on the final properties of the material. The chemical properties of each sample were evaluated by infrared attenuated total reflectance analysis, before and after curing in order to maximize reaction yield and optimize kinetic parameters (i.e. time curing, microwave power). Absorption capacity, elastic modulus, porosity and morphology of the porous structure were measured for each sample. The stability of materials was evaluated in vitro by degradation test in phosphate-buffered saline. To improve the bioactivity and biological properties of chitosan scaffold, a biomineralization process was used. Biological characterization was carried out with the aim to prove the effect of biomineralization scaffold on human mesenchymal stem cells behaviour. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Microwave absorption in nanocomposite material of magnetically functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Labunov, V. A.; Danilyuk, A. L.; Prudnikava, A. L.; Komissarov, I.; Shulitski, B. G.; Speisser, C.; Antoni, F.; Le Normand, F.; Prischepa, S. L.

    2012-07-01

    The interaction of electromagnetic radiation in X and Ka bands with magnetic nanocomposite of disordered carbon nanotubes arrays has been investigated both experimentally and theoretically. Samples were synthesized on the quartz reactor walls by decomposition of ferrocene and xylene which provided random intercalation of iron phase nanoparticles in carbon nanotube array. The exhaustive characterization of the samples by means of the scanning electron microscopy, Raman spectroscopy, and x-ray photoemission spectroscopy was performed. It was found that the absorption of the electromagnetic wave monotonically increases with the frequency. To describe these experimental data, we extended the Bruggeman effective medium theory to a more complex case of a magnetic nanocomposite with randomly distributed spherical ferromagnetic nanoparticles in a conducting medium. The essential feature of the developed model is the consideration of the complex nature of the studied material. In particular, such important parameters as magnetic and dielectric properties of both the carbon nanotube medium and the nanoparticles, the volume concentration and the dimensions of the nanoparticles, the wave impedance of the resistive-capacitive shells of the conductive nanoparticles are explicitly taken into account in our model. Moreover, analysing the experimental results, we were able to obtain the frequency dependencies of permittivity and permeability of the studied nanocomposite.

  7. A comparison of the dimensional accuracy of microwave and conventionally polymerized denture base materials.

    PubMed

    Harrison, A; Huggett, R; Zissis, A; Vowles, R W

    1993-01-01

    This study compares the dimensional changes of microwave and conventionally polymerized denture bases and also establishes the degree of monomer conversion using gas-liquid chromatography. Dimensional changes of three denture base materials were assessed using an optical comparator and the results showed no significant differences between the materials employed or the curing method used. Efficient monomer conversion was demonstrated with levels of residual monomer of less than 1% for all materials.

  8. Microwave absorption property of plasma spray W-type hexagonal ferrite coating

    NASA Astrophysics Data System (ADS)

    Wei, Shicheng; Liu, Yi; Tian, Haoliang; Tong, Hui; Liu, Yuxin; Xu, Binshi

    2015-03-01

    In order to enhance the adhesion strength of microwave absorbing materials, W-type hexagonal ferrite coating is fabricated by plasma spray. The feedstock of ferrite powders is synthesized by solid-state reaction and spray dried process. Microstructures of the coating are analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectra (EDS). Hexagonal ferrite coating is successfully deposited on the substrate with adhesion strength of 28 MPa. The magnetic property of ferrite samples is measured using vibrating sample magnetometer (VSM). Saturation magnetization of the ferrite coating is lower than ferrite powder. Reflection loss of the hexagonal ferrite coating is measured in frequency of 2-18 GHz. The result shows that the coating is suitable for electromagnetic wave absorbers in Ku-band.

  9. Microwave properties of polymer composites containing combinations of micro- and nano-sized magnetic fillers.

    PubMed

    Kolev, Svetoslav; Koutzarova, Tatyana; Yanev, Andrey; Ghelev, Chavdar; Nedkov, Ivan

    2008-02-01

    We investigated the microwave absorbing properties of composite bulk samples with nanostructured and micron-sized fillers. As magnetic fillers we used magnetite powder (Fe3O4 with low magnetocrystalline anisotropy) and strontium hexaferrite (SrFe12O9 with high magnetocrystalline anisotropy). The dielectric matrix consisted of silicone rubber. The average particle size was 30 nm for the magnetite powder and 6 micro/m for the strontium hexaferrite powder. The micron-sized SrFe12O19 powder was prepared using a solid-state reaction. We investigated the influence of the filler concentration and the filler ratio (Fe3O4/SrFe12O19) in the polymer matrix on the microwave absorption in a large frequency range (1 / 18 GHz). The results obtained showed that the highly anisotropic particles become centers of clusterification and the small magnetite particles form magnetic balls with different diameter depending on the concentration. The effect of adding micron-sized SrFe12O19 to the nanosized Fe3O4 filler in composites absorbing structures has to do with the ferromagnetic resonance (FMR) shifting to the higher frequencies due to the changes in the ferrite filler's properties induced by the presence of a magnetic material with high magnetocrystalline anisotropy. The two-component filler possesses new values of the saturation magnetization and of the anisotropy constant, differing from those of both SrFe12O1919 and Fe3O4, which leads to a rise in the effective anisotropy field. The results demonstrate the possibility to vary the composite's absorption characteristics in a controlled manner by way of introducing a second magnetic material.

  10. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOEpatents

    Schmitt, III, Jerome J.; Halpern, Bret L.

    1993-01-01

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures.

  11. Microwave Sensor for Simultaneous and Nondestructive Determination of Moisture Content and Bulk Density of Granular Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A low-cost microwave sensor operating at a single frequency for instantaneous and nondestructive determination of moisture content and bulk density of granular and particulate materials was developed and tested. The sensor operates at a frequency of 5.8 GHz and uses the principle of free-space tran...

  12. Viability of fungal and actinomycetal spores after microwave radiation of building materials.

    PubMed

    Górny, Rafał L; Mainelis, Gediminas; Wlazło, Agnieszka; Niesler, Anna; Lis, Danuta O; Marzec, Stanisław; Siwińska, Ewa; Łudzeń-Izbińska, Beata; Harkawy, Aleksander; Kasznia-Kocot, Joanna

    2007-01-01

    The effects of microwave radiation on viability of fungal and actinomycetal spores growing on agar (medium optimal for growth) as well as on wooden panel and drywall (common building construction/finishing materials) were studied. All materials were incubated at high (97-99%) and low (32-33%) relative humidity to mimic "wet" and "dry" environmental conditions. Two microwave power densities (10 and 60 mW/cm2) and three times of exposure (5, 30, and 60 min) were tested to find the most effective parameters of radiation which could be applied to non-invasive reduction or cleaning of building materials from microbial contaminants. Additionally, a control of the surface temperature during the experiments allowed differentiation between thermal and microwave effect of such radiation. The results showed that the viability of studied microorganisms differed depending on their strains, growth conditions, power density of microwave radiation, time of exposure, and varied according to the applied combination of the two latter elements. The effect of radiation resulting in a decrease of spore viability on "wet" wooden panel and drywall was generally observed at 60 min exposure. Shorter exposure times decreased the viability of fungal spores only, while in actinomycetes colonizing the studied building materials, such radiation caused an opposite (supporting growth) effect.

  13. Microwave-Assisted Synthesis of Nano-materials in Aqueous

    EPA Science Inventory

    Whether it is termed a revolution or simply a continuous evolution, clearly development of new materials and their understanding on smaller and smaller length scale is at the root of progress in many areas of materials science.1 This is true in developing existing bulk materials...

  14. Microwave heating behavior and microwave absorption properties of barium titanate at high temperatures

    NASA Astrophysics Data System (ADS)

    Kashimura, K.; Sugawara, H.; Hayashi, M.; Mitani, T.; Shinohara, N.

    2016-06-01

    The temperature dependence of the microwave absorption behavior of BaTiO3 particles was investigated over various frequencies and temperatures of 25-1000 ∘C. First, using both the coaxial transmission line method and the cavity perturbation method by a network analyzer, the real and imaginary parts of the relative permittivity of BaTiO3 ( ɛr ' and ɛr ″ , respectively) were measured, in order to improve the reliability of the data obtained at 2.45 GHz. The imaginary parts of the relative permittivity as measured by the two methods were explored by their heating behaviors. Furthermore, the temperature dependence of the microwave absorption behavior of BaTiO3 particles was investigated for frequencies of 2.0-13.5 GHz and temperatures of 25-1000 ∘C using the coaxial transmission line method.

  15. Control of the microwave characteristics of composite materials filled with carbon nanotubes using UV irradiation

    NASA Astrophysics Data System (ADS)

    Usanov, D. A.; Skripal', A. V.; Romanov, A. V.

    2013-03-01

    The complex permittivities of composite materials that are based on the two-component epoxy binder with various volume concentrations of the UV-irradiated multilayer carbon nanotubes are determined using the microwave transmission spectra. The effect of the UV-irradiation time on the mean conductivity of the nanotubes in the composite in the microwave range is studied. It is demonstrated that the limitations on the working volume of the chamber in which the UV irradiation of the carbon nanotubes is performed substantially affects the electrophysical characteristics of the nanotubes.

  16. Effect of Microwave Irradiation on the Physicochemical and Digestive Properties of Lotus Seed Starch.

    PubMed

    Zeng, Shaoxiao; Chen, Bingyan; Zeng, Hongliang; Guo, Zebin; Lu, Xu; Zhang, Yi; Zheng, Baodong

    2016-03-30

    The objective of this study is to investigate the effect of microwave irradiation on the physicochemical and digestive properties of lotus seed starch. The physicochemical properties of lotus seed starch were characterized by light microscopy, (1)H NMR, FT-IR spectroscopy, and HPSEC-MALLS-RI. The starch-water interaction and crystalline region increased due to the changed water distribution of starch granules and the increase of the double-helix structure. The swelling power, amylose leaching, molecular properties, and radius of gyration reduced with the increasing microwave power, which further affected the sensitivity of lotus seed starch to enzymatic degradation. Furthermore, the resistant starch and slowly digestible starch increased with the increasing microwave irradiation, which further resulted in their decreasing hydrolysis index and glycemic index. The digestive properties of lotus seed starch were mainly influenced by the reduced branching degree of amylopectin and the strong amylose-amylose interaction.

  17. Enhanced microwave absorption properties of CTAB assisted Pr-Cu substituted nanomaterial

    NASA Astrophysics Data System (ADS)

    Sadiq, Imran; Naseem, Shahzad; Riaz, Saira; Khan, Hasan M.; Ashiq, Muhammad Naeem; Hussain, S. Sajjad; Rana, Mazhar

    2016-09-01

    In this study, the rare earth Pr3+and divalent Cu2+ elements substituted Sr1-xPrxMn2Fe16-yCuyO27 (x=0, 0.02, 0.06, 0.1 and y=0, 0.1, 0.3, 0.5) W-type hexagonal ferrites were prepared by Sol-Gel method. TGA and DSC analysis of as prepared material was carried out to confirm the temperature at which required phase can be obtained. The XRD patterns exhibit the single phase for all the samples and the lattice parameters were changed with the additives. The absorption bands at wave number 636 and 554 cm-1 in FTIR spectrum indicate the stretching vibration of metal-oxygen ions which also ratifies the single phase for the prepared material. Microstructural analysis confirms the agglomeration of nanograins which leads to formation of platelet like structure which cause in the enhancement of the microwave absorption properties of material. The minimum reflection loss of -59.8 dB at 9.34 GHz frequency was observed makes the prepared material good candidate to be used in super high frequency application. The attenuation constant and reflectivity results are also in good agreement with minimum reflection losses results.

  18. Microwave properties of RF- sputtered ZnFe{sub 2}O{sub 4} thin films

    SciTech Connect

    Garg, T. Kulkarni, A. R.; Venkataramani, N.; Sahu, B. N.; Prasad, Shiva

    2014-04-24

    In this work, RF- magnetron sputtering technique has been employed to deposit nanocrystalline ZnFe{sub 2}O{sub 4} thin films at room temperature. The as grown films were ex-situ annealed in air for 2 h at temperatures from 150°C to 650°C. X-ray diffraction, vibrating sample magnetometer and ferromagnetic resonance were used to analyze the phase formation, magnetic properties and microwave properties respectively. From the hysteresis loops and ferromagnetic resonance spectra taken at room temperature, a systematic study on the effect of O{sub 2} plasma on microwave properties with respect to processing temperature has been carried out.

  19. Mechanisms of Microwave Induced Damage in Biologic Materials

    DTIC Science & Technology

    1990-01-01

    246, 1978. [6] F. Oosawa, Polyelectrolytes, Marcel Dekker, New York, 88, 1971. (7] Z. Alexandrowics, A. Katchalsky, " Colligative properties of...condensation in polyelectrolyte solutions: I. Colligative properties ", The Journal of Chemical Physics, 51, 924-933, 1969. e3 CAPTER IV EXPERIMENTAL BIOLOGICAL...exogenously applied electromagnetic fields on certain measured properties of a biological system is a transient one. 1,203,4 The system’s response, determined

  20. Improved microwave absorption and electromagnetic properties of BaFe12O19-poly(vinylidene fluoride) composites by incorporating reduced graphene oxides

    NASA Astrophysics Data System (ADS)

    He, Hongcai; Luo, Feifei; Qian, Neng; Wang, Ning

    2015-02-01

    Three-phase composites of poly(vinylidene fluoride)-BaFe12O19-reduced graphene oxide (PVDF-BFO-RGO) were synthesized by a facile wet chemical method and hot-pressing approach. The phase structure, topography of the hybrid materials were characterized by X-ray diffraction, scanning electron microscopy, and Raman spectra. Influence of RGO on their electromagnetic properties was investigated. Especially, improved microwave absorption and electromagnetic properties of BaFe12O19-PVDF composites by incorporating RGO were obtained and studied. The PVDF/BFO/RGO sample with m(RGO):m(BFO) = 5:100 shows the best microwave absorption properties with a minimum RL = -32 dB at 11 GHz and with the bandwidth less than -20 dB from 9.6 to 12.8 GHz. The composites were believed to have potential applications as the microwave absorber.

  1. Clamping effect on the microwave properties of ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Poplavko, Y.; Cho, N.-I.

    1999-11-01

    Ferroelectric and paraelectric films deposited on dielectric and semiconductor substrates were studied at the frequency range 0.3-100 GHz and temperature interval 300-700 K in comparison with chemically equivalent bulk materials. A dielectric spectroscopy method helps to trace the change of dielectric polarization and dielectric loss mechanisms when the free-stress volume (bulk) ferroelectric is transformed into a thin planar layer (film) that is stressed by its forced accommodation to a rigid substrate. The change in bulk-film properties could be either favourable or an adverse factor for electronic devices.

  2. Focused microwave-assisted digestion of vegetal materials for the determination of essential mineral nutrients.

    PubMed

    Mingorance, M D

    2002-06-01

    An open focused microwave-assisted digestion procedure has been developed to decompose and dissolve vegetal matrices for subsequent macro- and micronutrients analysis. The parameters of the microwave oven were evaluated using an experimental design. Sulfuric acid (5 mL) and hydrogen peroxide (3 mL) were found to be suitable for quantitative determination of Ca, Cu, Fe, K, Mg, Mn, N, P, and Zn in 0.100-0.500 g of vegetal sample. The precision was better than 6% for all elements at different concentrations. Results for reference and laboratory control materials are in agreement with certified and indicative values. In addition, the sample digest could be used for ICP-OES of all the elements mentioned. The proposed microwave-assisted digestion procedure offers the ability to determine the most important essential plant nutrients in one unique solution by means of analytical techniques usually found in most laboratories.

  3. Microwave-assisted catalytic pyrolysis of switchgrass for improving bio-oil and biochar properties.

    PubMed

    Mohamed, Badr A; Kim, Chang Soo; Ellis, Naoko; Bi, Xiaotao

    2016-02-01

    Solid additives were used as a microwave absorber to improve the low microwave absorption rate of switchgrass going through pyrolysis, and as a catalyst to improve the bio-oil and biochar characteristics. The synergistic effects were manifested in the presence of a mixture of K3PO4 and clinoptilolite or bentonite compared with single catalyst, resulting in increased microwave absorption rate, and improved bio-oil and biochar quality. The sample of microwave heating switchgrass with 10wt.% K3PO4+10wt.% bentonite reached 400°C after 2.8min, compared with 28.8min through conventional heating, producing biochar with increase in BET surface area from 0.33m(2)/g to 76.3m(2)/g compared with conventional heating. Furthermore, water content of the bio-oil reduced from 22.7 to 15.0wt.% compared with biomass mixed with 20wt.% SiC, a chemically-inert microwave absorbing material used to increase microwave heating. Introducing catalysts showed a great potential for accelerating microwave heating and improving bio-oil and biochar qualities.

  4. Design rules for the optimization of the sensitivity of open-ended coaxial microwave sensors for monitoring changes in dielectric materials

    NASA Astrophysics Data System (ADS)

    García-Baños, Beatriz; Catalá-Civera, José M.; Canós, Antoni J.; Peñaranda-Foix, Felipe

    2005-05-01

    Open-ended coaxial probes are widely used for non-destructive measurement of dielectric properties of materials, and also as microwave sensors for industrial processes and quality control applications. The main design parameters of these sensors are the coaxial radii and working frequency. In this paper, the influence of these variables on the final sensitivity of the coaxial sensor when monitoring dielectric materials is analysed, and a novel expression for this parameter selection is proposed. Moreover, a method to select the optimum parameters of experimental configurations is provided. Measurements demonstrate that high discrimination can be achieved with this method when monitoring changes in the dielectric properties of materials.

  5. Detoxification mechanism of asbestos materials by microwave treatment.

    PubMed

    Yoshikawa, N; Kashimura, K; Hashiguchi, M; Sato, M; Horikoshi, S; Mitani, T; Shinohara, N

    2015-03-02

    The detoxification mechanism of asbestos materials was investigated through simulations and experiments. The permittivities of pure CaO and Mg3Si4O12, as quasi-asbestos materials, were measured using the cavity perturbation method. The real and imaginary parts of the relative permittivity (ɛr' and ɛr″) of CaO are functions of temperature, and numerical simulations revealed the thermal distributions in an electromagnetic field with respect to both asbestos shape and material configuration based on permittivity. Optical microscopic observation revealed that the thickness of chrysotile fibers decreased as a result of CaO heating. The heating mechanism of asbestos materials has been determined using CaO phase, and the detoxification mechanism of asbestos materials was discussed based on the heating mechanism.

  6. Complex permittivity measurements and mixing laws of ceramic materials and application to microwave processing

    NASA Astrophysics Data System (ADS)

    Gershon, David Louis

    The complex permittivity of alumina composites was examined with respect to its dependence on the volume fraction of constituents, microstructure, processing temperature, and processing method. In addition, the effective permittivity of these composites was quantitatively modeled based on the permittivities, volume fractions, and microstructures of the constituents. The studies focused on the complex permittivity of alumina composites, which contained the lossy additives silicon carbide and copper oxide. Two composite systems were prepared by physically mixing alumina and one of the additives. A third composite system was produced by chemically precipitating copper oxide onto alumina. The two synthesis methods produced composites with different microstructures and complex permittivities. The imaginary part of the complex permittivity was generally larger in the chemically precipitated composites than in the physically mixed composites. The dependence of the complex permittivities of the composites on volume fraction and microstructure were compared with several algebraic mixing laws and with three dimensional, electrostatic numerical simulations. The algebraic mixing laws do not take into account for the dependence of the imaginary part of the complex permittivity on absorbed water and microstructure, which is affected by composite synthesis. By incorporating general physical characteristics of the composites, the electrostatic simulations were able to accurately predict their permittivity. Heating some selected alumina composites in conventional and microwave furnaces demonstrate several interesting results. The densification and dielectric proper-ties of the alumina/copper oxide composites varied due to processing temperature. The changes in these properties depended upon preparation method and not on heating method. The density and real part of the complex permittivity of alumina/silicon carbide also varied due to processing temperature and not on heating method

  7. Microstructure and Mechanical Properties of Microwave Post-processed Ni Coating

    NASA Astrophysics Data System (ADS)

    Zafar, Sunny; Sharma, Apurbba Kumar

    2017-03-01

    Flame-sprayed coatings are widely used in the industries attributed to their low cost and simple processing. However, the presence of porosity and poor adhesion with the substrate requires suitable post-processing of the as-sprayed deposits. In the present work, post-processing of the flame-sprayed Ni-based coating has been successfully attempted using microwave hybrid heating. Microwave post-processing of the flame-sprayed coatings was carried out at 2.45 GHz in a 1 kW multimode industrial microwave applicator. The microwave-processed and as-sprayed deposits were characterized for their microstructure, porosity, fracture toughness and surface roughness. The properties of the coatings were correlated with their abrasive wear behavior using a sliding abrasion test on a pin-on-disk tribometer. Microwave post-processing led to healed micropores and microcracks, thus causing homogenization of the microstructure in the coating layer. Therefore, microwave post-processed coating layer exhibits improved mechanical and tribological properties compared to the as-sprayed coating layer.

  8. Microstructure and Mechanical Properties of Microwave Post-processed Ni Coating

    NASA Astrophysics Data System (ADS)

    Zafar, Sunny; Sharma, Apurbba Kumar

    2017-02-01

    Flame-sprayed coatings are widely used in the industries attributed to their low cost and simple processing. However, the presence of porosity and poor adhesion with the substrate requires suitable post-processing of the as-sprayed deposits. In the present work, post-processing of the flame-sprayed Ni-based coating has been successfully attempted using microwave hybrid heating. Microwave post-processing of the flame-sprayed coatings was carried out at 2.45 GHz in a 1 kW multimode industrial microwave applicator. The microwave-processed and as-sprayed deposits were characterized for their microstructure, porosity, fracture toughness and surface roughness. The properties of the coatings were correlated with their abrasive wear behavior using a sliding abrasion test on a pin-on-disk tribometer. Microwave post-processing led to healed micropores and microcracks, thus causing homogenization of the microstructure in the coating layer. Therefore, microwave post-processed coating layer exhibits improved mechanical and tribological properties compared to the as-sprayed coating layer.

  9. The utilization of spaceborne microwave radiometers for monitoring snowpack properties. [United States and Canada

    NASA Technical Reports Server (NTRS)

    Rango, A.; Chang, A. T. C.; Foster, J. L.

    1980-01-01

    Snow accumulation and depletion at specific locations can be monitored from space by observing related variations in microwave brightness temperatures. Using vertically and horizontally polarized brightness temperatures from the Nimbus 6 electrically scanning microwave radiometer, a discriminant function can be used to separate snow from no snow areas and map snowcovered area on a continental basis. For dry snow conditions on the Canadian high plains, significant relationships between snow depth or water equivalent and microwave brightness temperature were developed which could permit remote determination of these snow properties after acquisition of a wider range of data. The presence of melt water in the snowpack causes a marked increase in brightness temperature which can be used to predict snowpack priming and timing of runoff. As the resolutions of satellite microwave sensors improve the application of these results to snow hydrology problems should increase.

  10. Effect of microwave disinfection on mechanical properties of denture base acrylic resin.

    PubMed

    Hamouda, Ibrahim M; Ahmed, Sabry A

    2010-10-01

    The microwave oven was used for sterilizing dentures contaminated with Candida albicans and other communicable diseases instead of disinfectant solutions. This study was carried out to evaluate the flexural properties, toughness, and impact strength of heat-cured acrylic resin sterilized by microwave oven either immersed in water or non-immersed for 5 and 15 min at full power. The results indicated that the microwave oven sterilization technique resulted in reduction of the load necessary to fracture the specimens, deformation at fracture, transverse strength, modulus of elasticity except disinfection at 5 min dry condition, toughness, and impact strength. This study concluded that the microwave oven is not acceptable for sterilization of dentures because of its weakening effects on the dentures that prone for fracture during clinical use. This method of sterilization increased the brittleness of acrylic resin specimens.

  11. Effect of annealing temperature of nano-sized BaFe12O19 in Novolac phenolic resin on microwave properties for use as EMI shielding material in X-band

    NASA Astrophysics Data System (ADS)

    Ozah, S.; Bhattacharyya, N. S.

    2013-01-01

    Nanosized barium ferrite (BaFe12O19) powders are synthesized using co-precipitation technique at three different annealing temperatures. The X-Ray Diffraction pattern indicates the presence of hexagonal structure for all the three samples. Transmission electron microscopy (TEM) shows the particles are hexagonal in shape. The synthesized BaFe12O19 powder samples are mechanically mixed with Novolac phenolic resin (NPR) with filler to polymer weight ratio of 30:60 to prepare pellets of BaFe12O19/NPR composites of dimensions, 10.38 mm x 22.94 mm x 4 mm. The complex permittivity, ɛr and complex permeability, μr of the developed samples are measured at X-band by Nicolson-Ross method using Agilent E8362C vector network analyzer. The effect of the annealing temperature on the complex permittivity and permeability in the X-band is studied. The maximum dielectric constant and permeability is obtained of the BaFe12O19/NPR composite with BaFe12O19 annealed at 9000C as 6 and 2 respectively. The composite is a good candidate for microwave absorption study.

  12. Microwave processing and diagnosis of chemically reacting materials in a single-mode cavity applicator

    NASA Astrophysics Data System (ADS)

    Jow, Jinder; Hawley, Martin C.; Finzel, Mark; Asmussen, Jes, Jr.; Lin, Haw-Hwa

    1987-12-01

    Online microwave processing and dielectric diagnosis of chemically reacting materials (epoxy/amine) have been successfully performed using a TM012-mode cylindrical cavity at a frequency of 2.45 GHz in conjunction with fluoroptic temperature measurement. Complex permittivity measurements by this single-frequency technique are repeatable and consistent with those obtained by conventional swept-frequency methods. The accuracy of complex permittivity measurements for both methods is within + or - 5 percent for permittivity and + or - 15 percent for loss. Both techniques are based on material-cavity perturbation theory. Perturbation equations for cylindrical shapes of the cavity and loaded material were derived to account for volume variation of the sample due to thermal expansion. Complex permittivity of epoxy/amine as a function of the extent of cure and temperature was determined in order to monitor the chemical reaction progress during microwave processing.

  13. An analysis of the microwave dielectric properties of solvent-oil feedstock mixtures at 300-3000 MHz.

    PubMed

    Terigar, Beatrice G; Balasubramanian, Sundar; Boldor, Dorin

    2010-08-01

    Microwaves can be a more efficient method than traditional thermal treatment to deliver the energy required for heating in solvent-oil extraction due to its volumetric, direct coupling with the material. An understanding of the behavior of dielectric properties of solvent-feedstock mixtures is important for designing and optimizing any microwave-based extraction process. In this study rice bran and soybean flour were mixed separately with four different solvents (methanol, ethanol, hexane and isopropanol) at different ratios (1:2, 1:1, 2:1 w/w). For the samples mixed with ethanol, the dielectric properties were measured at 23, 30, 40 and 50 degrees C, while for all other sample-solvent mixtures experiments were performed at room temperature. Dielectric properties were determined using a vector network analyzer and dielectric probe kit using the open-ended coaxial probe method in the frequency range of 300 MHz to 3 GHz. Results from the study indicate that dielectric constants were dependent on frequency and were strongly influenced by temperature, mix ratio and solvent type. The dielectric loss of all mixtures except those with hexane (which were virtually zero) varied with frequency and temperature, solvent type, and mix ratio. Most of the results presented are emphasized at 433, 915 and 2450 MHz, frequencies allocated by the Federal Communication Commission (F.C.C.) for microwave applications. The results of the study, presented here for the first time to our knowledge, will help in selection of appropriate solvent, mixing ratio and frequency for designing microwave-assisted oil extraction systems.

  14. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1987-01-01

    Laboratory measurements were conducted to evaluate properties of atmospheric gases under simulated conditions for the outer planets. A significant addition to this effort was the capability to make such measurements at millimeter wavelengths. Measurements should soon be completed on the millimeter wave absorption from ammonia under Jovian conditions. Also studied will be the feasibility of measuring the microwave and millimeter wave properties of phosphine (PH3) under simulated Jovian conditions. Further analysis and application of the laboratory results to microwave and millimeter wave absorption data for the outer planet, such as Voyager Radio Occultation experiments, will be pursued.

  15. Flower-like carbonyl iron powder modified by nanoflakes: Preparation and microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Yang, Pingan; Fu, Jie; Liu, Shuzhi

    2015-04-01

    In this paper, flower-like carbonyl iron powder (CIP) is prepared under normal temperature and pressure by a simple method of chemical reduction. This flower-like morphology is conducive to forming discontinuous network, enhancing diffuse scattering of the incident microwave and polarizing more interface charges. Those are all in favor of electromagnetic wave penetration and absorption. The test results show that compared with the unmodified CIP, the electromagnetic wave absorbing property of flower-like CIP is significantly improved in X-band. It is concluded that this research paves a way to enhance the microwave absorption properties of spherical metal particles.

  16. Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties

    PubMed Central

    Wang, Fen; Wang, Xing; Zhu, Jianfeng; Yang, Haibo; Kong, Xingang; Liu, Xiao

    2016-01-01

    3D network structure NiFe2O4 was successfully synthesized by a templated salt precipitation method using PMMA colloid crystal as templates. The morphology, phase composition and microwave absorbing properties of as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), vector network analyzer (VNA), and so on. The results revealed that the 3D network structure was configurated with smooth spherical walls composed of NiFe2O4 nanocrystals and their pore diameters being in the range of 80–250 nm. The microwave absorption properties of the 3D network structure NiFe2O4 were crucially determined by the special structure. The synergy of intrinsic magnetic loss of magnetic NiFe2O4 and the interfacial polarization enhanced by 3D network structure and the interaction of multiple mechanisms endowed the sample with the feature of strong absorption, broad bandwidth and lightweight. There is more than one valley in the reflection loss curves and the maximum reflection loss is 27.5 dB with a bandwidth of 4 GHz. Moreover, the 3D network structure NiFe2O4 show a greater reflection loss with the same thickness comparing to the ordinary NiFe2O4 nanoparticles, which could achieve the feature of lightweight of the microwave absorbing materials. PMID:27897209

  17. Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties

    NASA Astrophysics Data System (ADS)

    Wang, Fen; Wang, Xing; Zhu, Jianfeng; Yang, Haibo; Kong, Xingang; Liu, Xiao

    2016-11-01

    3D network structure NiFe2O4 was successfully synthesized by a templated salt precipitation method using PMMA colloid crystal as templates. The morphology, phase composition and microwave absorbing properties of as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), vector network analyzer (VNA), and so on. The results revealed that the 3D network structure was configurated with smooth spherical walls composed of NiFe2O4 nanocrystals and their pore diameters being in the range of 80–250 nm. The microwave absorption properties of the 3D network structure NiFe2O4 were crucially determined by the special structure. The synergy of intrinsic magnetic loss of magnetic NiFe2O4 and the interfacial polarization enhanced by 3D network structure and the interaction of multiple mechanisms endowed the sample with the feature of strong absorption, broad bandwidth and lightweight. There is more than one valley in the reflection loss curves and the maximum reflection loss is 27.5 dB with a bandwidth of 4 GHz. Moreover, the 3D network structure NiFe2O4 show a greater reflection loss with the same thickness comparing to the ordinary NiFe2O4 nanoparticles, which could achieve the feature of lightweight of the microwave absorbing materials.

  18. Dielectric Properties in the Microwave Range of K0.5Na0.5NbO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Gao, Lu; Zhou, Wancheng; Luo, Fa; Zhu, Dongmei

    2017-01-01

    Dielectric properties of a potassium sodium niobate (KNN) system in the microwave range up to GHz have rarely been studied. Since K0.5Na0.5NbO3 is the most common and typical type of KNN materials, non-doped K0.5Na0.5 NbO3 ceramics were synthesized at different temperatures (1080°C, 1090°C, 1100°C, and 1110°C) by a traditional solid reaction method for further characterization and analysis. The ceramics were in perovskite phase with orthorhombic symmetry. A small quantity of second phase was found in the 1110°C sintered specimen, which resulted from the volatilization of alkali oxides as the temperature increased. The complex permittivity was measured for the first time in the microwave range (8.2-12.4 GHz) and in the temperature range from 100°C to 220°C, and the effects of annealing on the dielectric properties were studied. The results indicate that the complex permittivity of KNN ceramics over the microwave range increases mainly due to high bulk density and the additional dielectric contributions of oxygen vacancies at high temperature.

  19. Measurement of Dielectric Properties and Microwave-Assisted Homogeneous Acid-Catalyzed Transesterification in a Monomode Reactor.

    PubMed

    Dall'Oglio, Evandro L; de Sousa, Paulo T; Campos, Deibnasser C; de Vasconcelos, Leonardo Gomes; da Silva, Alan Cândido; Ribeiro, Fabilene; Rodrigues, Vaniomar; Kuhnen, Carlos Alberto

    2015-08-27

    Microwave heating technology is dependent on the dielectric properties of the materials being processed. The dielectric properties of H2SO4, H3PO4, ClSO3H, and H3CSO3H were investigated in this study using a vector network analyzer in an open-ended coaxial probe method at various temperatures. Phosphoric and sulfuric acids presented higher loss tangents in the frequency range 0.3-13 GHz, reflecting greater mobility of the ions and counterions. The acids were employed as catalysts in microwave-assisted homogeneous transesterification reactions for the production of methylic and ethylic biodiesel. The effects of catalyst concentration, alcohol to oil molar ratio, and irradiation time on biodiesel conversions were investigated. The results showed a significant reduction in the reaction time for microwave-assisted transesterification reactions as compared to times for conventional heating. Also, despite its higher loss tangent, it was observed that H3PO4 leads to lower conversion to biodiesel, which can be explained by its lower carbonyl protonation capacity.

  20. Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties.

    PubMed

    Wang, Fen; Wang, Xing; Zhu, Jianfeng; Yang, Haibo; Kong, Xingang; Liu, Xiao

    2016-11-29

    3D network structure NiFe2O4 was successfully synthesized by a templated salt precipitation method using PMMA colloid crystal as templates. The morphology, phase composition and microwave absorbing properties of as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), vector network analyzer (VNA), and so on. The results revealed that the 3D network structure was configurated with smooth spherical walls composed of NiFe2O4 nanocrystals and their pore diameters being in the range of 80-250 nm. The microwave absorption properties of the 3D network structure NiFe2O4 were crucially determined by the special structure. The synergy of intrinsic magnetic loss of magnetic NiFe2O4 and the interfacial polarization enhanced by 3D network structure and the interaction of multiple mechanisms endowed the sample with the feature of strong absorption, broad bandwidth and lightweight. There is more than one valley in the reflection loss curves and the maximum reflection loss is 27.5 dB with a bandwidth of 4 GHz. Moreover, the 3D network structure NiFe2O4 show a greater reflection loss with the same thickness comparing to the ordinary NiFe2O4 nanoparticles, which could achieve the feature of lightweight of the microwave absorbing materials.

  1. Property Data Summaries for Advanced Materials

    National Institute of Standards and Technology Data Gateway

    SRD 150 NIST Property Data Summaries for Advanced Materials (Web, free access)   Property Data Summaries are topical collections of property values derived from surveys of published data. Thermal, mechanical, structural, and chemical properties are included in the collections.

  2. Determination of the mineral fraction and rheological properties of microwave modified starch from Canna edulis.

    PubMed

    Lares, Mary; Pérez, Elevina

    2006-09-01

    The goal of this study was to evaluate the effect of the physical modification by microwave irradiation on the mineral fraction and rheological properties of starch isolated from Canna edulis rhizomes. Phosphorus, sodium, potassium, magnesium, iron, calcium and zinc were evaluated using atomic absorption spectrophotometry. Rheological properties were determined using both the Brabender amylograph and Brookfield viscosimeter. Except for the calcium concentration, mineral contents decreased significantly (p < 0.05) after microwave treatment. The amylographic profile was also modified, showing increased pasting temperature range and breakdown index, whereas the viscosity peak, viscosity at holding (95 degrees C) and cooling periods (50 degrees C), setback and consistency decreased as compared to the native starch counterpart. Although viscosity decreased in the microwaved sample, presumably due to starch changes at molecular level, it retained the general pseudo plastic behavior of native starch. It is concluded that canna starch may be modified by microwave irradiation in order to change its functional properties. This information should be considered when using microwave irradiation for food processing. Furthermore, the altered functional attributes of canna modified starch could be advantageous in new product development.

  3. Reflection/Transmission study of two fabrics with microwave properties.

    PubMed

    Odman, Torbjörn; Lindén, Maria; Larsson, Christer

    2014-01-01

    In this study, the transmission and reflection of two conductive fabrics are investigated in the frequency range from 2 to 18 GHz. One of the fabrics is a non-woven polypyrrole, and the other consists of a polyethylene warp with steel threads in the weft. Reflection and transmission measurements are performed in order to characterize the electromagnetic properties of the materials. Reflection measurements are performed for two polarizations at normal, 0°, and 60° incident angles. Transmission measurements are also done for two polarization directions at normal incidence. The results show that the fabric with the steel filler reflects most of the incident radiation, and has very low transmission with some polarization dependence. The polypyrrole non-woven fabric, on the other hand, has reflection and transmission properties that show that it is absorbing the incident radiation. Wearable on-body sensors that in addition are comfortable to wear can be integrated in the textile of clothes. These sensors can e.g., be used to monitor health or analyze gait. The fabrics have the potential to be used in health applications when designing on-body sensors, e.g. for movement analysis.

  4. Soft magnetism, magnetostriction, and microwave properties of FeGaB thin films

    SciTech Connect

    Lou, J.; Insignares, R. E.; Cai, Z.; Ziemer, K. S.; Liu, M.; Sun, N. X.

    2007-10-29

    A series of (Fe{sub 100-y}Ga{sub y}){sub 1-x}B{sub x} (x=0-21 and y=9-17) films were deposited; their microstructure, soft magnetism, magnetostrictive behavior, and microwave properties were investigated. The addition of B changes the FeGaB films from polycrystalline to amorphous phase and leads to excellent magnetic softness with coercivity <1 Oe, high 4{pi}M{sub s}, self-biased ferromagnetic resonance (FMR) frequency of 1.85 GHz, narrow FMR linewidth (X band) of 16-20 Oe, and a high saturation magnetostriction constant of 70 ppm. The combination of these properties makes the FeGaB films potential candidates for tunable magnetoelectric microwave devices and other rf/microwave magnetic device applications.

  5. Microwave absorbability of unidirectional SiC fiber composites as a function of the constituents’ properties

    NASA Astrophysics Data System (ADS)

    Wan, Guangchao; Jiang, Jianjun; He, Yun; Bie, Shaowei

    2016-06-01

    The electromagnetic properties of unidirectional SiC fibre composites can be efficiently tailored by adjusting the properties of the composite’s constituents making these composites potential microwave absorbers. In this study, the microwave absorbing properties of unidirectional SiC fibre composites were investigated based on the electromagnetic properties of the constituents at frequencies ranging from 8 to 18 GHz. The composite was composed of two types of SiC fibres that individually exhibit relatively high and low electrical conductivity. The matrix together with the low-conductivity SiC fibres were characterized by effective permittivity and conductivity which provided a theoretical calculation of the microwave reflectivity. The theoretical calculation was based on formulas about anisotropic unidirectional composites and was compared to the results obtained from numerical simulations. There was good agreement in the results obtained from both methods. It was found that the intensity of microwave absorption of the composite was dependent primarily on the properties of the high-conductivity SiC fibres. The absorption band appeared to be dependent on the effective permittivity of the matrix and the low-conductivity SiC fibres and the conductivity of the high-conductivity SiC fibres.

  6. Preparation of SnO2-coated Ni microsphere composites with controlled microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Zhao, Biao; Shao, Gang; Fan, Bingbing; Guo, Wenhui; Chen, Yongqiang; Zhang, Rui

    2015-03-01

    In this work, the core-shell structured Ni/SnO2 composites have been successfully synthesized by a hydrothermal deposition method (HDM). The crystal structure, morphology and electromagnetic (EM) properties of Ni/SnO2 composites were investigated. The effects of SnO32- and urea contents on the morphologies of final Ni/SnO2 samples were also considered. The microwave absorption properties of Ni microspheres are remarkably enhanced after coating whit SnO2 nanaoshells. Moreover, the microwave absorption properties of core-shell structured Ni/SnO2 composites can be tailored by tuning SnO2 contents. The results show that the Ni/SnO2 composites prepared at 0.017 M SnO32- exhibit outstanding microwave absorption properties with a minimum reflection loss of -42.8 dB at 9.8 GHz with the corresponding thickness of 3.0 mm. The reflection loss below -10 dB can be obtained in a wide range of 5.8-18.0 GHz by adjusting the absorber thicknesses from 1.5 mm to 4.5 mm. The excellent microwave absorption properties are attributed to high magnetic loss, dielectric loss, multi-resonance and interfacial polarization of the core-shelled Ni/SnO2 composites.

  7. Millimeter Wave Dielectric Properties of Materials

    NASA Astrophysics Data System (ADS)

    Button, Kenneth J.; Afsar, M. N.

    1983-10-01

    Highly accurate continuous spectra of the absorption coefficient and refractive index of some potentially useful materials have been made over the 60-420 GHz range. Measurements have been made on some common ceramic, semiconductor, crystalline and glass materials. The absorption coefficient of low loss materials increases with frequency which implies that microwave data cannot be used for the design of millimeter wave dielectric waveguides, devices, windows and quasi-optical elements. The data in this paper show the millimeter wave frequency dependence of tan δ, the real and imaginary parts of the dielectric permittivity and the optical constants, namely, the refractive index and absorption coefficient. The measurements have been made in a plane-wave Michelson interferometer operating as a polarizing, dispersive Fourier transform spectrometer. The accuracy and reproducability of the refractive index is six significant figures.

  8. Electronic properties of superconductors studied using photo induced activation of microwave absorption (PIAMA)

    SciTech Connect

    Feenstra, B.J.; Schooveld, W.A.; Bos, C.

    1995-12-31

    Electronic properties of superconductors are contemporarily being studied using many different experimental techniques, among which infrared spectrometry, photoelectron spectroscopy and microwave cavity techniques play an important role. The data analysis, however, is complicated by the fact that in these materials the phonon-frequency range overlaps with the one in which the energy gap is expected. This problem can be circumvented by making use of two different sources, one to induce the excitations (the Free Electron Laser in Nieuwegein, The Netherlands, FELIX), and one to study the behavior of these excitations (i.e. quasiparticles). In our case the latter source is monochromatic microwave radiation, transmitted through a thin superconducting film. We measured both a conventional superconductor (NbN, T{sub c} = 17 K) and a high T{sub c} superconductor (SmBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, T{sub c} = 92 K). For NbN we observed a positive change in transmission, followed by a relaxation to a transmission smaller than the original value, after which the starting situation was restored within {approximately} 100 {mu}s. In case of SmBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, the changes persisted above T{sub c}. At very low temperatures we observed slow oscillations ({approximately} 4kHz) in the induced signal, which were absent in NbN. The long time scales can possibly be explained by the so-called bottleneck, i.e. quasiparticles excited with a lot of excess energy lose part of their energy by exciting other quasiparticles. In this case the quasiparticle lifetime is enhanced considerably. The oscillations point towards an intrinsic difference of the low energy excitations, i.e. the symmetry of the pairing.

  9. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOEpatents

    Schmitt, J.J. III; Halpern, B.L.

    1993-10-26

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures. 5 figures.

  10. Improvement of coal water slurry property through coal physicochemical modifications by microwave irradiation and thermal heat

    SciTech Connect

    Jun Cheng; Junhu Zhou; Yanchang Li; Jianzhong Liu; Kefa Cen

    2008-07-15

    To improve the coal water slurry (CWS) property made from Chinese Shenhua coal with high inherent moisture and oxygen contents, microwave irradiation and thermal heat were employed to modify the coal physicochemical property. Microwave irradiation reduces the inherent moisture and reforms the oxygenic function groups, while it decreases the total specific surface area. Thermal heat markedly decreases the inherent moisture, volatile, and oxygen contents, while it dramatically increases the total specific surface area. Therefore, microwave irradiation gives a higher CWS concentration and a better rheological behavior than thermal heat, while it remarkably reduces the operation time and energy consumption. The maximum CWS concentration given by microwave irradiation at 420 W for 60 s is 62.14%, which is not only higher than that of 60.41% given by thermal heat at 450{sup o}C for 0.5 h but also higher than the initial 58.23%. Meanwhile, the minimum shear stress given by microwave irradiation is 36.4 Pa at the shear rate of 100 s{sup -1}, which is not only lower than that of 42.4 Pa given by thermal heat but also lower than the initial 79.8 Pa. The minimum unit energy consumption of 0.115 kWh/(kg of coal) and electricity cost of 4.6 U.S. $/(ton of coal) for CWS concentration promotion by 1% are obtained at 420 W for 20 s in the microwave oven. The unit energy consumptions for CWS concentration promotion and inherent moisture removal by thermal heat are, respectively, 214 and 22.5 times higher than those by microwave irradiation, while the energy use efficiencies are on the converse. 27 refs., 11 figs., 2 tabs.

  11. Electrical Properties of Carbon Foam in the Microwave Range

    NASA Astrophysics Data System (ADS)

    Kuzhir, P. P.; Letellier, M.; Bychanok, D. S.; Paddubskaya, O. G.; Suslyaev, V. I.; Korovin, E. Yu.; Baturkin, S. A.; Fierro, V.; Celzard, A.

    2017-02-01

    The possibility is shown of a directional change of the dielectric permittivity of carbon foam promising for the use in shielding devices in the microwave frequency range. The frequency dependences of the transmission (T) and reflection (R) coefficients in the Ka-band are experimentally analyzed for the foams with the reticular structure. By the methods of 3D-modeling, the effect of the skeleton conductivity and pore and windows size on the value of electromagnetic shielding provided by such a medium is considered.

  12. Microwave effect in the fast synthesis of microporous materials: which stage between nucleation and crystal growth is accelerated by microwave irradiation?

    PubMed

    Jhung, Sung Hwa; Jin, Taihuan; Hwang, Young Kyu; Chang, Jong-San

    2007-01-01

    Microporous materials, such as silicalite-1 and VSB-5 molecular sieves, have been synthesized by both microwave irradiation (MW) and conventional electric heating (CE). The accelerated syntheses by microwave irradiation can be quantitatively investigated by various heating modes conducted in two steps such as MW-MW, MW-CE, CE-MW, and CE-CE (in the order of nucleation-crystal growth). In the case of synthesis by MW-CE or CE-MW, the heating modes were changed for the second step just after the appearance of X-ray diffraction peaks in the first step. We have quantitatively demonstrated that the microwave irradiation accelerates not only the nucleation but also crystal growth. However, the contribution to decrease the synthesis time by microwave irradiation is larger in the nucleation stage than in the step of crystal growth. The crystal size increases in the order of MW-MWmicrowave-nucleated precursor can be explained in terms of the fact that the microwave-nucleated samples have higher population of nuclei with smaller size than the samples nucleated by conventional heating.

  13. Effect of ionic liquid properties on lipase stabilization under microwave irradiation

    SciTech Connect

    Zhao, Hua; Baker, Gary A; Song, Zhiyan; Olubajo, Olarongbe; Zanders, Lavezza; Campbell, Sophia

    2009-01-01

    Ionic liquids (ILs) as neoteric solvents and microwave irradiation as alternative energy source are becoming two important tools for many enzymatic reactions. However, it is not well understood what properties of ILs govern the enzyme stabilization, and whether the microwave irradiation could activate enzymes in ILs. To tackle these two important issues, the synthetic activities of immobilized Candida antarctica lipase B (Novozyme 435) were examined in more than twenty ILs through microwave heating. Under microwave irradiation, enhanced enzyme activities were observed when the enzyme was surrounded by a layer of water molecules. However, such enhancement diminished when the reaction system was dried. To understand the effect of IL properties, the enzyme activities under microwave irradiation were correlated with the viscosity, polarity and hydrophobicity (log P) of ILs, respectively. The initial reaction rates bear no direct relationship with the viscosity and polarity (in terms of dielectric constant and EN T ) of ILs, but have a loose correlation (a bell curve) with log P values. The enzyme stabilization by ILs was explained from aspects of hydrogen-bond basicity of anions, dissolution of the enzyme, ionic association strength of anions, and substrate ground-state stabilization by ILs.

  14. Intense high-frequency gyrotron-based microwave beams for material processing

    SciTech Connect

    Hardek, T.W.; Cooke, W.D.; Katz, J.D.; Perry, W.L.; Rees, D.E.

    1997-03-01

    Microwave processing of materials has traditionally utilized frequencies in the 0.915 and 2.45 GHz regions. Microwave power sources are readily available at these frequencies but the relatively long wavelengths can present challenges in uniformly heating materials. An additional difficulty is the poor coupling of ceramic based materials to the microwave energy. Los Alamos National Laboratory scientists, working in conjunction with the National Center for Manufacturing Sciences (NCMS), have assembled a high-frequency demonstration processing facility utilizing gyrotron based RF sources. The facility is primarily intended to demonstrate the unique features available at frequencies as high as 84 GHz. The authors can readily provide quasi-optical, 37 GHz beams at continuous wave (CW) power levels in the 10 kW range. They have also provided beams at 84 GHz at 10 kW CW power levels. They are presently preparing a facility to demonstrate the sintering of ceramics at 30 GHz. This paper presents an overview of the present demonstration processing facility and describes some of the features they have available now and will have available in the near future.

  15. A planar transmission-line sensor for measuring the microwave permittivity of liquid and semisolid biological materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A planar transmission-line configuration for rapid, nondestructive, wideband permittivity measurements of liquid and semisolid materials at microwave frequencies is described. The transmission-line propagation constant of the proposed configuration is determined with the multiline technique from sca...

  16. COSMIC MICROWAVE BACKGROUND CONSTRAINTS OF DECAYING DARK MATTER PARTICLE PROPERTIES

    SciTech Connect

    Yeung, S.; Chan, M. H.; Chu, M.-C.

    2012-08-20

    If a component of cosmological dark matter is made up of massive particles-such as sterile neutrinos-that decay with cosmological lifetime to emit photons, the reionization history of the universe would be affected, and cosmic microwave background anisotropies can be used to constrain such a decaying particle model of dark matter. The optical depth depends rather sensitively on the decaying dark matter particle mass m{sub dm}, lifetime {tau}{sub dm}, and the mass fraction of cold dark matter f that they account for in this model. Assuming that there are no other sources of reionization and using the Wilkinson Microwave Anisotropy Probe 7-year data, we find that 250 eV {approx}< m{sub dm} {approx}< 1 MeV, whereas 2.23 Multiplication-Sign 10{sup 3} yr {approx}< {tau}{sub dm}/f {approx}< 1.23 Multiplication-Sign 10{sup 18} yr. The best-fit values for m{sub dm} and {tau}{sub dm}/f are 17.3 keV and 2.03 Multiplication-Sign 10{sup 16} yr, respectively.

  17. Electromagnetic and microwave-absorbing properties of magnetic nickel ferrite nanocrystals.

    PubMed

    Zhu, Weimo; Wang, Lei; Zhao, Rui; Ren, Jiawen; Lu, Guanzhong; Wang, Yanqin

    2011-07-01

    The electromagnetic and microwave absorbing properties of nickel ferrite nanocrystals were investigated for the first time. There were two frequencies corresponding to the maximum reflection loss in a wide thickness range from 3.0 to 5.0 mm, which may be bought by the nanosize effect and the good crystallization of the nanocrystals.

  18. Dielectric properties of almond shells in the development of radio frequency and microwave pasteurization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To develop pasteurization treatments based on radio frequency (RF) or microwave energy, dielectric properties of almond shells were determined using an open-ended coaxial-probe with an impedance analyzer over a frequency range of 10 to 1800 MHz. Both the dielectric constant and loss factor of almond...

  19. Quinolines: Microwave-assisted synthesis and their antifungal, anticancer and radical scavenger properties.

    PubMed

    Liberto, Natália Aparecida; Simões, Juliana Baptista; de Paiva Silva, Sarah; da Silva, Cristiane Jovelina; Modolo, Luzia Valentina; de Fátima, Ângelo; Silva, Luciana Maria; Derita, Marcos; Zacchino, Susana; Zuñiga, Omar Miguel Portilla; Romanelli, Gustavo Pablo; Fernandes, Sergio Antonio

    2017-02-01

    An efficient method for the synthesis of quinolines using microwave irradiation was developed providing 28 quinolines with good yields. The reaction procedures are environmentally friendly, convenient, mild and of easy work-up. Quinolines were evaluated for their antifungal, anticancer and antioxidant properties and exhibited high activities in all tests performed.

  20. High temperature composite materials and magnetodielectric composites for microwave application

    NASA Astrophysics Data System (ADS)

    Do, Thanh Ba

    In the part I, we investigated the microstructures, mechanical properties, and oxidation behavior of hot pressed BN in the presence of sintering additives Al2O3, Y2O3 and SiO2. BN platelets size in the sintered samples grew from ˜5 to ˜30 times for the use of all three oxides, and the use of Al2O3 and Y2O3, correspondingly. The excessive growth of BN platelets in samples containing Al2O3 and Y2O 3 caused them to misalign which, in turn, resulted in its low relative density (92.0%). The use of SiO2 mitigated this grain growth so that BN platelets aligned better to gain a higher relative density (99.5%). Flexural strength and elastic modulus of BN were proportional to their densities. Oxidation experiments conducted at 1200°C in flowing dry air showed borate glass droplets were formed on all of oxidized BN samples. The addition of SiO2 resulted in the formation of a glass layer before the appearance of these glass droplets. The presence of glass droplets was a result of the poor wetting of liquid B2O3 on BN and the dominance of the formation of B2O3 to its evaporation. Their size evolution described the "breadth figure" theory, similar to the formation of water droplets on a flat surface from the saturated water vapor air. Substructures observed inside the glass droplets contained high and consistent Al:Y atomic ratio (5:7) in all samples. The evaporation of B2O 3 isolated Al2O3, Y2O3 in the form of immiscible liquid phase to borate. In the part II, we investigated the formulation of equivalent permittivity and permeability with isotropic and anisotropic Co2Z-polymer composition. These two properties of isotropic Co2Z-LDPE/Co2Z-Silicone composites increased with Co2Z composition. However, their permittivity was always higher than that of their permeability. Permittivity and permeability of anisotropic Co2Z-Silicone composites were split into high and low values along the parallel and perpendicular directions to the alignment direction of Co2Z particles. The

  1. Dynamic Deformation Properties of Energetic Composite Materials

    DTIC Science & Technology

    2002-12-01

    the dynamic mechanical properties and detonation of energetic materials. It also included some preliminary data on the effect of particle size on the...study of the dynamic mechanical properties and detonation of energetic materials. It also included some preliminary data on the effect of particle size...qualitative only. 33 5. DEFLAGRATION-TO- DETONATION (DDT) STUDIES As part of an on-going programme to investigate the properties of ultrafine energetic

  2. Apparatus and method for microwave processing of materials using field-perturbing tool

    DOEpatents

    Tucker, Denise A.; Fathi, Zakaryae; Lauf, Robert J.

    2001-01-01

    A variable frequency microwave heating apparatus designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity for heating or other selected applications. A field-perturbing tool is disposed within the cavity to perturb the microwave power distribution in order to apply a desired level of microwave power to the workpiece.

  3. [Application of microwave irradiation technology to the field of pharmaceutics].

    PubMed

    Zhang, Xue-Bing; Shi, Nian-Qiu; Yang, Zhi-Qiang; Wang, Xing-Lin

    2014-03-01

    Microwaves can be directly transformed into heat inside materials because of their ability of penetrating into any substance. The degree that materials are heated depends on their dielectric properties. Materials with high dielectric loss are more easily to reach a resonant state by microwaves field, then microwaves can be absorbed efficiently. Microwave irradiation technique with the unique heating mechanisms could induce drug-polymer interaction and change the properties of dissolution. Many benefits such as improving product quality, increasing energy efficiency and reducing times can be obtained by microwaves. This paper summarized characteristics of the microwave irradiation technique, new preparation techniques and formulation process in pharmaceutical industry by microwave irradiation technology. The microwave technology provides a new clue for heating and drying in the field of pharmaceutics.

  4. Millimeter wave and terahertz dielectric properties of biological materials

    NASA Astrophysics Data System (ADS)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  5. Effect of Nd-doping on structure and microwave electromagnetic properties of BiFeO3

    NASA Astrophysics Data System (ADS)

    Liu, Sheng; Luo, Heng; Yan, Shuoqing; Yao, Lingling; He, Jun; Li, Yuhan; He, Longhui; Huang, Shengxiang; Deng, Lianwen

    2017-03-01

    The single-phase Bi1-xNdxFeO3 (x=0, 0.05, 0.10, 0.15, 0.20) were synthesized by the sol-gel method. Their crystal structure and microwave electromagnetic property in the frequency range of 2-18 GHz were investigated. The XRD patterns and Raman spectra showed that structural transition from rhombohedral (x=0, 0.05, 0.1) to triclinic (x=0.15) and tetragonal structure (x=0.20) appeared in the Bi1-xNdxFeO3. Electromagnetic measurement suggested that both microwave permeability μ‧ and magnetic loss tanδm increased remarkably over 2-18 GHz by doping Nd. Strong dielectric loss peak was observed on the samples of Bi1-xNdxFeO3 (x=0.15) and Bi1-xNdxFeO3 (x=0.2). Results show that Nd substitution is an effective way to push BiFeO3 to become microwave absorbing materials with high performance.

  6. Enhanced Dielectric Properties and High-Temperature Microwave Absorption Performance of Zn-Doped Al2O3 Ceramic

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Luo, Fa; Wei, Ping; Zhou, Wancheng; Zhu, Dongmei

    2015-07-01

    To improve the dielectric and microwave absorption properties of Al2O3 ceramic, Zn-doped Al2O3 ceramic was prepared by conventional ceramic processing. X-ray diffraction analysis confirmed that Zn atoms successfully entered the Al2O3 ceramic lattice and occupied Al sites. The complex permittivity increased with increasing Zn concentration, which is mainly attributed to the increase in charged vacancy defects and densification of the Al2O3 ceramic. In addition, the temperature-dependent complex permittivity of 3% Zn-doped Al2O3 ceramic was determined in the temperature range from 298 K to 873 K. Both the real and imaginary parts of the complex permittivity increased monotonically with increasing temperature, which can be ascribed to the shortened relaxation time and increasing electrical conductivity. The increased complex permittivity leads to a great improvement in microwave absorption. In particular, when the temperature is up to 873 K, the 3% Zn-doped Al2O3 ceramic exhibited the best absorption performance with a maximum peak (-12.1 dB) and broad effective absorption bandwidth (reflection loss less than -10 dB from 9.3 GHz to 12.3 GHz). These results reveal that Zn-doped Al2O3 ceramic is a promising candidate for use as a kind of high-temperature microwave absorption material.

  7. Crystal Structure and Dielectric Properties of Microwave Ceramics CaLa(CaM)O6 [M = Nb, Sb

    NASA Astrophysics Data System (ADS)

    Dutta, Alo; Mandal, Sanjay; Kumari, Premlata; Mukhopadhyay, P. K.; Biswas, S. K.; Sinha, T. P.

    2017-01-01

    The dielectric properties of two perovskite oxides CaLa(CaM)O6 [M = Nb, Sb] synthesized by the solid-state reaction technique have been studied in the microwave and radio frequency range. The phase formation and the crystal structure of the materials are investigated by the Rietveld refinement of the x-ray diffraction data at room temperature. The Raman spectrum substantiates the crystal structure of the materials. The temperature dependence of the relaxation frequencies in the radio frequency range follows the Arrhenius law, and the corresponding activation energies are found to be 0.339 eV and 0.346 eV, respectively, for CaLa(CaNb)O6 and CaLa(CaSb)O6. The difference in the values of the dielectric constant and the loss tangent are correlated with the respective crystal structure of the materials.

  8. Crystal Structure and Dielectric Properties of Microwave Ceramics CaLa(CaM)O6 [M = Nb, Sb

    NASA Astrophysics Data System (ADS)

    Dutta, Alo; Mandal, Sanjay; Kumari, Premlata; Mukhopadhyay, P. K.; Biswas, S. K.; Sinha, T. P.

    2017-03-01

    The dielectric properties of two perovskite oxides CaLa(CaM)O6 [M = Nb, Sb] synthesized by the solid-state reaction technique have been studied in the microwave and radio frequency range. The phase formation and the crystal structure of the materials are investigated by the Rietveld refinement of the x-ray diffraction data at room temperature. The Raman spectrum substantiates the crystal structure of the materials. The temperature dependence of the relaxation frequencies in the radio frequency range follows the Arrhenius law, and the corresponding activation energies are found to be 0.339 eV and 0.346 eV, respectively, for CaLa(CaNb)O6 and CaLa(CaSb)O6. The difference in the values of the dielectric constant and the loss tangent are correlated with the respective crystal structure of the materials.

  9. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, P. G.

    1985-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and Earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often lead to significant misinterpretation of available opacity data. Steffes and Eshleman showed that under environmental conditions corresponding to the middle atmosphere of Venus, the microwave absorption due to atmospheric SO2 was 50 percent greater than that calculated from Van Vleck-Weiskopff theory. Similarly, the opacity from gaseous H2SO4 was found to be a factor of 7 greater than theoretically predicted for conditions of the Venus middle atmosphere. The recognition of the need to make such measurements over a range of temperatures and pressures which correspond to the periapsis altitudes of radio occultation experiments, and over a range of frequencies which correspond to both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements.

  10. Properties of the FDTD method relevant to the analysis of microwave power problems.

    PubMed

    Celuch, Małgorzata; Gwarek, Wojciech K

    2007-01-01

    The objective of the paper is to provide a systematic consideration and generalization of properties and features of the FDTD method in the context of its use in solving microwave power problems. This is aimed at filling the gap between the general theory of the FDTD method and the specific practice of its applications by microwave power engineers. The paper starts with a comparison of FDTD to other methods like FEM, from the perspective of microwave power simulations. It then discusses FDTD-specific models of lossy and dispersive media, conformal boundaries, field singularities, and modal excitation as well as error bounds due to numerical dispersion. Theoretical overview is illustrated with examples. References are provided to the literature where more details and application notes can be found.

  11. Optical, magnetic, and microwave properties of Ni/NiO nanoparticles

    NASA Astrophysics Data System (ADS)

    Rostamnejadi, Ali; Bagheri, Saber

    2017-04-01

    In this research, the optical, magnetic, and microwave properties of NiO and Ni/NiO nanoparticles have been studied. The absorbance spectra of the samples show the electronic d-d excitations with energy band gap of about 3.8 eV. The magnetization measurement confirms the existence of ferromagnetic phase at room temperature, which could be originated from the uncompensated surface spins or ferromagnetic clusters in the antiferromagnetic ground state of NiO nanoparticles. The microwave parameters such as ac conductivity, skin depth, electric and magnetic loss tangents, attenuation constant, and reflection loss have been calculated. While both magnetic and dielectric relaxation processes have been observed in the complex permeability and permittivity, the microwave absorption is mainly attributed to the dielectric relaxation processes.

  12. ELECTROMAGNETIC MICROWAVE PROPERTIES OF Fe82B17Cu1 BALL MILLED ALLOY

    NASA Astrophysics Data System (ADS)

    Tian, N.; Fan, X. D.; Wang, J. W.; You, C. Y.; Lu, Z. X.; Ge, L. L.

    2013-07-01

    High saturation magnetization and magnetic anisotropy are helpful for getting a high frequency electromagnetic microwave absorption performance. The α-Fe possesses a high saturation magnetization. Fe-B phases exhibit a relatively higher magnetic anisotropy and higher resistivity than α-Fe simultaneously. In this work, we made nanocrystalline powders of Fe82B17Cu1, mainly consisting of α-Fe and Fe2B phases, by ball milling and post-annealing. Electromagnetic microwave characterization shows that Fe82B17Cu1 powders possess a relative high permeability and considerable permittivity. Due to a good electromagnetic impedance matching, a good electromagnetic microwave absorption property (RL < -35 dB) has been achieved at 3.6 GHz. The experimental frequency and the matching thickness are coincident with the quarter wavelength matching condition.

  13. Thermoelectric properties of bulk MoSi2 synthesized by solid state microwave heating

    NASA Astrophysics Data System (ADS)

    Lan, Yu; Xie, Mianyu; Ouyang, Ting; Yue, Song

    2016-07-01

    In this research, single phase α-MoSi2 was prepared by solid state hybrid microwave heating within 90 min at relatively low temperature 1273 K. Such precursor powders were then ball milled and sintered by microwave heating at different temperatures. The thermoelectric (TE) properties of MoSi2 bulks were investigated in the temperature range of 300-673 K. When the sintering temperature increases from 973 K to 1273 K, the electrical resistivity decreases significantly and the Seebeck coefficients increase obviously, leading to the maximum TE powder factor of 6.2 × 10-6Wm-1K-2 at 673 K. These results demonstrate the feasibility of high efficient and economical synthesis of MoSi2 by microwave heating technique, with the final products having comparable TE performance in comparison to those from typical methods with long duration and energy-extensive consumption.

  14. Influence of microwave irradiation on boron concentrate activation with an emphasis on surface properties

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Zhang, Qiaoyi; Liu, Yajing; Xue, Xiangxin; Duan, Peining

    2016-11-01

    In this study, we employed microwave irradiation for activating boron concentrate, an abundant but low-grade boron mineral resource in China. The boron concentrate was pretreated by microwave irradiation based on TG-DTG-DSC analysis, and the influence of each parameter on processing efficiency was characterized using chemical analysis, XRD, SEM, FTIR and particle distribution analysis. Subsequently, the surface properties of boron concentrate and the mechanism of microwave irradiation was analyzed. Our results indicate that microwave irradiation decreased the processing temperature and shortened the roasting time by accelerating dehydroxylation and oxidation reactions in the boron concentrate, reducing the particle diameter and damaging the microstructure of the minerals, and it increased the B2O3 activity of boron from 64.68% to 86.73%, greater than the optimal conventional treatment. Compared with the simple thermal field, microwave roasting obviously increased ability of the boron concentrate to absorb OH- in the leachant and promoted boron leaching by expanding the contact area of the mineral exposed to leachant, boosting the amount of Mg2+ and Fe3+ on mineral surfaces, and increasing the hydrophilicity of the boron concentrate respectively. It enhanced the γSVLW and γSV- of boron concentrate from 29.15 mJ/m2 and 5.07 mJ/m2 to 37.07 mJ/m2 and 12.41 mJ/m2.

  15. Characterization of Secondary Electron Emission Properties of Plasma Facing Materials

    NASA Astrophysics Data System (ADS)

    Patino, Marlene I.; Capece, Angela M.; Raitses, Yevgeny; Koel, Bruce E.

    2015-11-01

    The behavior of wall-bounded plasmas is significantly affected by the plasma-wall interactions, including the emission of secondary electrons (SEE) from the wall materials due to bombardment by primary electrons. The importance of SEE has prompted previous investigations of SEE properties of materials especially with applications to magnetic fusion, plasma thrusters, and high power microwave devices. In this work, we present results of measurements of SEE properties of graphite and lithium materials relevant for the divertor region of magnetic fusion devices. Measurements of total SEE yield (defined as the number of emitted secondary electrons per incident primary electron) for lithium are extended up to 5 keV primary electron energy, and the energy distributions of secondary electrons are provided for graphite and lithium. Additionally, the effect of contamination on the total SEE yield of lithium was explored by exposing the material to water vapor. Auger electron spectroscopy (AES) was used to determine surface composition and temperature programmed desorption (TPD) was used to determine lithium film thickness. Results show an order of magnitude increase in total SEE yield for lithium exposed to water vapor. This work was supported by DOE contract DE-AC02-09CH11466; AFOSR grants FA9550-14-1-0053, FA9550-11-1-0282, and AF9550-09-1-0695; and DOE Office of Science Graduate Student Research Program.

  16. Dynamic properties of ceramic materials

    SciTech Connect

    Grady, D.E.

    1995-02-01

    The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis of shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process.

  17. Mechanical Properties of Energetic Materials

    DTIC Science & Technology

    1977-01-01

    the fact that it is often not possible to grow large single crystals , and in addition safety considerations require that only small amounts of material... crystallization from acetone and aqueous ammonia soluions respectively. A diffusion technique was used to grow single crystals of a-PbN6. All the...EXPLOSIVES (a) Drop-weight impact Discussion (b) Particle impact; the role of localized plastic flow Initiation results (i) Single crystals wlt &t Po--I Duf Sd

  18. Effect of microwave treatment on the luminescence properties of CdS and CdTe:Cl Single Crystals

    SciTech Connect

    Red’ko, R. A. Budzulyak, S. I.; Korbutyak, D. V.; Lotsko, A. P.; Vakhnyak, N. D.; Demchyna, L. A.; Kalytchuk, S. M.; Konakova, R. V.; Milenin, V. V.; Bykov, Yu. V. Egorov, S. V.; Eremeev, A. G.

    2015-07-15

    The effect of microwave radiation on the luminescence properties of CdS and CdTe:Cl single crystals is studied. It is established that the exposure of these semiconductors to short-term (≤30 s) microwave radiation substantially modifies their impurity and defect structure. The mechanisms of transformation of the defect subsystem of II–VI single crystals upon microwave treatment are discussed. It is shown that the experimentally observed changes are defined by the nonthermal effects of microwave radiation at a power density of 7.5 W cm{sup –2}; at 90 W cm{sup –2}, nonthermal effects are prevailing.

  19. Electromagnetic performance and microwave absorbing property of nanocrystalline Sm2Fe14B compound

    NASA Astrophysics Data System (ADS)

    Han, Rui; Yi, Hai-bo; Wei, Jian-qiang; Qiao, Liang; Wang, Tao; Li, Fa-shen

    2012-09-01

    A new planar anisotropy Sm2Fe14B nanocrystal as an electromagnetic absorption material was prepared by melt-spinning method. The electromagnetic and microwave absorbing properties of Sm2Fe14B nanocrystal/nonmagnetic matrix composite in the frequency range of 0.1-10 GHz were measured and calculated. At the perfect matching point (2.9 GHz), the minimum reflection loss reaches -42.0 dB at the matching thickness of 3.1 mm. Furthermore, the calculation shows that the normalized input impedance Z in/ Z 0 equals 1, but the modulus of the ratio between the complex permittivity and permeability | ɛ/ μ| is far away from unity at the perfect matching point. The effective permeability of the composite was simulated using the combination of the Landau-Lifshitz-Gilbert equation and Bruggeman's effective medium theory; the agreement between the experimental data and the theoretical one demonstrates that the magnetic loss in the composite is mainly caused by natural resonance.

  20. Electromagnetic and Microwave-Absorbing Properties of Plate-Like Nd-Ce-Fe Powder

    NASA Astrophysics Data System (ADS)

    Qiao, Ziqiang; Pan, Shunkang; Xiong, Jilei; Cheng, Lichun; Lin, Peihao; Luo, Jialiang

    2017-01-01

    Plate-like Ce x Nd2- x Fe17 ( x = 0.0, 0.1, 0.2, 0.3, 0.4) powders have been synthesized by an arc melting and high-energy ball milling method. The structure of the Nd-Ce-Fe powders was investigated by x-ray diffraction analysis. Their morphology and particle size distribution were evaluated by scanning electron microscopy and laser particle analysis. The saturation magnetization and electromagnetic parameters of the powders were characterized using vibrating-sample magnetometry and vector network analysis, respectively. The results reveal that the Ce x Nd2- x Fe17 ( x = 0.0, 0.1, 0.2, 0.3, 0.4) powders consisted of Nd2Fe17 single phase with different Ce contents. The particle size and saturation magnetization decreased with increasing Ce content. The resonant frequencies of ɛ″ and μ″ moved towards lower frequency with increasing Ce concentration. The minimum reflection loss value decreased as the Ce content was increased. The minimum reflection loss and absorption peak frequency of Ce0.2Nd1.8Fe17 with coating thickness of 1.8 mm were -22.5 dB and 7 GHz, respectively. Increasing the values of the complex permittivity and permeability could result in materials with good microwave absorption properties.

  1. Radio to microwave dielectric characterisation of constitutive electromagnetic soil properties using vector network analyses

    NASA Astrophysics Data System (ADS)

    Schwing, M.; Wagner, N.; Karlovsek, J.; Chen, Z.; Williams, D. J.; Scheuermann, A.

    2016-04-01

    The knowledge of constitutive broadband electromagnetic (EM) properties of porous media such as soils and rocks is essential in the theoretical and numerical modeling of EM wave propagation in the subsurface. This paper presents an experimental and numerical study on the performance EM measuring instruments for broadband EM wave in the radio-microwave frequency range. 3-D numerical calculations of a specific sensor were carried out using the Ansys HFSS (high frequency structural simulator) to further evaluate the probe performance. In addition, six different sensors of varying design, application purpose, and operational frequency range, were tested on different calibration liquids and a sample of fine-grained soil over a frequency range of 1 MHz-40 GHz using four vector network analysers. The resulting dielectric spectrum of the soil was analysed and interpreted using a 3-term Cole-Cole model under consideration of a direct current conductivity contribution. Comparison of sensor performances on calibration materials and fine-grained soils showed consistency in the measured dielectric spectra at a frequency range from 100 MHz-2 GHz. By combining open-ended coaxial line and coaxial transmission line measurements, the observable frequency window could be extended to a truly broad frequency range of 1 MHz-40 GHz.

  2. Synthesis, characterization, and properties of low-dimensional nanostructured materials

    NASA Astrophysics Data System (ADS)

    Hu, Xianluo

    2007-05-01

    Nanometer scale structures represent an exciting and rapidly expanding area of research. Studies on new physical/chemical properties and applications of nanomaterials and nanostructures are possible only when nanostructured materials are made available with desired size, morphology, crystal and microstructure, and composition. Thus, controlled synthesis of nanomaterials is the essential aspect of nanotechnology. This thesis describes the development of simple and versatile solution-based approaches to synthesize low-dimensional nanostructures. The first major goal of this research is to design and fabricate morphology-controlled alpha-Fe 2O3 nanoarchitectures in aqueous solution through a programmed microwave-assisted hydrothermal route, taking advantage of microwave irradiation and hydrothermal effects. Free-standing alpha-Fe2O3 nanorings are prepared by hydrolysis of FeCl3 in the presence of phosphate ions. The as-formed architecture of alpha-Fe2O 3 nanorings is an exciting new member in the family of iron oxide nanostructures. Our preliminary results demonstrate that sensors made of the alpha-Fe 2O3 nanorings exhibit high sensitivity not only for bio-sensing of hydrogen peroxide in a physiological solution but also for gas-sensing of alcohol vapor at room temperature. Moreover, monodisperse alpha-Fe 2O3 nanocrystals with continuous aspect-ratio tuning and fine shape control are achieved by controlling the experimental conditions. The as-formed alpha-Fe2O3 exhibits shape-dependent infrared optical properties. The growth process of colloidal alpha-Fe 2O3 crystals in the presence of phosphate ions is discussed. In addition, through an efficient microwave-assisted hydrothermal process, self-assembled hierarchical alpha-Fe2O3 nanoarchitectures are synthesized on a large scale. The second major goal of this research is to develop convenient microwave-hydrothermal approaches for the fabrication of carbon-based nanocomposites: (1) A one-pot solution-phase route, namely

  3. Effect of Mg-Zr substitution and microwave processing on magnetic properties of barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Sharma, Manju; Kashyap, Subhash C.; Gupta, H. C.

    2014-09-01

    The effect of substitution of Mg-Zr for Fe in M-type barium hexaferrite (BHF) and of processing technique on the magnetic properties and microstructure has been reported in the present paper. Significant changes in magnetic properties have been observed on substituting Fe ions by Mg and Zr ions in M-type barium hexaferrite, i.e. BaFe12O19 as well as by single mode microwave processing. The single mode microwave processing of the undoped sample reduced the coercivity to nearly 25% of the value for the sintered sample along with the enhancement in magnetization, thereby making it suitable for memory devices. The improvement in magnetic properties is explained on the basis of microstructure. The addition of substituents, though assisted in the formation of single phase, it, however, degraded the magnetization besides decreasing the coercivity, possibly due to substitution at the octahedral sites.

  4. Properties of doped semiconducting materials

    NASA Astrophysics Data System (ADS)

    Zemskov, V. S.

    The papers contained in this volume focus on the physicochemical principles of the doping of semiconductor materials. Topics discussed include impurity atoms and atomic levels, phase diagrams of the semiconductor-dopant system, distribution coefficients, dopant diffusion, and macro- and microsegregation of doping components. Attention is also given to the interaction between dopant atoms and lattice defects and the structure and decomposition of semiconductor-dopant solid solutions. Experimental data are presented for single crystals and epitaxial films of III-V, IV-VI, and II-VI semiconductors.

  5. Analysis of biological reference materials, prepared by microwave dissolution, using inductively coupled plasma mass spectrometry.

    PubMed

    Friel, J K; Skinner, C S; Jackson, S E; Longerich, H P

    1990-03-01

    A procedure has been developed for the analysis of biological materials by inductively coupled plasma mass spectrometry (ICP-MS). Fast, efficient and complete sample digestion is achieved by a combined microwave-nitric acid/open beaker-nitric acid-hydrogen peroxide procedure. The ICP-MS analysis is performed with an on-line five-element internal standard to correct for matrix and instrumental drift effects. Results are presented for 24 elements in three biological reference materials (National Institute of Standards and Technology Standard Reference Materials 5277a Liver and 1566 Oyster and International Atomic Energy Agency Certified Reference Material H4 Animal Muscle). For all elements significantly above the detection limit and reagent blank concentrations, good agreement exists between ICP-MS and certified values.

  6. Some observations on hyperuniform disordered photonic bandgap materials, from microwave scale study to infrared scale study

    NASA Astrophysics Data System (ADS)

    Tsitrin, Sam; Nahal, Geev; Florescu, Marian; Man, Weining; San Francisco State University Team; University of Surrey Team

    2015-03-01

    A novel class of disordered photonic materials, hyperuniform disordered solids (HUDS), attracted more attention. Recently they have been experimentally proven to provide complete photonic band gap (PBG) when made with Alumina or Si; as well as single-polarization PBG when made with plastic with refract index of 1.6. These PBGs were shown to be real energy gaps with zero density of photonic states, instead of mobility gaps of low transmission due to scattering, etc. Using cm-scale samples and microwave experiments, we reveal the nature of photonic modes existing in these disordered materials by analyzing phase delay and mapping field distribution profile inside them. We also show how to extend the proof-of-concept microwave studies of these materials to proof-of-scale studies for real applications, by designing and fabricating these disordered photonic materials at submicron-scale with functional devices for 1.55 micron wavelength. The intrinsic isotropy of the disordered structure is an inherent advantage associated with the absence of limitations of orientational order, which is shown to provide valuable freedom in defect architecture design impossible in periodical structures. NSF Award DMR-1308084, the University of Surrey's FRSF and Santander awards.

  7. Kinetics of microwave drying of a free-flowing organic material

    NASA Astrophysics Data System (ADS)

    Kalender'yan, V. A.; Boshkova, I. L.; Volgusheva, N. V.

    2006-05-01

    The kinetics of drying of a dense buckwheat layer in a microwave electromagnetic field of frequency 2.45 GHz has been investigated for different amounts of the material charged into a working chamber. Analysis of the kinetics curves has shown that the drying of the material studied is divided into the periods of heating, drying with a constant rate, and drying with a decreasing rate. The influence of the power supplied as well as the mass and dimensions of a sample on the rate of its drying has been investigated and a formula for calculating this rate has been obtained. It has been established that, in the process of drying of a disperse material, the amount of microwave energy converted into heat energy depends not only on the mass of a sample, but also on the thickness and area of its surface layer. Generalized equations for calculating the moisture content in a layer of a free-flowing material and its temperature have been obtained.

  8. Microwave Synthesis, Characterization, and Photoluminescence Properties of Nanocrystalline Zirconia

    PubMed Central

    Singh, A. K.; Nakate, Umesh T.

    2014-01-01

    We report synthesis of ZrO2 nanoparticles (NPs) using microwave assisted chemical method at 80°C temperature. Synthesized ZrO2 NPs were calcinated at 400°C under air atmosphere and characterized using FTIR, XRD, SEM, TEM, BET, and EDS for their formation, structure, morphology, size, and elemental composition. XRD results revealed the formation of mixed phase monoclinic and tetragonal ZrO2 phases having crystallite size of the order 8.8 nm from most intense XRD peak as obtained using Scherrer formula. Electron microscope analysis shows that the NPs were less than 10 nm and highly uniform in size having spherical morphology. BET surface area of ZrO2 NPs was found to be 65.85 m2/g with corresponding particle size of 16 nm. The band gap of synthesized NPs was found to be 2.49 eV and PL spectra of ZrO2 synthesized NPs showed strong peak at 414 nm, which corresponds to near band edge emission (UV emission) and a relatively weak peak at 475 and 562 nm. PMID:24578628

  9. Properties of microplasmas excited by microwaves for VUV photon sources

    NASA Astrophysics Data System (ADS)

    Cooley, James E.; Urdahl, Randall; Xue, Jun; Denning, Mark; Tian, Peng; Kushner, Mark J.

    2015-12-01

    Microplasma sources typically take advantage of pd (pressure  ×  size) scaling by increasing pressure to operate at dimensions as small as tens of microns. In many applications, low pressure operation is desirable, which makes miniaturization difficult. In this paper, the characteristics of low pressure microplasma sources excited by microwave power are discussed based on results from experimental and computational studies. The intended application is production of VUV radiation for chemical analysis, and so emphasis in this study is on the production of resonant excited states of rare gases and radiation transport. The systems of interest operate at a few to 10 Torr in Ar and He/Ar mixtures with cavity dimensions of hundreds of microns to 1 mm. Power deposition is a few watts which produces fractional ionization of about 0.1%. We found that production of VUV radiation from argon microplasmas at 104.8 nm and 106.7 nm saturates as a function of power deposition due to a quasi-equilibrium that is established between the electron temperature (that is not terribly sensitive to power deposition) and the population of the Ar(4s) manifold.

  10. Gold Nanoparticle Microwave Synthesis

    SciTech Connect

    Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin; Washington, II, Aaron L.; Murph, Simona H.

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  11. Magnetic and microwave absorption properties of La-Nd-Fe alloys

    NASA Astrophysics Data System (ADS)

    Qiao, Ziqiang; Pan, Shunkang; Xiong, Jilei; Cheng, Lichun; Yao, Qingrong; Lin, Peihao

    2017-02-01

    Through arc smelting and high energy ball milling method to synthesized the powders of LaxNd2-xFe17 (x=0.0, 0.2, 0.4, 0.6). By x-ray diffraction (XRD), scanning electron microscopy (SEM) and laser particle analyzer (LPS) to study the structural, morphology, particle size distribution of the powders, respectively. The electromagnetic parameters and saturation magnetization of the powers were measured by a vector network analyzer (VNA) and vibrating sample magnetometer (VSM), respectively. The saturation magnetization decreases with the La increasing. The minimum absorption peak frequency shifts towards a lower frequency region with an increase of La concentration. The microwave absorbing properties of the composite with different ratios of La0.2Nd1.8Fe17/Ni were studied. The microwave absorbing peaks of the composite shift to higher frequencies, and the microwave absorbing properties improved with the Ni content increase to 20%. The minimum reflection loss is -32.5 dB at 9.8 GHz and the bandwidth less than -10 dB (Microwave absorption rate 90%) reaches 3 GHz with a thickness of 1.8 mm.

  12. Microwave processing of ceramics

    SciTech Connect

    Katz, J.D.

    1989-01-01

    This paper discusses the following topics on microwave processing of ceramics: Microwave-material interactions; anticipated advantage of microwave sintering; ceramic sintering; and ceramic joining. 24 refs., 4 figs. (LSP)

  13. Spacecraft Charging Sensitivity to Material Properties

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Edwards, David L.

    2015-01-01

    Evaluating spacecraft charging behavior of a vehicle in the space environment requires knowledge of the material properties relevant to the charging process. Implementing surface and internal charging models requires a user to specify a number of material electrical properties including electrical resistivity parameters (dark and radiation induced), dielectric constant, secondary electron yields, photoemission yields, and breakdown strength in order to correctly evaluate the electric discharge threat posed by the increasing electric fields generated by the accumulating charge density. In addition, bulk material mass density and/or chemical composition must be known in order to analyze radiation shielding properties when evaluating internal charging. We will first describe the physics of spacecraft charging and show how uncertainties in material properties propagate through spacecraft charging algorithms to impact the results obtained from charging models. We then provide examples using spacecraft charging codes to demonstrate their sensitivity to material properties. The goal of this presentation is to emphasize the importance in having good information on relevant material properties in order to best characterize on orbit charging threats.

  14. Dynamic strength properties of permeable fibrous materials

    SciTech Connect

    Ivanchuk, A.A.; Karpinos, D.M.; Kondrat'ev, Yu.V.; Nezhentsev, Yu.I.; Rutkovskii, A.E.; Bikernieks, V.Ya.; Peterson, O.O.; Pekhovich, V.A.

    1986-11-01

    The authors assess the porosity and fracture properties of porous samples of molybdenum, tungsten, and steel-Kh18N9T through a variety of mechanical tests including impact, bend, and notch. They study the interplay and interdependence of these properties in view of looking for materials suited for processes of transpiration cooling and sound and vibration damping.

  15. Evaluation of effectiveness of microwave irradiation for disinfection of silicone elastomeric impression material.

    PubMed

    Bhasin, Abhilasha; Vinod, V; Bhasin, Vinny; Mathew, Xavier; Sajjan, Suresh; Ahmed, Syed Tauqheer

    2013-06-01

    Use of domestic microwave oven has been suggested as a method of disinfecting a number of dental materials used in dental practice. This study was done to analyse the effect of microwave irradiation on vinyl polysiloxane putty impression material (3M ESPE, Express™ STD) contaminated with test organisms (Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans. 180 square shaped specimens of addition silicon putty material were prepared and divided into 3 groups for three test organisms. The 3 groups were subdivided into 4 subgroups (n = 15) for different exposure parameters (control group 5, 6 and 7 min exposure at 650 W. The specimens were contaminated using standard inoculums of test organism and then were irradiated using domestic microwaves. Broth cultures of the control and test group specimens were plated on selective media culture plates. Colonies formed were counted. Data analyses included Kruskal-Walli's ANOVA and Mann-Whitney's tests. Nil values shows complete elimination of C. albicans and P. aeruginosa after 5, 6 and 7 min exposure. Staphylococcus aureus showed colonies with the mean value of 7.6 × 10(3) ± 2.3 × 10(3), 4.6 × 10(3) ± 2.6 × 10(3) after 5 and 6 min respectively and nil values after 7 min exposure. 5 min exposure caused complete elimination of C. albicans and P. aeruginosa strains, while 7 min exposure eliminated S. aureus completely.

  16. Advanced processing and properties of superhard materials

    SciTech Connect

    Narayan, J.

    1995-06-01

    The author reviews fundamental aspects of Superhard Materials with hardness close to that of diamond. These materials include cubic boron nitride (c-BN), carbon nitride ({beta}-C{sub 3}N{sub 4}) and diamondlike carbon. Since these materials are metastable at normal temperatures and pressures, novel methods of synthesis and processing of these materials are required. This review focuses on synthesis and processing, detailed materials characterization and properties of c-BN and {beta}C{sub 3}N{sub 4} and diamondlike carbon films.

  17. On the acid-base properties of microwave irradiated hydrotalcite-like compounds containing Zn2+ and Mn2+.

    PubMed

    Sampieri, Alvaro; Lima, Enrique

    2009-04-09

    Microwave irradiated lamellar double hydroxides containing different divalent metals (Mn2+, Zn2+, or Mg2+) were prepared with Al3+ as the trivalent metal. Samples containing Mn2+ and Zn2+ were unstable at 400 degrees C, leading to formation of mixed oxides and spinel phases. Acid-base properties of the samples were characterized by nitromethane and CO2 adsorption followed by FTIR spectroscopy. Decomposition of adsorbed nitromethane leads to isocyanate species that acts as probe molecules of acid-base sites at the surface. These properties determine the ability of materials to retain CO2. Indeed, whereas Mn-O sites are able to interact directly with CO2 molecules, Mg-O and Zn-O are able to form carbonate species as a result of the CO2 sorption.

  18. Mechanical Properties of Infrared Transmitting Materials

    DTIC Science & Technology

    1978-01-01

    72-0170, 1972. Touloukian , Y. S., Ed., "Thermophysical Properties of Matter" series. A Comprehensive Compilation of Data by the Thermophysical...Research Projects Agency, 675 North Randolph Street, Arlington, VA 22203-2114. DARPA ltr, 20 Mar 1980 RIA-78-0291 2 01010695 2 Iviecnanica Properties of...336 2. GOVT ACCESSION NO 3. RECIPIENT’S CATALOG NUMBER 4. TITLE (end Subtitle) Mechanical Properties of Infrared Transmitting Materials 5

  19. [Dielectric properties of human sweat fluid in the microwave range].

    PubMed

    Romanov, A N

    2010-01-01

    The dielectric properties of sweat fluid gathered from different zones of the human body have been studied in the frequency range from 300 MHz to 3 GHz. It has been shown that the dielectric properties of sweat of different zones differ. The dependence of refraction and absorption indices on the frequency of the signal and the mass concentration of substances dissolved in sweat liquid has been determined.

  20. DEVELOPMENT OF ADVANCED DRILL COMPONENTS FOR BHA USING MICROWAVE TECHNOLOGY INCORPORATING CARBIDE, DIAMOND COMPOSITES AND FUNCTIONALLY GRADED MATERIALS

    SciTech Connect

    Dinesh Agrawal; Rustum Roy

    2003-01-01

    The microwave processing of materials is a new emerging technology with many attractive advantages over the conventional methods. The advantages of microwave technology for various ceramic systems has already been demonstrated and proven. The recent developments at Penn State have succeeded in applying the microwave technology for the commercialization of WC/Co and diamond based cutting and drilling tools, effectively sintering of metallic materials, and fabrication of transparent ceramics for advanced applications. In recent years, the Microwave Processing and Engineering Center at Penn State University in collaboration with our industrial partner, Dennis Tool Co. has succeeded in commercializing the developed microwave technology partially funded by DOE for WC/Co and diamond based cutting and drilling tools for gas and oil exploration operations. In this program we have further developed this technology to make diamond-carbide composites and metal-carbide-diamond functionally graded materials. Several actual product of diamond-carbide composites have been processed in microwave with better performance than the conventional product. The functionally graded composites with diamond as one of the components has been for the first time successfully developed. These are the highlights of the project.

  1. Microwave properties of La0.8Ag0.2MnO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Rostamnejadi, Ali

    2016-11-01

    In this research, single-phase nanoparticles of La0.8Ag0.2MnO3 with mean particle size of 15 nm have been synthesized by sol-gel method. The microwave properties of La0.8Ag0.2MnO3/paraffin nanocomposite are studied by measuring the complex permittivity and permeability in the frequency range of 1-18 GHz. The composite shows both reflection and absorption electromagnetic shielding effectiveness with maximum total value of 36 dB, which is suitable for defense and microwave radiation shielding applications at high temperatures. The electromagnetic absorption properties are described in terms of dielectric relaxation processes.

  2. Impact of silica-coating on the microwave absorption properties of carbonyl iron powder

    NASA Astrophysics Data System (ADS)

    Li, J.; Feng, W. J.; Wang, J. S.; Zhao, X.; Zheng, W. Q.; Yang, H.

    2015-11-01

    Microwave absorption properties, especially the band width and depth of reflection loss are highlighted as key measurement in studies of microwave absorber. In order to improve the band width and depth of reflection loss of carbonyl iron powder (CIP), we prepared SiO2 layers on the surface of CIP by using tetraethyl orthosilicate (TEOS) as a SiO2 source and 3-aminopropyl triethoxysilane (APTES) as a surface modifier. SiO2 layer was formed by the hydrolysis of TEOS. The results show that after treatment the CIP is covered by a 5-10 nm coating layer. Contrast to uncoated samples, coated samples show improved absorption properties. The minimum of reflection loss is -38.8 dB at 11 GHz and the band width of reflection loss exceeding -10 dB is from 8 GHz to 14 GHz.

  3. From Microstructures to Predict Properties of Materials

    NASA Astrophysics Data System (ADS)

    Wang, Ke-Gang

    2010-03-01

    Understanding the precise and fundamental manner in which materials structures (nanostructures or microstructures) and their evolution influences properties and service lifetimes of advanced materials profoundly impacts material design and today materials design plays an increasingly important rôle in many engineering applications. Linking structures to properties and predicting properties of materials is fundamental step for materials design. First, a framework of applications of multiscale modeling to property prediction of advanced materials will be briefly presented. As an example, a methodology will be shown to link micro-scale to the continuum scale, integrating microstructure modeling with the large Thermo-Calc^ database. This paradigm was successfully applied to the case of Fe-12Ni-6Mn maraging steel. Next, methodology for integrating first-principle calculation into simulations of microstructure evolution will be reviewed. Our methods are sufficiently reliable to permit control and fabrication of quantum-dots structures, nanocrystals, and particle-reinforced nanocomposites, as well as assist in the predictive behavior of macro-scale colloids, aerosols, and other soft matter systems.

  4. Magnetic and microwave properties of U-type hexaferrite films with high remanence and low ferromagnetic resonance linewidth

    SciTech Connect

    Su, Zhijuan; Bennett, Steven; Hu, Bolin; Chen, Yajie Harris, Vincent G.

    2014-05-07

    U-type barium hexaferrite films (Ba{sub 4}Ni{sub 1.4}Co{sub 0.6}Fe{sub 36}O{sub 60}) were deposited on (0001) sapphire substrates by pulsed laser deposition. Microstructure and magnetic properties of the films were characterized by X-ray diffraction, scanning electron microscopy and vibrating sample magnetometry. Ferromagnetic resonance (FMR) measurements were performed at X-band. The results indicate an anisotropy field of ∼8 kOe, and the saturation magnetization (4πM{sub s}) of ∼3.6 kG. An optimal post-deposition annealing of films results in a strong (0 0 n) crystallographic texture and a high hysteresis loop squareness (M{sub r}/M{sub s} = 92%) leading to self biased properties. Furthermore, the highly self-biased ferrite films exhibited an FMR linewidth of ∼200 Oe. The U-type hexaferrite films having low microwave loss, low magnetic anisotropy field, and high squareness are a suitable alternative to Sc or In doped BaM ferrites that have been the choice material for self-biased microwave devices at X-band frequencies.

  5. Inversion of Airborne Passive Microwave Data for Snow Properties using the Metropolis Algorithm

    NASA Astrophysics Data System (ADS)

    Vander Jagt, B.; Durand, M. T.; Margulis, S. A.; Molotch, N. P.; Kim, E. J.

    2012-12-01

    Passive microwave (PM) remote sensing of snow is based on the fact that microwave brightness temperatures contain information about different snow properties, some of which include depth, grain size, and density. These different snow properties are highly spatially heterogeneous, and often prove difficult to invert using traditional algorithms. This is mainly due the dynamic, many-to-one nature of the relationship between the PM signal and the different snow properties, the coarse resolution of the observations as compared to the fine spatial scale at which snow properties vary, and the masking of the PM signal by varying amounts and types of vegetation. While multi-frequency PM observations can help reduce the many-to-one nature associated with the snow states by constraining the amount of potential solutions, the vertical heterogeneity and layering of snow properties often leads to errors in the inversion process when little a priori information exists on the vertical structure of the snowpack. Using a new algorithm, specifically a Bayesian Markov Chain Monte Carlo scheme solved using the Metropolis algorithm, we attempt to invert the airborne passive microwave data collected during the Cold Land Processes Experiment (CLPX) to estimate the spatial snow properties within the different study areas, with virtually no a priori information. We allowed the number of snowpack layers itself to be unknown by generating different chains for each possible number of layers (up to a maximum of four), then selecting the optimal chain using a model selection criterion. We then evaluate our accuracy using real datasets, specifically the measured in-situ snow properties that were collected from snow pits during CLPX, and compare our results across a large range of different snow and climactic environments. Synthetic results show that an accurate solution to number of layers, layer thickness, density, grain size, snow temperature and ground temperature from microwave measurements

  6. Synthesis, characterization, and microwave absorption properties of Fe-40 wt%Ni alloy prepared by mechanical alloying and annealing

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Feng, Yongbao; Qiu, Tai

    2011-12-01

    Fe-40 wt%Ni alloys with granular shape and flake shape were prepared by a mechanical alloying (MA) and annealing method. The phase composition and morphology of the FeNi alloys, electromagnetic parameters, and microwave absorbing properties of the silicone rubber composite absorbers filled with the as-prepared FeNi alloy particles were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and vector network analyzer. The XRD results indicate that the crystalline structures of the Fe-40 wt%Ni alloys prepared by both one-step and two-step MA processes are face-centered cubic (fcc) Ni (Fe) solid solutions, and the structures can be retained after annealing at 600 °C for 2 h. SEM images show that the FeNi alloy powders for one-step process have a granular shape; however the particles turned into flake form when they were sequentially milled with absolute ethyl alcohol. With the increase in thickness of composite absorber, the reflection loss (RL) decreases, and the peak for minimum reflection loss shifts towards the lower frequency range. Compared to the absorbers filled with the granular FeNi alloy, the absorbers filled with flaky FeNi alloys possess higher complex permittivities and permeabilities and have a lower RL and peak frequency under the same thickness. Microwave absorbing materials with a low reflection loss peak in the range of 1-4 GHz are obtained, and their microwave absorbing properties can be adjustable by changing their thicknesses.

  7. One-step microwave-assisted asymmetric cyclisation/hydrogenation of citronellal to menthols using supported nanoparticles on mesoporous materials.

    PubMed

    Balu, Alina Mariana; Campelo, Juan Manuel; Luque, Rafael; Romero, Antonio Angel

    2010-06-21

    The selective conversion of citronellal to menthols, with good diastereoselectivities to (-)-menthol for the case of (+)-citronellal as starting material, can effectively be carried out in a one-step reaction under microwave irradiation catalysed by supported nanoparticles on mesoporous materials. 2% Pt/Ga-MCM-41 was found to be the optimum catalyst for the reaction, with a quantitative conversion of starting material and selectivities above 85% to menthols obtained in short reaction times (typically 15 min). These results constitute the first report of a simple microwave-assisted one-step cyclisation/hydrogenation process for the production of menthols.

  8. Migration testing of plastics and microwave-active materials for high-temperature food-use applications.

    PubMed

    Castle, L; Jickells, S M; Gilbert, J; Harrison, N

    1990-01-01

    Temperatures have been measured using a fluoro-optic probe at the food/container or food/packaging interfaces as appropriate, for a range of foods heated in either a microwave or a conventional oven. Reheating ready-prepared foods packaged in plastics pouches, trays or dishes in the microwave oven, according to the manufacturers' instructions, resulted in temperatures in the range 61-121 degrees C. Microwave-active materials (susceptors) in contact with ready-prepared foods frequently reached local spot temperatures above 200 degrees C. For foods cooked in a microwave oven according to published recipes, temperatures from 91 degrees C to 200 degrees C were recorded, whilst similar temperatures (92-194 degrees C) were attained in a conventional oven, but over longer periods of time. These measurements form the basis for examining compliance with specific and overall migration limits for plastics materials. The testing conditions proposed depend on the intended use of the plastic - for microwave oven use for aqueous foods, for all lidding materials, and for reheating of foods, testing would only be required with aqueous simulants for 1 h at 100 degrees C; for unspecified microwave oven use, testing with olive oil would be required for 30 min at 150 degrees C; and for unspecified use in a conventional oven testing with olive oil would be required for 2 h at 175 degrees C. For microwave-active materials, it is proposed that testing is carried out in the microwave oven using a novel semi-solid simulant comprising olive oil and water absorbed onto an inert support of diatomaceous earth. The testing in this instance is carried out with the simulant instead of food in a package and heating in the microwave oven at 600 W for 4 min for every 100 g of simulant employed. There is an option in every case to test for migration using real foods rather than simulants if it can be demonstrated that results using simulants are unrepresentative of those for foods. The proposed

  9. Microwave sintering process model.

    PubMed

    Peng, Hu; Tinga, W R; Sundararaj, U; Eadie, R L

    2003-01-01

    In order to simulate and optimize the microwave sintering of a silicon nitride and tungsten carbide/cobalt toolbits process, a microwave sintering process model has been built. A cylindrical sintering furnace was used containing a heat insulating layer, a susceptor layer, and an alumina tube containing the green toolbit parts between parallel, electrically conductive, graphite plates. Dielectric and absorption properties of the silicon nitride green parts, the tungsten carbide/cobalt green parts, and an oxidizable susceptor material were measured using perturbation and waveguide transmission methods. Microwave absorption data were measured over a temperature range from 20 degrees C to 800 degrees C. These data were then used in the microwave process model which assumed plane wave propagation along the radial direction and included the microwave reflection at each interface between the materials and the microwave absorption in the bulk materials. Heat transfer between the components inside the cylindrical sintering furnace was also included in the model. The simulated heating process data for both silicon nitride and tungsten carbide/cobalt samples closely follow the experimental data. By varying the physical parameters of the sintering furnace model, such as the thickness of the susceptor layer, the thickness of the allumina tube wall, the sample load volume and the graphite plate mass, the model data predicts their effects which are helpful in optimizing those parameters in the industrial sintering process.

  10. Hydrazine sensing properties of microwave synthesized graphene/ZnO composites

    NASA Astrophysics Data System (ADS)

    Sreejesh, M.; Nagaraja, H. S.; Udaya Bhat, K.

    2016-05-01

    This paper reports the synthesis of graphene/ ZnO nanocomposite using microwave method and its application in sensing of hydrazine. The morphological characteristics of the samples are studied using Scanning Electron Microscope (SEM). The formation of the composite is further confirmed by the X-ray Diffraction (XRD). Energy Dispersive X-ray Analysis (EDAX) shows the presence of carbon indicating the presence of graphene. The hydrazine sensing property of the electrode is studied using cyclic voltammometry (CV) and Chronoamperometry (CA) studeis.

  11. A study of thermal properties of sodium titanate nanotubes synthesized by microwave-assisted hydrothermal method

    SciTech Connect

    Preda, Silviu; Rutar, Melita; Umek, Polona; Zaharescu, Maria

    2015-11-15

    Highlights: • The microwave-assisted hydrothermal route was used for titanate nanotubes synthesis. • Conversion to single-phase nanotube morphology completes after 8 h reaction time. • The nanotube morphology is stable up to 600 °C, as determined by in-situ XRD and SEM. • Sodium ions migrate to the surface due to thermal motion and structure condensation. - Abstract: Sodium titanate nanotubes (NaTiNTs) were synthesized by microwave-assisted hydrothermal treatment of commercial TiO{sub 2}, at constant temperature (135 °C) and different irradiation times (15 min, 1, 4, 8 and 16 h). The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, differential scanning calorimetry and specific surface area measurements. The irradiation time turned out to be the key parameter for morphological control of the material. Nanotubes were observed already after 15 min of microwave irradiation. The analyses of the products irradiated for 8 and 16 h confirm the complete transformation of the starting TiO{sub 2} powder to NaTiNTs. The nanotubes are open ended with multi-wall structures, with the average outer diameter of 8 nm and specific surface area up to 210 m{sup 2}/g. The morphology, surface area and crystal structure of the sodium titanate nanotubes synthesized by microwave-assisted hydrothermal method were similar to those obtained by conventional hydrothermal method.

  12. Thermal protection materials: Thermophysical property data

    NASA Technical Reports Server (NTRS)

    Williams, S. D.; Curry, Donald M.

    1992-01-01

    This publication presents a thermophysical property survey on materials that could potentially be used for future spacecraft thermal protection systems (TPS). This includes data that was reported in the 1960's as well as more current information reported through the 1980's. An attempt was made to cite the manufacturers as well as the data source in the bibliography. This volume represents an attempt to provide in a single source a complete set of thermophysical data on a large variety of materials used in spacecraft TPS analysis. The property data is divided into two categories: ablative and reusable. The ablative materials have been compiled into twelve categories that are descriptive of the material composition. An attempt was made to define the Arrhenius equation for each material although this data may not be available for some materials. In a similar manner, char data may not be available for some of the ablative materials. The reusable materials have been divided into three basic categories: thermal protection materials (such as insulators), adhesives, and structural materials.

  13. Dielectric Properties of Peanut-hull Pellets at Microwave Frequencies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut-hull pellets are obtained from a waste product, peanut-hulls, which after pelleting can have several uses, namely as a renewable fuel. Rapid and nondestructive characterization of peanut-hull pellets is important for industrial utilization of this resource. Properties such as water content an...

  14. Microwave absorption properties of double-layer absorber based on carbonyl iron/barium hexaferrite composites

    NASA Astrophysics Data System (ADS)

    Ren, Xiaohu; Fan, Huiqing; Cheng, Yankui

    2016-05-01

    The microwave absorption properties of BaCo0.4Zn1.6Fe16O27 ferrite and carbonyl iron powder with single-layer and double-layer composite absorbers were investigated based on the electromagnetic transmission line theory in the frequency range from 1 to 14 GHz. XRD was used to characterize the structure of prepared absorbing particles. SEM was used to examine the micromorphology of the particles and composites. The complex permittivity and permeability of composites were measured by using a vector network analyzer. The reflection loss of the single-layer and double-layer absorbers with different thicknesses and orders was investigated. The results show that double-layer absorbers have better microwave absorption properties than single-layer absorbers. The microwave absorption properties of the double-layer structure are influenced by the coupling interactions between the matching and absorption layers. As the pure ferrite used as matching layer and the composite of BF-5CI used as absorption, the minimum RL of absorber can achieve to -55.4 dB and the bandwidth of RL <-10 dB ranged from 5.6 to 10.8 GHz when the thicknesses of matching layer and absorption layer were 0.9 and 1.4 mm, respectively.

  15. Surfactant-assisted solvothermal synthesis of pure nickel submicron spheres with microwave-absorbing properties

    NASA Astrophysics Data System (ADS)

    Guo, Heng; Pu, Bingxue; Chen, Haiyuan; Yang, Jin; Zhou, Yajun; Yang, Jian; Bismark, Boateng; Li, Handong; Niu, Xiaobin

    2016-07-01

    Pure metallic nickel submicron spheres (Ni-SSs), flower-like nickel nanoflakes, and hollow micrometer-sized nickel spheres/tubes were controllably synthesized by a facile and efficient one-step solvothermal method with no reducing agent. The characteristics of these nickel nanostructures include morphology, structure, and purification. Possible synthesis mechanisms were discussed in detail. The resultant Ni-SSs had a wide diameter distribution of 200~800 nm through the aggregation of small nickel nanocrystals. The ferromagnetic behaviors of Ni-SSs investigated at room temperature showed high coercivity values. Furthermore, the microwave absorption properties of magnetic Ni-SSs were studied in the frequency range of 0.5-18.0 GHz. The minimum reflection loss reached -17.9 dB at 17.8 GHz with a thin absorption thickness of 1.2 mm, suggesting that the submicron spherical structures could exhibit excellent microwave absorption properties. More importantly, this one-pot synthesize route provides a universal and convenient way for preparation of larger scale pure Ni-SSs, showing excellent microwave absorption properties.

  16. Surfactant-assisted solvothermal synthesis of pure nickel submicron spheres with microwave-absorbing properties.

    PubMed

    Guo, Heng; Pu, Bingxue; Chen, Haiyuan; Yang, Jin; Zhou, Yajun; Yang, Jian; Bismark, Boateng; Li, Handong; Niu, Xiaobin

    2016-12-01

    Pure metallic nickel submicron spheres (Ni-SSs), flower-like nickel nanoflakes, and hollow micrometer-sized nickel spheres/tubes were controllably synthesized by a facile and efficient one-step solvothermal method with no reducing agent. The characteristics of these nickel nanostructures include morphology, structure, and purification. Possible synthesis mechanisms were discussed in detail. The resultant Ni-SSs had a wide diameter distribution of 200~800 nm through the aggregation of small nickel nanocrystals. The ferromagnetic behaviors of Ni-SSs investigated at room temperature showed high coercivity values. Furthermore, the microwave absorption properties of magnetic Ni-SSs were studied in the frequency range of 0.5-18.0 GHz. The minimum reflection loss reached -17.9 dB at 17.8 GHz with a thin absorption thickness of 1.2 mm, suggesting that the submicron spherical structures could exhibit excellent microwave absorption properties. More importantly, this one-pot synthesize route provides a universal and convenient way for preparation of larger scale pure Ni-SSs, showing excellent microwave absorption properties.

  17. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1992-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically derived microwave absorption properties for such atmospheric constituents, or using laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. The goal of this investigation was to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.

  18. Laboratory Evaluation and Application of Microwave Absorption Properties Under Simulated Conditions for Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1997-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or using laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. Laboratory measurements completed under this grant (NAGW-533), have shown that the opacity from, SO2 under simulated Venus conditions is best described by a different lineshape than was previously used in theoretical predictions. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.

  19. Tactual perception of liquid material properties.

    PubMed

    Bergmann Tiest, Wouter M

    2015-04-01

    In this paper, studies into the tactual perception of two liquid material properties, viscosity and wetness, are reviewed. These properties are very relevant in the context of interaction with liquids, both real, such as cosmetics or food products, and simulated, as in virtual reality or teleoperation. Both properties have been the subject of psychophysical characterisation in terms of magnitude estimation experiments and discrimination experiments, which are discussed. For viscosity, both oral and manual perception is discussed, as well as the perception of the viscosity of a mechanical system. For wetness, the relevant cues are identified and factors affecting perception are discussed. Finally, some conclusions are drawn pertaining to both properties.

  20. Microwave Loss Properties of Hexagonal Ferrites for Millimeter Wave Applications.

    DTIC Science & Technology

    1986-03-15

    concerns the magnetic loss. Previous ferromagnetic resonance (FMR) linewidth data indicated that these losses were too large for efficient device... magnetic and dielectric materials measurement facility at Colorado State University and one to extend the measurements reported herein to the actual...reprint of the article, "Off Resonance Relaxation in Hexagonal Ferrites", which was presented at the International Conference on Magnetics , San

  1. Micro-Nano Materials for Tumor Microwave Hyperthermia: Design, Preparation, and Application.

    PubMed

    Chen, Xue; Meng, Xianwei; Tan, Longfei; Liu, Tianlong

    2016-01-07

    Nowadays, cancer hyperthermia is attracting much attention in basic science and clinics. Among the hyperthermia techniques, microwave (MW) heating is most commonly used for cancer treatment. It offers highly competitive advantages: faster heat generation from microwave radiation, less susceptibility to heat up local tissues, maneuverability, and depth of penetration in tissues and capability of killing tumor cells. Although the encouraging clinical results are being collected, MW hyperthermia has its own challenges, such as inaccurate targeting, low selectivity, which leads to damage to surrounding vital organs and tissues. To address these issues, micro-nano materials have emerged as a promising agent as the receiver of the electromagnetic wave, which should be beneficial for improving the efficacy of MW hyperthermia. Here, we review the most recent literature on micro/nanomaterials-based MW heating strategies for treatment of cancer, with the aim to give the reader an overview of the state-of-the-art of MW hyperthermia therapy. The future of MW responsive materials will also be discussed, including combination of imaging probes and targeting moieties.

  2. A microcontroller-based microwave free-space measurement system for permittivity determination of lossy liquid materials.

    PubMed

    Hasar, U C

    2009-05-01

    A microcontroller-based noncontact and nondestructive microwave free-space measurement system for real-time and dynamic determination of complex permittivity of lossy liquid materials has been proposed. The system is comprised of two main sections--microwave and electronic. While the microwave section provides for measuring only the amplitudes of reflection coefficients, the electronic section processes these data and determines the complex permittivity using a general purpose microcontroller. The proposed method eliminates elaborate liquid sample holder preparation and only requires microwave components to perform reflection measurements from one side of the holder. In addition, it explicitly determines the permittivity of lossy liquid samples from reflection measurements at different frequencies without any knowledge on sample thickness. In order to reduce systematic errors in the system, we propose a simple calibration technique, which employs simple and readily available standards. The measurement system can be a good candidate for industrial-based applications.

  3. HIGH POWER MICROWAVE FERRITES AND DEVICES

    DTIC Science & Technology

    FERRITES , *FERROMAGNETIC MATERIALS, *GARNET, *MICROWAVE EQUIPMENT, ABSORPTION, ALUMINUM, ALUMINUM ALLOYS, ANISOTROPY, CRYSTALS, DIELECTRICS, DIRECT...CURRENT, ELECTRODES, GADOLINIUM , IRON, IRON ALLOYS, MAGNETIC FIELDS, MAGNETIC PROPERTIES, NICKEL ALLOYS, PHASE SHIFT CIRCUITS, RADIOFREQUENCY, RESONANCE, WAVEGUIDES, X RAY DIFFRACTION, YTTRIUM.

  4. Accelerating materials property predictions using machine learning.

    PubMed

    Pilania, Ghanshyam; Wang, Chenchen; Jiang, Xun; Rajasekaran, Sanguthevar; Ramprasad, Ramamurthy

    2013-09-30

    The materials discovery process can be significantly expedited and simplified if we can learn effectively from available knowledge and data. In the present contribution, we show that efficient and accurate prediction of a diverse set of properties of material systems is possible by employing machine (or statistical) learning methods trained on quantum mechanical computations in combination with the notions of chemical similarity. Using a family of one-dimensional chain systems, we present a general formalism that allows us to discover decision rules that establish a mapping between easily accessible attributes of a system and its properties. It is shown that fingerprints based on either chemo-structural (compositional and configurational information) or the electronic charge density distribution can be used to make ultra-fast, yet accurate, property predictions. Harnessing such learning paradigms extends recent efforts to systematically explore and mine vast chemical spaces, and can significantly accelerate the discovery of new application-specific materials.

  5. Enhanced Microwave Absorption Properties by Tuning Cation Deficiency of Perovskite Oxides of Two-Dimensional LaFeO3/C Composite in X-Band.

    PubMed

    Liu, Xiang; Wang, Lai-Sen; Ma, Yating; Zheng, Hongfei; Lin, Liang; Zhang, Qinfu; Chen, Yuanzhi; Qiu, Yulong; Peng, Dong-Liang

    2017-03-01

    Development of microwave absorption materials with tunable thickness and bandwidth is particularly urgent for practical applications but remains a great challenge. Here, two-dimensional nanocomposites consisting of perovskite oxides (LaFeO3) and amorphous carbon were successfully obtained through a one pot with heating treatment using sodium chloride as a hard template. The tunable absorption properties were realized by introducing A-site cation deficiency in LaFeO3 perovskite. Among the A-site cation-deficient perovskites, La0.62FeO3/C (L0.62FOC) has the best microwave absorption properties in which the maximum absorption is -26.6 dB at 9.8 GHz with a thickness of 2.94 mm and the bandwidth range almost covers all X-band. The main reason affecting the microwave absorption performance was derived from the A-site cation deficiency which induced more dipoles polarization loss. This work proposes a promising method to tune the microwave absorption performance via introducing deficiency in a crystal lattice.

  6. Visual and haptic representations of material properties.

    PubMed

    Baumgartner, Elisabeth; Wiebel, Christiane B; Gegenfurtner, Karl R

    2013-01-01

    Research on material perception has received an increasing amount of attention recently. Clearly, both the visual and the haptic sense play important roles in the perception of materials, yet it is still unclear how both senses compare in material perception tasks. Here, we set out to investigate the degree of correspondence between the visual and the haptic representations of different materials. We asked participants to both categorize and rate 84 different materials for several material properties. In the haptic case, participants were blindfolded and asked to assess the materials based on haptic exploration. In the visual condition, participants assessed the stimuli based on their visual impressions only. While categorization performance was less consistent in the haptic condition than in the visual one, ratings correlated highly between the visual and the haptic modality. PCA revealed that all material samples were similarly organized within the perceptual space in both modalities. Moreover, in both senses the first two principal components were dominated by hardness and roughness. These are two material features that are fundamental for the haptic sense. We conclude that although the haptic sense seems to be crucial for material perception, the information it can gather alone might not be quite fine-grained and rich enough for perfect material recognition.

  7. Dielectric properties of EVA rubber composites at microwave frequencies theory, instrumentation and measurements.

    PubMed

    Banerjee, Prasun; Biswas, Salil Kumar; Ghosh, Gautam

    2011-01-01

    This work describes and evaluates a technique for determining the dielectric properties of carbon-black filled Ethylene Vinyl Acetate (EVA) rubber and presents results on the studies of the effect of frequency on the permittivity and microwave conductivity using resonant cavity perturbation method. The measurements are performed with the aid of a Network Analyzer in X-band. The simplicity of this method lies in the fact that the dielectric properties can be obtained directly from the analytical formula without taking recourse to calibration.

  8. Surface modification as an effective approach to enhance the microwave absorbing properties of hollow carbon spheres

    NASA Astrophysics Data System (ADS)

    Zhu, Hui-Ling; Xu, Zhen-Fu; Cui, Hong-Zhi; Wu, Jie; Dang, Jun-Fan; Wang, Tian-Fang; Zhang, Li-Dong

    2016-10-01

    The microwave absorbing properties of hollow carbon spheres modified by KOH were measured using a transmission/reflection coaxial method in the range of 2-18 GHz. The modification could result in a significant enhancement in the properties, including both the increment in absorbing intensity and bandwidth and the decrease in absorber thickness, which can be well explained by the high concentration of dangling bonds in per unit volume or per unit weight introduced during the modification. This dangling bond dominated mechanism could be used to instruct the design of absorbers with outstanding performances.

  9. ESTEC wiring test programme materials related properties

    NASA Technical Reports Server (NTRS)

    Judd, M. D.

    1994-01-01

    Electrical wires are considered as EEE parts and are covered within the ESA SCC specification series (ESA SCC 3901/XXX). This specification defines the principal properties of the wires including insulation/lay-up and electrical properties. Some additional space related materials requirements are also included, requirements such as outgassing and silver plating thickness. If a project has additional materials requirements over and above those covered by the relevant SCC specification, then additional testing is required. This is especially true for crewed spacecraft. The following topics are discussed in this context: additional requirements for manned spacecraft; flammability; arc tracking; thermal decomposition; microbial surface growth; and ageing.

  10. Upgrades to the TPSX Material Properties Database

    NASA Technical Reports Server (NTRS)

    Squire, T. H.; Milos, F. S.; Partridge, Harry (Technical Monitor)

    2001-01-01

    The TPSX Material Properties Database is a web-based tool that serves as a database for properties of advanced thermal protection materials. TPSX provides an easy user interface for retrieving material property information in a variety of forms, both graphical and text. The primary purpose and advantage of TPSX is to maintain a high quality source of often used thermal protection material properties in a convenient, easily accessible form, for distribution to government and aerospace industry communities. Last year a major upgrade to the TPSX web site was completed. This year, through the efforts of researchers at several NASA centers, the Office of the Chief Engineer awarded funds to update and expand the databases in TPSX. The FY01 effort focuses on updating correcting the Ames and Johnson thermal protection materials databases. In this session we will summarize the improvements made to the web site last year, report on the status of the on-going database updates, describe the planned upgrades for FY02 and FY03, and provide a demonstration of TPSX.

  11. Statistical retrieval of thin liquid cloud microphysical properties using ground-based infrared and microwave observations

    NASA Astrophysics Data System (ADS)

    Marke, Tobias; Ebell, Kerstin; Löhnert, Ulrich; Turner, David D.

    2016-12-01

    In this article, liquid water cloud microphysical properties are retrieved by a combination of microwave and infrared ground-based observations. Clouds containing liquid water are frequently occurring in most climate regimes and play a significant role in terms of interaction with radiation. Small perturbations in the amount of liquid water contained in the cloud can cause large variations in the radiative fluxes. This effect is enhanced for thin clouds (liquid water path, LWP <100 g/m2), which makes accurate retrieval information of the cloud properties crucial. Due to large relative errors in retrieving low LWP values from observations in the microwave domain and a high sensitivity for infrared methods when the LWP is low, a synergistic retrieval based on a neural network approach is built to estimate both LWP and cloud effective radius (reff). These statistical retrievals can be applied without high computational demand but imply constraints like prior information on cloud phase and cloud layering. The neural network retrievals are able to retrieve LWP and reff for thin clouds with a mean relative error of 9% and 17%, respectively. This is demonstrated using synthetic observations of a microwave radiometer (MWR) and a spectrally highly resolved infrared interferometer. The accuracy and robustness of the synergistic retrievals is confirmed by a low bias in a radiative closure study for the downwelling shortwave flux, even for marginally invalid scenes. Also, broadband infrared radiance observations, in combination with the MWR, have the potential to retrieve LWP with a higher accuracy than a MWR-only retrieval.

  12. Facile synthesis of Ni/ZnO composite: Morphology control and microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Zhao, Biao; Shao, Gang; Fan, Bingbing; Guo, Wenhui; Xie, Yajun; Zhang, Rui

    2015-05-01

    In this work, Ni/ZnO composites with varying morphologies were synthesized by a facile hydrothermal method. X-ray diffraction (XRD) and Scanning electron microscopy (SEM) were performed to characterize Ni/ZnO composites. SEM images reveal that NH3·H2O concentration play a vital role on morphology of Ni/ZnO composite. The complex permittivity and permeability of three different morphologies of Ni/ZnO were measured in the frequency range of 1-18 GHz and their microwave absorption properties were investigated. The core-shell structured Ni/ZnO (ZnO polyhedron coating) composite prepared for 1.0 mL NH3·H2O shows excellent microwave absorption properties. A minimum reflection loss is -48.6 dB at 13.4 GHz and the corresponding thickness is 2.0 mm. The effective absorption (below -10 dB) can be tuned between 9.0 GHz and 18.0 GHz by adjusting thickness in 1.5-2.5 mm, and the frequency for RL exceeding -20 dB is located at 11.1-16.2 GHz with thickness of 1.8-2.2 mm. It is demonstrated that the polyhedron ZnO-coated Ni composite is a promising microwave absorbent with small thickness, strong absorption, and broad bandwidth.

  13. Extraction of Water from Polar Lunar Permafrost with Microwaves - Dielectric Property Measurements

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Kaukler, William

    2009-01-01

    Remote sensing indicates the presence of hydrogen rich regions associated with the lunar poles. The logical hypothesis is that there is cryogenically trapped water ice located in craters at the lunar poles. Some of the craters have been in permanent darkness for a billion years. The presence of water at the poles as well as other scientific advantages of a polar base, have influenced NASA plans for the lunar outpost. The lunar outpost has water and oxygen requirements on the order of 1 ton per year scaling up to as much as 10 tons per year. Microwave heating of the frozen permafrost has unique advantages for water extraction. Proof of principle experiments have successfully demonstrated that microwaves will couple to the cryogenic soil in a vacuum and the sublimed water vapor can be successfully captured on a cold trap. The dielectric properties of lunar soil will determine the hardware requirements for extraction processes. Microwave frequency dielectric property measurements of lunar soil simulant have been measured.

  14. Calibrating Nonlinear Soil Material Properties for Seismic Analysis Using Soil Material Properties Intended for Linear Analysis

    SciTech Connect

    Spears, Robert Edward; Coleman, Justin Leigh

    2015-08-01

    Seismic analysis of nuclear structures is routinely performed using guidance provided in “Seismic Analysis of Safety-Related Nuclear Structures and Commentary (ASCE 4, 1998).” This document, which is currently under revision, provides detailed guidance on linear seismic soil-structure-interaction (SSI) analysis of nuclear structures. To accommodate the linear analysis, soil material properties are typically developed as shear modulus and damping ratio versus cyclic shear strain amplitude. A new Appendix in ASCE 4-2014 (draft) is being added to provide guidance for nonlinear time domain SSI analysis. To accommodate the nonlinear analysis, a more appropriate form of the soil material properties includes shear stress and energy absorbed per cycle versus shear strain. Ideally, nonlinear soil model material properties would be established with soil testing appropriate for the nonlinear constitutive model being used. However, much of the soil testing done for SSI analysis is performed for use with linear analysis techniques. Consequently, a method is described in this paper that uses soil test data intended for linear analysis to develop nonlinear soil material properties. To produce nonlinear material properties that are equivalent to the linear material properties, the linear and nonlinear model hysteresis loops are considered. For equivalent material properties, the shear stress at peak shear strain and energy absorbed per cycle should match when comparing the linear and nonlinear model hysteresis loops. Consequently, nonlinear material properties are selected based on these criteria.

  15. Optical and microwave properties of CaBi4Ti4O15 ferroelectric thin films deposited by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Emani, Sivanagi Reddy; Joseph, Andrews; Raju, K. C. James

    2016-05-01

    Transparent CaBi4Ti4O15 (CBTi) ferroelectric thin films are deposited by pulsed laser deposition method. The structural, optical and microwave dielectric properties were investigated. CBTi thin films had polycrystalline bismuth-layered perovskite structure and exhibited excellent optical properties. The X-ray analysis of the thin film demonstrates the phase formation and crystallinity. The optical transmission studies show that film is transparent in VIS-NIR region with a direct band gap of 3.53 EV. Morphological studies provide surface roughness as 3 mm. Dielectric constant and loss factors were 48 and 0.060 respectively, at 10GHz. These results suggest that CBTi thin films are promising multifunctional materials for applications in optoelectronic and microwave devices.

  16. Microwave Dielectric Properties of Polystyrene-Forsterite (Mg2SiO4) Composite

    NASA Astrophysics Data System (ADS)

    Sasikala, T. S.; Sebastian, M. T.

    2016-01-01

    Polystyrene-Mg2SiO4 ceramic composites have been prepared by kneading followed by hot pressing. The dielectric properties of the composites have been investigated at both radio and microwave frequency ranges as a function of filler loading up to 50 vol.%. The dielectric constant and loss tangent increased with the ceramic filler content. The composite with 50 vol.% filler had a dielectric constant of 4.0 and loss tangent of 0.006 at 5 GHz, with Vickers microhardness of 35 HV. The coefficient of thermal expansion of the composite decreased and the thermal conductivity increased with the filler loading. PS-Mg2SiO4 composites are possible candidates for microwave substrate applications.

  17. Studies on Physical Properties of Snow Based on Multi Channel Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Tsuchiya, K.; Takeda, K.

    1985-01-01

    The analysis of the data observed over a snow field with a breadboard model of MSR (microwave scanning radiometer) to be installed in MOS-1 (Marine Observation Satellite-1) indicates that: (1) the influence of incident angle on brightness temperature is larger in horizontal polarization component than in vertical polarization component. The effect of incident angle depends upon the property of snow with larger value for dry snow; (2) the difference of snow surface configuration consisting of artifically made parallel ditches of 5 cm depth and 5 cm width with spacing of 10 and 30 cm respectively which are oriented normal to electrical axis do not affect brightness temperature significantly; and (3) there is high negative correlation between brightness temperature and snow depth up to the depth of 70 cm which suggests that the snow depth can be measured with a two channel microwave radiometer up to this depth.

  18. Iron hydroxyl phosphate microspheres: Microwave-solvothermal ionic liquid synthesis, morphology control, and photoluminescent properties

    SciTech Connect

    Cao Shaowen; Zhu Yingjie; Cui Jingbiao

    2010-07-15

    A variety of iron hydroxyl phosphate (NH{sub 4}Fe{sub 2}(PO{sub 4}){sub 2}OH.2H{sub 2}O) nanostructures such as solid microspheres, microspheres with the core in the hollow shell, and double-shelled hollow microspheres were synthesized by a simple one-step microwave-solvothermal ionic liquid method. The effects of the experimental parameters on the morphology and crystal phase of the resultant materials were investigated. Structural dependent photoluminescence was observed from the double-shelled hollow microspheres and the underlying mechanisms were discussed. - Graphical abstract: A variety of iron hydroxyl phosphate (NH{sub 4}Fe{sub 2}(PO{sub 4}){sub 2}OH.2H{sub 2}O) nanostructures were synthesized by a simple one-step microwave-solvothermal ionic liquid method. Structural dependent photoluminescence was observed from the double-shelled hollow microspheres.

  19. Dielectric properties characterization of saline solutions by near-field microwave microscopy

    NASA Astrophysics Data System (ADS)

    Gu, Sijia; Lin, Tianjun; Lasri, Tuami

    2017-01-01

    Saline solutions are of a great interest when characterizations of biological fluids are targeted. In this work a near-field microwave microscope is proposed for the characterization of liquids. An interferometric technique is suggested to enhance measurement sensitivity and accuracy. The validation of the setup and the measurement technique is conducted through the characterization of a large range of saline concentrations (0-160 mg ml-1). Based on the measured resonance frequency shift and quality factor, the complex permittivity is successfully extracted as exhibited by the good agreement found when comparing the results to data obtained from Cole-Cole model. We demonstrate that the near field microwave microscope (NFMM) brings a great advantage by offering the possibility to select a resonance frequency and a quality factor for a given concentration level. This method provides a very effective way to largely enhance the measurement sensitivity in high loss materials.

  20. Microwave-assisted synthesis and optical properties of cuprous oxide micro/nanocrystals

    SciTech Connect

    Sun, Dandan; Du, Yi; Tian, Xiuying; Li, Zhongfu; Chen, Zhongtao; Zhu, Chaofeng

    2014-12-15

    Graphical abstract: Cuprous oxide micro/nanocrystals were fabricated by a facile and green microwave-assisted method using soluble starch as reductant and dispersant. Spheres with the diameter of about 100 and 600 nm, octahedron and truncated octahedron with the edge length of about 0.8–3 μm cuprous oxide micro/nanocrystals were successfully obtained. Microwave heating was proved to be a efficient method and was advantageous to the homogeneous nucleation. Growth mechanism of the prepared Cu{sub 2}O microcrystals were investigated carefully. Furthermore, the optical properties of the prepared cuprous oxide microcrystals were investigated by UV–vis diffuse reflectance spectroscopy, demonstrating that their band gaps of obtained samples were 1.96–2.07 eV, assigned to their different sizes and morphologies. - Abstract: Cuprous oxide micro/nanocrystals were fabricated by a facile and green microwave-assisted method using soluble starch as reductant and dispersant. It was observed that the addition amounts of NaOH had a prominent effect on the morphologies and size of cuprous oxide products, and microwave heating was proved to be a efficient method and was advantageous to the homogeneous nucleation. The as-obtained samples were characterized by X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM). The results indicated that the samples were pure cuprous oxide. Spheres with the diameter of about 100 and 600 nm, octahedron and truncated octahedron with the edge length of about 0.8–3 μm cuprous oxide micro/nanocrystals were successfully obtained. Furthermore, the UV–vis diffuse reflectance spectroscopy was used to investigate the optical properties of the prepared cuprous oxide microcrystals, demonstrating that their band gaps of obtained samples were 1.96–2.07 eV, assigned to their different sizes and morphologies.

  1. Magnetic, dielectric and microwave absorption properties of rare earth doped Ni-Co and Ni-Co-Zn spinel ferrites

    NASA Astrophysics Data System (ADS)

    Stergiou, Charalampos

    2017-03-01

    In this article we analyze the electromagnetic properties of rare earth substituted Ni-Co and Ni-Co-Zn cubic ferrites in the microwave band, along with their performance as microwave absorbing materials. Ceramic samples with compositions Ni0.5Co0.5Fe2-xRxO4 and Ni0.25Co0.5Zn0.25Fe2-xRxO4 (R=Y and La, x=0, 0.02), fabricated with the solid state reaction method, were characterized with regard to the complex permeability μ*(f) and permittivity ε*(f) up to 20 GHz. The rare earth substitutions basically affect the microwave μ*(f) spectra and the dynamic magnetization mechanisms of domain wall motion and magnetization rotation. Key parameters for this effect are the reduced magnetocrystalline anisotropy and the created crystal inhomogeneities. Moreover, permittivity is increased with the Y and La content, due to the enhancement of the dielectric orientation polarization. Regarding the electromagnetic wave attenuation, the prepared ferrites exhibit narrowband return losses (RL) by virtue of the cancellation of multiple reflections, when their thickness equals an odd multiple of quarter-wavelength. Interestingly, the zero-reflection conditions are satisfied in the vicinity of the ferromagnetic resonance. As the rare earth doping shifts this mechanism to lower frequencies, loss peaks with RL>46 dB occur at 4.1 GHz and 5 GHz for Y and La-doped Ni-Co-Zn spinels, whereas peaks with RL>40 dB appear at 18 GHz and 19 GHz for Y and La-doped Ni-Co spinels, respectively. The presented experimental findings underline the potential of cubic ferrites with high Co concentration in the suppression of electromagnetic reflections well above the 1 GHz region.

  2. Rectangular waveguide material characterization: anisotropic property extraction and measurement validation

    NASA Astrophysics Data System (ADS)

    Crowgey, Benjamin Reid

    Rectangular waveguide methods are appealing for measuring isotropic and anisotropic materials because of high signal strength due to field confinement, and the ability to control the polarization of the applied electric field. As a stepping stone to developing methods for characterizing materials with fully-populated anisotropic tensor characteristics, techniques are presented in this dissertation to characterize isotropic, biaxially anisotropic, and gyromagnetic materials. Two characterization techniques are investigated for each material, and thus six different techniques are described. Additionally, a waveguide standard is introduced which may be used to validate the measurement of the permittivity and permeability of materials at microwave frequencies. The first characterization method examined is the Nicolson-Ross-Weir (NRW) technique for the extraction of isotropic parameters of a sample completely filling the cross-section of a rectangular waveguide. A second technique is proposed for the characterization of an isotropic conductor-backed sample filling the cross-section of a waveguide. If the sample is conductor-backed, and occupies the entire cross-section, a transmission measurement is not available, and thus a method must be found for providing two sufficiently different reflection measurements.The technique proposed here is to place a waveguide iris in front of the sample, exposing the sample to a spectrum of evanescent modes. By measuring the reflection coefficient with and without an iris, the necessary two data may be obtained to determine the material parameters. A mode-matching approach is used to determine the theoretical response of a sample placed behind the waveguide iris. This response is used in a root-searching algorithm to determine permittivity and permeability by comparing to measurements of the reflection coefficient. For the characterization of biaxially anisotropic materials, the first method considers an extension of the NRW technique

  3. A Experimental Study of the Correlation of Process Parameters with YTTRIUM(1) BARIUM(2) COPPER(3) OXIDE(7 - Thin Film Properties Relevant to Microwave Applications.

    NASA Astrophysics Data System (ADS)

    Ihsan, Mojeeb Bin

    1993-01-01

    Superconducting {rm Y_1Ba _2Cu_3O_{7-x}} thin films were deposited by off-axis reactive planar magnetron sputtering for use in passive microwave devices. The effect of process parameters on thin film properties was studied. Targets of two different stoichiometries, viz. { rm Y_1Ba_2Cu_3O_{7 -x}} and {rm Y_1Ba _2Cu_{4.5}O_{y} } were used and thin films were deposited on MgO, SrTiO_3, and LaAlO _3. These films were characterized by four probe dc transport measurement, microwave absorption measurement, SEM, EDS, RBS, and x-ray diffraction. High quality films on all substrates were obtained with in-situ heating. All in-situ films were highly textured with a high degree of c-axis orientation perpendicular to the substrate plane and with a substantial amount of crystallographic and structural order. The dc transport properties of in-situ films were found to be relatively insensitive to target stoichiometry, for a given substrate. Whereas, the surface morphology and microwave properties were found to be dependent upon the target stoichiometry, substrate material and film thickness. Basket weave structure (a-axis grains oriented at 90^ circ with respect to each other) was found to grow on top of c-axis oriented film exhibiting good microwave characteristics in terms of phase purity and weak link behavior. Microwave absorption measurement was found to be a better probe of the uniformity of film properties, and it was possible to detect low Tc phases that were undetectable by dc transport measurement and x-ray diffraction analysis. To test the application of these materials in microwave devices and to study the fundamental aspect of superconductivity, linear microstrip resonators were designed (for lambda_{rm g} /2 resonance near 10 GHz), fabricated from the deposited films and characterized. The best superconducting resonator shows, an unloaded Q of ~1650 at 9.6275 GHz and 35 K. The Q measurements on the microstrip resonators were used to calculate the surface resistivities

  4. Thermophysical Properties of Selected Aerospace Materials. Part 2. Thermophysical Properties of Seven Materials

    DTIC Science & Technology

    1977-01-01

    THERMOPHYSICAL PROPERTIES OF SELECTED MATERIALS 10 3.1. Aluminum Alloy 2024. . 10 a. Thermal Conductivity 11 b. Specific...figure are tabulated. 10 ■ I 3. THERMOPHYSICAL PROPERTIES OF SELECTED MATERIALS 3.1. Aluminum Alloy 2024 Aluminum Alloy 2024, formerly known... alloy does not have as good corrosion resistance properties as most other aluminum alloys and under certain conditions may be subjected to

  5. Spanish activities (research and industrial applications) in the field of microwave material treatment

    SciTech Connect

    Catala Civera, J.M.; Reyes Davo, E.R. de los

    1996-12-31

    The GCM (Microwave Heating Group) within the Communications Department at the Technical University of Valencia is dedicated to the study of microwaves and their use in the current industrial processes in the Valencian Community and in Spain. To this end, a microwave heating laboratory has been developed and the benefits of incorporating microwave technologies into current industrial processes have been demonstrated. In this paper some of the industrial applications which are being investigated are presented.

  6. Evaluation of impurity migration and microwave digestion methods for lithographic materials

    NASA Astrophysics Data System (ADS)

    Ko, Fu-Hsiang; Hsiao, Li-Tung; Chou, Cheng-Tung; Wang, Mei-Ya; Wang, Tien-Ko; Sun, Yuh-Chang; Cheng, Bor-Jen; Yeng, Steven; Dai, Bau-Tong

    1999-06-01

    In the section of incoming quality or quality reliability analysis of advanced semiconductor fabrication company, it is inevitable to regulate the strict standard for the incoming materials to ensure the reliability. In our radioactive tracer study, it is interestingly found the various amounts of metal and trace element impurities in the lithographic materials may migrate into the substrate. Based on the complex organic matrix in lithographic materials such as bottom anti-reflective coating, I-line resist and DUV resist, it is not easy to direct determine the multi- elements by the instrumentation. In this work, the lithographic materials are first composed by the close- vessel and open-focused microwave oven, and the digest is evaporated to incipient dryness. After adding water, the sample solutions are used either for evaluating the completeness of the digestion process by UV-VIS spectrometer, or for the determination of eleven elements using inductively coupled plasma mass spectrometry. In addition, the digestion efficiency is also evaluated by the limits for analytes can be achieved at lower than ng/g level. For evaluation of data accuracy, the result obtained by the two 130 percent. According to the microcontamination control limit predicted by the SIA roadmap, the established method can meet the requirements for the quality control of lithographic materials in the future ten years.

  7. Systems and methods for predicting materials properties

    DOEpatents

    Ceder, Gerbrand; Fischer, Chris; Tibbetts, Kevin; Morgan, Dane; Curtarolo, Stefano

    2007-11-06

    Systems and methods for predicting features of materials of interest. Reference data are analyzed to deduce relationships between the input data sets and output data sets. Reference data includes measured values and/or computed values. The deduced relationships can be specified as equations, correspondences, and/or algorithmic processes that produce appropriate output data when suitable input data is used. In some instances, the output data set is a subset of the input data set, and computational results may be refined by optionally iterating the computational procedure. To deduce features of a new material of interest, a computed or measured input property of the material is provided to an equation, correspondence, or algorithmic procedure previously deduced, and an output is obtained. In some instances, the output is iteratively refined. In some instances, new features deduced for the material of interest are added to a database of input and output data for known materials.

  8. Magnetic and Structural Properties of Cobalt- and Zinc-Substituted Nickel Ferrite Synthesized by Microwave-Assisted Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Sinfrônio, F. S. M.; Santana, P. Y. C.; Coelho, S. F. N.; Silva, F. C.; de Menezes, A. S.; Sharma, S. K.

    2017-02-01

    Ceramic spinel-based ferrites of cobalt, nickel and zinc were prepared by means of the microwave-assisted hydrothermal method. All samples were thoroughly characterized using different techniques for their structural, compositional, phonic and magnetic properties. The Rietveld analysis of x-ray powder diffraction data revealed the crystallinity as well single-phase partially inverse spinel structure. Wavelength dispersive x-ray fluorescence measurement indicates a good correlation between the empirical stoichiometry. The estimated average crystallite size varies between 9 nm and 13 nm (XRPD) and 6 and 14 nm for high-resolution transmission electron microscopy measurements. In addition, the observed micro-strain varies in the range of 0.01-0.6%. All samples show a quasi-spherical morphology and slight agglomeration. Infrared and Raman data spectra exhibit characteristic modes for spinel-based ferrites. Direct current magnetic measurements indicate behavior typical of magnetically soft materials system at 300 K.

  9. Advances in imaging and quantification of electrical properties at the nanoscale using Scanning Microwave Impedance Microscopy (sMIM)

    NASA Astrophysics Data System (ADS)

    Friedman, Stuart; Yang, Yongliang; Amster, Oskar

    2015-03-01

    Scanning Microwave Impedance Microscopy (sMIM) is a mode for Atomic Force Microscopy (AFM) enabling imaging of unique contrast mechanisms and measurement of local permittivity and conductivity at the 10's of nm length scale. Recent results will be presented illustrating high-resolution electrical features such as sub 15 nm Moire' patterns in Graphene, carbon nanotubes of various electrical states and ferro-electrics. In addition to imaging, the technique is suited to a variety of metrology applications where specific physical properties are determined quantitatively. We will present research activities on quantitative measurements using multiple techniques to determine dielectric constant (permittivity) and conductivity (e.g. dopant concentration) for a range of materials. Examples include bulk dielectrics, low-k dielectric thin films, capacitance standards and doped semiconductors. Funded in part by DOE SBIR DE-SC0009586.

  10. Development of FeCoB/Graphene Oxide based microwave absorbing materials for X-Band region

    NASA Astrophysics Data System (ADS)

    Das, Sukanta; Chandra Nayak, Ganesh; Sahu, S. K.; Oraon, Ramesh

    2015-06-01

    This work explored the microwave absorption capability of Graphene Oxide and Graphene Oxide coated with FeCoB for stealth technology. Epoxy based microwave absorbing materials were prepared with 30% loading of Graphene Oxide, FeCoB alloy and Graphene Oxide coated with FeCoB. Graphene Oxide and FeCoB were synthesized by Hummer's and Co-precipitation methods, respectively. The filler particles were characterized by FESEM, XRD and Vibrating Sample Magnetometer techniques. Permittivity, permeability and reflection loss values of the composite absorbers were measured with vector network analyzer which showed a reflection loss value of -7.86 dB, at 10.72 GHz, for single layered Graphene Oxide/Epoxy based microwave absorbers which can be correlated to the absorption of about 83.97% of the incident microwave energy. Reflection loss value of FeCoB/Epoxy based microwave absorber showed -13.30 dB at 11.67 GHz, which corresponded to maximum absorption of 93.8%. However, reflection loss values of Graphene Oxide coated with FeCoB/Epoxy based single-layer absorber increased to -22.24 dB at 12.4 GHz which corresponds to an absorption of 99% of the incident microwave energy.

  11. Magnetic and microwave absorbing properties of Co2+ substituted nickel-zinc ferrites with the emphasis on initial permeability studies

    NASA Astrophysics Data System (ADS)

    Ghodake, J. S.; Kambale, Rahul C.; Shinde, T. J.; Maskar, P. K.; Suryavanshi, S. S.

    2016-03-01

    Nanocrystalline Co2+ substituted Zn0.35Ni0.60-xCoxFe2.05O4 (Where x=0.0, 0.1, 0.2, 0.3 and 0.4) system have been synthesized by citrate-nitrate combustion route. X-ray diffraction study shows the formation of single phase cubic spinel structure without any impurity phases. Morphological observation shows agglomerated grains with different shapes and sizes which is the typical characteristics of magnetic nanoparticles prepared by combustion route. The saturation magnetization of cobalt substituted Ni-Zn ferrites is found to be higher than that of pure Ni-Zn ferrite. The coercivity and retentivity of cobalt substituted Ni-Zn ferrite increases with the increasing cobalt content. Initial permeability and loss factor have been studied as the function of composition and frequency. The real (μ‧) and imaginary (μ‧‧) part of initial permeability of cobalt substituted Ni-Zn ferrites decreases while its loss factor increases with the increasing cobalt content. In the lower frequency region the imaginary part of initial permeability (μ‧‧) of all samples is found to be decreasing rapidly with increasing frequency. The microwave absorption properties of cobalt substituted Ni-Zn ferrites were also investigated; all samples exhibit the absorption in the frequency range 2.3-2.5 GHz. Thus, the prepared materials can be used as a rubber composite microwave absorber and may be useful in RADAR application.

  12. Electromagnetic properties of material coated surfaces

    NASA Technical Reports Server (NTRS)

    Beard, L.; Berrie, J.; Burkholder, R.; Dominek, A.; Walton, E.; Wang, N.

    1989-01-01

    The electromagnetic properties of material coated conducting surfaces were investigated. The coating geometries consist of uniform layers over a planar surface, irregularly shaped formations near edges and randomly positioned, electrically small, irregularly shaped formations over a surface. Techniques to measure the scattered field and constitutive parameters from these geometries were studied. The significance of the scattered field from these geometries warrants further study.

  13. Closed vessel miniaturized microwave assisted chelating extraction for determination of trace metals in plant materials

    NASA Astrophysics Data System (ADS)

    Czarnecki, Sezin; Duering, Rolf-Alexander

    2013-04-01

    In recent years, the use of closed vessel microwave assisted extraction (MAE) for plant samples has shown increasing research interest which will probably substitute conventional procedures in the future due to their general disadvantages including consumption of time and solvents. The objective of this study was to demonstrate an innovative miniaturized closed vessel microwave assisted extraction (µMAE) method under the use of EDTA (µMAE-EDTA) to determine metal contents (Cd, Co, Cu, Mn, Ni, Pb, Zn) in plant samples (Lolio-Cynosuretum) by inductively coupled plasma-optical emission spectrometry (ICP-OES). Validation of the method was done by comparison of the results with another miniaturized closed vessel microwave HNO3 method (µMAE-H) and with two other macro scale MAE procedures (MAE-H and MAE-EDTA) which were applied by using a mixture of nitric acid (HNO3) and hydrogen peroxide (H2O2) (MAE-H) and EDTA (MAE-EDTA), respectively. The already established MAE-H method is taken into consideration as a reference validation MAE method for plant material. A conventional plant extraction (CE) method, based on dry ashing and dissolving of the plant material in HNO3, was used as a confidence comparative method. Certified plant reference materials (CRMs) were used for comparison of recovery rates from different extraction protocols. This allowed the validation of the applicability of the µMAE-EDTA procedure. For 36 real plant samples with triplicates each, µMAE-EDTA showed the same extraction yields as the MAE-H in the determination of Cd, Co, Cu, Mn, Ni, Pb, and Zn contents in plant samples. Analytical parameters in µMAE-EDTA should be further investigated and adapted for other metals of interest. By the reduction and elimination of the use of hazardous chemicals in environmental analysis and thus allowing a better understanding of metal distribution and accumulation process in plants and also the metal transfer from soil to plants and into the food chain, µ

  14. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties must..., compliance must be shown by selecting material design values which assure material strength with...

  15. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties must..., compliance must be shown by selecting material design values which assure material strength with...

  16. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties must..., compliance must be shown by selecting material design values which assure material strength with...

  17. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties must..., compliance must be shown by selecting material design values which assure material strength with...

  18. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties must..., compliance must be shown by selecting material design values which assure material strength with...

  19. Antibacterial properties of temporary filling materials.

    PubMed

    Slutzky, Hagay; Slutzky-Goldberg, I; Weiss, E I; Matalon, S

    2006-03-01

    The purpose of this study was to investigate the antibacterial properties of temporary fillings. The direct contact test (DCT) was used to evaluate the antibacterial properties of Revoltek LC, Tempit, Systemp inlay, and IRM. These were tested in contact with Streptococcus mutans and Enterococcus faecalis. The materials were examined immediately after setting, 1, 7, 14, and 30 days after aging in phosphate buffered saline (PBS). Statistical analysis included two-way ANOVA, one-way ANOVA, and Tukey multiple comparison. Systemp inlay, Tempit, and IRM exhibited antibacterial properties when in contact with S. mutans for at least 7 days, Tempit and IRM sustained this ability for at least 14 days. When in contact with E. faecalis Tempit and IRM were antibacterial immediately after setting, IRM sustained this ability for at least 1 day. Our study suggests that the difference in temporary filling materials may influence which microorganism will be able to invade the root canal system.

  20. Ultra-fast dry microwave preparation of SnSb used as negative electrode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Antitomaso, P.; Fraisse, B.; Sougrati, M. T.; Morato-Lallemand, F.; Biscaglia, S.; Aymé-Perrot, D.; Girard, P.; Monconduit, L.

    2016-09-01

    Tin antimonide alloy was obtained for the first time using a very simple dry microwave route. Up to 1 g of well crystallized SnSb can be easily prepared in 90 s under air in an open crucible. A full characterization by X-ray diffraction and 119Sn Mössbauer spectroscopy demonstrated the benefit of carbon as susceptor, which avoid any oxide contamination. The microwave-prepared SnSb was tested as negative electrode material in Li batteries. Interesting results in terms of capacity and rate capability were obtained with up to 700 mAh/g sustained after 50 cycles at variable current. These results pave the way for the introduction of microwave synthesis as realistic route for a rapid, low cost and up-scalable production of electrode material for Li batteries or other large scale application types.

  1. Microwave Properties of Ice-Phase Hydrometeors for Radar and Radiometers: Sensitivity to Model Assumptions

    NASA Technical Reports Server (NTRS)

    Johnson, Benjamin T.; Petty, Grant W.; Skofronick-Jackson, Gail

    2012-01-01

    A simplied framework is presented for assessing the qualitative sensitivities of computed microwave properties, satellite brightness temperatures, and radar reflectivities to assumptions concerning the physical properties of ice-phase hydrometeors. Properties considered included the shape parameter of a gamma size distribution andthe melted-equivalent mass median diameter D0, the particle density, dielectric mixing formula, and the choice of complex index of refraction for ice. We examine these properties at selected radiometer frequencies of 18.7, 36.5, 89.0, and 150.0 GHz; and radar frequencies at 2.8, 13.4, 35.6, and 94.0 GHz consistent with existing and planned remote sensing instruments. Passive and active microwave observables of ice particles arefound to be extremely sensitive to the melted-equivalent mass median diameter D0 ofthe size distribution. Similar large sensitivities are found for variations in the ice vol-ume fraction whenever the geometric mass median diameter exceeds approximately 1/8th of the wavelength. At 94 GHz the two-way path integrated attenuation is potentially large for dense compact particles. The distribution parameter mu has a relatively weak effect on any observable: less than 1-2 K in brightness temperature and up to 2.7 dB difference in the effective radar reflectivity. Reversal of the roles of ice and air in the MaxwellGarnett dielectric mixing formula leads to a signicant change in both microwave brightness temperature (10 K) and radar reflectivity (2 dB). The choice of Warren (1984) or Warren and Brandt (2008) for the complex index of refraction of ice can produce a 3%-4% change in the brightness temperature depression.

  2. Expanded modeling of temperature-dependent dielectric properties for microwave thermal ablation.

    PubMed

    Ji, Zhen; Brace, Christopher L

    2011-08-21

    Microwaves are a promising source for thermal tumor ablation due to their ability to rapidly heat dispersive biological tissues, often to temperatures in excess of 100 °C. At these high temperatures, tissue dielectric properties change rapidly and, thus, so do the characteristics of energy delivery. Precise knowledge of how tissue dielectric properties change during microwave heating promises to facilitate more accurate simulation of device performance and helps optimize device geometry and energy delivery parameters. In this study, we measured the dielectric properties of liver tissue during high-temperature microwave heating. The resulting data were compiled into either a sigmoidal function of temperature or an integration of the time-temperature curve for both relative permittivity and effective conductivity. Coupled electromagnetic-thermal simulations of heating produced by a single monopole antenna using the new models were then compared to simulations with existing linear and static models, and experimental temperatures in liver tissue. The new sigmoidal temperature-dependent model more accurately predicted experimental temperatures when compared to temperature-time integrated or existing models. The mean percent differences between simulated and experimental temperatures over all times were 4.2% for sigmoidal, 10.1% for temperature-time integration, 27.0% for linear and 32.8% for static models at the antenna input power of 50 W. Correcting for tissue contraction improved agreement for powers up to 75 W. The sigmoidal model also predicted substantial changes in heating pattern due to dehydration. We can conclude from these studies that a sigmoidal model of tissue dielectric properties improves prediction of experimental results. More work is needed to refine and generalize this model.

  3. Effect of graphene modification on thermo-mechanical and microwave absorption properties of polystyrene/graphene nanocomposites.

    PubMed

    Hatui, Goutam; Das, Chapal Kumar

    2012-10-01

    In the present study the effect of graphene percentage and graphene modification on the microwave absorption properties of the polystyrene/graphene nanocomposites was studied in detail. Acid modified graphene was prepared by the mixed acid route. Polystyrene/graphene nanocomposites with various percentages of graphene and modified graphene were prepared by solution mixing process. The dispersion of graphene sheets in the polystyrene matrix was analyzed by TEM and SEM and found to be uniform for the 1%, 2 wt% of graphene and 1 wt% of modified graphene loading. Microwave absorption of modified graphene containing nanocomposite was found to be superior among the nanocomposites. Incorporation of 1 wt% of ferrite particles enhanced the microwave absorption of the nanocomposite above all the nanocomposites, in the whole range of X-band, due to the effective cancellation of both electrical and magnetic components of the microwave. Incorporation of graphene enhanced the thermal and mechanical properties of the nanocomposites.

  4. Influence of external magnetic field on the microwave absorption properties of carbonyl iron and polychloroprene composites film

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Li, Mingjie; Li, Xueai

    2016-12-01

    The carbonyl iron particles were dispersed in a polychloroprene rubber (CR) matrix under a magnetic field for a practical application as microwave absorption composites film. In comparison with the carbonyl iron particles (CIP)/CR composites film prepared by general route, such films made with external magnetic field exhibit excellent microwave absorption properties, strongly depending on the increment of anisotropy and rearrangement of magnetic particles. The film made under external magnetic field with a thickness of only 0.54 mm shows least reflection loss of -15.98 dB and the reflection loss value less than -10.0 dB over the frequency range of 11.4˜14.8 GHz. The results indicated the composite film made under external magnetic field have excellent microwave absorption properties, which suggest that the composites thin film could be used as a thinner and lighter microwave absorber.

  5. DEVELOPMENT OF ADVANCED DRILL COMPONENTS FOR BHA USING MICROWAVE TECHNOLOGY INCORPORATING CARBIDE, DIAMOND COMPOSITES AND FUNCTIONALLY GRADED MATERIALS

    SciTech Connect

    Dinesh Agrawal; Rustum Roy

    2000-11-01

    The main objective of this program was to develop an efficient and economically viable microwave processing technique to process cobalt cemented tungsten carbide with improved properties for drill-bits for advanced drilling operations for oil, gas, geothermal and excavation industries. The program was completed in three years and successfully accomplished all the states goals in the original proposal. In three years of the program, we designed and built several laboratory scale microwave sintering systems for conducting experiments on Tungsten carbide (WC) based composites in controlled atmosphere. The processing conditions were optimized and various properties were measured. The design of the system was then modified to enable it to process large commercial parts of WC/Co and in large quantities. Two high power (3-6 kW) microwave systems of 2.45 GHz were built for multi samples runs in a batch process. Once the process was optimized for best results, the technology was successfully transferred to our industrial partner, Dennis Tool Co. We helped them to built couple of prototype microwave sintering systems for carbide tool manufacturing. It was found that the microwave processed WC/Co tools are not only cost effective but also exhibited much better overall performance than the standard tools. The results of the field tests performed by Dennis Tool Co. showed remarkable advantage and improvement in their overall performance. For example: wear test shows an increase of 20-30%, corrosion test showed much higher resistance to the acid attack, erosion test exhibited about 15% better resistance than standard sinter-HIP parts. This proves the success of microwave technology for WC/Co based drilling tools. While we have successfully transferred the technology to our industrial partner Dennis Tool Co., they have signed an agreement with Valenite, a world leading WC producer of cutting and drilling tools and wear parts, to push aggressively the new microwave technology in

  6. Microwave absorption property of the diatomite coated by Fe-CoNiP films

    NASA Astrophysics Data System (ADS)

    Yan, Zhenqiang; Cai, Jun; Xu, Yonggang; Zhang, Deyuan

    2015-08-01

    A bio-absorbent of Fe-CoNiP coated on the diatomite was fabricated by way of electroless plating of CoNiP and subsequent chemical vapor deposition of Fe. The surface morphology and composition of the above-mentioned diatomite particles at different stage were characterized with the scanning electron microscopy and the energy spectrum analysis respectively, and the results showed that the diatomite was successfully coated with CoNoP and Fe (carbony iron). The complex permittivity and permeability of composites filled with the bio-absorbent and paraffin was measured in frequency range of 2-18 GHz, and then the microwave reflection loss (RL) and the shielding effectiveness (SE) were calculated. The results showed that the permittivity and the permeability were both enlarged as Fe films were coated onto the CoNiP-coated diatomite, which was attributed to the excellent electromagnetic property of carbonyl irons. The composites made with the Fe-CoNiP diatomite had a better absorbing property (minimum RL -11.0 dB) as well as the shielding property (maximum SE 5.6 dB) at thickness 2 mm. It indicated the absorption property was mainly due to the attenuation on the microwave, and the Fe-CoNiP diatomite could be an effective absorbent with low-density.

  7. Properties of five toughened matrix composite materials

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Dow, Marvin B.

    1992-01-01

    The use of toughened matrix composite materials offers an attractive solution to the problem of poor damage tolerance associated with advanced composite materials. In this study, the unidirectional laminate strengths and moduli, notched (open-hole) and unnotched tension and compression properties of quasi-isotropic laminates, and compression-after-impact strengths of five carbon fiber/toughened matrix composites, IM7/E7T1-2, IM7/X1845, G40-800X/5255-3, IM7/5255-3, and IM7/5260 have been evaluated. The compression-after-impact (CAI) strengths were determined primarily by impacting quasi-isotropic laminates with the NASA Langley air gun. A few CAI tests were also made with a drop-weight impactor. For a given impact energy, compression after impact strengths were determined to be dependent on impactor velocity. Properties and strengths for the five materials tested are compared with NASA data on other toughened matrix materials (IM7/8551-7, IM6/1808I, IM7/F655, and T800/F3900). This investigation found that all five materials were stronger and more impact damage tolerant than more brittle carbon/epoxy composite materials currently used in aircraft structures.

  8. Correlation of electrical conductivity, dielectric properties, microwave absorption, and matrix properties of composites filled with graphene nanoplatelets and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Khurram, A. A.; Rakha, Sobia A.; Zhou, Peiheng; Shafi, M.; Munir, Arshad

    2015-07-01

    The DC electrical conductivity, percolation threshold, and dielectric properties of Graphene Nanoplatelets (GNPs) filled epoxy composites are studied and correlated with microwave absorption. The properties of GNPs filled composites are also compared with multiwalled carbon nanotubes (MWCNTs) composites, and GNPs are observed to have superior conductivity than MWCNTs. In all batches, the nanofillers have 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 wt. %. All composites irrespective of the type of nanofiller and viscosity of the matrix have shown electrical percolation threshold at 3.0 wt. %. The dielectric properties, i.e., complex permittivity, tan loss, and AC conductivity, are studied in 100 Hz-5.5 MHz. The DC and AC electrical conductivities (at and below the percolation) measured in 100 Hz-5.5 MHz are correlated to the GNPs and MWCNTs epoxy composites in the microwave frequency range (11-17 GHz). The maximum return loss of -12 dB and -6 dB was determined for MWCNTs and GNPs, respectively. The effects of nanofiller shape and the viscosity of the matrix on the dispersion and interparticle spacing of the conductive fillers within the polymer matrix have been discussed based on the results of conductivity, dielectric, and absorption properties.

  9. Microwave dielectric properties of BNT-BT0.08 thin films prepared by sol-gel technique

    NASA Astrophysics Data System (ADS)

    Huitema, L.; Cernea, M.; Crunteanu, A.; Trupina, L.; Nedelcu, L.; Banciu, M. G.; Ghalem, A.; Rammal, M.; Madrangeas, V.; Passerieux, D.; Dutheil, P.; Dumas-Bouchiat, F.; Marchet, P.; Champeaux, C.

    2016-04-01

    We report for the first time the microwave characterization of 0.92(Bi0.5Na0.5)TiO3-0.08BaTiO3 (BNT-BT0.08) ferroelectric thin films fabricated by the sol-gel method and integrated in both planar and out-of-plane tunable capacitors for agile high-frequency applications and particularly on the WiFi frequency band from 2.4 GHz to 2.49 GHz. The permittivity and loss tangent of the realized BNT-BT0.08 layers have been first measured by a resonant cavity method working at 12.5 GHz. Then, we integrated the ferroelectric material in planar inter-digitated capacitors (IDC) and in out-of-plane metal-insulator-metal (MIM) devices and investigated their specific properties (dielectric tunability and losses) on the whole 100 MHz-15 GHz frequency domain. The 3D finite-elements electromagnetic simulations of the IDC capacitances are fitting very well with their measured responses and confirm the dielectric properties determined with the cavity method. While IDCs are not exhibiting an optimal tunability, the MIM capacitor devices with optimized Ir/MgO(100) bottom electrodes demonstrate a high dielectric tunability, of 30% at 2.45 GHz under applied voltages as low as 10 V, and it is reaching 50% under 20 V voltage bias at the same frequency. These high-frequency properties of the MIM devices integrating the BNT-BT0.08 films, combining a high tunability under low applied voltages indicate a wide integration potential for tunable devices in the microwave domain and particularly at 2.45 GHz, corresponding to the widely used industrial, scientific, and medical frequency band.

  10. Effect of microwave irradiation on the molecular and structural properties of hyaluronan.

    PubMed

    Bezáková, Zuzana; Hermannová, Martina; Dřímalová, Eugenie; Malovíková, Anna; Ebringerová, Anna; Velebný, Vladimír

    2008-09-05

    Hyaluronan (Na(+) salt of hyaluronic acid, HA) was extensively depolymerised by HCl-catalyzed hydrolysis at pH 3 for up to 500min under temperature-controlled microwave irradiation. The effects of microwave heating on the hydrodynamic properties of the polysaccharide were determined by SEC-MALLS and viscometry. The weight-average molecular mass (Mw) of HA decreased from 1.44×10(6) to ∼5000, reaching the region of higher oligosaccharides. The scission of HA chains was found to proceed randomly during the whole degradation process. Treatment of the Mw and intrinsic viscosity data according to the Mark-Houwink equation, [η]=k×Mw(α) suggested three relationships with α1=0.46 for Mw>500,000, α2=0.84 for Mw between 500,000 and 50,000, and α3=1.13 for Mw<50,000. The results revealed that HA with Mw>10,000 adopts a stiffish coil conformation in solution. As monitored by FT-IR and NMR spectroscopic techniques, the primary structure of the HA chains was maintained during the microwave-assisted hydrolysis at pH 3 at 105°C. At reaction times larger than 240min, uv spectroscopy suggested the depolymerisation of HA was accompanied by formation of by-products produced by side reaction.

  11. Enhanced microwave absorption properties in cobalt-zinc ferrite based nanocomposites

    NASA Astrophysics Data System (ADS)

    Poorbafrani, A.; Kiani, E.

    2016-10-01

    In an attempt to find a solution to the problem of the traditional spinel ferrite used as the microwave absorber, the Co0.6Zn0.4Fe2O4-Paraffin nanocomposites were investigated. Cobalt-zinc ferrite powders, synthesized through PVA sol-gel method, were combined with differing concentrations of Paraffin wax. The nanocomposite samples were characterized employing various experimental techniques including X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Alternating Gradient Force Magnetometer (AGFM), and Vector Network Analyzer (VNA). The saturation magnetization and coercivity were enhanced utilizing appropriate stoichiometry, coordinate agent, and sintering temperature required for the preparation of cobalt-zinc ferrite. The complex permittivity and permeability spectra, and Reflection Loss (RL) of Co0.6Zn0.4Fe2O4-Paraffin nanocomposites were measured in the frequency range of 1-18 GHz. The microwave absorption properties of nanocomposites indicated that the absorbing composite containing 20 wt% of paraffin manifests the strongest microwave attenuation ability. The composite exhibited the reflection loss less than -10 dB in the whole C-band and 30% of the X-band frequencies.

  12. Synthesis and microwave absorption properties of graphene-oxide(GO)/polyaniline nanocomposite with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Fu, Chen; He, Da-Wei; Wang, Yong-Sheng; Fu, Ming; Geng, Xin; Zhuo, Zu-Liang

    2015-08-01

    A composite of graphene/PANI/GAunano is synthesized using the co-blend method. The morphologies and microstructures of samples are examined by transition electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). Moreover, the microwave absorption properties of both graphene/PANI and GO/PANI/ GAunano composites are investigated in a microwave frequency band from 1 GHz to 18 GHz. The maximum reflection loss (RL) of GO/PANI/GAunano with a thickness of 2 mm is up to -24.61 dB at 15.45 GHz, and the bandwidth corresponding to RL at -10 dB can reach 4.08 GHz (from 13.92 GHz to 18.00 GHz) for a 2-mm-thick layer. The electromagnetic data demonstrate that GO/PANI/GAunano can be used as an attractive candidate for microwave absorbers. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB932700 and 2011CB932703), the National Natural Science Foundation of China (Grant Nos. 61335006, 61378073, and 61077044), and the Beijing Natural Science Fund (Grant No. 4132031).

  13. Imaging of soft material with carbon nanotube tip using near-field scanning microwave microscopy.

    PubMed

    Wu, Zhe; Sun, Wei-qiang; Feng, Tao; Tang, Shawn Wenjie; Li, Gang; Jiang, Kai-li; Xu, Sheng-yong; Ong, Chong Kim

    2015-01-01

    In this manuscript, a near-field scanning microwave microscope (NSMM) of our own design is introduced while using a multi-walled carbon nanotube (MWCNT) bundle as the tip (referred to as 'CNT tip'). Clear images of gold-patterned numbers, photoresist stripes and corneal endothelial cells (cell line B4G12) were obtained by mapping the resonant frequency fr and S11 amplitude of a given area while the NSMM is operating in tapping mode. The CNT tip helps to improve image quality and reveals more information about the sample as compared to a traditional metallic tip. The CNT tip is flexible and does not scratch the surface of the sample during the scan, which is useful for imaging soft material in biological science. In the imaging of the B4G12 endothelial cells, the nuclei and cytoplasm can be clearly distinguished from the rest of the cell and its surrounding medium.

  14. Microwave solid-state synthesis of LiV(3)O(8) as cathode material for lithium batteries.

    PubMed

    Yang, Gang; Wang, Guan; Hou, Wenhua

    2005-06-09

    A novel and economical microwave route has been developed for the synthesis of electrochemically active LiV(3)O(8) material by using a domestic microwave oven. The heating behavior of the designed reaction system guided the preparation of LiV(3)O(8) at a suitable irradiation power (i.e. heating rate), reaction time, and temperature. At the lowest irradiation power, the conversion fraction of reactants was mainly controlled by reaction temperature. Characterization results of X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Raman spectroscopy, scanning (SEM) and transmission (TEM) electron microscopy, and BET surface areas indicated that the phases of samples prepared by microwave and traditional methods were in good agreement. Nevertheless, the crystallinity, crystallite configuration, and morphology of the samples were different, and were affected by the irradiation time and power. A floppy superposition structure of nanosheets (the size of one nanosheet was about 4.5 microm x 1.2 microm x 3 nm) was preferentially grown at the lowest irradiation power, and this effect on structure was more in evidence as the nanorods formed at the highest irradiation power. Electrochemical studies on ionic conductivity, electrochemical impedance spectroscopy (EIS), and charge-discharge capacity were carried out. It was found that the conductivity, first discharge capacity, and cycle performances of the samples were affected by the crystal size, crystallinity, and crystal configuration and defection concentration. The sample L30 prepared at the lowest irradiation power and the shortest time (30 min) showed the highest discharge capacity (335 mAh/g), but its discharge capacity decreased rapidly. By comparison, the sample L100 had a floppy superposition structure of nanosheets and a high surface area, provided a good two-dimensional channel for the transition of Li(+) ions, and was stable during the intercalation/deintercalation process of Li(+) ions, therefore the high

  15. Structural, magnetic and microwave absorption properties of Ce-doped barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Mosleh, Z.; Kameli, P.; Poorbaferani, A.; Ranjbar, M.; Salamati, H.

    2016-01-01

    Ba1-xCexFe12O19 (x=0.0, 0.05, 0.1, 0.15, and 0.2) polycrystalline samples were synthesized by the sol-gel method and characterized by thermogravimetric analysis (TG), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), vibrating sample magnetometer (VSM) and vector network analyzer. All the synthesized samples showed nearly single magnetoplumbite phase and an average particle size of the undoped sample of about 500 nm decreasing with Ce doping content. The magnetization first increased and then decreased with the increase in Ce; on the other hand, coercivity showed no regular behavior with Ce content. Maximum values of magnetization (53 emu/g) and coercivity (5088 Oe) were obtained for x=0.1. Microwave absorption measured within the 2-18 microwave frequency range indicated maximum reflection losses of -16.74 dB at 10.3 GHz and of -20.47 dB at 16.22 GHz for x=0.15 and x=0.2 samples, respectively. The present investigation suggests Ce substituted barium hexaferrite as a promising candidate for microwave absorbing materials.

  16. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1992-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or using laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. For example, laboratory measurements performed by Fahd and Steffes have shown that the opacity from gaseous SO2 under simulated Venus conditions can be well described by the Van Vleck-Weisskopf lineshape at wavelengths shortward of 2 cm, but that the opacity of wavelengths greater than 2 cm is best described by a different lineshape that was previously used in theoretical predictions. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.

  17. Laboratory Evaluation and Application of Microwave Absorption Properties Under Simulated Conditions for Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1998-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments, entry probe radio signal absorption measurements, and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or using laboratory measurements of such properties taken under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. For example, laboratory measurements completed recently by Kolodner and Steffes (ICARUS 132, pp. 151-169, March 1998, attached as Appendix A) under this grant (NAGS-4190), have shown that the opacity from gaseous H2SO4 under simulated Venus conditions is best described by a different formalism than was previously used. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both spacecraft entry probe and orbiter radio occultation experiments and by radio astronomical observations, and over a range of frequencies which correspond to those used in such experiments, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.

  18. Laboratory Evaluation and Application of Microwave Absorption Properties under Simulated Conditions for Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    2002-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments, entry probe radio signal absorption measurements, and earth-based or spacecraft-based radio astronomical (emission) observations can be used to infer abundances of microwave absorbing constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or the use of laboratory measurements of such properties taken under environmental conditions that are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. Laboratory measurements have shown that the centimeter-wavelength opacity from gaseous phosphine (PH3) under simulated conditions for the outer planets far exceeds that predicted from theory over a wide range of temperatures and pressures. This fundamentally changed the resulting interpretation of Voyager radio occultation data at Saturn and Neptune. It also directly impacts planning and scientific goals for study of Saturn's atmosphere with the Cassini Radio Science Experiment and the Rossini RADAR instrument. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both spacecraft entry probe and orbiter (or flyby) radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations

  19. Effect of annealing on the microwave characteristics of carbon nanotubes and the nanocomposite materials based on them

    NASA Astrophysics Data System (ADS)

    Usanov, D. A.; Skripal', A. V.; Romanov, A. V.

    2014-06-01

    Transmission and reflection spectra of electromagnetic microwave radiation are used to determine the complex permittivity of the composite materials consisting of a dielectric matrix and multiwalled carbon nanotubes subjected to high-temperature annealing in an inert atmosphere. The dependence of the electrical conductivity of multiwalled carbon nanotubes on the annealing temperature in an inert atmosphere is shown to be nonmonotonic.

  20. Universal transport properties of open microwave cavities with and without time-reversal symmetry.

    PubMed

    Schanze, H; Stöckmann, H-J; Martínez-Mares, M; Lewenkopf, C H

    2005-01-01

    We measure the transmission through asymmetric and reflection-symmetric chaotic microwave cavities in dependence on the number of attached waveguides. Ferrite cylinders are placed inside the cavities to break time-reversal symmetry. The phase-breaking properties of the ferrite and its range of applicability are discussed in detail. We use the random matrix theory accounting for absorption effects to calculate the universal distribution of transmission coefficients T and their energy derivatives dT/depsilon. Using the absorption strength as a fitting parameter, we find good agreement between universal transmission fluctuations predicted by the theory and the experimental data.

  1. High electric field effects on gigahertz dielectric properties of water measured with microwave microfluidic devices.

    PubMed

    Song, Chunrong; Wang, Pingshan

    2010-05-01

    Silicon microstrip line devices with 260 nm planar microfluidic channels are fabricated and used to investigate water dielectric saturation effects. Microwave scattering parameter measurements are conducted from 1 to 16 GHz under different uniform dc electric fields. When the applied dc field is increased to approximately 1 MV/cm, the measured transmission coefficient S(21) is increased up to 18 dB, which indicates a large change in water dielectric properties. Extracted water permittivity (epsilon=epsilon'+jepsilon") shows that epsilon' and epsilon" are changed up to 70% and 50%, respectively.

  2. Electrical properties of CZTS pellets made from microwave-processed powder

    NASA Astrophysics Data System (ADS)

    Ghediya, Prashant R.; Chaudhuri, Tapas K.

    2015-06-01

    Electrical properties of the kesterite copper zinc tin sulphide (CZTS) pellets in the temperature range from 300 K to 500 K are reported. The pellets are p-type with thermoelectric power (TEP) of + 175 µV/K. Electrical conductivity (σ) increases with the temperatures and is found to be due to thermionic emission (TE) over grain boundary (GB) barriers with activation energy of 170 meV. CZTS pellets are made from micropowders synthesized by microwave irradiation of precursor solution. Formation of kesterite CZTS is confirmed by X-ray diffraction (XRD) and Raman spectroscopy. Scanning Electron Microscope (SEM) shows that powder is micron sized spherical particles.

  3. Microwave tunable dielectric properties of multilayer CNT membranes for smart applications

    NASA Astrophysics Data System (ADS)

    Liu, L.; Yang, Z. H.; Kong, L. B.; Yin, W. Y.; Wang, S.

    2012-09-01

    Multilayer multiwall carbon nanotube (MWCNT) silicone composite membranes with thickness greater than 10 μm were prepared with a spin-coating method. Dielectric permittivity and tunability of the circular membranes were measured from 0.1 to 7 GHz by using a single-port coaxial line method. The frequency and bias voltage dependent dielectric properties were interpreted based on percolation theory. The MWCNT membranes could be potentially used to develop smart components and structures working at radio wave or microwave frequencies.

  4. Method and apparatus for selectively annealing heterostructures using microwaves

    NASA Technical Reports Server (NTRS)

    Atwater, Harry A. (Inventor); Brain, Ruth A. (Inventor); Barmatz, Martin B. (Inventor)

    1998-01-01

    The present invention discloses a process for selectively annealing heterostructures using microwaves. A heterostructure, comprised of a material having higher microwave absorption and a material having lower microwave absorption, is exposed to microwaves in the cavity. The higher microwave absorbing material absorbs the microwaves and selectively heats while the lower microwave absorbing material absorbs small amounts of microwaves and minimally heats. The higher microwave absorbing material is thereby annealed onto the less absorbing material which is thermally isolated.

  5. Method and apparatus for selectively annealing heterostructures using microwave

    NASA Technical Reports Server (NTRS)

    Atwater, Harry A. (Inventor); Brain, Ruth A. (Inventor); Barmatz, Martin B. (Inventor)

    1998-01-01

    The present invention discloses a process for selectively annealing heterostructures using microwaves. A heterostructure, comprised of a material having higher microwave absorption and a material having lower microwave absorption, is exposed to microwaves in the cavity. The higher microwave absorbing material absorbs the microwaves and selectively heats while the lower microwave absorbing material absorbs small amounts of microwaves and minimally heats. The higher microwave absorbing material is thereby annealed onto the less absorbing material which is thermally isolated.

  6. Thermal expansion properties of composite materials

    NASA Technical Reports Server (NTRS)

    Johnson, R. R.; Kural, M. H.; Mackey, G. B.

    1981-01-01

    Thermal expansion data for several composite materials, including generic epoxy resins, various graphite, boron, and glass fibers, and unidirectional and woven fabric composites in an epoxy matrix, were compiled. A discussion of the design, material, environmental, and fabrication properties affecting thermal expansion behavior is presented. Test methods and their accuracy are discussed. Analytical approaches to predict laminate coefficients of thermal expansion (CTE) based on lamination theory and micromechanics are also included. A discussion is included of methods of tuning a laminate to obtain a near-zero CTE for space applications.

  7. Temperature dependent phonon properties of thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Hellman, Olle; Broido, David; Fultz, Brent

    2015-03-01

    We present recent developments using the temperature dependent effective potential technique (TDEP) to model thermoelectric materials. We use ab initio molecular dynamics to generate an effective Hamiltonian that reproduce neutron scattering spectra, thermal conductivity, phonon self energies, and heat capacities. Results are presented for (among others) SnSe, Bi2Te3, and Cu2Se proving the necessity of careful modelling of finite temperature properties for strongly anharmonic materials. Supported by the Swedish Research Council (VR) Project Number 637-2013-7296.

  8. Average dielectric property analysis of complex breast tissue with microwave transmission measurements.

    PubMed

    Garrett, John D; Fear, Elise C

    2015-01-09

    Prior information about the average dielectric properties of breast tissue can be implemented in microwave breast imaging techniques to improve the results. Rapidly providing this information relies on acquiring a limited number of measurements and processing these measurement with efficient algorithms. Previously, systems were developed to measure the transmission of microwave signals through breast tissue, and simplifications were applied to estimate the average properties. These methods provided reasonable estimates, but they were sensitive to multipath. In this paper, a new technique to analyze the average properties of breast tissues while addressing multipath is presented. Three steps are used to process transmission measurements. First, the effects of multipath were removed. In cases where multipath is present, multiple peaks were observed in the time domain. A Tukey window was used to time-gate a single peak and, therefore, select a single path through the breast. Second, the antenna response was deconvolved from the transmission coefficient to isolate the response from the tissue in the breast interior. The antenna response was determined through simulations. Finally, the complex permittivity was estimated using an iterative approach. This technique was validated using simulated and physical homogeneous breast models and tested with results taken from a recent patient study.

  9. Synthesis and significantly enhanced microwave absorption properties of hematite dendrites/polyaniline nanocomposite

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Wang, Liuding; Wu, Hongjing; Lian, Qian

    2014-06-01

    Hematite dendrites/polyaniline (HDs/PANI) nanocomposite, i.e. coating HDs with conductive PANI, has been successfully synthesized through a two-step polymerization of aniline monomers on the surface of pre-synthesized HDs for the first time. It is discovered that a lower concentration of HCl (0.02 mol L-1) has only a slight adverse effect on the dendritic structures of the coated HDs, while a higher concentration of HCl (0.04 mol L-1) results in severe damage to the sub-branches of the HDs. The morphology, composition, structure, static magnetic, and spectral properties of the as-prepared pristine HDs and HDs/PANI composites were thoroughly characterized by various physicochemical techniques. Moreover, the electromagnetic and microwave absorbing properties of the HDs and HDs/PANI wax composites were compared in detail. It was found that the frequency of absorption obeys a quarter-wavelength model for both of them, and the HDs/PANI wax composite exhibits far superior microwave absorption properties. This phenomenon can be attributed to the improved dielectric loss abilities and the complementary behaviors resulting from the PANI coatings and fractal-structured HDs.

  10. Average Dielectric Property Analysis of Complex Breast Tissue with Microwave Transmission Measurements

    PubMed Central

    Garrett, John D.; Fear, Elise C.

    2015-01-01

    Prior information about the average dielectric properties of breast tissue can be implemented in microwave breast imaging techniques to improve the results. Rapidly providing this information relies on acquiring a limited number of measurements and processing these measurement with efficient algorithms. Previously, systems were developed to measure the transmission of microwave signals through breast tissue, and simplifications were applied to estimate the average properties. These methods provided reasonable estimates, but they were sensitive to multipath. In this paper, a new technique to analyze the average properties of breast tissues while addressing multipath is presented. Three steps are used to process transmission measurements. First, the effects of multipath were removed. In cases where multipath is present, multiple peaks were observed in the time domain. A Tukey window was used to time-gate a single peak and, therefore, select a single path through the breast. Second, the antenna response was deconvolved from the transmission coefficient to isolate the response from the tissue in the breast interior. The antenna response was determined through simulations. Finally, the complex permittivity was estimated using an iterative approach. This technique was validated using simulated and physical homogeneous breast models and tested with results taken from a recent patient study. PMID:25585106

  11. Improved microwave absorption and electromagnetic properties of BaFe{sub 12}O{sub 19}-poly(vinylidene fluoride) composites by incorporating reduced graphene oxides

    SciTech Connect

    He, Hongcai; Luo, Feifei; Qian, Neng; Wang, Ning

    2015-02-28

    Three-phase composites of poly(vinylidene fluoride)-BaFe{sub 12}O{sub 19}-reduced graphene oxide (PVDF–BFO-RGO) were synthesized by a facile wet chemical method and hot-pressing approach. The phase structure, topography of the hybrid materials were characterized by X-ray diffraction, scanning electron microscopy, and Raman spectra. Influence of RGO on their electromagnetic properties was investigated. Especially, improved microwave absorption and electromagnetic properties of BaFe{sub 12}O{sub 19}–PVDF composites by incorporating RGO were obtained and studied. The PVDF/BFO/RGO sample with m(RGO):m(BFO) = 5:100 shows the best microwave absorption properties with a minimum RL = −32 dB at 11 GHz and with the bandwidth less than −20 dB from 9.6 to 12.8 GHz. The composites were believed to have potential applications as the microwave absorber.

  12. Excellent microwave-absorbing properties of elliptical Fe3O4 nanorings made by a rapid microwave-assisted hydrothermal approach

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Cui, Tingting; Wu, Tong; Li, Yana; Tong, Guoxiu

    2016-04-01

    High-quality elliptical polycrystalline Fe3O4 nanorings (NRs) with continuously tunable size have been synthesized in large amounts via a rapid microwave-assisted hydrothermal approach. The surface-protected glucose reducing/etching/Ostwald ripening mechanism is responsible for the formation of NRs. Ring size can be modulated by selecting iron glycolate nanosheets with various sizes as precursors. The size-dependent magnetic behavior of the NRs was observed. Our research gives insights into the understanding of the microwave absorption mechanism of elliptical Fe3O4 NRs. Owing to their large specific surface area, shape anisotropy, and closed ring-like configuration, elliptical polycrystalline Fe3O4 NRs exhibited significantly enhanced microwave absorption performance compared with Fe3O4 circular NRs, nanosheets, microspheres, nanospindles, and nanotubes. An optimal reflection loss value of -41.59 dB is achieved at 5.84 GHz and R L values (≤-20 dB) are observed at 3.2-10.4 GHz. Some new mechanisms including multiple scattering, oscillation resonance absorption, microantenna radiation, and interference are also crucial to the enhanced absorption properties of NRs. These findings indicate that ring-like nanostructures are a promising structure for devising new and effective microwave absorbers.

  13. Optical properties of photochromic and thermochromic materials

    NASA Astrophysics Data System (ADS)

    Mo, Yeon-Gon

    The optical properties of some thin film materials can be altered by an external stimulus. Photochromic and thermochromic materials, including inorganic and organic substances, have optical properties that can be changed in a reversible manner by irradiation and temperature respectively. These materials can be used in applications such as radiation or thermal sensors, information storage devices and smart window applications in buildings and cars. In this work, major effort was concentrated on passive thermal control coatings based on photochromic and thermochromic materials. The inorganic photochromic materials were based on tungsten and molybdenum oxide films and the organic photochromic materials included spiropyrans and spirooxazines. In addition, photochromic composite organic-inorganic films and thermochromic vanadium oxide films were prepared. The samples were synthesized using sputtering, sol-gel process, and thermal oxidation. The optical properties were investigated for the first time by ultraviolet/visible/infrared (UV/VIS/IR) spectroscopic ellipsometry, attenuated total reflection (ATR) infrared ellipsometry, spectrophotometry, and X-ray diffraction (XRD). For amorphous oxide films, the oxygen deficiency was important in determining the photochromic properties of the films. In the mid-infrared region, no photochromism was observed for the films. The optical properties of organic-inorganic composite films changed in the VIS/NIR wavelength region markedly in a reversible process, with UV irradiation. The composite films containing tungsten heteropolyoxometalate (HPOM) showed faster coloration and bleaching than pure tungsten oxide films. The composite films with molybdenum HPOM showed faster coloration and much slower bleaching than tungsten HPOM. The spiropyran and spirooxazine doped polymeric films were investigated for the first time using infrared and ATR ellipsometry. The infrared optical functions obtained by ATR measurements were a little smaller

  14. Microwave moisture sensing of seedcotton: Part 1: Seedcotton microwave material properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Moisture content at harvest is a key parameter that impacts quality and how well the cotton crop can be stored without degrading before processing. It is also a key parameter of interest for harvest time field trials as it can directly influence the quality of the harvested crop as well as skew the...

  15. RF/microwave non-destructive measurements of electrical properties of semiconductor wafers for thermophotovoltaic applications

    SciTech Connect

    Saroop, S.; Borrego, J.M.; Gutmann, R.J.

    1997-05-01

    A radio-frequency/microwave measurement system has been designed for non-contacting determination of sheet resistance and excess carrier lifetime of low-bandgap materials and junctions, specifically GaSb-based alloys for thermophotovoltaic (TPV) applications. The design incorporates RF circuitry in the 100--500 MHz frequency range and utilizes a Q-switched YAG laser at 1.32 microns to photo-generate electron-hole pairs and conductivity modulate the material and/or junction under test. Supplementary measurements with a GaAs pulsed diode laser at 904 nm provides a faster transient response with near-surface photogeneration. Initial measurements on GaSb substrates, Zn-diffused materials and epitaxially grown layers are presented and discussed.

  16. Magnetic properties of Martian surface material

    NASA Technical Reports Server (NTRS)

    Hargraves, R. B.

    1984-01-01

    The hypothesis that the magnetic properties of the Martian surface material are due to the production of a magnetic phase in the clay mineral nontronite by transient shock heating is examined. In the course of the investigation a magnetic material is produced with rather unusual properties. Heating from 900 C to 1000 C, of natural samples of nontronite leads first to the production of what appears to be Si doped maghemite gamma (-Fe2O3). Although apparently metastable, the growth of gamma -Fe2O3 at these temprtures is unexpected, and its relative persistence of several hours at 1000 C is most surprising. Continued annealing of this material for longer periods promote the crystallization of alpha Fe2O3 and cristobalite (high temperature polymorph of SiO2). All available data correlate this new magnetic material with the cristobalite hence our naming it magnetic ferri cristobalite. Formation of this magnetic cristobalite, however, may require topotactic growth from a smectite precursor.

  17. Acoustical properties of highly porous fibrous materials

    NASA Technical Reports Server (NTRS)

    Lambert, R. F.

    1979-01-01

    Highly porous, fibrous bulk sound absorbing materials are studied with a view toward understanding their acoustical properties and performance in a wide variety of applications including liners of flow ducts. The basis and criteria for decoupling of acoustic waves in the pores of the frame and compressional waves in the frame structure are established. The equations of motion are recast in a form that elucidates the coupling mechanisms. The normal incidence surface impedance and absorption coefficient of two types of Kevlar 29 and an open celled foam material are studied. Experimental values and theoretical results are brought into agreement when the structure factor is selected to provide a fit to the experimental data. A parametric procedure for achieving that fit is established. Both a bulk material quality factor and a high frequency impedance level are required to characterize the real and imaginary part of the surface impedance and absorption coefficient. A derivation of the concepts of equivalent density and dynamic resistance is presented.

  18. Microstructure and dielectric properties of nano-grained X7R type BaTiO3 ceramic capacitors sintered by 2.45 GHz microwave

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Sao; Chou, Chen-Chia

    2007-12-01

    Systematic investigation on the effects of microwave sintering on the characteristics of nano-grained BaTiO3 (BT) capacitor materials co-doped with yttrium (Y) and magnesium (Mg) elements was carried out. The granular structure in these materials was observed to be relatively insensitive to the sintering temperature and soaking time. The nano-sized BaTiO3 capacitor materials possessing X7R dielectric constant-temperature (K-T) characteristics have been obtained over a wide range of sintering conditions. Transmission electron microscope (TEM) examinations revealed that the detailed microstructural study of these materials is extremely complicated. The unique K-T properties of the materials are ascribed to the duplex structure in the samples, namely finer grains of paraelectric phase and larger grains of ferroelectric phase.

  19. Construction of CuS Nanoflakes Vertically Aligned on Magnetically Decorated Graphene and Their Enhanced Microwave Absorption Properties.

    PubMed

    Liu, Panbo; Huang, Ying; Yan, Jing; Yang, Yiwen; Zhao, Yang

    2016-03-02

    Hybrid nanocomposites with enhanced microwave absorption properties have been designed by growing CuS nanoflakes on magnetically decorated graphene, and the effect of special nanostructures on microwave absorption properties has been investigated. The structure of the nanocomposites was characterized by Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), N2 adsorption-desorption, and vibrating sample magnetometer (VSM). The influence of cetyltrimethylammonium bromide (CTAB) on the morphology of CuS nanoflakes was also investigated. A possible formation process of the nanocomposites and the mechanism of microwave absorption were explained in detail. As an absorber, the nanocomposites with a filler loading of 20 wt % exhibited enhanced microwave absorption properties due to the special nanostructures, extra void space, and synergistic effect. The maximum reflection loss can reach -54.5 dB at 11.4 GHz, and the absorption bandwidths exceeding -10 dB are 4.5 GHz with a thickness of 2.5 mm, which can be adjusted by the thickness. The results indicate that the hybrid nanocomposites with enhanced microwave absorption properties and lightweight have a promising future in decreasing electromagnetic wave irradiation.

  20. Headspace single drop microextraction coupled with microwave extraction of essential oil from plant materials.

    PubMed

    Zhai, Yujuan; Sun, Shuo; Wang, Ziming; Zhang, Yupu; Liu, He; Sun, Ye; Zhang, Hanqi; Yu, Aimin

    2011-05-01

    Headspace single drop microextraction (HS-SDME) coupled with microwave extraction (ME) was developed and applied to the extraction of the essential oil from dried Syzygium aromaticum (L.) Merr. et Perry and Cuminum cyminum L. The operational parameters, such as microdrop volume, microwave absorption medium (MAM), extraction time, and microwave power were optimized. Ten microliters of decane was used as the microextraction solvent. Ionic liquid and carbonyl iron powder were used as MAM. The extraction time was less than 7 min at the microwave power of 440 W. The proposed method was compared with hydrodistillation (HD). There were no obvious differences in the constituents of essential oils obtained by the two methods.

  1. Relative influence upon microwave emissivity of fine-scale stratigraphy, internal scattering, and dielectric properties

    USGS Publications Warehouse

    England, A.W.

    1976-01-01

    The microwave emissivity of relatively low-loss media such as snow, ice, frozen ground, and lunar soil is strongly influenced by fine-scale layering and by internal scattering. Radiometric data, however, are commonly interpreted using a model of emission from a homogeneous, dielectric halfspace whose emissivity derives exclusively from dielectric properties. Conclusions based upon these simple interpretations can be erroneous. Examples are presented showing that the emission from fresh or hardpacked snow over either frozen or moist soil is governed dominantly by the size distribution of ice grains in the snowpack. Similarly, the thickness of seasonally frozen soil and the concentration of rock clasts in lunar soil noticeably affect, respectively, the emissivities of northern latitude soils in winter and of the lunar regolith. Petrophysical data accumulated in support of the geophysical interpretation of microwave data must include measurements of not only dielectric properties, but also of geometric factors such as finescale layering and size distributions of grains, inclusions, and voids. ?? 1976 Birkha??user Verlag.

  2. Enhanced Microwave Absorption Properties of Carbon Black/Silicone Rubber Coating by Frequency-Selective Surface

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoning; Luo, Fa; Gao, Lu; Qing, Yuchang; Zhou, Wancheng; Zhu, Dongmei

    2016-10-01

    A square frequency-selective surface (FSS) design has been employed to improve the microwave absorption properties of carbon black/silicone rubber (CBSR) composite coating. The FSS is placed on the surface of the CBSR coating. The effects of FSS design parameters on the microwave absorption properties of the CBSR coating have been investigated, including the size and period of the FSS design, and the thickness and permittivity of the coating. Simulation results indicate that the absorption peak for the CBSR coating alone is related to its thickness and electromagnetic parameters, while the combination of the CBSR coating with a FSS can exhibit a new absorption peak in the reflection curve; the frequency of the new absorption peak is determined by the resonance of the square FSS design and tightly depends on the size of the squares, with larger squares in the FSS design leading to a lower frequency of the new absorption peak. The enhancement of the absorption performance depends on achievement of a new absorption peak using a suitable size and period of the FSS design. In addition, the FSS design has a stable frequency response for both transverse electromagnetic (TE) and transverse magnetic (TM) polarizations as the incident angle varies from 0° to 40°. The optimized results indicate that the bandwidth with reflection loss below -5 dB can encompass the whole frequency range from 8 GHz to 18 GHz for thickness of the CBSR coating of only 1.8 mm. The simulation results are confirmed by experiments.

  3. Effect of Ni content on microwave absorbing properties of MnAl powder

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-zhong; Lin, Pei-hao; Huang, Wei-chao; Pan, Shun-kang; Liu, Ye; Wang, Lei

    2016-09-01

    MnAlNi powder was prepared by the process of vacuum levitation melting and high-energy ball milling, The morphology and phase structure of the powder were analyzed by Scanning Electron Microscope(SEM), X-ray diffraction(XRD) and the effect of the Ni content on microwave absorbing properties of MnAl powder was investigated by an vector network analyzer. The addition of Ni, which improved the microwave absorbing properties of MnAl powder but not changed the composition of Al8Mn5 alloy. The minimum reflectivity of (Al8Mn5)0.95Ni0.05 powder with a coating thickness (d) of 1.8 mm was about -40.8 dB and has better bandwidth effect, the absorbing mechanism of AlMnNi powders on the electromagnetic was related to the electromagnetic loss within the absorbing coatings and the effect of coating thickness on the interference loss of electromagnetic wave.

  4. The Sm-Ni-Fe System: Isothermal Section and Microwave Absorption Properties

    NASA Astrophysics Data System (ADS)

    Yao, Qingrong; Shen, Yihao; Yang, Pengcheng; Rao, Guanghui; Zhou, Huiying; Deng, Jianqiu; Wang, Zhongmin

    2017-04-01

    The Sm-Ni-Fe ternary system has been investigated at 773 K by means of powder x-ray diffraction, metallography and scanning electron microscopy equipped with energy dispersive x-ray spectroscopy. The isothermal section consists of 16 single-phase regions, 29 two-phase regions and 14 three-phase regions. The influence of Fe-doping on the structure and the microwave absorption properties of the SmNi5 compound has been systematically studied. The homogeneity range in Sm16.67Ni83.33- x Fe x was determined as x = 16.67. The lattice parameters were found to gradually increase and the particle size become much finer with the increase of Fe concentration. All the samples exhibited good microwave absorption properties in the X-band (8-12 GHz). The highest reflection loss of the Sm16.67Ni83.33- x Fe x ( x = 0.0, 5.0, 10.0,15.0, 16.67) alloys are -10.12 dB, -10.39 dB, -16.44 dB, -20.69 dB, and -43.05 dB at 6.96 GHz, 7.92 GHz, 8.56 GHz, 10.04 GHz, and 11.08 GHz, respectively. The absorption peak shifted towards the higher frequency region with the increasing amount of Fe substitution.

  5. Microwave dielectric properties of Ba(Zn1/3Ta2 / 3)O3 for application in high power waveguide window

    NASA Astrophysics Data System (ADS)

    Sindam, Bashaiah; Raju, K. C. James

    2016-04-01

    Higher dielectric constant, low dielectric loss and good transmission characteristics have been the goal for developing the ceramic waveguide window for high power window applications. The choice of materials having high k with low dielectric loss and reduced window size is key parameters to achieve maximum microwave transmission without unleashing microwave dissipation. The microwave dielectric properties of synthesized Ba(Zn1/3Ta2 / 3)O3 (BZT) ceramics have been studied for high power window applications. The structural studies are correlated with microwave dielectric properties of BZT. The maximum values of dielectric constant ɛr = 30, Q × f0 = 102 THz and near zero temperature coefficient of resonance frequency were obtained for BZT ceramics sintered at the temperature of 1550 °C for 4 h. The measured results are used to design a tapered transition from air filled waveguide to narrow (reduced width and height) dielectric filled waveguide using Heckens linear taper at a specific frequency. The simulation result shows that the lower reflection loss is obtained for the tapered transition of the narrow BZT window as compared to the standard waveguide BZT window. The return loss of -34 dB is obtained for S-band waveguide window with a bandwidth of 675 MHz. The return loss observed in the narrow BZT window is -46 dB with a bandwidth of 570 MHz at a center frequency of 3.63 GHz. Most of the disadvantages in conventional windows will be rectified using the design of the taper transion employing narrow waveguide window in high power applications. Contribution to the Topical Issue "Materials for Dielectric Applications", edited by Maciej Jaroszewski and Sabu Thomas.

  6. Mechanical properties of thermal protection system materials.

    SciTech Connect

    Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul; Hofer, John H.

    2005-06-01

    An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPS materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.

  7. The role of material properties in adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1984-01-01

    When two solid surfaces are brought into contact strong adhesive bond forces can develop between the materials. The magnitude of the forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between solids is addressed from a theoretical consideration of the electronic nature of the surfaces and experimentally relating bond forces to the nature of the interface resulting from solid state contact. Surface properties correlated with adhesion include, atomic or molecular orientation, reconstruction and segregation as well as the chemistry of the surface specie. Where dissimilar solids are in contact the contribution of each is considered as is the role of their interactive chemistry on bond strength. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structure, crystallographic orientation and state. Materials examined with respect to interfacial adhesive interactions include metals, alloys, ceramics, polymers and diamond. They are reviewed both in single and polycrystalline form. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  8. Structural, transport and microwave properties of 123/sapphire films: Thickness effect

    SciTech Connect

    Predtechensky, MR.; Smal, A.N.; Varlamov, Y.D.

    1994-12-31

    The effect of thickness and growth conditions on the structure and microwave properties has been investigated for the 123/sapphire films. It has been shown that in the conditions of epitaxial growth and Al atoms do not diffuse from substrate into the film and the films with thickness up to 100nm exhibit the excellent DC properties. The increase of thickness of GdBaCuO films causes the formation of extended line-mesh defects and the increase of the surface resistance (R{sub S}). The low value of surface resistance R{sub S}(75GHz,77K)=20 mOhm has been obtained for the two layer YBaCuO/CdBaCuO/sapphire films.

  9. Enhanced microwave absorbing properties and heat resistance of carbonyl iron by electroless plating Co

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu; Zhu, Dongmei; Zhou, Wancheng; Luo, Fa

    2015-11-01

    Co coated carbonyl iron particles (Co (CI)) are fabricated through electroless plating method, and the electromagnetic microwave absorbing properties are investigated in the frequencies during 8.2-12.4 GHz. The complex permittivity of CI particles after electroless plating Co is higher than that of raw CI particles due to improvment of the polarization process. Furthermore, according to the XRD and TG results, the Co layer can enhance the heat resistance of CI particles. The bandwidth below -10 dB can reach 3.9 GHz for the Co(CI) absorbent. The results indicate that the electroless plating Co not only enhances the absorbing properties but also improves the heat resistance of CI.

  10. Structural, transport and microwave properties of 123/sapphire films: Thickness effect

    NASA Technical Reports Server (NTRS)

    Predtechensky, M. R.; Smal, A. N.; Varlamov, Yu. D.; Vatnik, S. M.; Tukhto, O. M.; Vasileva, I. G.

    1995-01-01

    The effect of thickness and growth conditions on the structure and microwave properties has been investigated for the 123/sapphire films. It has been shown that in the conditions of epitaxial growth the Al atoms do not diffuse from substrate into the film and the films with thickness up to 100 nm exhibit the excellent direct current (DC) properties. The increase of thickness of GdBaCuO films causes the formation of extended line-mesh defects and the increase of the surface resistance (R(sub S)). The low value of surface resistance R(sub S)(75 GHz, 77K) = 20 mOhm has been obtained for the two layer YBaCuO/CdBaCuO/sapphire films.

  11. Synthesis of new materials with properties ameliorated

    NASA Astrophysics Data System (ADS)

    Baira, F.; Benfarhi, S.; Zidani, S.

    2012-09-01

    Cellulose is the most abundant polymer in nature. It is used mainly for the production of paper bet also as a reinforcement in the polymer matrixes[1]. The modification of this polysaccharide presents a great interest, for it is the main constituent of agricultural wastes. It is well known that the microcrystalline cellulose gives, after chemical modification, new biodegradable materials[2], which may be used, for instance, for packaging. The esterification of cellulose necessitates an acid pretreatment which makes hydroxyl groups more accessible by breaking hydrogen bonds. X-rays diffraction analysis showed a feeble diminution of the treated samples cristallinity[3]. Cellulose, activated in this way, is esterified in a classic way in DMF, in the presence of triethylamine, LiCl and acid chloride at 60C° for 24 hours[4]. The obtained ester is precipitated in MeOH. The residue, dissolved in CHCl3, gives after evaporation in the open air, a plastic film surface. The water drop test has shown the hydrophobe properties of the plastic film surface. Our work is the study of the preparation of composite materials from the basis of their derivatives. Well as the study of the photopolymerisation kinetic, and the chemical degradation. The obtained films were analyzed by IR-TF, and the volumetrie[5,6]. As a conclusion, we have prepared composite materials with improved properties with reference to the matrix alone.

  12. Mechanical properties of nanostructure of biological materials

    NASA Astrophysics Data System (ADS)

    Ji, Baohua; Gao, Huajian

    2004-09-01

    Natural biological materials such as bone, teeth and nacre are nanocomposites of protein and mineral with superior strength. It is quite a marvel that nature produces hard and tough materials out of protein as soft as human skin and mineral as brittle as classroom chalk. What are the secrets of nature? Can we learn from this to produce bio-inspired materials in the laboratory? These questions have motivated us to investigate the mechanics of protein-mineral nanocomposite structure. Large aspect ratios and a staggered alignment of mineral platelets are found to be the key factors contributing to the large stiffness of biomaterials. A tension-shear chain (TSC) model of biological nanostructure reveals that the strength of biomaterials hinges upon optimizing the tensile strength of the mineral crystals. As the size of the mineral crystals is reduced to nanoscale, they become insensitive to flaws with strength approaching the theoretical strength of atomic bonds. The optimized tensile strength of mineral crystals thus allows a large amount of fracture energy to be dissipated in protein via shear deformation and consequently enhances the fracture toughness of biocomposites. We derive viscoelastic properties of the protein-mineral nanostructure and show that the toughness of biocomposite can be further enhanced by the viscoelastic properties of protein.

  13. Changes in the dielectric properties of ex vivo bovine liver during microwave thermal ablation at 2.45 GHz

    NASA Astrophysics Data System (ADS)

    Lopresto, Vanni; Pinto, Rosanna; Lovisolo, Giorgio A.; Cavagnaro, Marta

    2012-04-01

    In microwave thermal ablation (MTA) therapy, the dielectric properties of the target tissue play an important role in determining the radiation properties of the microwave ablation antenna. In this work, the ex vivo dielectric properties of bovine liver were experimentally characterized as a function of the temperature during MTA at the frequency of 2.45 GHz. The obtained data were compared with measurements performed at the end of the MTA treatment, and considering the heating achieved with a temperature-controlled water bath. Finally, measured data were used to perform a numerical study evaluating the effects of changes in tissue's dielectric properties during the MTA treatment on the radiation properties of a microwave interstitial ablation antenna, as well as on the obtained thermal lesion. Results evidenced a significant decrease of both relative permittivity (about 38%) and electric conductivity (about 33%) in the tissue during treatment as the temperature increased to over 60 °C, with a dramatic drop when the temperature approached 100 °C. Moreover, the numerical study evidenced that changes in tissue's dielectric properties during the MTA treatment affect the distribution of the power absorbed by the tissue (specific absorption rate—SAR, W kg-1) surrounding the microwave interstitial ablation antenna, leading to a peak SAR up to 20% lower, as well as to a thermal lesion up to 8% longer. This work may represent a preliminary step towards the future development of a procedure for MTA treatment planning.

  14. Low-loss Ca{sub 5-x}Sr{sub x}A{sub 2}TiO{sub 12} [A=Nb,Ta] ceramics: Microwave dielectric properties and vibrational spectroscopic analysis

    SciTech Connect

    Bijumon, Pazhoor Varghese; Sebastian, Mailadil Thomas; Dias, Anderson; Moreira, Roberto Luiz; Mohanan, Pezholil

    2005-05-15

    Complex perovskite-type Ca{sub 5-x}Sr{sub x}A{sub 2}TiO{sub 12} [A=Nb,Ta] (0{<=}x{<=}5) ceramics were prepared by conventional solid-state ceramic route. The crystal structure, microwave dielectric properties, and vibrational spectroscopic characteristics of these materials are reported. The structure and microstructure were investigated by x-ray diffraction and scanning electron microscopy techniques. The microwave dielectric properties were measured in the 3-5-GHz frequency range by the resonance method. Structural evolutions from orthorhombic to an averaged pseudocubic phase, with associated changes in dielectric properties, were observed as a function of composition. The structure-property relationships in these ceramics were established using Raman and Fourier transform infrared spectroscopic techniques. Raman analysis showed characteristic bands of ordered perovskite materials, with variation in both intensity and frequency as a function of composition.

  15. Electromagnetic and microwave absorbing properties of the composites containing flaky FeSiAl powders mixed with MnO2 in 1-18 GHz

    NASA Astrophysics Data System (ADS)

    Xu, Haibing; Bie, Shaowei; Jiang, Jianjun; Yuan, Wei; Chen, Qian; Xu, Yongshun

    2016-03-01

    The flaky FeSiAl/ irregular shaped MnO2 composite with the different mass ratios were prepared by using a two-roll mixer and a vulcanizing machine. The morphologies of the composite absorbers were characterized by a scanning electron microscope. The microwave electromagnetic properties of the composites were measured using a vector network analyzer in the range of 1-18 GHz. The effect of the mass ratio of FeSiAl/MnO2 on the microwave loss properties of the composites was investigated. The results show that the reflection loss (RL) values exceeding -20 dB from 3.5 to 16.5 GHz can be obtained for the flaky FeSiAl/MnO2 mass ratio of 1:1 from 1.5 mm to 5 mm. In addition, the FeSiAl/MnO2 composite with the FeSiAl/MnO2 mass ratio of 7:3 has -10 dB bandwidth of 6.6 GHz (from 11.4-18 GHz) with a thickness of 1.5 mm. It is found that the flaky FeSiAl/MnO2 composites can be potential microwave absorption materials.

  16. Titan's Sand Seas properties from the modelling of microwave-backscattered signal of Cassini/SAR

    NASA Astrophysics Data System (ADS)

    Lucas, Antoine; Rodriguez, Sébastien; Lommonier, Florentin; Ferrari, Cécile; Paillou, Philippe; Le Gall, Alice; Narteau, Clément

    2016-04-01

    Titan's sand seas may reflect the current and past surface conditions. Assessing the physicochemical properties and the morphodynamics of the equatorial linear dunes is a milestone in our comprehension of the climatic and geological history of the largest Saturn's moon. Based on enhanced SAR processing leading to despeckled Cassini RADAR data sets, we analyzed quantitatively the surface properties (e.g., slopes, texture, composition...) over the sand seas. First, using a large amount of overlaps and a wide range of incidence angle and azimuths, we show that the radar cross-section over the inter-dunes strongly differs from the one over the dunes. This strongly suggests significant difference in the physical properties between these two geomorphic units. Then, we derived quantitatively the surface properties from the modelling of microwave-backscattered signal using a Monte-Carlo inversion. Our results show that dunes are globally more microwaves absorbent than the inter-dunes. The inter-dunes are smoother with a higher dielectric constant than the dunes. Considering the composition, the inter-dunes are in between the dunes and the bright inselbergs mainly composed of water ice, suggesting the presence of a shallow layer of sediment in between the dunes. This may suggest that Titan dunes are developing over a coarser sediment bed similarly to what is observed in some terrestrial sand seas such as in Ténéré desert (Niger, see also contribution #EGU2016-13383). Additionally, potential secondary bedforms (such as ripples) as well as avalanche faces may have been detected.

  17. Structure, magnetic and microwave properties of FeNi invar nanoparticles obtained by electrical explosion of wire in different preparation conditions

    NASA Astrophysics Data System (ADS)

    Kurlyandskaya, G. V.; Bhagat, S. M.; Bagazeev, A. V.; Medvedev, A. I.; Ballesteros, A.; Beketov, I. V.; Safronov, A. P.

    2016-11-01

    Magnetic nanoparticles (MNPs) of close to invar (Fe0.635Ni0.365) composition were prepared by the electrical explosion of wire using different conditions to insure different values of overheating rates. X-ray diffraction, transmission electron microscopy, low temperature nitrogen adsorption, magnetic and microwave measurements were used for the characterization of MNPs. Increase of the energy injected into the wire led to increase of the specific surface (Ssp) of the produced MNPs from 4.6 to 13.5 m2/g. The fabricated MNPs were spherical and weakly aggregated with the average weighted diameter in the range of 54-160 nm depending on the Ssp. The phase composition of FeNi MNPs consists of two solid solutions of Ni in α-phase and γ-phase lattices. The increase of the energy injected into the wire leads to increase of the α-phase from 5 to 10 wt% as the injected energy raised from 0.8 to 2.5 times the sublimation energies of the wire material. Comparative analysis of structure magnetic and microwave properties showed that the obtained MNPs are important magnetic materials with high saturation magnetization and significant zero field microwave absorption which can be expected to lead to important technological applications.

  18. Characterization of smart microwave window materials based on conducting polymer composites: coaxial line, waveguide, and cyclic voltammetry measurements

    NASA Astrophysics Data System (ADS)

    Barnes, Alan; Wright, Peter V.; Despotakis, Anthony; Lees, K.; Chambers, Barry

    1998-07-01

    Discs of polyaniline-silver-polymer electrolyte composites exhibit rapid and reversible changes in their microwave impedance when small electric fields are applied across then in a resonant coaxial line test set. The experimental data show that the initial conductivity of the materials is dependent on the concentration of silver metal and suggests that changes in resistance due to chemical switching take plane, at least in part, in the manufacture of the composites. The experimental data show that changes in the gradient of the cyclic voltammograms coincide with large changes in microwave reflectivity consistent with increasing conductivity of the composite when fields are applied. The reverse change occurs when the fields are removed. Measurements of the switching speed have shown that the composites are able to switch between the different states at in times of less than a second for more than one million switching operations with no depreciation of the material. Large area films have also been studied in the front of waveguide devices and measured in a microwave transmission mode. The results show that large changes in microwave impedance occur with the application of small electric fields (~ 15 V cm-1).

  19. Evanescent Microwave Probes Using Coplanar Waveguide and Stripline for Super-Resolution Imaging of Materials

    NASA Technical Reports Server (NTRS)

    Ponchak, G. E.; Akinwande, D.; Ciocan, R.; LeClair, S. R.; Tabib-Azar, M.

    2000-01-01

    An evanescent field microwave imaging probe based on half-wavelength, microwave transmission line resonators is described. Optimization of the probe tip design, the coupling gap, and the data analysis has resulted in images of metal lines on semiconductor substrates with 2.6 microns spatial resolution and a minimum detectable line width of 0.4 microns at 1 GHz.

  20. Physical Properties of Synthetic Resin Materials

    NASA Technical Reports Server (NTRS)

    Fishbein, Meyer

    1939-01-01

    A study was made to determine the physical properties of synthetic resins having paper, canvas, and linen reinforcements, and of laminated wood impregnated with a resin varnish. The results show that commercial resins have moduli of elasticity that are too low for structural considerations. Nevertheless, there do exist plastics that have favorable mechanical properties and, with further development, it should be possible to produce resin products that compare favorably with the light-metal alloys. The results obtained from tests on Compound 1840, resin-impregnated wood, show that this material can stand on its own merit by virtue of a compressive strength four times that of the natural wood. This increase in compressive strength was accomplished with an increase of density to a value slightly below three times the normal value and corrected one of the most serious defects of the natural product.

  1. Mechanical properties of dental investment materials.

    PubMed

    Low, D; Swain, M V

    2000-07-01

    Measurement of the elastic modulus (E) of investment materials has been difficult because of their low strength. However, these values are essential for engineering simulation and there are many methods available to assess the elasticity of materials. The present study compared two different methods with one of the methods being non-destructive in nature and can be used for specimens prepared for other tests. Two different types of investment materials were selected, gypsum-and phosphate-bonded. Method 1 is a traditional three-point bending test. Twelve rectangular bars with dimension of (70 x 9 x 3 mm) were prepared and placed on supports 56.8 mm apart. The test was conducted at a cross-head speed of 1 mm/min by use of a universal testing machine. The load applied to the test specimen and the corresponding deflection were measured until the specimen fractured. The E value was calculated from a linear part of the stress-strain plot. Method 2 is an ultra micro-indentation system to determine near surface properties of materials with nanometer resolution. The measurement procedure was programmed such that the specimens were indented with an initial contact force of 5 mN then followed by a maximum force of 500 mN. Measurement consisted of 10 indentations conducted with a spherical stainless steel indenter (R = 250 microm) that were equally spaced (500 microm). The E value rose asymptotically with depth of penetration and would approach the three-point bending test value at approximately four time's maximum contact depth for both materials. Both methods are practical ways of measuring the E of investment materials.

  2. Material properties of the plantar aponeurosis.

    PubMed

    Kitaoka, H B; Luo, Z P; Growney, E S; Berglund, L J; An, K N

    1994-10-01

    Material properties of the plantar aponeurosis were determined by a two-dimensional video tracking method to simultaneously measure the aponeurosis deformation. Failure loads averaged 1189 +/- 244 N and were higher in men. Average stiffness of the intact fascia was 203.7 +/- 50.5 N/mm at a loading rate of 11.12 N/sec and it did not vary significantly for the loading rates of 11.12 to 1112 N/sec. The high tensile loads required for failure were consistent with clinical and biomechanical studies and indicated the importance of the aponeurosis in foot function and arch stability.

  3. Physical Properties of Thin Film Semiconducting Materials

    NASA Astrophysics Data System (ADS)

    Bouras, N.; Djebbouri, M.; Outemzabet, R.; Sali, S.; Zerrouki, H.; Zouaoui, A.; Kesri, N.

    2005-10-01

    The physics and chemistry of semiconducting materials is a continuous question of debate. We can find a large stock of well-known properties but at the same time, many things are not understood. In recent years, porous silicon (PS-Si), diselenide of copper and indium (CuInSe2 or CIS) and metal oxide semiconductors like tin oxide (SnO2) and zinc oxide (ZnO) have been subjected to extensive studies because of the rising interest their potential applications in fields such as electronic components, solar panels, catalysis, gas sensors, in biocompatible materials, in Li-based batteries, in new generation of MOSFETS. Bulk structure and surface and interface properties play important roles in all of these applications. A deeper understanding of these fundamental properties would impact largely on technological application performances. In our laboratory, thin films of undoped and antimony-doped films of tin oxide have been deposited by chemical vapor deposition. Spray pyrolysis was used for ZnO. CIS was prepared by flash evaporation or close-space vapor transport. Some of the deposition parameters have been varied, such as substrate temperature, time of deposition (or anodization), and molar concentration of bath preparation. For some samples, thermal annealing was carried out under oxygen (or air), under nitrogen gas and under vacuum. Deposition and post-deposition parameters are known to strongly influence film structure and electrical resistivity. We investigated the influence of film thickness and thermal annealing on structural optical and electrical properties of the films. Examination of SnO2 by x-ray diffraction showed that the main films are polycrystalline with rutile structure. The x-ray spectra of ZnO indicated a hexagonal wurtzite structure. Characterizations of CIS films with compositional analysis, x-ray diffraction, scanning microscopy, spectrophotometry, and photoluminescence were carried out.

  4. Using indium tin oxide material to implement the imaging of microwave plasma ignition process

    SciTech Connect

    Wang, Qiang; Hou, Lingyun; Zhang, Guixin Zhang, Boya; Liu, Cheng; Wang, Zhi; Huang, Jian

    2014-02-17

    In this paper, a method is introduced to get global observation of microwave plasma ignition process at high pressure. A microwave resonator was designed with an indium tin oxide coated glass at bottom. Microwave plasma ignition was implemented in methane and air mixture at 10 bars by a 2 ms-3 kW-2.45 GHz microwave pulse, and the high speed images of the ignition process were obtained. The images visually proved that microwave plasma ignition could lead to a multi-point ignition. The system may also be applied to obtain Schlieren images, which is commonly used to observe the development of flame kernel in an ignition process.

  5. Infrared Radiative Properties of Food Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precisely, infrared radiation is electromagnetic radiation whose wavelength is longer than that of visible light, but shorter than that of terahertz radiation and microwaves. The infrared portion of the electromagnetic spectrum spans roughly three orders of magnitude (750 nm to 100 µm) and has been...

  6. EDITORIAL: Microwave Moisture Measurements

    NASA Astrophysics Data System (ADS)

    Kaatze, Udo; Kupfer, Klaus; Hübner, Christof

    2007-04-01

    Microwave moisture measurements refer to a methodology by which the water content of materials is non-invasively determined using electromagnetic fields of radio and microwave frequencies. Being the omnipresent liquid on our planet, water occurs as a component in most materials and often exercises a significant influence on their properties. Precise measurements of the water content are thus extremely useful in pure sciences, particularly in biochemistry and biophysics. They are likewise important in many agricultural, technical and industrial fields. Applications are broad and diverse, and include the quality assessment of foodstuffs, the determination of water content in paper, cardboard and textile production, the monitoring of moisture in sands, gravels, soils and constructions, as well as the measurement of water admixtures to coal and crude oil in reservoirs and in pipelines. Microwave moisture measurements and evaluations require insights in various disciplines, such as materials science, dielectrics, the physical chemistry of water, electrodynamics and microwave techniques. The cooperation of experts from the different fields of science is thus necessary for the efficient development of this complex discipline. In order to advance cooperation the Workshop on Electromagnetic Wave Interaction with Water and Moist Substances was held in 1993 in Atlanta. It initiated a series of international conferences, of which the last one was held in 2005 in Weimar. The meeting brought together 130 scientists and engineers from all over the world. This special issue presents a collection of some selected papers that were given at the event. The papers cover most topics of the conference, featuring dielectric properties of aqueous materials, electromagnetic wave interactions, measurement methods and sensors, and various applications. The special issue is dedicated to Dr Andrzej W Kraszewski, who died in July 2006 after a distinguished career of 48 years in the research of

  7. Magnetic and microwave absorbing properties of polyaniline/γ-Fe 2O 3 nanocomposite

    NASA Astrophysics Data System (ADS)

    Wang, Zhongzhu; Bi, Hong; Liu, Jian; Sun, Tao; Wu, Xianliang

    The conducting protonated polyaniline (ES)/γ-Fe 2O 3 nanocomposite with the different γ-Fe 2O 3 content were synthesized by in-situ polymerization. Its morphology, microstructure, DC conductivity and magnetic properties of samples were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), four-wire-technique, and vibrating sample magnetometer (VSM), respectively. The microwave absorbing properties of the nanocomposite powders dispersing in wax coating with the coating thickness of 2 mm were investigated using a vector network analyzers in the frequency range of 7-18 GHz. The pure ES has shown the absorption band with a maximum absorption at approximately 16 GHz and a width (defined as frequency difference between points where the absorption is more than 8 dB) of 3.24 GHz, when 10% γ-Fe 2O 3 by weight is incorporated , the width is broadened to 4.13 GHz and some other absorption bands appear in the range of 7-13 GHz. The parameter dielectric loss tan δe (= ɛ″/ ɛ') in the 7-18 GHz is found to decrease with increasing γ-Fe 2O 3 contents with 10%, 20%, 30%, respectively, but magnetic loss tan δm (= μ″/ μ') increases with increasing γ-Fe 2O 3 contents. The results show that moderate content of γ-Fe 2O 3 nanoparticles embedded in protonated polyaniline matrix may create advanced microwave absorption properties due to simultaneous adjusting of dielectric loss and magnetic loss.

  8. Synthesis and microwave-absorbing properties of Co3Fe7@C core-shell nanostructure

    NASA Astrophysics Data System (ADS)

    Guo, Xiao Dang; Qiao, Xiao Jing; Ren, Qing Guo; Wan, Xiang; Li, Wang Chang; Sun, Zhi Gang

    2015-07-01

    Co3Fe7@C core-shell nanoparticles with high performance of microwave-absorbing properties were prepared by hydrothermal method and heat treatment. The transformation of structural, morphological and magnetic properties among the carbon-encapsulated composites, which were annealed at three different temperatures, were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). XRD analysis indicated the phase composition of Co3Fe7/CoFe2O4, Fe3C/Co3Fe7 and pure Co3Fe7 at different annealing temperatures. TEM confirmed the Co3Fe7@graphite core-shell nanostructure with an average particle size of 180 nm. The saturation magnetization ( M s) increased monotonically with the increase in temperature, which was attributed to the crystal growth and purity of metallic core. Co3Fe7@graphite nanoparticles exhibited the hysteretic loops of soft ferromagnetic behavior with high M s of 222.85 emu g-1, weak remanent magnetization ( M r) and coercivity ( H c). For Co3Fe7@graphite nanomaterial, a reflection loss exceeding -20 dB was obtained between 2.8 and 10.2 GHz, which almost covering from S-band to X-band. The maximum reflection loss is -26.8 dB at 9 GHz with 1.8 mm thickness. The excellent microwave absorption properties result from the proper electromagnetic match in core-shell nanostructure and the strong natural ferromagnetic resonance.

  9. Magnetic properties of microwave-synthesized Mn-doped SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Salah, Numan; Habib, Sami; Azam, Ameer

    2016-11-01

    Semiconductor nanostructures with dilute magnetic property are of great importance for different applications. However, this property depends on several factors including the synthesis route. In this work, manganese (Mn)-doped tin dioxide (SnO2) nanoparticles (NPs) at different concentrations were synthesized by the microwave-assisted synthesis method and evaluated for their magnetic properties. The X-ray diffraction analyses revealed a single-phase rutile-type tetragonal structure, while SEM and TEM images showed fine NPs with average sizes around 10 nm. A considerable increase in value of the energy band gap by around 0.18 eV as a result of Mn doping was observed. This dopant has also increased the lattice d-spacing value, but slightly decreased the lattice constant c. The magnetic measurement result showed that all the microwave-synthesized Mn-doped SnO2 NPs including the pure one have distinctly wide hysteresis loops, indicating that samples have room temperature ferromagnetism (RTFM). RTFM was further enhanced by Mn doping reaching maximum at a concentration of 0.3 mol%. This magnetism could be attributed to the presence of defects at the grain boundaries within the NPs, interfacing sites between the NPs, oxygen or tin vacancies and an optimum level of Mn dopant. The observed wide hysteresis loops in these samples might be due to the use of a surfactant at high concentration that could provide highly compact/tight NPs. These results might be useful for producing nanoscale magnets and magnetic memory devices.

  10. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1988-01-01

    In the first half of this grant year, laboratory measurements were conducted on the millimeter-wave properties of atmospheric gases under simulated conditions for the outer planet. Significant improvements in the current system have made it possible to accurately characterize the opacity from gaseous NH3 at longer millimeter wavelengths (7 to 10 mm) under simulated Jovian conditions. In the second half of the grant year, it is hoped to extend such measurements to even shorter millimeter-wavelengths. Further analysis and application of the laboratory results to microwave and millimeter-wave absorption data for the outer planets, such as results from Voyager Radio Occultation experiments and earth-based radio astronomical observations will be continued. The analysis of available multispectral microwave opacity data from Venus, including data from the most recent radio astronomical ovservations in the 1.3 to 3.6 cm wavelength range and newly obtained Pioneer-Venus Radio Occulatation measurements at 13 cm, using the laboratory measurements as an interpretative tool will be pursued.

  11. Influence of matching thickness on the absorption properties of doped barium ferrites at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Ghasemi, A.; Saatchi, A.; Salehi, M.; Hossienpour, A.; Morisako, A.; Liu, X.

    2006-02-01

    The development and characterization of hexagonal ferrite powders of BaFe9Mn1.5Ti1.5O19, BaFe9Mn1.5Co1.5O19, and BaFe9Ti1.5Co1.5O19 as the microwave absorbers have been investigated. The ferrites were fabricated by conventional ceramic technology. The developed ferrite powders 80% by weight were mixed with polyvinylchloride plasticizer and fired to form rubber-ferrite with the thickness of 1.5 mm, 2 mm and 2.5 mm. XRD was used to identify structures of the samples. The magnetoplumbite structures for all the samples have been formed. Vibrating sample magnetometer was used to determine the hysteresis loops of barium ferrite and BaFe9Mn1.5Ti1.5O19 at room temperature. The vector network analyzers in the frequency range of 12 to 20 GHz have measured the reflection loss properties of rubber-ferrite. It was concluded that BaFe9Mn1.5Ti1.5O19 with thickness of 2 mm could be designed as a wide-band microwave absorber. By SEM, the size and morphology of grains in BaFe9Mn1.5Ti1.5O19 ferrite were examined. The results showed that ferrite with grain size of 5 μm do not have any impurities.

  12. Microwave properties of ferromagnetic nanowire arrays patterned with periodic and quasi-periodic structures

    NASA Astrophysics Data System (ADS)

    Lei, Yuxiong; Chen, Zheng; Li, Liangliang

    2015-05-01

    Microwave properties of ferromagnetic nanowire arrays patterned with periodic and quasi-periodic structures were investigated in this study. The periodic and quasi-periodic structures were designed based on Fibonacci sequence and golden ratio. Ni nanowires arrays were electrodeposited in anodic aluminum oxide (AAO) templates with patterned Cu electrodes, and then the AAO templates were attached to the coplanar waveguide lines fabricated on quartz substrate for measurement. The S21 of both periodic and quasi-periodic structure-patterned Ni nanowire arrays showed an extra absorption peak besides the absorption peak due to the ferromagnetic resonance of Ni nanowires. The frequency of the absorption peak caused by the patterned structure could be higher than 40 GHz when the length and arrangement of the structural units were modified. In addition, the frequency of the absorption peak due to the quasi-periodic structure was calculated based on a simple analytical model, and the calculated value was consistent with the measured one. The experimental data showed that it could be a feasible approach to tune the performance of microwave devices by patterning ferromagnetic nanowires.

  13. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1989-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. Work performed has shown that laboratory measurements of the millimeter-wave opacity of ammonia between 7.5 mm and 9.3 mm and also at the 3.2 mm wavelength require a different lineshape to be used in the theoretical prediction for millimeter-wave ammonia opacity than was previously used. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.

  14. Effect of Neodymium on Optical Bandgap and Microwave Dielectric Properties of Barium Zirconate Ceramic

    NASA Astrophysics Data System (ADS)

    Parida, Sabyasachi; Satapathy, A.; Sinha, E.; Bisen, Anurag; Rout, S. K.

    2015-03-01

    The ceramics with general formula Ba(1- x) Nd(2 x/3)ZrO3 ( x = 0.0,0.02, 0.04, 0.06, 0.08, and 0.1) were prepared by solid-state reaction. The phase formation of the powders was analyzed by means of X-ray diffraction (XRD), Fourier transform-Raman (FT-Raman), and Fourier transform infrared (FTIR) spectroscopy. XRD patterns revealed that all powders show a perovskite-type cubic structure with space group Pm-3 m. FT-Raman and FTIR spectra suggested the formation of higher degree of symmetry in the crystal. The optical bandgap was found to be decreasing while Urbach energy was found to be increasing with an increase of Nd3+ content. The surface morphology of sintered pellets was studied by scanning electron microscope. Microwave dielectric constant and quality factor were investigated by the TE01 δ mode dielectric resonator method. The microwave dielectric constant and temperature coefficient of resonant frequency decreases with increase in of Nd3+ content. The irregular nature of quality factor ( Q × f) was observed due to the extrinsic losses in materials. The dielectric resonator antenna (DRA) characteristics were investigated experimentally and numerically using a monopole antenna through an infinite ground plane and Ansoft's high-frequency structure simulator software, respectively. The resonant frequency and bandwidth of DRAs were also investigated for the ceramics.

  15. Quality assessment of microwave-vacuum dried material with the use of computer image analysis and neural model

    NASA Astrophysics Data System (ADS)

    Koszela, K.; OtrzÄ sek, J.; Zaborowicz, M.; Boniecki, P.; Mueller, W.; Raba, B.; Lewicki, A.; Przybył, K.

    2014-04-01

    The farming area for vegetables in Poland is constantly changed and modified. Each year the cultivation structure of particular vegetables is different. However, it is the cultivation of carrots that plays a significant role among vegetables. According to the Main Statistical Office (GUS), in 2012 carrot held second position among the cultivated root vegetables, and it was estimated at 835 thousand tons. In the world we are perceived as the leading producer of carrot, due to the fourth place in the ranking of global producers. Poland is the largest producer of this vegetable in the EU [1]. It is also noteworthy, that the demand for dried vegetables is still increasing. This tendency affects the development of drying industry in our country, contributing to utilization of the product surplus. Dried vegetables are used increasingly often in various sectors of food products industry, due to high nutrition value, as well as to changing alimentary preferences of consumers [2-3]. Dried carrot plays a crucial role among dried vegetables, because of its wide scope of use and high nutrition value. It contains a lot of carotene and sugar present in the form of crystals. Carrot also undergoes many different drying processes, which makes it difficult to perform a reliable quality assessment and classification of this dried material. One of many qualitative properties of dried carrot, having important influence on a positive or negative result of the quality assessment, is color and shape. The aim of the research project was to develop a method for the analysis of microwave-vacuum dried carrot images, and its application for the classification of individual fractions in the sample studied for quality assessment. During the research digital photographs of dried carrot were taken, which constituted the basis for assessment performed by a dedicated computer programme developed as a part of the research. Consequently, using a neural model, the dried material was classified [4-6].

  16. Ultrafast Microwave Welding/Reinforcing Approach at the Interface of Thermoplastic Materials.

    PubMed

    Poyraz, Selcuk; Zhang, Lin; Schroder, Albrecht; Zhang, Xinyu

    2015-10-14

    As an attempt to address the needs and tackle the challenges in welding of thermoplastic materials (TPMs), a novel process was performed via short-term microwave (MW) heating of a specific composite, made up of conducting polypyrrole nanogranule (PPy NG) coated carbon and catalyst source precursor (ferrocene) fine particles, at substrate polypropylene (PP) dog bone pieces' interface. Upon vigorous interactions between MWs and electromagnetic absorbent PPy NG coating, the energy was transformed into a large amount of heat leading to a drastic temperature increase that was simultaneously used for the instant carbonization of PPy and the decomposition of fine ferrocene particles, which resulted in multiwalled carbon nanotubes (CNTs) growth at the interface. Meanwhile, the as-grown CNTs on the surface conveyed the heat into the adjacent bulk PP and caused locally molten surface layers' formation. Eventually, the light pressure applied at the interface during the heating process squeezed the molten layers together and a new weld was generated. The method is considerably advantageous compared to other alternatives due to (i) its fast, straightforward, and affordable nature, (ii) its applicability at ambient conditions without the need of any extra equipment or chemicals, and also (iii) its ability to provide clean, durable, and functional welds, via precisely controlling process parameters, without causing any thermal distortion or physical alterations in the bulk TPM. Thus, it is believed that this novel welding process will become much preferable for the manufacturing of next-generation TPM composites in large scale, through short-term MW heating.

  17. Analysis of the temperature and stress distributions in ceramic window materials subjected to microwave heating

    SciTech Connect

    Ferber, M.K.; Kimrey, H.D.; Becher, P.F.

    1983-07-01

    The temperature and stress and distributions generated in ceramic materials currently employed in microwave gyrotron tube windows were determined for a variety of operating conditions. Both edge- and face-cooled windows of either polycrystalline BeO or polycrystalline Al/sub 2/O/sub 3/ were considered. The actual analysis involved three steps. First, a computer program was used to determine the electric field distribution within the window at a given power level and frequency (TE/sub 02/ wave propagation assumed). This program was capable of describing both the radial and axial dependence of the electric field. The effects of multiple internal reflections at the various dielectric interfaces were also accounted for. Secondly, the field distribution was used to derive an expression for the heat generated per unit volume per unit time within the window due to dieletric losses. A generalized heat conduction computer code was then used to compute the temperature distribution based on the heat generation function. Third, the stresses were determined from the temperature profiles using analytical expression or a finite-element computer program. Steady-state temperature and stress profiles were computed for the face-cooled and edge-cooled windows.

  18. Wax: A benign hydrogen-storage material that rapidly releases H2-rich gases through microwave-assisted catalytic decomposition.

    PubMed

    Gonzalez-Cortes, S; Slocombe, D R; Xiao, T; Aldawsari, A; Yao, B; Kuznetsov, V L; Liberti, E; Kirkland, A I; Alkinani, M S; Al-Megren, H A; Thomas, J M; Edwards, P P

    2016-10-19

    Hydrogen is often described as the fuel of the future, especially for application in hydrogen powered fuel-cell vehicles (HFCV's). However, its widespread implementation in this role has been thwarted by the lack of a lightweight, safe, on-board hydrogen storage material. Here we show that benign, readily-available hydrocarbon wax is capable of rapidly releasing large amounts of hydrogen through microwave-assisted catalytic decomposition. This discovery offers a new material and system for safe and efficient hydrogen storage and could facilitate its application in a HFCV. Importantly, hydrogen storage materials made of wax can be manufactured through completely sustainable processes utilizing biomass or other renewable feedstocks.

  19. Wax: A benign hydrogen-storage material that rapidly releases H2-rich gases through microwave-assisted catalytic decomposition

    NASA Astrophysics Data System (ADS)

    Gonzalez-Cortes, S.; Slocombe, D. R.; Xiao, T.; Aldawsari, A.; Yao, B.; Kuznetsov, V. L.; Liberti, E.; Kirkland, A. I.; Alkinani, M. S.; Al-Megren, H. A.; Thomas, J. M.; Edwards, P. P.

    2016-10-01

    Hydrogen is often described as the fuel of the future, especially for application in hydrogen powered fuel-cell vehicles (HFCV’s). However, its widespread implementation in this role has been thwarted by the lack of a lightweight, safe, on-board hydrogen storage material. Here we show that benign, readily-available hydrocarbon wax is capable of rapidly releasing large amounts of hydrogen through microwave-assisted catalytic decomposition. This discovery offers a new material and system for safe and efficient hydrogen storage and could facilitate its application in a HFCV. Importantly, hydrogen storage materials made of wax can be manufactured through completely sustainable processes utilizing biomass or other renewable feedstocks.

  20. Interdisciplinary research on the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Several investigations concerning the properties and processing of brittle ceramic materials as related to design considerations are briefly described. Surface characterization techniques, fractography, high purity materials, creep properties, impact and thermal shock resistance, and reaction bonding are discussed.

  1. Comparative Evaluation of Dimensional Accuracy of Elastomeric Impression Materials when Treated with Autoclave, Microwave, and Chemical Disinfection

    PubMed Central

    Kamble, Suresh S; Khandeparker, Rakshit Vijay; Somasundaram, P; Raghav, Shweta; Babaji, Rashmi P; Varghese, T Joju

    2015-01-01

    Background: Impression materials during impression procedure often get infected with various infectious diseases. Hence, disinfection of impression materials with various disinfectants is advised to protect the dental team. Disinfection can alter the dimensional accuracy of impression materials. The present study was aimed to evaluate the dimensional accuracy of elastomeric impression materials when treated with different disinfectants; autoclave, chemical, and microwave method. Materials and Methods: The impression materials used for the study were, dentsply aquasil (addition silicone polyvinylsiloxane syringe and putty), zetaplus (condensation silicone putty and light body), and impregum penta soft (polyether). All impressions were made according to manufacturer’s instructions. Dimensional changes were measured before and after different disinfection procedures. Result: Dentsply aquasil showed smallest dimensional change (−0.0046%) and impregum penta soft highest linear dimensional changes (−0.026%). All the tested elastomeric impression materials showed some degree of dimensional changes. Conclusion: The present study showed that all the disinfection procedures produce minor dimensional changes of impression material. However, it was within American Dental Association specification. Hence, steam autoclaving and microwave method can be used as an alternative method to chemical sterilization as an effective method. PMID:26435611

  2. Material Properties of the Posterior Human Sclera☆

    PubMed Central

    Grytz, Rafael; Fazio, Massimo A.; Girard, Michael J.A.; Libertiaux, Vincent; Bruno, Luigi; Gardiner, Stuart; Girkin, Christopher A.; Downs, J. Crawford

    2013-01-01

    To characterize the material properties of posterior and peripapillary sclera from human donors, and to investigate the macro- and micro-scale strains as potential control mechanisms governing mechanical homeostasis. Posterior scleral shells from 9 human donors aged 57–90 years were subjected to IOP elevations from 5 to 45 mmHg and the resulting full-field displacements were recorded using laser speckle interferometry. Eye-specific finite element models were generated based on experimentally measured scleral shell surface geometry and thickness. Inverse numerical analyses were performed to identify material parameters for each eye by matching experimental deformation measurements to model predictions using a microstructure-based constitutive formulation that incorporates the crimp response and anisotropic architecture of scleral collagen fibrils. The material property fitting produced models that fit both the overall and local deformation responses of posterior scleral shells very well. The nonlinear stiffening of the sclera with increasing IOP was well reproduced by the uncrimping of scleral collagen fibrils, and a circumferentially-aligned ring of collagen fibrils around the scleral canal was predicted in all eyes. Macroscopic in-plane strains were significantly higher in peripapillary region then in the mid-periphery. In contrast, the meso- and micro-scale strains at the collagen network and collagen fibril level were not significantly different between regions. The elastic response of the posterior human sclera can be characterized by the anisotropic architecture and crimp response of scleral collagen fibrils. The similar collagen fibril strains in the peripapillary and mid-peripheral regions support the notion that the scleral collagen architecture including the circumpapillary ring of collagen fibrils evolved to establish optimal load bearing conditions at the collagen fibril level. PMID:23684352

  3. Closed vessel microwave assisted extraction - An innovative method for determination of trace metals in plant materials

    NASA Astrophysics Data System (ADS)

    Oeztan, S.; Duering, R.-A.

    2012-04-01

    Determination of metal concentrations in plant samples is important for better understanding of effects of toxic metals that are biologically magnified through the food chain and compose a great danger to all living beings. In recent years the use of microwave assisted extraction for plant samples has shown tremendous research interest which will probably substitute conventional procedures in the future. Generally conventional procedures have disadvantages including consuming of time and solvents. The objective of this study is to investigate and compare a new closed vessel microwave extraction (MAE) method with the combination of EDTA (MAE-EDTA) for the determination of metal contents (Cd, Mn, Pb, Zn) in plant samples (Lolio-Cynosuretum) by ICP-OES. Validation of the method was done by comparison of the results with another MAE procedure (MAE-H) which is applied with the mixture of 69% nitric acid (HNO3) and 30% hydrogen peroxide (H2O2). Moreover, conventional plant extraction (CE) method, for which the dissolution of plant samples were handled in HNO3 after dry ashing at 420° C, was used as a reference method. Approximately 0.5 g of sample was digested in 5 ml HNO3, 3 ml H2O2, and 5 ml deionized H2O for MAE-H and in 8 ml EDTA solution for MAE-EDTA. Certified plant reference materials (CRMs) were used for comparison of recovery rates from different extraction protocols. Thereby, the applicability of both MAE-H and MAE-EDTA procedures could be demonstrated. For 58 plant samples MAE-H showed the same extraction yields as CE in the determination of trace metal contents of the investigated elements in plant samples. MAE-EDTA gave similar values when compared to MAE-H and highly linear relationships were found for determination of Cd, Mn, Pb and Zn amounts. The recoveries for the CRMs were within the range 89.6-115%. Finally, strategic characteristics of MAE-EDTA for determination metal contents (Cd, Mn, Pb, Zn) in plant samples are: (i) applicability to a large set

  4. Hyperuniform disordered photonic bandgap materials, from microwave to infrared wavelength regime

    NASA Astrophysics Data System (ADS)

    Man, Weining

    Recently, we have introduced a new class of hyperuniform disordered (HUD) photonic bandgap (PBG) materials enabled by a novel constrained optimization method for engineering the material's Fourier transform to be continuous, isotropic and stealthy. Their structure factor S (k) is equal to zero for small kand exhibits a broad ring of maximum values around a characteristic wave-length range. Experimentally, an isotropic complete PBG (at all angles and for all polarizations) in an alumina-based HUD structure and single-polarized PBGs for plastic-based HUD structure have been demonstrated. Using measured and simulated transmission and phase delay information through these HUD structures, we also unfolded their band structures and reconstructed the effective dispersion relations of propagating electromagnetic modes in them. The intrinsic isotropy in these disordered structures is an inherent advantage associated with the lack of crystalline order, offering unprecedented freedom for functional defect design impossible to achieve in photonic crystals. In the microwave regime, we have shown the creation of freeform waveguides, which can channel photons robustly along arbitrarily curved paths and around sharp bends, and be decorated with defects to produce sharply resonant structures useful for filtering and frequency splitting. Recent simulation and experimental results for waveguides and modulators based on submicron-scale planar hyperuniform disordered PBG structures further highlight their ability to serve as highly compact, flexible and energy-efficient platforms for photonic integrated circuits. NSF DMR-1308084, EPSRC (UK) DTG Grant KD5050, EPSRC (UK) Strategic Equipment Grant EP/M008576/1, NSF SBIR-1345168, NSF MRI-1040444.

  5. Topography preserved microwave plasma etching for top-down layer engineering in MoS2 and other van der Waals materials.

    PubMed

    Varghese, Abin; Sharma, Chithra H; Thalakulam, Madhu

    2017-03-17

    A generic and universal layer engineering strategy for van der Waals (vW) materials, scalable and compatible with the current semiconductor technology, is of paramount importance in realizing all-two-dimensional logic circuits and to move beyond the silicon scaling limit. In this letter, we demonstrate a scalable and highly controllable microwave plasma based layer engineering strategy for MoS2 and other vW materials. Using this technique we etch MoS2 flakes layer-by-layer starting from an arbitrary thickness and area down to the mono- or the few-layer limit. From Raman spectroscopy, atomic force microscopy, photoluminescence spectroscopy, scanning electron microscopy and transmission electron microscopy, we confirm that the structural and morphological properties of the material have not been compromised. The process preserves the pre-etch layer topography and yields a smooth and pristine-like surface. We explore the electrical properties utilising a field effect transistor geometry and find that the mobility values of our samples are comparable to those of the pristine ones. The layer removal does not involve any reactive gasses or chemical reactions and relies on breaking the weak inter-layer vW interaction making it a generic technique for a wide spectrum of layered materials and heterostructures. We demonstrate the wide applicability of the technique by extending it to other systems such as graphene, h-BN and WSe2. In addition, using microwave plasma in combination with standard lithography, we illustrate a lateral patterning scheme making this process a potential candidate for large scale device fabrication in addition to layer engineering.

  6. The microwave properties of composites including lightweight core-shell ellipsoids

    NASA Astrophysics Data System (ADS)

    Yuan, Liming; Xu, Yonggang; Dai, Fei; Liao, Yi; Zhang, Deyuan

    2016-12-01

    In order to study the microwave properties of suspensions including lightweight core-shell ellipsoids, the calculation formula was obtained by substituting an equivalent ellipsoid for the original core-shell ellipsoid. Simulations for Fe-coated diatomite/paraffin suspensions were performed. Results reveal that the calculated results fitted the measured results very well when the inclusion concentration was no more than 15 vol%, but there was an obvious deviation when the inclusion concentration reached 24 vol%. By comparisons, the formula for less diluted suspensions was more suitable for calculating the electromagnetic parameter of suspensions especially when the ratio was smaller between the electromagnetic parameter of the inclusion and that of the host medium.

  7. Discrimination of soil hydraulic properties by combined thermal infrared and microwave remote sensing

    NASA Technical Reports Server (NTRS)

    Vandegriend, A. A.; Oneill, P. E.

    1986-01-01

    Using the De Vries models for thermal conductivity and heat capacity, thermal inertia was determined as a function of soil moisture for 12 classes of soil types ranging from sand to clay. A coupled heat and moisture balance model was used to describe the thermal behavior of the top soil, while microwave remote sensing was used to estimate the soil moisture content of the same top soil. Soil hydraulic parameters are found to be very highly correlated with the combination of soil moisture content and thermal inertia at the same moisture content. Therefore, a remotely sensed estimate of the thermal behavior of the soil from diurnal soil temperature observations and an independent remotely sensed estimate of soil moisture content gives the possibility of estimating soil hydraulic properties by remote sensing.

  8. Zero-bias-field microwave dynamic magnetic properties in trapezoidal ferromagnetic stripe

    NASA Astrophysics Data System (ADS)

    Bi, Mei; Wang, Xin; Lu, Haipeng; Zhang, Li; Deng, Longjiang; Xie, Jianliang

    2016-06-01

    Dynamic magnetization response of the axially magnetized ferromagnetic stripe with trapezoidal cross section has been studied. The stripe with beveled edges exhibits multiple resonant peaks modes under an in-plane microwave excitation compared with the single resonant of vertical edge surfaces. The complexity of the observed response is attributed to the spatially nonuniform equilibrium spin distribution at the stripe edges. Micromagnetic simulations identify spin waves as spatially localized mode at the modified edges. This one is also described by effective pinning boundary conditions taking into account finite-size effects, which is related to the exchange interaction, surface anisotropy and dipole-dipole interaction. These results provide detailed insights into the nonlinear spin dynamics of microstructures influenced by the edge properties.

  9. Electrical properties of CZTS pellets made from microwave-processed powder

    SciTech Connect

    Ghediya, Prashant R. Chaudhuri, Tapas K.

    2015-06-24

    Electrical properties of the kesterite copper zinc tin sulphide (CZTS) pellets in the temperature range from 300 K to 500 K are reported. The pellets are p-type with thermoelectric power (TEP) of + 175 µV/K. Electrical conductivity (σ) increases with the temperatures and is found to be due to thermionic emission (TE) over grain boundary (GB) barriers with activation energy of 170 meV. CZTS pellets are made from micropowders synthesized by microwave irradiation of precursor solution. Formation of kesterite CZTS is confirmed by X-ray diffraction (XRD) and Raman spectroscopy. Scanning Electron Microscope (SEM) shows that powder is micron sized spherical particles.

  10. Modeling of the dielectric properties of trabecular bone samples at microwave frequency.

    PubMed

    Irastorza, Ramiro M; Blangino, Eugenia; Carlevaro, Carlos M; Vericat, Fernando

    2014-05-01

    In this paper, the dielectric properties of human trabecular bone are evaluated under physiological condition in the microwave range. Assuming a two components medium, simulation and experimental data are presented and discussed. A special experimental setup is developed in order to deal with inhomogeneous samples. Simulation data are obtained using finite difference time domain from a realistic sample. The bone mineral density of the samples are also measured. The simulation and experimental results of the present study suggest that there is a negative relation between bone volume fraction (BV/TV) and permittivity/conductivity: the higher the BV/TV, the lower the permittivity/conductivity. This is in agreement with the recently published in vivo data.

  11. High temperature electromagnetic and microwave absorbing properties of polyimide/multi-walled carbon nanotubes nancomposites

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu; Zhu, Dongmei; Zhou, Wancheng; Luo, Fa

    2015-07-01

    Multi-walled carbon nanotubes (MWCNTs) were introduced into polyimide matrix to fabricate high temperature microwave absorbing materials. The flexural strength can reach 125 MPa with 2 wt% MWCNTs, and the flexural strength decreases with increasing the filler content due to the filler reinforcement. The complex permittivity of the nanocomposite increases with increasing the temperature owing to shorten the relaxation time and enhance the electrical conductivity at elevated temperature. When the content of absorbent is 5%, the -10 dB absorption bandwidth could reach 1.3 GHz, with the thickness of 2.1 mm, while the bandwidth below -10 dB is 2.04 GHz with the thickness of 1.7 mm at 373 K.

  12. Electromagnetic and microwave absorbing properties of SmCo coated single-wall carbon nanotubes/NiZn-ferrite nanocrystalline composite

    NASA Astrophysics Data System (ADS)

    Duan, M. C.; Yu, L. M.; Sheng, L. M.; An, K.; Ren, W.; Zhao, X. L.

    2014-05-01

    The electromagnetism and microwave absorption properties of SmCo coated single-wall carbon nanotubes (SmCo@SWCNTs) and Ni0.5Zn0.5Fe2O4 ferrite (NiZn-ferrite) nanocrystalline composites with different ingredient weight ratios were investigated in the frequency range of 2-18 GHz. SmCo@SWCNTs were prepared by a direct current arc discharge method. NiZn-ferrite nanocrystalline was synthesized by a sol-gel method. The electromagnetic properties of the nanocomposites in the paraffin matrix were measured by a vector network analyzer. The Debye equation and Bruggeman symmetric medium equation were introduced to explain the dielectric properties of the nanocomposites, and the mechanisms for the dielectric and magnetic losses were discussed. The experiment results reveal that the absorbing properties of the nanocomposites could be improved by tuning for a suitable weight ratio between SmCo@SWCNTs and NiZn-ferrite nanocrystallines. The reflection loss simulation calculations demonstrated that the nanocomposite could be excellent materials for microwave absorption.

  13. Characterization and antibacterial properties of stable silver substituted hydroxyapatite nanoparticles synthesized through surfactant assisted microwave process

    SciTech Connect

    Iqbal, Nida; Abdul Kadir, Mohammed Rafiq; Nik Malek, Nik Ahmad Nazim; Mahmood, Nasrul Humaimi Bin; Murali, Malliga Raman; Kamarul, T.

    2013-09-01

    Highlights: • Stable nano sized silver substitute hydroxyapatite is prepared under surfactant assisted microwave process at 600 W power for 7 min. • The nanoparticles are in the size range of 58–72 nm and exert uniform elongated spheroid morphology. • Increase in silver concentration resulted in better dielectric properties. • Good antibacterial activity and silver release. - Abstract: The present study reports a relatively simple method for the synthesis of stable silver substituted hydroxyapatite nanoparticles with controlled morphology and particle size. In order to achieve this, CTAB is included as a surfactant in the microwave refluxing process (600 W for 7 min). The nanoparticles produced with different silver ion concentrations (0.05, 0.1 and 0.2 wt%) were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX) and Brunauer–Emmett–Teller (BET) analysis. XRD and FTIR analyses reveal that the Ag-HA nanoparticles were phase pure at 1000 °C. FESEM images showed that the produced nanoparticles are in the size range of 58–72 nm and exert uniform elongated spheroid morphology. The dielectric properties suggest that the increase in dielectric constant (ε′) and dissipation factor (D) values with increasing Ag concentrations. Antibacterial performance of the Ag-HA samples elucidated using disk diffusion technique (DDT) and minimum inhibitory concentration (MIC) demonstrates anti-bacterial activity against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli. This effect was dose dependent and was more pronounced against Gram-negative bacteria than Gram-positive organisms.

  14. BaM/YIG nano-composites: A microwave material for C to U band application

    NASA Astrophysics Data System (ADS)

    Sharma, Vipul; Kumari, Sweta; Kuanr, Bijoy Kumar

    2017-05-01

    Hexaferrites have become important candidates for a variety of microwave and millimeter wave devices due to their large uniaxial magneto-crystalline anisotropy and high saturation magnetization. The goal of the present investigation is to synthesize Barium hexaferrite/Yttrium Iron Garnet (BaFe12O19/Y3Fe5O12): (BaM/YIG) Nano-Composites (NCs) to be used in broad band microwave frequency range applications, especially as microwave absorber. X-ray diffractometry, Vibrating Sample Magnetometer (VSM), and ferromagnetic resonance (FMR) techniques were used to characterize these NCs. Using a Cu coplanar wave guide and a Vector Network Analyzer, broadband (C to U) microwave absorption were investigated by placing the bulk sample in flip chip mode. Various mathematical models were employed to fit the experimental data to yield intrinsic and extrinsic damping parameters.

  15. Rapid syntheses of a metal-organic framework material Cu3(BTC)2(H2O)3 under microwave: a quantitative analysis of accelerated syntheses.

    PubMed

    Khan, Nazmul Abedin; Haque, Enamul; Jhung, Sung Hwa

    2010-03-20

    A typical MOF material, Cu-BTC has been synthesized with microwave and conventional electric heating in various conditions to elucidate, for the first time, the quantitative acceleration in the synthesis of a MOF by microwaves. The acceleration by microwaves is mainly due to rapid nucleation rather than rapid crystal growth, even though both stages are accelerated. The acceleration in the nucleation stage by microwaves is due to the very large pre-exponential factor (about 1.4 x 10(10) times that of conventional synthesis) in the Arrhenius plot. However, the activation energy for the nucleation in the case of microwave synthesis is higher than the activation energy of conventional synthesis. The large acceleration in the nucleation, compared with that in the crystal growth, is observed once again by the syntheses in two-steps (changing heating methods from microwave into conventional heating or from conventional heating into microwave heating just after the nucleation is completed). The crystal size of Cu-BTC obtained by microwave-nucleation is generally smaller than the Cu-BTC made by conventional-nucleation, probably due to rapid nucleation and the small size of nuclei with microwave-nucleation.

  16. Interdisciplinary research on the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The advancement of material performance and design methodology as related to brittle materials was investigated. The processing and properties of ceramic materials as related to design requirements was also studied.

  17. Spacecraft dielectric material properties and spacecraft charging

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Wall, J. A.; Cotts, D. B.; Bouquet, F. L.

    1986-01-01

    The physics of spacecraft charging is reviewed, and criteria for selecting and testing semiinsulating polymers (SIPs) to avoid charging are discussed and illustrated. Chapters are devoted to the required properties of dielectric materials, the charging process, discharge-pulse phenomena, design for minimum pulse size, design to prevent pulses, conduction in polymers, evaluation of SIPs that might prevent spacecraft charging, and the general response of dielectrics to space radiation. SIPs characterized include polyimides, fluorocarbons, thermoplastic polyesters, poly(alkanes), vinyl polymers and acrylates, polymers containing phthalocyanine, polyacene quinones, coordination polymers containing metal ions, conjugated-backbone polymers, and 'metallic' conducting polymers. Tables summarizing the results of SIP radiation tests (such as those performed for the NASA Galileo Project) are included.

  18. Bone Material Properties in Osteogenesis Imperfecta.

    PubMed

    Bishop, Nick

    2016-04-01

    Osteogenesis imperfecta entrains changes at every level in bone tissue, from the disorganization of the collagen molecules and mineral platelets within and between collagen fibrils to the macroarchitecture of the whole skeleton. Investigations using an array of sophisticated instruments at multiple scale levels have now determined many aspects of the effect of the disease on the material properties of bone tissue. The brittle nature of bone in osteogenesis imperfecta reflects both increased bone mineralization density-the quantity of mineral in relation to the quantity of matrix within a specific bone volume-and altered matrix-matrix and matrix mineral interactions. Contributions to fracture resistance at multiple scale lengths are discussed, comparing normal and brittle bone. Integrating the available information provides both a better understanding of the effect of current approaches to treatment-largely improved architecture and possibly some macroscale toughening-and indicates potential opportunities for alternative strategies that can influence fracture resistance at longer-length scales.

  19. Reduced Graphene Oxide-Cu0.5Ni0.5Fe2O4-Polyaniline Nanocomposite: Preparation, Characterization and Microwave Absorption Properties

    NASA Astrophysics Data System (ADS)

    Dat, Tran Quang; Ha, Nguyen Tran; Hung, Do Quoc

    2017-02-01

    Reduced graphene oxide-Cu0.5Ni0.5Fe2O4-polyaniline nanocomposite (RGO-CNF-PANI) was synthesized by a three-step method. The morphology, structure and magnetic properties of composite samples were characterized by scanning electron microscopy, x-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy (RAMAN) and vibrating sample magnetometer. It was found that reduced graphene oxide was exfoliated and decorated homogeneously with ferrite nanoparticles having diameters between 11 nm and 21 nm. The polyaniline was coated by an in situ chemical oxidation polymerization. The measurement of magnetic properties found the remanence (Mr) and coercive field (Hc) were near zero, indicating that the obtained material was superparamagnetic. The microwave measurements found that the nanocomposite exhibited a good absorption property with the optimum matching thickness of 3 mm in the frequency of 8-12 GHz. The value of the maximum RL was -40.7 dB at 9.8 GHz.

  20. The investigation of the process of microwave bubble generation in bubble material

    NASA Astrophysics Data System (ADS)

    Dong, J. L.; Artman, J. O.; Charap, S. H.

    1988-05-01

    The first observation of the process of magnetic bubble generation by microwave excitation has been made. A high-speed optical sampling microscope system was employed to sense the evolution of the bubble with time. The dependence of the microwave power threshold for bubble generation on experimental conditions, such as microwave frequency, microwave pulse width, and dc bias field, is reported. Magnetic garnet films with the composition Y(1.92)Sm(0.1)Ca(0.98)Fe(4.02)Ge(0.98)O(12) were used as experimental samples. The experimental results are not consistent with the theoretical predictions of the Seagle (1985) coherent rotation model for bubble generation. It is found that the magnetization in the area driven by the strong microwave field responds rather noncoherently. Nucleation centers, which may be too small to be seen optically, are formed first. Under appropriate conditions, these centers may enlarge to a full size bubble. As examples, with a bias field setting of 65 Oe and the microwave frequency set at 550 MHz, about 25.5 dBm of power are required to generate a bubble from a 60-ns-long pulse; only 20.5 dBm are required if a 12-microsec pulse is applied.

  1. Soft magnetic property and enhanced microwave absorption of nanoparticles of Co0.5Zn0.5Fe2O4 incorporated in MWCNT

    NASA Astrophysics Data System (ADS)

    Mallick, A.; Mahapatra, A. S.; Mitra, A.; Chakrabarti, P. K.

    2016-10-01

    Nanoparticles of Co0.5Zn0.5Fe2O4 (CZFO) are prepared by coprecipitation method where CoCl2·H2O, ZnCl2·6H2O and FeCl3 are used as precursor materials. To enhance the microwave absorption, nanoparticles of CZFO are incorporated in the matrix of multiwall carbon nanotubes (MWCNT). X-ray diffractogram (XRD) and its analysis confirmed the formation of the desired crystallographic phase of the sample. The average crystallite size is evaluated by using the Debye-Scherrer formula. Micrographs observed in high resolution transmission electron microscope confirm the successful incorporation of CZFO in the matrix of MWCNT. Results obtained from the high resolution lattice fringe and selected area electron diffraction patterns are in good agreement with the findings extracted from the XRD analysis. Analysis of Raman spectra confirms the presence of CZFO and MWCNT in the nanocomposite sample. Magnetic properties recorded in SQUID magnetometer confirm the presence of mixed state of superparamagnetic and ferrimagnetic nanoparticles. Reflection losses in X (8-12 GHz) and Ku (12-18 GHz) bands of microwave region are significantly high (~-38.2 dB at 16.9 GHz). High magnetization (~36.5 emu/g at 300 K), low coercive field (~30.1 Oe at 300 K) and high reflection loss of CZFO-MWCNT would be suitable for application in microwave devices.

  2. Synthesis, characterization and microwave absorption properties of polyaniline/Sm-doped strontium ferrite nanocomposite

    NASA Astrophysics Data System (ADS)

    Luo, Juhua; Xu, Yang; Gao, Duoduo

    2014-11-01

    Sm-doped strontium ferrite nanopowders (SrSm0.3Fe11.7O19) and their composites of polyaniline (PANI)/SrSm0.3Fe11.7O19 with 10 wt% and 20 wt% ferrite were prepared by a sol-gel method and an in-situ polymerization process, respectively. The structure, magnetic properties and microwave absorption properties of the samples were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and vector network analyzer, respectively. The particle size of SrSm0.3Fe11.7O19 was about 35 nm by using XRD. The ferrite successfully packed by PANI. PANI/SrSm0.3Fe11.7O19 possessed the best absorption property with the optimum matching thickness of 3 mm in the frequency of 2-18 GHz. The value of the maximum reflection loss (RL) were -26.0 dB at 14.2 GHz with the 6.5 GHz bandwidth and -24.0 dB at 13.8 GHz with the 7.9 GHz bandwidth for the samples with 10 wt% and 20 wt% ferrite, respectively.

  3. Mechanical properties of low dimensional materials

    NASA Astrophysics Data System (ADS)

    Saini, Deepika

    Recent advances in low dimensional materials (LDMs) have paved the way for unprecedented technological advancements. The drive to reduce the dimensions of electronics has compelled researchers to devise newer techniques to not only synthesize novel materials, but also tailor their properties. Although micro and nanomaterials have shown phenomenal electronic properties, their mechanical robustness and a thorough understanding of their structure-property relationship are critical for their use in practical applications. However, the challenges in probing these mechanical properties dramatically increase as their dimensions shrink, rendering the commonly used techniques inadequate. This dissertation focuses on developing techniques for accurate determination of elastic modulus of LDMs and their mechanical responses under tensile and shear stresses. Fibers with micron-sized diameters continuously undergo tensile and shear deformations through many phases of their processing and applications. Significant attention has been given to their tensile response and their structure-tensile properties relations are well understood, but the same cannot be said about their shear responses or the structure-shear properties. This is partly due to the lack of appropriate instruments that are capable of performing direct shear measurements. In an attempt to fill this void, this dissertation describes the design of an inexpensive tabletop instrument, referred to as the twister, which can measure the shear modulus (G) and other longitudinal shear properties of micron-sized individual fibers. An automated system applies a pre-determined twist to the fiber sample and measures the resulting torque using a sensitive optical detector. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers. Two industrially important fibers, IM7 carbon fiber and KevlarRTM 119, were found to have G = 17 and 2.4 GPa, respectively. In addition to measuring the shear

  4. Materials research at Stanford University

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Information briefly describing the total research activity related to the science of materials is reported. Emphasis is placed on physical and mechanical properties of composite materials, energy transportation, superconductors, microwave electronics, and solid state electrochemistry.

  5. Effect of plant extracts on physicochemical properties of chicken breast meat cooked using conventional electric oven or microwave.

    PubMed

    Rababah, T M; Ereifej, K I; Al-Mahasneh, M A; Al-Rababah, M A

    2006-01-01

    This study evaluated effects of vacuum-infused fresh chicken breast meats with grape seed extracts, green tea extracts, or tertiary butyl hydroquinone on pH, texture, color, and thiobarbituric reactive substances after cooking using a microwave or conventional electric oven for 12 d storage at 5 degrees C. Thiobarbituric reactive substances values of uncooked (raw) chicken breast meats for 0 to 12 d of storage ranged from 1.12 to 3.5 mg of malonaldehyde/100 g of chicken. During 0 to 12 d of storage, thiobarbituric reactive substances values ranged from 2.50 to 7.80 and from 2.4 to 7.35 mg of malonaldehyde/100 g of chicken breast meat cooked by microwave and conventional electric oven, respectively. Meats cooked by microwave had higher redness and lower lightness values than those cooked by conventional electric oven. Also, meats cooked by microwave had higher maximum shear force, working of shear, hardness, springiness, cohesiveness, and chewiness values than meats cooked by conventional electric oven. Tertiary butyl hydroquinone was the most effective in raw and cooked meats in reducing lipid oxidation, followed by grape seed and green tea extracts. Plant extracts are effective in preventing undesirable changes in chemical properties in chicken breast meat caused by microwave and conventional electric oven cooking.

  6. Microwave bonding of MEMS component

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Mai, John D. (Inventor); Jackson, Henry W. (Inventor); Budraa, Nasser K. (Inventor); Pike, William T. (Inventor)

    2005-01-01

    Bonding of MEMs materials is carried out using microwave. High microwave absorbing films are placed within a microwave cavity, and excited to cause selective heating in the skin of the material. This causes heating in one place more than another. Thereby minimizing the effects of the bonding microwave energy.

  7. Microphysical properties of frozen particles inferred from Global Precipitation Measurement (GPM) Microwave Imager (GMI) polarimetric measurements

    NASA Astrophysics Data System (ADS)

    Gong, Jie; Wu, Dong L.

    2017-02-01

    Scattering differences induced by frozen particle microphysical properties are investigated, using the vertically (V) and horizontally (H) polarized radiances from the Global Precipitation Measurement (GPM) Microwave Imager (GMI) 89 and 166 GHz channels. It is the first study on frozen particle microphysical properties on a global scale that uses the dual-frequency microwave polarimetric signals.From the ice cloud scenes identified by the 183.3 ± 3 GHz channel brightness temperature (Tb), we find that the scattering by frozen particles is highly polarized, with V-H polarimetric differences (PDs) being positive throughout the tropics and the winter hemisphere mid-latitude jet regions, including PDs from the GMI 89 and 166 GHz TBs, as well as the PD at 640 GHz from the ER-2 Compact Scanning Submillimeter-wave Imaging Radiometer (CoSSIR) during the TC4 campaign. Large polarization dominantly occurs mostly near convective outflow regions (i.e., anvils or stratiform precipitation), while the polarization signal is small inside deep convective cores as well as at the remote cirrus region. Neglecting the polarimetric signal would easily result in as large as 30 % error in ice water path retrievals. There is a universal bell curve in the PD-TBV relationship, where the PD amplitude peaks at ˜ 10 K for all three channels in the tropics and increases slightly with latitude (2-4 K). Moreover, the 166 GHz PD tends to increase in the case where a melting layer is beneath the frozen particles aloft in the atmosphere, while 89 GHz PD is less sensitive than 166 GHz to the melting layer. This property creates a unique PD feature for the identification of the melting layer and stratiform rain with passive sensors.Horizontally oriented non-spherical frozen particles are thought to produce the observed PD because of different ice scattering properties in the V and H polarizations. On the other hand, turbulent mixing within deep convective cores inevitably promotes the random

  8. Evaluation of oxygen pressurized microwave-assisted digestion of botanical materials using diluted nitric acid.

    PubMed

    Bizzi, Cezar Augusto; Barin, Juliano Smanioto; Müller, Edson Irineu; Schmidt, Lucas; Nóbrega, Joaquim A; Flores, Erico Marlon Moraes

    2011-02-15

    The feasibility of diluted nitric acid solutions for microwave-assisted decomposition of botanical samples in closed vessels was evaluated. Oxygen pressurized atmosphere was used to improve the digestion efficiency and Al, Ca, K, Fe, Mg and Na were determined in digests by inductively coupled plasma optical emission spectrometry (ICP OES). Efficiency of digestion was evaluated taking into account the residual carbon content (RCC) and residual acidity in digests. Samples were digested using nitric acid solutions (2, 3, 7, and 14 mol L(-1) HNO(3)) and the effect of gas phase composition inside the reaction vessels by purging the vessel with Ar (inert atmosphere, 1 bar), air (20% of oxygen, 1 bar) and pure O(2) (100% of oxygen, 1 bar) was evaluated. The influence of oxygen pressure was studied using pressures of 5, 10, 15 and 20 bar. It was demonstrated that a diluted nitric acid solution as low as 3 mol L(-1) was suitable for an efficient digestion of sample masses up to 500 mg of botanical samples using 5 bar of oxygen pressure. The residual acidities in final digests were lower than 45% in relation to the initial amount of acid used for digestion (equivalent to 1.3 mol L(-1) HNO(3)). The accuracy of the proposed procedure was evaluated using certified reference materials of olive leaves, apple leaves, peach leaves and pine needles. Using the optimized conditions for sample digestion, the results obtained were in agreement with certified values. The limit of quantification was improved up to a factor of 14.5 times for the analytes evaluated. In addition, the proposed procedure was in agreement with the recommendations of the green chemistry once it was possible to obtain relatively high digestion efficiency (RCC<5%) using only diluted HNO(3), which is important to minimize the generation of laboratory residues.

  9. Estimation of Complex Permittivity of Composite Multilayer Material at Microwave Frequency Using Waveguide Measurements

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar D.; Dudley, Kenneth

    2003-01-01

    A simple method is presented to estimate the complex dielectric constants of individual layers of a multilayer composite material. Using the MatLab Optimization Tools simple MatLab scripts are written to search for electric properties of individual layers so as to match the measured and calculated S-parameters. A single layer composite material formed by using materials such as Bakelite, Nomex Felt, Fiber Glass, Woven Composite B and G, Nano Material #0, Cork, Garlock, of different thicknesses are tested using the present approach. Assuming the thicknesses of samples unknown, the present approach is shown to work well in estimating the dielectric constants and the thicknesses. A number of two layer composite materials formed by various combinations of above individual materials are tested using the present approach. However, the present approach could not provide estimate values close to their true values when the thicknesses of individual layers were assumed to be unknown. This is attributed to the difficulty in modelling the presence of airgaps between the layers while doing the measurement of S-parameters. A few examples of three layer composites are also presented.

  10. Microwave thawing apparatus and method

    DOEpatents

    Fathi, Zakaryae; Lauf, Robert J.; McMillan, April D.

    2004-06-01

    An apparatus for thawing a frozen material includes: a microwave energy source; a microwave applicator which defines a cavity for applying microwave energy from the microwave source to a material to be thawed; and a shielded region which is shielded from the microwave source, the shielded region in fluid communication with the cavity so that thawed material may flow from the cavity into the shielded region.

  11. Measurement of the permittivity and loss of high-loss materials using a Near-Field Scanning Microwave Microscope.

    PubMed

    Gregory, A P; Blackburn, J F; Lees, K; Clarke, R N; Hodgetts, T E; Hanham, S M; Klein, N

    2016-02-01

    In this paper improvements to a Near-Field Scanning Microwave Microscope (NSMM) are presented that allow the loss of high loss dielectric materials to be measured accurately at microwave frequencies. This is demonstrated by measuring polar liquids (loss tangent tanδ≈1) for which traceable data is available. The instrument described uses a wire probe that is electromagnetically coupled to a resonant cavity. An optical beam deflection system is incorporated within the instrument to allow contact mode between samples and the probe tip to be obtained. Liquids are contained in a measurement cell with a window of ultrathin glass. The calibration process for the microscope, which is based on image-charge electrostatic models, has been adapted to use the Laplacian 'complex frequency'. Measurements of the loss tangent of polar liquids that are consistent with reference data were obtained following calibration against single-crystal specimens that have very low loss.

  12. Digestion of plastic materials for the determination of toxic metals with a microwave oven for household use.

    PubMed

    Sakurai, Hiroki; Noro, Junji; Kawase, Akira; Fujinami, Masanori; Oguma, Koichi

    2006-02-01

    A rapid sample-digestion method for the determination of toxic metals, cadmium, chromium, and lead, in polyethylene and polyvinyl chloride has been developed by using a microwave oven for household use. An appropriate amount of the sample taken in a PTFE decomposition vessel was mixed with nitric acid or nitric and sulfuric acids. The vessel was heated in a microwave oven by a predetermined operating program. The digested sample was diluted to a definite volume with water after evaporating most of the nitric acid. The precipitate, if formed, was filtered off by a membrane filter. The metals were determined by ICP-AES. The sample digestion required 5 min (for 20-mg sample) to 25 min (for 60-mg sample). The analytical results obtained for cadmium, chromium, and lead in a polyethylene certified reference material, BCR-680, digested with nitric acid, were in good agreement with the certified values.

  13. A simulation approach to material removal in microwave drilling of soda lime glass at 2.45 GHz

    NASA Astrophysics Data System (ADS)

    Lautre, Nitin Kumar; Sharma, Apurbba Kumar; Pradeep, Kumar; Das, Shantanu

    2015-09-01

    Material removal during microwave drilling is basically due to thermal ablation of the material in the vicinity of the drilling tool. The microtip of the tool, also termed as concentrator, absorbs microwaves and ionizes the dielectric in its proximity creating a zone of plasma. The plasma takes the shape of a sphere owing to the atmospheric sphere, which acts as the source of thermal energy to be used for processing a material. This mechanism of heating, also called localized microwave heating, was used in the present study to drill holes in 1.2-mm-thick soda lime glass. The mechanism of material removal had been analyzed through simulation of the hot spot region, and the results were attempted to explain through experiment observations. It was realized that the glass being a poor conductor of heat, a low power (90 W in this case) yields better drilling results owing to more localized heat corresponding to a low-volume plasma sphere. The low application time prevents further heat transfer, and a localized concentration of heat becomes possible that primarily causes the material ablation. The plasma sphere appears sustain while the tool moves through the bulk of the glass thickness although its volume gets further shrunk. The process needs careful selection of the parameters. The simulation results show relatively low temperature in the top half (opposite to the tool tip) of the plasma sphere which eventually causes the semimolten viscous glass to collapse into the drill cavity as the tool advances into the bulk and stops the movement of the tool. The continued plasma sphere raises the tip temperature, which makes the tip to melt and gets blunt. The plasma formation ceases owing to larger diameter of the tool, and the tool gets stuck which could be verified through experimental results.

  14. Complex dielectric properties of microcrystalline cellulose, anhydrous lactose, and α-lactose monohydrate powders using a microwave-based open-reflection resonator sensor.

    PubMed

    Sung, Pei-Fang; Hsieh, Yi-Ling; Angonese, Kristen; Dunn, Don; King, Ray J; Machbitz, Rachel; Christianson, Andrew; Chappell, William J; Taylor, Lynne S; Harris, Michael T

    2011-07-01

    The real (ε') and imaginary (ε″) components of the complex permittivity of anhydrous lactose and microcrystalline cellulose (MCC) under different bulk densities, moisture contents (MCs), and times of hydration (for anhydrous lactose) were measured nondestructively using a microwave resonator sensor operating in the range of 700-800 MHz. Measurements of sensor resonant frequency and conductance allow, through calibration, determination of the complex dielectric properties ε' (relative permittivity) and ε″ (relative dielectric loss) of the test material. Characteristic graphs of ε″ versus ε' - 1 curve for each powder were generated as a function of bulk density and MC. Such data can be used to develop empirical models for the simultaneous in situ measurement of the bulk density and MC of the powders. Unlike MCC, anhydrous lactose is converted to its hydrate form in the presence of moisture, which causes a reduction in the amount of physisorbed and "free" water and a subsequent change in the dielectric properties. For powders such as anhydrous lactose that can form a crystal hydrate in the presence of moisture, a combination of techniques such as vibrational spectroscopy together with microwave resonator measurements are appropriate to characterize, in situ, the physical and chemical properties of the powder.

  15. Influence of Li-B-Si Additions on the Sintering and Microwave Dielectric Properties of Ba-Nd-Ti Ceramics

    NASA Astrophysics Data System (ADS)

    Li, Enzhu; Duan, Shuxin; Sun, Shumeng; Li, Hao; Mi, Yuean; Zhou, Xiaohua; Zhang, Shuren

    2013-12-01

    Li2O-B2O3-SiO2 (LBS) synthesized via a solid-state reaction process was chosen as a novel sintering aid for tungsten-bronze-type Ba4Nd9.3Ti18O54 (BNT) ceramic. The effects of LBS additions on the sintering behaviors, microstructures, and microwave dielectric properties of the BNT ceramic have been investigated, indicating that LBS addition obviously lowered the sintering temperature of the BNT ceramic without damaging its microwave dielectric properties. BNT ceramic doped with 3 wt.% and 4 wt.% LBS addition could be well sintered at 975°C and 950°C for 3 h and had excellent properties: ɛ r = 65.99, Q × f = 4943 GHz ( f = 4.4 GHz), τ f = 19 ppm/°C, and ɛ r = 64.56, Q × f = 4929 GHz ( f = 4.3 GHz), τ f = 11 ppm/°C, respectively.

  16. Numerical Studies of Scattering Properties of Leaves and Leaf Moisture Influences on the Scattering at Microwave Wavelengths

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Hu, Yongxiang; Sun, Wenbo; Min, Qilong

    2008-01-01

    This study uses 3-dimensional finite difference time domain method to accurately calculate single-scattering properties of randomly orientated leaves and evaluate the influences of vegetation water content (VWC) on these properties at 19 and 37 GHz frequencies. The studied leaves are assumed to be thin elliptic disks with two different sizes and have various VWC values. Although the leaf moisture produces considerable absorption during scattering processes, the effective efficiencies of extinction and scattering of leaves still near-linearly increase with VWC. Calculated asymmetry factors and phase functions indicate that there are significant amounts of scattering at large scattering angles in microwave wavelengths, which provides good opportunities for off-nadir microwave remote sensing of forests. This study lays a basic foundation in future quantifications of the relations between satellite measurements and physical properties of vegetation canopies.

  17. Effect of conventional water-bath and experimental microwave polymerization cycles on the flexural properties of denture base acrylic resins.

    PubMed

    Spartalis, Guilherme Kloster; Cappelletti, Lucas Kravchychyn; Schoeffel, Amanda Cristina; Michél, Milton Domingos; Pegoraro, Thiago Amadei; Arrais, César Augusto Galvão; Neppelenbroek, Karin Hermana; Urban, Vanessa Migliorini

    2015-01-01

    The effect of polymerization cycles on flexural properties of conventional (Vipi Cril(®)-VC) or microwave-processed (Vipi Wave(®)-VW) denture base acrylic resins was evaluated. Specimens (n=10) were submitted to the cycles: WB=65ºC for 1 h+1 h boiling water (VC cycle); M630/25=10 min at 270 W+5 min at 0 W+10 min at 360 W (VW cycle); M650/5=5 min at 650 W; M700/4=4 min at 700 W; and M550/3=3 min at 550 W. Specimens were submitted to a three-point bending test at 5 mm/min until fracture. Flexural strength (MPa) and elastic modulus (GPa) data were analyzed by 2-way ANOVA/Tukey HSD (α=0.05). Overall, VC showed higher values than VW. The results obtained with microwave polymerization did not differ from those obtained with water-bath for both acrylic resins. The results observed when polymerization cycles using medium power and shorter time were used did not differ from those when manufacturer's recommended microwave cycle was applied. Conventional VC might be microwave-processed without compromising its flexural properties.

  18. Laboratory measurements of microwave and millimeter-wave properties of planetary atmospheric constituents

    SciTech Connect

    Steffes, P.G.

    1989-01-01

    Accurate data on microwave and millimeter-wave properties of potential planetary atmospheric constituents is critical for the proper interpretation of radio occultation measurements, and of radio astronomical observations of both continuum and spectral line emissions. Such data is also needed to correct for atmospheric effects on radar studies of surface reflectivity. Since the refractive and absorptive properties of atmospheric constituents often vary drastically from theoretically-predicted profiles, especially under the extreme conditions characteristic of the planetary atmosphere, laboratory measurements under simulated planetary conditions are required. This paper reviews the instrumentation and techniques used for laboratory measurement of the refractivity and absorptivity of atmospheric constituents at wavelengths longward of 1 mm, under simulated planetary conditions (temperature, pressure, and broadening gases). Techniques for measuring both gases and condensates are considered. Also reviewed are the relative accuracies of the various techniques. Laboratory measurements are reviewed which have already been made, and additional measurements which are needed for interpretation of data from Venus and the outer planets, are highlighted.

  19. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1991-01-01

    Laboratory measurements of microwave and millimeter wave properties of the simulated atmosphere of the outer planets and their satellites has continued. One of the focuses is on the development of a radiative transfer model of the Jovian atmosphere at wavelengths from 1 mm to 10 cm. This modeling effort led to laboratory measurements of the millimeter wave opacity of hydrogen sulfide (H2S) under simulated Jovian conditions. Descriptions of the modeling effort, the Laboratory experiment, and the observations are presented. Correlative studies of measurements with Pioneer-Venus radio occultation measurements with longer wavelength emission measurements have provided new ways for characterizing temporal and spatial variations in the abundance of both gases H2SO4 and SO2, and for modeling their roles in the subcloud atmosphere. Laboratory measurements were conducted on 1.35 cm (and 13 cm) opacity of gaseous SO2 and absorptivity of gaseous SO2 at the 3.2 mm wavelength under simulated Venus conditions. Laboratory measurements were completed on millimeter wave dielectric properties of liquid H2SO4, in order to model the effects of the opacity of the clouds of Venus onto millimeter wave emission spectrum.

  20. Dielectric properties of almond kernels associated with radio frequency and microwave pasteurization.

    PubMed

    Li, Rui; Zhang, Shuang; Kou, Xiaoxi; Ling, Bo; Wang, Shaojin

    2017-02-10

    To develop advanced pasteurization treatments based on radio frequency (RF) or microwave (MW) energy, dielectric properties of almond kernels were measured by using an open-ended coaxial-line probe and impedance analyzer at frequencies between 10 and 3000 MHz, moisture contents between 4.2% to 19.6% w.b. and temperatures between 20 and 90 °C. The results showed that both dielectric constant and loss factor of the almond kernels decreased sharply with increasing frequency over the RF range (10-300 MHz), but gradually over the measured MW range (300-3000 MHz). Both dielectric constant and loss factor of almond kernels increased with increasing temperature and moisture content, and largely enhanced at higher temperature and moisture levels. Quadratic polynomial equations were developed to best fit the relationship between dielectric constant or loss factor at 27, 40, 915 or 2450 MHz and sample temperature/moisture content with R(2) greater than 0.967. Penetration depth of electromagnetic wave into samples decreased with increasing frequency (27-2450 MHz), moisture content (4.2-19.6% w.b.) and temperature (20-90 °C). The temperature profiles of RF heated almond kernels under three moisture levels were made using experiment and computer simulation based on measured dielectric properties. Based on the result of this study, RF treatment has potential to be practically used for pasteurization of almond kernels with acceptable heating uniformity.

  1. Effect of Ce Doping on Microwave Absorption Properties of Pr2Fe17 Alloy

    NASA Astrophysics Data System (ADS)

    Cheng, Lichun; Xiong, Jilei; Zhou, Huaiying; Pan, Shunkang; Huang, Hehua

    2016-02-01

    Ce x Pr2- x Fe17 ( x = 0.0, 0.1, 0.2, 0.3, 0.4) alloy powders were successfully synthesized by arc smelting and a high energy ball milling method. The structure, morphology, magnetic properties and electromagnetic parameters of the powders were studied by x-ray diffraction (XRD), scanning electron microscopy (SEM), a vibrating sample magnetometer (VSM) and a vector network analyzer (VNA), respectively. The results show that the saturation magnetization decreases with an increase of Ce concentration. The minimum absorption peak frequency shifts towards a higher frequency region firstly and then towards a lower frequency region based upon the Ce concentration. The Ce x Pr2- x Fe17 alloys exhibit good microwave absorbing properties. The minimum reflection loss of Ce0.1Pr1.9Fe17 powder is about -13.67 dB at 6.40 GHz, and the frequency bandwidth of RL < -8 dB reaches about 2.24 GHz with a thickness of 1.8 mm.

  2. Impact of active ingredients on the swelling properties of orally disintegrating tablets prepared by microwave treatment.

    PubMed

    Sano, Syusuke; Iwao, Yasunori; Kimura, Susumu; Noguchi, Shuji; Itai, Shigeru

    2014-07-01

    The impact of different active pharmaceutical ingredients (APIs) loading on the properties of orally disintegrating tablets (ODTs) prepared according to our previously reported microwave (MW) treatment process was evaluated using famotidine (FAM), acetaminophen (AAP), and ibuprofen (IBU). None of the APIs interrupted the tablet swelling during the MW treatment and the tablet hardness were improved by more than 20 N. MW treatment, however, led to a significant increase in the disintegration time of the ODTs containing IBU, but it had no impact on that of the ODTs containing FAM or AAP. This increased disintegration time of the ODTs containing IBU was attributed to the relatively low melting point of IBU (Tm=76 °C), with the IBU particles melting during the MW treatment to form agglomerates, which interrupted the penetration of water into the tablets and delayed their disintegration. The effects of the MW treatment on the chemical stability and dissolution properties of ODTs were also evaluated. The results revealed that MW treatment did not promote the degradations of FAM and AAP or delay their release from the ODTs, while dissolution of the ODTs containing IBU delayed by MW treatment. Based on these results, the MW method would be applicable to the preparation of ODTs containing APIs with melting points higher than 110 °C.

  3. Laboratory measurements of microwave and millimeter-wave properties of planetary constituents

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1990-01-01

    Accurate data on microwave and millimeter-wave properties of potential planetary atmospheric constituents is critical for the proper interpretation of radio occultation measurements, and of radio astronomical observations of both continuum and spectral line emissions. Such data is also needed to correct for atmospheric effects on radar studies of surface reflectivity. Since the refractive and absorptive properties of atmospheric constituents often vary drastically from theoretically predicted profiles, especially under the extreme conditions characteristic of the planetary atmosphere, laboratory measurements under simulated planetary conditions are required. The instrumentation and techniques used for laboratory measurement of the refractivity and absorptivity of atmospheric constituents at wavelengths longward of 1 mm, under simulated planetary conditions (temperature, pressure, and broadening gases) are reviewed. Techniques for measuring both gases and condensates are considered. Also reviewed are the relative accuracies of the various techniques. Laboratory measurements are reviewed which have already been made, and additional measurements which are needed for interpretation of data from Venus and the outer planets, are highlighted.

  4. A database of microwave and sub-millimetre ice particle single scattering properties

    NASA Astrophysics Data System (ADS)

    Ekelund, Robin; Eriksson, Patrick

    2016-04-01

    Ice crystal particles are today a large contributing factor as to why cold-type clouds such as cirrus remain a large uncertainty in global climate models and measurements. The reason for this is the complex and varied morphology in which ice particles appear, as compared to liquid droplets with an in general spheroidal shape, thus making the description of electromagnetic properties of ice particles more complicated. Single scattering properties of frozen hydrometers have traditionally been approximated by representing the particles as spheres using Mie theory. While such practices may work well in radio applications, where the size parameter of the particles is generally low, comparisons with measurements and simulations show that this assumption is insufficient when observing tropospheric cloud ice in the microwave or sub-millimetre regions. In order to assist the radiative transfer and remote sensing communities, a database of single scattering properties of semi-realistic particles is being produced. The data is being produced using DDA (Discrete Dipole Approximation) code which can treat arbitrarily shaped particles, and Tmatrix code for simpler shapes when found sufficiently accurate. The aim has been to mainly cover frequencies used by the upcoming ICI (Ice Cloud Imager) mission with launch in 2022. Examples of particles to be included are columns, plates, bullet rosettes, sector snowflakes and aggregates. The idea is to treat particles with good average optical properties with respect to the multitude of particles and aggregate types appearing in nature. The database will initially only cover macroscopically isotropic orientation, but will eventually also include horizontally aligned particles. Databases of DDA particles do already exist with varying accessibility. The goal of this database is to complement existing data. Regarding the distribution of the data, the plan is that the database shall be available in conjunction with the ARTS (Atmospheric

  5. Microwave combustion and sintering without isostatic pressure

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    In recent years interest has grown rapidly in the application of microwave energy to the processing of ceramics, composites, polymers, and other materials. Advances in the understanding of microwave/materials interactions will facilitate the production of new ceramic materials with superior mechanical properties. One application of particular interest is the use of microwave energy for the mobilization of uranium for subsequent redeposition. Phase III (FY98) will focus on the microwave assisted chemical vapor infiltration tests for mobilization and redeposition of radioactive species in the mixed sludge waste. Uranium hexachloride and uranium (IV) borohydride are volatile compounds for which the chemical vapor infiltration procedure might be developed for the separation of uranium. Microwave heating characterized by an inverse temperature profile within a preformed ceramic matrix will be utilized for CVI using a carrier gas. Matrix deposition is expected to commence from the inside of the sample where the highest temperature is present. The preform matrix materials, which include aluminosilicate based ceramics and silicon carbide based ceramics, are all amenable to extreme volume reduction, densification, and vitrification. Important parameters of microwave sintering such as frequency, power requirement, soaking temperature, and holding time will be investigated to optimize process conditions for the volatilization of uranyl species using a reactive carrier gas in a microwave chamber.

  6. Analytical scanning evanescent microwave microscope and control stage

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2009-06-23

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  7. Analytical scanning evanescent microwave microscope and control stage

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2013-01-22

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  8. Method for heat treating and sintering metal oxides with microwave radiation

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Meek, Thomas T.

    1989-01-01

    A method for microwave sintering materials, primarily metal oxides, is described. Metal oxides do not normally absorb microwave radiation at temperatures ranging from about room temperature to several hundred degrees centrigrade are sintered with microwave radiation without the use of the heretofore required sintering aids. This sintering is achieved by enclosing a compact of the oxide material in a housing or capsule formed of a oxide which has microwave coupling properties at room temprature up to at least the microwave coupling temperature of the oxide material forming the compact. The heating of the housing effects the initial heating of the oxide material forming the compact by heat transference and then functions as a thermal insulator for the encased oxide material after the oxide material reaches a sufficient temperature to adequately absorb or couple with microwave radiation for heating thereof to sintering temperature.

  9. Synthesis Properties and Electron Spin Resonance Properties of Titanic Materials

    SciTech Connect

    Cho, Jung Min; Lee, Jun; Kim, Tak Hee; Sun, Min Ho; Jang, Young Bae; Cho, Sung June

    2009-04-19

    Titanic materials were synthesized by hydrothermal method of TiO{sub 2} anatase in 10M LiOH, 10M NaOH, and 14M KOH at 130 deg. C for 30 hours. Alkaline media were removed from the synthesized products using 0.1N HCl aqueous solution. The as-prepared samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, Brunauer-Emmett-Teller isotherm, and electron spin resonance. Different shapes of synthesized products were observed through the typical electron microscope and indicated that the formation of the different morphologies depends on the treatment conditions of highly alkaline media. Many micropores were observed in the cubic or octahedral type of TiO{sub 2} samples through the typical electron microscope and Langmuir adsorption-desorption isotherm of liquid nitrogen at 77 deg. K. Electron spin resonance studies have also been carried out to verify the existence of paramagnetic sites such as oxygen vacancies on the titania samples. The effect of alkali metal ions on the morphologies and physicochemical properties of nanoscale titania are discussed.

  10. Experimental study of temperature distribution in rubber material during microwave heating and vulcanization process

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Long; Li, Tao; Liang, Yun; Sun, Bin; Li, Qing-Ling

    2017-03-01

    Microwave technology has been employed to heat sheet rubber, the optical fiber temperature online monitor and optical fiber temperature sensor have been employed to measure the temperature in sheet rubber. The temperature of sheet rubber increased with increase of heating time during microwave heating process in which the maximum of temperature was <100 °C and microwave vulcanization process in which the maximum of temperature was <150 °C, the curves of temperature-time presented nonlinearity. The rate of temperature rising in central zone of sheet rubber was higher than the rate of temperature rising in marginal zone of sheet rubber, and the final temperature in central zone of sheet rubber was also higher than the final temperature in marginal zone of sheet rubber. In the microwave heating and vulcanization process of sheet rubber, the maximum of rate of temperature rising and the maximum of temperature belong to the central zone of sheet rubber, so the distribution of electric field was uneven in heating chamber, which led to the uneven temperature distribution of sheet rubber. The higher electric field intensity value converges on the central zone of sheet rubber.

  11. Experimental study of temperature distribution in rubber material during microwave heating and vulcanization process

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Long; Li, Tao; Liang, Yun; Sun, Bin; Li, Qing-Ling

    2016-07-01

    Microwave technology has been employed to heat sheet rubber, the optical fiber temperature online monitor and optical fiber temperature sensor have been employed to measure the temperature in sheet rubber. The temperature of sheet rubber increased with increase of heating time during microwave heating process in which the maximum of temperature was <100 °C and microwave vulcanization process in which the maximum of temperature was <150 °C, the curves of temperature-time presented nonlinearity. The rate of temperature rising in central zone of sheet rubber was higher than the rate of temperature rising in marginal zone of sheet rubber, and the final temperature in central zone of sheet rubber was also higher than the final temperature in marginal zone of sheet rubber. In the microwave heating and vulcanization process of sheet rubber, the maximum of rate of temperature rising and the maximum of temperature belong to the central zone of sheet rubber, so the distribution of electric field was uneven in heating chamber, which led to the uneven temperature distribution of sheet rubber. The higher electric field intensity value converges on the central zone of sheet rubber.

  12. Transport and magnetic properties in topological materials

    NASA Astrophysics Data System (ADS)

    Liang, Tian

    The notion of topology has been the central topic of the condensed matter physics in recent years, ranging from 2D quantum hall (QH) and quantum spin hall (QSH) states, 3D topological insulators (TIs), topological crystalline insulators (TCIs), 3D Dirac/Weyl semimetals, and topological superconductors (TSCs) etc. The key notion of the topological materials is the bulk edge correspondence, i.e., in order to preserve the symmetry of the whole system (bulk+edge), edge states must exist to counter-compensate the broken symmetry of the bulk. Combined with the fact that the bulk is topologically protected, the edge states are robust due to the bulk edge correspondence. This leads to interesting phenomena of chiral edge states in 2D QH, helical edge states in 2D QSH, "parity anomaly'' (time reversal anomaly) in 3D TI, helical edge states in the mirror plane of TCI, chiral anomaly in Dirac/Weyl semimetals, Majorana fermions in the TSCs. Transport and magnetic properties of topological materials are investigated to yield intriguing phenomena. For 3D TI Bi1.1Sb0.9Te 2S, anomalous Hall effect (AHE) is observed, and for TCI Pb1-x SnxSe, Seebeck/Nernst measurements reveal the anomalous sign change of Nernst signals as well as the massive Dirac fermions. Ferroelectricity and pressure measurements show that TCI Pb1-xSnxTe undergoes quantum phase transition (QPT) from trivial insulator through Weyl semimetal to anomalous insulator. Dirac semimetals Cd3As2, Na 3Bi show interesting results such as the ultrahigh mobility 10 7cm2V-1s-1 protected from backscattering at zero magnetic field, as well as anomalous Nernst effect (ANE) for Cd3As2, and the negative longitudinal magnetoresistance (MR) due to chiral anomaly for Na3Bi. In-plane and out-of-plane AHE are observed for semimetal ZrTe5 by in-situ double-axes rotation measurements. For interacting system Eu2Ir2O7, full angle torque magnetometry measurements reveal the existence of orthogonal magnetization breaking the symmetry of

  13. Effect of synthesis and acid purification methods on the microwave dielectric properties of single-walled carbon nanotube aqueous dispersions

    NASA Astrophysics Data System (ADS)

    Xie, Shawn X.; Gao, Fuqiang; Patel, Sunny C.; Booske, John H.; Hagness, Susan C.; Sitharaman, Balaji

    2013-09-01

    We characterized the microwave-frequency (0.5-6 GHz) dielectric properties of aqueous dispersions of pristine and purified single-walled carbon nanotubes (SWCNTs). SWCNTs were synthesized by two CVD-based methods and purified using two acid-based purification methods. We characterized the structural and chemical differences across SWCNT samples using Raman analysis, UV-Vis spectroscopy, atomic force microscopy, and thermogravimetric analysis. We found that the dielectric properties of the pristine SWCNT dispersions did not vary with synthesis method, but the dielectric properties of purified SWCNT dispersions were variably impacted by acid purification due to different degrees of morphological and chemical changes in the SWCNTs.

  14. Determination of Thermal Properties of Composting Bulking Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal properties of compost bulking materials affect temperature and biodegradation during the composting process. Well determined thermal properties of compost feedstocks will therefore contribute to practical thermodynamic approaches. Thermal conductivity, thermal diffusivity, and volumetric hea...

  15. The Effect of Boron Addition on the Atomic Structure and Microwave Magnetic Properties of FeGaB Thin Films

    SciTech Connect

    Gao, J.; Yang, A; Chen, Y; Kirkland, J; Lou, J; Sun, N; Vittoria, C; Harris, V

    2009-01-01

    Varying amounts of boron were added to the host FeGa alloy to investigate its impact upon local atomic structure and magnetic and microwave properties. The impact of B upon the local atomic structure in FeGaB films was investigated by extended x-ray absorption fine structure (EXAFS) analysis. The EXAFS fitting results revealed a contraction of lattice parameters with the introduction of B. The Debye-Waller factor determined from EXAFS fitting increases as a function of boron addition and abruptly changes during the structural evolution from crystalline to amorphous that occurs near 9% B. Upon the onset of this transition the static and microwave magnetic properties became exceptionally soft, with values of coercivity and ferromagnetic linewidth reducing to less than 1 Oe and 25 Oe, respectively.

  16. The effect of boron addition on the atomic structure and microwave magnetic properties of FeGaB thin films

    NASA Astrophysics Data System (ADS)

    Gao, Jinsheng; Yang, Aria; Chen, Yajie; Kirkland, J. P.; Lou, Jing; Sun, Nian X.; Vittoria, Carmine; Harris, Vincent G.

    2009-04-01

    Varying amounts of boron were added to the host FeGa alloy to investigate its impact upon local atomic structure and magnetic and microwave properties. The impact of B upon the local atomic structure in FeGaB films was investigated by extended x-ray absorption fine structure (EXAFS) analysis. The EXAFS fitting results revealed a contraction of lattice parameters with the introduction of B. The Debye-Waller factor determined from EXAFS fitting increases as a function of boron addition and abruptly changes during the structural evolution from crystalline to amorphous that occurs near 9% B. Upon the onset of this transition the static and microwave magnetic properties became exceptionally soft, with values of coercivity and ferromagnetic linewidth reducing to less than 1 Oe and 25 Oe, respectively.

  17. Microwave heating of porous media

    SciTech Connect

    Gori, F.; Martini, L. ); Gentili, G.B. )

    1987-05-01

    The technique actually used for recycling in place asphaltic concrete pavements is the following: heating of the surface layer of the pavement with special infrared lamps (gas-fed); hot removal and remixing in place of the materials with the addition of new binder; in-line reconstruction of the pavement layer with rolling. Such a technique is highly efficient and economic but it suffers an important disadvantage: The low thermal conductivity of the asphalt causes a strong temperature decrease with depth. Further on, the infrared radiation produces carbonization of the pavement skin with possible modification of the rheological properties of the bitumen. The technology of microwave generators (Magnetron, Klystron, and Amplitron) has registered some recent advances. It is now possible, and in some cases convenient, to use microwave energy for industrial heating of low-thermal-conductivity materials. Actually the microwaves are employed for drying wood, paper, and textiles, and for freeze-drying, cooking, and defrosting foods. One of the most interesting features of the microwave process is the rate and uniformity of the heating inside the material. Some preliminary experiments have been carried out for recycling in place asphaltic concrete pavements. The goal of the present paper is to propose a theoretical model capable of describing the phenomena occurring in a soil during a microwave heating process.

  18. Nonlinear Dynamic Properties of Layered Composite Materials

    SciTech Connect

    Andrianov, Igor V.; Topol, Heiko; Weichert, Dieter; Danishevs'kyy, Vladyslav V.

    2010-09-30

    We present an application of the asymptotic homogenization method to study wave propagation in a one-dimensional composite material consisting of a matrix material and coated inclusions. Physical nonlinearity is taken into account by considering the composite's components as a Murnaghan material, structural nonlinearity is caused by the bonding condition between the components.

  19. Synthesis of nanostructured MnO2, SnO2, and Co3O4: graphene composites with enhanced microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Yu, Jianhua; Dong, Hongzhou; Yu, Mingxun; Zhang, Baoqin; Wang, Wen; Dong, Lifeng

    2015-06-01

    In this work, metal oxide (MnO2, SnO2 and Co3O4)-graphene composite materials were successfully prepared via different synthesis methods. Uniform metal oxide nanoparticles were well dispersed on graphene sheets, and transmission electron microscopy characterizations showed that the average sizes of MnO2, SnO2, and Co3O4 particles were about 60, 5, and 10 nm, respectively. Reflection losses of graphene composites and pure graphene were systematically evaluated between 2 and 18 GHz, which revealed that all composites exhibited enhanced microwave absorption properties compared to pure graphene. The minimum reflection losses of MnO2-graphene, SnO2-graphene, and Co3O4-graphene composites with a thickness of 2.0 mm were -20.9, -15.28, and -7.3 dB at the frequency of 14.8, 15.94, and 9.6 GHz, respectively, whereas -4.5 dB for pure graphene. The enhanced absorption ability probably originated from the combined advantage of metal oxide particles and graphene, which proved beneficial to improve the impedance matching of permittivity and permeability. Besides, the intrinsic characteristics of MnO2, SnO2, and Co3O4 nanoparticles, the interface between nanostructured metal oxides and graphene sheets, and the multi-dielectric relaxation processes are all influence factors to improve the properties of microwave absorption.

  20. Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range

    SciTech Connect

    Tsutaoka, Takanori Fukuyama, Koki; Kinoshita, Hideaki; Kasagi, Teruhiro; Yamamoto, Shinichiro; Hatakeyama, Kenichi

    2013-12-23

    The relative complex permittivity and permeability spectra of the coagulated copper and yttrium iron garnet (Cu/YIG) hybrid granular composite materials have been studied in the microwave range. The insulator to metal transition was observed at the percolation threshold of Cu particle content (φ{sub Cu} = 16.0 vol. %) in the electrical conductivity. In the percolation threshold, the low frequency plasmonic state caused by the metallic Cu particle networks was observed. The percolated Cu/YIG granular composites show simultaneous negative permittivity and permeability spectra under external magnetic fields.