Science.gov

Sample records for materials microwave properties

  1. Microwave dielectric properties of plant materials

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Jedlicka, R. P.

    1984-01-01

    Three waveguide transmission systems covering the 1-2, 3.5-6.5, and 7.5-8.5 GHZ bands were used to measure the dielectric properties of vegetation material as a function of moisture content and microwave frequency. The materials measured included, primarily, the leaves and stalks of corn and wheat. Dielectric measurements also were made of the liquid included in the vegetation material after it was extracted from the vegetation by mechanical means. The extracted liquids were found to have an equivalent NaCl salinity of about 10 per mil, which can have a significant effect on the dielectric loss at frequencies below 5 GHz. The results of attempts to model the dielectric constant of the vegetatioon-water mixture in terms of the dielectric constants and volume fractions of its constituent parts (i.e., bulk vegetation, air, bound water, and free water) are discussed. Additionally, measurements of the temporal variations in the total attenuation at 10.2 GHz are presented for a corn canopy and a soybean canopy.

  2. Dielectric properties of certain biological materials at microwave frequencies.

    PubMed

    Kumar, S B; Mathew, K T; Raveendranath, U; Augustine, P

    2001-01-01

    In the medical field, microwaves play a larger role for treatment than diagnosis. For the detection of diseases by microwave methods, it is essential to know the dielectric properties of biological materials. For the present study, a cavity perturbation technique was employed to determine the dielectric properties of these materials. Rectangular cavity resonators were used to measure the complex permittivity of human bile, bile stones, gastric juice and saliva. The measurements were carried out in the S and J bands. It is observed that normal and infected bile have different dielectric constant and loss tangent. Dielectric constant of infected bile and gastric juice varies from patient to patient. Detection and extraction of bile stone with possible method of treatment is also discussed.

  3. Mechanisms Responsible for Microwave Properties in High Performance Dielectric Materials

    NASA Astrophysics Data System (ADS)

    Zhang, Shengke

    Microwave properties of low-loss commercial dielectric materials are optimized by adding transition-metal dopants or alloying agents (i.e. Ni, Co, Mn) to tune the temperature coefficient of resonant frequency (tau f) to zero. This occurs as a result of the temperature dependence of dielectric constant offsetting the thermal expansion. At cryogenic temperatures, the microwave loss in these dielectric materials is dominated by electron paramagnetic resonance (EPR) loss, which results from the spin-excitations of d-shell electron spins in exchange-coupled clusters. We show that the origin of the observed magnetically-induced shifts in the dielectric resonator frequency originates from the same mechanism, as described by the Kramers-Kronig relations. The temperature coefficient of resonator frequency, tauf, is related to three material parameters according to the equation, tau f = - (½ tauepsilon + ½ taumu + alphaL), where tauepsilon, taumu , and alphaL are the temperature coefficient of dielectric constant, magnetic permeability, and lattice constant, respectively. Each of these parameters for dielectric materials of interest are measured experimentally. These results, in combination with density functional simulations, developed a much improved understanding of the fundamental mechanisms responsible for tau f. The same experimental methods have been used to characterize in-situ the physical nature and concentration of performance-degrading point defects in the dielectrics of superconducting planar microwave resonators.

  4. Dielectric properties of pharmaceutical materials relevant to microwave processing: effects of field frequency, material density, and moisture content.

    PubMed

    Heng, Paul W S; Loh, Z H; Liew, Celine V; Lee, C C

    2010-02-01

    The rising popularity of microwaves for drying, material processing and quality sensing has fuelled the need for knowledge concerning dielectric properties of common pharmaceutical materials. This article represents one of the few reports on the density and moisture content dependence of the dielectric properties of primary pharmaceutical materials and their relevance to microwave-assisted processing. Dielectric constants (epsilon') and losses (epsilon'') of 13 pharmaceutical materials were measured over a frequency range of 1 MHz-1 GHz at 23 +/- 1 degrees C using a parallel-electrode measurement system. Effects of field frequency, material density and moisture content on dielectric properties were studied. Material dielectric properties varied considerably with frequency. At microwave frequencies, linear relationships were established between cube-root functions of the dielectric parameters [symbols: see text] and density which enabled dielectric properties of materials at various densities to be estimated by regression. Moisture content was the main factor that contributed to the disparities in dielectric properties and heating capabilities of the materials in a laboratory microwave oven. The effectiveness of a single frequency density-independent dielectric function for moisture sensing applications was explored and found to be suitable within low ranges of moisture contents for a model material.

  5. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    PubMed

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications.

  6. Microwave properties of geological materials: Studies of penetration depth and moisture effects

    NASA Technical Reports Server (NTRS)

    Blinn, J. C., III; Quade, J. G.

    1972-01-01

    Summarized are the results of two of a series of controlled experiments performed during the summer of 1970. The first series of experiments to determine penetration depth showed the value of having a modeled response and data reduced in real time for examination in the field. The results suggest a radiometric method for measuring the microwave properties of materials in bulk and are applicable to studies of sea ice and other naturally layered media. The sensitivity of the microwave emission to changes in moisture content has inspired a number of airborne and ground based investigations. Although the effect is dominent under certain conditions, the complicating factors of soil type, roughness, vegetation, etc. seem to govern the conclusions regarding its application at this time.

  7. Spin canting effect and microwave absorption properties of Sm-Mn substituted nanosized material

    NASA Astrophysics Data System (ADS)

    Sadiq, Imran; Naseem, Shahzad; Naeem Ashiq, Muhammad; Asif Iqbal, M.; Ali, Irshad; Khan, M. A.; Niaz, Shanawar; Rana, M. U.

    2015-12-01

    In order to understand the substitutional effect of rare earth element Sm3+ and divalent Mn2+ on structural, magnetic and microwave absorption properties of hexagonal ferrites, a series of Sr2-x Smx Ni2 Fe28-yMnyO46 X-type hexagonal ferrites with concentration (x=0.00, 0.02, 0.04, 0.06, 0.08, 0.10 and y=0, 0.1, 0.2, 0.3, 0.4, 0.5) was synthesized by the sol-gel method. The XRD analysis shows that the material crystallized into single X-type hexagonal phase. The absorption bands at low wave number in FTIR curves are the characteristics of the X-type hexagonal ferrites. Decreasing trend in the magnetic properties with the substitution of Sm-Mn contents was also observed, which may be attributed to the oxidation of Mn2+ ions into Mn3+ ions and spin canting effect of rare earth element Sm3+. The reflection loss peak shifted towards the low frequency and microwave absorption properties of the material enhanced with the substitution of Sm-Mn contents which reflects its applications in super high frequency (SHF) devices. The attenuation constant curves are in good agreement with the reflection loss peak.

  8. Microwave frequency material properties of PBS 9501 and PBX 9501 and small scale heating experiments

    NASA Astrophysics Data System (ADS)

    Glover, B. B.; Daily, M. E.; Son, S. F.; Groven, L. J.

    2014-05-01

    This work reports the microwave frequency dielectric properties of PBX 9501 and one of its representative mocks, PBS 9501, within 1-20 GHz. From these measurements it is shown that the binder system has a strong influence on microwave heating of such compositions resulting in significant temperature gradients within the individual HMX or sugar crystals at high microwave heating rates. Using the measured dielectric properties, COMSOL 4.3 Multiphysics was used to simulate and optimize a microwave applicator with a high electric field to input power ratio. The simulated applicator design indicated subsecond heating to decomposition for PBX 9501 and was validated with small scale experiments on both PBS 9501 and PBX 9501. At approximately 2.45 GHz and 100 W applied power, PBS 9501 decomposition was observed shortly (< 34 ms) after a measured surface temperature of 70 °C (binder system melts). Finally, rapid heating of PBX 9501 was also shown in the optimized cavity.

  9. Study on preparation and microwave absorption property of the core-nanoshell composite materials doped with La.

    PubMed

    Wei, Liqiu; Che, Ruxin; Jiang, Yijun; Yu, Bing

    2013-12-01

    Microwave absorbing material plays a great role in electromagnetic pollution controlling, electromagnetic interference shielding and stealth technology, etc. The core-nanoshell composite materials doped with La were prepared by a solid-state reaction method, which is applied to the electromagnetic wave absorption. The core is magnetic fly-ash hollow cenosphere, and the shell is the nanosized ferrite doped with La. The thermal decomposition process of the sample was investigated by thermogravimetry and differential thermal analysis. The morphology and components of the composite materials were investigated by the X-ray diffraction analysis, the microstructure was observed by scanning electron microscope and transmission electron microscope. The results of vibrating sample magnetometer analysis indicated that the exchange-coupling interaction happens between ferrite of magnetic fly-ash hollow cenosphere and nanosized ferrite coating, which caused outstanding magnetic properties. The microwave absorbing property of the sample was measured by reflectivity far field radar cross section of radar microwave absorbing material with vector network analyzer. The results indicated that the exchange-coupling interaction enhanced magnetic loss of composite materials. Therefore, in the frequency of 5 GHz, the reflection coefficient can achieve -24 dB. It is better than single material and is consistent with requirements of the microwave absorbing material at the low-frequency absorption. PMID:25078834

  10. Study on preparation and microwave absorption property of the core-nanoshell composite materials doped with La.

    PubMed

    Wei, Liqiu; Che, Ruxin; Jiang, Yijun; Yu, Bing

    2013-12-01

    Microwave absorbing material plays a great role in electromagnetic pollution controlling, electromagnetic interference shielding and stealth technology, etc. The core-nanoshell composite materials doped with La were prepared by a solid-state reaction method, which is applied to the electromagnetic wave absorption. The core is magnetic fly-ash hollow cenosphere, and the shell is the nanosized ferrite doped with La. The thermal decomposition process of the sample was investigated by thermogravimetry and differential thermal analysis. The morphology and components of the composite materials were investigated by the X-ray diffraction analysis, the microstructure was observed by scanning electron microscope and transmission electron microscope. The results of vibrating sample magnetometer analysis indicated that the exchange-coupling interaction happens between ferrite of magnetic fly-ash hollow cenosphere and nanosized ferrite coating, which caused outstanding magnetic properties. The microwave absorbing property of the sample was measured by reflectivity far field radar cross section of radar microwave absorbing material with vector network analyzer. The results indicated that the exchange-coupling interaction enhanced magnetic loss of composite materials. Therefore, in the frequency of 5 GHz, the reflection coefficient can achieve -24 dB. It is better than single material and is consistent with requirements of the microwave absorbing material at the low-frequency absorption.

  11. Microwave properties of ferromagnetic nanostructures.

    PubMed

    Valenzuela, R; Alvarez, G; Mata-Zamora, M E

    2008-06-01

    A review of the dynamic properties of nanostructured ferromagnetic materials at microwave frequencies (1-40 GHz) is presented. Since some confusion has recently appeared between giant magnetoimpedance (GMI) and ferromagnetic resonance (FMR), a detailed analysis is made in order to establish their differences. A brief review of a novel microwave absorption mode, the low-field microwave absorption (LFA) is then presented, together with a discussion about its similarities with GMI. Recent results on high-frequency measurements on nanogranular thin films and FMR in nanowire arrays are finally addressed.

  12. Analysis of microwave heating of materials with temperature-dependent properties

    SciTech Connect

    Ayappa, K.G.; Davis, H.T. ); Davis, E.A.; Gordon, J. )

    1991-03-01

    In this paper transient temperature profiles in multilayer slabs are predicted, by simultaneously solving Maxwell's equations with the heat conduction equation, using Galerkin-finite elements. It is assumed that the medium is homogeneous and has temperature-dependent dielectric and thermal properties. The method is illustrated with applications involving the heating of food and polymers with microwaves. The temperature dependence of dielectric properties affects the heating appreciably, as is shown by comparison with a constant property model.

  13. Correlation between magnetic properties of layered ferromagnetic/dielectric material and tunable microwave device applications

    NASA Astrophysics Data System (ADS)

    Salahun, Erwan; Quéffélec, Patrick; Tanné, Gérard; Adenot, Anne-Lise; Acher, Olivier

    2002-04-01

    Layered dielectric / ferromagnetic materials are extensively explored for microwave applications. Indeed, these materials combine the large saturation magnetization of ferromagnetic material with the low loss of dielectrics. Here, our aim was to integrate a layered ferromagnetic composite in a microwave propagation structure since the main advantage of such a material is the large impedance for one polarization. Thus, in order to predict the transmission response of the device, we carried out an electromagnetic analysis to determine how the field pattern of a microstrip line and the microwave-induced demagnetizing fields disturb the material behavior. We also explored the use of the propagation structure in two dc magnetic field-dependent devices: a tunable band stop filter and a magnetic switch. The stop-band function presented a large tunability of more than 50% with a minimal insertion loss of 3 dB when 250 Oe field was applied. Moreover, a magnetic switch using a dc field perpendicular to the easy axis of the ferromagnetic material was manufactured.

  14. New microwave coupler material

    SciTech Connect

    Holcombe, C.E.

    1983-12-01

    The unexpected coupling of urania (UO/sub x/, with 2 less than or equal to x less than or equal to 3) to microwave energy has previously been reported. The present study screened several different materials for coupling with microwave energy using a 1.6 kW, 2450 MHz system. Materials were nominally -100 mesh powder, >99% pure. Those which showed minimal or no heating with the microwave energy included Y/sub 2/O/sub 3/, Al/sub 2/O/sub 3/, SiO/sub 2/, BN, graphite, and unstabilized ZrO/sub 2/. Pronounced heating occurred with B/sub 4/C. This discovery led to the following evaluation/comparison of the coupling ability of B/sub 4/C with water, structurally similar materials (boron suboxide, B/sub 6/O - prepared from zinc oxide and boron, microcrystalline or amorphous boron, ..cap alpha..-type), and UO/sub 2/. In order to compare relative heating rates, the materials were placed into 50 mL beakers, covered with alumina-silica felt insulation, and subjected to 30 s at full power (both top and bottom sources on). The temperature was measured at the end of the test, after the door automatically opened, by inserting a type K thermocouple into the material. For the powders, the thermocouple was moved about to obtain the highest reading, although only a 10% or so variation occurred before the temperature dropped from heat losses. 4 references, 1 table.

  15. Electromagnetic property of SiO2-coated carbonyl iron/polyimide composites as heat resistant microwave absorbing materials

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu; Zhu, Dongmei; Zhou, Wancheng; Luo, Fa

    2015-02-01

    Heat resistant microwave absorbing materials were prepared by compression molding method, using polyimide resin as matrix and SiO2 coated carbonyl iron (CI) as filler. The SiO2 coated CI particles were prepared by Stober process. The microwave absorbing properties and the effect of heat treatment on the electromagnetic properties of SiO2 coated CI/polyimide composites were investigated. When the content of SiO2 coated CI is 60 wt%, the value of minimum reflection loss decreases from -25 dB to -33 dB with the thickness increases from 1.5 mm to 2.1 mm. According to the thermal-gravimetric analyses (TGA) curves, the polyimide matrix can be used at 300 °C for long time. The complex permittivity of the composites slightly increases while the complex permeability almost keeps constant after heat treatment at 300 °C for 10 h, which indicating that the composites can be used at elevated temperature as microwave absorbing materials at the same time have good heat resistance and microwave absorption.

  16. Using Microwave and Macroscopic Samples of Dielectric Solids to Study the Photonic Properties of Disordered Photonic Bandgap Materials

    PubMed Central

    Hashemizad, Seyed Reza; Tsitrin, Sam; Yadak, Polin; He, Yingquan; Cuneo, Daniel; Williamson, Eric Paul; Liner, Devin; Man, Weining

    2014-01-01

    Recently, disordered photonic materials have been suggested as an alternative to periodic crystals for the formation of a complete photonic bandgap (PBG). In this article we will describe the methods for constructing and characterizing macroscopic disordered photonic structures using microwaves. The microwave regime offers the most convenient experimental sample size to build and test PBG media. Easily manipulated dielectric lattice components extend flexibility in building various 2D structures on top of pre-printed plastic templates. Once built, the structures could be quickly modified with point and line defects to make freeform waveguides and filters. Testing is done using a widely available Vector Network Analyzer and pairs of microwave horn antennas. Due to the scale invariance property of electromagnetic fields, the results we obtained in the microwave region can be directly applied to infrared and optical regions. Our approach is simple but delivers exciting new insight into the nature of light and disordered matter interaction. Our representative results include the first experimental demonstration of the existence of a complete and isotropic PBG in a two-dimensional (2D) hyperuniform disordered dielectric structure. Additionally we demonstrate experimentally the ability of this novel photonic structure to guide electromagnetic waves (EM) through freeform waveguides of arbitrary shape. PMID:25285416

  17. Using microwave and macroscopic samples of dielectric solids to study the photonic properties of disordered photonic bandgap materials.

    PubMed

    Hashemizad, Seyed Reza; Tsitrin, Sam; Yadak, Polin; He, Yingquan; Cuneo, Daniel; Williamson, Eric Paul; Liner, Devin; Man, Weining

    2014-09-26

    Recently, disordered photonic materials have been suggested as an alternative to periodic crystals for the formation of a complete photonic bandgap (PBG). In this article we will describe the methods for constructing and characterizing macroscopic disordered photonic structures using microwaves. The microwave regime offers the most convenient experimental sample size to build and test PBG media. Easily manipulated dielectric lattice components extend flexibility in building various 2D structures on top of pre-printed plastic templates. Once built, the structures could be quickly modified with point and line defects to make freeform waveguides and filters. Testing is done using a widely available Vector Network Analyzer and pairs of microwave horn antennas. Due to the scale invariance property of electromagnetic fields, the results we obtained in the microwave region can be directly applied to infrared and optical regions. Our approach is simple but delivers exciting new insight into the nature of light and disordered matter interaction. Our representative results include the first experimental demonstration of the existence of a complete and isotropic PBG in a two-dimensional (2D) hyperuniform disordered dielectric structure. Additionally we demonstrate experimentally the ability of this novel photonic structure to guide electromagnetic waves (EM) through freeform waveguides of arbitrary shape.

  18. Laboratory evaluation of microwave-heated asphalt pavement materials

    SciTech Connect

    Al-Ohaly, A.A.

    1987-01-01

    The potential use of microwave energy to heat asphalt mixtures and pavements has begun attracting attention. Microwave heating is rapid, deep and uniform. With microwaves, heat is generated by the treated material under the excitation of an alternating electromagnetic field caused by the passing microwaves. Some materials such as water heat very well with microwaves, while others such as Teflon do not. Asphalt cement is similar to Teflon, but many aggregates seem to possess favorable microwave heating properties. This thesis focuses on pavement materials and their interaction with microwave energy as a heating method. The interaction between asphalt-pavement materials and the applied microwave energy was evaluated in two phases. First, the effect of microwaves on some properties of virgin and recycled mixtures was investigated. Potential benefits to adhesion and water-stripping resistance of asphalt film to aggregate are promising but need further investigation. Secondly, the effect of several mixture variables on microwave heating efficiency was also studied.

  19. Investigation of mechanical and thermal properties of microwave-sintered lunar simulant materials using 2.45 GHz radiation

    NASA Technical Reports Server (NTRS)

    Meek, T. T.

    1990-01-01

    The mechanical and thermal properties of lunar simulant material were investigated. An alternative method of examining thermal shock in microwave-sintered lunar samples was researched. A computer code was developed that models how the fracture toughness of a thermally shocked lunar simulant sample is related to the sample hardness as measured by a micro-hardness indentor apparatus. This technique enables much data to be gathered from a few samples. Several samples were sintered at different temperatures and for different times at the temperatures. The melting and recrystallization characteristics of a well-studied binary system were also investigated to see if the thermodynamic barrier for the nucleation of a crystalline phase may be affected by the presence of a microwave field. The system chosen was the albite (sodium alumino silicate) anorthite system (calcium alumino silicate). The results of these investigations are presented.

  20. The physicochemical properties of microwave-assisted encapsulated anthocyanins from Ipomoea batatas as affected by different wall materials

    PubMed Central

    Mohd Nawi, Norazlina; Muhamad, Ida Idayu; Mohd Marsin, Aishah

    2015-01-01

    This study focuses on the impact of different wall materials on the physicochemical properties of microwave-assisted encapsulated anthocyanins from Ipomoea batatas. Using the powder characterization technique, purple sweet potato anthocyanin (PSPAs) powders were analysed for moisture content, water activity, dissolution time, hygroscopicity, color and morphology. PSPAs were produced using different wall materials: maltodextrin (MD), gum arabic (GA) and a combination of gum arabic and maltodextrin (GA + MD) at a 1:1 ratio. Each of the wall materials was homogenized to the core material at a core/wall material ratio of 5 and were microencapsulated by microwave-assisted drying at 1100 W. Results indicated that encapsulated powder with the GA and MD combination presented better quality of powder with the lowest value of moisture content and water activity. With respect to morphology, the microcapsule encapsulated with GA + MD showed several dents in coating surrounding its core material, whereas other encapsulated powders showed small or slight dents entrapped onto the bioactive compound. Colorimetric analysis showed changes in values of L, a*, b*, hue and chroma in the reconstituted powder compared to the initial powder. PMID:25838887

  1. Microwave resonant technique in studies of photodielectric properties of bulk, thin film and nanoparticle materials

    NASA Astrophysics Data System (ADS)

    Pavlov, V. V.; Rakhmatullin, R. M.; Cefalas, A. C.; Semashko, V. V.

    2016-06-01

    An enhanced contactless microwave technique allows us to study the photoconductivity of materials. The transient response of the complex permittivity of matter (ε ={ε1}-j{ε2} ) under optical irradiation is measured with nanosecond time resolution. The main advantage of the novel methodology is the elimination of the polarization effect in evaluating photoconductivity. The potential of the methodology was demonstrated by photoconductivity measurements in Si [1 0 0] crystal, CeO2 nanocrystalline powder and Ce-doped LiYF4 single crystal. The variations of complex permittivity (δ {ε1} and δ {ε2} ) of Si [1 0 0] crystal, CeO2 nanocrystalline powder and Ce-doped LiYF4 single crystal under optical irradiation was measured and accurate values for crystalline band gaps were extracted. Finally, quantum confinement effects were observed in nano-size crystalline powders.

  2. Preparation and low-frequency microwave-absorbing properties of MWCNTs/Co-Ni/Fe3O4 hybrid material

    NASA Astrophysics Data System (ADS)

    Lu, Shao-Wei; Yuan, Chao-Jun; Jia, Cai-Xia; Ma, Ke-Ming; Wang, Xiao-Qiang

    2016-04-01

    MWCNTs/Co-Ni/Fe3O4 hybrid material has been successfully prepared by electroless plating and coprecipitation method, which is applied to the low-frequency microwave absorption. Their surface morphology, structure, magnetism and electromagnetic properties in the low-frequency range of 1-4GHz were characterized by field-emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and vector network analyzer. Results indicated that magnetic Co-Ni/Fe3O4 particles were attached on the surface of multi-walled carbon nanotubes successfully. The saturation magnetization of MWCNTs/Co-Ni/Fe3O4 hybrid materials was 68.6emu/g and the coercivity is 17.9 Oe. The electromagnetic and microwave absorbing properties analysis in the low-frequency range of 1-4GHz indicated that the hybrid material exhibited excellent magnetic loss and the maximum reflection loss could reach ‑13.57dB at 1.51GHz with 1.05GHz bandwidth below ‑5dB.

  3. Synthesis, Characterization and Properties of Ca5A2TiO12 (A=Nb, Ta) Ceramic Dielectric Materials for Applications in Microwave Telecommunication Systems

    NASA Astrophysics Data System (ADS)

    Bijumon, Pazhoor Varghese; Mohanan, Pezholil; Sebastian, Mailadil Thomas

    2002-06-01

    Microwave ceramic dielectric materials Ca5Nb2TiO12 and Ca5Ta2TiO12 have been prepared by a conventional solid-state ceramic process. The structure was studied by X-ray diffraction and the dielectric properties were characterized at microwave frequencies. The ceramics posses a relatively high dielectric constant, very low dielectric loss (Qu× f> 30000 GHz) and small temperature variation of resonant frequency. These materials are potential candidates for dielectric resonator applications in microwave integrated circuits.

  4. Microwave properties of metallic nanowires

    NASA Astrophysics Data System (ADS)

    Goglio, G.; Pignard, S.; Radulescu, A.; Piraux, L.; Huynen, I.; Vanhoenacker, D.; Vander Vorst, A.

    1999-09-01

    We report on the microwave properties of arrays of parallel magnetic nanowires constituted of nickel, cobalt, or Ni/Fe alloy embedded in nanoporous track-etched polymer membranes. The experiments consist of transmission measurements carried out on microwave stripline structures using a magnetically loaded membrane as the substrate. Measurements were performed at frequencies ranging from 100 MHz to 40 GHz and under static magnetic fields up to 5.6 kOe applied along the wires axis. Resonance phenomena have been observed in the magnitude of the complex transmission coefficient at frequencies which depend on the nature of the material and applied static magnetic field. Results are consistent with those expected for a ferromagnetic resonance (FMR) experiment and the observed behaviors are analyzed in the framework of the classical FMR theory.

  5. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  6. Microwavable thermal energy storage material

    SciTech Connect

    Salyer, Ival O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  7. Microwavable thermal energy storage material

    DOEpatents

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  8. Plasma-assisted microwave processing of materials

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin (Inventor); Ylin, Tzu-yuan (Inventor); Jackson, Henry (Inventor)

    1998-01-01

    A microwave plasma assisted method and system for heating and joining materials. The invention uses a microwave induced plasma to controllably preheat workpiece materials that are poorly microwave absorbing. The plasma preheats the workpiece to a temperature that improves the materials' ability to absorb microwave energy. The plasma is extinguished and microwave energy is able to volumetrically heat the workpiece. Localized heating of good microwave absorbing materials is done by shielding certain parts of the workpiece and igniting the plasma in the areas not shielded. Microwave induced plasma is also used to induce self-propagating high temperature synthesis (SHS) process for the joining of materials. Preferably, a microwave induced plasma preheats the material and then microwave energy ignites the center of the material, thereby causing a high temperature spherical wave front from the center outward.

  9. Microwave dielectric properties of biopolymers

    NASA Astrophysics Data System (ADS)

    Bartsch, Carrie M.; Subramanyam, Guru; Grote, James G.; Hopkins, F. Kenneth; Brott, Lawrence L.; Naik, Rajesh R.

    2006-09-01

    A new capacitive test structure is used to characterize biopolymers at microwave frequencies. The new test structure is comprised of a parallel plate capacitor, combined with coplanar waveguide-based input and output feed lines. This allows microwave measurements to be taken easily under an applied DC electric field. The microwave dielectric properties are characterized for two biopolymer thin films: a deoxyribonucleic acid (DNA)-based film and a bovine serum albumin (BSA)-based film. These bio-dielectric thin-films are compared with a standard commercial polymer thin film, poly[Bisphenol A carbonate-co-4,4'(3,3,5-trimethyl cyclohexylidene) diphenol], or amorphous polycarbonate (APC).

  10. Correlation Between Material Properties of Ferroelectric Thin Films and Design Parameters for Microwave Device Applications: Modeling Examples and Experimental Verification

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; VanKeuls, Fred W.; Subramanyam, Guru; Mueller, Carl H.; Romanofsky, Robert R.; Rosado, Gerardo

    2000-01-01

    The application of thin ferroelectric films for frequency and phase agile components is the topic of interest of many research groups worldwide. Consequently, proof-of-concepts (POC) of different tunable microwave components using either (HTS, metal)/ferroelectric thin film/dielectric heterostructures or (thick, thin) film "flip-chip" technology have been reported. Either as ferroelectric thin film characterization tools or from the point of view of circuit implementation approach, both configurations have their respective advantages and limitations. However, we believe that because of the progress made so far using the heterostructure (i.e., multilayer) approach, and due to its intrinsic features such as planar configuration and monolithic integration, a study on the correlation of circuit geometry aspects and ferroelectric material properties could accelerate the insertion of this technology into working systems. In this paper, we will discuss our study performed on circuits based on microstrip lines at frequencies above 10 GHz, where the multilayer configuration offers greater ease of insertion due to circuit's size reduction. Modeled results of relevant circuit parameters such as the characteristic impedance, effective dielectric constant, and attenuation as a function of ferroelectric film's dielectric constant, tans, and thickness, will be presented for SrTiO3 and Ba(x)Sr(1-x)TiO3 ferroelectric films. A comparison between the modeled and experimental data for some of these parameters will be presented.

  11. Microwave techniques for physical property measurements

    NASA Technical Reports Server (NTRS)

    Barmatz, M.

    1993-01-01

    Industrial processing of metals and ceramics is now being streamlined by the development of theoretical models. High temperature thermophysical properties of these materials are required to successfully apply these theories. Unfortunately, there is insufficient experimental data available for many of these properties, particularly in the molten state. Microwave fields can be used to measure specific heat, thermal diffusivity, thermal conductivity and dielectric constants at high temperatures. We propose to (1) develop a microwave flash method (analogous to the laser flash technique) that can simultaneously measure the thermal diffusivity and specific heat of insulators and semiconductors at high temperatures, (2) an appropriate theory and experimental apparatus to demonstrate the measurement of the specific heat of a metal using a new microwave ac specific heat technique, and (3) experimental methods for noncontact measurement of the real and imaginary dielectric constants.

  12. Microwave processing of radioactive materials-I

    SciTech Connect

    White, T.L.; Berry, J.B.

    1989-01-01

    This paper is the first of two papers that reviews the major past and present applications of microwave energy for processing radioactive materials, with particular emphasis on processing radioactive wastes. Microwave heating occurs through the internal friction produced inside a dielectric material when its molecules vibrate in response to an oscillating microwave field. For this presentation, we shall focus on the two FCC-approved microwave frequencies for industrial, scientific, and medical use, 915 and 2450 MHz. Also, because of space limitations, we shall postpone addressing plasma processing of hazardous wastes using microwave energy until a later date. 13 refs., 4 figs.

  13. Cryogenic microwave anisotropic artificial materials

    NASA Astrophysics Data System (ADS)

    Trang, Frank

    This thesis addresses analysis and design of a cryogenic microwave anisotropic wave guiding structure that isolates an antenna from external incident fields from specific directions. The focus of this research is to design and optimize the radome's constituent material parameters for maximizing the isolation between an interior receiver antenna and an exterior transmitter without significantly disturbing the transmitter antenna far field characteristics. The design, characterization, and optimization of high-temperature superconducting metamaterials constitutive parameters are developed in this work at X-band frequencies. A calibrated characterization method for testing arrays of split-ring resonators at cryogenic temperature inside a TE10 waveguide was developed and used to back-out anisotropic equivalent material parameters. The artificial material elements (YBCO split-ring resonators on MgO substrate) are optimized to improve the narrowband performance of the metamaterial radome with respect to maximizing isolation and minimizing shadowing, defined as a reduction of the transmitted power external to the radome. The optimized radome is fabricated and characterized in a parallel plate waveguide in a cryogenic environment to demonstrate the degree of isolation and shadowing resulting from its presence. At 11.12 GHz, measurements show that the HTS metamaterial radome achieved an isolation of 10.5 dB and the external power at 100 mm behind the radome is reduced by 1.9 dB. This work demonstrates the feasibility of fabricating a structure that provides good isolation between two antennas and low disturbance of the transmitter's fields.

  14. Method of sintering materials with microwave radiation

    DOEpatents

    Kimrey, Jr., Harold D.; Holcombe, Jr., Cressie E.; Dykes, Norman L.

    1994-01-01

    A method of sintering ceramic materials following: A compacted article comprising inorganic particles coated with carbon is provided, the carbon providing improved microwave coupling. The compacted article is then heated by microwave radiation to a temperature and for a period of time sufficient to sinter the compacted article.

  15. Excellent microwave absorption property of Graphene-coated Fe nanocomposites

    PubMed Central

    Zhao, Xingchen; Zhang, Zhengming; Wang, Liaoyu; Xi, Kai; Cao, Qingqi; Wang, Dunhui; Yang, Yi; Du, Youwei

    2013-01-01

    Graphene has evoked extensive interests for its abundant physical properties and potential applications. It is reported that the interfacial electronic interaction between metal and graphene would give rise to charge transfer and change the electronic properties of graphene, leading to some novel electrical and magnetic properties in metal-graphene heterostructure. In addition, large specific surface area, low density and high chemical stability make graphene act as an ideal coating material. Taking full advantage of the aforementioned features of graphene, we synthesized graphene-coated Fe nanocomposites for the first time and investigated their microwave absorption properties. Due to the charge transfer at Fe-graphene interface in Fe/G, the nanocomposites show distinct dielectric properties, which result in excellent microwave absorption performance in a wide frequency range. This work provides a novel approach for exploring high-performance microwave absorption material as well as expands the application field of graphene-based materials. PMID:24305606

  16. Fabrication and microwave absorbing properties of NixPy nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Haoran; Wan, Lei; Chen, Yaqiong; Hu, Wenbin; Liu, Lei; Zhong, Cheng; Deng, Yida

    2015-06-01

    Materials possessing microwave absorbing properties have been a researching hotspot for their important applications amid a high frequency electromagnetic waves environment. This paper focuses on the preparation of a series of NixPy(x:y = 2.65-2.73) nanotubes (NTs) and their corresponding microwave absorbing properties. After being heat-treated, different NixPy phases would appear, without damaging their initial hollow morphologies. These processes were accompanied with the alteration of related physical properties. Low enough minimum reflection loss (RL) has been achieved in all of these samples, with -48.63 dB as the lowest one being obtained at the non-heat-treated sample. Besides, a large proportion of the microwave frequency band could be covered on the 450 °C heat-treated sample (over a 4.5 GHz bandwidth). These are indicative of the superior microwave absorbing nature of NixPy NTs.

  17. Microwave Properties of Quiet Seas

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.

    1987-01-01

    Microwave fluxes from three quiet seas documented for five microwave frequencies. Measurements taken by satellite in Earth orbit with mechanically scanned antenna. 10-channel receiver used to record simultaneously signal intensities in both horizontal and vertical polarizations at each frequency. Comparisons of flux measurements of three quiet seas drawn, and results discussed and analyzed.

  18. The Workshop on Microwave-Absorbing Materials for Accelerators

    SciTech Connect

    Isidoro Campisi

    1993-05-01

    A workshop on the physics and applications of microwave-absorbing materials in accelerators and related systems was held at CEBAF February 22-24, 1993. The gathering brought together about 150 scientists and representatives of industries from all over the world. The main topics of discussion were the properties of ''absorbing'' materials and how the stringent conditions in an accelerator environment restrict the choice of usable material.

  19. Microwave processing of materials. Final report

    SciTech Connect

    McMillan, A.D.; Lauf, R.J.; Garard, R.S.

    1997-11-01

    A Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Systems, Inc. (LMES) and Lambda Technologies, Inc. (Lambda) of Raleigh, N.C., was initiated in May 1995. [Lockheed Martin Energy Research, Corp. (LMER) has replaced LMES]. The completion data for the Agreement was December 31, 1996. The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace (VFMF); and (2) microwave curing of polymer composites. The VFMF, whose initial conception and design was funded by the Advanced Industrial Concepts (AIC) Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies.

  20. Microwave heating of lunar materials. Appendix A

    NASA Technical Reports Server (NTRS)

    Meek, Thomas T.

    1992-01-01

    Microwave heating of nonmetallic inorganic material has been of interest for many years. Von Hippel in the late 1940's and early 1950's investigated how microwave radiation up to 10 GHz couples to various insulator materials. Perhaps the most work has been done by Wayne Tinga at the University of Edmonton. Most of the work to date has been done at the two frequency bands allowed in industrial use (0.915 GHz and 2.45 GHz). However some work has recently been carried out at 28 GHz and 60 GHz. Work done in this area at Los Alamos National Laboratory is discussed.

  1. Slow microwaves in left-handed materials

    NASA Astrophysics Data System (ADS)

    di Gennaro, E.; Parimi, P. V.; Lu, W. T.; Sridhar, S.; Derov, J. S.; Turchinetz, B.

    2005-07-01

    Remarkably slow propagation of microwaves in two different classes of left-handed materials (LHM’s) is reported from microwave-pulse and continuous-wave transmission measurements. Microwave dispersion in a composite LHM made of split-ring resonators and wire strips reveals group velocity vg˜c/50 , where c is the free-space light velocity. Photonic crystals (PhC’s) made of dielectric Al2O3 rods reveal vg˜c/10 . Group delay dispersion of both the composite LHM and PhC’s determined from the experiment is in complete agreement with that obtained from theory. The slow group velocities are quantitatively described by the strong dispersion observed in these materials.

  2. Electromagnetic properties of Fe53Ni47 and Fe53Ni47/Cu granular composite materials in the microwave range

    NASA Astrophysics Data System (ADS)

    Massango, Herieta; Tsutaoka, Takanori; Kasagi, Teruhiro

    2016-09-01

    The electromagnetic proprieties of Fe53Ni47 granular composite materials and Fe53Ni47/Cu hybrid granular composites have been studied by measuring the relative complex permeability and permittivity spectra as well as the ac electrical conductivity. In the Fe53Ni47 composite, the variation of the ac conductivity at 1 kHz with the particle volume content shows an insulator-metal transition at the percolation threshold at 61 vol% particle content. A negative permeability spectrum due to the magnetic resonance in Fe53Ni47 particles was observed in the 85 vol% composite. Meanwhile, the negative permittivity spectrum caused by the plasmoinc state of the percolated Fe53Ni47 particle clusters appears at 90 vol%. The Fe53Ni47/Cu hybrid composite containing 85 vol% of Fe53Ni47/Cu hybrid particle as filers shows the percolative metallic properties; the ac conductivity increases with increasing the Cu particle volume fraction in the Fe53Ni47/Cu particle system. The negative permittivity spectrum appears above the Cu particle volume fraction of 0.16; the double negative characteristic was observed at that of 0.20 and 0.24 hybrid composites in the frequency range from 300 MHz to 1.8 GHz in the absence of the external magnetic field.

  3. Electromagnetic properties of Fe53Ni47 and Fe53Ni47/Cu granular composite materials in the microwave range

    NASA Astrophysics Data System (ADS)

    Massango, Herieta; Tsutaoka, Takanori; Kasagi, Teruhiro

    2016-09-01

    The electromagnetic proprieties of Fe53Ni47 granular composite materials and Fe53Ni47/Cu hybrid granular composites have been studied by measuring the relative complex permeability and permittivity spectra as well as the ac electrical conductivity. In the Fe53Ni47 composite, the variation of the ac conductivity at 1 kHz with the particle volume content shows an insulator–metal transition at the percolation threshold at 61 vol% particle content. A negative permeability spectrum due to the magnetic resonance in Fe53Ni47 particles was observed in the 85 vol% composite. Meanwhile, the negative permittivity spectrum caused by the plasmoinc state of the percolated Fe53Ni47 particle clusters appears at 90 vol%. The Fe53Ni47/Cu hybrid composite containing 85 vol% of Fe53Ni47/Cu hybrid particle as filers shows the percolative metallic properties; the ac conductivity increases with increasing the Cu particle volume fraction in the Fe53Ni47/Cu particle system. The negative permittivity spectrum appears above the Cu particle volume fraction of 0.16; the double negative characteristic was observed at that of 0.20 and 0.24 hybrid composites in the frequency range from 300 MHz to 1.8 GHz in the absence of the external magnetic field.

  4. Materials processing using a variable frequency microwave furnace

    SciTech Connect

    Lauf, R.J.; Bible, D.W.; Maddox, S.R.; Everleigh, C.A.; Espinosa, R.J.; Johnson, A.C.

    1993-12-31

    We describe a materials processing system that uses a high power traveling wave tube (TWT) as the microwave source. The TWT provides approximately one octave bandwidth and variable power levels up to 2 kW into a multimode cavity. By controlling the frequency, efficient coupling to the load can be maintained even as the load`s dielectric properties change. Alternatively, can be used as a means of mode stirring at rates far beyond those attainable through mechanical stirring. The system has been tested for sintering alumina ceramics, annealing a tungsten penetrator alloy, curing epoxy resin, and depositing diamond films from a microwave plasma.

  5. Electrically tunable materials for microwave applications

    SciTech Connect

    Ahmed, Aftab Goldthorpe, Irene A.; Khandani, Amir K.

    2015-03-15

    Microwave devices based on tunable materials are of vigorous current interest. Typical applications include phase shifters, antenna beam steering, filters, voltage controlled oscillators, matching networks, and tunable power splitters. The objective of this review is to assist in the material selection process for various applications in the microwave regime considering response time, required level of tunability, operating temperature, and loss tangent. The performance of a variety of material types are compared, including ferroelectric ceramics, polymers, and liquid crystals. Particular attention is given to ferroelectric materials as they are the most promising candidates when response time, dielectric loss, and tunability are important. However, polymers and liquid crystals are emerging as potential candidates for a number of new applications, offering mechanical flexibility, lower weight, and lower tuning voltages.

  6. Electrically tunable materials for microwave applications

    NASA Astrophysics Data System (ADS)

    Ahmed, Aftab; Goldthorpe, Irene A.; Khandani, Amir K.

    2015-03-01

    Microwave devices based on tunable materials are of vigorous current interest. Typical applications include phase shifters, antenna beam steering, filters, voltage controlled oscillators, matching networks, and tunable power splitters. The objective of this review is to assist in the material selection process for various applications in the microwave regime considering response time, required level of tunability, operating temperature, and loss tangent. The performance of a variety of material types are compared, including ferroelectric ceramics, polymers, and liquid crystals. Particular attention is given to ferroelectric materials as they are the most promising candidates when response time, dielectric loss, and tunability are important. However, polymers and liquid crystals are emerging as potential candidates for a number of new applications, offering mechanical flexibility, lower weight, and lower tuning voltages.

  7. MICROWAVE MEASUREMENT OF REFRACTORY MATERIALS AT HIGH-TEMPERATURE

    SciTech Connect

    Kharkovsky, S.; Zoughi, R.; Smith, J.; Davis, B.; Limmer, R.

    2009-03-03

    Knowledge of the electrical behavior of refractory materials may enable the development and optimization of microwave nondestructive techniques to detect and evaluate changes in their physical properties while the materials are in service. This paper presents the results of a limited and preliminary investigation in which two refractory materials (dense chrome and dense zircon) were subjected to increasing temperature in a furnace and in which a frequency-modulated continuous-wave radar operating in the frequency range of 8-18 GHz radar was used to evaluate their attenuation properties.

  8. Active Microwave Properties of Vegetation Canopies

    NASA Technical Reports Server (NTRS)

    Paris, J. F. (Principal Investigator)

    1985-01-01

    Potential users of radar imagery need a better fundamental understanding of the capabilities of radar systems for vegetation studies than past studies provide. One approach is the use of theoretical models to predict observable active microwave properties of vegetation. This in turn requires accurate observations of backscattering coefficients and other active microwave properties in field research studies. The background document for the SRAEC program emphasizes the need to relate electromagnetic parameters to classical biophysical descriptors and to understand the role of polarization, especially cross-polarization. The broad goal of this study is to increase the understanding of the effects of canopy structure on the active microwave properties of vegetation canopies, with particular attention to polarization.

  9. Microwave impregnation of porous materials with thermal energy storage materials

    DOEpatents

    Benson, David K.; Burrows, Richard W.

    1993-01-01

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  10. Microwave impregnation of porous materials with thermal energy storage materials

    DOEpatents

    Benson, D.K.; Burrows, R.W.

    1993-04-13

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  11. Microwave impregnation of porous materials with thermal energy storage materials

    SciTech Connect

    Benson, D.K.; Burrows, R.W.

    1991-03-13

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent tc the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  12. Microwave impregnation of porous materials with thermal energy storage materials

    SciTech Connect

    Benson, D.K.; Burrows, R.W.

    1992-12-31

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  13. A container for heat treating materials in microwave ovens

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.; Kimrey, H.D. Jr.; Mills, J.E.

    1988-01-26

    The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed to top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation for reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achievable in the oven without the container.

  14. Topological properties of microwave magnetoelectric fields.

    PubMed

    Berezin, M; Kamenetskii, E O; Shavit, R

    2014-02-01

    Collective excitations of electron spins in a ferromagnetic sample dominated by the magnetic dipole-dipole interaction strongly influence the field structure of microwave radiation. A small quasi-two-dimensional ferrite disk with magnetic-dipolar-mode (MDM) oscillation spectra can behave as a source of specific fields in vacuum, termed magnetoelectric (ME) fields. A coupling between the time-varying electric and magnetic fields in the ME-field structures is different from such a coupling in regular electromagnetic fields. The ME fields are characterized by strong energy confinement at a subwavelength region of microwave radiation, topologically distinctive power-flow vortices, and helicity parameters [E. O. Kamenetskii, R. Joffe, and R. Shavit, Phys. Rev. E 87, 023201 (2013)]. We study topological properties of microwave ME fields by loading a MDM ferrite particle with different dielectric samples. We establish a close connection between the permittivity parameters of dielectric environment and the topology of ME fields. We show that the topology of ME fields is strongly correlated with the Fano-resonance spectra observed at terminals of a microwave structure. We reveal specific thresholds in the Fano-resonance spectra appearing at certain permittivity parameters of dielectric samples. We show that ME fields originated from MDM ferrite disks can be distinguished by topological portraits of the helicity parameters and can have a torsion degree of freedom. Importantly, the ME-field phenomena can be viewed as implementations of space-time coordinate transformations on waves.

  15. Topological properties of microwave magnetoelectric fields.

    PubMed

    Berezin, M; Kamenetskii, E O; Shavit, R

    2014-02-01

    Collective excitations of electron spins in a ferromagnetic sample dominated by the magnetic dipole-dipole interaction strongly influence the field structure of microwave radiation. A small quasi-two-dimensional ferrite disk with magnetic-dipolar-mode (MDM) oscillation spectra can behave as a source of specific fields in vacuum, termed magnetoelectric (ME) fields. A coupling between the time-varying electric and magnetic fields in the ME-field structures is different from such a coupling in regular electromagnetic fields. The ME fields are characterized by strong energy confinement at a subwavelength region of microwave radiation, topologically distinctive power-flow vortices, and helicity parameters [E. O. Kamenetskii, R. Joffe, and R. Shavit, Phys. Rev. E 87, 023201 (2013)]. We study topological properties of microwave ME fields by loading a MDM ferrite particle with different dielectric samples. We establish a close connection between the permittivity parameters of dielectric environment and the topology of ME fields. We show that the topology of ME fields is strongly correlated with the Fano-resonance spectra observed at terminals of a microwave structure. We reveal specific thresholds in the Fano-resonance spectra appearing at certain permittivity parameters of dielectric samples. We show that ME fields originated from MDM ferrite disks can be distinguished by topological portraits of the helicity parameters and can have a torsion degree of freedom. Importantly, the ME-field phenomena can be viewed as implementations of space-time coordinate transformations on waves. PMID:25353595

  16. Calorimetry study of microwave absorption of some solid materials.

    PubMed

    He, Chun Lin; Ma, Shao Jian; Su, Xiu Juan; Chen, Yan Qing; Liang, Yu Shi

    2013-01-01

    In practice, the dielectric constant of a material varies the applied frequency the material composition, particle size, purity, temperature, physical state (solid or liquid), and moisture content. All of these parameters might change during processing, therefore, it is difficult to predict how well a material will absorb microwave energy in a given process. When the temperature is measured by a digital thermometer, it could not accurately reflect the true temperature of the bulk materials, especially for mixed materials. Thus, in this paper we measured the microwave absorption characteristics of different materials by calorimetry. The microwave power levels, irradiation times, and masses of the materials were varied. It was difficult to predict the microwave energy absorption characteristics of reagent-grade inorganic compounds based on their color, metallic cation, or water stoichiometry. CuO, MnO2, Fe3O4, and MnSO4 x H2O (Taishan) strongly absorbed microwave energy. Most of the remaining inorganic compounds were poor absorbers, with silica hardly absorbing any microwave energy. Carbon-based materials had significantly different microwave absorption characteristics. Activated carbon and coke were especially sensitive to microwaves, but different types of coal were poor absorbers. The jamesonite concentrate absorbed microwave energy strongly, while the zinc concentrate was a poor absorber. PMID:24779227

  17. Calorimetry study of microwave absorption of some solid materials.

    PubMed

    He, Chun Lin; Ma, Shao Jian; Su, Xiu Juan; Chen, Yan Qing; Liang, Yu Shi

    2013-01-01

    In practice, the dielectric constant of a material varies the applied frequency the material composition, particle size, purity, temperature, physical state (solid or liquid), and moisture content. All of these parameters might change during processing, therefore, it is difficult to predict how well a material will absorb microwave energy in a given process. When the temperature is measured by a digital thermometer, it could not accurately reflect the true temperature of the bulk materials, especially for mixed materials. Thus, in this paper we measured the microwave absorption characteristics of different materials by calorimetry. The microwave power levels, irradiation times, and masses of the materials were varied. It was difficult to predict the microwave energy absorption characteristics of reagent-grade inorganic compounds based on their color, metallic cation, or water stoichiometry. CuO, MnO2, Fe3O4, and MnSO4 x H2O (Taishan) strongly absorbed microwave energy. Most of the remaining inorganic compounds were poor absorbers, with silica hardly absorbing any microwave energy. Carbon-based materials had significantly different microwave absorption characteristics. Activated carbon and coke were especially sensitive to microwaves, but different types of coal were poor absorbers. The jamesonite concentrate absorbed microwave energy strongly, while the zinc concentrate was a poor absorber.

  18. Hydrogen recovery from extraterrestrial materials using microwave energy

    NASA Astrophysics Data System (ADS)

    Tucker, D. S.; Vaniman, D. T.; Anderson, J. L.; Clinard, F. W., Jr.; Feber, R. C., Jr.; Frost, H. M.; Meek, T. T.; Wallace, T. C.

    The feasibility of recovering hydrogen from extraterrestrial materials (lunar and Martian soils, asteroids) using microwave energy is presented. Reasons for harvesting and origins and locations of hydrogen are reviewed. Problems of hydrogen recovery are discussed in terms of hydrogen release characteristics and microwave coupling to insulating materials. From results of studies of hydrogen diffusivities (oxides, glasses) and tritium release (oxides) as well as studies of microwave coupling to ilmenite, alkali basalt and ceramic oxides it is concluded that using microwave heating in hydrogen recovery from extraterrestrial materials could be the basis for a workable process.

  19. Hydrogen recovery from extraterrestrial materials using microwave energy

    SciTech Connect

    Tucker, D.S.; Vaniman, D.T.; Anderson, J.L.; Clinard, F.W. Jr.; Feber, R.C. Jr.; Frost, H.M.; Meek, T.T.; Wallace, T.C.

    1984-01-01

    The feasibility of recovering hydrogen from extraterrestrial materials (lunar and Martian soils, asteroids) using microwave energy is presented. Reasons for harvesting and origins and locations of hydrogen are reviewed. Problems of hydrogen recovery are discussed in terms of hydrogen release characteristics and microwave coupling to insulating materials. From results of studies of hydrogen diffusivities (oxides, glasses) and tritium release (oxides) as well as studies of microwave coupling to ilmenite, alkali basalt and ceramic oxides it is concluded that using microwave energy in hydrogen recovery from extraterrestrial materials could be the basis for a workable process.

  20. Trends of microwave dielectric materials for antenna application

    NASA Astrophysics Data System (ADS)

    Sulong, T. A. T.; Osman, R. A. M.; Idris, M. S.

    2016-07-01

    Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such as high or appropriate permittivity (ɛr), high quality factor (Q f ≥ 5000GH z) and good temperature coefficient of resonant frequency (τf). This paper review of various dielectric ceramic materials used as microwave dielectric materials and related parameters for antenna applications.

  1. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  2. Container for heat treating materials in microwave ovens

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Kimrey, Jr., Harold D.; Mills, James E.

    1989-01-01

    The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed of top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achieveable in the oven without the container.

  3. Microwave power for smart material actuators

    NASA Astrophysics Data System (ADS)

    Choi, Sang H.; Song, Kyo D.; Golembiewskii, Walter; Chu, Sang-Hyon; King, Glen C.

    2004-02-01

    The concept of microwave-driven smart material actuators was envisioned and developed as the best option to alleviate the complexity and weight associated with a hard-wire-networked power and control system for smart actuator arrays. The patch rectenna array was initially designed for high current output, but has undergone further development for high voltage output devices used in shape control applications. Test results show that more than 200 V of output were obtained from a 6 × 6 array at a far-field exposure (1.8 m away) with an X-band input power of 18 W. The 6 × 6 array patch rectenna was designed to theoretically generate voltages up to 540 V, but practically it has generated voltages in the range between 200 and 300 V. Testing was also performed with a thin layer composite unimorph ferroelectric driver and sensor and electro-active paper as smart actuators attached to the 6 × 6 array. Flexible dipole rectenna arrays built on thin-film-based flexible membranes are most applicable for NASA's various missions, such as microwave-driven shape controls for aircraft morphing and large, ultra-lightweight space structures. An array of dipole rectennas was designed for high voltage output by densely populating Schottky barrier diodes to drive piezoelectric or electrostrictive actuators. The dipole rectenna array will eventually be integrated with a power allocation and distribution logic circuit and microbatteries for storage of excessive power. The roadmap for the development of wireless power drivers based on the rectenna array for shape control requires the development of new membrane materials with proper dielectric constants that are suitable for dipole rectenna arrays.

  4. Technique for Performing Dielectric Property Measurements at Microwave Frequencies

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Jackson, Henry W.

    2010-01-01

    A paper discusses the need to perform accurate dielectric property measurements on larger sized samples, particularly liquids at microwave frequencies. These types of measurements cannot be obtained using conventional cavity perturbation methods, particularly for liquids or powdered or granulated solids that require a surrounding container. To solve this problem, a model has been developed for the resonant frequency and quality factor of a cylindrical microwave cavity containing concentric cylindrical samples. This model can then be inverted to obtain the real and imaginary dielectric constants of the material of interest. This approach is based on using exact solutions to Maxwell s equations for the resonant properties of a cylindrical microwave cavity and also using the effective electrical conductivity of the cavity walls that is estimated from the measured empty cavity quality factor. This new approach calculates the complex resonant frequency and associated electromagnetic fields for a cylindrical microwave cavity with lossy walls that is loaded with concentric, axially aligned, lossy dielectric cylindrical samples. In this approach, the calculated complex resonant frequency, consisting of real and imaginary parts, is related to the experimentally measured quantities. Because this approach uses Maxwell's equations to determine the perturbed electromagnetic fields in the cavity with the material(s) inserted, one can calculate the expected wall losses using the fields for the loaded cavity rather than just depending on the value of the fields obtained from the empty cavity quality factor. These additional calculations provide a more accurate determination of the complex dielectric constant of the material being studied. The improved approach will be particularly important when working with larger samples or samples with larger dielectric constants that will further perturb the cavity electromagnetic fields. Also, this approach enables the ability to have a

  5. Microwave absorption properties of composite powders with low density

    NASA Astrophysics Data System (ADS)

    Mu, Guohong; Shen, Haigen; Qiu, Jianxun; Gu, Mingyuan

    2006-12-01

    The composites of barium ferrite coated on hollow ceramic microspheres were prepared using sol-gel technique. The crystal structure, morphology and microwave absorption properties of composite powders with different weight ratio of microspheres were studied with XRD, EDS, FESEM and vector network analyzer. The results show that the microwave absorption properties of composite powders are greatly improved. The maximum microwave loss of composite powders reaches 31 dB with an amount of 50 wt.% microspheres, and its density is only about 1.80 g/cm 3. The effect of hollow ceramic microspheres on the microwave absorption property is also discussed.

  6. Apparatus and method for microwave processing of materials

    DOEpatents

    Johnson, A.C.; Lauf, R.J.; Bible, D.W.; Markunas, R.J.

    1996-05-28

    Disclosed is a variable frequency microwave heating apparatus designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency heating apparatus is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity depending upon the material, including the state thereof, from which the workpiece is fabricated. The variable frequency microwave heating apparatus includes a microwave signal generator and a high-power microwave amplifier or a microwave voltage-controlled oscillator. A power supply is provided for operation of the high-power microwave oscillator or microwave amplifier. A directional coupler is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 10 figs.

  7. Apparatus and method for microwave processing of materials

    DOEpatents

    Johnson, Arvid C.; Lauf, Robert J.; Bible, Don W.; Markunas, Robert J.

    1996-01-01

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency heating apparatus (10) is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity (34) depending upon the material, including the state thereof, from which the workpiece (36) is fabricated. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a microwave voltage-controlled oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  8. Absorption of microwaves in metal-ceramic powder materials

    NASA Astrophysics Data System (ADS)

    Egorov, S. V.; Eremeev, A. G.; Plotnikov, I. V.; Rybakov, K. I.; Kholoptsev, V. V.; Bykov, Yu. V.

    2010-11-01

    Sintering of metal-ceramic composites by microwave heating is a promising method for creation of functionally graded materials. In this paper, we study the absorption of microwaves in compacted mixtures of metal and dielectric powders. The coefficient of microwave absorption is calculated within the framework of the effective-medium approximation as a function of the mass fraction, dimensions, and temperature of metal particles. The experimental method for determination of the microwave absorption coefficient is proposed, which is based on measuring the temperature of the samples during their heating by microwaves in an oversized working chamber. The coefficients of microwave absorption in powder composites Al2O3-Ni, which were measured by the proposed method, are presented. An agreement between the theoretical and experimental results is demonstrated.

  9. Microwave dielectric properties of boreal forest trees

    NASA Technical Reports Server (NTRS)

    Xu, G.; Ahern, F.; Brown, J.

    1993-01-01

    The knowledge of vegetation dielectric behavior is important in studying the scattering properties of the vegetation canopy and radar backscatter modelling. Until now, a limited number of studies have been published on the dielectric properties in the boreal forest context. This paper presents the results of the dielectric constant as a function of depth in the trunks of two common boreal forest species: black spruce and trembling aspen, obtained from field measurements. The microwave penetration depth for the two species is estimated at C, L, and P bands and used to derive the equivalent dielectric constant for the trunk as a whole. The backscatter modelling is carried out in the case of black spruce and the results are compared with the JPL AIRSAR data. The sensitivity of the backscatter coefficient to the dielectric constant is also examined.

  10. Microwave properties of high transition temperature superconducting thin films

    NASA Technical Reports Server (NTRS)

    Gordon, W. L.

    1991-01-01

    Extensive studies of the interaction of microwaves with YBa2Cu3O(7-delta), Bi-based, and Tl-based superconducting thin films deposited in several microwave substrates were performed. The data were obtained by measuring the microwave power transmitted through the film in the normal and the superconducting state and by resonant cavity techniques. The main motives were to qualify and understand the physical parameters such as the magnetic penetration depth, the complex conductivity, and the surface impedance, of high temperature superconducting (HTS) materials at microwave frequencies. Based on these parameters, the suitability of these HTS thin films is discussed for microwave applications.

  11. Microwave dielectric behavior of vegetation material

    NASA Technical Reports Server (NTRS)

    Elrayes, Mohamed A.; Ulaby, Fawwaz T.

    1987-01-01

    The microwave dielectric behavior of vegetation was examined through the development of theoretical models involving dielectric dispersion by both bound and free water and supported by extensive dielectric measurements conducted over a wide range of conditions. The experimental data were acquired using an open-ended coaxial probe that was developed for sensing the dielectric constant of thin layers of materials, such as leaves, from measurements of the complex reflection coefficient using a network analyzer. The probe system was successfully used to record the spectral variation of the dielectric constant over a wide frequency range extending from 0.5 to 20.4 GHz at numerous temperatures between -40 to +40 C. The vegetation samples were measured over a wide range of moisture conditions. To model the dielectric spectrum of the bound water component of the water included in vegetation, dielectric measurements were made for several sucrose-water solutions as analogs for the situation in vegetation. The results were used in conjunction with the experimental data for leaves to determine some of the constant coefficients in the theoretical models. Two models, both of which provide good fit to the data, are proposed.

  12. Microwave sensors for nondestructive testing of materials

    NASA Astrophysics Data System (ADS)

    Lasri, Tuami; Glay, David; Mamouni, Ahmed; Leroy, Yves

    1999-10-01

    Much of today's applications in nondestructive testing by microwaves use an automatic network analyzer. As a result, there is a need for systems to reduce the cost of this kind of techniques. Fortunately, now we can benefit from the cost reduction of the microwave components, induced by the considerable development of the communication market, around 2 and 10 GHz. So, it seems reasonable to think that microwaves will take advantage of this new situation to assert themselves in this application field. In this context we conceive and develop original equipment competitive in term of price and reliability.

  13. Microwave dielectric sensing of bulk density of granular materials

    NASA Astrophysics Data System (ADS)

    Trabelsi, Samir; Kraszewski, Andrzej W.; Nelson, Stuart O.

    2001-12-01

    A nondestructive dielectric method for sensing bulk density of granular materials is presented. The bulk density is determined from measurement of the dielectric properties of these materials at a single microwave frequency without knowledge of their moisture content and temperature. Bulk density calibration equations are generated from a complex-plane representation of the dielectric properties normalized with respect to bulk density. The effectiveness of the method is shown through measurement of the dielectric properties at 7 GHz for materials with significant compositional and structural differences, i.e. wheat, oats, corn and soybeans, over wide ranges of moisture content and temperature. The standard error of calibration and the relative error calculated for each material indicate that the method is as accurate as or better than commonly used methods for on-line density determination. Because the density is expressed in terms of the relative complex permittivity, the method can be applied regardless of the measurement technique (using transmission lines, a resonant cavity, admittance or impedance).

  14. Microwave transmission properties of chemical vapor deposition graphene

    NASA Astrophysics Data System (ADS)

    Wu, Yunqiu; Xu, Yuehang; Wang, Zegao; Xu, Cao; Tang, Zongxi; Chen, Yuanfu; Xu, Ruimin

    2012-07-01

    In this letter, the microwave transmission properties of graphene grown by the chemical vapor deposition are studied by using a multiple-layer coplanar-waveguide transmission-line based measurement method. Remarkable energy loss and phase shift have been observed in graphene from the measured scattering parameters through vector network analyzer. The effective permittivity is deduced by partial-capacitance technique, and the complex permittivity of graphene are extracted in the frequency range of 500 MHz to 6 GHz. Different from conventional dielectric material, the permittivity of graphene shows frequency-dependent below 4 GHz and has an magnitude larger than 104 for both real and imaginary parts.

  15. Effects of Microwave Radiation on Selected Mechanical Properties of Silk

    NASA Astrophysics Data System (ADS)

    Reed, Emily Jane

    Impressive mechanical properties have served to peak interest in silk as an engineering material. In addition, the ease with which silk can be altered through processing has led to its use in various biomaterial applications. As the uses of silk branch into new territory, it is imperative (and inevitable) to discover the boundary conditions beyond which silk no longer performs as expected. These boundary conditions include factors as familiar as temperature and humidity, but may also include other less familiar contributions, such as exposure to different types of radiation. The inherent variations in mechanical properties of silk, as well as its sensitivity to moisture, suggest that in an engineering context silk is best suited for use in composite materials; that way, silk can be shielded from ambient moisture fluctuations, and the surrounding matrix allows efficient load transfer from weaker fibers to stronger ones. One such application is to use silk as a reinforcing fiber in epoxy composites. When used in this way, there are several instances in which exposure to microwave radiation is likely (for example, as a means of speeding epoxy cure rates), the effects of which remain mostly unstudied. It will be the purpose of this dissertation to determine whether selected mechanical properties of B. mori cocoon silk are affected by exposure to microwave radiation, under specified temperature and humidity conditions. Results of our analyses are directly applicable wherever exposure of silk to microwave radiation is possible, including in fiber reinforced epoxy composites (the entire composite may be microwaved to speed epoxy cure time), or when silk is used as a component in the material used to construct the radome of an aircraft (RADAR units use frequencies in the microwave range of the electromagnetic spectrum), or when microwave energy is used to sterilize biomaterials (such as cell scaffolds) made of silk. In general, we find that microwave exposure does not

  16. Conducting polymer composite materials for smart microwave windows

    NASA Astrophysics Data System (ADS)

    Barnes, Alan; Lees, K.; Wright, Peter V.; Chambers, Barry

    1999-07-01

    Samples of poly(aniline)-silver-polymer electrolyte particulate composites have been characterized at microwave frequencies when small d.c. electric fields are applied across them in both coaxial line and waveguide measurement test sets. The experimental data shows that the initial conductivity of the materials is dependent on the concentration of sliver metal and suggest that changes in resistance due to chemical switching take place, at least in part, in the manufacture of the composites. When silver is used as the electrodes, the experimental data show that changes in the slope of the cyclic voltammograms coincide with large changes in microwave reflectivity or transmission consistent with increasing conductivity of the composites when fields are applied. The reverse change occurs when the fields are removed. Measurements have shown that the composites are able to switch between the two impedance stats in times of less than one second for well over a million cycles with no apparent depreciation in material properties. Large area films have also been prepared and studied using the 'free space' technique.

  17. A PORTABLE MICROWAVE INTERFERENCE SCANNING SYSTEM FOR NONDESTRUCTIVE TESTING OF MULTI-LAYERED DIELECTRIC MATERIALS

    SciTech Connect

    Schmidt, K. F.; Little, J. R.; Ellingson, W. A.; Green, W.

    2009-03-03

    A portable, microwave interference scanning system, that can be used in situ, with one-sided, non-contact access, has been developed. It has demonstrated capability of damage detection on composite ceramic armor. Specimens used for validation included specially fabricated surrogates, and non-ballistic impact-damaged specimens. Microwave data results were corroborated with high resolution direct-digital x-ray imaging. Microwave interference scanning detects cracks, laminar features and material properties variations. This paper will present details of the system and discuss results obtained.

  18. Experimental and numerical studies of microwave properties of BaTiO3-Pt composites

    NASA Astrophysics Data System (ADS)

    Kuga, Yasuo; Lee, Seung-Woo; Almajid, Abdulhakim; Taya, Minoru; Li, Jing-Feng; Watanabe, Ryuzo

    2002-10-01

    In this paper, we will present the experimental results of the microwave properties of BaTiO3 and BaTiO3-Pt composites. These composites materials were designed to increase the effective dielectric constant at microwave frequency. Three different platinum volume fractions were used, 3, 5 and 10%, to make BaTiO3-Pt composites, in addition to a pure BaTiO3 material. To characterize the BaTiO3-Pt composites, microwave measurements were conducted using the waveguide transmission measurements. The experimental results verify that it is possible to increase the dielectric constant using the conductor loading method.

  19. Microwave Palaeointensity Experiments On Terrestrial and Martian Material

    NASA Astrophysics Data System (ADS)

    Shaw, J.; Hill, M.; Gratton, M.

    The microwave palaeointensity technique was developed in Liverpool University (Walton et al 1996) and has successfully been applied to archaeological ceramics and recent lavas (Shaw et al 1996, 1999.; Hill et al 1999,2000). These published results show that microwave analysis provides accurate palaeointensity determinations com- bined with a very high success rate. Most recently the technique has been successfully applied to Martian material (Shaw et al, 2001) to look for the existence of an internal Martian dynamo early in Martian history. New experiments have been carried out us- ing microwaves to demagnetise synthetic muti-component TRM's and new palaeoin- tensity experiments providing a comparison between microwave analysis of laboratory TRM's and conventional thermal Thellier analysis of microwave generated mTRM's. These experiments demonstrate the equivalence of microwave and thermally gener- ated TRM's. D. Walton, S Snape, T.C. Rolph, J. Shaw and J.A. Share, Application of ferromagnetic resonance heating to palaeointensity determinations.1996, Phys Earth Planet Int,94, 183-186. J. Shaw, D. Walton, S Yang, T.C.Rolph, and J.A. Share. Microwave Archaeointensities from Peruvian Ceramics. 1996, Geophys. J. Int,124,241-244 J. Shaw, S. Yang, T. C. Rolph, and F. Y. Sun. A comparison of archaeointensity results from Chinese ceramics using Microwave and conventional ThellierSs and ShawSs methods.,1999, G J Int.136, 714-718 M. Hill, and J. Shaw, 1999, Palaeointensity results for Historic Lavas from Mt. Etna using microwave demagnetisation/remagnetisation in a modified Thellier type exper- iment. G. J. Int, 139, 583-590 M. J. Hill, and J. Shaw, 2000. Magnetic field intensity study of the 1960 Kilauea lava flow, Hawaii, using the microwave palaeointensity technique, Geophys. J. Int., 142, 487-504. J. Shaw, M. Hill, and S. J. Openshaw, 2001, Investigating the ancient Martian magnetic field using microwaves, Earth and Planetary Science Letters 190 (2001) 103-109

  20. Uniform bulk material processing using multimode microwave radiation

    SciTech Connect

    Varma, Ravi; Vaughn, Worth E.

    2000-01-01

    An apparatus for generating uniform heating in material contained in a cylindrical vessel is described. TE.sub.10 -mode microwave radiation is coupled into a cylindrical microwave transition such that microwave radiation having TE.sub.11 -, TE.sub.01 - and TM.sub.01 -cylindrical modes is excited therein. By adjusting the intensities of these modes, substantially uniform heating of materials contained in a cylindrical drum which is coupled to the microwave transition through a rotatable choke can be achieved. The use of a poor microwave absorbing insulating cylindrical insert, such as aluminum oxide, for separating the material in the container from the container walls and for providing a volume through which air is circulated is expected to maintain the container walls at room temperature. The use of layer of highly microwave absorbing material, such as SiC, inside of the insulating insert and facing the material to be heated is calculated to improve the heating pattern of the present apparatus.

  1. Uniform bulk Material Processing using Multimode Microwave Radiation

    SciTech Connect

    Varma, Ravi; Vaughan, Worth E.

    1999-06-18

    An apparatus for generating uniform heating in material contained in a cylindrical vessel is described. TE{sub 10}-mode microwave radiation is coupled into a cylindrical microwave transition such that microwave radiation having TE{sub 11}-, TE{sub 01}- and TM{sub 01}-cylindrical modes is excited therein. By adjusting the intensities of these modes, substantially uniform heating of materials contained in a cylindrical drum which is coupled to the microwave transition through a rotatable choke can be achieved. The use of a poor microwave absorbing insulating cylindrical insert, such as aluminum oxide, for separating the material in the container from the container walls and for providing a volume through which air is circulated is expected to maintain the container walls at room temperature. The use of layer of highly microwave absorbing material, such as SiC, inside of the insulating insert and facing the material to be heated is calculated to improve the heating pattern of the present apparatus.

  2. OPTIMIZING A PORTABLE MICROWAVE INTERFERENCE SCANNING SYSTEM FOR NONDESTRUCTIVE TESTING OF MULTI-LAYERED DIELECTRIC MATERIALS

    SciTech Connect

    Schmidt, K. F. Jr.; Little, J. R. Jr.; Ellingson, W. A.; Green, W.

    2010-02-22

    The projected microwave energy pattern, wave guide geometry, positioning methods and process variables have been optimized for use of a portable, non-contact, lap-top computer-controlled microwave interference scanning system on multi-layered dielectric materials. The system can be used in situ with one-sided access and has demonstrated capability of damage detection on composite ceramic armor. Specimens used for validation included specially fabricated surrogates, and ballistic impact-damaged specimens. Microwave data results were corroborated with high resolution direct-digital x-ray imaging. Microwave interference scanning detects cracks, laminar features and material properties variations. This paper presents the details of the system, the optimization steps and discusses results obtained.

  3. The microwave effects on the properties of alumina at high frequencies of microwave sintering

    NASA Astrophysics Data System (ADS)

    Sudiana, I. Nyoman; Mitsudo, Seitaro; Sako, Katsuhide; Inagaki, Shunsuke; Ngkoimani, La Ode; Usman, Ida; Aripin, H.

    2016-03-01

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a `non-thermal effect` which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materials by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.

  4. Materials characterization and diagnosis using variable frequency microwaves

    SciTech Connect

    Wei, J.B.; Fathi, Z.; Tucker, D.A.; Hampton, M.L.; Garard, R.S.; Lauf, R.J.

    1996-12-31

    Product quality control is a crucial part of manufacturing and usually involves materials characterization and diagnosis. Though various microwave assisted nondestructive evaluation (MA-NDE) systems have been fabricated for materials inspection, none of the systems can be applied to materials within a mold or reactor. A broadband variable frequency microwave based, resonant mode MA-NDE was studied as an alternative for characterization of materials within a cavity. The main advantage of the resonant mode MA-NDE are non-intrusive and volumetric diagnosis of the material inside a mold. The principles and possible applications of the resonant mode MA-NDE are discussed. Resonant mode MA-NDE was fully demonstrated by using Vari-Wave to trace material status during microwave curing of Diglycidyl Ether of Bisphenol A (DGEBA)/Diaminodiphenylsulphone (DDS) epoxy samples.

  5. TOPICAL REVIEW: High-temperature microwave processing of materials

    NASA Astrophysics Data System (ADS)

    Bykov, Yu V.; Rybakov, K. I.; Semenov, V. E.

    2001-07-01

    This article reviews the physical aspects of a cross-disciplinary science and technology field: the microwave processing of materials. High-temperature microwave processing has a clear industrial perspective in such areas as the production of advanced ceramics, the deposition of thermal barrier coatings, the remediation of hazardous wastes etc. This review starts with the relevant fundamental notions regarding the absorption of electromagnetic waves, heat transfer and the electrodynamics of single- and multimode microwave cavities. Useful formulae, estimates, and interrelations between process variables are presented. This is followed by a review of process examples illustrating the specific features of microwave processing: reduction in energy consumption and process duration, rapid and controllable heating, peculiar temperature distribution, and selectivity of energy deposition. Much attention is given to the advantages of higher-frequency millimetre-wave processing, which include the enhanced absorption in many materials of industrial interest, improved uniformity of electromagnetic energy and temperature, and the possibility of surface treatment. The phenomenon of microwave process rate enhancement is addressed in connection with the problem of the non-thermal microwave effect on mass transport in solids. Both experimental and theoretical approaches to the identification of the mechanism responsible for this effect are illustrated. Finally, the physical and technical factors influencing microwave technology scaleup and transfer to industry are discussed.

  6. Microwave nondestructive detection of chloride in cement based materials

    SciTech Connect

    Benally, Aaron D.; Bois, Karl J.; Zoughi, Reza; Nowak, Paul S.

    1999-12-02

    Preliminary results pertaining to the near-field microwave nondestructive detection and evaluation of chloride in cement paste and mortar specimens are presented. The technique used for this purpose utilizes an open-ended rectangular waveguide at the aperture of which the reflection properties of the specimens are measured. It is shown that the magnitude of reflection coefficient is a useful parameter for detecting chloride in these specimens. Furthermore, the difference in the amount of chloride present in these various specimens, at the time of mixing, can also be determined. Reflection property measurements were conducted in S-band (2.6 GHz-3.95 GHz) and X-band (8.2-12.4 GHz) for two sets of four mortar specimens with 0.50 and 0.60 water-to-cement ratio and varying salt (NaCl) contents added to the mixing water used in producing these specimens. It is shown that the reflection properties of these materials vary considerably as a function of their chloride content. Also, by monitoring the daily variation in the reflection coefficient of each specimen during the curing period, the effect of chloride on curing can be nondestructively ascertained. Finally, it is shown that the detection and evaluation of chloride content in cement based materials can be performed using a simple comparative process with respect to a non-contaminated specimen.

  7. Comparison of properties of sintered and sintered reaction-bonded silicon nitride fabricated by microwave and conventional heating

    SciTech Connect

    Tiegs, T.N.; Kiggans, J.O. Jr.; Lin, H.T.

    1995-10-01

    A comparison of microwave and conventional processing of silicon nitride-based ceramics was performed to identify any differences between the two, such as improved fabrication parameters or increased mechanical properties. Two areas of thermal processing were examined: sintered silicon nitride (SSN) and sintered reaction-bonded silicon nitride (SRBSN). The SSN powder compacts showed improved densification and enhanced grain growth. SRBSN materials were fabricated in the microwave with a one-step process using cost-effective raw materials. The SRBSN materials had properties appropriate for structural applications. Observed increases in fracture toughness for the microwave processed SRBSN materials were attributable to enhanced elongated grain growth.

  8. Comparison of properties of sintered and sintered reaction-bonded silicon nitride fabricated by microwave and conventional heating

    SciTech Connect

    Tiegs, T.N.; Kiggans, J.O. Jr.; Lin, H.T.; Willkens, C.A.

    1994-10-01

    A comparison of microwave and conventional processing of silicon nitride-based ceramics was performed to identify any differences between the two, such as improved fabrication parameters or increased mechanical properties. Two areas of thermal processing were examined: (1) sintered silicon nitride (SSN) and (2) sintered reaction-bonded silicon nitride (SRBSN). The SSN powder compacts showed improved densification and enhanced grain growth. SRBSN materials were fabricated in the microwave with a one-step process using cost-effective raw materials. The SRBSN materials had properties appropriate for structural applications. Observed increases in fracture toughness for the microwave processed SRBSN materials were attributable to enhanced elongated grain growth.

  9. Microwave sintering of nanopowder ZnNb2O6: Densification, microstructure and microwave dielectric properties

    NASA Astrophysics Data System (ADS)

    Bafrooei, H. Barzegar; Nassaj, E. Taheri; Hu, C. F.; Huang, Q.; Ebadzadeh, T.

    2014-12-01

    High density ZnNb2O6 ceramics were successfully fabricated by microwave sintering of ZnO-Nb2O5 and ZnNb2O6 nanopowders. Phase formation, microstructure and microwave electrical properties of the microwave sintered (MS) and microwave reaction sintered (MRS) specimens were examined using X-ray diffraction, field emission scanning electron microscopy and microwave dielectric properties measurement. Specimens were sintered in a temperature range from 950 to 1075 °C for 30 min at an interval of 25 °C using a microwave furnace operated at 2.45 GHz frequency, 3 kW power. XRD pattern revealed the formation of pure columbite phase of ZnNb2O6. The SEM micrographs show grain growth and reduction in porosity of specimens with the increase in sintering temperature. Good combination of microwave dielectric properties (εr~23.6, Qf~64,300 GHz and τf~-66 ppm/°C and εr~24, Qf~75,800 GHz and τf~-64 ppm/°C) was obtained for MS- and MRS-prepared samples at 1000 °C and 1050 °C for 30 min, respectively.

  10. Scattering Properties of Chaotic Microwave Resonators

    NASA Astrophysics Data System (ADS)

    Stöckmann, Hans-Jürgen

    2008-11-01

    The state of the art of microwave studies of chaotic and disordered microwave billiards is presented, with special emphasis on possible applications to the emission patterns of microdisk lasers, transport through quantum dots, and the stability of quantum systems against perturbations

  11. Factors Influencing the Dielectric Properties of Agricultural and Food Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectric properties of materials are defined, and the major factors that influence these properties of agricultural and food materials, namely, frequency of the applied radio-frequency or microwave electric fields, and water content, temperature, and density of the materials, are discussed on the ...

  12. Containerless synthesis of ceramic materials using microwave heating

    NASA Technical Reports Server (NTRS)

    Dunn, B.; Crouch-Baker, S.

    1990-01-01

    It was demonstrated that microwave heating technique may be employed for the synthesis of a number of multicomponent ceramic oxide-based materials, e.g., YBa2Cu3O7 and CuFe2O4. A characteristic, and potentially extremely useful, feature of such synthesis is that they occur in significantly less time than that required using conventional furnace-based techniques. However, the information obtained to date is necessarily rather empirical, and systematic investigations of the use of microwave heating for the synthesis of ceramic materials are required. The synthesis of ceramic materials at high temperatures are often affected by unwanted, deleterious reactions of the reactants and/or products with the reaction container. Consequently, it is of interest to investigate the high temperature synthesis of ceramic materials using microwave heating in a containerless environment.

  13. High Temperature Microwave Dielectric Properties of JSC-1AC Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Allan, Shawn M.; Merritt, Brandon J.; Griffin, Brittany F.; Hintze, Paul E.; Shulman, Holly S.

    2011-01-01

    Microwave heating has many potential lunar applications including sintering regolith for lunar surface stabilization and heating regolith for various oxygen production reactors. The microwave properties of lunar simulants must be understood so this technology can be applied to lunar operations. Dielectric properties at microwave frequencies for a common lunar simulant, JSC-1AC, were measured up to 1100 C, which is approximately the melting point. The experimentally determined dielectric properties included real and imaginary permittivity (epsilon', epsilon"), loss tangent (tan delta), and half-power depth, the di stance at which a material absorbs 50% of incident microwave energy. Measurements at 2.45 GHz revealed tan delta of JSC-1A increases from 0.02 at 25 C to 0.31 at 110 C. The corresponding half-power depth decreases from a peak of 286 mm at 110 C, to 13 mm at 1100 C. These data indicate that JSC-1AC becomes more absorbing, and thus a better microwave heater as temperature increases. A half-power depth maximum at 100-200 C presents a barrier to direct microwave heating at low temperatures. Microwave heating experiments confirm the sluggish heating effect of weak absorption below 200 C, and increasingly strong absorption above 200 C, leading to rapid heating and melting of JSC-1AC.

  14. Microwave dielectric properties of dry rocks

    NASA Technical Reports Server (NTRS)

    Ulaby, Fawwaz T.; Dobson, Myron C.; East, Jack R.; Bengal, Thomas H.; Garvin, James B.; Evans, Diane L.

    1990-01-01

    A combination of techniques was used to measure the dielectric properties of 80 rock samples in the microwave region. The real part (RP) of the relative dielectric constant was measured in 0.1-GHz steps from 0.5 to 18 GHz, and the imaginary part (IP) was measured at five frequencies between 1.6 and 16 GHz. The bulk density rho(b) was also measured for all the samples, and the bulk chemical composition (BCC) was determined for 56 of the samples. RP is found to be frequency-independent at 0.5-18 GHz for all samples, and rho(b) accounts for about 50 percent of the observed variance. For silicate rocks, as much as 78 percent of the variance is explained by the combination of rho(b) and the fractional contents of oxides when the silicates are subgrouped by genesis. In contrast, IP decreases with increasing frequency for most rock samples, and no statistically significant relationships are found between IP and rho(b). For subgrouped silicate rocks, 60 percent of the variance in IP can be explained by BCC.

  15. An optical model for the microwave properties of sea ice

    NASA Technical Reports Server (NTRS)

    Gloersen, P.; Larabee, J. K.

    1981-01-01

    The complex refractive index of sea ice is modeled and used to predict the microwave signatures of various sea ice types. Results are shown to correspond well with the observed values of the complex index inferred from dielectic constant and dielectric loss measurements performed in the field, and with observed microwave signatures of sea ice. The success of this modeling procedure vis a vis modeling of the dielectric properties of sea ice constituents used earlier by several others is explained. Multiple layer radiative transfer calculations are used to predict the microwave properties of first-year sea ice with and without snow, and multiyear sea ice.

  16. Dielectric, ferroelectric and mechanical Properties of Microwave Sintered Bi based High temperature Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Angalakurthi, Rambabu; Raju, K. C. James

    2011-10-01

    The sintering of advanced ceramics requires fast heating in order to avoid both grain growth and inter diffusion. In this context, the microwave sintering is a powerful method since it enables sintering in a short time. This paper reports the synthesis and characterization of Strontium Bismuth Titanate (SBTi) system. The material powder was prepared by solid state route and sintering was carried out by both conventional and microwave furnaces. Morphological, dielectric, ferroelectric and mechanical properties were studied for both samples. The dielectric constant and loss tangent of the conventional and microwave sintered samples have ranged between (185-195) & (0.005-0.007) and (195-220) & (0.004-0.006) respectively when measured at 1MHz frequency. The microwave sintering of the SBTi ceramics leads to higher densification (97% of the theoretical density), fine microstructure, and good mechanical and ferroelectric properties in much shorter duration of time compared to that of the conventional sintering process.

  17. Building Materials Property Table

    SciTech Connect

    2010-04-16

    This information sheet describes a table of some of the key technical properties of many of the most common building materials taken from ASHRAE Fundamentals - 2001, Moisture Control in Buildings, CMHC, NRC/IRC, IEA Annex 24, and manufacturer data.

  18. Microwave remote sensing of snowpack properties

    NASA Technical Reports Server (NTRS)

    Rango, A. (Editor)

    1980-01-01

    Topic concerning remote sensing capabilities for providing reliable snow cover data and measurement of snow water equivalents are discussed. Specific remote sensing technqiues discussed include those in the microwave region of the electromagnetic spectrum.

  19. Pyrometric temperature control system for microwave processing of materials

    SciTech Connect

    Pert, E.; Calame, J.P.; Gershon, D.; Carmel, Y.; Calame, J.P.

    1998-12-31

    Accurate temperature measurements and uniform processing of a material with microwaves can be difficult with thermocouples that perturb the electromagnetic field. Arcing and field intensification is particularly a problem with low loss materials that do not couple well. Optical pyrometers offer a non-invasive alternative, but are generally restricted to surface temperature measurements and are usually non-linear over the temperature range of interest. Improved accuracy over the entire range of interest is possible with an integrated approach using a pc to calibrate the pyrometer against a thermocouple reference. A pyrometer-retrofitted microwave processing system that can measure and control from 40 C to 1,600 C is presented.

  20. Microwave interferometry to elucidate shock properties

    SciTech Connect

    Luther, G.G.; Warthen, B.J.

    1993-09-01

    A series of measurements have been performed using a simple, light weight, inexpensive, compact K-Band (SLICK) interferometer to measure the shock properties of passive (Teflon, grout) and energetic (HE) materials. Shock and particle velocity measurements are made simultaneously along the same path. This path is determined by either a thin walled (1/2 mil aluminum foil) waveguide embedded in the material or the caustic of a Teflon axicon. Typically the velocities are determined to about a percent. The measurements will be described and data presented.

  1. Spatial observation and quantification of microwave heating in materials.

    PubMed

    Crane, C A; Pantoya, M L; Weeks, B L

    2013-08-01

    An electromagnetic exposure chamber was designed to safely deliver electromagnetic power in the range of microwaves between 0.8 and 4.2 GHz to a thin cylindrical materials. This instrumentation is unique because the diagnostics not only measure sample heating with a response time of 1.3 ms, but also energy transmitted and reflected. Energy absorption at different frequencies was quantified via electromagnetic heating using an infrared camera. This in situ IR imaging of the spatial distribution of temperature during microwave exposure coupled with sensors for determining transmitted and reflected energy enables novel new microwave energy experiments. Samples were exposed to a portion of both the electric and magnetic fields inside a waveguide and based on sample dimensions, the field strengths were assumed uniform across the sample. Three materials were examined: two were borosilicate, first coated with graphite paint and a second without the coating; and, the third was a compressed sample of flake graphite pressed to 69% of its bulk density. Results are in agreement with the theories of microwave heating and verify the functionality of this experimental design. This diagnostic will be important in future tests where a variety of different materials can be exposed to weak electromagnetic waves and their efficiency in coupling to the microwaves can be examined.

  2. Spatial observation and quantification of microwave heating in materials

    NASA Astrophysics Data System (ADS)

    Crane, C. A.; Pantoya, M. L.; Weeks, B. L.

    2013-08-01

    An electromagnetic exposure chamber was designed to safely deliver electromagnetic power in the range of microwaves between 0.8 and 4.2 GHz to a thin cylindrical materials. This instrumentation is unique because the diagnostics not only measure sample heating with a response time of 1.3 ms, but also energy transmitted and reflected. Energy absorption at different frequencies was quantified via electromagnetic heating using an infrared camera. This in situ IR imaging of the spatial distribution of temperature during microwave exposure coupled with sensors for determining transmitted and reflected energy enables novel new microwave energy experiments. Samples were exposed to a portion of both the electric and magnetic fields inside a waveguide and based on sample dimensions, the field strengths were assumed uniform across the sample. Three materials were examined: two were borosilicate, first coated with graphite paint and a second without the coating; and, the third was a compressed sample of flake graphite pressed to 69% of its bulk density. Results are in agreement with the theories of microwave heating and verify the functionality of this experimental design. This diagnostic will be important in future tests where a variety of different materials can be exposed to weak electromagnetic waves and their efficiency in coupling to the microwaves can be examined.

  3. Spatial observation and quantification of microwave heating in materials.

    PubMed

    Crane, C A; Pantoya, M L; Weeks, B L

    2013-08-01

    An electromagnetic exposure chamber was designed to safely deliver electromagnetic power in the range of microwaves between 0.8 and 4.2 GHz to a thin cylindrical materials. This instrumentation is unique because the diagnostics not only measure sample heating with a response time of 1.3 ms, but also energy transmitted and reflected. Energy absorption at different frequencies was quantified via electromagnetic heating using an infrared camera. This in situ IR imaging of the spatial distribution of temperature during microwave exposure coupled with sensors for determining transmitted and reflected energy enables novel new microwave energy experiments. Samples were exposed to a portion of both the electric and magnetic fields inside a waveguide and based on sample dimensions, the field strengths were assumed uniform across the sample. Three materials were examined: two were borosilicate, first coated with graphite paint and a second without the coating; and, the third was a compressed sample of flake graphite pressed to 69% of its bulk density. Results are in agreement with the theories of microwave heating and verify the functionality of this experimental design. This diagnostic will be important in future tests where a variety of different materials can be exposed to weak electromagnetic waves and their efficiency in coupling to the microwaves can be examined. PMID:24007086

  4. Microwave-assisted sintering of non-stoichiometric strontium bismuth niobate ceramic: Structural and dielectric properties

    NASA Astrophysics Data System (ADS)

    Singh, Rajveer; Luthra, Vandna; Tandon, R. P.

    2016-11-01

    In recent years the microwave sintering has been utilized for the synthesis of materials in enhancement of the properties. In this paper strontium bismuth niobate (Sr0.8Bi2.2Nb2O9:SBN) bulk ceramic has been synthesized by microwave reactive sintering and conventional heating techniques. A relative density of 99.6% has been achieved for microwave sintered SBN, which is higher than that of (98.81%) conventionally sintered SBN. The phase formation of SBN synthesized by both processes has been confirmed by X-ray diffraction (XRD). The surface morphology of SBN was observed by scanning electron microscopy (SEM). The microstructure was found to be more uniform in case of SBN sintered by microwave sintering. The dielectric properties of SBN were studied as a function of frequency in the temperature range of 30-500 °C. Both the samples synthesized by two different processes were found to follow Curie-Weiss law above the transition temperature. The Curie temperature was found to be higher for microwave sintered SBN. The dielectric constant and the transition temperature were observed to be higher for SBN ceramic synthesized by microwave sintering technique. The ac and dc activation energy values were also found to be higher for microwave sintered SBN as compared to conventional sintering technique.

  5. Mechanisms of Microwave Loss Tangent in High Performance Dielectric Materials

    NASA Astrophysics Data System (ADS)

    Liu, Lingtao

    The mechanism of loss in high performance microwave dielectrics with complex perovskite structure, including Ba(Zn1/3Ta2/3)O 3, Ba(Cd1/3Ta2/3)O3, ZrTiO4-ZnNb 2O6, Ba(Zn1/3Nb2/3)O3, and BaTi4O9-BaZn2Ti4O11, has been investigated. We studied materials synthesized in our own lab and from commercial vendors. Then the measured loss tangent was correlated to the optical, structural, and electrical properties of the material. To accurately and quantitatively determine the microwave loss and Electron Paramagnetic Resonance (EPR) spectra as a function of temperature and magnetic field, we developed parallel plate resonator (PPR) and dielectric resonator (DR) techniques. Our studies found a marked increase in the loss at low temperatures is found in materials containing transition metal with unpaired d-electrons as a result of resonant spin excitations in isolated atoms (light doping) or exchange coupled clusters (moderate to high doping); a mechanism that differs from the usual suspects. The loss tangent can be drastically reduced by applying static magnetic fields. Our measurements also show that this mechanism significantly contributes to room temperature loss, but does not dominate. In order to study the electronic structure of these materials, we grew single crystal thin film dielectrics for spectroscopic studies, including angular resolved photoemission spectroscopy (ARPES) experiment. We have synthesized stoichiometric Ba(Cd1/3Ta2/3)O3 [BCT] (100) dielectric thin films on MgO (100) substrates using Pulsed Laser Deposition. Over 99% of the BCT film was found to be epitaxial when grown with an elevated substrate temperature of 635 °C, an enhanced oxygen pressures of 53 Pa and a Cd-enriched BCT target with a 1 mol BCT: 1.5 mol CdO composition. Analysis of ultra violet optical absorption results indicate that BCT has a bandgap of 4.9 eV.

  6. Temperature Dependence of the Microwave Dielectric Behavior of Selected Materials

    NASA Technical Reports Server (NTRS)

    Dahiya, Jai N.

    1996-01-01

    A very sensitive thermal bath is designed to study the effect of temperature on the microwave dielectric response of a sample of nickel oxide and cobalt oxide. The sample under study is placed in a microwave resonant cavity in the TE(sub 011) mode. The perturbations of the electric field are recorded in terms of the frequency shifts and the width changes of the microwave resonant signal as seen on the oscilloscope. The real and imaginary parts of the dielectric constant are calculated by using the values of the frequency shifts and width changes in the Slater's perturbation equations. The dielectric behavior of nickel oxide and cobalt oxide and also their mixture is studied at a microwave frequency of 9.2 GHz as a function of temperature. A computer program is written to analyze the dielectric constant values at different temperatures. The resonant cavity seems to be very sensitive in studying the dielectric relaxation mechanism in these materials. The dielectric behavior is also analyzed using Debye's equations, and relaxation times for these materials are calculated at microwave frequencies.

  7. System design development for microwave and millimeter-wave materials processing

    NASA Astrophysics Data System (ADS)

    Feher, Lambert; Thumm, Manfred

    2002-06-01

    The most notable effect in processing dielectrics with micro- and millimeter-waves is volumetric heating of these materials, offering the opportunity of very high heating rates for the samples. In comparison to conventional heating where the heat transfer is diffusive and depends on the thermal conductivity of the material, the microwave field penetrates the sample and acts as an instantaneous heat source at each point of the sample. By this unique property, microwave heating at 2.45 GHz and 915 MHz ISM (Industrial, Medical, Scientific) frequencies is established as an important industrial technology since more than 50 years ago. Successful application of microwaves in industries has been reported e.g. by food processing systems, domestic ovens, rubber industry, vacuum drying etc. The present paper shows some outlines of microwave system development at Forschungszentrum Karlsruhe, IHM by transferring properties from the higher frequency regime (millimeter-waves) to lower frequency applications. Anyway, the need for using higher frequencies like 24 GHz (ISM frequency) for industrial applications has to be carefully verified with respect to special physical/engineering advantages or to limits the standard microwave technology meets for the specific problem.

  8. Dielectric properties of agricultural materials and their application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book is prepared as a comprehensive source of information on dielectric properties of agricultural materials for scientific researchers and engineers involved in practical application of radio-frequency and microwave energy for potential problem solutions. Dielectric properties of materials det...

  9. Dielectric Characterization of PCL-Based Thermoplastic Materials for Microwave Diagnostic and Therapeutic Applications

    PubMed Central

    Aguilar, Suzette M.; Shea, Jacob D.; Al-Joumayly, Mudar A.; Van Veen, Barry D.; Behdad, Nader; Hagness, Susan C.

    2011-01-01

    We propose the use of a polycaprolactone (PCL)-based thermoplastic mesh as a tissue-immobilization interface for microwave imaging and microwave hyperthermia treatment. An investigation of the dielectric properties of two PCL-based thermoplastic materials in the frequency range of 0.5 – 3.5 GHz is presented. The frequency-dependent dielectric constant and effective conductivity of the PCL-based thermoplastics are characterized using measurements of microstrip transmission lines fabricated on substrates comprised of the thermoplastic meshes. We also examine the impact of the presence of a PCL-based thermoplastic mesh on microwave breast imaging. We use a numerical test bed comprised of a previously reported three-dimensional anatomically realistic breast phantom and a multi-frequency microwave inverse scattering algorithm. We demonstrate that the PCL-based thermoplastic material and the assumed biocompatible medium of vegetable oil are sufficiently well matched such that the PCL layer may be neglected by the imaging solution without sacrificing imaging quality. Our results suggest that PCL-based thermoplastics are promising materials as tissue immobilization structures for microwave diagnostic and therapeutic applications. PMID:21622068

  10. Dielectric characterization of PCL-based thermoplastic materials for microwave diagnostic and therapeutic applications.

    PubMed

    Aguilar, Suzette M; Shea, Jacob D; Al-Joumayly, Mudar A; Van Veen, Barry D; Behdad, Nader; Hagness, Susan C

    2012-03-01

    We propose the use of a polycaprolactone (PCL)-based thermoplastic mesh as a tissue-immobilization interface for microwave imaging and microwave hyperthermia treatment. An investigation of the dielectric properties of two PCL-based thermoplastic materials in the frequency range of 0.5-3.5 GHz is presented. The frequency-dependent dielectric constant and effective conductivity of the PCL-based thermoplastics are characterized using measurements of microstrip transmission lines fabricated on substrates comprised of the thermoplastic meshes. We also examine the impact of the presence of a PCL-based thermoplastic mesh on microwave breast imaging. We use a numerical test bed comprised of a previously reported 3-D anatomically realistic breast phantom and a multi-frequency microwave inverse scattering algorithm. We demonstrate that the PCL-based thermoplastic material and the assumed biocompatible medium of vegetable oil are sufficiently well matched such that the PCL layer may be neglected by the imaging solution without sacrificing imaging quality. Our results suggest that PCL-based thermoplastics are promising materials as tissue immobilization structures for microwave diagnostic and therapeutic applications.

  11. Development of low loss hexaferrite materials for microwave applications

    NASA Astrophysics Data System (ADS)

    Su, Zhijuan

    Hexaferrites have been widely used in microwave and millimeter wave devices as permanent magnets and as gyromagnetic materials, e.g., in circulators, filters, isolators, inductors, and phase shifters. As a critical component in radar and modern wireless communication systems, it is the microwave circulator that has drawn much attention. Many efforts have been made to design light and miniature circulators with self-biased ferrite materials. We report the magnetic and structural properties of a series of W-type barium hexaferrites of composition BaZn2-xCoxFe16O27 where x=0.15, 0.20, and 0.25. The anisotropy field of these BaW ferrites decreased with the substitution of divalent Co ions, while, they maintained crystallographic c-axis texture. The measured anisotropy field was ~10 kOe, and a hysteresis loop squareness Mr/Ms=79% was obtained due to well-controlled grain size within the range of single domain scale. U-type barium hexaferrite thin films were deposited on (0001) sapphire substrates by pulsed laser deposition. The results indicate a measured anisotropy field of ~8 kOe, and the saturation magnetization (4piMs) of 3.6 kG. More interestingly, an optimal post-deposition annealing of the films results in a strong (0, 0, n) crystallographic texture and a high squareness (Mr/Ms= 92%) out of the film plane. Furthermore, the highly self-biased ferrite films exhibited low FMR linewidth of ~200 Oe. Improved performance and miniaturization are needed to meet the ever-increasing demands of devices used in ultra-high frequency (UHF), L-band, and S-band, which are of particular interest in a variety of commercial and defense related applications. Utilizing materials possessing high permeability and permittivity with low magnetic losses is a promising solution. As a critical component in radar and modern wireless communication systems, antenna elements with compact size are constantly sought. Ferrite composites of the nominal composition Ba3Co2+xIrxFe24-2xO41 were studied

  12. Microwave Nondestructive Evaluation of Dielectric Materials with a Metamaterial Lens

    NASA Technical Reports Server (NTRS)

    Shreiber, Daniel; Gupta, Mool; Cravey, Robin L.

    2008-01-01

    A novel microwave Nondestructive Evaluation (NDE) sensor was developed in an attempt to increase the sensitivity of the microwave NDE method for detection of defects small relative to a wavelength. The sensor was designed on the basis of a negative index material (NIM) lens. Characterization of the lens was performed to determine its resonant frequency, index of refraction, focus spot size, and optimal focusing length (for proper sample location). A sub-wavelength spot size (3 dB) of 0.48 lambda was obtained. The proof of concept for the sensor was achieved when a fiberglass sample with a 3 mm diameter through hole (perpendicular to the propagation direction of the wave) was tested. The hole was successfully detected with an 8.2 cm wavelength electromagnetic wave. This method is able to detect a defect that is 0.037 lambda. This method has certain advantages over other far field and near field microwave NDE methods currently in use.

  13. A Study on a Microwave-Driven Smart Material Actuator

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Chu, Sang-Hyon; Kwak, M.; Cutler, A. D.

    2001-01-01

    NASA s Next Generation Space Telescope (NGST) has a large deployable, fragmented optical surface (greater than or = 2 8 m in diameter) that requires autonomous correction of deployment misalignments and thermal effects. Its high and stringent resolution requirement imposes a great deal of challenge for optical correction. The threshold value for optical correction is dictated by lambda/20 (30 nm for NGST optics). Control of an adaptive optics array consisting of a large number of optical elements and smart material actuators is so complex that power distribution for activation and control of actuators must be done by other than hard-wired circuitry. The concept of microwave-driven smart actuators is envisioned as the best option to alleviate the complexity associated with hard-wiring. A microwave-driven actuator was studied to realize such a concept for future applications. Piezoelectric material was used as an actuator that shows dimensional change with high electric field. The actuators were coupled with microwave rectenna and tested to correlate the coupling effect of electromagnetic wave. In experiments, a 3x3 rectenna patch array generated more than 50 volts which is a threshold voltage for 30-nm displacement of a single piezoelectric material. Overall, the test results indicate that the microwave-driven actuator concept can be adopted for NGST applications.

  14. Microstructure and microwave dielectric properties of modified zinc titanates (I)

    SciTech Connect

    Kim, H.T. |; Byun, J.D.; Kim, Y.

    1998-06-01

    Zinc metatitanate, ZnTiO{sub 3}, decomposes into zinc orthotitanate and rutile on heating above 945 C. It was found that this material could be a useful candidate for microwave resonator materials. The substitution of Zn by less than 10 mol% of Ba, Ca, or Sr achieves near zero {tau}{sub f} in spite of the fact that BaTiO{sub 3}, CaTiO{sub 3}, and SrTiO{sub 3} themselves have positive {tau}{sub f}. The origin of the temperature-compensating characteristics of the modified system was found to be in the reduction or elimination of rutile by the formation of new phases such as Ba{sub 3}Zn{sub 7}Ti{sub 12}O{sub 34}, Ca{sub 2}Zn{sub 4}Ti{sub 15}O{sub 36}, and Sr{sub 2}Zn{sub 4}Ti{sub 15}O{sub 36} polytitanates, which have much lower positive {tau}{sub f} than the rutile. It was revealed that zinc orthotitanate grains containing around 0.33 mol excess rutile have Zn{sub 2}Ti{sub 3}O{sub 8} nanosize precipitates in the grain. The precipitates had a structural coherency with the Zn{sub 2}TiO{sub 4} cubic matrix phase. The modified system has microwave dielectric properties of {epsilon}{sub r} = 25--32, Q factor at 10 GHz = 2,300--5,400, and {tau}{sub f} = +56 to {minus}22 ppm/C.

  15. Novel microwave properties and "memory effect" in magnetic nanowire array

    NASA Astrophysics Data System (ADS)

    Kou, Xiaoming

    2011-12-01

    Ferromagnetic nanowire arrays embedded in insulating matrices have attracted great attention in recent years for their rich physics and potential as sensor and microwave applications. Magnetic nanowires made of 3d transitional metals or their alloys have the advantages of high saturation magnetizations, limited eddy current loss, and guaranteed microwave penetration due to nanometer size. The nanowire arrays can also have high ferromagnetic resonance (FMR) frequencies due to shape anisotropy. In this work, the following new phenomena of magnetic nanowire arrays are demonstrated and explained with a theoretical model. (1) A simple theoretical analysis indicates that high permeability is possible in nanowire arrays with the magnetocrystalline anisotropy comparable to the demagnetization energy and its easy axis perpendicular to the nanowire. With proper conditions, we have fabricated Co nanowire arrays with a crystalline easy axis perpendicular to the nanowire. For Co nanowire arrays with certain geometries, high permeability and low losses have been achieved. (2) Magnetic materials with tunable FMR are highly desirable in microwave devices. We demonstrate that the natural FMR of Ni90Fe10 nanowire array can be tuned continuously from 8.2 to 11.7 GHz by choosing different remanent state. Theoretical model based on dipolar interaction among nanowires has been developed to explain the observed phenomena. A double FMR feature caused by dipolar interaction in magnetic nanowire array was predicted and verified in Co nanowires. (3) A memory effect has also been demonstrated in magnetic nanowire arrays. The magnetic nanowire array has the ability to record the maximum magnetic field that the array has been exposed to after the field has been turned off. The origin of the memory effect is the strong magnetic dipole interaction among the nanowires. Based on the memory effect, a novel and extremely low cost EMP detection scheme is proposed. It has the potential to measure

  16. Dielectric properties of human colostrum at microwave frequencies.

    PubMed

    Lonappan, Anil; Rajasekharan, Chadrasekharan; Thomas, Vinu; Bindu, Gopinathan; Mathew, Kattackal Thomas

    2007-01-01

    This article communicates the study of both the dielectric properties of human colostrums and breast milk at microwave frequencies. The colostrum samples were taken immediately after child birth and breast milk samples were collected at weekly intervals following the delivery. Rectangular cavity perturbation technique is used for the measurements of dielectric properties at the S-band of microwave frequency. The dielectric constants of the colostrums samples and breast milk samples are found to increase as weeks elapse, which is attributed to the reduced fat content and increased lactose concentration. The conductivity of these samples is similarly found to increase due to the increased dilution.

  17. Microwave material characterization of alkali-silica reaction (ASR) gel in cementitious materials

    NASA Astrophysics Data System (ADS)

    Hashemi, Ashkan

    Since alkali-silica reaction (ASR) was recognized as a durability challenge in cement-based materials over 70 years ago, numerous methods have been utilized to prevent, detect, and mitigate this issue. However, quantifying the amount of produced ASR byproducts (i.e., ASR gel) in-service is still of great interest in the infrastructure industry. The overarching objective of this dissertation is to bring a new understanding to the fundamentals of ASR formation from a microwave dielectric property characterization point-of-view, and more importantly, to investigate the potential for devising a microwave nondestructive testing approach for ASR gel detection and evaluation. To this end, a comprehensive dielectric mixing model was developed with the potential for predicting the effective dielectric constant of mortar samples with and without the presence of ASR gel. To provide pertinent inputs to the model, critical factors on the influence of ASR gel formation on dielectric and reflection properties of several mortar samples were investigated at R, S, and X-band. Effects of humidity, alkali content, and long-term curing conditions on ASR-prone mortars were also investigated. Additionally, dielectric properties of chemically different synthetic ASR gel were also determined. All of these, collectively, served as critical inputs to the mixing model. The resulting developed dielectric mixing model has the potential to be further utilized to quantify the amount of produced ASR gel in cement-based materials. This methodology, once becomes more mature, will bring new insight to the ASR reaction, allowing for advancements in design, detection and mitigation of ASR, and eventually has the potential to become a method-of-choice for in-situ infrastructure health-monitoring of existing structures.

  18. High-K ZST material for microwave and millimeter wave applications

    NASA Astrophysics Data System (ADS)

    Ioachim, A.; Ramer, R.; Toacsan, M. I.; Banciu, M. G.; Nedelcu, L.; Ghetu, D.; Stoica, G.; Annino, G.; Cassettari, M.; Martinelli, M.

    2004-02-01

    Wireless communications systems require new materials with special properties in specific frequency bands. The investigations on ZST type ceramics, (Zr0.8Sn0.2)TiO4, presented in this paper, recommend this materials for applications in microwaves and millimeter waves. The ZST materials were prepared using a standard solid-state reaction technology. The samples morphology, phase-composition and microstructure investigations were performed by using the scanning electron microscopy (SEM), and energy-disperse X-ray spectrometry (EDX). The crystalline phases were identified by X-ray diffractometry (XRD). The electromagnetic properties were investigated on ZST resonators by using a Computer Aided Measurement (CAM) in microwaves, combining a HP 8757C network analyzer and a HP 8350B sweep oscillator. The dielectric characteristics at millimeter waves were analyzed by investigation of the Whispering Gallery Modes on ZST disks. The low level NiO doping provides ZST materials with temperature coefficient τf in the range (-2 - +4) ppm/°C and decreases the dielectric loss. Materials with high values of the Qf product up to 50,000 and a dielectric constant about 36 at microwave frequencies were obtained. ZST dielectric resonators and substrates for hybrid integrated circuits with dimensions 1" x 1" and thickness in the range 0.6 - 1 mm were manufactured.

  19. The measurement of bound and free moisture in organic materials by microwave methods. [Explosives TATB and LX-17

    SciTech Connect

    Pyper, J.W.; Buettner, H.M.; Cerjan, C.J.; Hallam, J.S.; King, R.J.

    1984-11-01

    Bound and free moisture can be classified by energetic, structural, or operational schemes. We discuss these schemes and consider four methods (dynamic dielectric thermal analysis, microwave attenuation analysis, near-infrared reflectance analysis (NIRA) and nuclear magnetic resonance (NMR) spectroscopy) that have been suggested for distinguishing between bound and free moisture in organic materials. This report describes the microwave attenuation method. The theoretical basis for using microwaves for this purpose is developed. We show that microwave measurements can be used to measure the moisture in triaminotrinitrobenzene (TATB) using a microwave network analyzer down to 0.04% H/sub 2/O. The design of the apparatus necessary to extend these measurements to lower moisture content limits is mentioned. As part of this study, we measured the dielectric properties of TATB for the first time. We found that the dielectric constant epsilon' for TATB was 4.00 +- 0.01.

  20. Rhenium material properties

    SciTech Connect

    Biaglow, J.A.

    1995-09-01

    Tensile data were obtained from four different types of rhenium at ambient and elevated temperatures. The four types of rhenium included chemical vapor deposition (CVD) and three powder metallurgy (PM) types, i.e., rolled sheet and pressed and sintered bars, with and without hot isostatic pressure (HIP) treatment. Results revealed a wide range of values with ultimate strengths at ambient temperatures varying from 663 MPa for CVD rhenium to 943 MPa for rolled sheet. A similar spread was also obtained for material tested at 1088 K and 1644 K. The wide variance observed with the different materials indicated that the rhenium manufacturing process, material composition and prior handling strongly dictated its properties. In addition to tensile properties, CVD, pressed and sintered material and HIP rhenium successfully completed 100 cycles of low cycle fatigue. Creep data were also obtained showing that CVD and pressed and sintered rhenium could sustain five hours of testing under a tension of 27.5 MPa at 1922 K.

  1. Rhenium material properties

    NASA Technical Reports Server (NTRS)

    Biaglow, James A.

    1995-01-01

    Tensile data were obtained from four different types of rhenium at ambient and elevated temperatures. The four types of rhenium included chemical vapor deposition (CVD) and three powder metallurgy (PM) types, i.e., rolled sheet and pressed and sintered bars, with and without hot isostatic pressure (HIP) treatment. Results revealed a wide range of values with ultimate strengths at ambient temperatures varying from 663 MPa for CVD rhenium to 943 MPa for rolled sheet. A similar spread was also obtained for material tested at 1088 K and 1644 K. The wide variance observed with the different materials indicated that the rhenium manufacturing process, material composition and prior handling strongly dictated its properties. In addition to tensile properties, CVD, pressed and sintered material and HIP rhenium successfully completed 100 cycles of low cycle fatigue. Creep data were also obtained showing that CVD and pressed and sintered rhenium could sustain five hours of testing under a tension of 27.5 MPa at 1922 K.

  2. Structure-Property Correlations in Microwave Joining of Inconel 718

    NASA Astrophysics Data System (ADS)

    Bansal, Amit; Sharma, Apurbba Kumar; Kumar, Pradeep; Das, Shantanu

    2015-09-01

    The butt joining of Inconel 718 plates at 981°C solution treated and aged (981STA) condition was carried out using the microwave hybrid heating technique with Inconel 718 powder as a filler material. The developed joints were free from any microfissures (cracks) and were metallurgically bonded through complete melting of the powder particles. The as-welded joints were subjected to postweld heat treatments, including direct-aged, 981STA and 1080STA. The microstructural features of the welded joints were investigated using a field emission-scanning electron microscope equipped with x-ray elemental analysis. Microhardness and room-temperature tensile properties of the welded joints were evaluated. The postweld heat-treated specimens exhibited higher microhardness and tensile strength than the as-welded specimens due to the formation of strengthening precipitates in the microstructure after postweld heat treatments. The microhardness of the fusion zone of the joint in 1080STA condition was higher than all welded conditions due to the complete dissolution of Laves phase after 1080STA treatment. However, the tensile strength of the welded specimen in 981STA condition was higher than all welded conditions. The tensile strength in 1080STA condition was lower than that in 981STA condition because of the grain coarsening that took place after 1080STA condition. The fractography of the fractured surfaces was carried out to determine the structure-property-fracture correlation.

  3. Materials property measurements

    SciTech Connect

    Boyd, D.M.; Green, E.R.; Doctor, S.R.; Good, M.S.

    1990-04-19

    An in-depth review of the measurement techniques that could be used in materials characterization is presented. The measurement techniques to non-destructively determine the in-service or time-related aging of materials considered include ultrasonic velocity and attenuation, eddy current conductivity, neutron scattering and absorption, conventional and tomographic imaging for ultrasonic and radiation imaging, x-ray scattering, thermal impedance, and magnetic hysteresis. The three sections of the report include a review of failure mechanisms in steel and a discussion of nondestructive evaluation techniques and fracture mechanics, a description of a chart on Measurement Techniques versus Material Properties, and recommendations on the techniques and tests to be performed for the experimental investigations and analysis task of the project. 49 refs., 7 figs.

  4. Microwave properties of a quiet sea

    NASA Technical Reports Server (NTRS)

    Stacey, J.

    1985-01-01

    The microwave flux responses of a quiet sea are observed at five microwave frequencies and with both horizontal and vertical polarizations at each frequency--a simultaneous 10 channel receiving system. The measurements are taken from Earth orbit with an articulating antenna. The 10 channel responses are taken simultaneously since they share a common articulating collector with a multifrequency feed. The plotted flux responses show: (1) the effects of the relative, on-axis-gain of the collecting aperture for each frequency; (2) the effects of polarization rotation in the output responses of the receive when the collecting aperture mechanically rotates about a feed that is fixed; (3) the difference between the flux magnitudes for the horizontal and vertical channels, at each of the five frequencies, and for each pointing position, over a 44 degree scan angle; and (4) the RMS value of the clutter--as reckoned over the interval of a full swath for each of the 10 channels. The clutter is derived from the standard error of estimate of the plotted swath response for each channel. The expected value of the background temperature is computed for each of the three quiet seas. The background temperature includes contributions from the cosmic background, the downwelling path, the sea surface, and the upwelling path.

  5. Microwave sintering of ceramics

    SciTech Connect

    Snyder, W.B.

    1989-01-01

    Successful adaptation of microwave heating to the densification of ceramic materials require a marriage of microwave and materials technologies. Using an interdisciplinary team of microwave and materials engineers, we have successfully demonstrated the ability to density ceramic materials over a wide range of temperatures. Microstructural evolution during microwave sintering has been found to be significantly different from that observed in conventional sintering. Our results and those of others indicate that microwave sintering has the potential to fabricate components to near net shape with mechanical properties equivalent to hot pressed or hot isostatically pressed material. 6 refs., 11 figs.

  6. Microwave Processing for Advance Electro-Optic Materials

    SciTech Connect

    Boatner, L.A.

    2000-06-01

    This project addressed the technical and scientific goals of developing new methods for the formation of striation-free single crystals of potassium tantalate niobate. This solid-solution system has the potential for serving as a general electro-optic material with a wide range of optical applications. The performance of the material is, however, severely limited by the effects of compositional inhomogeneity that is generally induced during the single crystal growth process due to the nature of the binary phase diagram of the mixed tantalatehiobate system. Single-crystal boules of potassium tantalate niobate (KTa{sub 1-x}Nb{sub x}O{sub 3} or KTN) with varying tantalum-to-niobium ratios (or values of x) were grown under a variety of experimental conditions. The resulting single crystals were characterized in terms of their compositional homogeneity and optical quality. Single crystals were grown using both the most-favorable established set of growth parameters as well as in the presence of programmed oscillatory temperature variations. The purpose of these deliberately induced variations was to introduce controlled compositional variations and associated optical striations in the solid-solution single crystals. The overall objective of the effort was to utilize microwave heating and processing methods to treat the inhomogeneous single crystals for the purpose of eliminating the compositional variations that lead to striations and the associated varying changes in the refractive index of the material. In order to realize the ultimate goal of the effort, it was necessary to develop methods that would lead to the effective coupling of the microwave field to the KTN single crystals. Achieving the technical and commercial goals of this effort would have made it possible to introduce an important new electro-optic product into the market place, to improve our fundamental understanding of solid-state diffusion processes in general (and of microwave-assisted thermal

  7. Results of the Workshop on Microwave-Absorbing Materials for Accelerators (MAMA): A Personal View

    SciTech Connect

    Campisi, I E

    1993-04-01

    The first workshop on the properties and uses of special materials for absorption of microwaves in particle accelerators was held at the Continuous Electron Beam Accelerator Facility (CEBAF) in Newport News, February 22-24, 1993. The meeting's purpose was to review the advances of ceramic and materials science and to describe the accelerator projects the success of which strongly depends on the existence and availability of microwave-absorbing materials with special characteristics. Scientists from various branches of physics, materials science, microwave engineering, accelerator physics and from national and international laboratories, from universities and industries participated in this gathering. This interdisciplinary meeting brought new people and new ideas together which in the future will bloom into better understanding of general materials and of physical processes and eventually to collaborative efforts to design and produce custom made materials. This paper describes the major topics covered in the workshop and is a personal elaboration of the author on the future possibilities opened by this interaction.

  8. Polymer nanocomposites exhibiting magnetically tunable microwave properties

    NASA Astrophysics Data System (ADS)

    Stojak, K.; Pal, S.; Srikanth, H.; Morales, C.; Dewdney, J.; Weller, T.; Wang, J.

    2011-04-01

    Polymer nanocomposites (PNCs) have been synthesized using Rogers polymer and CoFe2O4 nanoparticles (CFO NPs). X-ray diffraction (XRD) confirms the inverse spinel crystal structure of CFO NPs and transmission electron microscopy (TEM) images show the uniform dispersion of nanoparticles (10 nm ± 1) into the polymer matrix. Magnetic measurements indicate superparamagnetic response near room temperature for all PNCs. A blocking temperature TB ~ 298 K was observed and does not vary for different loading fractions of CFO NPs for the PNCs. The saturation magnetization (Ms) was found to be 11 emu g - 1 for 30 wt% CFO, increasing to 32 emu g - 1 for the 80 wt% CFO loaded PNC. A large value of coercivity (Hc = 19 kOe) is also observed at 10 K and is not affected by varying CFO loading. Microwave measurements show significant absorption in the 80 wt% CFO loading PNC and the quality factor shows a strong enhancement with applied magnetic field.

  9. Frequency-agile microwave components using ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Colom-Ustariz, Jose G.; Rodriguez-Solis, Rafael; Velez, Salmir; Rodriguez-Acosta, Snaider

    2003-04-01

    The non-linear electric field dependence of ferroelectric thin films can be used to design frequency and phase agile components. Tunable components have traditionally been developed using mechanically tuned resonant structures, ferrite components, or semiconductor-based voltage controlled electronics, but they are limited by their frequency performance, high cost, hgih losses, and integration into larger systems. In contrast, the ferroelectric-based tunable microwave component can easily be integrated into conventional microstrip circuits and attributes such as small size, light weight, and low-loss make these components attractive for broadband and multi-frequency applications. Components that are essential elements in the design of a microwave sensor can be fabricated with ferroelectric materials to achieve tunability over a broad frequency range. It has been reported that with a thin ferroelectric film placed between the top conductor layer and the dielectric material of a microstrip structure, and the proper DC bias scheme, tunable components above the Ku band can be fabricated. Components such as phase shifters, coupled line filters, and Lange couplers have been reported in the literature using this technique. In this wokr, simulated results from a full wave electromagnetic simulator are obtained to show the tunability of a matching netowrk typically used in the design of microwave amplifiers and antennas. In addition, simulated results of a multilayer Lange coupler, and a patch antenna are also presented. The results show that typical microstrip structures can be easily modified to provide frequency agile capabilities.

  10. Microwave absorbance properties of zirconium–manganese substituted cobalt nanoferrite as electromagnetic (EM) wave absorbers

    SciTech Connect

    Khan, Kishwar Rehman, Sarish

    2014-02-01

    Highlights: • Good candidates for EM materials with low reflectivity. • Good candidates for broad bandwidth at microwave frequency. • Microwave absorbing bandwidth was modulated simply by manipulating the Zr–Mn. • Higher the Zr–Mn content, the higher absorption rates for the electromagnetic radiation. • The predicted reflection loss shows that this can be used for thin ferrite absorber. - Abstract: Nanocrystalline Zr–Mn (x) substituted Co ferrite having chemical formula CoFe{sub 2−2x}Zr{sub x}Mn{sub x}O{sub 4} (x = 0.1–0.4) was prepared by co-precipitation technique. Combining properties such as structural, electrical, magnetic and reflection loss characteristics. Crystal structure and surface morphology of the calcined samples were characterized by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). By using two point probe homemade resistivity apparatus to find resistivity of the sample. Electromagnetic (EM) properties are measured through RF impedance/materials analyzer over 1 MHz–3 GHz. The room-temperature dielectric measurements show dispersion behavior with increasing frequency from 100 Hz to 3 MHz. Magnetic properties confirmed relatively strong dependence of saturation magnetization on Zr–Mn composition. Curie temperature is also found to decrease linearly with addition of Zr–Mn. Furthermore, comprehensive analysis of microwave reflection loss (RL) is carried out as a function of substitution, frequency, and thickness. Composition accompanying maximum microwave absorption is suggested.

  11. PETI-298 Prepared by Microwave Synthesis: Neat Resin and Composite Properties

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G.; Connell, John W.; Li, Chao-Jun; Wu, Wei; Criss, Jim M., Jr.

    2004-01-01

    PETI-298 is a high temperature/high performance matrix resin that is processable into composites by resin transfer molding (RTM), resin infusion and vacuum assisted RTM techniques. It is typically synthesized in a polar aprotic solvent from the reaction of an aromatic anhydride and a combination of diamines and endcapped with phenylethynylphthalic anhydride. Microwave synthesis of PETI-298 was investigated as a means to eliminate solvent and decrease reaction time. The monomers were manually mixed and placed in a microwave oven for various times to determine optimum reaction conditions. The synthetic process was subsequently scaled-up to 330g. Three batches were synthesized and combined to give 1 kg of material that was characterized for thermal and rheological properties and compared to PETI-298 prepared by the classic solution based synthetic method. The microwave synthesized PETI-298 was subsequently used to fabricate flat laminates on T650 carbon fabric by RTM. The composite panels were analyzed and mechanical properties determined and compared with those fabricated from PETI-298 prepared by the classic solution method. The microwave synthesis process and characterization of neat resin and carbon fiber reinforced composites fabricated by RTM will be presented. KEY WORDS: Resin Transfer Molding, High Temperature Polymers, Phenylethynyl Terminated Imides, Microwave Synthesis

  12. Dielectric properties of semi-insulating silicon at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Krupka, Jerzy; Kamiński, Paweł; Kozłowski, Roman; Surma, Barbara; Dierlamm, Alexander; Kwestarz, Michał

    2015-08-01

    The permittivity and dielectric loss tangent of high-purity silicon with semi-insulating properties achieved by the irradiation with 23-MeV protons have been measured at frequencies from 1 GHz to 15 GHz. The dielectric losses were separated from the conductor losses on the basis of the total loss tangent measurements versus frequency. The resistivity measurements of the material performed at radio frequencies (RF) by means of the capacitance spectroscopy method have shown the non-uniform resistivity distribution in the direction perpendicular to the surface of the semi-insulating wafer. The excellent agreement between the resistivity measurements results at RF and those obtained by using microwave methods have been achieved. It has been confirmed that high-purity, semi-insulating silicon is practically non-dispersive and possesses extremely low dielectric losses that are constant to within experimental errors in the frequency range from 1 GHz to 350 GHz. In this frequency range, the dielectric loss tangent of semi-insulating silicon is equal to 1.2 ×10-5 .

  13. Application of multiwavelength pyrometry in microwave processing of materials

    SciTech Connect

    Donnan, R.S.; Samandi, M.

    1996-12-31

    Over the past decade microwave energy has been increasingly used in materials processing, especially for sintering and more recently for the joining of advanced ceramics. However the hostile electromagnetic and plasma environment within a high power (1--6 kW) microwave applicator poses serious problems for very accurate high temperature measurement by precluding the use of existing classes of thermometry. For instance, conventional probe-based thermometry, multiple-wavelength ratio pyrometry and even the more recently developed technologies of optical fiber thermometry by fluoroptics and radiometry, are either incompatible or of restricted application. The main aim of this paper is to propose multiwavelength pyrometry as a viable technique for wide range (500--5,000 K) thermometry in hostile electromagnetic and plasma environments. After briefly reviewing the physical basis of its operation, the experimental set up of the multiwavelength pyrometer is outlined, and consists of a comparatively inexpensive low resolving power grating monochromator and a PbS infrared single element detector. Results are presented that compare the measurements during conventional/microwave heating trials, from this multiwavelength pyrometer and from a K-type thermocouple, a double-wavelength ratio pyrometer and a single wavelength pyrometer aimed at a dummy target (carbon/metal).

  14. Apparatus with moderating material for microwave heat treatment of manufactured components

    DOEpatents

    Ripley, Edward B.

    2011-05-10

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  15. Microwave-absorbing properties of Co-filled carbon nanotubes

    SciTech Connect

    Lin Haiyan; Zhu Hong Guo Hongfan; Yu Liufang

    2008-10-02

    Co-filled carbon nanotubes composites were synthesized via using a simple and efficient wet chemistry solution method. The samples were characterized by transmission electron microscopy. Microwave-absorbing properties were investigated by measuring complex permittivity and complex permeability of the absorber in a frequency range of 2-18 GHz. The reflection loss (R.L.), matching frequency (f{sub m}) and matching thickness (d{sub m}) were calculated using the theory of the absorbing wall. The electromagnetic properties and microwave-absorbing characteristics effects of the modified carbon nanotubes by the encapsulation of metal Co were investigated. A matching thickness is found corresponding to a matching frequency. The maximum reflection loss is about -39.32 dB and the bandwidth corresponding to the reflection loss below -10 dB is 3.47 GHz. With increasing thickness, the maximum reflection loss shifts to lower frequency.

  16. Microwave absorption properties of Ni/(C, silicides) nanocapsules

    PubMed Central

    2012-01-01

    The microwave absorption properties of Ni/(C, silicides) nanocapsules prepared by an arc discharge method have been studied. The composition and the microstructure of the Ni/(C, silicides) nanocapsules were determined by means of X-ray diffraction, X-ray photoelectric spectroscopy, and transmission electron microscope observations. Silicides, in the forms of SiOx and SiC, mainly exist in the shells of the nanocapsules and result in a large amount of defects at the ‘core/shell’ interfaces as well as in the shells. The complex permittivity and microwave absorption properties of the Ni/(C, silicides) nanocapsules are improved by the doped silicides. Compared with those of Ni/C nanocapsules, the positions of maximum absorption peaks of the Ni/(C, silicides) nanocapsules exhibit large red shifts. An electric dipole model is proposed to explain this red shift phenomenon. PMID:22548846

  17. Microwave absorption properties of Ni/(C, silicides) nanocapsules

    NASA Astrophysics Data System (ADS)

    Jiang, Jingjing; Wang, Han; Guo, Huaihong; Yang, Teng; Tang, Wen-Shu; Li, Da; Ma, Song; Geng, Dianyu; Liu, Wei; Zhang, Zhidong

    2012-05-01

    The microwave absorption properties of Ni/(C, silicides) nanocapsules prepared by an arc discharge method have been studied. The composition and the microstructure of the Ni/(C, silicides) nanocapsules were determined by means of X-ray diffraction, X-ray photoelectric spectroscopy, and transmission electron microscope observations. Silicides, in the forms of SiOx and SiC, mainly exist in the shells of the nanocapsules and result in a large amount of defects at the `core/shell' interfaces as well as in the shells. The complex permittivity and microwave absorption properties of the Ni/(C, silicides) nanocapsules are improved by the doped silicides. Compared with those of Ni/C nanocapsules, the positions of maximum absorption peaks of the Ni/(C, silicides) nanocapsules exhibit large red shifts. An electric dipole model is proposed to explain this red shift phenomenon.

  18. Microwave absorption properties of Ni/(C, silicides) nanocapsules.

    PubMed

    Jiang, Jingjing; Wang, Han; Guo, Huaihong; Yang, Teng; Tang, Wen-Shu; Li, Da; Ma, Song; Geng, Dianyu; Liu, Wei; Zhang, Zhidong

    2012-05-01

    The microwave absorption properties of Ni/(C, silicides) nanocapsules prepared by an arc discharge method have been studied. The composition and the microstructure of the Ni/(C, silicides) nanocapsules were determined by means of X-ray diffraction, X-ray photoelectric spectroscopy, and transmission electron microscope observations. Silicides, in the forms of SiOx and SiC, mainly exist in the shells of the nanocapsules and result in a large amount of defects at the 'core/shell' interfaces as well as in the shells. The complex permittivity and microwave absorption properties of the Ni/(C, silicides) nanocapsules are improved by the doped silicides. Compared with those of Ni/C nanocapsules, the positions of maximum absorption peaks of the Ni/(C, silicides) nanocapsules exhibit large red shifts. An electric dipole model is proposed to explain this red shift phenomenon.

  19. Microwave absorption properties of double-layer composites using CoZn/NiZn/MnZn-ferrite and titanium dioxide

    NASA Astrophysics Data System (ADS)

    Das, Sukanta; Nayak, G. C.; Sahu, S. K.; Routray, P. C.; Roy, A. K.; Baskey, H.

    2015-03-01

    Zinc substituted ferrite powders Me0.5Zn0.5Fe2O4 (Me=Co, Mn and Ni) were prepared by the sol-gel auto-combustion method. The present study highlights development of Single layer and double layer composite microwave absorbing materials using Ferrites, Titanium dioxide and Epoxy matrix. Moreover microwave absorption property, i.e. reflection loss evaluated at X-band frequency. XRD analysis of the filler particles were carried out to evaluate crystal structure, average crystallite diameter. Morphology of the filler particles were studied with FESEM. Hysteresis behavior of the ferrites samples were studied with Vibrating Sample Magnetometer. The most important parameter governing the absorption properties of microwave absorbers i.e. permittivity and permeability studied in a vector network analyzer. Measured reflection loss value of single-layer NiZn-ferrite based microwave absorber reaches -11.2 dB at 12.05 GHz. Whereas, reflection loss value of double-layer CoZn-ferrite/ TiO2 based microwave absorber reaches -24.3 dB at 12.02 GHz. The result shows that microwave absorption property and bandwidth of absorption of double-layer microwave absorber was found to improve comparison to single layer.

  20. Electromagnetic properties and microwave absorbing characteristics of doped barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Ghasemi, A.; Hossienpour, A.; Morisako, A.; Saatchi, A.; Salehi, M.

    2006-07-01

    M-type barium hexaferrite BaFe 12-x(Mn 0.5Cu 0.5Ti) x/2O 19 ( x varying from 0 to 3 in steps of 1) have been synthesized by the usual ceramic sintering method. The ferrite powders possess hexagonal shape and are well separated from one another. The powder of these ferrites were mixed with polyvinylchloride plasticizer to be converted in to a microwave absorbing composite. X-ray diffraction (XRD), scanning electron microscope (SEM), ac susceptometer, vibrating sample magnetometer, and vector network analyzer were used to analyze its structure, electromagnetic and microwave absorption properties. The results showed that, the magnetoplumbite structures for all the samples have been formed. The sample having higher magnetic susceptibility and coercivity exhibits a larger microwave absorbing ability. Also, the present investigation demonstrates that microwave absorber using BaFe 12-x (Mn 0.5Cu 0.5Ti) x/2O 19 ( x=2 and 3)/polyvinylchloride can be fabricated for the applications over 15 GHz, with reflection loss more than -25 dB for specific frequencies, by controlling the molar ratio of the substituted ions.

  1. Impact of hydrogen forming gas annealing on microwave properties of Ba(Zn1/3Ta2/3)O3 dielectric ceramics

    NASA Astrophysics Data System (ADS)

    Sezer, N.; Saka, E.

    2016-03-01

    The effect of H2 forming gas annealing on the microwave properties of Ba(Zn1/3Ta2/3)O3 (BZT) dielectric ceramics has been studied. The structural, microwave, DC electrical and optical properties were analyzed by experiment results. With elevated temperature annealing, the microwave loss of BZT was increased. This trend correlated with high DC conductivity of annealed samples, as well as dampened phonons found in Raman spectra. These evidences, together, prove that the enhancement of oxygen vacancy defects induced by oxygen deficient sintering environment is one of the main extrinsic root causes for the high microwave loss in practical ceramic materials.

  2. Impact of Waveguide Filling Material on Near-Field Microwave Inspection of Carbon-Loaded Composites

    NASA Astrophysics Data System (ADS)

    Qaddoumi, Nasser; Saleh, Wael; Sediq, Akram Bin

    2010-10-01

    The advent of carbon loaded composite materials gave a boost to many industries. This is because of their light weight, durability and strength. As new structures utilizing carbon loaded composites are built, the need for a reliable nondestructive testing technique increases. A carbon-loaded composite testing poses a challenge to most nondestructive testing and evaluation (NDT&E) techniques. Microwave NDT&I techniques main challenge is the lossy nature of carbon, especially at high microwave frequencies. Lower frequencies penetrate deeper in carbon-loaded composites, however, to operate at lower frequencies the size of the waveguide probe increases significantly which degrades the resolution rapidly. Open-ended rectangular waveguide sensors filled with a dielectric material will be used to inspect carbon-loaded composites. The filling of the waveguide reduces the frequency of operation and keeps the small size of the waveguide (i.e. increases the penetration depth and maintains the resolution). However, varying the waveguide filling material dielectric properties will have an impact on the measurement parameters optimization process and consequently on the detection sensitivity. In this paper, the use of the waveguide filling material as an optimization parameter will be investigated. Carbon-loaded composites with disbonds will be inspected and the variation of the dielectric properties of the loading material of rectangular waveguide probes for carbon loaded composites inspection will be assessed.

  3. The microwave adsorption behavior and microwave-assisted heteroatoms doping of graphene-based nano-carbon materials

    NASA Astrophysics Data System (ADS)

    Tang, Pei; Hu, Gang; Gao, Yongjun; Li, Wenjing; Yao, Siyu; Liu, Zongyuan; Ma, Ding

    2014-08-01

    Microwave-assisted heating method is used to treat graphite oxide (GO), pyrolytic graphene oxide (PGO) and hydrogen-reduced pyrolytic graphene oxide (HPGO). Pure or doped graphene are prepared in the time of minutes and a thermal deoxygenization reduction mechanism is proposed to understand their microwave adsorption behaviors. These carbon materials are excellent catalysts in the reduction of nitrobenzene. The defects are believed to play an important role in the catalytic performance.

  4. The microwave adsorption behavior and microwave-assisted heteroatoms doping of graphene-based nano-carbon materials

    PubMed Central

    Tang, Pei; Hu, Gang; Gao, Yongjun; Li, Wenjing; Yao, Siyu; Liu, Zongyuan; Ma, Ding

    2014-01-01

    Microwave-assisted heating method is used to treat graphite oxide (GO), pyrolytic graphene oxide (PGO) and hydrogen-reduced pyrolytic graphene oxide (HPGO). Pure or doped graphene are prepared in the time of minutes and a thermal deoxygenization reduction mechanism is proposed to understand their microwave adsorption behaviors. These carbon materials are excellent catalysts in the reduction of nitrobenzene. The defects are believed to play an important role in the catalytic performance. PMID:25109492

  5. Microwave axial dielectric properties of carbon fiber.

    PubMed

    Hong, Wen; Xiao, Peng; Luo, Heng; Li, Zhuan

    2015-01-01

    Randomly distributed carbon fibers (CFs) reinforced epoxy resin composites are prepared by the pouring method, the dielectric properties of CF composites with different fiber content and length have been performed in the frequency range from 8.2 to 12.4 GHz. The complex permittivity of the composite increases with the fiber length, which is attributed to the decrease of depolarization field, and increases with the volume fraction, which is attributed to the increase of polarization. A formula, based on the theory of Reynolds-Hugh, is proposed to calculate the effective permittivity of CF composites, and validated by the experiments. The proposed formula is further applied to derive the axial permittivity of CF and analyze the effect of fiber length on the axial permittivity. PMID:26477579

  6. Microwave axial dielectric properties of carbon fiber

    PubMed Central

    Hong, Wen; Xiao, Peng; Luo, Heng; Li, Zhuan

    2015-01-01

    Randomly distributed carbon fibers (CFs) reinforced epoxy resin composites are prepared by the pouring method, the dielectric properties of CF composites with different fiber content and length have been performed in the frequency range from 8.2 to 12.4 GHz. The complex permittivity of the composite increases with the fiber length, which is attributed to the decrease of depolarization field, and increases with the volume fraction, which is attributed to the increase of polarization. A formula, based on the theory of Reynolds-Hugh, is proposed to calculate the effective permittivity of CF composites, and validated by the experiments. The proposed formula is further applied to derive the axial permittivity of CF and analyze the effect of fiber length on the axial permittivity. PMID:26477579

  7. Microwave axial dielectric properties of carbon fiber

    NASA Astrophysics Data System (ADS)

    Hong, Wen; Xiao, Peng; Luo, Heng; Li, Zhuan

    2015-10-01

    Randomly distributed carbon fibers (CFs) reinforced epoxy resin composites are prepared by the pouring method, the dielectric properties of CF composites with different fiber content and length have been performed in the frequency range from 8.2 to 12.4 GHz. The complex permittivity of the composite increases with the fiber length, which is attributed to the decrease of depolarization field, and increases with the volume fraction, which is attributed to the increase of polarization. A formula, based on the theory of Reynolds-Hugh, is proposed to calculate the effective permittivity of CF composites, and validated by the experiments. The proposed formula is further applied to derive the axial permittivity of CF and analyze the effect of fiber length on the axial permittivity.

  8. Microwave absorption properties of amorphous iron nanostructures fabricated by a high-yield method

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Zuo, Yalu; Yao, Yuelin; Xi, Li; Du, Jihong; Wang, Jianbo; Xue, Desheng

    2013-04-01

    Amorphous Fe nanoparticles and a nanonecklace were synthesized at room temperature by an aqueous reduction procedure, which provided a simple and potential method for volume production of ferromagnetic materials. The morphology was examined by scanning electron microscopy and transmission electron microscopy. The amorphism of Fe nanoparticles and the nanonecklace was confirmed by x-ray diffraction and electron diffraction patterns in transmission electron microscopy. The complex permittivity and permeability behaviour of amorphous iron nanoparticles/paraffin wax (NPPW) and nanonecklace/paraffin wax (NCPW) composites was investigated in 0.1-18 GHz by a coaxial method. The strongest reflection loss values of NPPW and NCPW calculated from permittivity and permeability reached -53.2 dB and -47.8 dB at 6.4 GHz and 4.6 GHz with matching thicknesses of 2.4 mm and 2.3 mm, respectively. Moreover, the frequency ranges of microwave absorption exceeding 90% were around 4.9-8.8 GHz and 3.7-6.1 GHz for NPPW and NCPW, respectively. Comparing the microwave absorption property with crystallized Fe nanostructures, we may conclude that the relatively high resistivity and low permittivity of amorphous Fe nanostructures are favourable for impedance matching, and consequently result in the attracting microwave absorption property of amorphous Fe nanostructures. Thus, amorphous iron nanoparticles and the nanonecklace prepared by a high-yield method have great potential to be a highly efficient microwave absorber.

  9. Electromagnetic properties and microwave absorption of W-type hexagonal ferrites doped with La 3+

    NASA Astrophysics Data System (ADS)

    Deng, Lianwen; Ding, Li; Zhou, Kesheng; Huang, Shengxiang; Hu, Zhaowen; Yang, Bingchu

    2011-07-01

    W-type barium hexaferrites with compositions of Ba 1Co 0.9Zn 1.1Fe 16O 27 and Ba 0.8La 0.2Co 0.9Zn 1.1Fe 16O 27 were synthesized by the sol-gel method. The electromagnetic properties and microwave absorption behavior of these two ferrites were studied in the 2-18 GHz frequency range. The microstructure and morphology of the ferrites were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. The complex permittivity spectra, the complex permeability spectra and microwave reflection loss were measured by a microwave vector network analyzer. The XRD patterns show that the main phase of the Co 2W ferrite forms without other intermediate phases when calcined at 1200 °C. The SEM images indicate that flake-like hexagonal crystals distribute uniformly in the materials. Both the magnetic and dielectric losses are significantly enhanced by partial substitution of La 3+ for Ba 2+ in the W-type barium hexaferrites. The microwave absorption property of the La 3+ doping W-type hexaferrite sample is enhanced with the bandwidth below -10 dB around 8 GHz and the peak value of reflection loss about -39.6 dB at the layer thickness of 2 mm.

  10. Microwave properties of sea ice in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Onstott, R. G.; Larson, R. W.

    1986-01-01

    Active microwave properties of summer sea ice were measured. Backscatter data were acquired at frequencies from 1 to 17 GHz, at angles from 0 to 70 deg from vertical, and with like and cross antenna polarizations. Results show that melt-water, snow thickness, snowpack morphology, snow surface roughness, ice surface roughness, and deformation characteristics are the fundamental scene parameters which govern the summer sea ice backscatter response. A thick, wet snow cover dominates the backscatter response and masks any ice sheet features below. However, snow and melt-water are not distributed uniformly and the stage of melt may also be quite variable. These nonuniformities related to ice type are not necessarily well understood and produce unique microwave signature characteristics.

  11. The effect of dielectric properties of sintering additives on microwave sintered silicon nitride ceramics.

    PubMed

    Chockalingam, Sreekumar; George, Jacob; Earl, David; Amarakoon, Vasantha R W

    2008-01-01

    Silicon nitride requires the use of susceptive additives for microwave liquid phase sintering due to the material's low dielectric loss. In this article, we report the effect of complex dielectric properties of two compositions of sintering aids on 2.45 GHz microwave sintered Si3N4 with respect to power absorption, temperature distribution and densification behavior. The temperature dependent dielectric properties were measured from 25 degrees C to 1400 degrees C using a conventional cavity perturbation technique. Finite Difference Time Domain (FDTD) electromagnetic simulations coupled with a thermal solver was used to predict the microwave power absorption and the corresponding temperature evolution inside the samples. The additive with higher dielectric loss (4 wt% MgO, 6 wt% Y2O3 and 2.5 wt% ZrO2) produces a greater sintered density than the lower loss additive (4 wt% MgO and 6 wt% Y2O3) or pure Si3N4. Although microwave loss at temperatures below 600 degrees C is insignificant with or without the additives, the loss begins to increase at higher temperatures when the additives are present and has a strong upward trend above 1000 degrees C. Above 1200 degrees C the sample containing ZrO2 exhibited the greatest loss. Numerical simulations at the peak sintering temperature show greater microwave power absorption and higher temperature in the sample with the highest loss additive. The simulation results correlate to the difference in densification behavior observed. The simulation was also useful because the material temperature was not accurately provided by optical pyrometer measurements of the crucible sample holder.

  12. The effect of dielectric properties of sintering additives on microwave sintered silicon nitride ceramics.

    PubMed

    Chockalingam, Sreekumar; George, Jacob; Earl, David; Amarakoon, Vasantha R W

    2008-01-01

    Silicon nitride requires the use of susceptive additives for microwave liquid phase sintering due to the material's low dielectric loss. In this article, we report the effect of complex dielectric properties of two compositions of sintering aids on 2.45 GHz microwave sintered Si3N4 with respect to power absorption, temperature distribution and densification behavior. The temperature dependent dielectric properties were measured from 25 degrees C to 1400 degrees C using a conventional cavity perturbation technique. Finite Difference Time Domain (FDTD) electromagnetic simulations coupled with a thermal solver was used to predict the microwave power absorption and the corresponding temperature evolution inside the samples. The additive with higher dielectric loss (4 wt% MgO, 6 wt% Y2O3 and 2.5 wt% ZrO2) produces a greater sintered density than the lower loss additive (4 wt% MgO and 6 wt% Y2O3) or pure Si3N4. Although microwave loss at temperatures below 600 degrees C is insignificant with or without the additives, the loss begins to increase at higher temperatures when the additives are present and has a strong upward trend above 1000 degrees C. Above 1200 degrees C the sample containing ZrO2 exhibited the greatest loss. Numerical simulations at the peak sintering temperature show greater microwave power absorption and higher temperature in the sample with the highest loss additive. The simulation results correlate to the difference in densification behavior observed. The simulation was also useful because the material temperature was not accurately provided by optical pyrometer measurements of the crucible sample holder. PMID:19227072

  13. Materials properties data base computerization

    NASA Technical Reports Server (NTRS)

    Baur, R. G.; Donthnier, M. L.; Moran, M. C.; Mortman, I.; Pinter, R. S.

    1984-01-01

    Material property data plays a key role in the design of jet engine components. Consistency, accuracy and efficient use of material property data is of prime importance to the engineering community. The system conception, development, implementation, and future plans for computer software that captures the Material Properties Handbook into a scientific data base are described. The engineering community is given access to raw data and property curves, display of multiple curves for material evaluation and selection, direct access by design analysis computer programs, display of the material specification, and a historical repository for the material evolution. The impact of this activity includes significant productivity gains and cost reductions; all users have access to the same information nd provides consistent, rapid response to the needs of the engineering community. Future plans include incorporating the materials properties data base into a network environment to access information from other data bases and download information to engineering work stations.

  14. Spark plasma sintering and microwave electromagnetic properties of MnFe2O4 ceramics

    NASA Astrophysics Data System (ADS)

    Penchal Reddy, M.; Mohamed, A. M. A.; Venkata Ramana, M.; Zhou, X. B.; Huang, Q.

    2015-12-01

    MnFe2O4 ferrite powder was synthesized by a facile one-pot hydrothermal route and then consolidated into dense nanostructured compacts by the spark plasma sintering (SPS) technique. The effect of sintering temperature, on densification, morphology, magnetic and microwave absorption properties was examined. Spark plasma sintering resulted in uniform microstructure, as well as maximum relative density of 98%. The magnetic analysis indicated that the MnFe2O4 ferrite nanoparticles showed ferrimagnetic behavior. Moreover, the dielectric loss and magnetic loss properties of MnFe2O4 ferrite nanoparticles were both enhanced due to its better dipole polarization, interfacial polarization and shape anisotropy. It is believed that such spark plasma sintered ceramic material will be applied widely in microwave absorbing area.

  15. Preparation and Microwave Response of Yttrium Barium-Copper Superconducting Materials.

    NASA Astrophysics Data System (ADS)

    Jeong, Dae-Yeong

    1988-12-01

    The preparation parameters affecting the physical properties of Y-Ba-Cu-O superconducting ceramics were studied by using the conventional powder technique. Also their unusual low-field microwave absorptions as well as high -field EPR signals, were studied in different magnetic histories and temperatures. The important parameters for better superconducting characteristics are known to be heating temperatures, atmosphere, pelleting pressure, reactivity with crucible material, cooling rate and additional annealing. The low-field signals are interpreted in a framework of superconducting analog of spin glass in conjunction with the critical state theory. The high-field EPR signals seem to appear mainly due to the presence of nonsuperconducting phases.

  16. Microwave behaviour comparison between different carbon based materials in epoxy resin composites

    NASA Astrophysics Data System (ADS)

    Giorcelli, M.; Savi, P.; Guastella, S.; Tagliaferro, A.

    2016-05-01

    Because of their low weight and high performance, polymer composites are important materials for new applications. Their properties (electrical, mechanical, …) can in fact be tuned using different kind of filler and percentage. Carbon fillers are among the most used in composites when tuning electrical proprieties is the target. Different carbon fillers can be used. From cheaper (e.g. carbon black), to eco-friendly (e.g. Biochar) or more sophisticate (e.g. carbon nanotubes). In this work, we studied the microwave performance of these different kinds of carbon filler dispersed in Epoxy resin.

  17. Packaging Materials Properties Data

    SciTech Connect

    Leduc, D.

    1991-10-30

    Several energy absorbing materials are used in nuclear weapons component shipping containers recently designed for the Y-12 Plant Program Management Packaging Group. As a part of the independent review procedure leading to Certificates of Compliance, the U.S. Department of Energy Technical Safety Review Panels requested compression versus deflection . data on these materials. This report is a compilation of that data.

  18. Packaging materials properties data

    SciTech Connect

    Walker, M.S.

    1991-01-01

    Several energy absorbing materials are used in nuclear weapons component shipping containers recently designed for the Y-12 Plant Program Management Packaging Group. As a part of the independent review procedure leading to Certificates of Compliance, the US Department of Energy Technical Safety Review Panels requested compression versus deflection data on these materials. This report is a compilation of that data.

  19. Facile Synthesis of Fe3O4/GCs Composites and Their Enhanced Microwave Absorption Properties.

    PubMed

    Jian, Xian; Wu, Biao; Wei, Yufeng; Dou, Shi Xue; Wang, Xiaolin; He, Weidong; Mahmood, Nasir

    2016-03-01

    Graphene has good stability and adjustable dielectric properties along with tunable morphologies, and hence can be used to design novel and high-performance functional materials. Here, we have reported a facile synthesis method of nanoscale Fe3O4/graphene capsules (GCs) composites using the combination of catalytic chemical vapor deposition (CCVD) and hydrothermal process. The resulting composite has the advantage of unique morphology that offers better synergism among the Fe3O4 particles as well as particles and GCs. The microwave-absorbing characteristics of developed composites were investigated through experimentally measured electromagnetic properties and simulation studies based on the transmission line theory, explained on the basis of eddy current, natural and exchange resonance, as well as dielectric relaxation processes. The composites bear minimum RL value of -32 dB at 8.76 GHz along with the absorption bandwidth range from 5.4 to 17 GHz for RL lower than -10 dB. The better performance of the composite based on the reasonable impedance characteristic, existence of interfaces around the composites, and the polarization of free carriers in 3D GCs that make the as-prepared composites capable of absorbing microwave more effectively. These results offer an effective way to design high-performance functional materials to facilitate the research in electromagnetic shielding and microwave absorption. PMID:26890224

  20. Facile Synthesis of Fe3O4/GCs Composites and Their Enhanced Microwave Absorption Properties.

    PubMed

    Jian, Xian; Wu, Biao; Wei, Yufeng; Dou, Shi Xue; Wang, Xiaolin; He, Weidong; Mahmood, Nasir

    2016-03-01

    Graphene has good stability and adjustable dielectric properties along with tunable morphologies, and hence can be used to design novel and high-performance functional materials. Here, we have reported a facile synthesis method of nanoscale Fe3O4/graphene capsules (GCs) composites using the combination of catalytic chemical vapor deposition (CCVD) and hydrothermal process. The resulting composite has the advantage of unique morphology that offers better synergism among the Fe3O4 particles as well as particles and GCs. The microwave-absorbing characteristics of developed composites were investigated through experimentally measured electromagnetic properties and simulation studies based on the transmission line theory, explained on the basis of eddy current, natural and exchange resonance, as well as dielectric relaxation processes. The composites bear minimum RL value of -32 dB at 8.76 GHz along with the absorption bandwidth range from 5.4 to 17 GHz for RL lower than -10 dB. The better performance of the composite based on the reasonable impedance characteristic, existence of interfaces around the composites, and the polarization of free carriers in 3D GCs that make the as-prepared composites capable of absorbing microwave more effectively. These results offer an effective way to design high-performance functional materials to facilitate the research in electromagnetic shielding and microwave absorption.

  1. Microwave properties of ice from The Great Lakes

    NASA Technical Reports Server (NTRS)

    Vickers, R. S.

    1975-01-01

    The increasing use of radar systems as remote sensors of ice thickness has revealed a lack of basic data on the microwave properties of fresh-water ice. A program, in which the complex dielectric constant was measured for a series of ice samples taken from the Great Lakes, is described. The measurements were taken at temperatures of -5, -10, and -15 C. It is noted that the ice has considerable internal layered structure, and the effects of the layering are examined. Values of 3.0 to 3.2 are reported for the real part of the dielectric constant, with an error bar of + or - 0.01.

  2. Snow property measurements correlative to microwave emission at 35 GHz

    NASA Technical Reports Server (NTRS)

    Davis, Robert E.; Dozier, Jeff; Chang, Alfred T. C.

    1987-01-01

    Snow microstructure, measured by plane section analysis, and snow wetness, measured by the dilution method, are used to calculate input parameters for a microwave emission model that uses the radiative transfer method. The scattering and absorbing properties are calculated by Mie theory. The effects of different equivalent sphere conversions, adjustments for near-field interference, and different snow wetness characterizations are compared for various snow conditions. The concentric shell geometry of liquid water in snow yields higher emissivities and better model results than the separate-sphere configuration for liquid water contents greater than 0.05, while at lower liquid water contents the separate-sphere treatment gives better results.

  3. Snow property measurements correlative to microwave emission at 35 GHz

    NASA Technical Reports Server (NTRS)

    Davis, R. E.; Dozier, J.; Chang, A. T. C.

    1986-01-01

    Snow microstructure, measured by plane section analysis, and snow wetness, measured by the dilution method, are used to calculate input parameters for a microwave emission model that uses the radiative transfer method. The scattering and absorbing properties are calculated by Mie theory. The effects of different equivalent sphere conversions, adjustments for near-field interference, and different snow wetness characterizations are compared for various snow conditions. The concentric shell geometry of liquid water in snow yields higher emissivities and better model results than the separate-sphere configuration for liquid water contents greater than 0.05, while at lower liquid water contents the separate-sphere treatment gives better results.

  4. Electron waves resonance properties in superdimensional microwave Cherenkov devices

    SciTech Connect

    Chernyavsky, I.A.; Pikunov, V.M.

    1995-11-01

    The electron waves resonance properties in the one-stage and two-stage microwave Cherenkov devices based on the superdimensional slow-wave structures are investigated by the linear theory methods near {pi}-cutoff of E{sub 01} waveguide mode. The variation of the generation frequencies and it`s starting currents, when diode voltage changes in a wide range of value, are investigated. concept of a longitudinal electron oscillations (LEO) is defined for a one-stage device. The dependencies of the generation frequency and starting current versus the drift tube length are investigated for the two-stage device in detail.

  5. Microwave absorption properties of graphite flakes-phenolic resin composite

    NASA Astrophysics Data System (ADS)

    Gogoi, Jyoti P.; Gogoi, Pragyan J.; Bhattacharyya, Nidhi S.

    2013-01-01

    In the present investigation, microwave absorption properties of a conductor back single layer designed on graphite flakes (GF)-novolac phenolic resin (NPR) composites is studied. The complex permittivity of the developed composite enhance for higher GF percentages. The reflection loss(RL) measured using E8362C VNA shows a maximum RL values -25 dB at 9.8 GHz for 7 wt. % composition with -10 dB bandwidth of 0.3 GHz. The developed composites are being light weight and cost effective shows potential to be used as dielectric absorber.

  6. Electromagnetic properties of polycrystalline diamond from 35 K to room temperature and microwave to terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Floch, Jean-Michel Le; Bara, Romain; Hartnett, John G.; Tobar, Michael E.; Mouneyrac, David; Passerieux, Damien; Cros, Dominique; Krupka, Jerzy; Goy, Philippe; Caroopen, Sylvain

    2011-05-01

    Dielectric resonators are key components for many microwave and millimeter wave applications, including high-Q filters and frequency-determining elements for precision frequency synthesis. These often depend on the quality of the dielectric material. The commonly used material for building the best cryogenic microwave oscillators is sapphire. However, sapphire is becoming a limiting factor for higher frequency designs. It is, then, important to find new candidates that can fulfill the requirements for millimeter wave low noise oscillators at room and cryogenic temperatures. These clocks are used as a reference in many fields, such as modern telecommunication systems, radio astronomy (very-long-baseline interferometry), and precision measurements at the quantum limit. High resolution measurements were taken of the temperature-dependence of the electromagnetic properties of a polycrystalline diamond disk at temperatures between 35 and 330 K at microwave to submillimeter wave frequencies. The cryogenic measurements were made using a TE01δ dielectric mode resonator placed inside a vacuum chamber connected to a single-stage pulse-tube cryocooler. The high frequency characterization was performed at room temperature using a combination of a quasi-optical two-lens transmission setup, a Fabry-Perot cavity, and a whispering gallery mode resonator excited with waveguides. Our CVD diamond sample exhibits a decreasing loss tangent with increasing frequencies. We compare the results with well known crystals. This comparison makes it clear that polycrystalline diamond could be an important material for generating stable frequencies at millimeter waves.

  7. Factors Influencing the Dielectric Properties of Agricultural Products and Food Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectric properties of materials are defined, and the major factors that influence these properties of agricultural and food materials, namely, frequency of the applied radio-frequency and microwave electric fields, water content, temperature, and density of the materials are discussed on the bas...

  8. Microwave Ignited Combustion Synthesis as a Joining Technique for Dissimilar Materials

    NASA Astrophysics Data System (ADS)

    Rosa, Roberto; Colombini, Elena; Veronesi, Paolo; Poli, Giorgio; Leonelli, Cristina

    2012-05-01

    Microwave energy has been exploited to ignite combustion synthesis (CS) reactions of properly designed powders mixtures, in order to rapidly reach the joining between different kinds of materials, including metals (Titanium and Inconel) and ceramics (SiC). Beside the great advantage offered by CS itself, i.e., rapid and highly localized heat generation, the microwaves selectivity in being absorbed by micrometric metallic powders and not by bulk metallic components represents a further intriguing aspect in advanced materials joining applications, namely the possibility to avoid the exposition to high temperatures of the entire substrates to be joined. Moreover, in case of microwaves absorbing substrates, the competitive microwaves absorption by both substrates and powdered joining material, leads to the possibility of adhesion, interdiffusion and chemical bonding enhancements. In this study, both experimental and numerical simulation results are used to highlight the great potentialities of microwave ignited CS in the joining of advanced materials.

  9. Microwave applications and characterization of the microwave properties of high temperature superconducting films

    NASA Technical Reports Server (NTRS)

    Strayer, D. M.; Bautista, J. J.; Riley, A. L.; Dick, G. J.; Housley, R. L.

    1990-01-01

    The development by NASA JPL of high-temperature superconductors (HTSs) for use in microwave circuit elements is discussed. The synthesis of HTS films and characterization of their microwave absorption are reviewed. Applications to cryogenic low-noise receivers, spacecraft microwave systems, and low-noise oscillators are considered.

  10. Controlled synthesis and microwave absorption property of chain-like co flower.

    PubMed

    Wang, Chao; Hu, Surong; Han, Xijiang; Huang, Wen; Tian, Lunfu

    2013-01-01

    Chain-like Co flower is synthesized by simply modulating the reaction conditions via a facile liquid-phase reduction method. The morphology evolution process and transformation mechanism from particle to flower and finally to chain-like flower have been systematically investigated. [001] is the preferred growth orientation due to the existence of easy magnetic axis. The microwave loss mechanism can be attributed to the synergistic effect of magnetic loss and dielectric loss, while magnetic loss is the main loss mechanism. In addition, the special microstructure of chain-like Co flower may further enhance microwave attenuation. The architectural design of functional material morphology is critical for improving its property toward future application.

  11. Microwave absorption properties of carbon nanotubes dispersed in alumina ceramic

    NASA Astrophysics Data System (ADS)

    Chojnacki, E.; Huang, Q.; Mukherjee, A. K.; Holland, T. B.; Tigner, M.; Cherian, K.

    2011-12-01

    Ceramic nanocomposites of alumina and carbon nanotubes (CNTs) are experimentally studied for use as microwave absorbers in particle accelerators. The weight percentage of multi-walled CNTs in SPS sintered nanocomposite samples is varied from 0.5 to 10% and the complex permittivity is measured. The RF absorption is strong and relatively flat in the frequency band 1-40 GHz for a CNT weight percentage in the range 1-2.5%, which is just above the percolation threshold. The permittivity is observed to increase dramatically with increasing CNT weight percentage above the percolation threshold as observed elsewhere, and in accordance with theoretical treatments. The electromagnetic properties of the nanocomposites are little changed in going from 294 K to 77 K. The DC conductivity of the alumina-CNT nanocomposite is also sufficient to drain static charge in particle accelerator beamline environments, even at cryogenic temperatures. Fabrication of the nanocomposites using an industrial RF sintering process compatible with large sizes shows that the microwave absorption properties of small samples are similar to those of the SPS sintered samples.

  12. Digestion of titanium bearing geologic materials involving microwaves.

    PubMed

    Tripathi, Anju; Chattopadhyay, Partha

    2007-10-01

    An environmentally friendly and rapid digestion procedure involving 10 mL of acid mixture (HNO3 : HCl : HF = 2:2:1) for 0.1 g of sample in closed vessel microwave digester following heating program : 250W for 10 min., hold time 2 min., 600 W for 17 min, and Ventilation time 10 min was developed. The operating parameters were varied and optimized by factorial design approach using "Steepest Ascent" method. The validity of the recommended digestion procedure were examined by analyzing several well characterized standard reference materials such as diabase (W2), basalt (BIR-1, JB-3, BHVO-1), granite (G2), gabbro (JGb-1), Mn-nodule (Nod-A-1, Nod-P-1), sediment (STSD-4, LKSD-2), limestone (KH-2), soil (SAu-1), ilmenite (IGS-31), rutile (IGS-32), Zircon (IGS-35) and titanium dioxide (SRM-154b) employing both inductively coupled plasma-atomic emission spectrometry (ICP-AES) and well known spectrophotometric method. An excellent agreement between the methods and the certified values of standard reference materials suggest that the digestion procedure can be used for quality control and allied purposes.

  13. Digestion of titanium bearing geologic materials involving microwaves.

    PubMed

    Tripathi, Anju; Chattopadhyay, Partha

    2007-10-01

    An environmentally friendly and rapid digestion procedure involving 10 mL of acid mixture (HNO3 : HCl : HF = 2:2:1) for 0.1 g of sample in closed vessel microwave digester following heating program : 250W for 10 min., hold time 2 min., 600 W for 17 min, and Ventilation time 10 min was developed. The operating parameters were varied and optimized by factorial design approach using "Steepest Ascent" method. The validity of the recommended digestion procedure were examined by analyzing several well characterized standard reference materials such as diabase (W2), basalt (BIR-1, JB-3, BHVO-1), granite (G2), gabbro (JGb-1), Mn-nodule (Nod-A-1, Nod-P-1), sediment (STSD-4, LKSD-2), limestone (KH-2), soil (SAu-1), ilmenite (IGS-31), rutile (IGS-32), Zircon (IGS-35) and titanium dioxide (SRM-154b) employing both inductively coupled plasma-atomic emission spectrometry (ICP-AES) and well known spectrophotometric method. An excellent agreement between the methods and the certified values of standard reference materials suggest that the digestion procedure can be used for quality control and allied purposes. PMID:18153999

  14. Tunable microwave absorbing nano-material for X-band applications

    NASA Astrophysics Data System (ADS)

    Sadiq, Imran; Naseem, Shahzad; Ashiq, Muhammad Naeem; Khan, M. A.; Niaz, Shanawer; Rana, M. U.

    2016-03-01

    The effect of rare earth elements substitution in Sr1.96RE0.04Co2Fe27.80Mn0.2O46 (RE=Ce, Gd, Nd, La and Sm) X-type hexagonal ferrites prepared by using sol gel autocombustion method was studied. The XRD and FTIR analysis show the single phase of the prepared material. The lattice constants a (Å) and c (Å) varies with the additives. The particle size measured by Scherer formula for all the samples varies in the range of 54-100 nm and confirmed by the TEM analysis. The average grain size measured by SEM analysis lies in the range of 0.672-1.01 μm for all the samples. The Gd-substituted ferrite has higher value of coercivity (526.06 G) among all the samples which could be a good material for longitudinal recording media. The results also indicate that the Gd-substituted sample has maximum reflection loss of -25.2 dB at 11.878 GHz, can exhibit the best microwave absorption properties among all the substituted samples. Furthermore, the minimum value of reflection loss shifts towards the lower and higher frequencies with the substitution of rare earth elements which confirms that the microwave absorption properties can be tuned with the substitution of rare earth elements in pure ferrites. The peak value of attenuation constant at higher frequency agrees well the reflection loss data.

  15. Facile synthesis of BaTiO3 nanotubes and their microwave absorption properties.

    PubMed

    Zhu, Yao-Feng; Zhang, Li; Natsuki, Toshiaki; Fu, Ya-Qin; Ni, Qing-Qing

    2012-04-01

    Uniform BaTiO(3) nanotubes were synthesized via a simple wet chemical route at low temperature (50 °C). The as-synthesized BaTiO(3) nanotubes were characterized using powder X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The results show that the BaTiO(3) nanotubes formed a cubic phase with an average diameter of ~10 nm and wall thickness of 3 nm at room temperature. The composition of the mixed solvent (ethanol and deionized water) was a key factor in the formation of these nanotubes; we discuss possible synthetic mechanisms. The microwave absorption properties of the BaTiO(3) nanotubes were studied at microwave frequencies between 0.5 and 15 GHz. The minimum reflection loss of the BaTiO(3) nanotubes/paraffin wax composite (BaTiO(3) nanotubes weight fraction = 70%) reached 21.8 dB (~99.99% absorption) at 15 GHz, and the frequency bandwidth less than -10 dB is from 13.3 to 15 GHz. The excellent absorption property of BaTiO(3) nanotubes at high frequency indicates that these nanotubes could be promising microwave-absorbing materials. PMID:22409350

  16. Preparation and microwave absorbing properties of carbon/cobalt ferromagnetic composites.

    PubMed

    Li, Wangchang; Qiao, Xiaojing; Zhao, Hui; Wang, Shuman; Ren, Qingguo

    2013-02-01

    Carbon/cobalt ferromagnetic light composites with high performance of microwave absorbing properties were prepared by hydrothermal method using starch and hollow cobalt ferrites. It was concluded that after carbonization the spinel structure ferrites changed to Co3Fe7 alloys and the temperature of graphitization was significantly decreased for the catalytic of CoFe2O4/Co3Fe7. The increase of carbon content, and exist of CoFe2O4/Co3Fe7 heightened the microwave absorbing properties. Electromagnetic parameters were tested with 40% of the titled materials and 60% of paraffin wax composites by using HP8722ES vector network analyzer. The reflection was also simulated through transmission line theory. The microwave absorbers exhibited a maximum reflection loss -43 dB and the electromagnetic wave absorption less than -10 dB was found to exceed 3.0 GHz between 11.6 GHz and 15 GHz for an absorber thickness of 2 mm. PMID:23646517

  17. Preparation and microwave absorbing properties of carbon/cobalt ferromagnetic composites.

    PubMed

    Li, Wangchang; Qiao, Xiaojing; Zhao, Hui; Wang, Shuman; Ren, Qingguo

    2013-02-01

    Carbon/cobalt ferromagnetic light composites with high performance of microwave absorbing properties were prepared by hydrothermal method using starch and hollow cobalt ferrites. It was concluded that after carbonization the spinel structure ferrites changed to Co3Fe7 alloys and the temperature of graphitization was significantly decreased for the catalytic of CoFe2O4/Co3Fe7. The increase of carbon content, and exist of CoFe2O4/Co3Fe7 heightened the microwave absorbing properties. Electromagnetic parameters were tested with 40% of the titled materials and 60% of paraffin wax composites by using HP8722ES vector network analyzer. The reflection was also simulated through transmission line theory. The microwave absorbers exhibited a maximum reflection loss -43 dB and the electromagnetic wave absorption less than -10 dB was found to exceed 3.0 GHz between 11.6 GHz and 15 GHz for an absorber thickness of 2 mm.

  18. Synthesis and Microwave Absorption Properties of BaTiO3-polypyrrole Composite

    NASA Astrophysics Data System (ADS)

    Li, Qiao-ling; Zhang, Cun-rui; Li, Jian-qiang

    2010-10-01

    BaTiO3 powders are prepared by sol-gel method by cotton template. Polypyrrole is prepared by chemical oxidation route in the emulsion polymerization system. Then BaTiO3-polypyrrole composites with different mixture ratios are prepared by as-prepared material. The structure, morphology, and properties of the composites are characterized with Infrared spectrum, X-ray diffraction, scanning electron microscope, and net-wok analyzer. The complex permittivity and reflection loss of the composites are measured at different microwave frequencies in S-band and C-band (0.03-6 GHz) employing vector network analyzer model PNA 3629D vector. The effect of the mass ratio of BaTiO3 to polypyrrole on the microwave loss properties of the composites is investigated. A possible microwave absorbing mechanism of BaTiO3-polypyrrole composite is proposed. The BaTiO3-polypyrrole composite can find applications in suppression of electromagnetic interference and reduction of radar signature.

  19. Microporous Co@CoO nanoparticles with superior microwave absorption properties.

    PubMed

    Liu, Tong; Pang, Yu; Zhu, Mu; Kobayashi, Satoru

    2014-02-21

    Nanoporous metal materials with many potential applications have been synthesized by a chemical dealloying approach. The fabrication of nanoporous metal nanoparticles (NPs), however, is still challenging due to the difficulties in producing suitable nanoscale precursors. Herein, nanoporous Co NPs of 31 nm have been successfully prepared by dealloying Co-Al NPs, and surprisingly they possess micropores in a range from 0.7 to 1.7 nm and a large surface area of 50 m(2) g(-1). The crystalline size of the microporous NPs is 2-5 nm. Through the passivation process, the microporous Co NPs covered with CoO (Co@CoO) are generated as a result of the surface oxidation of Co. They exhibit better microwave absorption properties than their nonporous counterpart. An enhanced reflection loss (RL) value of -90.2 dB is obtained for the microporous Co@CoO NPs with a thickness of merely 1.3 mm. The absorption bandwidth corresponding to the RL below -10 dB reaches 7.2 GHz. The microwave absorption mechanism is discussed in terms of micropore morphology, core@shell structure and nanostructure. This novel microporous material may open new routes for designing high performance microwave absorbers.

  20. Microwave Dielectric and Propagation Properties of Vegetation Canopies

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator)

    1985-01-01

    A vegetation canopy is a highly inhomogeneous medium at microwave frequencies, and because the scattering elements (leaves, stalks, fruits, and branches) have a nonuniform distribution in orientation, the canopy is likely to exhibit nonisotropic attenuation properties. In some canopies, the stalk may contain the overwhelming majority of the plant's biomass, which suggests that an incident radar wave would be differentially attenuated by the canopy depending on the direction of the incident electric field relative to the stalks' orientation. The propagation properties of a vegetation canopy play a central role in modeling both the backscattering behavior observed by an imaging radar and the emission observed by a radiometer. These propagation properties are in turn governed by the dielectric properties and the size, shape, and slope distributions of the scatteres. In spite of the critical need for canopy propagation models and experimental data, very few investigations had been conducted (prior to this study) to determine the extinction properties of vegetation canopies, either by constituent type (leaves, stalks, etc.) or as a whole.

  1. Studies of snowpack properties by passive microwave radiometry

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Hall, D. K.; Foster, J. L.; Rango, A.; Schmugge, T. J.

    1978-01-01

    Research involving the microwave characteristics of snow was undertaken in order to expand the information content currently available from remote sensing, namely the measurement of snowcovered area. Microwave radiation emitted from beneath the snow surface can be sensed and thus permits information on internal snowpack properties to be inferred. The intensity of radiation received is a function of the average temperature and emissivity of the snow layers and is commonly referred to as the brightness temperature (T sub b). The T sub b varies with snow grain and crystal sizes, liquid water content and snowpack temperature. The T sub b of the 0.8 cm wavelength channel was found to decrease moreso with increasing snow depth than the 1.4 cm channel. More scattering of the shorter wavelength radiation occurs thus resulting in a lower T sub b for shorter wavelengths in a dry snowpack. The longer 21.0 cm wavelength was used to assess the condition of the underlying ground. Ultimately it may be possible to estimate snow volume over large areas using calibrated brightness temperatures and consequently improve snowmelt runoff predictions.

  2. Studies of snowpack properties by passive microwave radiometry

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Hall, D. K.; Foster, J. L.; Rango, A.; Schmugge, T. J.

    1979-01-01

    Research involving the microwave characteristics of snow was undertaken in order to expand the information content currently available from remote sensing, namely the measurement of snowcovered area. Microwave radiation emitted from beneath the snow surface can be sensed and thus permits information on internal snowpack properties to be inferred. The intensity of radiation received is a function of the average temperature and emissivity of the snow layers and is commonly referred to as the brightness temperature (T sub B). The T sub B varies with snow grain and crystal sizes, liquid water content, and snowpack temperature. The T sub B of the 0.8 cm wavelength channel was found to decrease more so with increasing snow depth than the 1.4 cm channel. More scattering of the shorter wavelength radiation occurs thus resulting in a lower T sub B for shorter wavelengths in a dry snowpack. The longer 21.0 cm wavelength was used to assess the condition of the underlying ground.

  3. Microwave assisted synthesis & properties of nano HA-TCP biphasic calcium phosphate

    NASA Astrophysics Data System (ADS)

    Ghomash Pasand, E.; Nemati, A.; Solati-Hashjin, M.; Arzani, K.; Farzadi, A.

    2012-05-01

    Biphasic calcium phosphate (BCP) nanopowders were synthesized by using microwave and non-microwave irradiation assisted processes. The synthesized powders were pressed under a pressure of 90 MPa, and then were sintered at 1000-1200°C for 1 h. The mechanical properties of the samples were investigated. The formed phases and microstructures were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the synthesis time was shorter, along with a more homogeneous microstructure, when the microwave irradiation assisted method was applied. The compression strength and the Young's modulus of the samples synthesized with microwave irradiation were about 60 MPa and 3 GPa, but those of the samples synthesized without microwave irradiation were about 30 MPa and 2 GPa, respectively. XRD patterns of the microwave irradiation assisted and non-microwave irradiation assisted nanopowders showed the coexistence of hydroxyapatite (HA) and tricalcium phosphate (TCP) phases in the system.

  4. Microwave pulse propagation measurements in left-handed materials

    NASA Astrophysics Data System (ADS)

    di Gennaro, Emiliano; Parimi, Patanjali V.; Vodo, Plarenta; Lu, Wentao; Sridhar, Srinivas

    2004-03-01

    Left handed electromagnetism is well established in media with negative permeability and permittivity and in photonic crystals [1]. In such media the negative refractive index is accompanied by large dispersion dn/dω, and consequently a very low group velocity is predicted for left-handed metamaterial (LHM). It is well known that an artificial material consisting of interleaved arrays of wires and split ring resonators in a certain microwave frequency range shows left handed behavior. We have carried out pulse measurements on LHM using a transition analyzer in order to measure the group velocity. Time delay measurements are performed in an X-band and parallel plate waveguide. Sending a 100ns width pulse with a carrier frequency ranging between 9 and 11 GHz, we analyze the signal delay due to the sample. The results suggest that the group velocity in the LHM is very low. Pulse delay measurements in photonic crystals are also discussed. Work supported by NSF & AFRL [1]. P. V. Parimi et al., submitted (2003).

  5. Microwave Dielectric Properties of Soil and Vegetation and Their Estimation From Spaceborne Radar

    NASA Technical Reports Server (NTRS)

    Dobson, M. Craig; McDonald, Kyle C.

    1996-01-01

    This paper is largely tutorial in nature and provides an overview of the microwave dielectric properties of certain natural terrestrial media (soils and vegetation) and recent results in estimating these properties remotely from airborne and orbital synthetic aperture radar (SAR).

  6. Microwave processed nanocrystalline hydroxyapatite: Simultaneous enhancement of mechanical and biological properties

    PubMed Central

    Bose, Susmita; Dasgupta, Sudip; Tarafder, Solaiman; Bandyopadhyay, Amit

    2010-01-01

    Despite excellent bioactivity of hydroxyapatite (HA) ceramics, poor mechanical strength has limited its applications primarily to coatings and other non-load bearing areas as bone grafts. Using synthesized HA nanopowder, dense compacts with grain sizes in nanometers to micrometers were processed via microwave sintering between 1000 and 1150 °C for 20 minutes. Here we demonstrate that mechanical properties, such as compressive strength, hardness and indentation fracture toughness of HA compacts increased with a decrease in grain size. HA with 168± 86 nm grain size showed the highest compressive strength of 395±42 MPa, hardness of 8.4±0.4 GPa and indentation fracture toughness of 1.9 ±0.2 MPam1/2. To study the in vitro biological properties, HA compacts with grain size between 168 nm and 1.16 µm were assessed for in vitro bone cell-materials interactions with human osteoblast cell line. Vinculin protein expression for cell attachment and bone cell proliferation using MTT assay showed surfaces with finer grains provided better bone cell-materials interactions than coarse grained samples. Our results indicate simultaneous improvements in mechanical and biological properties in microwave sintered HA compacts with nanoscale grain size. PMID:20230922

  7. Research of microwave scattering properties of snow fields

    NASA Technical Reports Server (NTRS)

    Angelakos, D. J.

    1978-01-01

    The results obtained in the research program of microwave scattering properties of snow fields are presented. Experimental results are presented showing backscatter dependence on frequency (5.8-8.0 GHz), angle of incidence (0-60 degrees), snow wetness (time of day), and frequency modulation (0-500 MHz). Theoretical studies are being made of the inverse scattering problem yielding some preliminary results concerning the determination of the dielectric constant of the snow layer. The experimental results lead to the following conclusions: snow layering affects backscatter, layer response is significant up to 45 degrees of incidence, wetness modifies snow layer effects, frequency modulation masks the layer response, and for the proper choice of probing frequency and for nominal snow depths, it appears to be possible to measure the effective dielectric constant and the corresponding water content of a snow pack.

  8. Estimation of soil hydraulic properties with microwave techniques

    NASA Technical Reports Server (NTRS)

    Oneill, P. E.; Gurney, R. J.; Camillo, P. J.

    1985-01-01

    Useful quantitative information about soil properties may be obtained by calibrating energy and moisture balance models with remotely sensed data. A soil physics model solves heat and moisture flux equations in the soil profile and is driven by the surface energy balance. Model generated surface temperature and soil moisture and temperature profiles are then used in a microwave emission model to predict the soil brightness temperature. The model hydraulic parameters are varied until the predicted temperatures agree with the remotely sensed values. This method is used to estimate values for saturated hydraulic conductivity, saturated matrix potential, and a soil texture parameter. The conductivity agreed well with a value measured with an infiltration ring and the other parameters agreed with values in the literature.

  9. Material Properties of Titanium Diboride

    PubMed Central

    Munro, Ronald G.

    2000-01-01

    The physical, mechanical, and thermal properties of polycrystalline TiB2 are examined with an emphasis on the significant dependence of the properties on the density and grain size of the material specimens. Using trend analysis, property relations, and interpolation methods, a coherent set of trend values for the properties of polycrystalline TiB2 is determined for a mass fraction of TiB2 ⩾ 98 %, a density of (4.5±0.1) g/cm3, and a mean grain size of (9±1) µm. PMID:27551633

  10. Metal-free carbon nanotubes: synthesis, and enhanced intrinsic microwave absorption properties

    PubMed Central

    Qi, Xiaosi; Xu, Jianle; Hu, Qi; Deng, Yu; Xie, Ren; Jiang, Yang; Zhong, Wei; Du, Youwei

    2016-01-01

    In order to clearly understand the intrinsic microwave absorption properties of carbon nanomaterials, we proposed an efficient strategy to synthesize high purity metal-free carbon nanotubes (CNTs) over water-soluble K2CO3 particles through chemical vapor decomposition and water-washing process. The comparison results indicated the leftover catalyst caused negative effects in intrinsic microwave absorption properties of CNTs, while an enhanced microwave absorption performance could be observed over the metal-free CNT sample. Moreover, the results indicated that the microwave absorption properties could be tuned by the CNT content. Therefore, we provided a simple route to investigate the intrinsic properties of CNTs and a possible enhanced microwave absorbing mechanism. PMID:27324290

  11. Metal-free carbon nanotubes: synthesis, and enhanced intrinsic microwave absorption properties.

    PubMed

    Qi, Xiaosi; Xu, Jianle; Hu, Qi; Deng, Yu; Xie, Ren; Jiang, Yang; Zhong, Wei; Du, Youwei

    2016-01-01

    In order to clearly understand the intrinsic microwave absorption properties of carbon nanomaterials, we proposed an efficient strategy to synthesize high purity metal-free carbon nanotubes (CNTs) over water-soluble K2CO3 particles through chemical vapor decomposition and water-washing process. The comparison results indicated the leftover catalyst caused negative effects in intrinsic microwave absorption properties of CNTs, while an enhanced microwave absorption performance could be observed over the metal-free CNT sample. Moreover, the results indicated that the microwave absorption properties could be tuned by the CNT content. Therefore, we provided a simple route to investigate the intrinsic properties of CNTs and a possible enhanced microwave absorbing mechanism.

  12. Metal-free carbon nanotubes: synthesis, and enhanced intrinsic microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Qi, Xiaosi; Xu, Jianle; Hu, Qi; Deng, Yu; Xie, Ren; Jiang, Yang; Zhong, Wei; Du, Youwei

    2016-06-01

    In order to clearly understand the intrinsic microwave absorption properties of carbon nanomaterials, we proposed an efficient strategy to synthesize high purity metal-free carbon nanotubes (CNTs) over water-soluble K2CO3 particles through chemical vapor decomposition and water-washing process. The comparison results indicated the leftover catalyst caused negative effects in intrinsic microwave absorption properties of CNTs, while an enhanced microwave absorption performance could be observed over the metal-free CNT sample. Moreover, the results indicated that the microwave absorption properties could be tuned by the CNT content. Therefore, we provided a simple route to investigate the intrinsic properties of CNTs and a possible enhanced microwave absorbing mechanism.

  13. Synthesis, Characterization, and Microwave Absorption Properties of Reduced Graphene Oxide/Strontium Ferrite/Polyaniline Nanocomposites.

    PubMed

    Luo, Juhua; Shen, Pan; Yao, Wei; Jiang, Cuifeng; Xu, Jianguang

    2016-12-01

    Strontium ferrite nanoparticles were prepared by a coprecipitation method, and reduced graphene oxide/strontium ferrite/polyaniline (R-GO/SF/PANI) ternary nanocomposites were prepared by in situ polymerization method. The morphology, structure, and magnetic properties of the ternary nanocomposites were investigated by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), TEM, Raman, and VSM. The microwave-absorbing properties of the composites were measured by a vector network analyzer. The XRD patterns show the single phase of strontium hexaferrite without other intermediate phases. TEM photographs reveal that strontium ferrite nanoparticles are uniformly dispersed on the surfaces of R-GO sheets. The R-GO/SF/PANI nanocomposite exhibited the best absorption property with the optimum matching thickness of 1.5 mm in the frequency of 2-18 GHz. The value of the maximum RL was -45.00 dB at 16.08 GHz with the 5.48-GHz bandwidth. The excellent absorption properties of R-GO/SF/PANI nanocomposites indicated their great potential as microwave-absorbing materials. PMID:26969594

  14. Synthesis, Characterization, and Microwave Absorption Properties of Reduced Graphene Oxide/Strontium Ferrite/Polyaniline Nanocomposites.

    PubMed

    Luo, Juhua; Shen, Pan; Yao, Wei; Jiang, Cuifeng; Xu, Jianguang

    2016-12-01

    Strontium ferrite nanoparticles were prepared by a coprecipitation method, and reduced graphene oxide/strontium ferrite/polyaniline (R-GO/SF/PANI) ternary nanocomposites were prepared by in situ polymerization method. The morphology, structure, and magnetic properties of the ternary nanocomposites were investigated by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), TEM, Raman, and VSM. The microwave-absorbing properties of the composites were measured by a vector network analyzer. The XRD patterns show the single phase of strontium hexaferrite without other intermediate phases. TEM photographs reveal that strontium ferrite nanoparticles are uniformly dispersed on the surfaces of R-GO sheets. The R-GO/SF/PANI nanocomposite exhibited the best absorption property with the optimum matching thickness of 1.5 mm in the frequency of 2-18 GHz. The value of the maximum RL was -45.00 dB at 16.08 GHz with the 5.48-GHz bandwidth. The excellent absorption properties of R-GO/SF/PANI nanocomposites indicated their great potential as microwave-absorbing materials.

  15. [Effect of microwave on migration in the model environment of chemicals from materials that come into contact with foodstuffs].

    PubMed

    Aĭdinov, G V; Istomin, A V; Simileĭskaia, B S; Klimenko, O V; Berezina, T A; Efimushkina, L I

    2011-01-01

    Under the influence of microwaves is migration of chemical and metals used in manufacture for these furnaces. This confirms the need for research to develop modes of training materials used in the manufacture of utensils used in microwave ovens.

  16. Structure-property correlations in nanostructured WC-12Co microwave clad

    NASA Astrophysics Data System (ADS)

    Zafar, Sunny; Sharma, Apurbba Kumar

    2016-05-01

    Nanostructured materials are known for enhanced properties as compared to their conventional counterparts. In the present work, microwave cladding technique was explored for depositing nanostructured WC-12Co clads on stainless steel substrates. Phase analysis of the WC-12Co microwave clads revealed the presence of Co6W6C, Co7W6, Co3W9C4, W2C and WC phases. The microstructure of the WC-12Co clads confirmed uniform distribution of nano-carbides in the form of clusters enclosed in the carbide network. Mechanical characterisation of the nanostructured clads was carried in terms of microhardness assessment and flexural strength measurement. The microwave induced clads exhibited excellent metallurgical bonding with the substrate and were free from interfacial cracks. The average microhardness of the developed clads was found in the order of 1760 ± 128HV. The flexural strength of the developed clads was observed to be 671 ± 28 MPa. The nanostructured clads exhibited good adhesion with the substrate without getting peeled-off under a load of 3.75 kN and a displacement of 3.72 mm.

  17. Magnetic and microwave properties of amorphous FeCoNbBCu thin films

    NASA Astrophysics Data System (ADS)

    Bi, Mei; Wang, Xin; Lu, Haipeng; Deng, Longjiang; Sunday, Katie Jo; Taheri, Mitra L.; Harris, Vincent G.

    2016-01-01

    The soft magnetic and microwave properties of amorphous FeCoNbBCu thin films with thicknesses varying from 70 nm to 450 nm have been systematically investigated. Due to the amorphous structure, the coercivity is 1.5 Oe in thicker films. The thickness-dependent microwave characteristics of the films were measured over the range 0.5-6 GHz and analyzed using the Landau-Lifshitz-Gilbert equation. Without applying magnetic field during deposition and measurement, an in-plane uniaxial anisotropy in amorphous thin films was obtained, ranging from 21 to 45 Oe. The interface interaction between substrate and film is confirmed to be the origin of the induced anisotropy, whereas the volume anisotropy contribution is more pronounced with increasing film thickness. For films possessing an in-plane uniaxial anisotropy, the shift of resonance frequency with thickness is observed and verified by the Kittel equation. The demonstration of a controllable and tunable anisotropy suggests that the FeCoNbBCu thin films have potential application as magnetic materials for Spintronics-based microwave devices.

  18. Property Status of Lunar Material

    NASA Astrophysics Data System (ADS)

    Pop, V.

    Most of the lunar material in private hands is of meteoric origin, and its property sta- tus does not present many challenges. The intention of Applied Space Resources, Inc, to fly a commercial lunar sample return mission and to subsequently offer lunar ma- terial for sale, raises the issue of the legality of exploitation and private ownership of retrieved lunar material. Lunar samples have been returned in the past by means of the Apollo (US) and Luna (USSR) missions and, while most of the material re- mains government property and is used for scientific means, a small fraction has been transferred abroad and some has entered the private market. Apollo-collected moon- rocks have been offered, symbolically, to heads of States, and some foreign nations have subsequently transferred ownership to private individuals. The same, lunar ma- terial of Soviet provenience has entered the private market, this forming a valuable legal precedent for the lawfulness of sale of lunar material. Recently, plans were made public to award the Apollo astronauts with lunar rocks. While in the US there is a popular misconception that it is illegal to own lunar material, the truth lies elsewhere. As the Apollo samples are the property of the US government and a small fraction was stolen, lost, or misplaced, the US government intends to recover this material, unlawfully owned. In the same time, a significant number of individuals have been prosecuted for offering for sale fake lunar rocks. The present paper will analyse the different categories of lunar material according to its ownership status, and will as- sert that private property of lunar material is lawful, and lunar material that will be returned in the future will be able to enter the market without hindrances.

  19. Materials with controllable signature properties

    NASA Astrophysics Data System (ADS)

    Dickman, O.; Holmberg, B.; Karlsson, T.; Savage, S.

    1995-02-01

    We have in this report considered some types of material with potential for use in signature control of structures. The material types selected for inclusion in this study were electrically conductive polymers, fullerenes, nanostructured materials and Langmuir-Blodgett films. To control the signature of a structure in real time it must be possible to vary the material emissivity, structural transmission, and reflection or absorption of electromagnetic radiation in the relevant wavelength region. This may be achieved by changes in temperature, pressure, electrical or magnetic field or by the concentration of a chemical substance within the material. It is concluded that it is feasible to develop electrically conductive polymeric materials with controllable properties for practical signature control application within 5 to 10 years.

  20. Dielectric properties of CaNdAlO sub 4 at microwave frequencies

    SciTech Connect

    Konopka, J.; Wolff, I. ); Lewandowski, S.J. )

    1992-07-01

    Dielectric properties of CaNdAlO{sub 4} monocrystals, a prospective substrate material for the deposition of high-{ital T}{sub {ital c}} superconductors, were measured with high accuracy at microwave frequencies from 8 to 40 GHz in the temperature range from 10 to 300 K by measuring the resonant frequencies of a completely filled resonant cavity. The material was found to be highly anisotropic. At 300 K it exhibits the dielectric constant along {ital c} axis {epsilon}{sup {prime}}{sub {ital c}} = 17.68, while the dielectric constant in the {ital a}-{ital b} plane is {epsilon}{prime}=19.62, and loss tangent tan {delta}{sub {ital c}} {congruent} tan {delta} {congruent} 5.1{times} 10{sup {minus}4}. Both {epsilon}{sup {prime}}{sub {ital c}} and {epsilon}{prime} depend strongly on temperature and their thermal coefficients have opposite signs, apparently a unique property of CaNdAlO{sub 4}. Below 160 K microwave losses caused by electric field perpendicular to the optical {ital c} axis increase with decreasing temperature, exhibiting a maximum near 65 K followed by a minimum at 30 K. It is suggested that neodymium ions in CaNdAlO{sub 4} at lower temperatures become magnetically ordered, causing an increase of magnetic permeability {mu}{sup {prime}}{sub {ital c}} {gt} 1 and a significant increase of magnetic losses at microwave frequencies. A crystallographic phase transition below 60 K cannot also be excluded.

  1. Thermal properties of granulated materials.

    NASA Technical Reports Server (NTRS)

    Wechsler, A. E.; Glaser, P. E.; Fountain, J. A.

    1972-01-01

    Review of the thermophysical properties of granular materials or silicates believed to simulate the lunar surface layer. Emphasis is placed on thermal conductivity data and the effects of material and environmental variables on the thermal conductivity. There are three basic mechanisms of heat transfer in particulate materials: conduction by the gas contained in the void spaces between the particles; conduction within the solid particles and across the interparticle contacts; and thermal radiation within the particles, across the void spaces between particle surfaces, and between void spaces themselves. Gas and solid conduction, thermal radiation, and the interaction between conduction and radiation are considered.

  2. The Contributions Regarding the Use of Microwave to Obtain Modeling Gypsum for Phonic-Absorbent Construction and Orthopedic Materials

    NASA Astrophysics Data System (ADS)

    Pop, P. A.; Ungur, P. A.; Caraban, A.; Marcu, F.

    2009-11-01

    The paper has presented some experiments realized at "Congips" Co. Oradea and University of Oradea, regarding of increase machining efficiency and quality for modeling gypsum plaster by using of microwave energy to gypsum ore roast. The elaboration process of microwave energy for modeling gypsum plaster has done on electromagnetic waves properties and specific properties for dielectric materials. Microwaves are radiations of electromagnetic waveform nature, determine by pulsations of electrical-E) and magnetically-H components of electromagnetic wave in interdependence with Maxwell equations. The gypsum ore is calcium sulphate dehydrate (CaSO4ṡ2H2O) using at modeling gypsum plaster fabrication, which is calcium sulphate hemihydrate (CaSO4ṡ1/2H2O), that has behavior of dielectric with losses. The gypsum ore getting in microwave field, in conditions of predictable pressure and temperature has transformed in modeling gypsum plaster, by quick lost of a part from crystallization water. The processing time is very short, which due to a great productivity and machining efficiency, finally of low process cost. All of these recommend continuing the research at pilot station level.

  3. Monitoring snowpack properties by passive microwave sensors on board of aircraft and satellites

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Foster, J. L.; Hall, D. K.; Rango, A.

    1980-01-01

    Snowpack properties such as water equivalent and snow wetness may be inferred from variations in measured microwave brightness temperatures. This is because the emerged microwave radiation interacts directly with snow crystals within the snowpack. Using vertically and horizontally polarized brightness temperatures obtained from the multifrequency microwave radiometer (MFMR) on board a NASA research aircraft and the electrical scanning microwave radiometer (ESMR) and scanning multichannel microwave radiometer (SMMR) on board the Nimbus 5, 6, and 7 satellites, linear relationships between snow depth or water equivalent and microwave brightness temperature were developed. The presence of melt water in the snowpack generally increases the brightness temperatures, which can be used to predict snowpack priming and timing of runoff.

  4. Microwave Dielectric Properties of Ceramic/Semicrystalline Polymer Composites

    NASA Astrophysics Data System (ADS)

    Im, Dong Hyeok; Ju, Han Sae; Kim, Eung Soo

    2012-09-01

    The effects of various ceramics and semicrystalline polymers on the dielectric properties of MgMoO4/polypropylene (PP), MgWO4/PP, NiNb2O6/poly(tetrafluoroethylene) (PTFE), and MgNb2O6/PTFE composites were investigated at microwave frequencies. In the frequency range from 1 to 9.4 GHz, the dielectric constant (K) of the composites showed good frequency stability, while their dielectric loss (\\tan δ) increased with increasing frequency, due to the dipolar relaxation process associated with the matrices. With increasing ceramic content, the K and \\tan δ values of the composites increased, due to the K values of the individual components and interfacial polarization between the ceramics and polymers. For the composites with the same amounts of ceramics, the K value and temperature coefficient of the resonant frequency (TCF) of the composites were dependent on the type of ceramics. Also, the measured K values of the composites were compared with the effective dielectric properties calculated by different theoretical models.

  5. Measurement at microwave frequencies of the magnetic properties of small quantities of powdered or diluted samples

    NASA Astrophysics Data System (ADS)

    Pura, Jose Luis; Muñoz, José María; Alejos, Óscar; Hernández-Gómez, Pablo; Torres, Carlos

    2015-05-01

    Transmission line techniques are a convenient way to determine the electromagnetic properties of a variety of materials in the ranges of radio and microwave frequencies. Traditional methods based on the measurement of the four scattering parameters can be successfully replaced for the method presented here, in which no change in the geometry is needed, since two independent measurements are carried out, with and without an applied magnetic field. In addition, given the small size of the sample holder, the required amount of material can be drastically reduced, and allow the use of a lumped circuit model, then reducing the inherent difficulties associated with the use of distributed parameters. Even though this kind of model requires the involved wavelengths to be much larger than the size of the system, this requirement can be overcome as long as the tested materials have relative ɛ or μ lower than 100. Furthermore, the use of short-circuited transmission lines simplifies sample holding and systematizes the measurement process, which is an important target when dealing with measurements within the radio and microwave frequency ranges.

  6. Near-field microwave inspection and characterization of cement based materials

    NASA Astrophysics Data System (ADS)

    Bois, Karl Joseph

    The objective of this research project has been to investigate the potential of correlating the near-field microwave reflection coefficient properties of hardened cement paste (water and cement powder), mortar (water, cement powder and sand) and concrete (water, cement powder, sand and coarse aggregate) specimens to their various constituent make-up and compressive strengths. The measurements were conducted using open-ended rectangular waveguide probes operating at various microwave frequencies and in-contact with cubic specimens. For each material, various properties of the measured microwave reflection coefficient, such as the mean of the measured magnitude of reflection coefficient, and the standard deviation of the measured magnitude of reflection coefficient at various frequencies were monitored. Subsequently, the measurements were correlated to important parameters such as w/c ratio, s/c ratio, ca/c ratio, cure-state, constituent volume content and compressive strength. Other issues such as the detection of aggregate segregation in concrete as well as the detection chloride in cement paste and mortar were also addressed. Other related issues such as the detection of grout in masonry blocks were also investigated. In achieving these objectives, several theoretical modeling efforts were required, constituting significant contributions to the available literature. A complete analytical full wave expression (i.e. inclusion of higher-order modes) for the fields at the aperture of an open-ended waveguide probe radiating into a dielectric infinite half-space was derived. Also a novel two-port transmission line dielectric property measurement technique for granular and liquid materials was developed. A decision making process, based on the maximum likelihood scheme, was also implemented to determine w/c, s/c and ca/c ratios from the measured mean and standard deviation of reflection coefficient at two frequency bands. Finally, the issue of non-contact measurement was

  7. Design of an ellipsoidal mirror for freewave characterization of materials at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Rojo, M.; Muñoz, J.; Molina-Cuberos, G. J.; García-Collado, Á. J.; Margineda, J.

    2016-03-01

    Free-wave characterization of the electromagnetic properties of materials at microwave frequencies requires that scattering at the edges of the samples and/or holder be minimized. Here, an ellipsoidal mirror is designed and characterized in order to decrease the size of the beam, thereby avoiding the scattering problems, even when relatively small samples are used. In the experimental configuration, both the emitting antenna and sample are located at the mirror focuses. Since both the emitted and reflected (focused) beams are Gaussian in nature, we make use of Gaussian beam theory to carry out the design. The mirror parameters are optimized by numerical simulations (COMSOL Multiphysics®) and then experimentally tested. An experimental setup is presented for dielectric, magnetic and chiral measurement in the 4.5-18 GHz band.

  8. Influence of gamma-irradiation and microwaves on the antioxidant property of some essential oils.

    PubMed

    Farag, R S; el-Khawas, K H

    1998-03-01

    The antioxidant property of anise, caraway, cumin and fennel essential oils extracted from untreated, gamma-irradiated and microwaved fruits against sunflower oil oxidative rancidity was evaluated. The fruits were exposed to gamma-irradiation at 10 KGy and to microwaves at low oven power setting for 1 min. The essential oils were added individually (200 ppm) to sunflower oil and the rate of oil oxidation was followed by determining the peroxide value during storage at room temperature. The irradiated and microwaved essential oils exhibited an antioxidant activity and was superior to that of sunflower oil catalysed by a mixture of BHT + BHA (200 ppm) in most cases. The present data show that gamma-irradiation and microwave treatments did not affect the antioxidant property of the essential oils under study. In addition the essential oils extracted from the gamma-irradiated fruits were more effective as an antioxidant in sunflower oil than those produced from microwaved fruits.

  9. Manufacture of electrical and magnetic graded and anisotropic materials for novel manipulations of microwaves.

    PubMed

    Grant, P S; Castles, F; Lei, Q; Wang, Y; Janurudin, J M; Isakov, D; Speller, S; Dancer, C; Grovenor, C R M

    2015-08-28

    Spatial transformations (ST) provide a design framework to generate a required spatial distribution of electrical and magnetic properties of materials to effect manipulations of electromagnetic waves. To obtain the electromagnetic properties required by these designs, the most common materials approach has involved periodic arrays of metal-containing subwavelength elements. While aspects of ST theory have been confirmed using these structures, they are often disadvantaged by narrowband operation, high losses and difficulties in implementation. An all-dielectric approach involves weaker interactions with applied fields, but may offer more flexibility for practical implementation. This paper investigates manufacturing approaches to produce composite materials that may be conveniently arranged spatially, according to ST-based designs. A key aim is to highlight the limitations and possibilities of various manufacturing approaches, to constrain designs to those that may be achievable. The article focuses on polymer-based nano- and microcomposites in which interactions with microwaves are achieved by loading the polymers with high-permittivity and high-permeability particles, and manufacturing approaches based on spray deposition, extrusion, casting and additive manufacture. PMID:26217051

  10. Manufacture of electrical and magnetic graded and anisotropic materials for novel manipulations of microwaves.

    PubMed

    Grant, P S; Castles, F; Lei, Q; Wang, Y; Janurudin, J M; Isakov, D; Speller, S; Dancer, C; Grovenor, C R M

    2015-08-28

    Spatial transformations (ST) provide a design framework to generate a required spatial distribution of electrical and magnetic properties of materials to effect manipulations of electromagnetic waves. To obtain the electromagnetic properties required by these designs, the most common materials approach has involved periodic arrays of metal-containing subwavelength elements. While aspects of ST theory have been confirmed using these structures, they are often disadvantaged by narrowband operation, high losses and difficulties in implementation. An all-dielectric approach involves weaker interactions with applied fields, but may offer more flexibility for practical implementation. This paper investigates manufacturing approaches to produce composite materials that may be conveniently arranged spatially, according to ST-based designs. A key aim is to highlight the limitations and possibilities of various manufacturing approaches, to constrain designs to those that may be achievable. The article focuses on polymer-based nano- and microcomposites in which interactions with microwaves are achieved by loading the polymers with high-permittivity and high-permeability particles, and manufacturing approaches based on spray deposition, extrusion, casting and additive manufacture.

  11. Manufacture of electrical and magnetic graded and anisotropic materials for novel manipulations of microwaves

    PubMed Central

    Grant, P. S.; Castles, F.; Lei, Q.; Wang, Y.; Janurudin, J. M.; Isakov, D.; Speller, S.; Dancer, C.; Grovenor, C. R. M.

    2015-01-01

    Spatial transformations (ST) provide a design framework to generate a required spatial distribution of electrical and magnetic properties of materials to effect manipulations of electromagnetic waves. To obtain the electromagnetic properties required by these designs, the most common materials approach has involved periodic arrays of metal-containing subwavelength elements. While aspects of ST theory have been confirmed using these structures, they are often disadvantaged by narrowband operation, high losses and difficulties in implementation. An all-dielectric approach involves weaker interactions with applied fields, but may offer more flexibility for practical implementation. This paper investigates manufacturing approaches to produce composite materials that may be conveniently arranged spatially, according to ST-based designs. A key aim is to highlight the limitations and possibilities of various manufacturing approaches, to constrain designs to those that may be achievable. The article focuses on polymer-based nano- and microcomposites in which interactions with microwaves are achieved by loading the polymers with high-permittivity and high-permeability particles, and manufacturing approaches based on spray deposition, extrusion, casting and additive manufacture. PMID:26217051

  12. Satellite material contaminant optical properties

    NASA Technical Reports Server (NTRS)

    Wood, B. E.; Bertrand, W. T.; Seiber, B. L.; Kiech, E. L.; Falco, P. M.; Holt, J. D.

    1990-01-01

    The Air Force Wright Research and Development Center and the Arnold Engineering Development Center are continuing a program for measuring optical effects of satellite material outgassing products on cryo-optic surfaces. Presented here are infrared (4000 to 700 cm(-1)) transmittance data for contaminant films condensed on a 77 K geranium window. From the transmittance data, the contaminant film refractive and absorptive indices (n, k) were derived using an analytical thin-film interference model with a nonlinear least-squares algorithm. To date 19 materials have been studied with the optical contents determined for 13 of those. The materials include adhesives, paints, composites, films, and lubricants. This program is continuing and properties for other materials will be available in the future.

  13. Satellite material contaminant optical properties

    NASA Astrophysics Data System (ADS)

    Wood, B. E.; Bertrand, W. T.; Seiber, B. L.; Kiech, E. L.; Falco, P. M.

    The Air Force Wright Research and Development Center and the Arnold Engineering Development Center are continuing a program for measuring optical effects of satellite material outgassing products on cryo-optic surfaces. Presented here are infrared (4000 to 700/cm) transmittance data for contaminant films condensed on a 77 K germanium window. From the transmittance data, the contaminant film refractive and absorptive indices (n, k) were derived using an analytical thin-film interference model with a nonlinear least-squares algorithm. To date 19 materials have been studied with the optical contents determined for 13 of those. The materials include adhesives, paints, composites, films, and lubricants. This program is continuing, and properties for other materials will be available in the future.

  14. Satellite material contaminant optical properties

    NASA Astrophysics Data System (ADS)

    Wood, B. E.; Bertrand, W. T.; Seiber, B. L.; Kiech, E. L.; Falco, P. M.; Holt, J. D.

    1990-03-01

    The Air Force Wright Research and Development Center and the Arnold Engineering Development Center are continuing a program for measuring optical effects of satellite material outgassing products on cryo-optic surfaces. Presented here are infrared (4000 to 700 cm(-1)) transmittance data for contaminant films condensed on a 77 K germanium window. From the transmittance data, the contaminant film refractive and absorptive indices (n, k) were derived using an analytical thin-film interference model with a nonlinear least-squares algorithm. To date 19 materials have been studied with the optical contents determined for 13 of those. The materials include adhesives, paints, composites, films, and lubricants. This program is continuing and properties for other materials will be available in the future.

  15. Satellite Material Contaminant Optical Properties

    NASA Astrophysics Data System (ADS)

    Wood, Bobby E.; Bertrand, William T.; Seiber, Bryan L.; Kiech, E. L.; Falco, Patrick M.; Holt, J. D.

    1990-01-01

    The Air Force Wright Research and Development Center and the Arnold Engineering Development Center are continuing a program for measuring optical effects of satellite material outgassing products on cryo-optic surfaces. This paper presents infrared (4000 to 700 cm-1) transmittance data for contaminant films condensed on a 77 K geranium window. From the transmittance data, the contaminant film refractive and absorptive indices (n, k) were derived using an analytical thin-film interference model with a nonlinear least-squares algorithm. To date 19 materials have been studied with the optical contants determined for 13 of those. The materials include adhesives, paints, composites, films, and lubricants. This program is continuing and properties for other materials will be available in the future.

  16. Material properties for asteroid deflection

    NASA Astrophysics Data System (ADS)

    Bruck Syal, M.; Bernier, J.; Chen, L.; Coppari, F.; Dearborn, D.; Herbold, E.; Howley, K.; Kraus, R.; Kumar, M.; Millot, M.; Owen, J. M.; Swift, D.; Wasem, J.; Mulford, R.; Root, S.; Cotto-Figueroa, D.; Asphaug, E.; Schultz, P.; Nuth, J.; Arnold, J.; Burkhard, C.; Dotson, J.; Lee, T.; Sears, D.; Miller, P.

    2015-06-01

    Impulsive strategies to prevent asteroid impacts depend upon knowledge of asteroidal material state and response at extreme conditions. Numerical modeling of kinetic impactor and nuclear ablation scenarios to deflect or disrupt asteroids reveals sensitivities to equation of state, strength, and porosity. We report advances in material models for asteroid mitigation simulations. Equation of state development focuses on asteroidal materials, such as hydrated silicates. Shock experiments are being performed to measure properties of meteoritic material; initial sample temperature can be controlled from 100-1000 K, important for different intercept scenarios. New constitutive models allow improved thermomechanical response predictions for porous asteroids. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Mechanical, Dielectric, and Microwave-Absorption Properties of Alumina Ceramic Containing Dispersed Ti3SiC2

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Luo, Fa; Su, Jinbu; Zhou, Wancheng; Zhu, Dongmei

    2015-03-01

    Dense Al2O3 ceramics containing dispersed Ti3SiC2 were fabricated by hot-pressed sintering. Effects of Ti3SiC2 content on the mechanical, dielectric, and microwave-absorption properties of the ceramics were investigated. The bulk density, flexural strength, and dielectric constant were enhanced by increasing the Ti3SiC2 content. The complex permittivity increased dramatically when the Ti3SiC2 content was above the percolation threshold. The dielectric performance of the ceramics at high temperatures was also studied. The results revealed increases in both the real and imaginary parts with increasing temperature. Ceramic 2.2 mm thick containing 10% ( w/ w) Ti3SiC2 had the optimum microwave-absorption properties. The absorption bandwidth below -5 dB was in the range 8.2-12.4 GHz with a minimum value of -20 dB at 9.56 GHz. Although the reflection loss increased with the increasing temperature, the ceramic still had favorable microwave-absorption properties throughout the X-band. This study contributes to the development of the microwave absorption materials for high-temperature application.

  18. Dynamic properties of ceramic materials

    SciTech Connect

    Grady, D.E.; Wise, J.L.

    1993-09-01

    Controlled impact methods have been employed to obtain dynamic response properties of armor materials. Experimental data have been obtained for high-strength ceramics. Continued analysis of time-resolved velocity interferometer measurements has produced systematic material-property data for Hugoniot and release response, initial and post-yield strength, pressure-induced phase transformation, and dynamic fracture strength. A new technique has been developed to measure hydrodynamic properties of ceramic through shock-wave experiments on metal-ceramic composites and data obtained for silicon carbide. Additional data on several titanium diboride ceramics and high-quality aluminum oxide ceramic have been acquired, and issues regarding the influence of microstructure on dynamic properties have emerged. Comparison of dynamic (Hugoniot elastic limit) strength and indentation hardness data has been performed and important correlations revealed. Innovative impact experiments on confined and unconfined alumina rods using axial and transverse VISAR diagnostics have been demonstrated which permit acquisition of multiaxial dynamic response data. Dynamic failure properties of a high-density aluminosilicate glass, similar in composition to the intergranular glassy phase of some aluminas, have been investigated with regard to yield, spall, and failure-wave propagation.

  19. Sintered silicon carbide: a new ceramic vessel material for microwave chemistry in single-mode reactors.

    PubMed

    Gutmann, Bernhard; Obermayer, David; Reichart, Benedikt; Prekodravac, Bojana; Irfan, Muhammad; Kremsner, Jennifer M; Kappe, C Oliver

    2010-10-25

    Silicon carbide (SiC) is a strongly microwave absorbing chemically inert ceramic material that can be utilized at extremely high temperatures due to its high melting point and very low thermal expansion coefficient. Microwave irradiation induces a flow of electrons in the semiconducting ceramic that heats the material very efficiently through resistance heating mechanisms. The use of SiC carbide reaction vessels in combination with a single-mode microwave reactor provides an almost complete shielding of the contents inside from the electromagnetic field. Therefore, such experiments do not involve electromagnetic field effects on the chemistry, since the semiconducting ceramic vial effectively prevents microwave irradiation from penetrating the reaction mixture. The involvement of electromagnetic field effects (specific/nonthermal microwave effects) on 21 selected chemical transformations was evaluated by comparing the results obtained in microwave-transparent Pyrex vials with experiments performed in SiC vials at the same reaction temperature. For most of the 21 reactions, the outcome in terms of conversion/purity/product yields using the two different vial types was virtually identical, indicating that the electromagnetic field had no direct influence on the reaction pathway. Due to the high chemical resistance of SiC, reactions involving corrosive reagents can be performed without degradation of the vessel material. Examples include high-temperature fluorine-chlorine exchange reactions using triethylamine trihydrofluoride, and the hydrolysis of nitriles with aqueous potassium hydroxide. The unique combination of high microwave absorptivity, thermal conductivity, and effusivity on the one hand, and excellent temperature, pressure and corrosion resistance on the other hand, makes this material ideal for the fabrication of reaction vessels for use in microwave reactors.

  20. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1987-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and Earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorping properties of potential constituents is available. The use of theoretically derived microwave absorption properties for such atmospheric constituents, or laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. Laboratory measurement of the microwave properties of atmospheric gases under simulated conditions for the outer planets were conducted. Results of these measurements are discussed.

  1. Electromagnetic Properties of Carbon Black Based Epoxy Resin Composites in Microwaves

    NASA Astrophysics Data System (ADS)

    Bychanok, D.; Volynets, N.; Brosseau, C.; Micciulla, F.; Amaral-Labat, G.

    2013-05-01

    The concentration dependence of electromagnetic response properties of epoxy resin filled with small amounts of commercially available high surface area highly conducting carbon black is investigated experimentally and modeled via simple Maxwell-Garnett formalism in the microwave frequency range.

  2. Cavity perturbation techniques for measurement of the microwave conductivity and dielectric constant of a bulk semiconductor material.

    NASA Technical Reports Server (NTRS)

    Eldumiati, I. I.; Haddad, G. I.

    1972-01-01

    Cavity perturbation techniques offer a very sensitive and highly versatile means for studying the complex microwave conductivity of a bulk material. A knowledge of the cavity coupling factor in the absence of perturbation, together with the change in the reflected power and the cavity resonance frequency shift, are adequate for the determination of the material properties. This eliminates the need to determine the Q-factor change with perturbation which may lead to appreciable error, especially in the presence of mismatch loss. The measurement accuracy can also be improved by a proper choice of the cavity coupling factor prior to the perturbation.

  3. Microwave plasma chemical synthesis of nanocrystalline carbon film structures and study their properties

    NASA Astrophysics Data System (ADS)

    Bushuev, N.; Yafarov, R.; Timoshenkov, V.; Orlov, S.; Starykh, D.

    2015-08-01

    The self-organization effect of diamond nanocrystals in polymer-graphite and carbon films is detected. The carbon materials deposition was carried from ethanol vapors out at low pressure using a highly non-equilibrium microwave plasma. Deposition processes of carbon film structures (diamond, graphite, graphene) is defined. Deposition processes of nanocrystalline structures containing diamond and graphite phases in different volume ratios is identified. The solid film was obtained under different conditions of microwave plasma chemical synthesis. We investigated the electrical properties of the nanocrystalline carbon films and identified it's from various factors. Influence of diamond-graphite film deposition mode in non-equilibrium microwave plasma at low pressure on emission characteristics was established. This effect is justified using the cluster model of the structure of amorphous carbon. It was shown that the reduction of bound hydrogen in carbon structures leads to a decrease in the threshold electric field of emission from 20-30 V/m to 5 V/m. Reducing the operating voltage field emission can improve mechanical stability of the synthesized film diamond-graphite emitters. Current density emission at least 20 A/cm2 was obtained. Nanocrystalline carbon film materials can be used to create a variety of functional elements in micro- and nanoelectronics and photonics such as cold electron source for emission in vacuum devices, photonic devices, cathodoluminescent flat display, highly efficient white light sources. The obtained graphene carbon net structure (with a net size about 6 μm) may be used for the manufacture of large-area transparent electrode for solar cells and cathodoluminescent light sources

  4. Microstructural and mechanical properties of camel longissimus dorsi muscle during roasting, braising and microwave heating.

    PubMed

    Yarmand, M S; Nikmaram, P; Djomeh, Z Emam; Homayouni, A

    2013-10-01

    This study was conducted to investigate the effects of various heating methods, including roasting, braising and microwave heating, on mechanical properties and microstructure of longissimus dorsi (LD) muscle of the camel. Shear value and compression force increased during microwave heating more than roasting and braising. Results obtained from scanning electron microscopy (SEM) showed more damage from roasting than in either braising or microwave heating. Granulation and fragmentation were clear in muscle fibers after roasting. The perimysium membrane of connective tissue was damaged during braising, while roasting left the perimysium membrane largely intact. The mechanical properties and microstructure of muscle can be affected by changes in water content during cooking.

  5. Laboratory evaluation of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, P. G.

    1984-01-01

    The microwave absorbing properties of gaseous sulfuric acid (H2SO4) under Venus atmospheric conditions are investigated. The results are applied to measurements from Mariner 5, Mariner 10, and Pioneer/Venus Radio Occultation experiments, to determine abundancies of gaseous sulfuric acid in the Venus atmosphere. The microwave properties of the vapors accompanying liquid H2SO4 are studied to estimate the vapor pressure in an atmospheric model.

  6. Properties of microwave plasma torch operating at a low pressure

    SciTech Connect

    Cho, Soon C.; Uhm, Han S.; Hong, Yong C.; Kim, Jae H.

    2008-10-15

    A microwave plasma torch system is attached to a low-pressure chamber in this study. The electric field induced in a quartz discharge tube by microwave radiation breaks down the gas at a sufficiently low pressure, igniting the plasma, which is continuously sustained by the microwave radiation. The plasma profile at a very low pressure is shown to be asymmetric with higher density on the incoming side of the microwaves. The gas temperature at the bright spot of the torch plasma measured via the optical emission from hydroxide radicals is shown to increase drastically upon high-pressure operation as the microwave power increases. The electron density at the torch flame is measured by recording the Stark broadening of the hydrogen Balmer beta line. The plasma density increases as the microwave power increases. The typical argon plasma density of a plasma torch powered at 500 W under a pressure of 150 Torr is on the order of 10{sup 14}/cm{sup 3}. The electron temperature in the argon torch plasma was estimated to be 1.5 eV, thereby effectively exciting the molecules in the torch gas. Disintegration of nitrogen fluoride (NF{sub 3}) indicates that a microwave plasma torch operating at a low pressure can efficiently generate an abundant amount of chemical radicals.

  7. Quantitative materials contrast at high spatial resolution with a novel near-field scanning microwave microscope

    NASA Astrophysics Data System (ADS)

    Imtiaz, Atif

    A novel Near-Field Scanning Microwave Microscope (NSMM) has been developed where a Scanning Tunneling Microscope (STM) is used for tip-to-sample distance control. The technique is non-contact and non-destructive. The same tip is used for both STM and NSMM, and STM helps maintain the tip-to-sample distance at a nominal height of 1 nm. Due to this very small tip-to-sample separation, the contribution to the microwave signals due to evanescent (non-propagating) waves cannot be ignored. I describe different evanescent wave models developed so far to understand the complex tip-to-sample interaction at microwave frequencies. Propagating wave models are also discussed, since they are still required to understand some aspects of the tip-to-sample interaction. Numerical modeling is also discussed for these problems. I demonstrate the sensitivity of this novel microscope to materials property contrast. The materials contrast is shown in spatial variations on the surface of metal thin films, Boron-doped Semiconductor and Colossal Magneto-Resistive (CMR) thin films. The height dependence of the contrast shows sensitivity to nano-meter sized features when the tip-to-sample separation is below 100 nm. By adding a cone of height 4 nm to the tip, I am able to explain a 300 kHz deviation observed in the frequency shift signal, when tip-to-sample separation is less than 10 nm. In the absence of the cone, the frequency shift signal should continue to show the logarithmic behavior as a function of height. I demonstrate sub-micron spatial resolution with this novel microscope, both in tip-to-sample capacitance Cx and materials contrast in sheet resistance Rx. The spatial resolution in Cx is demonstrated to be at-least 2.5 nm on CMR thin films. The spatial resolution in Rx is shown to be sub-micron by measuring a variably Boron-doped Silicon sample which was prepared using the Focus Ion Beam (FIB) technique.

  8. Novel materials, fabrication techniques and algorithms for microwave and THz components, systems and applications

    NASA Astrophysics Data System (ADS)

    Liang, Min

    This dissertation presents the investigation of several additive manufactured components in RF and THz frequency, as well as the applications of gradient index lens based direction of arrival (DOA) estimation system and broadband electronically beam scanning system. Also, a polymer matrix composite method to achieve artificially controlled effective dielectric properties for 3D printing material is studied. Moreover, the characterization of carbon based nano-materials at microwave and THz frequency, photoconductive antenna array based Terahertz time-domain spectroscopy (THz-TDS) near field imaging system, and a compressive sensing based microwave imaging system is discussed in this dissertation. First, the design, fabrication and characterization of several 3D printed components in microwave and THz frequency are presented. These components include 3D printed broadband Luneburg lens, 3D printed patch antenna, 3D printed multilayer microstrip line structure with vertical transition, THz all-dielectric EMXT waveguide to planar microstrip transition structure and 3D printed dielectric reflectarrays. Second, the additive manufactured 3D Luneburg Lens is employed for DOA estimation application. Using the special property of a Luneburg lens that every point on the surface of the Lens is the focal point of a plane wave incident from the opposite side, 36 detectors are mounted around the surface of the lens to estimate the direction of arrival (DOA) of a microwave signal. The direction finding results using a correlation algorithm show that the averaged error is smaller than 1º for all 360 degree incident angles. Third, a novel broadband electronic scanning system based on Luneburg lens phased array structure is reported. The radiation elements of the phased array are mounted around the surface of a Luneburg lens. By controlling the phase and amplitude of only a few adjacent elements, electronic beam scanning with various radiation patterns can be easily achieved

  9. Excellent microwave-absorbing properties of elliptical Fe₃O₄ nanorings made by a rapid microwave-assisted hydrothermal approach.

    PubMed

    Liu, Yun; Cui, Tingting; Wu, Tong; Li, Yana; Tong, Guoxiu

    2016-04-22

    High-quality elliptical polycrystalline Fe3O4 nanorings (NRs) with continuously tunable size have been synthesized in large amounts via a rapid microwave-assisted hydrothermal approach. The surface-protected glucose reducing/etching/Ostwald ripening mechanism is responsible for the formation of NRs. Ring size can be modulated by selecting iron glycolate nanosheets with various sizes as precursors. The size-dependent magnetic behavior of the NRs was observed. Our research gives insights into the understanding of the microwave absorption mechanism of elliptical Fe3O4 NRs. Owing to their large specific surface area, shape anisotropy, and closed ring-like configuration, elliptical polycrystalline Fe3O4 NRs exhibited significantly enhanced microwave absorption performance compared with Fe3O4 circular NRs, nanosheets, microspheres, nanospindles, and nanotubes. An optimal reflection loss value of -41.59 dB is achieved at 5.84 GHz and R(L) values (≤-20 dB) are observed at 3.2-10.4 GHz. Some new mechanisms including multiple scattering, oscillation resonance absorption, microantenna radiation, and interference are also crucial to the enhanced absorption properties of NRs. These findings indicate that ring-like nanostructures are a promising structure for devising new and effective microwave absorbers.

  10. Toward Carbon-Nanotube-Based Theranostic Agents for Microwave Detection and Treatment of Breast Cancer: Enhanced Dielectric and Heating Response of Tissue-Mimicking Materials

    PubMed Central

    Mashal, Alireza; Sitharaman, Balaji; Li, Xu; Avti, Pramod; Sahakian, Alan V.; Booske, John H.; Hagness, Susan C.

    2010-01-01

    The experimental results reported in this letter suggest that single-walled carbon nanotubes (SWCNTs) have the potential to enhance dielectric contrast between malignant and normal tissue for microwave detection of breast cancer and facilitate selective heating of malignant tissue for microwave hyperthermia treatment of breast cancer. In this study, we constructed tissue-mimicking materials with varying concentrations of SWCNTs and characterized their dielectric properties and heating response. At SWCNT concentrations of less than 0.5% by weight, we observed significant increases in the relative permittivity and effective conductivity. In microwave heating experiments, we observed significantly greater temperature increases in mixtures containing SWCNTs. These temperature increases scaled linearly with the effective conductivity of the mixtures. This work is a first step towards the development of functionalized, tumor-targeting SWCNTs as theranostic (integrated therapeutic and diagnostic) agents for microwave breast cancer detection and treatment. PMID:20176534

  11. Controlled growth of Cu-Ni nanowires and nanospheres for enhanced microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Dong, Lifeng; Zhang, Baoqin; Yu, Mingxun; Liu, Jingquan

    2016-03-01

    Copper is a good dielectric loss material but has low stability, whereas nickel is a good magnetic loss material and is corrosion resistant but with low conductivity, therefore Cu-Ni hybrid nanostructures have synergistic advantages as microwave absorption (MA) materials. Different Cu/Ni molar ratios of bimetallic nanowires (Cu13@Ni7, Cu5@Ni5 and Cu7@Ni13) and nanospheres (Cu13@Ni7, Cu5@Ni5 and Cu1@Ni3) have been successfully synthesized via facile reduction of hydrazine under similar reaction conditions, and the morphology can be easily tuned by varying the feed ratio or the complexing agent. Apart from the concentrations of Cu2+ and Ni2+, the reduction parameters are similar for all samples to confirm the effects of the Cu/Ni molar ratio and morphology on MA properties. Ni is incorporated into the Cu-Ni nanomaterials as a shell over the Cu core at low temperature, as proved by XRD, SEM, TEM and XPS. Through the complex relative permittivity and permeability, reflection loss was evaluated, which revealed that the MA capacity greatly depended on the Cu/Ni molar ratio and morphology. For Cu@Ni nanowires, as the molar ratio of Ni shell increased the MA properties decreased accordingly. However, for Cu@Ni nanospheres, the opposite trend was found, that is, as the molar ratio of the Ni shell increased the MA properties increased.

  12. Microscopic Examination of the Microwave Sintered (Pb0.6Sr0.4)TiO3 Positive-Temperature-Coefficient Resistor Materials

    NASA Astrophysics Data System (ADS)

    Chou, Chen-Chia; Chang, Hon-Yi; Lin, I-Nan; Shaw, Bin-Jen; Tan, Jian-Tao

    1998-09-01

    The (Pb0.6Sr0.4)TiO3 (PSrT) ceramics processed by the microwave sintering technique, exhibiting unique high-Tc behavior and low resistivity, were examined using a scanning electron microscope, scanning transmission electron microscope with energy dispersive spectroscopy, and electron diffraction in the present work. The results imply that different atomic species may interact differently with microwaves and produce a large strain field within materials, suggesting that domain mobility is restricted in the specimens due to lattice distortions. The Pb-species distribution and complicated domain arrangements induced by the strain field greatly influence the electrical properties of the materials.

  13. Microcrystalline-cellulose and polypropylene based composite: A simple, selective and effective material for microwavable packaging.

    PubMed

    Ummartyotin, S; Pechyen, C

    2016-05-20

    Cellulose based composite was successfully designed as active packaging with additional feature of microwavable properties. Small amount of cellulose with 10 μm in diameter was integrated into polypropylene matrix. The use of maleic anhydride was employed as coupling agent. Thermal and mechanical properties of cellulose based composite were superior depending on polypropylene matrix. Crystallization temperature and compressive strength were estimated to be 130 °C and 5.5 MPa. The crystal formation and its percentage were therefore estimated to be 50% and it can be predicted on the feasibility of microwavable packaging. Morphological properties of cellulose based composite presented the good distribution and excellent uniformity. It was remarkable to note that cellulose derived from cotton can be prepared as composite with polypropylene matrix. It can be used as packaging for microwave application. PMID:26917383

  14. High temperature acoustic and hybrid microwave/acoustic levitators for materials processing

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin

    1990-01-01

    The physical acoustics group at the Jet Propulsion Laboratory developed a single mode acoustic levitator technique for advanced containerless materials processing. The technique was successfully demonstrated in ground based studies to temperatures of about 1000 C in a uniform temperature furnace environment and to temperatures of about 1500 C using laser beams to locally heat the sample. Researchers are evaluating microwaves as a more efficient means than lasers for locally heating a positioned sample. Recent tests of a prototype single mode hybrid microwave/acoustic levitator successfully demonstrated the feasibility of using microwave power as a heating source. The potential advantages of combining acoustic positioning forces and microwave heating for containerless processing investigations are presented in outline form.

  15. Preparation and characterization of novel glass-ceramic tile with microwave absorption properties from iron ore tailings

    NASA Astrophysics Data System (ADS)

    Yao, Rui; Liao, SongYi; Dai, ChangLu; Liu, YuChen; Chen, XiaoYu; Zheng, Feng

    2015-03-01

    A novel glass-ceramic tile consisting of one glass-ceramic layer (GC) attaining microwave absorption properties atop ceramic substrate was prepared through quench-heat treatment route derived from iron ore tailings (IOTs) and commercial raw materials (purity range 73-99%). X-ray diffraction (XRD), SEM, Energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), Physical property measurement system (PPMS) and Vector network analyzer (VNA) measurements were carried out to investigate phase, microstructure, magnetic and microwave absorption aspects of the glass-ceramic layer. Roughly 80.6±1.7 wt% borosilicate glass and 19.4±1.7 wt% spinel ferrite with chemical formula of (Zn2+0.17Fe3+0.83)[Fe3+1.17Fe2+0.06Ni2+0.77]O4 were found among the tested samples. Absorption of Electromagnetic wave by 3 mm thick glass-ceramic layer at frequency of 2-18 GHz reached peak reflection loss (RL) of -17.61 dB (98.27% microwave absorption) at 10.31 GHz. Altering the thickness of the glass-ceramic layer can meet the requirements of different level of microwave absorption.

  16. Electrical conductivity of microwave heated polyaniline nanotubes and possible mechanism of microwave absorption by materials.

    PubMed

    Murai, Takahiro; Fukasawa, Ryo; Muraoka, Tohru; Takauchi, Hiroyuki; Gotoh, Yasuo; Takizawa, Tokihiro; Matsuse, Takehiro

    2009-01-01

    In the course of experiments to perform deprotonation and carbonization of doped polyaniline (PANI) nanotubes (NTs) by irradiating directly 2.45 GHz microwave (MW) in our microwave heating system (MWHS), we have discovered that the PANI-NTs self heat by absorbing the MW but the temperature of the PANI-NTs stops rising around 300 degrees C in spite of the heightened MW power Furthermore, we have found that the MW irradiated PANI-NTs have transferred from electrical conductor to insulator depending on the temperature of the PANI-NTs. By measuring electron spin resonance (ESR) spectra of the MW heated PANI-NTs, the existence of the unpaired electrons is shown to have a strong correlation between the degree of MW absorption and the transition in the electrical conductivities. In order to deprotonate and carbonize further the PANI-NTs, we have performed heat treatment for the PANI-NTs up to a temperature (T(HT)) of about 1200 degrees C in the same MWHS using carbon fiber which self heats by absorbing MW. The chemical transformations in the PANI-NTs induced by the heat treatments are discussed by measuring the X-ray photoelectron spectroscopy (XPS) spectra. Finally, the temperature dependence of electrical conductivities of the PANI-NTs are measured in order to investigate the mechanism of electrical conduction of the heat treated PANI-NTs. PMID:21384721

  17. Synthesis and microwave absorption properties of magnetite nanoparticles.

    PubMed

    Shao, XiaoPing; Dai, Bo; Zhang, XiaoWei; Ma, YongJun

    2012-02-01

    Nanoparticles of Fe3O4 with various sizes were synthesized from FeCl3 x 6H2O, FeCl2 x 4H2O and NaOH by coprecipitation process. The crystal structure, morphology, particle size and magnetic property of the products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). It was found that the molar ratio of ferrous to ferric played an important role in the formation of Fe3O4 nanoparticles. The particle mean diameter swelled from approximately 10 to approximately 20 nm with the molar ratio range from 1:2 to 6:1. The saturation magnetization and the coercivity increased correspondingly. The complex permittivity epsilon(r) and permeability mu(r) of the Fe3O4 mixture with paraffin were measured using vector network analysis. Values of epsilon(r), and mu(r) were used to determine the reflection loss at various sample thicknesses, based on a model of microwave absorbing layer backed by a metal plate. The minimal reflection loss or the dip shifts to a lower frequency region with increasing thickness. When the thickness is 5 mm, the minimal reflection loss of Fe3O4 synthesized with the molar ratio of 6:1 and paraffin wax composites reaches -35.1 dB at 5.2 GHz and -30.2 dB at 17.6 GHz, respectively. The minimal reflection loss is attributed to the thickness of the absorber approximates an odd number multiple of a quarter of the propagation wavelength. PMID:22629906

  18. Synthesis and microwave absorption properties of magnetite nanoparticles.

    PubMed

    Shao, XiaoPing; Dai, Bo; Zhang, XiaoWei; Ma, YongJun

    2012-02-01

    Nanoparticles of Fe3O4 with various sizes were synthesized from FeCl3 x 6H2O, FeCl2 x 4H2O and NaOH by coprecipitation process. The crystal structure, morphology, particle size and magnetic property of the products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). It was found that the molar ratio of ferrous to ferric played an important role in the formation of Fe3O4 nanoparticles. The particle mean diameter swelled from approximately 10 to approximately 20 nm with the molar ratio range from 1:2 to 6:1. The saturation magnetization and the coercivity increased correspondingly. The complex permittivity epsilon(r) and permeability mu(r) of the Fe3O4 mixture with paraffin were measured using vector network analysis. Values of epsilon(r), and mu(r) were used to determine the reflection loss at various sample thicknesses, based on a model of microwave absorbing layer backed by a metal plate. The minimal reflection loss or the dip shifts to a lower frequency region with increasing thickness. When the thickness is 5 mm, the minimal reflection loss of Fe3O4 synthesized with the molar ratio of 6:1 and paraffin wax composites reaches -35.1 dB at 5.2 GHz and -30.2 dB at 17.6 GHz, respectively. The minimal reflection loss is attributed to the thickness of the absorber approximates an odd number multiple of a quarter of the propagation wavelength.

  19. Microstructure and microwave dielectric properties of modified zinc titanates (II)

    SciTech Connect

    Kim, H.T. |; Byun, J.D.; Kim, Y.

    1998-06-01

    Zinc titanates ZnO-TiO{sub 2} (Zn/Ti = 0.67--2.0) and Zn{sub 1{minus}x}Mg{sub x}TiO{sub 3} (x = 0--0.4) were prepared by a conventional mixed-oxide method, and the microstructure and dielectric properties in the microwave range were investigated. In the ZnO-TiO{sub 2} system, zinc orthotitanate, Zn{sub 2}TiO{sub 4}, had rutile solubility up to 0.33 mol followed by a decrease in the cubic lattice parameters as the amount of rutile increased. The zero {tau}{sub f} was obtained near Zn/Ti = 1.15 composition. The {epsilon}{sub r} and Q*f of the composition were 25 and 23,000, respectively. In the Zn{sub 1{minus}x}Mg{sub x}TiO{sub 3} system, the composite structure with zinc orthotitanate and rutile of 1ZnO{center_dot}1TiO{sub 2} transformed into the (Zn, Mg)TiO{sub 3} hexagonal solid solution at x = 0.3--0.4. However, phase decomposition occurred in this range at a temperature above 1160 C, which induced microcracks and resulted in a decrease in Q factors. A range of dielectric resonators with {epsilon}{sub r} = 20--30, Q = 2,500--13,000 at GHz, and {tau}{sub f} = {minus}70 to +50 ppm/C can be obtained in this system at a sintering temperature as low as 1,100 C.

  20. Enhanced microwave absorption properties in BiFeO 3 ceramics prepared by high-pressure synthesis

    NASA Astrophysics Data System (ADS)

    Wen, Fusheng; Wang, Nan; Zhang, Fang

    2010-10-01

    Multiferroic BiFeO 3 nanoparticles and ceramics have been successfully prepared by sol-gel method and following high-pressure synthesis. The denser samples, good crystallization and crystal structure deformation have been obtained via high-pressure synthesis proved by XRD, SEM and Raman spectra. The enhanced magnetization of high-pressure samples attributes to crystal structure deformation; moreover, the enhanced dielectric loss of high-pressure samples results from good crystallization. The better microwave absorption properties can be obtained by high-pressure synthesis, and the minimum reflection loss elevates from -13 dB at 12.4 GHz to -17 dB at 11.2 GHz. It means that the high-pressure synthesis can effectively improve microwave absorption properties of multiferroic materials.

  1. Microwave Absorption Properties of Ni-Foped SiC Powders in the 2-18 GHz Frequency Range

    NASA Astrophysics Data System (ADS)

    Jin, Hai-Bo; Li, Dan; Cao, Mao-Sheng; Dou, Yan-Kun; Chen, Tao; Wen, Bo; Simeon, Agathopoulos

    2011-03-01

    Ni-doped SiC powder with improved dielectric and microwave absorption properties was prepared by self-propagating high-temperature synthesis (SHS). The XRD analysis of the as-synthesized powders suggests that Ni is accommodated in the sites of Si in the lattice of SiC, which shrinks in the presence of Ni. The experimental results show an improvement in the dielectric properties of the Ni-doped SiC powder in the frequency range of 2-18 GHz. The bandwidth of the reflection loss below -10 dB is broadened from 3.04 (for pure SiC) to 4.56 GHz (for Ni-doped SiC), as well as the maximum reflection loss of produced powders from 13.34 to 22.57 dB, indicating that Ni-doped SiC could be used as an effective microwave absorption material.

  2. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    DOEpatents

    Meek, Thomas T.; Blake, Rodger D.

    1987-01-01

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.

  3. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    DOEpatents

    Meek, T.T.; Blake, R.D.

    1987-09-22

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate. 2 figs.

  4. Microwave processing of cement and concrete materials – towards an industrial reality?

    SciTech Connect

    Buttress, Adam Jones, Aled; Kingman, Sam

    2015-02-15

    Each year a substantial body of literature is published on the use of microwave to process cement and concrete materials. Yet to date, very few if any have lead the realisation of a commercial scale industrial system and is the context under which this review has been undertaken. The state-of the–art is evaluated for opportunities, and the key barriers to the development of new microwave-based processing techniques to enhance production, processing and recycling of cement and concrete materials. Applications reviewed include pyro-processing of cement clinker; accelerated curing, non-destructive testing and evaluation (NDT&E), and end-of-life processing including radionuclide decontamination.

  5. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    DOEpatents

    Meek, T.T.; Blake, R.D.

    1985-04-03

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.

  6. Microwave dielectric properties of inorganic fullerene-like tungsten disulfide nanoparticles

    NASA Astrophysics Data System (ADS)

    Chang, Hong; Dimitrakis, Georgios; Xu, Fang; Yi, Chenbo; Kingman, Samuel; Zhu, Yanqiu

    2013-01-01

    The dielectric response of inorganic fullerene-like (IF) tungsten disulfide (WS2) nanoparticles prepared by a sulfidization reaction of WO3 nanoparticles has been investigated, against commercial platelet 2H-WS2 particles, using a cavity perturbation technique at microwave frequencies at temperatures ranging from 20 to 750 °C. The IF-WS2 nanoparticles showed both temperature and frequency dependent dielectric properties. The different dielectric behaviour between the IF-WS2 and 2H-WS2 can be attributed to the different conductivity and structure peculiar to the materials. The microstructure and thermal stability of the IF-WS2 and 2H-WS2 were thoroughly examined, to correlate with the resulting dielectric responses.

  7. Preparation and Microwave Absorption Properties of Novel Carbon Nanofiber/Fe3O4 Composites.

    PubMed

    Ren, Yong; Dai, Bo; Wang, Gai-Hua; Zhang, Xiao-Wei; Zhu, Pei; Li, Shi-Rong

    2015-04-01

    Novel, carbonized bacterial cellulose (CBC)/Fe3O4 nanocomposites were synthesized using vacuum filtration and annealing (VFA) methods. The as-synthesized products were characterized by scanning electron microscopy, vibrating sample magnetometry, and transmission electron microscopy. The complex permittivity and permeability of Fe3O4-CBC (5 wt.% CBC)/paraffin wax composites were measured by vector network analysis. To study the microwave absorption (MA) performances, we compared the VFA products with the vacuum filtration (VF) products. The VFA products exhibited better absorption performances because of their larger dielectric loss. When the matching thickness was 2.4 mm, the calculated reflection loss reached a minimum value of -27 dB when VFA was used and a value of -11 dB when VF was used. The wide-range MA properties of these materials lead to potential applications in MA fields.

  8. Preparation and Microwave Absorption Properties of Novel Carbon Nanofiber/Fe3O4 Composites.

    PubMed

    Ren, Yong; Dai, Bo; Wang, Gai-Hua; Zhang, Xiao-Wei; Zhu, Pei; Li, Shi-Rong

    2015-04-01

    Novel, carbonized bacterial cellulose (CBC)/Fe3O4 nanocomposites were synthesized using vacuum filtration and annealing (VFA) methods. The as-synthesized products were characterized by scanning electron microscopy, vibrating sample magnetometry, and transmission electron microscopy. The complex permittivity and permeability of Fe3O4-CBC (5 wt.% CBC)/paraffin wax composites were measured by vector network analysis. To study the microwave absorption (MA) performances, we compared the VFA products with the vacuum filtration (VF) products. The VFA products exhibited better absorption performances because of their larger dielectric loss. When the matching thickness was 2.4 mm, the calculated reflection loss reached a minimum value of -27 dB when VFA was used and a value of -11 dB when VF was used. The wide-range MA properties of these materials lead to potential applications in MA fields. PMID:26353503

  9. Microwave properties of polymer composites containing combinations of micro- and nano-sized magnetic fillers.

    PubMed

    Kolev, Svetoslav; Koutzarova, Tatyana; Yanev, Andrey; Ghelev, Chavdar; Nedkov, Ivan

    2008-02-01

    We investigated the microwave absorbing properties of composite bulk samples with nanostructured and micron-sized fillers. As magnetic fillers we used magnetite powder (Fe3O4 with low magnetocrystalline anisotropy) and strontium hexaferrite (SrFe12O9 with high magnetocrystalline anisotropy). The dielectric matrix consisted of silicone rubber. The average particle size was 30 nm for the magnetite powder and 6 micro/m for the strontium hexaferrite powder. The micron-sized SrFe12O19 powder was prepared using a solid-state reaction. We investigated the influence of the filler concentration and the filler ratio (Fe3O4/SrFe12O19) in the polymer matrix on the microwave absorption in a large frequency range (1 / 18 GHz). The results obtained showed that the highly anisotropic particles become centers of clusterification and the small magnetite particles form magnetic balls with different diameter depending on the concentration. The effect of adding micron-sized SrFe12O19 to the nanosized Fe3O4 filler in composites absorbing structures has to do with the ferromagnetic resonance (FMR) shifting to the higher frequencies due to the changes in the ferrite filler's properties induced by the presence of a magnetic material with high magnetocrystalline anisotropy. The two-component filler possesses new values of the saturation magnetization and of the anisotropy constant, differing from those of both SrFe12O1919 and Fe3O4, which leads to a rise in the effective anisotropy field. The results demonstrate the possibility to vary the composite's absorption characteristics in a controlled manner by way of introducing a second magnetic material. PMID:18464386

  10. Spectral properties of microwave graphs with local absorption.

    PubMed

    Allgaier, Markus; Gehler, Stefan; Barkhofen, Sonja; Stöckmann, H-J; Kuhl, Ulrich

    2014-02-01

    The influence of absorption on the spectra of microwave graphs has been studied experimentally. The microwave networks were made up of coaxial cables and T junctions. First, absorption was introduced by attaching a 50Ω load to an additional vertex for graphs with and without time-reversal symmetry. The resulting level-spacing distributions were compared with a generalization of the Wigner surmise in the presence of open channels proposed recently by Poli et al. [Phys. Rev. Lett. 108, 174101 (2012)]. Good agreement was found using an effective coupling parameter. Second, absorption was introduced along one individual bond via a variable microwave attenuator, and the influence of absorption on the length spectrum was studied. The peak heights in the length spectra corresponding to orbits avoiding the absorber were found to be independent of the attenuation, whereas, the heights of the peaks belonging to orbits passing the absorber once or twice showed the expected decrease with increasing attenuation.

  11. Microwave absorption in nanocomposite material of magnetically functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Labunov, V. A.; Danilyuk, A. L.; Prudnikava, A. L.; Komissarov, I.; Shulitski, B. G.; Speisser, C.; Antoni, F.; Le Normand, F.; Prischepa, S. L.

    2012-07-01

    The interaction of electromagnetic radiation in X and Ka bands with magnetic nanocomposite of disordered carbon nanotubes arrays has been investigated both experimentally and theoretically. Samples were synthesized on the quartz reactor walls by decomposition of ferrocene and xylene which provided random intercalation of iron phase nanoparticles in carbon nanotube array. The exhaustive characterization of the samples by means of the scanning electron microscopy, Raman spectroscopy, and x-ray photoemission spectroscopy was performed. It was found that the absorption of the electromagnetic wave monotonically increases with the frequency. To describe these experimental data, we extended the Bruggeman effective medium theory to a more complex case of a magnetic nanocomposite with randomly distributed spherical ferromagnetic nanoparticles in a conducting medium. The essential feature of the developed model is the consideration of the complex nature of the studied material. In particular, such important parameters as magnetic and dielectric properties of both the carbon nanotube medium and the nanoparticles, the volume concentration and the dimensions of the nanoparticles, the wave impedance of the resistive-capacitive shells of the conductive nanoparticles are explicitly taken into account in our model. Moreover, analysing the experimental results, we were able to obtain the frequency dependencies of permittivity and permeability of the studied nanocomposite.

  12. Measurements of microwave transmission characteristics through various configurations of fluidized bed materials

    NASA Astrophysics Data System (ADS)

    1980-05-01

    The feasibility of developing a microwave diagnostic system for measurement of bubbles in a fluidized bed combustion system was experimentally investigated. Experiments were performed in a simple waveguide geometry using microwave frequencies from 2.4 to 3.9 GHz. Styrofoam spacers were used to simulate bubbles in bed materials, such as Greer limestone. The results show that it is feasible to develop a diagnostic system based on microwave transmission through a system consisting of gaps in a limestone media, such as a fluidized bed. The gap is shown to perturb the transmitted power, and to be very sensitive to bubble and bed material dimensions. Resonance effects are shown to occur when dimensions are integer multiples of a quarter wavelength.

  13. Measurements of microwave transmission characteristics through various configurations of fluidized bed materials

    SciTech Connect

    Not Available

    1980-05-01

    The feasibility of developing a microwave diagnostic system for measurement of bubbles in a fluidized bed combustion system has been experimentally investigated. Experiments were performed in a simple waveguide geometry, using microwave frequencies from 2.4 to 3.9 GHz. Styrofoam spacers were used to simulate bubbles in bed materials, such as Greer limestone. The results show that it is feasible to develop a diagnostic system based on microwave transmission through a system consisting of gaps in a limestone media, such as a fluidized bed. The gap has been shown to perturb the transmitted power, and to be very sensitive to bubble and bed material dimensions. Resonance effects are shown to occur when dimensions are integer multiples of a quarter wavelength.

  14. Effect of Microwave Irradiation on the Physicochemical and Digestive Properties of Lotus Seed Starch.

    PubMed

    Zeng, Shaoxiao; Chen, Bingyan; Zeng, Hongliang; Guo, Zebin; Lu, Xu; Zhang, Yi; Zheng, Baodong

    2016-03-30

    The objective of this study is to investigate the effect of microwave irradiation on the physicochemical and digestive properties of lotus seed starch. The physicochemical properties of lotus seed starch were characterized by light microscopy, (1)H NMR, FT-IR spectroscopy, and HPSEC-MALLS-RI. The starch-water interaction and crystalline region increased due to the changed water distribution of starch granules and the increase of the double-helix structure. The swelling power, amylose leaching, molecular properties, and radius of gyration reduced with the increasing microwave power, which further affected the sensitivity of lotus seed starch to enzymatic degradation. Furthermore, the resistant starch and slowly digestible starch increased with the increasing microwave irradiation, which further resulted in their decreasing hydrolysis index and glycemic index. The digestive properties of lotus seed starch were mainly influenced by the reduced branching degree of amylopectin and the strong amylose-amylose interaction. PMID:26912092

  15. Effect of Microwave Irradiation on the Physicochemical and Digestive Properties of Lotus Seed Starch.

    PubMed

    Zeng, Shaoxiao; Chen, Bingyan; Zeng, Hongliang; Guo, Zebin; Lu, Xu; Zhang, Yi; Zheng, Baodong

    2016-03-30

    The objective of this study is to investigate the effect of microwave irradiation on the physicochemical and digestive properties of lotus seed starch. The physicochemical properties of lotus seed starch were characterized by light microscopy, (1)H NMR, FT-IR spectroscopy, and HPSEC-MALLS-RI. The starch-water interaction and crystalline region increased due to the changed water distribution of starch granules and the increase of the double-helix structure. The swelling power, amylose leaching, molecular properties, and radius of gyration reduced with the increasing microwave power, which further affected the sensitivity of lotus seed starch to enzymatic degradation. Furthermore, the resistant starch and slowly digestible starch increased with the increasing microwave irradiation, which further resulted in their decreasing hydrolysis index and glycemic index. The digestive properties of lotus seed starch were mainly influenced by the reduced branching degree of amylopectin and the strong amylose-amylose interaction.

  16. Processing, electrical and microwave properties of sputtered Tl-Ca-Ba-Cu-O superconducting thin films

    NASA Technical Reports Server (NTRS)

    Subramanyam, G.; Kapoor, V. J.; Chorey, C. M.; Bhasin, K. B.

    1993-01-01

    A reproducible fabrication process has been established for TlCaBaCuO thin films on LaAlO3 substrates by RF magnetron sputtering and post-deposition processing methods. Electrical transport properties of the thin films were measured on patterned four-probe test devices. Microwave properties of the films were obtained from unloaded Q measurements of all-superconducting ring resonators. This paper describes the processing, electrical and microwave properties of Tl2Ca1Ba2Cu2O(x) 2122-plane phase thin films.

  17. Interpretation of ground-based microwave measurements of the moon using a detailed regolith properties model

    NASA Technical Reports Server (NTRS)

    Gary, B. L.; Keihm, S. J.

    1978-01-01

    A detailed model for the regolith's thermophysical and microwave properties has been used for the interpretation of ground-based measurements of the moon's microwave brightness temperature variation with lunar phase and changes during eclipses. The ground-based measurements include some crucial new lunation variation observations at 2.8, 6.0 and 13.1 cm. The many parameters in the regolith properties model were assigned values based on a careful review of Apollo in situ and lab sample measurements of thermophysical and electrical properties. The first identification of a wavelength-dependent component of scattering is reported.

  18. Microwave properties of RF- sputtered ZnFe{sub 2}O{sub 4} thin films

    SciTech Connect

    Garg, T. Kulkarni, A. R.; Venkataramani, N.; Sahu, B. N.; Prasad, Shiva

    2014-04-24

    In this work, RF- magnetron sputtering technique has been employed to deposit nanocrystalline ZnFe{sub 2}O{sub 4} thin films at room temperature. The as grown films were ex-situ annealed in air for 2 h at temperatures from 150°C to 650°C. X-ray diffraction, vibrating sample magnetometer and ferromagnetic resonance were used to analyze the phase formation, magnetic properties and microwave properties respectively. From the hysteresis loops and ferromagnetic resonance spectra taken at room temperature, a systematic study on the effect of O{sub 2} plasma on microwave properties with respect to processing temperature has been carried out.

  19. Enhanced microwave absorption properties of CTAB assisted Pr-Cu substituted nanomaterial

    NASA Astrophysics Data System (ADS)

    Sadiq, Imran; Naseem, Shahzad; Riaz, Saira; Khan, Hasan M.; Ashiq, Muhammad Naeem; Hussain, S. Sajjad; Rana, Mazhar

    2016-09-01

    In this study, the rare earth Pr3+and divalent Cu2+ elements substituted Sr1-xPrxMn2Fe16-yCuyO27 (x=0, 0.02, 0.06, 0.1 and y=0, 0.1, 0.3, 0.5) W-type hexagonal ferrites were prepared by Sol-Gel method. TGA and DSC analysis of as prepared material was carried out to confirm the temperature at which required phase can be obtained. The XRD patterns exhibit the single phase for all the samples and the lattice parameters were changed with the additives. The absorption bands at wave number 636 and 554 cm-1 in FTIR spectrum indicate the stretching vibration of metal-oxygen ions which also ratifies the single phase for the prepared material. Microstructural analysis confirms the agglomeration of nanograins which leads to formation of platelet like structure which cause in the enhancement of the microwave absorption properties of material. The minimum reflection loss of -59.8 dB at 9.34 GHz frequency was observed makes the prepared material good candidate to be used in super high frequency application. The attenuation constant and reflectivity results are also in good agreement with minimum reflection losses results.

  20. Studies of Microwave Absorption Properties of Carbon Nanotubes/Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Zhao, Guang-Lin

    2010-10-01

    Less weight, excellent mechanical properties, and high efficiency in absorbing electromagnetic (EM) wave make carbon nanotubes (CNTs) composites attractive for microwave technology applications. Multi-walled carbon nanotubes (MWNTs) have much higher performance-to-price ratio (PPR) than SWNTs do in the composite applications. In this work, we aim to study the effect of the outside diameter (OD) distributions of MWNTs on their microwave absorption properties. We have fabricated six groups of carbon nanotube/epoxy composite samples with various OD distributions. The weight percentages of MWNTs in the composites were controlled in the range from 1 to 10%. We utilized a microwave resonant cavity technique to measure the microwave absorption properties of all the sixty samples around the central frequency of 9.968 GHz. Our results have shown that the maxima of EM wave absorptions for the six groups of samples were all around 7% MWNTs weight percentage. We further studied the effective attenuations of the electric and magnetic fields in six groups of MWNT composite samples with the same (7 %) MWNT blend in epoxy. The results show that, in general, the MWNTs with smaller diameters have higher microwave absorption at 9.968 GHz. However, sample group M5 (OD<8nm) shows unusual results, a lower microwave absorption than the other samples. We then used a scanning electron microscope (SEM) to study the morphologies of the MWNT samples. Based on the SEM analysis and microwave absorption measurements, we found that the efficiency of the microwave absorption of MWNT/Epoxy composites is strongly affected by the morphologies/structures of MWNTs in individual bundles.

  1. Study on microwave absorbing properties of carbonyl-iron composite coating based on PVC and Al sheet

    NASA Astrophysics Data System (ADS)

    Yuping, Duan; Guangli, Wu; Shuchao, Gu; Shuqing, Li; Guojia, Ma

    2012-05-01

    To suppress the increasingly terrible electromagnetic pollution, microwave absorption coatings based on polyvinyl chloride (PVC) sheet have been fabricated, employing polyurethane varnish (PU) as matrix and carbonyl-iron particle (CIP) as absorbent. The morphology, static magnetic and microwave absorption properties of CIP were characterized by scanning electron microscope (SEM), vibrating sample magnetometer (VSM) and vector network analyzer (VNA), respectively. Bruggeman's equation was introduced to calculate the electromagnetic parameters of materials in the frequency range of 2-18 GHz and the loss mechanisms were discussed. Furthermore, the microwave absorption properties of composite coatings with different component content and thickness were investigated. The results show that the electromagnetic properties of the composite heavily depended on the particle loadings. The minimum reflection peaks of the coatings shift towards the lower frequency region with the increase of CIP content or coating thickness. PVC-based coatings with a component content of 1:7 (PU:CIP mass ratio) in CIP/PU layer, exhibit a minimum reflection loss value of -29 dB at 4 GHz and a permissible reflection loss (RL ≤ -10 dB) frequency band of 2-6 GHz, which is much better than the performance of the common metal-based coatings in the lower frequency.

  2. Ordering and microwave dielectric properties of Ba(Ni{sub 1/3}Nb{sub 2/3})O{sub 3} ceramics

    SciTech Connect

    Kim, I.; Kim, Y.; Chung, S.J.

    1997-02-01

    Ordering and microwave dielectric properties of Ba(Ni{sub 1/3}Nb{sub 2/3})O{sub 3} have been investigated using x-ray diffraction, transmission electron microscopy, energy-dispersive spectroscopy, and a network analyzer. Samples sintered at 1400{degree}C for 2 h were disordered and showed the presence of Nb-rich liquid phase at grain boundary junctions. Degree of ordering increased with following annealing at 1300{degree}C. Growth of the ordered region during annealing process was discussed in terms of nucleation and growth. A long-range order parameter was calculated using structure factor. Measurements of microwave dielectric properties showed that permittivity and temperature coefficient of resonant frequency decreased with ordering, and quality factor increased with ordering. The correlation between microwave dielectric properties and ordering was discussed in terms of covalency of bonding, inhomogeneous charge distribution, and defects concentration. {copyright} {ital 1997 Materials Research Society.}

  3. Viability of fungal and actinomycetal spores after microwave radiation of building materials.

    PubMed

    Górny, Rafał L; Mainelis, Gediminas; Wlazło, Agnieszka; Niesler, Anna; Lis, Danuta O; Marzec, Stanisław; Siwińska, Ewa; Łudzeń-Izbińska, Beata; Harkawy, Aleksander; Kasznia-Kocot, Joanna

    2007-01-01

    The effects of microwave radiation on viability of fungal and actinomycetal spores growing on agar (medium optimal for growth) as well as on wooden panel and drywall (common building construction/finishing materials) were studied. All materials were incubated at high (97-99%) and low (32-33%) relative humidity to mimic "wet" and "dry" environmental conditions. Two microwave power densities (10 and 60 mW/cm2) and three times of exposure (5, 30, and 60 min) were tested to find the most effective parameters of radiation which could be applied to non-invasive reduction or cleaning of building materials from microbial contaminants. Additionally, a control of the surface temperature during the experiments allowed differentiation between thermal and microwave effect of such radiation. The results showed that the viability of studied microorganisms differed depending on their strains, growth conditions, power density of microwave radiation, time of exposure, and varied according to the applied combination of the two latter elements. The effect of radiation resulting in a decrease of spore viability on "wet" wooden panel and drywall was generally observed at 60 min exposure. Shorter exposure times decreased the viability of fungal spores only, while in actinomycetes colonizing the studied building materials, such radiation caused an opposite (supporting growth) effect.

  4. Microwave-assisted catalytic pyrolysis of switchgrass for improving bio-oil and biochar properties.

    PubMed

    Mohamed, Badr A; Kim, Chang Soo; Ellis, Naoko; Bi, Xiaotao

    2016-02-01

    Solid additives were used as a microwave absorber to improve the low microwave absorption rate of switchgrass going through pyrolysis, and as a catalyst to improve the bio-oil and biochar characteristics. The synergistic effects were manifested in the presence of a mixture of K3PO4 and clinoptilolite or bentonite compared with single catalyst, resulting in increased microwave absorption rate, and improved bio-oil and biochar quality. The sample of microwave heating switchgrass with 10wt.% K3PO4+10wt.% bentonite reached 400°C after 2.8min, compared with 28.8min through conventional heating, producing biochar with increase in BET surface area from 0.33m(2)/g to 76.3m(2)/g compared with conventional heating. Furthermore, water content of the bio-oil reduced from 22.7 to 15.0wt.% compared with biomass mixed with 20wt.% SiC, a chemically-inert microwave absorbing material used to increase microwave heating. Introducing catalysts showed a great potential for accelerating microwave heating and improving bio-oil and biochar qualities.

  5. Microwave-assisted catalytic pyrolysis of switchgrass for improving bio-oil and biochar properties.

    PubMed

    Mohamed, Badr A; Kim, Chang Soo; Ellis, Naoko; Bi, Xiaotao

    2016-02-01

    Solid additives were used as a microwave absorber to improve the low microwave absorption rate of switchgrass going through pyrolysis, and as a catalyst to improve the bio-oil and biochar characteristics. The synergistic effects were manifested in the presence of a mixture of K3PO4 and clinoptilolite or bentonite compared with single catalyst, resulting in increased microwave absorption rate, and improved bio-oil and biochar quality. The sample of microwave heating switchgrass with 10wt.% K3PO4+10wt.% bentonite reached 400°C after 2.8min, compared with 28.8min through conventional heating, producing biochar with increase in BET surface area from 0.33m(2)/g to 76.3m(2)/g compared with conventional heating. Furthermore, water content of the bio-oil reduced from 22.7 to 15.0wt.% compared with biomass mixed with 20wt.% SiC, a chemically-inert microwave absorbing material used to increase microwave heating. Introducing catalysts showed a great potential for accelerating microwave heating and improving bio-oil and biochar qualities. PMID:26642217

  6. Microwave-Assisted Synthesis of Nano-materials in Aqueous

    EPA Science Inventory

    Whether it is termed a revolution or simply a continuous evolution, clearly development of new materials and their understanding on smaller and smaller length scale is at the root of progress in many areas of materials science.1 This is true in developing existing bulk materials...

  7. Dynamic measurement of bulk modulus of dielectric materials using a microwave phase shift technique

    NASA Technical Reports Server (NTRS)

    Barker, B. J.; Strand, L. D.

    1972-01-01

    A microwave Doppler shift technique was developed for measuring the dynamic bulk modulus of dielectric materials such as solid propellants. The system has a demonstrated time resolution on the order of milliseconds and a theoretical spatial resolution of a few microns. Accuracy of the technique is dependent on an accurate knowledge of the wavelength of the microwave in the sample being tested. Such measurement techniques are discussed. Preliminary tests with two solid propellants, one non-aluminized and one containing 16% aluminum, yielded reasonable, reproducible results. It was concluded that with refinements the technique holds promise as a practical means for obtaining accurate dynamic bulk modulus data over a variety of transient conditions.

  8. The utilization of spaceborne microwave radiometers for monitoring snowpack properties. [United States and Canada

    NASA Technical Reports Server (NTRS)

    Rango, A.; Chang, A. T. C.; Foster, J. L.

    1980-01-01

    Snow accumulation and depletion at specific locations can be monitored from space by observing related variations in microwave brightness temperatures. Using vertically and horizontally polarized brightness temperatures from the Nimbus 6 electrically scanning microwave radiometer, a discriminant function can be used to separate snow from no snow areas and map snowcovered area on a continental basis. For dry snow conditions on the Canadian high plains, significant relationships between snow depth or water equivalent and microwave brightness temperature were developed which could permit remote determination of these snow properties after acquisition of a wider range of data. The presence of melt water in the snowpack causes a marked increase in brightness temperature which can be used to predict snowpack priming and timing of runoff. As the resolutions of satellite microwave sensors improve the application of these results to snow hydrology problems should increase.

  9. Novel materials, fabrication techniques and algorithms for microwave and THz components, systems and applications

    NASA Astrophysics Data System (ADS)

    Liang, Min

    This dissertation presents the investigation of several additive manufactured components in RF and THz frequency, as well as the applications of gradient index lens based direction of arrival (DOA) estimation system and broadband electronically beam scanning system. Also, a polymer matrix composite method to achieve artificially controlled effective dielectric properties for 3D printing material is studied. Moreover, the characterization of carbon based nano-materials at microwave and THz frequency, photoconductive antenna array based Terahertz time-domain spectroscopy (THz-TDS) near field imaging system, and a compressive sensing based microwave imaging system is discussed in this dissertation. First, the design, fabrication and characterization of several 3D printed components in microwave and THz frequency are presented. These components include 3D printed broadband Luneburg lens, 3D printed patch antenna, 3D printed multilayer microstrip line structure with vertical transition, THz all-dielectric EMXT waveguide to planar microstrip transition structure and 3D printed dielectric reflectarrays. Second, the additive manufactured 3D Luneburg Lens is employed for DOA estimation application. Using the special property of a Luneburg lens that every point on the surface of the Lens is the focal point of a plane wave incident from the opposite side, 36 detectors are mounted around the surface of the lens to estimate the direction of arrival (DOA) of a microwave signal. The direction finding results using a correlation algorithm show that the averaged error is smaller than 1º for all 360 degree incident angles. Third, a novel broadband electronic scanning system based on Luneburg lens phased array structure is reported. The radiation elements of the phased array are mounted around the surface of a Luneburg lens. By controlling the phase and amplitude of only a few adjacent elements, electronic beam scanning with various radiation patterns can be easily achieved

  10. Detoxification mechanism of asbestos materials by microwave treatment.

    PubMed

    Yoshikawa, N; Kashimura, K; Hashiguchi, M; Sato, M; Horikoshi, S; Mitani, T; Shinohara, N

    2015-03-01

    The detoxification mechanism of asbestos materials was investigated through simulations and experiments. The permittivities of pure CaO and Mg3Si4O12, as quasi-asbestos materials, were measured using the cavity perturbation method. The real and imaginary parts of the relative permittivity (ɛr' and ɛr″) of CaO are functions of temperature, and numerical simulations revealed the thermal distributions in an electromagnetic field with respect to both asbestos shape and material configuration based on permittivity. Optical microscopic observation revealed that the thickness of chrysotile fibers decreased as a result of CaO heating. The heating mechanism of asbestos materials has been determined using CaO phase, and the detoxification mechanism of asbestos materials was discussed based on the heating mechanism.

  11. Measurement of dielectric properties and determination of microwave emissivity of polluted waters

    NASA Technical Reports Server (NTRS)

    Blume, H.-J. C.

    1980-01-01

    The dielectric properties of polluted waters are measured with a reflection-type resonant cavity at 1.43 GHz. Very small water samples in quartz tubes of known volume are placed in the center of the maximum electric field. Measurement of the resonance-frequency variation and a change of the cavity's quality factor are used to determine the dielectric properties. The microwave emissivity of the polluted water is then calculated via the Fresnel equation and applied to data reductions of microwave radiometer measurements.

  12. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1987-01-01

    Laboratory measurements were conducted to evaluate properties of atmospheric gases under simulated conditions for the outer planets. A significant addition to this effort was the capability to make such measurements at millimeter wavelengths. Measurements should soon be completed on the millimeter wave absorption from ammonia under Jovian conditions. Also studied will be the feasibility of measuring the microwave and millimeter wave properties of phosphine (PH3) under simulated Jovian conditions. Further analysis and application of the laboratory results to microwave and millimeter wave absorption data for the outer planet, such as Voyager Radio Occultation experiments, will be pursued.

  13. Complex permittivity measurements and mixing laws of ceramic materials and application to microwave processing

    NASA Astrophysics Data System (ADS)

    Gershon, David Louis

    The complex permittivity of alumina composites was examined with respect to its dependence on the volume fraction of constituents, microstructure, processing temperature, and processing method. In addition, the effective permittivity of these composites was quantitatively modeled based on the permittivities, volume fractions, and microstructures of the constituents. The studies focused on the complex permittivity of alumina composites, which contained the lossy additives silicon carbide and copper oxide. Two composite systems were prepared by physically mixing alumina and one of the additives. A third composite system was produced by chemically precipitating copper oxide onto alumina. The two synthesis methods produced composites with different microstructures and complex permittivities. The imaginary part of the complex permittivity was generally larger in the chemically precipitated composites than in the physically mixed composites. The dependence of the complex permittivities of the composites on volume fraction and microstructure were compared with several algebraic mixing laws and with three dimensional, electrostatic numerical simulations. The algebraic mixing laws do not take into account for the dependence of the imaginary part of the complex permittivity on absorbed water and microstructure, which is affected by composite synthesis. By incorporating general physical characteristics of the composites, the electrostatic simulations were able to accurately predict their permittivity. Heating some selected alumina composites in conventional and microwave furnaces demonstrate several interesting results. The densification and dielectric proper-ties of the alumina/copper oxide composites varied due to processing temperature. The changes in these properties depended upon preparation method and not on heating method. The density and real part of the complex permittivity of alumina/silicon carbide also varied due to processing temperature and not on heating method

  14. An analysis of the microwave dielectric properties of solvent-oil feedstock mixtures at 300-3000 MHz.

    PubMed

    Terigar, Beatrice G; Balasubramanian, Sundar; Boldor, Dorin

    2010-08-01

    Microwaves can be a more efficient method than traditional thermal treatment to deliver the energy required for heating in solvent-oil extraction due to its volumetric, direct coupling with the material. An understanding of the behavior of dielectric properties of solvent-feedstock mixtures is important for designing and optimizing any microwave-based extraction process. In this study rice bran and soybean flour were mixed separately with four different solvents (methanol, ethanol, hexane and isopropanol) at different ratios (1:2, 1:1, 2:1 w/w). For the samples mixed with ethanol, the dielectric properties were measured at 23, 30, 40 and 50 degrees C, while for all other sample-solvent mixtures experiments were performed at room temperature. Dielectric properties were determined using a vector network analyzer and dielectric probe kit using the open-ended coaxial probe method in the frequency range of 300 MHz to 3 GHz. Results from the study indicate that dielectric constants were dependent on frequency and were strongly influenced by temperature, mix ratio and solvent type. The dielectric loss of all mixtures except those with hexane (which were virtually zero) varied with frequency and temperature, solvent type, and mix ratio. Most of the results presented are emphasized at 433, 915 and 2450 MHz, frequencies allocated by the Federal Communication Commission (F.C.C.) for microwave applications. The results of the study, presented here for the first time to our knowledge, will help in selection of appropriate solvent, mixing ratio and frequency for designing microwave-assisted oil extraction systems.

  15. Determination of the mineral fraction and rheological properties of microwave modified starch from Canna edulis.

    PubMed

    Lares, Mary; Pérez, Elevina

    2006-09-01

    The goal of this study was to evaluate the effect of the physical modification by microwave irradiation on the mineral fraction and rheological properties of starch isolated from Canna edulis rhizomes. Phosphorus, sodium, potassium, magnesium, iron, calcium and zinc were evaluated using atomic absorption spectrophotometry. Rheological properties were determined using both the Brabender amylograph and Brookfield viscosimeter. Except for the calcium concentration, mineral contents decreased significantly (p < 0.05) after microwave treatment. The amylographic profile was also modified, showing increased pasting temperature range and breakdown index, whereas the viscosity peak, viscosity at holding (95 degrees C) and cooling periods (50 degrees C), setback and consistency decreased as compared to the native starch counterpart. Although viscosity decreased in the microwaved sample, presumably due to starch changes at molecular level, it retained the general pseudo plastic behavior of native starch. It is concluded that canna starch may be modified by microwave irradiation in order to change its functional properties. This information should be considered when using microwave irradiation for food processing. Furthermore, the altered functional attributes of canna modified starch could be advantageous in new product development.

  16. Dielectric Properties in the Microwave Range of K0.5Na0.5NbO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Gao, Lu; Zhou, Wancheng; Luo, Fa; Zhu, Dongmei

    2016-08-01

    Dielectric properties of a potassium sodium niobate (KNN) system in the microwave range up to GHz have rarely been studied. Since K0.5Na0.5NbO3 is the most common and typical type of KNN materials, non-doped K0.5Na0.5 NbO3 ceramics were synthesized at different temperatures (1080°C, 1090°C, 1100°C, and 1110°C) by a traditional solid reaction method for further characterization and analysis. The ceramics were in perovskite phase with orthorhombic symmetry. A small quantity of second phase was found in the 1110°C sintered specimen, which resulted from the volatilization of alkali oxides as the temperature increased. The complex permittivity was measured for the first time in the microwave range (8.2-12.4 GHz) and in the temperature range from 100°C to 220°C, and the effects of annealing on the dielectric properties were studied. The results indicate that the complex permittivity of KNN ceramics over the microwave range increases mainly due to high bulk density and the additional dielectric contributions of oxygen vacancies at high temperature.

  17. Measurement of Dielectric Properties and Microwave-Assisted Homogeneous Acid-Catalyzed Transesterification in a Monomode Reactor.

    PubMed

    Dall'Oglio, Evandro L; de Sousa, Paulo T; Campos, Deibnasser C; de Vasconcelos, Leonardo Gomes; da Silva, Alan Cândido; Ribeiro, Fabilene; Rodrigues, Vaniomar; Kuhnen, Carlos Alberto

    2015-08-27

    Microwave heating technology is dependent on the dielectric properties of the materials being processed. The dielectric properties of H2SO4, H3PO4, ClSO3H, and H3CSO3H were investigated in this study using a vector network analyzer in an open-ended coaxial probe method at various temperatures. Phosphoric and sulfuric acids presented higher loss tangents in the frequency range 0.3-13 GHz, reflecting greater mobility of the ions and counterions. The acids were employed as catalysts in microwave-assisted homogeneous transesterification reactions for the production of methylic and ethylic biodiesel. The effects of catalyst concentration, alcohol to oil molar ratio, and irradiation time on biodiesel conversions were investigated. The results showed a significant reduction in the reaction time for microwave-assisted transesterification reactions as compared to times for conventional heating. Also, despite its higher loss tangent, it was observed that H3PO4 leads to lower conversion to biodiesel, which can be explained by its lower carbonyl protonation capacity.

  18. Reflection/Transmission study of two fabrics with microwave properties.

    PubMed

    Odman, Torbjörn; Lindén, Maria; Larsson, Christer

    2014-01-01

    In this study, the transmission and reflection of two conductive fabrics are investigated in the frequency range from 2 to 18 GHz. One of the fabrics is a non-woven polypyrrole, and the other consists of a polyethylene warp with steel threads in the weft. Reflection and transmission measurements are performed in order to characterize the electromagnetic properties of the materials. Reflection measurements are performed for two polarizations at normal, 0°, and 60° incident angles. Transmission measurements are also done for two polarization directions at normal incidence. The results show that the fabric with the steel filler reflects most of the incident radiation, and has very low transmission with some polarization dependence. The polypyrrole non-woven fabric, on the other hand, has reflection and transmission properties that show that it is absorbing the incident radiation. Wearable on-body sensors that in addition are comfortable to wear can be integrated in the textile of clothes. These sensors can e.g., be used to monitor health or analyze gait. The fabrics have the potential to be used in health applications when designing on-body sensors, e.g. for movement analysis. PMID:24851970

  19. The Effect of Microwave Radiation on the Supramolecular Structure of Polypropylene Fiber Materials

    NASA Astrophysics Data System (ADS)

    Potekaev, A. I.; Lysak, I. A.; Malinovskaya, T. D.; Lysak, G. V.; Egorova, L. A.

    2016-04-01

    The results of investigations of structural-phase transitions in the polypropylene melt-blown fiber materials before and after their short-term exposure to microwave radiation are presented. Using the methods of X-ray diffraction analysis and differential scanning calorimetry (DSC), it is shown that the smectic mesomorphic phase transforms into a stable monoclinic α-crystalline structure due to dielectric heating of the water molecules adsorbed on the surface of the material, without any changes in its crystallinity degree. Based on the calorimetric data, it is found that a microwave treatment of the material results in the formation of a crystalline phase with a homogeneous structure and increases its melting temperature.

  20. Properties of plasma flames sustained by microwaves and burning hydrocarbon fuels

    SciTech Connect

    Hong, Yong Cheol; Uhm, Han Sup

    2006-11-15

    Plasma flames made of atmospheric microwave plasma and a fuel-burning flame were presented and their properties were investigated experimentally. The plasma flame generator consists of a fuel injector and a plasma flame exit connected in series to a microwave plasma torch. The plasma flames are sustained by injecting hydrocarbon fuels into a microwave plasma torch in air discharge. The microwave plasma torch in the plasma flame system can burn a hydrocarbon fuel by high-temperature plasma and high atomic oxygen density, decomposing the hydrogen and carbon containing fuel. We present the visual observations of the sustained plasma flames and measure the gas temperature using a thermocouple device in terms of the gas-fuel mixture and flow rate. The plasma flame volume of the hydrocarbon fuel burners was more than approximately 30-50 times that of the torch plasma. While the temperature of the torch plasma flame was only 868 K at a measurement point, that of the diesel microwave plasma flame with the addition of 0.019 lpm diesel and 30 lpm oxygen increased drastically to about 2280 K. Preliminary experiments for methane plasma flame were also carried out, measuring the temperature profiles of flames along the radial and axial directions. Finally, we investigated the influence of the microwave plasma on combustion flame by observing and comparing OH molecular spectra for the methane plasma flame and methane flame only.

  1. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1988-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The key activity for this grant year has continued to be laboratory measurements of the microwave and millimeter-wave properties of the simulated atmospheres of the outer planets and their satellites. A Fabry-Perot spectrometer system capable of operation from 32 to 41 GHz was developed. Initially this spectrometer was used to complete laboratory measurements of the 7.5 to 9.3 mm absorption spectrum of ammonia. Laboratory measurements were begun at wavelengths near 3.2 mm, where a large number of observations of the emission from the outer planets were made. A description of this system is presented.

  2. Microwave absorption properties of conducting polymer composite with barium ferrite nanoparticles in 12.4-18 GHz

    NASA Astrophysics Data System (ADS)

    Ohlan, Anil; Singh, Kuldeep; Chandra, Amita; Dhawan, S. K.

    2008-08-01

    Conducting polymer nanocomposites of polyphenyl amine with barium ferrite nanoparticles (50-70nm) have been synthesized via emulsion polymerization. The complex permittivity, permeability, and microwave absorption properties of the composite were studied in the 12.4-18GHz (Ku band) frequency range. The composite has shown high shielding effectiveness due to absorption (SEA) of 28.9dB (˜99.9%), which strongly depends on dielectric loss, magnetic permeability, and volume fraction of barium ferrite nanoparticles. The high value of SEA suggests that these composites can be used as a promising radar absorbing materials.

  3. Improvement of coal water slurry property through coal physicochemical modifications by microwave irradiation and thermal heat

    SciTech Connect

    Jun Cheng; Junhu Zhou; Yanchang Li; Jianzhong Liu; Kefa Cen

    2008-07-15

    To improve the coal water slurry (CWS) property made from Chinese Shenhua coal with high inherent moisture and oxygen contents, microwave irradiation and thermal heat were employed to modify the coal physicochemical property. Microwave irradiation reduces the inherent moisture and reforms the oxygenic function groups, while it decreases the total specific surface area. Thermal heat markedly decreases the inherent moisture, volatile, and oxygen contents, while it dramatically increases the total specific surface area. Therefore, microwave irradiation gives a higher CWS concentration and a better rheological behavior than thermal heat, while it remarkably reduces the operation time and energy consumption. The maximum CWS concentration given by microwave irradiation at 420 W for 60 s is 62.14%, which is not only higher than that of 60.41% given by thermal heat at 450{sup o}C for 0.5 h but also higher than the initial 58.23%. Meanwhile, the minimum shear stress given by microwave irradiation is 36.4 Pa at the shear rate of 100 s{sup -1}, which is not only lower than that of 42.4 Pa given by thermal heat but also lower than the initial 79.8 Pa. The minimum unit energy consumption of 0.115 kWh/(kg of coal) and electricity cost of 4.6 U.S. $/(ton of coal) for CWS concentration promotion by 1% are obtained at 420 W for 20 s in the microwave oven. The unit energy consumptions for CWS concentration promotion and inherent moisture removal by thermal heat are, respectively, 214 and 22.5 times higher than those by microwave irradiation, while the energy use efficiencies are on the converse. 27 refs., 11 figs., 2 tabs.

  4. Electronic properties of superconductors studied using photo induced activation of microwave absorption (PIAMA)

    SciTech Connect

    Feenstra, B.J.; Schooveld, W.A.; Bos, C.

    1995-12-31

    Electronic properties of superconductors are contemporarily being studied using many different experimental techniques, among which infrared spectrometry, photoelectron spectroscopy and microwave cavity techniques play an important role. The data analysis, however, is complicated by the fact that in these materials the phonon-frequency range overlaps with the one in which the energy gap is expected. This problem can be circumvented by making use of two different sources, one to induce the excitations (the Free Electron Laser in Nieuwegein, The Netherlands, FELIX), and one to study the behavior of these excitations (i.e. quasiparticles). In our case the latter source is monochromatic microwave radiation, transmitted through a thin superconducting film. We measured both a conventional superconductor (NbN, T{sub c} = 17 K) and a high T{sub c} superconductor (SmBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, T{sub c} = 92 K). For NbN we observed a positive change in transmission, followed by a relaxation to a transmission smaller than the original value, after which the starting situation was restored within {approximately} 100 {mu}s. In case of SmBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, the changes persisted above T{sub c}. At very low temperatures we observed slow oscillations ({approximately} 4kHz) in the induced signal, which were absent in NbN. The long time scales can possibly be explained by the so-called bottleneck, i.e. quasiparticles excited with a lot of excess energy lose part of their energy by exciting other quasiparticles. In this case the quasiparticle lifetime is enhanced considerably. The oscillations point towards an intrinsic difference of the low energy excitations, i.e. the symmetry of the pairing.

  5. Effect of ionic liquid properties on lipase stabilization under microwave irradiation

    SciTech Connect

    Zhao, Hua; Baker, Gary A; Song, Zhiyan; Olubajo, Olarongbe; Zanders, Lavezza; Campbell, Sophia

    2009-01-01

    Ionic liquids (ILs) as neoteric solvents and microwave irradiation as alternative energy source are becoming two important tools for many enzymatic reactions. However, it is not well understood what properties of ILs govern the enzyme stabilization, and whether the microwave irradiation could activate enzymes in ILs. To tackle these two important issues, the synthetic activities of immobilized Candida antarctica lipase B (Novozyme 435) were examined in more than twenty ILs through microwave heating. Under microwave irradiation, enhanced enzyme activities were observed when the enzyme was surrounded by a layer of water molecules. However, such enhancement diminished when the reaction system was dried. To understand the effect of IL properties, the enzyme activities under microwave irradiation were correlated with the viscosity, polarity and hydrophobicity (log P) of ILs, respectively. The initial reaction rates bear no direct relationship with the viscosity and polarity (in terms of dielectric constant and EN T ) of ILs, but have a loose correlation (a bell curve) with log P values. The enzyme stabilization by ILs was explained from aspects of hydrogen-bond basicity of anions, dissolution of the enzyme, ionic association strength of anions, and substrate ground-state stabilization by ILs.

  6. Magnetic properties of lithium zinc ferrites synthesized by microwave sintered method

    NASA Astrophysics Data System (ADS)

    Yang, Qinghui; Zhang, Huaiwu; Wen, Qiye; Liu, Yingli; Yang, Xuwen

    2016-05-01

    In this paper, a series of polycrystalline ferrite samples were prepared with the composition of Zn0.1Li0.525-xTi0.15MgxFe2.225-0.5xO4 (LiZn) (x=0, 0.05, 0.10, 0.15 and 0.20) using both microwave sintering (MS) and conventional sintering (CS) technologies, respectively. The sintering time and temperature were 22 hours and 1000°C for the CS process, and 2 hours and 880°C for the MS process. Experiments showed that the MS treated LiZn ferrites exhibited more excellent magnetic properties and denser, more uniform micro-structures comparing with the ones treated by CS method. For the LiZn ferrite (x=0.1) sintered at 880°C using MS, the saturation magnetic induction (Bs) is 242.3 mT, the coercive force (Hc) is 135 A/m, the square ratio (Br/Bs) is 0.87 and the ferromagnetic resonance line-width (Δ H) is 143.2 Oe. These results represented very good properties for an X-band phase shifter material and indicated that the MS method is a potentially important technique for fabricating low temperature co-fired ceramics (LTCC).

  7. Property Data Summaries for Advanced Materials

    National Institute of Standards and Technology Data Gateway

    SRD 150 NIST Property Data Summaries for Advanced Materials (Web, free access)   Property Data Summaries are topical collections of property values derived from surveys of published data. Thermal, mechanical, structural, and chemical properties are included in the collections.

  8. COSMIC MICROWAVE BACKGROUND CONSTRAINTS OF DECAYING DARK MATTER PARTICLE PROPERTIES

    SciTech Connect

    Yeung, S.; Chan, M. H.; Chu, M.-C.

    2012-08-20

    If a component of cosmological dark matter is made up of massive particles-such as sterile neutrinos-that decay with cosmological lifetime to emit photons, the reionization history of the universe would be affected, and cosmic microwave background anisotropies can be used to constrain such a decaying particle model of dark matter. The optical depth depends rather sensitively on the decaying dark matter particle mass m{sub dm}, lifetime {tau}{sub dm}, and the mass fraction of cold dark matter f that they account for in this model. Assuming that there are no other sources of reionization and using the Wilkinson Microwave Anisotropy Probe 7-year data, we find that 250 eV {approx}< m{sub dm} {approx}< 1 MeV, whereas 2.23 Multiplication-Sign 10{sup 3} yr {approx}< {tau}{sub dm}/f {approx}< 1.23 Multiplication-Sign 10{sup 18} yr. The best-fit values for m{sub dm} and {tau}{sub dm}/f are 17.3 keV and 2.03 Multiplication-Sign 10{sup 16} yr, respectively.

  9. Microwave Focusing Using Negative Index of Refraction Materials

    NASA Astrophysics Data System (ADS)

    Brock, Jeffrey; Houck, Andrew; Chuang, Isaac

    2003-03-01

    We present experimental results testing the theoretical prediction that a flat slab of negative index material can act as a perfect lens, focusing propagating waves. Our data gives two-dimensional profiles of the electromagnetic field transmitted from a 10 GHz point source in a 2D waveguide through composite wire and split-ring resonator rectangular prisms. Prior experiments show that these structures have a negative index of refraction in a narrow frequency regime. We measure transmission through prisms of various thicknesses in both the negative index and positive index regimes, and observe a spatial concentration of power when the material has a negative index that is absent in the positive index measurements.

  10. Electromagnetic and microwave-absorbing properties of magnetic nickel ferrite nanocrystals.

    PubMed

    Zhu, Weimo; Wang, Lei; Zhao, Rui; Ren, Jiawen; Lu, Guanzhong; Wang, Yanqin

    2011-07-01

    The electromagnetic and microwave absorbing properties of nickel ferrite nanocrystals were investigated for the first time. There were two frequencies corresponding to the maximum reflection loss in a wide thickness range from 3.0 to 5.0 mm, which may be bought by the nanosize effect and the good crystallization of the nanocrystals. PMID:21633731

  11. Dielectric properties of almond shells in the development of radio frequency and microwave pasteurization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To develop pasteurization treatments based on radio frequency (RF) or microwave energy, dielectric properties of almond shells were determined using an open-ended coaxial-probe with an impedance analyzer over a frequency range of 10 to 1800 MHz. Both the dielectric constant and loss factor of almond...

  12. Possibilities of Verifying Dynamical Casimir Effect with Nonlinear Materials in Microwave Cavities

    NASA Astrophysics Data System (ADS)

    Dodonov, Viktor

    2015-03-01

    I evaluate the number of ``Casimir quanta'' that could be created in high-quality electromagnetic cavities containing materials with big third-order nonlinear optical coefficients, due to the parametric amplification of the microwave vacuum field, if the effective refractive index of the material is modulated by periodic high-intensity short laser pulses. The main result is that the expected total number of created microwave photons depends neither on the laser beam shape, nor on the duration or power of individual pulses, but it is determined by the total energy of all pulses, provided the duration of each pulse is much shorter than the period of field oscillations in the selected resonant mode. The experiment can be feasible in small cavities with high resonance frequencies. Possible spurious effects will be discussed, too.

  13. Microwave Absorption Properties of β-SiC-C Composites with Solid Phase Sintering at X Band

    NASA Astrophysics Data System (ADS)

    Zhou, Zehua; Tan, Shouhong; Jiang, Dongliang; Yi, Yu

    In this paper, by using β-SiC powder as a matrix and mixing different content of C, a series of SiC-C composites with solid phase sintering under different temperature were prepared. The relative density, electrical properties and microwave absorption properties at X band were measured systemically. The microwave absorption mechanisms of the composites were studied comprehensively by the test results, together with the microstructure and composition analysis. The main results show that the composites are good microwave absorption ceramics at X band because of the good interface's match of wave impedance by the control of properties and process, C content and sintering process influence effectively all test properties. For the SiC-3wt%C composites (which is the best microwave absorption one) under 2200° sintering, the biggest microwave attenuation is -40.5 dB and almost all attenuations are above -30 dB in the whole X band.

  14. Ultrawideband temperature-dependent dielectric properties of animal liver tissue in the microwave frequency range.

    PubMed

    Lazebnik, Mariya; Converse, Mark C; Booske, John H; Hagness, Susan C

    2006-04-01

    The development of ultrawideband (UWB) microwave diagnostic and therapeutic technologies, such as UWB microwave breast cancer detection and hyperthermia treatment, is facilitated by accurate knowledge of the temperature- and frequency-dependent dielectric properties of biological tissues. To this end, we characterize the temperature-dependent dielectric properties of a representative tissue type-animal liver-from 0.5 to 20 GHz. Since discrete-frequency linear temperature coefficients are impractical and inappropriate for applications spanning wide frequency and temperature ranges, we propose a novel and compact data representation technique. A single-pole Cole-Cole model is used to fit the dielectric properties data as a function of frequency, and a second-order polynomial is used to fit the Cole-Cole parameters as a function of temperature. This approach permits rapid estimation of tissue dielectric properties at any temperature and frequency.

  15. Intense high-frequency gyrotron-based microwave beams for material processing

    SciTech Connect

    Hardek, T.W.; Cooke, W.D.; Katz, J.D.; Perry, W.L.; Rees, D.E.

    1997-03-01

    Microwave processing of materials has traditionally utilized frequencies in the 0.915 and 2.45 GHz regions. Microwave power sources are readily available at these frequencies but the relatively long wavelengths can present challenges in uniformly heating materials. An additional difficulty is the poor coupling of ceramic based materials to the microwave energy. Los Alamos National Laboratory scientists, working in conjunction with the National Center for Manufacturing Sciences (NCMS), have assembled a high-frequency demonstration processing facility utilizing gyrotron based RF sources. The facility is primarily intended to demonstrate the unique features available at frequencies as high as 84 GHz. The authors can readily provide quasi-optical, 37 GHz beams at continuous wave (CW) power levels in the 10 kW range. They have also provided beams at 84 GHz at 10 kW CW power levels. They are presently preparing a facility to demonstrate the sintering of ceramics at 30 GHz. This paper presents an overview of the present demonstration processing facility and describes some of the features they have available now and will have available in the near future.

  16. Microwave-assisted hydrothermal synthesis of porous SnO{sub 2} nanotubes and their lithium ion storage properties

    SciTech Connect

    Wang, H.E.; Xi, L.J.; Ma, R.G.; Lu, Z.G.; Chung, C.Y.; Bello, I.; Zapien, J.A.

    2012-06-15

    Porous SnO{sub 2} nanotubes have been synthesized by a rapid microwave-assisted hydrothermal process followed by annealing in air. The detailed morphological and structural studies indicate that the SnO{sub 2} tubes typically have diameters from 200 to 400 nm, lengths from 0.5 to 1.5 {mu}m and wall thicknesses from 50 to 100 nm. The SnO{sub 2} nanotubes are self-assembled by interconnected nanocrystals with sizes {approx}8 nm resulting in a specific surface area of {approx}54 m{sup 2} g{sup -1}. The pristine SnO{sub 2} nanotubes are used to fabricate lithium half cells to evaluate their lithium ion storage properties. The porous SnO{sub 2} nanotubes are characteristic with high lithium ion storage capacity, that is found to be 1258, 951, 757, 603, 458, and 288 mAh g{sup -1}, at 0.1, 0.2, 0.5, 1, 2, and 4C, respectively. The enhanced electrochemical properties of the SnO{sub 2} nanotubes can be ascribed to their unique geometry and porous structures. - Graphical abstract: Porous SnO{sub 2} nanotubes are synthesized by a fast microwave-assisted hydrothermal process and exhibit high lithium ion storage properties due to their unique geometry and porous characteristics. Highlights: Black-Right-Pointing-Pointer A microwave-assisted hydrothermal method was used to prepare porous SnO{sub 2} nanotubes. Black-Right-Pointing-Pointer The porous SnO{sub 2} nanotubes have abundant mesopores on their tube walls. Black-Right-Pointing-Pointer The porous SnO{sub 2} nanotubes possess high lithium ion storage properties. Black-Right-Pointing-Pointer Our results may promote the development of high-performance anode materials.

  17. Enhanced Dielectric Properties and High-Temperature Microwave Absorption Performance of Zn-Doped Al2O3 Ceramic

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Luo, Fa; Wei, Ping; Zhou, Wancheng; Zhu, Dongmei

    2015-07-01

    To improve the dielectric and microwave absorption properties of Al2O3 ceramic, Zn-doped Al2O3 ceramic was prepared by conventional ceramic processing. X-ray diffraction analysis confirmed that Zn atoms successfully entered the Al2O3 ceramic lattice and occupied Al sites. The complex permittivity increased with increasing Zn concentration, which is mainly attributed to the increase in charged vacancy defects and densification of the Al2O3 ceramic. In addition, the temperature-dependent complex permittivity of 3% Zn-doped Al2O3 ceramic was determined in the temperature range from 298 K to 873 K. Both the real and imaginary parts of the complex permittivity increased monotonically with increasing temperature, which can be ascribed to the shortened relaxation time and increasing electrical conductivity. The increased complex permittivity leads to a great improvement in microwave absorption. In particular, when the temperature is up to 873 K, the 3% Zn-doped Al2O3 ceramic exhibited the best absorption performance with a maximum peak (-12.1 dB) and broad effective absorption bandwidth (reflection loss less than -10 dB from 9.3 GHz to 12.3 GHz). These results reveal that Zn-doped Al2O3 ceramic is a promising candidate for use as a kind of high-temperature microwave absorption material.

  18. Adsorption of dyes onto carbonaceous materials produced from coffee grounds by microwave treatment.

    PubMed

    Hirata, Mizuho; Kawasaki, Naohito; Nakamura, Takeo; Matsumoto, Kazuoki; Kabayama, Mineaki; Tamura, Takamichi; Tanada, Seiki

    2002-10-01

    Organic wastes have been burned for reclamation. However, they have to be recycled and reused for industrial sustainable development. Carbonaceous materials were produced from coffee grounds by microwave treatment. There are many phenolic hydroxyl and carboxyl groups on the surface of carbonaceous materials. The base consumption of the carbonaceous materials was larger than that of the commercially activated carbon. The carbonaceous materials produced from coffee grounds were applied to the adsorbates for the removal of basic dyes (methylene blue and gentian violet) in wastewater. This result indicated that the adsorption of dyes depended upon the surface polar groups on the carbonaceous materials. Moreover, the Freundlich constants of isotherms for the adsorption of methylene blue and gentian violet onto the carbonaceous materials produced from coffee grounds were greater than those for adsorption onto activated carbon or ceramic activated carbon. The interaction was greatest between the surface or porosity of the carbonaceous materials and methylene blue and gentian violet. The microwave treatment would be useful for the carbonization of organic wastes to save energy.

  19. A planar transmission-line sensor for measuring the microwave permittivity of liquid and semisolid biological materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A planar transmission-line configuration for rapid, nondestructive, wideband permittivity measurements of liquid and semisolid materials at microwave frequencies is described. The transmission-line propagation constant of the proposed configuration is determined with the multiline technique from sca...

  20. Investigation of Electromagnetic Properties of Multiparticle Systems in the Optical and Microwave Regions

    NASA Astrophysics Data System (ADS)

    Yip, Wendy

    The goal of this work is to examine the electromagnetic properties of multiple particles ensembles in optical and microwave regions. Electromagnetic scattering problems of multi-particles systems appear in many research areas, including biomedical research problems. When a particle system becomes dense, multiple scattering between the particles need to be included in order to fully describe the response of the system to an EM wave. The generalized multiparticle Mie (GMM) solution is used to rigorously solve the Maxwell's equations for multi-particles systems. The algorithm accounts for multiple scattering effects by transforming the waves scattered by an individual particle to the incident waves of other spheres in the ensemble. In the optical region, light scattering from biological tissues can reveal structural changes in the tissues which can be a mean for disease diagnosis. A new Monte Carlo simulation method is introduced to study the effect of tissue structure on signals from two diagnostic probes, the polarization gating probe and low coherence enhanced back scattering probe (LEBS). In the microwave region, the study of electromagnetic properties with metallic nanoparticles can determine their potential as effective heating agents in microwave hyperthermia therapy. The investigation aims to study the dielectric properties of metallic nanoparticles and quantify the relationship between the characteristics of metallic nanoparticles and the heating effect. The finding should help optimize the design and use of metallic nanoparticles in hyperthermia treatment. In addition, the metallic nanoparticles are studied for their potential to be contrast agents for biological tissue in the microwave region.

  1. Influence of cooking and microwave heating on microstructure and mechanical properties of transgenic potatoes.

    PubMed

    Btaszczak, Wioletta; Sadowska, Jadwiga; Fornal, Józef; Vacek, Josef; Flis, Bogdan; Zagórski-Ostoja, Włodzimierz

    2004-06-01

    The transgenic potato clones of cultivar Irga with improved resistance to a necrotic strain of potato virus Y (PVY(N)) were subjected to heat treatment in order to determine their technological quality. The technological quality was determined on the basis of differences between mechanical properties of unmodified potato and transgenic clones during cooking and microwave heating. The compression test was applied in order to evaluate the mechanical resistance of raw, cooked and microwave-treated potatoes. Compression resistance was expressed by fracture stress F (kPa), fracture strain D (mm/mm), and Young modulus E (kPa). The differences in microstructure of potato tubers (unmodified and modified) were investigated using scanning electron microscopy (SEM). The observed differentiation in the mechanical properties of heat-treated potatoes was less connected with genetic modification but most of all with a kind of the process used. The heat processes caused a distinct decrease in mechanical resistance in all the examined tubers. However, the process of microwave heating resulted in more significant changes in mechanical properties of tubers than cooking. Deformation of parenchyma cells during cooking was directly connected with starch, gelatinisation and gel formation. Microwave heating affected significantly cellular water evaporation which resulted in intercellular failure, collapsing of cells, and limitation of starch gelatinisation.

  2. Microwave-Absorption Properties of Three Kinds of Structured Cu/C Composites.

    PubMed

    Jiang, Linwen; Wang, Zhenhua; Li, Da; Geng, Dianyu; Wang, Yu; An, Jing; He, Jun; Liu, Wei; Zhang, Zhidong

    2016-06-01

    The microwave-absorption properties of three kinds of (core-shell, uniform-mixing and double-layer structured) Cu/C composites are investigated in the 2-18 GHz frequency range. The results show that the Cu/C composites with core-shell structure are favorable to obtain higher relative permittivity and better microwave-absorption properties in comparison with other Cu/C composites. The reflection loss (RL) values exceeding -10 dB are obtained in 13.0-17.2 GHz at the absorber thickness of 1.6 mm for the core-shell structured Cu/C nanoparticles, which cover most of Ku-band (12-18 GHz). The excellent microwave-absorption properties may result from synergetic effects induced by the tightly-connected core-shell interfaces. The synergetic effects are explained by a simulated physical model, wherein both the interfacial polarizations and interfacial multiple reflections are responsible to the excellent microwave-absorption performances.

  3. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, P. G.

    1985-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and Earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often lead to significant misinterpretation of available opacity data. Steffes and Eshleman showed that under environmental conditions corresponding to the middle atmosphere of Venus, the microwave absorption due to atmospheric SO2 was 50 percent greater than that calculated from Van Vleck-Weiskopff theory. Similarly, the opacity from gaseous H2SO4 was found to be a factor of 7 greater than theoretically predicted for conditions of the Venus middle atmosphere. The recognition of the need to make such measurements over a range of temperatures and pressures which correspond to the periapsis altitudes of radio occultation experiments, and over a range of frequencies which correspond to both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements.

  4. The microwave properties of simulated melting precipitation particles: sensitivity to initial melting

    NASA Astrophysics Data System (ADS)

    Johnson, B. T.; Olson, W. S.; Skofronick-Jackson, G.

    2015-06-01

    A simplified approach is presented for assessing the microwave response to the initial melting of realistically-shaped ice particles. This paper is divided into two parts: (1) a description of the Single Particle Melting Model (SPMM): a heuristic melting simulation for ice-phase precipitation particles of any shape or size. SPMM is applied to two simulated aggregate snow particles, simulating melting up to 0.15 melt fraction by mass; and (2) the computation of the single-particle microwave scattering and extinction properties these hydrometeors, using the discrete dipole approximation (via DDSCAT), at the following selected frequencies: 13.4, 35.6, 94.0 GHz for radar applications; and 89, 165.0 and 183.31 GHz for radiometer applications. These selected frequencies are consistent with current microwave remote sensing platforms, such as CloudSat and the Global Precipitation Measurement (GPM) mission. Comparisons with calculations using variable-density spheres indicate significant deviations in scattering and extinction properties throughout the initial range of melting (liquid volume fractions less than 0.15). Integration of the single-particle properties over an exponential particle-size distribution provides additional insight into idealized radar reflectivity and passive microwave brightness temperature sensitivity to variations in size/mass, shape, melt fraction, and particle orientation.

  5. The microwave properties of simulated melting precipitation particles: sensitivity to initial melting

    NASA Astrophysics Data System (ADS)

    Johnson, B. T.; Olson, W. S.; Skofronick-Jackson, G.

    2016-01-01

    A simplified approach is presented for assessing the microwave response to the initial melting of realistically shaped ice particles. This paper is divided into two parts: (1) a description of the Single Particle Melting Model (SPMM), a heuristic melting simulation for ice-phase precipitation particles of any shape or size (SPMM is applied to two simulated aggregate snow particles, simulating melting up to 0.15 melt fraction by mass), and (2) the computation of the single-particle microwave scattering and extinction properties of these hydrometeors, using the discrete dipole approximation (via DDSCAT), at the following selected frequencies: 13.4, 35.6, and 94.0 GHz for radar applications and 89, 165.0, and 183.31 GHz for radiometer applications. These selected frequencies are consistent with current microwave remote-sensing platforms, such as CloudSat and the Global Precipitation Measurement (GPM) mission. Comparisons with calculations using variable-density spheres indicate significant deviations in scattering and extinction properties throughout the initial range of melting (liquid volume fractions less than 0.15). Integration of the single-particle properties over an exponential particle size distribution provides additional insight into idealized radar reflectivity and passive microwave brightness temperature sensitivity to variations in size/mass, shape, melt fraction, and particle orientation.

  6. Surface roughness and breaking wave properties retrieved from polarimetric microwave radar backscattering

    NASA Astrophysics Data System (ADS)

    Hwang, Paul A.; Fois, Franco

    2015-05-01

    Ocean surface roughness and wave breaking are the two main contributors of radar backscattering from the ocean surface. The relative weightings of the two contributions vary with the microwave polarization: the VV (vertical transmit vertical receive) is dominated by the Bragg resonance scattering mechanism, and the HH (horizontal transmit horizontal receive) and VH (horizontal transmit vertical receive or vertical transmit horizontal receive) contain nontrivial non-Bragg contributions mainly produced by breaking features. A method is developed to obtain the short-scale properties of ocean surface roughness and wave breaking from Ku, C, and L band polarimetric sea returns. The results are used for quantitative evaluation of the ocean surface roughness spectral models and for deriving understanding of the breaking contribution important to microwave ocean remote sensing, in particular its dependence on wind speed, microwave frequency, and incidence angle. Implications of the results to air-sea interaction applications are discussed.

  7. Synthesis, characterization of polyaniline/BaFe 12O 19 composites with microwave-absorbing properties

    NASA Astrophysics Data System (ADS)

    Ting, Tzu-Hao; Wu, Kuo-Hui

    2010-08-01

    Polyaniline/BaFe 12O 19 (PANI/Ba ferrite) composites were synthesized by in situ polymerization at different aniline/Ba ferrite weight ratios (Ani/Ba ferrite=1/2, 1/1 and 2/1) and introduced into epoxy resin to be microwave absorber. The spectroscopic characterizations of the formation processes of PANI/Ba ferrite composites were studied using Fourier transform infrared, ultraviolet-visible spectrophotometer, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electron spin resonance. Microwave-absorbing properties were investigated by measuring complex permittivity, complex permeability and reflection loss in the 2-18 and 18-40 GHz microwave frequency range using the free space method. The results showed that a wider absorption frequency range could be obtained by adding different polyaniline contents in Ba ferrite.

  8. Microwave absorbing properties of polyaniline/multi-walled carbon nanotube composites with various polyaniline contents

    NASA Astrophysics Data System (ADS)

    Ting, T. H.; Jau, Y. N.; Yu, R. P.

    2012-01-01

    Polyaniline/multi-walled carbon nanotube (PANI/MWNT) composites were synthesized using in situ polymerization at different aniline/multi-walled carbon nanotube weight ratios (Ani/MWNT = 1/2, 1/1, 2/1 and 3/1) and introduced into an epoxy resin to act as a microwave absorber. The spectroscopic characterization of the process of formation of PANI/MWNT composites were studied using Fourier transform infrared spectroscopy, an ultraviolet-visible spectrophotometer, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electron spin resonance. The microwave absorbing properties were investigated by measuring complex permittivity, complex permeability and reflection loss in the 2-18 and 18-40 GHz microwave frequency range, using the free space method. The results showed that the addition of PANI was useful for achieving a large absorption over a wide frequency range, especially for higher frequency values.

  9. Properties of the FDTD method relevant to the analysis of microwave power problems.

    PubMed

    Celuch, Małgorzata; Gwarek, Wojciech K

    2007-01-01

    The objective of the paper is to provide a systematic consideration and generalization of properties and features of the FDTD method in the context of its use in solving microwave power problems. This is aimed at filling the gap between the general theory of the FDTD method and the specific practice of its applications by microwave power engineers. The paper starts with a comparison of FDTD to other methods like FEM, from the perspective of microwave power simulations. It then discusses FDTD-specific models of lossy and dispersive media, conformal boundaries, field singularities, and modal excitation as well as error bounds due to numerical dispersion. Theoretical overview is illustrated with examples. References are provided to the literature where more details and application notes can be found.

  10. Thermoelectric properties of bulk MoSi2 synthesized by solid state microwave heating

    NASA Astrophysics Data System (ADS)

    Lan, Yu; Xie, Mianyu; Ouyang, Ting; Yue, Song

    2016-07-01

    In this research, single phase α-MoSi2 was prepared by solid state hybrid microwave heating within 90 min at relatively low temperature 1273 K. Such precursor powders were then ball milled and sintered by microwave heating at different temperatures. The thermoelectric (TE) properties of MoSi2 bulks were investigated in the temperature range of 300-673 K. When the sintering temperature increases from 973 K to 1273 K, the electrical resistivity decreases significantly and the Seebeck coefficients increase obviously, leading to the maximum TE powder factor of 6.2 × 10-6Wm-1K-2 at 673 K. These results demonstrate the feasibility of high efficient and economical synthesis of MoSi2 by microwave heating technique, with the final products having comparable TE performance in comparison to those from typical methods with long duration and energy-extensive consumption.

  11. Influence of microwave irradiation on boron concentrate activation with an emphasis on surface properties

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Zhang, Qiaoyi; Liu, Yajing; Xue, Xiangxin; Duan, Peining

    2016-11-01

    In this study, we employed microwave irradiation for activating boron concentrate, an abundant but low-grade boron mineral resource in China. The boron concentrate was pretreated by microwave irradiation based on TG-DTG-DSC analysis, and the influence of each parameter on processing efficiency was characterized using chemical analysis, XRD, SEM, FTIR and particle distribution analysis. Subsequently, the surface properties of boron concentrate and the mechanism of microwave irradiation was analyzed. Our results indicate that microwave irradiation decreased the processing temperature and shortened the roasting time by accelerating dehydroxylation and oxidation reactions in the boron concentrate, reducing the particle diameter and damaging the microstructure of the minerals, and it increased the B2O3 activity of boron from 64.68% to 86.73%, greater than the optimal conventional treatment. Compared with the simple thermal field, microwave roasting obviously increased ability of the boron concentrate to absorb OH- in the leachant and promoted boron leaching by expanding the contact area of the mineral exposed to leachant, boosting the amount of Mg2+ and Fe3+ on mineral surfaces, and increasing the hydrophilicity of the boron concentrate respectively. It enhanced the γSVLW and γSV- of boron concentrate from 29.15 mJ/m2 and 5.07 mJ/m2 to 37.07 mJ/m2 and 12.41 mJ/m2.

  12. [Application of microwave irradiation technology to the field of pharmaceutics].

    PubMed

    Zhang, Xue-Bing; Shi, Nian-Qiu; Yang, Zhi-Qiang; Wang, Xing-Lin

    2014-03-01

    Microwaves can be directly transformed into heat inside materials because of their ability of penetrating into any substance. The degree that materials are heated depends on their dielectric properties. Materials with high dielectric loss are more easily to reach a resonant state by microwaves field, then microwaves can be absorbed efficiently. Microwave irradiation technique with the unique heating mechanisms could induce drug-polymer interaction and change the properties of dissolution. Many benefits such as improving product quality, increasing energy efficiency and reducing times can be obtained by microwaves. This paper summarized characteristics of the microwave irradiation technique, new preparation techniques and formulation process in pharmaceutical industry by microwave irradiation technology. The microwave technology provides a new clue for heating and drying in the field of pharmaceutics.

  13. Apparatus and method for microwave processing of materials using field-perturbing tool

    DOEpatents

    Tucker, Denise A.; Fathi, Zakaryae; Lauf, Robert J.

    2001-01-01

    A variable frequency microwave heating apparatus designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity for heating or other selected applications. A field-perturbing tool is disposed within the cavity to perturb the microwave power distribution in order to apply a desired level of microwave power to the workpiece.

  14. Effect of microwave treatment on the luminescence properties of CdS and CdTe:Cl Single Crystals

    SciTech Connect

    Red’ko, R. A. Budzulyak, S. I.; Korbutyak, D. V.; Lotsko, A. P.; Vakhnyak, N. D.; Demchyna, L. A.; Kalytchuk, S. M.; Konakova, R. V.; Milenin, V. V.; Bykov, Yu. V. Egorov, S. V.; Eremeev, A. G.

    2015-07-15

    The effect of microwave radiation on the luminescence properties of CdS and CdTe:Cl single crystals is studied. It is established that the exposure of these semiconductors to short-term (≤30 s) microwave radiation substantially modifies their impurity and defect structure. The mechanisms of transformation of the defect subsystem of II–VI single crystals upon microwave treatment are discussed. It is shown that the experimentally observed changes are defined by the nonthermal effects of microwave radiation at a power density of 7.5 W cm{sup –2}; at 90 W cm{sup –2}, nonthermal effects are prevailing.

  15. Millimeter wave and terahertz dielectric properties of biological materials

    NASA Astrophysics Data System (ADS)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  16. Effect of Mg-Zr substitution and microwave processing on magnetic properties of barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Sharma, Manju; Kashyap, Subhash C.; Gupta, H. C.

    2014-09-01

    The effect of substitution of Mg-Zr for Fe in M-type barium hexaferrite (BHF) and of processing technique on the magnetic properties and microstructure has been reported in the present paper. Significant changes in magnetic properties have been observed on substituting Fe ions by Mg and Zr ions in M-type barium hexaferrite, i.e. BaFe12O19 as well as by single mode microwave processing. The single mode microwave processing of the undoped sample reduced the coercivity to nearly 25% of the value for the sintered sample along with the enhancement in magnetization, thereby making it suitable for memory devices. The improvement in magnetic properties is explained on the basis of microstructure. The addition of substituents, though assisted in the formation of single phase, it, however, degraded the magnetization besides decreasing the coercivity, possibly due to substitution at the octahedral sites.

  17. Electromagnetic and Microwave-Absorbing Properties of Plate-Like Nd-Ce-Fe Powder

    NASA Astrophysics Data System (ADS)

    Qiao, Ziqiang; Pan, Shunkang; Xiong, Jilei; Cheng, Lichun; Lin, Peihao; Luo, Jialiang

    2016-09-01

    Plate-like Ce x Nd2-x Fe17 (x = 0.0, 0.1, 0.2, 0.3, 0.4) powders have been synthesized by an arc melting and high-energy ball milling method. The structure of the Nd-Ce-Fe powders was investigated by x-ray diffraction analysis. Their morphology and particle size distribution were evaluated by scanning electron microscopy and laser particle analysis. The saturation magnetization and electromagnetic parameters of the powders were characterized using vibrating-sample magnetometry and vector network analysis, respectively. The results reveal that the Ce x Nd2-x Fe17 (x = 0.0, 0.1, 0.2, 0.3, 0.4) powders consisted of Nd2Fe17 single phase with different Ce contents. The particle size and saturation magnetization decreased with increasing Ce content. The resonant frequencies of ɛ″ and μ″ moved towards lower frequency with increasing Ce concentration. The minimum reflection loss value decreased as the Ce content was increased. The minimum reflection loss and absorption peak frequency of Ce0.2Nd1.8Fe17 with coating thickness of 1.8 mm were -22.5 dB and 7 GHz, respectively. Increasing the values of the complex permittivity and permeability could result in materials with good microwave absorption properties.

  18. Radio to microwave dielectric characterisation of constitutive electromagnetic soil properties using vector network analyses

    NASA Astrophysics Data System (ADS)

    Schwing, M.; Wagner, N.; Karlovsek, J.; Chen, Z.; Williams, D. J.; Scheuermann, A.

    2016-04-01

    The knowledge of constitutive broadband electromagnetic (EM) properties of porous media such as soils and rocks is essential in the theoretical and numerical modeling of EM wave propagation in the subsurface. This paper presents an experimental and numerical study on the performance EM measuring instruments for broadband EM wave in the radio-microwave frequency range. 3-D numerical calculations of a specific sensor were carried out using the Ansys HFSS (high frequency structural simulator) to further evaluate the probe performance. In addition, six different sensors of varying design, application purpose, and operational frequency range, were tested on different calibration liquids and a sample of fine-grained soil over a frequency range of 1 MHz-40 GHz using four vector network analysers. The resulting dielectric spectrum of the soil was analysed and interpreted using a 3-term Cole-Cole model under consideration of a direct current conductivity contribution. Comparison of sensor performances on calibration materials and fine-grained soils showed consistency in the measured dielectric spectra at a frequency range from 100 MHz-2 GHz. By combining open-ended coaxial line and coaxial transmission line measurements, the observable frequency window could be extended to a truly broad frequency range of 1 MHz-40 GHz.

  19. Microwave Synthesis, Characterization, and Photoluminescence Properties of Nanocrystalline Zirconia

    PubMed Central

    Singh, A. K.; Nakate, Umesh T.

    2014-01-01

    We report synthesis of ZrO2 nanoparticles (NPs) using microwave assisted chemical method at 80°C temperature. Synthesized ZrO2 NPs were calcinated at 400°C under air atmosphere and characterized using FTIR, XRD, SEM, TEM, BET, and EDS for their formation, structure, morphology, size, and elemental composition. XRD results revealed the formation of mixed phase monoclinic and tetragonal ZrO2 phases having crystallite size of the order 8.8 nm from most intense XRD peak as obtained using Scherrer formula. Electron microscope analysis shows that the NPs were less than 10 nm and highly uniform in size having spherical morphology. BET surface area of ZrO2 NPs was found to be 65.85 m2/g with corresponding particle size of 16 nm. The band gap of synthesized NPs was found to be 2.49 eV and PL spectra of ZrO2 synthesized NPs showed strong peak at 414 nm, which corresponds to near band edge emission (UV emission) and a relatively weak peak at 475 and 562 nm. PMID:24578628

  20. Dynamic properties of ceramic materials

    SciTech Connect

    Grady, D.E.

    1995-02-01

    The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis of shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process.

  1. Fundamental properties of semiconductor materials, and material performance in detectors

    NASA Technical Reports Server (NTRS)

    Casper, K. J.

    1973-01-01

    Procedures for determining fundamental properties of semiconductor materials, their performance as radiation detectors, and their service life as such detectors are given. Relationships were established between the minority carrier lifetime in the bulk of the material and the charge collection efficiency of the detector.

  2. Learning targeted materials properties from data

    NASA Astrophysics Data System (ADS)

    Lookman, Turab; Balachandran, Prasanna V.; Dezhen, Xue; Theiler, James; Hogden, John

    We compare several strategies using a data set of 223 M2AX family of compounds for which the elastic properties [bulk (B), shear (G), and Young's (E) modulus] have been computed using density functional theory. The strategy is decomposed into two steps: a regressor is trained to predict elastic properties in terms of elementary orbital radii of the individual components of the materials; and a selector uses these predictions to choose the next material to investigate. The ultimate goal is to obtain a material with desired elastic properties. We examine how the choice of data set size, regressor and selector impact the results.

  3. [Dielectric properties of human sweat fluid in the microwave range].

    PubMed

    Romanov, A N

    2010-01-01

    The dielectric properties of sweat fluid gathered from different zones of the human body have been studied in the frequency range from 300 MHz to 3 GHz. It has been shown that the dielectric properties of sweat of different zones differ. The dependence of refraction and absorption indices on the frequency of the signal and the mass concentration of substances dissolved in sweat liquid has been determined.

  4. The effect of different formulations on physical properties of cakes baked with microwave and near infrared-microwave combinations.

    PubMed

    Sakiyan, Ozge; Sumnu, Gulum; Sahin, Serpil; Meda, Venkatesh

    2007-01-01

    The aim of this study was to determine the effect of different formulations on color and textural characteristics of different cakes during baking in microwave and near infrared-microwave combination ovens. For comparison, cakes were also baked in conventional ovens. Color and hardness for both types of baking schemes were found to be dependent on formulation. Cakes containing Simplesse, a fat replacer consisting mostly of whey protein, baked in microwave and near infrared-microwave combination ovens were found to be the firmest cakes.

  5. Synthesis, characterization, and properties of low-dimensional nanostructured materials

    NASA Astrophysics Data System (ADS)

    Hu, Xianluo

    2007-05-01

    Nanometer scale structures represent an exciting and rapidly expanding area of research. Studies on new physical/chemical properties and applications of nanomaterials and nanostructures are possible only when nanostructured materials are made available with desired size, morphology, crystal and microstructure, and composition. Thus, controlled synthesis of nanomaterials is the essential aspect of nanotechnology. This thesis describes the development of simple and versatile solution-based approaches to synthesize low-dimensional nanostructures. The first major goal of this research is to design and fabricate morphology-controlled alpha-Fe 2O3 nanoarchitectures in aqueous solution through a programmed microwave-assisted hydrothermal route, taking advantage of microwave irradiation and hydrothermal effects. Free-standing alpha-Fe2O3 nanorings are prepared by hydrolysis of FeCl3 in the presence of phosphate ions. The as-formed architecture of alpha-Fe2O 3 nanorings is an exciting new member in the family of iron oxide nanostructures. Our preliminary results demonstrate that sensors made of the alpha-Fe 2O3 nanorings exhibit high sensitivity not only for bio-sensing of hydrogen peroxide in a physiological solution but also for gas-sensing of alcohol vapor at room temperature. Moreover, monodisperse alpha-Fe 2O3 nanocrystals with continuous aspect-ratio tuning and fine shape control are achieved by controlling the experimental conditions. The as-formed alpha-Fe2O3 exhibits shape-dependent infrared optical properties. The growth process of colloidal alpha-Fe 2O3 crystals in the presence of phosphate ions is discussed. In addition, through an efficient microwave-assisted hydrothermal process, self-assembled hierarchical alpha-Fe2O3 nanoarchitectures are synthesized on a large scale. The second major goal of this research is to develop convenient microwave-hydrothermal approaches for the fabrication of carbon-based nanocomposites: (1) A one-pot solution-phase route, namely

  6. On the acid-base properties of microwave irradiated hydrotalcite-like compounds containing Zn2+ and Mn2+.

    PubMed

    Sampieri, Alvaro; Lima, Enrique

    2009-04-01

    Microwave irradiated lamellar double hydroxides containing different divalent metals (Mn2+, Zn2+, or Mg2+) were prepared with Al3+ as the trivalent metal. Samples containing Mn2+ and Zn2+ were unstable at 400 degrees C, leading to formation of mixed oxides and spinel phases. Acid-base properties of the samples were characterized by nitromethane and CO2 adsorption followed by FTIR spectroscopy. Decomposition of adsorbed nitromethane leads to isocyanate species that acts as probe molecules of acid-base sites at the surface. These properties determine the ability of materials to retain CO2. Indeed, whereas Mn-O sites are able to interact directly with CO2 molecules, Mg-O and Zn-O are able to form carbonate species as a result of the CO2 sorption.

  7. Optical properties of integrated multiferroic BiFeO3 thin films for microwave applications

    NASA Astrophysics Data System (ADS)

    Allibe, J.; Bougot-Robin, K.; Jacquet, E.; Infante, I. C.; Fusil, S.; Carrétéro, C.; Reverchon, J.-L.; Marcilhac, B.; Creté, D.; Mage, J.-C.; Barthélémy, A.; Bibes, M.

    2010-05-01

    BiFeO3 is the prototypical multiferroic and one of the few with both (anti)ferroic ordering temperatures above 300 K. While its magnetic and ferroelectric properties and their coupling have been investigated intensely, offering opportunities in spintronics, little is known concerning its optical properties and their coupling to the ferroic orders. For applications in the microwave range, we report on the integration of BiFeO3 onto low permittivity substrates. Such integrated films show good ferroelectric and optical properties consistent with those of films grown on SrTiO3 substrates. Prospects for the use of BiFeO3 in optical applications are discussed.

  8. Some observations on hyperuniform disordered photonic bandgap materials, from microwave scale study to infrared scale study

    NASA Astrophysics Data System (ADS)

    Tsitrin, Sam; Nahal, Geev; Florescu, Marian; Man, Weining; San Francisco State University Team; University of Surrey Team

    2015-03-01

    A novel class of disordered photonic materials, hyperuniform disordered solids (HUDS), attracted more attention. Recently they have been experimentally proven to provide complete photonic band gap (PBG) when made with Alumina or Si; as well as single-polarization PBG when made with plastic with refract index of 1.6. These PBGs were shown to be real energy gaps with zero density of photonic states, instead of mobility gaps of low transmission due to scattering, etc. Using cm-scale samples and microwave experiments, we reveal the nature of photonic modes existing in these disordered materials by analyzing phase delay and mapping field distribution profile inside them. We also show how to extend the proof-of-concept microwave studies of these materials to proof-of-scale studies for real applications, by designing and fabricating these disordered photonic materials at submicron-scale with functional devices for 1.55 micron wavelength. The intrinsic isotropy of the disordered structure is an inherent advantage associated with the absence of limitations of orientational order, which is shown to provide valuable freedom in defect architecture design impossible in periodical structures. NSF Award DMR-1308084, the University of Surrey's FRSF and Santander awards.

  9. Kinetics of microwave drying of a free-flowing organic material

    NASA Astrophysics Data System (ADS)

    Kalender'yan, V. A.; Boshkova, I. L.; Volgusheva, N. V.

    2006-05-01

    The kinetics of drying of a dense buckwheat layer in a microwave electromagnetic field of frequency 2.45 GHz has been investigated for different amounts of the material charged into a working chamber. Analysis of the kinetics curves has shown that the drying of the material studied is divided into the periods of heating, drying with a constant rate, and drying with a decreasing rate. The influence of the power supplied as well as the mass and dimensions of a sample on the rate of its drying has been investigated and a formula for calculating this rate has been obtained. It has been established that, in the process of drying of a disperse material, the amount of microwave energy converted into heat energy depends not only on the mass of a sample, but also on the thickness and area of its surface layer. Generalized equations for calculating the moisture content in a layer of a free-flowing material and its temperature have been obtained.

  10. Microwave-hydrothermal method for the synthesis of composite materials for removal of arsenic from water.

    PubMed

    Andjelkovic, Ivan; Jovic, Bojan; Jovic, Milica; Markovic, Marijana; Stankovic, Dalibor; Manojlovic, Dragan; Roglic, Goran

    2016-01-01

    Composite material Zr-doped TiO2, suitable for the removal of arsenic from water, was synthetized with fast and simple microwave-hydrothermal method. Obtained material, Zr-TiO2, had uniform size and composition with zirconium ions incorporated into crystal structure of titanium dioxide. Synthetized composite material had large specific surface area and well-developed micropore and mesopore structure that was responsible for fast adsorption of As(III) and As(V) from water. The influence of pH on the adsorption capacity of arsenic was studied. The kinetics and isotherm experiments were also performed. The treatment of natural water sample containing high concentration of arsenic with composite material Zr-TiO2 was efficient. The concentration of arsenic was reduced to the value recommended by WHO.

  11. Advances in imaging and quantification of electrical properties at the nanoscale using Scanning Microwave Impedance Microscopy (sMIM)

    NASA Astrophysics Data System (ADS)

    Friedman, Stuart; Stanke, Fred; Yang, Yongliang; Amster, Oskar

    Scanning Microwave Impedance Microscopy (sMIM) is a mode for Atomic Force Microscopy (AFM) enabling imaging of unique contrast mechanisms and measurement of local permittivity and conductivity at the 10's of nm length scale. sMIM has been applied to a variety of systems including nanotubes, nanowires, 2D materials, photovoltaics and semiconductor devices. Early results were largely semi-quantitative. This talk will focus on techniques for extracting quantitative physical parameters such as permittivity, conductivity, doping concentrations and thin film properties from sMIM data. Particular attention will be paid to non-linear materials where sMIM has been used to acquire nano-scale capacitance-voltage curves. These curves can be used to identify the dopant type (n vs p) and doping level in doped semiconductors, both bulk samples and devices. Supported in part by DOE-SBIR DE-SC0009856.

  12. Structural and electrical properties of microwave processed Ag modified KNN-LS ceramics.

    PubMed

    Palei, Prakash; Kumar, Pawan; Agrawal, Dinesh K

    2012-01-01

    Microwave processing steps of 0.95[(K0.5Na0.5)0.94Ag0.06NbO3]-0.05[LiSbO3]/(KNAN-LS) lead free ferroelectric ceramics were optimized for better densification and electrical properties. Calcination temperature and time for single perovskite phase formation were optimized and found to be 850 degrees C for 60 min., respectively. Crystal structural study revealed the presence of mixed structure in the microwave processed (MWP) KNAN-LS ceramics. The sintering of the KNAN-LS ceramics was carried out at 1080 degrees C for 10 min, 20 min and 30 min, respectively, and the sample sintered for 20 min exhibited best properties.

  13. Dielectric properties of cereals at frequencies useful for processes with microwave heating.

    PubMed

    Torrealba-Meléndez, Richard; Sosa-Morales, María Elena; Olvera-Cervantes, José Luis; Corona-Chávez, Alonso

    2015-12-01

    Dielectric properties of barley, corn (white and yellow), sorghum, and wheat at microwave frequencies for heating purpose were analyzed. Properties were determined at 915, 2450 and 5800 MHz with the free space transmission method in the cereals at 20, 30, 40, 50 and 60 °C. ε´ and ε"of all the cereals decreased with increasing frequency. ε´ slightly increased with temperature, while ε "remained practically constant for all the cereals in the temperature range from 20 to 60 °C. Penetration depth decreased with increasing frequency for all the samples, and increased with increasing temperature at 915 MHz, except for barley. These results are useful for further microwave heating applications for the studies on cereals.

  14. Effect of microwave irradiation on the flexural strength and residual monomer levels of an acrylic resin repair material.

    PubMed

    Yunus, N; Harrison, A; Huggett, R

    1994-11-01

    The degree of polymerization of an acrylic resin repair material, as established by residual monomer estimation, was compared using three different polymerization methods, i.e. bench-cure, hydroflask-cure and microwave irradiation cure. The repair strength of a conventional heat-polymerized resin was then assessed following repairs using each of these three methods. The lowest level of residual monomer was achieved with the microwave irradiation cure. It was also demonstrated that of the three methods, polymerization using microwave energy resulted in the strongest repair.

  15. Hydrazine sensing properties of microwave synthesized graphene/ZnO composites

    NASA Astrophysics Data System (ADS)

    Sreejesh, M.; Nagaraja, H. S.; Udaya Bhat, K.

    2016-05-01

    This paper reports the synthesis of graphene/ ZnO nanocomposite using microwave method and its application in sensing of hydrazine. The morphological characteristics of the samples are studied using Scanning Electron Microscope (SEM). The formation of the composite is further confirmed by the X-ray Diffraction (XRD). Energy Dispersive X-ray Analysis (EDAX) shows the presence of carbon indicating the presence of graphene. The hydrazine sensing property of the electrode is studied using cyclic voltammometry (CV) and Chronoamperometry (CA) studeis.

  16. Magnetic and microwave properties of U-type hexaferrite films with high remanence and low ferromagnetic resonance linewidth

    SciTech Connect

    Su, Zhijuan; Bennett, Steven; Hu, Bolin; Chen, Yajie Harris, Vincent G.

    2014-05-07

    U-type barium hexaferrite films (Ba{sub 4}Ni{sub 1.4}Co{sub 0.6}Fe{sub 36}O{sub 60}) were deposited on (0001) sapphire substrates by pulsed laser deposition. Microstructure and magnetic properties of the films were characterized by X-ray diffraction, scanning electron microscopy and vibrating sample magnetometry. Ferromagnetic resonance (FMR) measurements were performed at X-band. The results indicate an anisotropy field of ∼8 kOe, and the saturation magnetization (4πM{sub s}) of ∼3.6 kG. An optimal post-deposition annealing of films results in a strong (0 0 n) crystallographic texture and a high hysteresis loop squareness (M{sub r}/M{sub s} = 92%) leading to self biased properties. Furthermore, the highly self-biased ferrite films exhibited an FMR linewidth of ∼200 Oe. The U-type hexaferrite films having low microwave loss, low magnetic anisotropy field, and high squareness are a suitable alternative to Sc or In doped BaM ferrites that have been the choice material for self-biased microwave devices at X-band frequencies.

  17. Materials Properties Research at MSFC

    NASA Technical Reports Server (NTRS)

    Presson, Joan B.; Burdine, Robert (Technical Monitor)

    2002-01-01

    MSFC is currently planning, organizing and directing test coupon fabrication and subsequent CTE testing for two mirror materials of specific interest to the AMSD and NGST programs, Beryllium 0-30H (Be 0-30H) and Ultra Low Expansion glass (ULE). The ULE test coupons are being fabricated at MSFC from AMSD core residuals provided by Kodak, The Be 0-30H test coupons are being fabricated at Brush Wellman using residuals from the SBMD. Both sets of test coupons will be sent to a test vendor selected through the NASA competitive proposal process with the test results being provided by written report to MSFC by the end of the fiscal year. The test results will become model input data for the AMSD analysts, both MSFC and contractor, providing an enhancement to the historical CTE data currently available.

  18. Evaluation of effectiveness of microwave irradiation for disinfection of silicone elastomeric impression material.

    PubMed

    Bhasin, Abhilasha; Vinod, V; Bhasin, Vinny; Mathew, Xavier; Sajjan, Suresh; Ahmed, Syed Tauqheer

    2013-06-01

    Use of domestic microwave oven has been suggested as a method of disinfecting a number of dental materials used in dental practice. This study was done to analyse the effect of microwave irradiation on vinyl polysiloxane putty impression material (3M ESPE, Express™ STD) contaminated with test organisms (Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans. 180 square shaped specimens of addition silicon putty material were prepared and divided into 3 groups for three test organisms. The 3 groups were subdivided into 4 subgroups (n = 15) for different exposure parameters (control group 5, 6 and 7 min exposure at 650 W. The specimens were contaminated using standard inoculums of test organism and then were irradiated using domestic microwaves. Broth cultures of the control and test group specimens were plated on selective media culture plates. Colonies formed were counted. Data analyses included Kruskal-Walli's ANOVA and Mann-Whitney's tests. Nil values shows complete elimination of C. albicans and P. aeruginosa after 5, 6 and 7 min exposure. Staphylococcus aureus showed colonies with the mean value of 7.6 × 10(3) ± 2.3 × 10(3), 4.6 × 10(3) ± 2.6 × 10(3) after 5 and 6 min respectively and nil values after 7 min exposure. 5 min exposure caused complete elimination of C. albicans and P. aeruginosa strains, while 7 min exposure eliminated S. aureus completely.

  19. Spacecraft Charging Sensitivity to Material Properties

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Edwards, David L.

    2015-01-01

    Evaluating spacecraft charging behavior of a vehicle in the space environment requires knowledge of the material properties relevant to the charging process. Implementing surface and internal charging models requires a user to specify a number of material electrical properties including electrical resistivity parameters (dark and radiation induced), dielectric constant, secondary electron yields, photoemission yields, and breakdown strength in order to correctly evaluate the electric discharge threat posed by the increasing electric fields generated by the accumulating charge density. In addition, bulk material mass density and/or chemical composition must be known in order to analyze radiation shielding properties when evaluating internal charging. We will first describe the physics of spacecraft charging and show how uncertainties in material properties propagate through spacecraft charging algorithms to impact the results obtained from charging models. We then provide examples using spacecraft charging codes to demonstrate their sensitivity to material properties. The goal of this presentation is to emphasize the importance in having good information on relevant material properties in order to best characterize on orbit charging threats.

  20. Surfactant-assisted solvothermal synthesis of pure nickel submicron spheres with microwave-absorbing properties.

    PubMed

    Guo, Heng; Pu, Bingxue; Chen, Haiyuan; Yang, Jin; Zhou, Yajun; Yang, Jian; Bismark, Boateng; Li, Handong; Niu, Xiaobin

    2016-12-01

    Pure metallic nickel submicron spheres (Ni-SSs), flower-like nickel nanoflakes, and hollow micrometer-sized nickel spheres/tubes were controllably synthesized by a facile and efficient one-step solvothermal method with no reducing agent. The characteristics of these nickel nanostructures include morphology, structure, and purification. Possible synthesis mechanisms were discussed in detail. The resultant Ni-SSs had a wide diameter distribution of 200~800 nm through the aggregation of small nickel nanocrystals. The ferromagnetic behaviors of Ni-SSs investigated at room temperature showed high coercivity values. Furthermore, the microwave absorption properties of magnetic Ni-SSs were studied in the frequency range of 0.5-18.0 GHz. The minimum reflection loss reached -17.9 dB at 17.8 GHz with a thin absorption thickness of 1.2 mm, suggesting that the submicron spherical structures could exhibit excellent microwave absorption properties. More importantly, this one-pot synthesize route provides a universal and convenient way for preparation of larger scale pure Ni-SSs, showing excellent microwave absorption properties.

  1. Laboratory Evaluation and Application of Microwave Absorption Properties Under Simulated Conditions for Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1997-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or using laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. Laboratory measurements completed under this grant (NAGW-533), have shown that the opacity from, SO2 under simulated Venus conditions is best described by a different lineshape than was previously used in theoretical predictions. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.

  2. Clinically relevant CNT dispersions with exceptionally high dielectric properties for microwave theranostic applications.

    PubMed

    Xie, Shawn X; Gao, Fuqiang; Patel, Sunny C; Booske, John H; Hagness, Susan C; Sitharaman, Balaji

    2014-11-01

    We present a formulation for achieving stable high-concentration (up to 20 mg/ml) aqueous dispersions of carbon nanotubes (CNTs) with exceptionally high microwave-frequency (0.5-6 GHz) dielectric properties. The formulation involves functionalizing CVD-synthesized CNTs via sonication in nitric and sulfuric acid. The overall chemical integrity of the CNTs is largely preserved, as demonstrated via physical and chemical characterizations, despite significant shortening and functionalization with oxygen-containing groups. This is attributed to the protected inner walls of double-walled CNTs in the samples. The resulting CNT dispersions show greatly enhanced dielectric properties compared to a CNT-free control. For example, at 3 GHz, the average relative permittivity and effective conductivity across several 20 mg/ml CNT samples were increased by ∼ 70% and ∼ 400%, respectively, compared to the control. These CNT dispersions exhibit the stability and extraordinary microwave properties desired in systemically administered theranostic agents for microwave diagnostic imaging and/or thermal therapy.

  3. Surfactant-assisted solvothermal synthesis of pure nickel submicron spheres with microwave-absorbing properties

    NASA Astrophysics Data System (ADS)

    Guo, Heng; Pu, Bingxue; Chen, Haiyuan; Yang, Jin; Zhou, Yajun; Yang, Jian; Bismark, Boateng; Li, Handong; Niu, Xiaobin

    2016-07-01

    Pure metallic nickel submicron spheres (Ni-SSs), flower-like nickel nanoflakes, and hollow micrometer-sized nickel spheres/tubes were controllably synthesized by a facile and efficient one-step solvothermal method with no reducing agent. The characteristics of these nickel nanostructures include morphology, structure, and purification. Possible synthesis mechanisms were discussed in detail. The resultant Ni-SSs had a wide diameter distribution of 200~800 nm through the aggregation of small nickel nanocrystals. The ferromagnetic behaviors of Ni-SSs investigated at room temperature showed high coercivity values. Furthermore, the microwave absorption properties of magnetic Ni-SSs were studied in the frequency range of 0.5-18.0 GHz. The minimum reflection loss reached -17.9 dB at 17.8 GHz with a thin absorption thickness of 1.2 mm, suggesting that the submicron spherical structures could exhibit excellent microwave absorption properties. More importantly, this one-pot synthesize route provides a universal and convenient way for preparation of larger scale pure Ni-SSs, showing excellent microwave absorption properties.

  4. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1992-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically derived microwave absorption properties for such atmospheric constituents, or using laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. The goal of this investigation was to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.

  5. Clinically relevant CNT dispersions with exceptionally high dielectric properties for microwave theranostic applications.

    PubMed

    Xie, Shawn X; Gao, Fuqiang; Patel, Sunny C; Booske, John H; Hagness, Susan C; Sitharaman, Balaji

    2014-11-01

    We present a formulation for achieving stable high-concentration (up to 20 mg/ml) aqueous dispersions of carbon nanotubes (CNTs) with exceptionally high microwave-frequency (0.5-6 GHz) dielectric properties. The formulation involves functionalizing CVD-synthesized CNTs via sonication in nitric and sulfuric acid. The overall chemical integrity of the CNTs is largely preserved, as demonstrated via physical and chemical characterizations, despite significant shortening and functionalization with oxygen-containing groups. This is attributed to the protected inner walls of double-walled CNTs in the samples. The resulting CNT dispersions show greatly enhanced dielectric properties compared to a CNT-free control. For example, at 3 GHz, the average relative permittivity and effective conductivity across several 20 mg/ml CNT samples were increased by ∼ 70% and ∼ 400%, respectively, compared to the control. These CNT dispersions exhibit the stability and extraordinary microwave properties desired in systemically administered theranostic agents for microwave diagnostic imaging and/or thermal therapy. PMID:24876108

  6. A study of thermal properties of sodium titanate nanotubes synthesized by microwave-assisted hydrothermal method

    SciTech Connect

    Preda, Silviu; Rutar, Melita; Umek, Polona; Zaharescu, Maria

    2015-11-15

    Highlights: • The microwave-assisted hydrothermal route was used for titanate nanotubes synthesis. • Conversion to single-phase nanotube morphology completes after 8 h reaction time. • The nanotube morphology is stable up to 600 °C, as determined by in-situ XRD and SEM. • Sodium ions migrate to the surface due to thermal motion and structure condensation. - Abstract: Sodium titanate nanotubes (NaTiNTs) were synthesized by microwave-assisted hydrothermal treatment of commercial TiO{sub 2}, at constant temperature (135 °C) and different irradiation times (15 min, 1, 4, 8 and 16 h). The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, differential scanning calorimetry and specific surface area measurements. The irradiation time turned out to be the key parameter for morphological control of the material. Nanotubes were observed already after 15 min of microwave irradiation. The analyses of the products irradiated for 8 and 16 h confirm the complete transformation of the starting TiO{sub 2} powder to NaTiNTs. The nanotubes are open ended with multi-wall structures, with the average outer diameter of 8 nm and specific surface area up to 210 m{sup 2}/g. The morphology, surface area and crystal structure of the sodium titanate nanotubes synthesized by microwave-assisted hydrothermal method were similar to those obtained by conventional hydrothermal method.

  7. System for continuous production of nanophase materials using a microwave-driven polyol process.

    PubMed

    Gold, Steven H; Bruce, Ralph W; Fliflet, Arne W; Lewis, David; Kurihara, Lynn K; Imam, M A

    2007-02-01

    A prototype system is described for the large scale, continuous production of nanophase metals, metal oxides, and other nanophase materials using the polyol process. The polyol process employs an organic solvent such as ethylene glycol to reduce a metal oxide/metal salt at high temperature to the metal oxide or metal. The system employs a 6 kW, 2.45 GHz microwave source to rapidly heat the continuously flowing solution to a desired process temperature as it flows through a silica tube placed along the center line of a section of waveguide.

  8. Ultrafast synthesis of MoS2 or WS2-reduced graphene oxide composites via hybrid microwave annealing for anode materials of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Youn, Duck Hyun; Jo, Changshin; Kim, Jae Young; Lee, Jinwoo; Lee, Jae Sung

    2015-11-01

    An ultrafast and simple strategy to synthesize metal sulfides (MoS2 and WS2) anchored on reduced graphene oxide (RGO) composites is reported as anode materials for lithium ion batteries (LIBs). Metal sulfide nanocrystals with homogeneous dispersion onto conducting RGO sheets are obtained in only 45 s by hybrid microwave annealing (HMA) method. The synthesized materials, especially MoS2/RGO composite, exhibit a high Li capacity, an excellent rate capability, and a stable cycling performance, comparable to the reported best MS2/carbon composite electrodes. The results highlight the effectiveness of HMA method to fabricate the metal sulfide/RGO composites with excellent electric properties.

  9. DEVELOPMENT OF ADVANCED DRILL COMPONENTS FOR BHA USING MICROWAVE TECHNOLOGY INCORPORATING CARBIDE, DIAMOND COMPOSITES AND FUNCTIONALLY GRADED MATERIALS

    SciTech Connect

    Dinesh Agrawal; Rustum Roy

    2003-01-01

    The microwave processing of materials is a new emerging technology with many attractive advantages over the conventional methods. The advantages of microwave technology for various ceramic systems has already been demonstrated and proven. The recent developments at Penn State have succeeded in applying the microwave technology for the commercialization of WC/Co and diamond based cutting and drilling tools, effectively sintering of metallic materials, and fabrication of transparent ceramics for advanced applications. In recent years, the Microwave Processing and Engineering Center at Penn State University in collaboration with our industrial partner, Dennis Tool Co. has succeeded in commercializing the developed microwave technology partially funded by DOE for WC/Co and diamond based cutting and drilling tools for gas and oil exploration operations. In this program we have further developed this technology to make diamond-carbide composites and metal-carbide-diamond functionally graded materials. Several actual product of diamond-carbide composites have been processed in microwave with better performance than the conventional product. The functionally graded composites with diamond as one of the components has been for the first time successfully developed. These are the highlights of the project.

  10. Emergent properties of magnetic materials

    NASA Astrophysics Data System (ADS)

    Ratcliff, William Davis, II

    In Tolstoy's War and Peace, history is presented as a tapestry spun from the daily interactions of large numbers of individuals. Even if one understands individuals, it is very difficult to predict history. Similarly, the interactions of large numbers of electrons give rise to properties that one would not initially guess from their microscopic interactions. During the course of my dissertation, I have explored emergent phenomena in a number of contexts. In ZnCr2O4, geometric frustration gives rise to a plethora of equivalent ground states. From these, a lower dimensional set of collinear spins on hexagons are selected to form the building blocks of the lattice. In MgTi2O4, quantum spins dimerize and form a unique chiral ordering pattern on the spinel lattice. Descending into two dimensions, differences in size and charge give rise to an ordering between triangular layers of magnetic and nonmagnetic ions. This triangular lattice allows for the possibility of observing the RVB spin liquid state, or perhaps a valence bond crystal and initial measurements are promising. Also, on the spinel lattice, ionic ordering gives rise to one dimensional chains with their own interesting physics. Finally, in the SrCoxTi1-x O3, system we find that upon reduction, tiny clusters of Co metal precipitate out and chemical inhomogeneity on the microscale may determine much of the physics. This has relevance to a number of recent claims of room temperature ferromagnism in dilute magnetic systems. In all of these systems, complex behavior emerges from well understood microscopic behavior. For me, this is the fascination of strongly correlated electronic systems.

  11. Refraction and absorption of microwaves in wood

    NASA Astrophysics Data System (ADS)

    Ziherl, Saša; Bajc, Jurij; Čepič, Mojca

    2013-03-01

    A demonstration experiment for physics students showing the dependence of the refractive index and absorption coefficient of wood on the direction of microwaves is presented. Wood and microwaves enable study of anisotropic properties, which are typically found in crystals. Wood is used as the persuasive representative of uniaxial anisotropic materials due to its visible structure and its consequent anisotropic properties. Wood can be cut in a general direction and wooden plates a few centimetres thick with well-defined fibre orientation are easily prepared. Microwaves are used because wood is transparent for microwaves and their centimetre-scale wavelength is comparable to the wood structure.

  12. Repair material properties for effective structural application

    SciTech Connect

    Mangat, P.S.; Limbachiya, M.C.

    1997-04-01

    Strength and engineering properties of three generic repair materials which are likely to influence long-term performance of repaired concrete structures were studied. Measured properties include strength, stiffness, shrinkage and creep deformations, together with the complete compressive stress-strain characteristics including post-cracking behavior. The repair materials considered in this investigation are commercially available and widely used. These included a high performance non-shrinkable concrete, a mineral based cementitious material with no additives or coarse aggregate size particles, and a cementitious mortar containing styrene acrylic copolymer with fiber additives. Performance comparisons are also made between these materials and plain concrete mixes of similar strength and stiffness, suitable for repair applications. The results show that shrinkage of the repair materials was significantly greater than the shrinkage of normal concrete. Moreover, the shrinkage of those modified with a polymer admixture was found to be very sensitive to the relative humidity of the exposure compared to normal concrete. The post-peak strain capacity of the material modified with a polymer admixture was markedly improved leading to a more pronounced falling branch of stress-strain curve. The ultimate stress level (at a maximum load) of specially formulated repair materials varies significantly, the lowest ultimate stress being recorded for the porous mineral-based material. The inclusion of aggregates improves the mechanical properties and dimensional stability of repair materials.

  13. Migration testing of plastics and microwave-active materials for high-temperature food-use applications.

    PubMed

    Castle, L; Jickells, S M; Gilbert, J; Harrison, N

    1990-01-01

    Temperatures have been measured using a fluoro-optic probe at the food/container or food/packaging interfaces as appropriate, for a range of foods heated in either a microwave or a conventional oven. Reheating ready-prepared foods packaged in plastics pouches, trays or dishes in the microwave oven, according to the manufacturers' instructions, resulted in temperatures in the range 61-121 degrees C. Microwave-active materials (susceptors) in contact with ready-prepared foods frequently reached local spot temperatures above 200 degrees C. For foods cooked in a microwave oven according to published recipes, temperatures from 91 degrees C to 200 degrees C were recorded, whilst similar temperatures (92-194 degrees C) were attained in a conventional oven, but over longer periods of time. These measurements form the basis for examining compliance with specific and overall migration limits for plastics materials. The testing conditions proposed depend on the intended use of the plastic - for microwave oven use for aqueous foods, for all lidding materials, and for reheating of foods, testing would only be required with aqueous simulants for 1 h at 100 degrees C; for unspecified microwave oven use, testing with olive oil would be required for 30 min at 150 degrees C; and for unspecified use in a conventional oven testing with olive oil would be required for 2 h at 175 degrees C. For microwave-active materials, it is proposed that testing is carried out in the microwave oven using a novel semi-solid simulant comprising olive oil and water absorbed onto an inert support of diatomaceous earth. The testing in this instance is carried out with the simulant instead of food in a package and heating in the microwave oven at 600 W for 4 min for every 100 g of simulant employed. There is an option in every case to test for migration using real foods rather than simulants if it can be demonstrated that results using simulants are unrepresentative of those for foods. The proposed

  14. One-step microwave-assisted asymmetric cyclisation/hydrogenation of citronellal to menthols using supported nanoparticles on mesoporous materials.

    PubMed

    Balu, Alina Mariana; Campelo, Juan Manuel; Luque, Rafael; Romero, Antonio Angel

    2010-06-21

    The selective conversion of citronellal to menthols, with good diastereoselectivities to (-)-menthol for the case of (+)-citronellal as starting material, can effectively be carried out in a one-step reaction under microwave irradiation catalysed by supported nanoparticles on mesoporous materials. 2% Pt/Ga-MCM-41 was found to be the optimum catalyst for the reaction, with a quantitative conversion of starting material and selectivities above 85% to menthols obtained in short reaction times (typically 15 min). These results constitute the first report of a simple microwave-assisted one-step cyclisation/hydrogenation process for the production of menthols.

  15. Noise properties of superconducting coplanar waveguide microwave resonators

    NASA Astrophysics Data System (ADS)

    Gao, Jiansong; Zmuidzinas, Jonas; Mazin, Benjamin A.; LeDuc, Henry G.; Day, Peter K.

    2007-03-01

    The authors have measured noise in thin-film superconducting coplanar waveguide resonators. This noise appears entirely as phase noise, equivalent to a jitter of the resonance frequency. In contrast, amplitude fluctuations are not observed at the sensitivity of their measurement. The ratio between the noise power in the phase and amplitude directions is large, in excess of 30dB. These results have important implications for resonant readouts of various devices such as detectors, amplifiers, and qubits. They suggest that the phase noise is due to two-level systems in dielectric materials.

  16. From Microstructures to Predict Properties of Materials

    NASA Astrophysics Data System (ADS)

    Wang, Ke-Gang

    2010-03-01

    Understanding the precise and fundamental manner in which materials structures (nanostructures or microstructures) and their evolution influences properties and service lifetimes of advanced materials profoundly impacts material design and today materials design plays an increasingly important rôle in many engineering applications. Linking structures to properties and predicting properties of materials is fundamental step for materials design. First, a framework of applications of multiscale modeling to property prediction of advanced materials will be briefly presented. As an example, a methodology will be shown to link micro-scale to the continuum scale, integrating microstructure modeling with the large Thermo-Calc^ database. This paradigm was successfully applied to the case of Fe-12Ni-6Mn maraging steel. Next, methodology for integrating first-principle calculation into simulations of microstructure evolution will be reviewed. Our methods are sufficiently reliable to permit control and fabrication of quantum-dots structures, nanocrystals, and particle-reinforced nanocomposites, as well as assist in the predictive behavior of macro-scale colloids, aerosols, and other soft matter systems.

  17. Extraction of Water from Polar Lunar Permafrost with Microwaves - Dielectric Property Measurements

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Kaukler, William

    2009-01-01

    Remote sensing indicates the presence of hydrogen rich regions associated with the lunar poles. The logical hypothesis is that there is cryogenically trapped water ice located in craters at the lunar poles. Some of the craters have been in permanent darkness for a billion years. The presence of water at the poles as well as other scientific advantages of a polar base, have influenced NASA plans for the lunar outpost. The lunar outpost has water and oxygen requirements on the order of 1 ton per year scaling up to as much as 10 tons per year. Microwave heating of the frozen permafrost has unique advantages for water extraction. Proof of principle experiments have successfully demonstrated that microwaves will couple to the cryogenic soil in a vacuum and the sublimed water vapor can be successfully captured on a cold trap. The dielectric properties of lunar soil will determine the hardware requirements for extraction processes. Microwave frequency dielectric property measurements of lunar soil simulant have been measured.

  18. Microwave absorption properties of Mn- and Ni-doped zinc oxides

    SciTech Connect

    Wu Qibai; Zhao Wei; Zeng Guoxun; Zhang Haiyan; Wei Aixiang; Wang Jia

    2011-05-15

    Microwave absorption properties of Mn- and Ni-doped zinc oxides were assessed in this study. Samples were prepared by the decomposition of acetate solid solutions. By changing the concentration of dopant ions in the reaction solutions, zinc oxides with different amounts of dopant were obtained. The morphologies, chemical compositions, and structures of the samples were investigated by scanning electron microscopy, energy dispersive x-ray spectroscopy, and x-ray powder diffraction. Electromagnetic characteristics of the doped samples were assessed by vector network analysis at a frequency range of 2-16 GHz. Both the real and imaginary parts of the complex permittivity decreased as Mn or Ni concentration increased. Results indicate that, compared with pure ZnO, Mn- and Ni-doped zinc oxides exhibit excellent microwave absorption properties. The highest level of microwave absorption observed was 80.7 dB at a frequency of 9.8 GHz, and the best frequency bandwidth was 8.6 GHz at reflection loss values below -10 dB.

  19. A modified field model of waveguide reflection dielectric resonator for microwave measurements of dielectric properties

    NASA Astrophysics Data System (ADS)

    Sheen, Jyh

    2008-02-01

    A modified electromagnetic field model of a waveguide reflection dielectric resonator is suggested for measurements of dielectric properties of the homogeneous and isotropic medium in the microwave frequencies. Reflection signal is measured for the calculations of dielectric properties. A dielectric rod sample is put inside of a rectangular cavity made by a microwave waveguide. The sample's dielectric constant and loss tangent are computed from the unloaded quality factor and the resonant frequency of the TE01δ mode as well as the structure dimensions. For first time, this waveguide reflection dielectric resonator is applied on dielectric constant measurement. A modified field model of the waveguide reflection resonator is developed from the Itoh-Rudokas model [IEEE Trans. Microwave Theory Tech. MTT-25, 52 (1977)] of the parallel-plate dielectric resonator. This modification is justified by the dramatic improvement in the accuracy of dielectric constant measurements. The main merit of this field model is that it provides very simple electromagnetic field expressions of this TE01δ field mode. In addition, accuracies of various methods for calculating the power factor and conducting loss, which have never been given before, will be investigated in this article.

  20. Facile preparation and enhanced microwave absorption properties of core-shell composite spheres composited of Ni cores and TiO2 shells.

    PubMed

    Zhao, Biao; Shao, Gang; Fan, Bingbing; Zhao, Wanyu; Xie, Yajun; Zhang, Rui

    2015-04-14

    Core-shell microspheres with Ni cores and two phases of TiO2 (anatase, rutile) shells have been successfully synthesized. The crystal structure, morphology and microwave absorption properties of the as-prepared composites were analyzed by X-ray diffraction, field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and vector network analysis. The core-shell rutile TiO2-coated Ni exhibits better antioxidation ability than that of pure Ni due to the presence of the rutile TiO2 shell, which is confirmed by the thermal gravimetric analysis (TGA). In comparison with bare Ni, these two composites show better microwave absorption properties. The minimum reflection loss (RL) is -38.0 dB at 11.1 GHz with a thickness of only 1.8 mm for the Ni@TiO2 (rutile) composite. The enhanced absorption capability arises from the efficient complementarities between the magnetic loss and dielectric loss, multiple interfacial polarization, high thermal conductivity of rutile TiO2 and microwave attenuation constant. These results show that the thin high-efficiency rutile TiO2-coated Ni composite is a great potential microwave absorbing material for practical applications. PMID:25745675

  1. Tactual perception of liquid material properties.

    PubMed

    Bergmann Tiest, Wouter M

    2015-04-01

    In this paper, studies into the tactual perception of two liquid material properties, viscosity and wetness, are reviewed. These properties are very relevant in the context of interaction with liquids, both real, such as cosmetics or food products, and simulated, as in virtual reality or teleoperation. Both properties have been the subject of psychophysical characterisation in terms of magnitude estimation experiments and discrimination experiments, which are discussed. For viscosity, both oral and manual perception is discussed, as well as the perception of the viscosity of a mechanical system. For wetness, the relevant cues are identified and factors affecting perception are discussed. Finally, some conclusions are drawn pertaining to both properties.

  2. Tactual perception of liquid material properties.

    PubMed

    Bergmann Tiest, Wouter M

    2015-04-01

    In this paper, studies into the tactual perception of two liquid material properties, viscosity and wetness, are reviewed. These properties are very relevant in the context of interaction with liquids, both real, such as cosmetics or food products, and simulated, as in virtual reality or teleoperation. Both properties have been the subject of psychophysical characterisation in terms of magnitude estimation experiments and discrimination experiments, which are discussed. For viscosity, both oral and manual perception is discussed, as well as the perception of the viscosity of a mechanical system. For wetness, the relevant cues are identified and factors affecting perception are discussed. Finally, some conclusions are drawn pertaining to both properties. PMID:25128819

  3. Thermal protection materials: Thermophysical property data

    NASA Technical Reports Server (NTRS)

    Williams, S. D.; Curry, Donald M.

    1992-01-01

    This publication presents a thermophysical property survey on materials that could potentially be used for future spacecraft thermal protection systems (TPS). This includes data that was reported in the 1960's as well as more current information reported through the 1980's. An attempt was made to cite the manufacturers as well as the data source in the bibliography. This volume represents an attempt to provide in a single source a complete set of thermophysical data on a large variety of materials used in spacecraft TPS analysis. The property data is divided into two categories: ablative and reusable. The ablative materials have been compiled into twelve categories that are descriptive of the material composition. An attempt was made to define the Arrhenius equation for each material although this data may not be available for some materials. In a similar manner, char data may not be available for some of the ablative materials. The reusable materials have been divided into three basic categories: thermal protection materials (such as insulators), adhesives, and structural materials.

  4. Studies on Physical Properties of Snow Based on Multi Channel Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Tsuchiya, K.; Takeda, K.

    1985-01-01

    The analysis of the data observed over a snow field with a breadboard model of MSR (microwave scanning radiometer) to be installed in MOS-1 (Marine Observation Satellite-1) indicates that: (1) the influence of incident angle on brightness temperature is larger in horizontal polarization component than in vertical polarization component. The effect of incident angle depends upon the property of snow with larger value for dry snow; (2) the difference of snow surface configuration consisting of artifically made parallel ditches of 5 cm depth and 5 cm width with spacing of 10 and 30 cm respectively which are oriented normal to electrical axis do not affect brightness temperature significantly; and (3) there is high negative correlation between brightness temperature and snow depth up to the depth of 70 cm which suggests that the snow depth can be measured with a two channel microwave radiometer up to this depth.

  5. Microwave Dielectric Properties of Polystyrene-Forsterite (Mg2SiO4) Composite

    NASA Astrophysics Data System (ADS)

    Sasikala, T. S.; Sebastian, M. T.

    2016-01-01

    Polystyrene-Mg2SiO4 ceramic composites have been prepared by kneading followed by hot pressing. The dielectric properties of the composites have been investigated at both radio and microwave frequency ranges as a function of filler loading up to 50 vol.%. The dielectric constant and loss tangent increased with the ceramic filler content. The composite with 50 vol.% filler had a dielectric constant of 4.0 and loss tangent of 0.006 at 5 GHz, with Vickers microhardness of 35 HV. The coefficient of thermal expansion of the composite decreased and the thermal conductivity increased with the filler loading. PS-Mg2SiO4 composites are possible candidates for microwave substrate applications.

  6. Effect of acid concentration on closed-vessel microwave-assisted digestion of plant materials

    NASA Astrophysics Data System (ADS)

    Araújo, Geórgia C. L.; Gonzalez, Mário H.; Ferreira, Antônio G.; Nogueira, Ana Rita A.; Nóbrega, Joaquim A.

    2002-12-01

    The efficiency of microwave-assisted acid digestion of plants using different concentrations of nitric acid (2.0, 3.0, 5.0, 7.0 and 14 mol l -1) with hydrogen peroxide (30% v/v) was evaluated by measuring the residual carbon content (RCC) using inductively coupled plasma optical emission spectrometry (ICP-OES) with axial viewing. Certified reference materials were used for evaluating the accuracy attained when 2 mol l -1 HNO 3 was employed for digestion. Under all experimental conditions RCC values were always lower than 13% w/v, and even the highest concentration did not cause any interference with element recovery. It seems that the high pressure reached for closed-vessel operation improved the oxidative action of nitric acid due to consequent temperature increase, even when this reagent was not used at high concentrations. According to acid-base titration data, residual acid in the digestates varied from 1.2 to 4.0 mol l -1, depending on the acid concentration initially added. It can be concluded that for plant materials, microwave-assisted acid digestion can be carried out under mild conditions, which implies that digestates do not need extensive dilution before introduction by pneumatic nebulization to ICP-OES. An additional advantage is the lower amount of residue generated when working with less concentrated acid solutions.

  7. Microwave-assisted synthesis and optical properties of cuprous oxide micro/nanocrystals

    SciTech Connect

    Sun, Dandan; Du, Yi; Tian, Xiuying; Li, Zhongfu; Chen, Zhongtao; Zhu, Chaofeng

    2014-12-15

    Graphical abstract: Cuprous oxide micro/nanocrystals were fabricated by a facile and green microwave-assisted method using soluble starch as reductant and dispersant. Spheres with the diameter of about 100 and 600 nm, octahedron and truncated octahedron with the edge length of about 0.8–3 μm cuprous oxide micro/nanocrystals were successfully obtained. Microwave heating was proved to be a efficient method and was advantageous to the homogeneous nucleation. Growth mechanism of the prepared Cu{sub 2}O microcrystals were investigated carefully. Furthermore, the optical properties of the prepared cuprous oxide microcrystals were investigated by UV–vis diffuse reflectance spectroscopy, demonstrating that their band gaps of obtained samples were 1.96–2.07 eV, assigned to their different sizes and morphologies. - Abstract: Cuprous oxide micro/nanocrystals were fabricated by a facile and green microwave-assisted method using soluble starch as reductant and dispersant. It was observed that the addition amounts of NaOH had a prominent effect on the morphologies and size of cuprous oxide products, and microwave heating was proved to be a efficient method and was advantageous to the homogeneous nucleation. The as-obtained samples were characterized by X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM). The results indicated that the samples were pure cuprous oxide. Spheres with the diameter of about 100 and 600 nm, octahedron and truncated octahedron with the edge length of about 0.8–3 μm cuprous oxide micro/nanocrystals were successfully obtained. Furthermore, the UV–vis diffuse reflectance spectroscopy was used to investigate the optical properties of the prepared cuprous oxide microcrystals, demonstrating that their band gaps of obtained samples were 1.96–2.07 eV, assigned to their different sizes and morphologies.

  8. Microwave Dielectric and Magnetic Properties of Co-Zn Ferrites

    NASA Astrophysics Data System (ADS)

    Lamani, A. R.; Jayanna, H. S.; Naveen, C. S.; Rajeeva, M. P.; Prasanna, G. D.

    2015-02-01

    The dielectric permittivity, loss tangent, in the frequency range 1MHz to 1.8 GHz and hysteresis loop parameters at room temperature were studied on a series of Zn substituted cobalt ferrites with general formula Co1-xZnx Fe2O4 where (x=0.0, 0.2, 0.4, 0.6, 1.0.). The experimental results indicate that the Zn substitution affects all these parameters. The observed dispersion in dielectric permittivity with frequency is in accordance with Maxwell-Wagner model. The high temperature sintering is used to synthesize these materials via solid state reaction route and these samples were characterized by X-ray diffractometer (XRD), vibrating sample magnetometer (VSM). The saturation magnetizations (MS) Hc and Mr of the Particles were measured at room temperature. Here for the smaller dopent concentration Ms increases with increasing in the Zn content this can explained on the basis of increased number of magnetic ions in the spinel lattice, at some point Ms decrease because of the difference between the magnetic moment of Fe2+ and Zn2+, the magnetic moment of the A sub lattice will increases and the moment of the B sub lattice will decrease. The variation of crystalline shape ellipsoid is correlated with variation of dielectric constant.

  9. Advances in imaging and quantification of electrical properties at the nanoscale using Scanning Microwave Impedance Microscopy (sMIM)

    NASA Astrophysics Data System (ADS)

    Friedman, Stuart; Yang, Yongliang; Amster, Oskar

    2015-03-01

    Scanning Microwave Impedance Microscopy (sMIM) is a mode for Atomic Force Microscopy (AFM) enabling imaging of unique contrast mechanisms and measurement of local permittivity and conductivity at the 10's of nm length scale. Recent results will be presented illustrating high-resolution electrical features such as sub 15 nm Moire' patterns in Graphene, carbon nanotubes of various electrical states and ferro-electrics. In addition to imaging, the technique is suited to a variety of metrology applications where specific physical properties are determined quantitatively. We will present research activities on quantitative measurements using multiple techniques to determine dielectric constant (permittivity) and conductivity (e.g. dopant concentration) for a range of materials. Examples include bulk dielectrics, low-k dielectric thin films, capacitance standards and doped semiconductors. Funded in part by DOE SBIR DE-SC0009586.

  10. Microwave-assisted synthesis and luminescence properties of Cd(1-x)Eu(x)MoO4 red phosphor.

    PubMed

    Liu, Xiaoqing; Lv, Li; Huang, Shushu; Su, Yiguo; Wang, Xiaojing

    2014-05-01

    Cd(1-x)Eu(x)MoO4 nanoparticles were prepared by a microwave-assisted method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence (PL) spectra were used to characterize the structures, morphologies and the luminescent properties of as-prepared products. Emission and excitation spectra showed that the phosphor exhibits a dominant red emission at 612 nm with excitation wavelength of 330 nm at room temperature. The optimized concentration of Eu3+ is 5 mol.% for the highest emission intensity at 612 nm. The concentration quenching mechanism can be interpreted by the nearest-neighbor ions interaction of Eu3+ ions. It is found that Eu3+ concentration has great impact on the luminescent intensity which is attributed to the variation of the local symmetry. The red emission is visible to naked eyes, indicating that CdMoO4 may act as a promising host material for Eu3+ doped red phosphors.

  11. Magnetic and microwave absorbing properties of Co2+ substituted nickel-zinc ferrites with the emphasis on initial permeability studies

    NASA Astrophysics Data System (ADS)

    Ghodake, J. S.; Kambale, Rahul C.; Shinde, T. J.; Maskar, P. K.; Suryavanshi, S. S.

    2016-03-01

    Nanocrystalline Co2+ substituted Zn0.35Ni0.60-xCoxFe2.05O4 (Where x=0.0, 0.1, 0.2, 0.3 and 0.4) system have been synthesized by citrate-nitrate combustion route. X-ray diffraction study shows the formation of single phase cubic spinel structure without any impurity phases. Morphological observation shows agglomerated grains with different shapes and sizes which is the typical characteristics of magnetic nanoparticles prepared by combustion route. The saturation magnetization of cobalt substituted Ni-Zn ferrites is found to be higher than that of pure Ni-Zn ferrite. The coercivity and retentivity of cobalt substituted Ni-Zn ferrite increases with the increasing cobalt content. Initial permeability and loss factor have been studied as the function of composition and frequency. The real (μ‧) and imaginary (μ‧‧) part of initial permeability of cobalt substituted Ni-Zn ferrites decreases while its loss factor increases with the increasing cobalt content. In the lower frequency region the imaginary part of initial permeability (μ‧‧) of all samples is found to be decreasing rapidly with increasing frequency. The microwave absorption properties of cobalt substituted Ni-Zn ferrites were also investigated; all samples exhibit the absorption in the frequency range 2.3-2.5 GHz. Thus, the prepared materials can be used as a rubber composite microwave absorber and may be useful in RADAR application.

  12. Microwave Properties of Ice-Phase Hydrometeors for Radar and Radiometers: Sensitivity to Model Assumptions

    NASA Technical Reports Server (NTRS)

    Johnson, Benjamin T.; Petty, Grant W.; Skofronick-Jackson, Gail

    2012-01-01

    A simplied framework is presented for assessing the qualitative sensitivities of computed microwave properties, satellite brightness temperatures, and radar reflectivities to assumptions concerning the physical properties of ice-phase hydrometeors. Properties considered included the shape parameter of a gamma size distribution andthe melted-equivalent mass median diameter D0, the particle density, dielectric mixing formula, and the choice of complex index of refraction for ice. We examine these properties at selected radiometer frequencies of 18.7, 36.5, 89.0, and 150.0 GHz; and radar frequencies at 2.8, 13.4, 35.6, and 94.0 GHz consistent with existing and planned remote sensing instruments. Passive and active microwave observables of ice particles arefound to be extremely sensitive to the melted-equivalent mass median diameter D0 ofthe size distribution. Similar large sensitivities are found for variations in the ice vol-ume fraction whenever the geometric mass median diameter exceeds approximately 1/8th of the wavelength. At 94 GHz the two-way path integrated attenuation is potentially large for dense compact particles. The distribution parameter mu has a relatively weak effect on any observable: less than 1-2 K in brightness temperature and up to 2.7 dB difference in the effective radar reflectivity. Reversal of the roles of ice and air in the MaxwellGarnett dielectric mixing formula leads to a signicant change in both microwave brightness temperature (10 K) and radar reflectivity (2 dB). The choice of Warren (1984) or Warren and Brandt (2008) for the complex index of refraction of ice can produce a 3%-4% change in the brightness temperature depression.

  13. ESTEC wiring test programme materials related properties

    NASA Technical Reports Server (NTRS)

    Judd, M. D.

    1994-01-01

    Electrical wires are considered as EEE parts and are covered within the ESA SCC specification series (ESA SCC 3901/XXX). This specification defines the principal properties of the wires including insulation/lay-up and electrical properties. Some additional space related materials requirements are also included, requirements such as outgassing and silver plating thickness. If a project has additional materials requirements over and above those covered by the relevant SCC specification, then additional testing is required. This is especially true for crewed spacecraft. The following topics are discussed in this context: additional requirements for manned spacecraft; flammability; arc tracking; thermal decomposition; microbial surface growth; and ageing.

  14. Ultrawide Band Microwave Absorption Properties of Ultrasound Processed CrO2-Paraffin Wax Composites

    NASA Astrophysics Data System (ADS)

    Xi, Li; Yang, Yikai

    2011-03-01

    The microwave absorption properties of ultrasound processed CrO2-paraffin wax composites are investigated in the frequency range of 0.1-18 GHz by the coaxial method. By analysis and comparison between ultrasound processed sample and the unprocessed sample, we discovered that the ultrasound treatment will induce a thin insulating Cr2O3 shell over the CrO2 rods to form a core/shell structure that performs excellent in microwave absorption. An optimum reflection loss of -50.9 dB was found at 5.2 GHz with a matching thickness of 3.4 mm for 70 wt % CrO2-paraffin wax composite. Moreover, the frequency range of which the reflection loss is less than -20 dB spreads from 4.0 to 8.7 GHz with the corresponding absorption thickness ranges from 2.3 to 4.0 mm. The comparison among our result and other reported ones indicates that, in addition to its common applications, the CrO2 after certain process may have potential in microwave absorption. More profoundly, the technique of ultrasound process employed in this report may suggest a new method to induce, according to different needs, crystalline phase transition for a various range of metastable chemicals.

  15. Enhanced microwave absorption properties in cobalt-zinc ferrite based nanocomposites

    NASA Astrophysics Data System (ADS)

    Poorbafrani, A.; Kiani, E.

    2016-10-01

    In an attempt to find a solution to the problem of the traditional spinel ferrite used as the microwave absorber, the Co0.6Zn0.4Fe2O4-Paraffin nanocomposites were investigated. Cobalt-zinc ferrite powders, synthesized through PVA sol-gel method, were combined with differing concentrations of Paraffin wax. The nanocomposite samples were characterized employing various experimental techniques including X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Alternating Gradient Force Magnetometer (AGFM), and Vector Network Analyzer (VNA). The saturation magnetization and coercivity were enhanced utilizing appropriate stoichiometry, coordinate agent, and sintering temperature required for the preparation of cobalt-zinc ferrite. The complex permittivity and permeability spectra, and Reflection Loss (RL) of Co0.6Zn0.4Fe2O4-Paraffin nanocomposites were measured in the frequency range of 1-18 GHz. The microwave absorption properties of nanocomposites indicated that the absorbing composite containing 20 wt% of paraffin manifests the strongest microwave attenuation ability. The composite exhibited the reflection loss less than -10 dB in the whole C-band and 30% of the X-band frequencies.

  16. Spanish activities (research and industrial applications) in the field of microwave material treatment

    SciTech Connect

    Catala Civera, J.M.; Reyes Davo, E.R. de los

    1996-12-31

    The GCM (Microwave Heating Group) within the Communications Department at the Technical University of Valencia is dedicated to the study of microwaves and their use in the current industrial processes in the Valencian Community and in Spain. To this end, a microwave heating laboratory has been developed and the benefits of incorporating microwave technologies into current industrial processes have been demonstrated. In this paper some of the industrial applications which are being investigated are presented.

  17. Microwave dielectric properties of BNT-BT0.08 thin films prepared by sol-gel technique

    NASA Astrophysics Data System (ADS)

    Huitema, L.; Cernea, M.; Crunteanu, A.; Trupina, L.; Nedelcu, L.; Banciu, M. G.; Ghalem, A.; Rammal, M.; Madrangeas, V.; Passerieux, D.; Dutheil, P.; Dumas-Bouchiat, F.; Marchet, P.; Champeaux, C.

    2016-04-01

    We report for the first time the microwave characterization of 0.92(Bi0.5Na0.5)TiO3-0.08BaTiO3 (BNT-BT0.08) ferroelectric thin films fabricated by the sol-gel method and integrated in both planar and out-of-plane tunable capacitors for agile high-frequency applications and particularly on the WiFi frequency band from 2.4 GHz to 2.49 GHz. The permittivity and loss tangent of the realized BNT-BT0.08 layers have been first measured by a resonant cavity method working at 12.5 GHz. Then, we integrated the ferroelectric material in planar inter-digitated capacitors (IDC) and in out-of-plane metal-insulator-metal (MIM) devices and investigated their specific properties (dielectric tunability and losses) on the whole 100 MHz-15 GHz frequency domain. The 3D finite-elements electromagnetic simulations of the IDC capacitances are fitting very well with their measured responses and confirm the dielectric properties determined with the cavity method. While IDCs are not exhibiting an optimal tunability, the MIM capacitor devices with optimized Ir/MgO(100) bottom electrodes demonstrate a high dielectric tunability, of 30% at 2.45 GHz under applied voltages as low as 10 V, and it is reaching 50% under 20 V voltage bias at the same frequency. These high-frequency properties of the MIM devices integrating the BNT-BT0.08 films, combining a high tunability under low applied voltages indicate a wide integration potential for tunable devices in the microwave domain and particularly at 2.45 GHz, corresponding to the widely used industrial, scientific, and medical frequency band.

  18. Development of FeCoB/Graphene Oxide based microwave absorbing materials for X-Band region

    NASA Astrophysics Data System (ADS)

    Das, Sukanta; Chandra Nayak, Ganesh; Sahu, S. K.; Oraon, Ramesh

    2015-06-01

    This work explored the microwave absorption capability of Graphene Oxide and Graphene Oxide coated with FeCoB for stealth technology. Epoxy based microwave absorbing materials were prepared with 30% loading of Graphene Oxide, FeCoB alloy and Graphene Oxide coated with FeCoB. Graphene Oxide and FeCoB were synthesized by Hummer's and Co-precipitation methods, respectively. The filler particles were characterized by FESEM, XRD and Vibrating Sample Magnetometer techniques. Permittivity, permeability and reflection loss values of the composite absorbers were measured with vector network analyzer which showed a reflection loss value of -7.86 dB, at 10.72 GHz, for single layered Graphene Oxide/Epoxy based microwave absorbers which can be correlated to the absorption of about 83.97% of the incident microwave energy. Reflection loss value of FeCoB/Epoxy based microwave absorber showed -13.30 dB at 11.67 GHz, which corresponded to maximum absorption of 93.8%. However, reflection loss values of Graphene Oxide coated with FeCoB/Epoxy based single-layer absorber increased to -22.24 dB at 12.4 GHz which corresponds to an absorption of 99% of the incident microwave energy.

  19. Intellectual property analysis of holographic materials business

    NASA Astrophysics Data System (ADS)

    Reingand, Nadya; Hunt, David

    2006-02-01

    The paper presents an overview of intellectual property in the field of holographic photosensitive materials and highlights the possibilities offered by patent searching and analysis. Thousands of patent documents relevant to holographic materials have been uncovered by the study. The search was performed in the following databases: U.S. Patent Office, European Patent Office, and Japanese Patent Office for the time frame of 1971 through November 2005. The patent analysis has unveiled trends in patent temporal distribution, leading IP portfolios, companies competition within the holographic materials market and other interesting insights.

  20. Rectangular waveguide material characterization: anisotropic property extraction and measurement validation

    NASA Astrophysics Data System (ADS)

    Crowgey, Benjamin Reid

    Rectangular waveguide methods are appealing for measuring isotropic and anisotropic materials because of high signal strength due to field confinement, and the ability to control the polarization of the applied electric field. As a stepping stone to developing methods for characterizing materials with fully-populated anisotropic tensor characteristics, techniques are presented in this dissertation to characterize isotropic, biaxially anisotropic, and gyromagnetic materials. Two characterization techniques are investigated for each material, and thus six different techniques are described. Additionally, a waveguide standard is introduced which may be used to validate the measurement of the permittivity and permeability of materials at microwave frequencies. The first characterization method examined is the Nicolson-Ross-Weir (NRW) technique for the extraction of isotropic parameters of a sample completely filling the cross-section of a rectangular waveguide. A second technique is proposed for the characterization of an isotropic conductor-backed sample filling the cross-section of a waveguide. If the sample is conductor-backed, and occupies the entire cross-section, a transmission measurement is not available, and thus a method must be found for providing two sufficiently different reflection measurements.The technique proposed here is to place a waveguide iris in front of the sample, exposing the sample to a spectrum of evanescent modes. By measuring the reflection coefficient with and without an iris, the necessary two data may be obtained to determine the material parameters. A mode-matching approach is used to determine the theoretical response of a sample placed behind the waveguide iris. This response is used in a root-searching algorithm to determine permittivity and permeability by comparing to measurements of the reflection coefficient. For the characterization of biaxially anisotropic materials, the first method considers an extension of the NRW technique

  1. Closed vessel miniaturized microwave assisted chelating extraction for determination of trace metals in plant materials

    NASA Astrophysics Data System (ADS)

    Czarnecki, Sezin; Duering, Rolf-Alexander

    2013-04-01

    In recent years, the use of closed vessel microwave assisted extraction (MAE) for plant samples has shown increasing research interest which will probably substitute conventional procedures in the future due to their general disadvantages including consumption of time and solvents. The objective of this study was to demonstrate an innovative miniaturized closed vessel microwave assisted extraction (µMAE) method under the use of EDTA (µMAE-EDTA) to determine metal contents (Cd, Co, Cu, Mn, Ni, Pb, Zn) in plant samples (Lolio-Cynosuretum) by inductively coupled plasma-optical emission spectrometry (ICP-OES). Validation of the method was done by comparison of the results with another miniaturized closed vessel microwave HNO3 method (µMAE-H) and with two other macro scale MAE procedures (MAE-H and MAE-EDTA) which were applied by using a mixture of nitric acid (HNO3) and hydrogen peroxide (H2O2) (MAE-H) and EDTA (MAE-EDTA), respectively. The already established MAE-H method is taken into consideration as a reference validation MAE method for plant material. A conventional plant extraction (CE) method, based on dry ashing and dissolving of the plant material in HNO3, was used as a confidence comparative method. Certified plant reference materials (CRMs) were used for comparison of recovery rates from different extraction protocols. This allowed the validation of the applicability of the µMAE-EDTA procedure. For 36 real plant samples with triplicates each, µMAE-EDTA showed the same extraction yields as the MAE-H in the determination of Cd, Co, Cu, Mn, Ni, Pb, and Zn contents in plant samples. Analytical parameters in µMAE-EDTA should be further investigated and adapted for other metals of interest. By the reduction and elimination of the use of hazardous chemicals in environmental analysis and thus allowing a better understanding of metal distribution and accumulation process in plants and also the metal transfer from soil to plants and into the food chain, µ

  2. Laboratory Evaluation and Application of Microwave Absorption Properties under Simulated Conditions for Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    2005-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments, entry probe radio signal absorption measurements, and earth- based or spacecraft-based radio astronomical (emission) observations can be used to infer abundances of microwave absorbing constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or the use of laboratory measurements of such properties taken under environmental conditions that are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. For example, new laboratory measurements completed recently by Mohammed and Steffes (2003 and 2004) under this grant (NAG5-12122,5/1/02-4/30/05), have shown that the millimeter-wavelength opacities from both gaseous phosphine (PH3) and gaseous ammonia ("3) under simulated conditions for the outer planets vary significantly from that predicted by theory over a wide range of temperatures and pressures. These results have directly impacted planning and scientific goals for study of Saturn's atmosphere with the Cassini Radio Science Experiment, as discussed below. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both spacecraft entry probe and orbiter (or flyby) radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the

  3. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1992-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or using laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. For example, laboratory measurements performed by Fahd and Steffes have shown that the opacity from gaseous SO2 under simulated Venus conditions can be well described by the Van Vleck-Weisskopf lineshape at wavelengths shortward of 2 cm, but that the opacity of wavelengths greater than 2 cm is best described by a different lineshape that was previously used in theoretical predictions. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.

  4. Laboratory Evaluation and Application of Microwave Absorption Properties Under Simulated Conditions for Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1998-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments, entry probe radio signal absorption measurements, and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or using laboratory measurements of such properties taken under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. For example, laboratory measurements completed recently by Kolodner and Steffes (ICARUS 132, pp. 151-169, March 1998, attached as Appendix A) under this grant (NAGS-4190), have shown that the opacity from gaseous H2SO4 under simulated Venus conditions is best described by a different formalism than was previously used. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both spacecraft entry probe and orbiter radio occultation experiments and by radio astronomical observations, and over a range of frequencies which correspond to those used in such experiments, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.

  5. Laboratory Evaluation and Application of Microwave Absorption Properties under Simulated Conditions for Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    2002-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments, entry probe radio signal absorption measurements, and earth-based or spacecraft-based radio astronomical (emission) observations can be used to infer abundances of microwave absorbing constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or the use of laboratory measurements of such properties taken under environmental conditions that are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. Laboratory measurements have shown that the centimeter-wavelength opacity from gaseous phosphine (PH3) under simulated conditions for the outer planets far exceeds that predicted from theory over a wide range of temperatures and pressures. This fundamentally changed the resulting interpretation of Voyager radio occultation data at Saturn and Neptune. It also directly impacts planning and scientific goals for study of Saturn's atmosphere with the Cassini Radio Science Experiment and the Rossini RADAR instrument. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both spacecraft entry probe and orbiter (or flyby) radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations

  6. Systems and methods for predicting materials properties

    DOEpatents

    Ceder, Gerbrand; Fischer, Chris; Tibbetts, Kevin; Morgan, Dane; Curtarolo, Stefano

    2007-11-06

    Systems and methods for predicting features of materials of interest. Reference data are analyzed to deduce relationships between the input data sets and output data sets. Reference data includes measured values and/or computed values. The deduced relationships can be specified as equations, correspondences, and/or algorithmic processes that produce appropriate output data when suitable input data is used. In some instances, the output data set is a subset of the input data set, and computational results may be refined by optionally iterating the computational procedure. To deduce features of a new material of interest, a computed or measured input property of the material is provided to an equation, correspondence, or algorithmic procedure previously deduced, and an output is obtained. In some instances, the output is iteratively refined. In some instances, new features deduced for the material of interest are added to a database of input and output data for known materials.

  7. Electromagnetic properties of material coated surfaces

    NASA Technical Reports Server (NTRS)

    Beard, L.; Berrie, J.; Burkholder, R.; Dominek, A.; Walton, E.; Wang, N.

    1989-01-01

    The electromagnetic properties of material coated conducting surfaces were investigated. The coating geometries consist of uniform layers over a planar surface, irregularly shaped formations near edges and randomly positioned, electrically small, irregularly shaped formations over a surface. Techniques to measure the scattered field and constitutive parameters from these geometries were studied. The significance of the scattered field from these geometries warrants further study.

  8. Ultra-fast dry microwave preparation of SnSb used as negative electrode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Antitomaso, P.; Fraisse, B.; Sougrati, M. T.; Morato-Lallemand, F.; Biscaglia, S.; Aymé-Perrot, D.; Girard, P.; Monconduit, L.

    2016-09-01

    Tin antimonide alloy was obtained for the first time using a very simple dry microwave route. Up to 1 g of well crystallized SnSb can be easily prepared in 90 s under air in an open crucible. A full characterization by X-ray diffraction and 119Sn Mössbauer spectroscopy demonstrated the benefit of carbon as susceptor, which avoid any oxide contamination. The microwave-prepared SnSb was tested as negative electrode material in Li batteries. Interesting results in terms of capacity and rate capability were obtained with up to 700 mAh/g sustained after 50 cycles at variable current. These results pave the way for the introduction of microwave synthesis as realistic route for a rapid, low cost and up-scalable production of electrode material for Li batteries or other large scale application types.

  9. DEVELOPMENT OF ADVANCED DRILL COMPONENTS FOR BHA USING MICROWAVE TECHNOLOGY INCORPORATING CARBIDE, DIAMOND COMPOSITES AND FUNCTIONALLY GRADED MATERIALS

    SciTech Connect

    Dinesh Agrawal; Rustum Roy

    2000-11-01

    The main objective of this program was to develop an efficient and economically viable microwave processing technique to process cobalt cemented tungsten carbide with improved properties for drill-bits for advanced drilling operations for oil, gas, geothermal and excavation industries. The program was completed in three years and successfully accomplished all the states goals in the original proposal. In three years of the program, we designed and built several laboratory scale microwave sintering systems for conducting experiments on Tungsten carbide (WC) based composites in controlled atmosphere. The processing conditions were optimized and various properties were measured. The design of the system was then modified to enable it to process large commercial parts of WC/Co and in large quantities. Two high power (3-6 kW) microwave systems of 2.45 GHz were built for multi samples runs in a batch process. Once the process was optimized for best results, the technology was successfully transferred to our industrial partner, Dennis Tool Co. We helped them to built couple of prototype microwave sintering systems for carbide tool manufacturing. It was found that the microwave processed WC/Co tools are not only cost effective but also exhibited much better overall performance than the standard tools. The results of the field tests performed by Dennis Tool Co. showed remarkable advantage and improvement in their overall performance. For example: wear test shows an increase of 20-30%, corrosion test showed much higher resistance to the acid attack, erosion test exhibited about 15% better resistance than standard sinter-HIP parts. This proves the success of microwave technology for WC/Co based drilling tools. While we have successfully transferred the technology to our industrial partner Dennis Tool Co., they have signed an agreement with Valenite, a world leading WC producer of cutting and drilling tools and wear parts, to push aggressively the new microwave technology in

  10. Bias field free tunability of microwave properties based on geometrically controlled isolated permalloy nanomagnets

    NASA Astrophysics Data System (ADS)

    Haldar, Arabinda; Adeyeye, Adekunle Olusola

    2016-04-01

    We have investigated the static and dynamic properties of two lithographically patterned bi-stable nanomagnets. Different ground magnetic states were realized using a simple in-plane field initialization technique. These states were directly imaged with magnetic force microscopy. Using the broadband ferromagnetic spectroscopy, we show that different magnetic ground states are associated with distinct microwave absorption spectra due to the variation of the internal magnetic field leading to large shift between the absorption spectra. Our experimental observations are in good agreement with micromagnetic simulations which also indicate the possibility of sub-ns switching between magnetic states using a rectangular pulse field.

  11. Estimation of biophysical properties of forest canopies through inversion of microwave scatterometer data

    NASA Technical Reports Server (NTRS)

    Pitts, D. E.; Badhwar, G. D.; Rayna, E.

    1985-01-01

    A method for estimating the biophysical properties of a forest canopy through inversion of microwave scatterometer data is discussed. A C-band scatterometer flown over an aspen site in northern Minnesota during 19 days from May 2 to October 20, 1984, was modified to enable continuous recording of the range of the target. This provided the backscatter cross section as a function of range and was used to study scattering processes within the canopy. The remote estimates of HH, VV, and HV extinction coefficient values agreed well with the estimates obtained with the use of an active radar calibrator.

  12. Synthesis, Characterization, and Microwave Absorption Property of the SnO2 Nanowire/Paraffin Composites

    NASA Astrophysics Data System (ADS)

    Feng, H. T.; Zhuo, R. F.; Chen, J. T.; Yan, D.; Feng, J. J.; Li, H. J.; Cheng, S.; Wu, Z. G.; Wang, J.; Yan, P. X.

    2009-12-01

    In this article, SnO2 nanowires (NWs) have been prepared and their microwave absorption properties have been investigated in detail. Complex permittivity and permeability of the SnO2 NWs/paraffin composites have been measured in a frequency range of 0.1-18 GHz, and the measured results are compared with that calculated from effective medium theory. The value of maximum reflection loss for the composites with 20 vol.% SnO2 NWs is approximately -32.5 dB at 14 GHz with a thickness of 5.0 mm.

  13. Electrical properties of CZTS pellets made from microwave-processed powder

    NASA Astrophysics Data System (ADS)

    Ghediya, Prashant R.; Chaudhuri, Tapas K.

    2015-06-01

    Electrical properties of the kesterite copper zinc tin sulphide (CZTS) pellets in the temperature range from 300 K to 500 K are reported. The pellets are p-type with thermoelectric power (TEP) of + 175 µV/K. Electrical conductivity (σ) increases with the temperatures and is found to be due to thermionic emission (TE) over grain boundary (GB) barriers with activation energy of 170 meV. CZTS pellets are made from micropowders synthesized by microwave irradiation of precursor solution. Formation of kesterite CZTS is confirmed by X-ray diffraction (XRD) and Raman spectroscopy. Scanning Electron Microscope (SEM) shows that powder is micron sized spherical particles.

  14. Metamaterials: composite materials with unnatural electromagnetic properties

    NASA Astrophysics Data System (ADS)

    Pniewski, Jacek; Saj, W. M.; Antosiewicz, Tomasz; Szoplik, Tomasz

    2005-08-01

    The idea of a substance with simultaneously negative values of dielectric permittivity ɛ and magnetic permeability μ presented by Veselago in 1968 has been brought to reality. Firstly, negative permittivity ɛ(ω) of a three dimensional photonic structure composed of thin metal wires was experimentally demonstrated in the GHz range. Secondly, a concept of split ring resonator has appeared and a structure composed of such metal resonators was shown to have negative permeability μ. Consequently, in a so called double negative, both ɛ(ω) and μ(ω) < 0, composite material made of cells consisting of a split ring resonator and a wire unnatural phenomenon of negative refraction was experimentally observed in the microwave spectral region. Recently, perfect lenses made of metamaterial with negative refraction index, photonic crystal or metal slabs were used to focus light below the diffraction limit of resolution. Electromagnetic transport of energy in plasmon waveguides made of subwavelength metallic elements offers a great potential value for nanoscale photonic devices of the future.

  15. Material properties of ceramics for dental applications

    NASA Astrophysics Data System (ADS)

    Quinn, Janet Bernice

    2000-12-01

    Ceramic tooth-replacement materials have been greatly improved since their introduction near the end of the eighteenth century, but still have problems concerning clinical performance and aesthetics. Material property testing has advanced as well as the ability to form new dental ceramics. The purpose of this study was to test some of the new materials according to recently developed standards, and to utilize the results to better understand, predict and determine how to improve dental material performance and machinability. Aspects of this study include unique applications of testing methodology and the development of a new edge chipping test. A new brittleness parameter, B, is introduced. Unlike previously suggested brittleness parameters, B has theoretical significance as a volume energy to surface energy ratio. The ascertained properties were used to evaluate the dental ceramics. Toughness-related parameters were important in the clinical results, and correlations with microstructural characteristics indicate potential improvements as well as limitations. A good fit to a model predicting toughness increases with grain size, for example, suggests processing-induced thermal mismatch stresses as a toughening mechanism in glass-ceramics. Stresses that are too high, however, can result in local microcracking and a decrease in toughness. Machinability is of particular importance in fabricating dental components, which have complicated shapes and tight tolerances. As there is no currently accepted quantitative definition of machinability, a subjective analysis involving professional machinists and a regression analysis was used. Material properties and a theoretical model for material removal rates, based on lateral crack formation, were compared with the subjective machinability rankings. Although there were differences among the machinists' criteria, hardness was found to be the single most effective property in predicting machinability. High temperature properties

  16. Average Dielectric Property Analysis of Complex Breast Tissue with Microwave Transmission Measurements

    PubMed Central

    Garrett, John D.; Fear, Elise C.

    2015-01-01

    Prior information about the average dielectric properties of breast tissue can be implemented in microwave breast imaging techniques to improve the results. Rapidly providing this information relies on acquiring a limited number of measurements and processing these measurement with efficient algorithms. Previously, systems were developed to measure the transmission of microwave signals through breast tissue, and simplifications were applied to estimate the average properties. These methods provided reasonable estimates, but they were sensitive to multipath. In this paper, a new technique to analyze the average properties of breast tissues while addressing multipath is presented. Three steps are used to process transmission measurements. First, the effects of multipath were removed. In cases where multipath is present, multiple peaks were observed in the time domain. A Tukey window was used to time-gate a single peak and, therefore, select a single path through the breast. Second, the antenna response was deconvolved from the transmission coefficient to isolate the response from the tissue in the breast interior. The antenna response was determined through simulations. Finally, the complex permittivity was estimated using an iterative approach. This technique was validated using simulated and physical homogeneous breast models and tested with results taken from a recent patient study. PMID:25585106

  17. Dielectric properties and emissivity of seawater at C-band microwave frequency.

    PubMed

    Murugkar, A G; Joshi, A S; Kurtadikar, M L

    2012-10-01

    Microwave remote sensing applications over ocean using radar and radiometers, a precise knowledge of emissivity and reflectivity, are required. Emissivity of ocean surface is a function of the surface configuration, frequency of radiation, temperature and its dielectric properties. The emissivity of a smooth ocean surface at a particular wavelength is determined by its complex dielectric properties. In present study, laboratory measurements of complex dielectric properties, real part epsilon', and imaginary part epsilon", of surface seawater samples collected from Bay of Bengal and Arabian Sea are carried out. Measurements of these seawater samples are done at 5 GHz and 30 degrees C using an automated C-band microwave bench set up. The salinity of samples is also measured using autosalinometer. The salinity values are used to determine epsilon' and epsilon" using the Debye equations. The normal incidence emissivity and brightness temperature values for smooth sea surface are reported for surface samples. The dielectric constant epsilon' decreases and dielectric loss increases with increase in salinity at 5 GHz and 30 degrees C. At normal incidence, emissivity is almost constant for varying salinities.

  18. Average dielectric property analysis of complex breast tissue with microwave transmission measurements.

    PubMed

    Garrett, John D; Fear, Elise C

    2015-01-01

    Prior information about the average dielectric properties of breast tissue can be implemented in microwave breast imaging techniques to improve the results. Rapidly providing this information relies on acquiring a limited number of measurements and processing these measurement with efficient algorithms. Previously, systems were developed to measure the transmission of microwave signals through breast tissue, and simplifications were applied to estimate the average properties. These methods provided reasonable estimates, but they were sensitive to multipath. In this paper, a new technique to analyze the average properties of breast tissues while addressing multipath is presented. Three steps are used to process transmission measurements. First, the effects of multipath were removed. In cases where multipath is present, multiple peaks were observed in the time domain. A Tukey window was used to time-gate a single peak and, therefore, select a single path through the breast. Second, the antenna response was deconvolved from the transmission coefficient to isolate the response from the tissue in the breast interior. The antenna response was determined through simulations. Finally, the complex permittivity was estimated using an iterative approach. This technique was validated using simulated and physical homogeneous breast models and tested with results taken from a recent patient study.

  19. The manufacture, characterisation and microwave properties of aligned M ferrite fibres

    NASA Astrophysics Data System (ADS)

    Pullar, R. C.; Appleton, S. G.; Bhattacharya, A. K.

    1998-07-01

    Gel fibres of strontium and barium M ferrite were blow spun from an aqueous inorganic sol and collected as aligned tow blankets. Both were then calcined to 1000°C and characterised using a variety of techniques. The ceramic fibres were shown to be the respective single phase crystalline M ferrites at 1000°C by X-ray diffraction, and compared to standard commercially available M ferrites at this temperature they demonstrated a favourable grain structure of less than 1 μm. Measurement of the microwave permeability spectra showed both materials exhibiting ferromagnetic resonance frequencies consistent with those reported in the literature.

  20. Microwave solid-state synthesis of LiV(3)O(8) as cathode material for lithium batteries.

    PubMed

    Yang, Gang; Wang, Guan; Hou, Wenhua

    2005-06-01

    A novel and economical microwave route has been developed for the synthesis of electrochemically active LiV(3)O(8) material by using a domestic microwave oven. The heating behavior of the designed reaction system guided the preparation of LiV(3)O(8) at a suitable irradiation power (i.e. heating rate), reaction time, and temperature. At the lowest irradiation power, the conversion fraction of reactants was mainly controlled by reaction temperature. Characterization results of X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Raman spectroscopy, scanning (SEM) and transmission (TEM) electron microscopy, and BET surface areas indicated that the phases of samples prepared by microwave and traditional methods were in good agreement. Nevertheless, the crystallinity, crystallite configuration, and morphology of the samples were different, and were affected by the irradiation time and power. A floppy superposition structure of nanosheets (the size of one nanosheet was about 4.5 microm x 1.2 microm x 3 nm) was preferentially grown at the lowest irradiation power, and this effect on structure was more in evidence as the nanorods formed at the highest irradiation power. Electrochemical studies on ionic conductivity, electrochemical impedance spectroscopy (EIS), and charge-discharge capacity were carried out. It was found that the conductivity, first discharge capacity, and cycle performances of the samples were affected by the crystal size, crystallinity, and crystal configuration and defection concentration. The sample L30 prepared at the lowest irradiation power and the shortest time (30 min) showed the highest discharge capacity (335 mAh/g), but its discharge capacity decreased rapidly. By comparison, the sample L100 had a floppy superposition structure of nanosheets and a high surface area, provided a good two-dimensional channel for the transition of Li(+) ions, and was stable during the intercalation/deintercalation process of Li(+) ions, therefore the high

  1. Dielectric Properties of Strontium Titanate Filled Mullite Composites in Microwave Region

    NASA Astrophysics Data System (ADS)

    See, Alex; Hassan, Jumiah; Hashim, Mansor; Yusoff, W. Mohd. Daud Wan

    2008-05-01

    This research was designed to form better dielectric composite material using one steady state dielectric with a good dielectric material. Distinct dielectric composite was successfully produced using locally sourced kaolinite clay. The samples were made using kaolinite as the base matrix and Strontium Titanate (ST) added in varying ratios. Strontium Titanate were synthesized via solid-state reaction using Strontium Carbonate and rutile Titanium (IV) Oxide with sintering at 1300 °C. Local white kaolinite was used to fuse the barium titanate material in varying weight ratios. The powders were dry-mixed and made into pellets for calcination at 1000 °C. The dielectric measurements were carried out using the HP 4291B Impedance Analyzer dielectric setup. Three samples were prepared, namely 10%ST, 20%ST and 30%ST. The dielectric measurements were carried out at room temperature. Microwave region measurements showed steady state and linear dielectric relaxation ranging from 7 in the control sample and dropping down to 5 in 30%ST. The responses indicate linear relation between ST addition and microwave region dielectric permittivity

  2. Improved microwave absorption and electromagnetic properties of BaFe{sub 12}O{sub 19}-poly(vinylidene fluoride) composites by incorporating reduced graphene oxides

    SciTech Connect

    He, Hongcai; Luo, Feifei; Qian, Neng; Wang, Ning

    2015-02-28

    Three-phase composites of poly(vinylidene fluoride)-BaFe{sub 12}O{sub 19}-reduced graphene oxide (PVDF–BFO-RGO) were synthesized by a facile wet chemical method and hot-pressing approach. The phase structure, topography of the hybrid materials were characterized by X-ray diffraction, scanning electron microscopy, and Raman spectra. Influence of RGO on their electromagnetic properties was investigated. Especially, improved microwave absorption and electromagnetic properties of BaFe{sub 12}O{sub 19}–PVDF composites by incorporating RGO were obtained and studied. The PVDF/BFO/RGO sample with m(RGO):m(BFO) = 5:100 shows the best microwave absorption properties with a minimum RL = −32 dB at 11 GHz and with the bandwidth less than −20 dB from 9.6 to 12.8 GHz. The composites were believed to have potential applications as the microwave absorber.

  3. Properties of five toughened matrix composite materials

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Dow, Marvin B.

    1992-01-01

    The use of toughened matrix composite materials offers an attractive solution to the problem of poor damage tolerance associated with advanced composite materials. In this study, the unidirectional laminate strengths and moduli, notched (open-hole) and unnotched tension and compression properties of quasi-isotropic laminates, and compression-after-impact strengths of five carbon fiber/toughened matrix composites, IM7/E7T1-2, IM7/X1845, G40-800X/5255-3, IM7/5255-3, and IM7/5260 have been evaluated. The compression-after-impact (CAI) strengths were determined primarily by impacting quasi-isotropic laminates with the NASA Langley air gun. A few CAI tests were also made with a drop-weight impactor. For a given impact energy, compression after impact strengths were determined to be dependent on impactor velocity. Properties and strengths for the five materials tested are compared with NASA data on other toughened matrix materials (IM7/8551-7, IM6/1808I, IM7/F655, and T800/F3900). This investigation found that all five materials were stronger and more impact damage tolerant than more brittle carbon/epoxy composite materials currently used in aircraft structures.

  4. Microwave-assisted Synthesis and Biomedical Applications of Inorganic Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Jia, Juncai

    Inorganic nanostrucured materials have attracted much attention owing to their unique features and important applications in biomedicine. This thesis describes the development of rapid and efficient approaches to synthesize inorganic nanostructures, and introduces some potential applications. Magnetic nanostructures, such as necklace-like FeNi3 magnetic nanochains and magnetite nanoclusters, were synthesized by an efficient microwave-hydrothermal process. They were used as magnetic resonance imaging (MRI) contrast agents. Magnetic FeNi3 nanochains were synthesized by reducing iron(III) acetylacetonate and nickel(II) acetylacetonate with hydrazine in ethylene glycol solution without any template under microwave irradiation. This was a rapid and economical route based on an efficient microwave-hydrothermal process which significantly shortened the synthesis time to mins. The morphologies and size of the materials could be effectively controlled by adjusting the reaction conditions, such as, the reaction time, temperature and concentrations of reactants. The morphology and composition of the as-prepared products were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The size of the aligned nanospheres in the magnetic FeNi 3 chains could be adjusted from 150nm to 550nm by increasing the amounts of the precursors. Magnetic measurements revealed that the FeNi3 nanochains showed enhanced coercivity and saturation magnetization. Toxicity tests by exposure of FeNi3 nanochains to the zebrafish larvae showed that the as-prepared nanochains were biocompatible. In vitro magnetic resonance imaging (MRI) confirms the effectiveness of the FeNi 3 nanochains as sensitive MRI probes. Magnetite nanoclusters were synthesized by reducing iron(III) acetylacetonate with hydrazine in ethylene glycol under microwave irradiation. The nanoclusters showed enhanced T2

  5. Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world

    NASA Astrophysics Data System (ADS)

    Wen, B.; Wang, X. X.; Cao, W. Q.; Shi, H. L.; Lu, M. M.; Wang, G.; Jin, H. B.; Wang, W. Z.; Yuan, J.; Cao, M. S.

    2014-05-01

    In this work, reduced graphene oxide (r-GO) and graphite nanosheet (GN) were obtained via the chemical approach. Furthermore, r-GO composites and GN composites were prepared with a paraffin wax host. r-GO composites show high dielectric properties and electromagnetic interference shielding efficiency (EMI SE). Compared with the GN composites, the loss tangent and EMI SE of the r-GO composites with the same mass ratio are enhanced ~5 to 10 times and ~3 to 10 times, respectively. The enhanced attenuation capacity arises from higher specific surface area, clustered defects and residual bonds of the r-GOs, which increase the polarization loss, scattering and conductivity of the composite. Moreover, the higher conductivity of r-GO composites leads to higher EMI SE compared with that of GN composites. These results suggest that r-GOs are highly promising fillers for microwave attenuation in the carbon family and that r-GO composites are high-performance EMI shielding materials with application anticipated to many fields.In this work, reduced graphene oxide (r-GO) and graphite nanosheet (GN) were obtained via the chemical approach. Furthermore, r-GO composites and GN composites were prepared with a paraffin wax host. r-GO composites show high dielectric properties and electromagnetic interference shielding efficiency (EMI SE). Compared with the GN composites, the loss tangent and EMI SE of the r-GO composites with the same mass ratio are enhanced ~5 to 10 times and ~3 to 10 times, respectively. The enhanced attenuation capacity arises from higher specific surface area, clustered defects and residual bonds of the r-GOs, which increase the polarization loss, scattering and conductivity of the composite. Moreover, the higher conductivity of r-GO composites leads to higher EMI SE compared with that of GN composites. These results suggest that r-GOs are highly promising fillers for microwave attenuation in the carbon family and that r-GO composites are high-performance EMI

  6. Method and apparatus for selectively annealing heterostructures using microwave

    NASA Technical Reports Server (NTRS)

    Atwater, Harry A. (Inventor); Brain, Ruth A. (Inventor); Barmatz, Martin B. (Inventor)

    1998-01-01

    The present invention discloses a process for selectively annealing heterostructures using microwaves. A heterostructure, comprised of a material having higher microwave absorption and a material having lower microwave absorption, is exposed to microwaves in the cavity. The higher microwave absorbing material absorbs the microwaves and selectively heats while the lower microwave absorbing material absorbs small amounts of microwaves and minimally heats. The higher microwave absorbing material is thereby annealed onto the less absorbing material which is thermally isolated.

  7. Method and apparatus for selectively annealing heterostructures using microwaves

    NASA Technical Reports Server (NTRS)

    Atwater, Harry A. (Inventor); Brain, Ruth A. (Inventor); Barmatz, Martin B. (Inventor)

    1998-01-01

    The present invention discloses a process for selectively annealing heterostructures using microwaves. A heterostructure, comprised of a material having higher microwave absorption and a material having lower microwave absorption, is exposed to microwaves in the cavity. The higher microwave absorbing material absorbs the microwaves and selectively heats while the lower microwave absorbing material absorbs small amounts of microwaves and minimally heats. The higher microwave absorbing material is thereby annealed onto the less absorbing material which is thermally isolated.

  8. Construction of CuS Nanoflakes Vertically Aligned on Magnetically Decorated Graphene and Their Enhanced Microwave Absorption Properties.

    PubMed

    Liu, Panbo; Huang, Ying; Yan, Jing; Yang, Yiwen; Zhao, Yang

    2016-03-01

    Hybrid nanocomposites with enhanced microwave absorption properties have been designed by growing CuS nanoflakes on magnetically decorated graphene, and the effect of special nanostructures on microwave absorption properties has been investigated. The structure of the nanocomposites was characterized by Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), N2 adsorption-desorption, and vibrating sample magnetometer (VSM). The influence of cetyltrimethylammonium bromide (CTAB) on the morphology of CuS nanoflakes was also investigated. A possible formation process of the nanocomposites and the mechanism of microwave absorption were explained in detail. As an absorber, the nanocomposites with a filler loading of 20 wt % exhibited enhanced microwave absorption properties due to the special nanostructures, extra void space, and synergistic effect. The maximum reflection loss can reach -54.5 dB at 11.4 GHz, and the absorption bandwidths exceeding -10 dB are 4.5 GHz with a thickness of 2.5 mm, which can be adjusted by the thickness. The results indicate that the hybrid nanocomposites with enhanced microwave absorption properties and lightweight have a promising future in decreasing electromagnetic wave irradiation.

  9. CREST-Snow Field Experiment: analysis of snowpack properties using multi-frequency microwave remote sensing data

    NASA Astrophysics Data System (ADS)

    Lakhankar, T.; Muñoz, J.; Romanov, P.; Powell, A. M.; Krakauer, N.; Rossow, W.; Khanbilvardi, R.

    2012-07-01

    The CREST-Snow Analysis and Field Experiment (CREST-SAFE) was carried out during winter 2011 at the research site of the National Weather Service office, Caribou ME, USA. In this ground experiment, dual polarized microwave (37 and 89 GHz) observations are conducted along with detailed synchronous observations of snowpack properties. The objective of this long term field experiment is to improve our understanding of the effect of changing snow characteristics (grain size, density, temperature) under various meteorological conditions on the microwave emission of snow and hence to improve retrievals of snow cover properties from satellite observations in the microwave spectral range. In this paper, we presented the overview of field experiment and preliminary analysis of the microwave observations for the first year of experiment along with support observations of the snowpack properties obtained during the 2011 winter season. SNTHERM and HUT (Helsinki University of Technology) snow emission model were used to simulate snowpack properties and microwave brightness temperatures respectively. Simulated brightness temperatures were compared with observed brightness temperature from radiometer under different snow conditions. On the time series, large difference in the brightness temperature were observed for fresh compared to aged snow even under the same snow depth, suggesting a substantial impact of other parameters such as: snow grain size and density on microwave observations. A large diurnal variation in the 37 and 89 GHz brightness temperature with small depolarization factor was observed due to cold nights and warm days, which caused a cycling between wet snow and ice-over-snow states during the early spring. Scattering analysis of microwave brightness temperatures from radiometers were performed to distinguished different snow conditions developed through the winter season.

  10. Effect of Ni content on microwave absorbing properties of MnAl powder

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-zhong; Lin, Pei-hao; Huang, Wei-chao; Pan, Shun-kang; Liu, Ye; Wang, Lei

    2016-09-01

    MnAlNi powder was prepared by the process of vacuum levitation melting and high-energy ball milling, The morphology and phase structure of the powder were analyzed by Scanning Electron Microscope(SEM), X-ray diffraction(XRD) and the effect of the Ni content on microwave absorbing properties of MnAl powder was investigated by an vector network analyzer. The addition of Ni, which improved the microwave absorbing properties of MnAl powder but not changed the composition of Al8Mn5 alloy. The minimum reflectivity of (Al8Mn5)0.95Ni0.05 powder with a coating thickness (d) of 1.8 mm was about -40.8 dB and has better bandwidth effect, the absorbing mechanism of AlMnNi powders on the electromagnetic was related to the electromagnetic loss within the absorbing coatings and the effect of coating thickness on the interference loss of electromagnetic wave.

  11. Synthesis, dual-nonlinear magnetic resonance and microwave absorption properties of nanosheet hierarchical cobalt particles.

    PubMed

    Wen, S L; Liu, Y; Zhao, X C; Cheng, J W; Li, H

    2014-09-14

    In this paper, we report the synthesis of three kinds of novel nanosheet hierarchical cobalt particles by adjusting the [C4H4O6](2-)/Co(2+) ratio through a liquid reduction method. We investigated the electromagnetic properties of the cobalt particles in detail over the microwave frequency range of 1-18 GHz. The results show that the real part of the permittivity decreases and the imaginary part of the permeability increases with an increase in the [C4H4O6](2-)/Co(2+) ratio. The permeability displays two resonance peaks over the frequency range. The cobalt particles with [C4H4O6](2-)/Co(2+) = 6 have a maximum reflection loss of -48.03 dB at 13.61 GHz, and the effective absorption bandwidth (RL ≤ -10 dB) is 6.76 GHz corresponding to a thickness of 1.7 mm. Considering the impedance matching and attenuation based on the electromagnetic parameters, we designed a way to obtain cobalt particles with excellent microwave absorption properties by decreasing the real part of permittivity and increasing the imaginary part of permeability.

  12. Enhanced Microwave Absorption Properties of Carbon Black/Silicone Rubber Coating by Frequency-Selective Surface

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoning; Luo, Fa; Gao, Lu; Qing, Yuchang; Zhou, Wancheng; Zhu, Dongmei

    2016-10-01

    A square frequency-selective surface (FSS) design has been employed to improve the microwave absorption properties of carbon black/silicone rubber (CBSR) composite coating. The FSS is placed on the surface of the CBSR coating. The effects of FSS design parameters on the microwave absorption properties of the CBSR coating have been investigated, including the size and period of the FSS design, and the thickness and permittivity of the coating. Simulation results indicate that the absorption peak for the CBSR coating alone is related to its thickness and electromagnetic parameters, while the combination of the CBSR coating with a FSS can exhibit a new absorption peak in the reflection curve; the frequency of the new absorption peak is determined by the resonance of the square FSS design and tightly depends on the size of the squares, with larger squares in the FSS design leading to a lower frequency of the new absorption peak. The enhancement of the absorption performance depends on achievement of a new absorption peak using a suitable size and period of the FSS design. In addition, the FSS design has a stable frequency response for both transverse electromagnetic (TE) and transverse magnetic (TM) polarizations as the incident angle varies from 0° to 40°. The optimized results indicate that the bandwidth with reflection loss below -5 dB can encompass the whole frequency range from 8 GHz to 18 GHz for thickness of the CBSR coating of only 1.8 mm. The simulation results are confirmed by experiments.

  13. Relative influence upon microwave emissivity of fine-scale stratigraphy, internal scattering, and dielectric properties

    USGS Publications Warehouse

    England, A.W.

    1976-01-01

    The microwave emissivity of relatively low-loss media such as snow, ice, frozen ground, and lunar soil is strongly influenced by fine-scale layering and by internal scattering. Radiometric data, however, are commonly interpreted using a model of emission from a homogeneous, dielectric halfspace whose emissivity derives exclusively from dielectric properties. Conclusions based upon these simple interpretations can be erroneous. Examples are presented showing that the emission from fresh or hardpacked snow over either frozen or moist soil is governed dominantly by the size distribution of ice grains in the snowpack. Similarly, the thickness of seasonally frozen soil and the concentration of rock clasts in lunar soil noticeably affect, respectively, the emissivities of northern latitude soils in winter and of the lunar regolith. Petrophysical data accumulated in support of the geophysical interpretation of microwave data must include measurements of not only dielectric properties, but also of geometric factors such as finescale layering and size distributions of grains, inclusions, and voids. ?? 1976 Birkha??user Verlag.

  14. Thermal expansion properties of composite materials

    NASA Technical Reports Server (NTRS)

    Johnson, R. R.; Kural, M. H.; Mackey, G. B.

    1981-01-01

    Thermal expansion data for several composite materials, including generic epoxy resins, various graphite, boron, and glass fibers, and unidirectional and woven fabric composites in an epoxy matrix, were compiled. A discussion of the design, material, environmental, and fabrication properties affecting thermal expansion behavior is presented. Test methods and their accuracy are discussed. Analytical approaches to predict laminate coefficients of thermal expansion (CTE) based on lamination theory and micromechanics are also included. A discussion is included of methods of tuning a laminate to obtain a near-zero CTE for space applications.

  15. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... individual item is tested before use to determine that the actual strength properties of that particular item... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties...

  16. Towards microwave imaging of single two-level defects in dielectric materials

    NASA Astrophysics Data System (ADS)

    de Graaf, Sebastian; Danilov, Andrey; Tzalenchuk, Alexander; Kubatkin, Sergey

    Two-level fluctuators (TLF) are a major source of decoherence in quantum devices and significant effort is invested towards better understanding and eliminating these types of material defects. Here we propose that a near-field scanning microwave microscope (NSMM) can be used to image individual two-level defects on the nano-scale, provided that such a microscope operates in the right regime. Not only would such a 'coherent' NSMM be able to obtain nano-scale spatial distributions of defects and their locations within dielectric materials, it would also be able to determine the relative orientation of the TLF dipole with respect to the dielectric crystal, giving vital information about the nature of the TLF. We theoretically describe the operation and capabilities of a 'coherent' NSMM and show that individual defects can be imaged in dielectric materials with low enough loss tangent, such as sapphire and silicon dioxide, relevant for solid state quantum technologies. We describe the requirements for constructing such an NSMM and report on our recent progress in setting up this technology.

  17. Characterization of undigested particulate material following microwave digestion of recycled document papers.

    PubMed

    McGaw, Elizabeth A; Szymanski, David W; Smith, Ruth Waddell

    2009-09-01

    Recycled document paper was microwave digested in a solution of HNO(3) and H(2)O(2) prior to analysis by inductively coupled plasma mass spectrometry (ICP-MS) to determine the trace elemental concentrations within the paper. Undigested particulate material was observed and subsequently characterized as a mixture of kaolin (clay) and TiO(2) by Fourier transform infrared spectroscopy and X-ray diffraction spectroscopy. The effect of the particulate material on the elemental concentrations was then investigated. Paper samples were completely digested in hydrofluoric acid (HF) and element concentrations determined in the HF and HNO(3)/H(2)O digests were statistically compared using Student's t-test (95% confidence limit). Statistical differences in element concentrations between the two digests were observed for only four elements and there was no evidence of element adsorption by the particulate material. Hence, the HNO(3)/H(2)O(2) digestion proved sufficient to digest paper for ICP-MS analysis, eliminating the need to use the hazardous and corrosive HF matrix.

  18. Microwave dielectric properties of Ba(Zn1/3Ta2 / 3)O3 for application in high power waveguide window

    NASA Astrophysics Data System (ADS)

    Sindam, Bashaiah; Raju, K. C. James

    2016-04-01

    Higher dielectric constant, low dielectric loss and good transmission characteristics have been the goal for developing the ceramic waveguide window for high power window applications. The choice of materials having high k with low dielectric loss and reduced window size is key parameters to achieve maximum microwave transmission without unleashing microwave dissipation. The microwave dielectric properties of synthesized Ba(Zn1/3Ta2 / 3)O3 (BZT) ceramics have been studied for high power window applications. The structural studies are correlated with microwave dielectric properties of BZT. The maximum values of dielectric constant ɛr = 30, Q × f0 = 102 THz and near zero temperature coefficient of resonance frequency were obtained for BZT ceramics sintered at the temperature of 1550 °C for 4 h. The measured results are used to design a tapered transition from air filled waveguide to narrow (reduced width and height) dielectric filled waveguide using Heckens linear taper at a specific frequency. The simulation result shows that the lower reflection loss is obtained for the tapered transition of the narrow BZT window as compared to the standard waveguide BZT window. The return loss of -34 dB is obtained for S-band waveguide window with a bandwidth of 675 MHz. The return loss observed in the narrow BZT window is -46 dB with a bandwidth of 570 MHz at a center frequency of 3.63 GHz. Most of the disadvantages in conventional windows will be rectified using the design of the taper transion employing narrow waveguide window in high power applications. Contribution to the Topical Issue "Materials for Dielectric Applications", edited by Maciej Jaroszewski and Sabu Thomas.

  19. Structural, transport and microwave properties of 123/sapphire films: Thickness effect

    NASA Technical Reports Server (NTRS)

    Predtechensky, M. R.; Smal, A. N.; Varlamov, Yu. D.; Vatnik, S. M.; Tukhto, O. M.; Vasileva, I. G.

    1995-01-01

    The effect of thickness and growth conditions on the structure and microwave properties has been investigated for the 123/sapphire films. It has been shown that in the conditions of epitaxial growth the Al atoms do not diffuse from substrate into the film and the films with thickness up to 100 nm exhibit the excellent direct current (DC) properties. The increase of thickness of GdBaCuO films causes the formation of extended line-mesh defects and the increase of the surface resistance (R(sub S)). The low value of surface resistance R(sub S)(75 GHz, 77K) = 20 mOhm has been obtained for the two layer YBaCuO/CdBaCuO/sapphire films.

  20. Structural, transport and microwave properties of 123/sapphire films: Thickness effect

    SciTech Connect

    Predtechensky, MR.; Smal, A.N.; Varlamov, Y.D.

    1994-12-31

    The effect of thickness and growth conditions on the structure and microwave properties has been investigated for the 123/sapphire films. It has been shown that in the conditions of epitaxial growth and Al atoms do not diffuse from substrate into the film and the films with thickness up to 100nm exhibit the excellent DC properties. The increase of thickness of GdBaCuO films causes the formation of extended line-mesh defects and the increase of the surface resistance (R{sub S}). The low value of surface resistance R{sub S}(75GHz,77K)=20 mOhm has been obtained for the two layer YBaCuO/CdBaCuO/sapphire films.

  1. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties must be based on enough tests of material meeting approved specifications to establish design values on...

  2. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties must be based on enough tests of material meeting approved specifications to establish design values on...

  3. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties must be based on enough tests of material meeting approved specifications to establish design values on...

  4. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties must be based on enough tests of material meeting approved specifications to establish design values on...

  5. Titan's Sand Seas properties from the modelling of microwave-backscattered signal of Cassini/SAR

    NASA Astrophysics Data System (ADS)

    Lucas, Antoine; Rodriguez, Sébastien; Lommonier, Florentin; Ferrari, Cécile; Paillou, Philippe; Le Gall, Alice; Narteau, Clément

    2016-04-01

    Titan's sand seas may reflect the current and past surface conditions. Assessing the physicochemical properties and the morphodynamics of the equatorial linear dunes is a milestone in our comprehension of the climatic and geological history of the largest Saturn's moon. Based on enhanced SAR processing leading to despeckled Cassini RADAR data sets, we analyzed quantitatively the surface properties (e.g., slopes, texture, composition...) over the sand seas. First, using a large amount of overlaps and a wide range of incidence angle and azimuths, we show that the radar cross-section over the inter-dunes strongly differs from the one over the dunes. This strongly suggests significant difference in the physical properties between these two geomorphic units. Then, we derived quantitatively the surface properties from the modelling of microwave-backscattered signal using a Monte-Carlo inversion. Our results show that dunes are globally more microwaves absorbent than the inter-dunes. The inter-dunes are smoother with a higher dielectric constant than the dunes. Considering the composition, the inter-dunes are in between the dunes and the bright inselbergs mainly composed of water ice, suggesting the presence of a shallow layer of sediment in between the dunes. This may suggest that Titan dunes are developing over a coarser sediment bed similarly to what is observed in some terrestrial sand seas such as in Ténéré desert (Niger, see also contribution #EGU2016-13383). Additionally, potential secondary bedforms (such as ripples) as well as avalanche faces may have been detected.

  6. Material modeling of biofilm mechanical properties.

    PubMed

    Laspidou, C S; Spyrou, L A; Aravas, N; Rittmann, B E

    2014-05-01

    A biofilm material model and a procedure for numerical integration are developed in this article. They enable calculation of a composite Young's modulus that varies in the biofilm and evolves with deformation. The biofilm-material model makes it possible to introduce a modeling example, produced by the Unified Multi-Component Cellular Automaton model, into the general-purpose finite-element code ABAQUS. Compressive, tensile, and shear loads are imposed, and the way the biofilm mechanical properties evolve is assessed. Results show that the local values of Young's modulus increase under compressive loading, since compression results in the voids "closing," thus making the material stiffer. For the opposite reason, biofilm stiffness decreases when tensile loads are imposed. Furthermore, the biofilm is more compliant in shear than in compression or tension due to the how the elastic shear modulus relates to Young's modulus. PMID:24560820

  7. Acoustical properties of highly porous fibrous materials

    NASA Technical Reports Server (NTRS)

    Lambert, R. F.

    1979-01-01

    Highly porous, fibrous bulk sound absorbing materials are studied with a view toward understanding their acoustical properties and performance in a wide variety of applications including liners of flow ducts. The basis and criteria for decoupling of acoustic waves in the pores of the frame and compressional waves in the frame structure are established. The equations of motion are recast in a form that elucidates the coupling mechanisms. The normal incidence surface impedance and absorption coefficient of two types of Kevlar 29 and an open celled foam material are studied. Experimental values and theoretical results are brought into agreement when the structure factor is selected to provide a fit to the experimental data. A parametric procedure for achieving that fit is established. Both a bulk material quality factor and a high frequency impedance level are required to characterize the real and imaginary part of the surface impedance and absorption coefficient. A derivation of the concepts of equivalent density and dynamic resistance is presented.

  8. Material properties of common suture materials in orthopaedic surgery.

    PubMed

    Najibi, S; Banglmeier, R; Matta, Jm; Tannast, M

    2010-01-01

    Suture materials in orthopaedic surgery are used for closure of wounds, repair of fascia, muscles, tendons, ligaments, joint capsules, and cerclage or tension band of certain fractures. The purpose of this study was to compare the biomechanical properties of eleven commonly used sutures in orthopaedic surgery. Three types of braided non-absorbable and one type of braided absorbable suture material with different calibers (n=77) underwent biomechanical testing for maximum load to failure, strain, and stiffness. All samples were tied by one surgeon with a single SMC (Seoul Medical Center) knot and three square knots. The maximum load to failure and strain were highest for #5 FiberWire and lowest for #0 Ethibond Excel (p<0.001). The stiffness was highest for #5 FiberWire and lowest for #2-0 Vicryl (p<0.001). In all samples, the failure of the suture material occurred at the knot There was no slippage of the knot in any of the samples tested. This data will assist the orthopaedic surgeon in selection and application of appropriate suture materials and calibers to specific tasks. PMID:21045977

  9. MATERIAL PROPERTIES OF COMMON SUTURE MATERIALS IN ORTHOPAEDIC SURGERY

    PubMed Central

    Najibi, S; Banglmeier, R; Matta, JM; Tannast, M

    2010-01-01

    Suture materials in orthopaedic surgery are used for closure of wounds, repair of fascia, muscles, tendons, ligaments, joint capsules, and cerclage or tension band of certain fractures. The purpose of this study was to compare the biomechanical properties of eleven commonly used sutures in orthopaedic surgery. Three types of braided non-absorbable and one type of braided absorbable suture material with different calibers (n=77) underwent biomechanical testing for maximum load to failure, strain, and stiffness. All samples were tied by one surgeon with a single SMC (Seoul Medical Center) knot and three square knots. The maximum load to failure and strain were highest for #5 FiberWire and lowest for #0 Ethibond Excel (p<0.001). The stiffness was highest for #5 FiberWire and lowest for #2-0 Vicryl (p<0.001). In all samples, the failure of the suture material occurred at the knot There was no slippage of the knot in any of the samples tested. This data will assist the orthopaedic surgeon in selection and application of appropriate suture materials and calibers to specific tasks. PMID:21045977

  10. Effect of different fat level on microwave cooking properties of goat meat patties.

    PubMed

    Das, Arun K; Rajkumar, V

    2013-12-01

    The study was carried out to evaluate the effect of various fat levels on the cooking and sensory properties of goat meat patties cooked by microwave energy. Goat meat patties were prepared with refined vegetable oil to get fat level of 5, 10, 15 and 20%. Each patty was cooked in a microwave oven with full power (700 W) operating at 2450 MHz to an internal temperature of 75-80 °C. pH value of raw patties with 5% fat level were lower compared to patties with 10, 15 and 20% fat level. Fat level did not affect emulsion stability of batter but it decreased as fat level increased. Microwave cooking time decreased as fat levels increased. With an increase in fat contents, protein and moisture in raw patties decreased and in cooked meat patties with 5% fat had higher protein and moisture content than those with more fat. Patties with 5% level showed lower cooking loss than other fat level. Water activity of patties was affected by fat level and patties with 15 and 20% fat had lower water activity than patties with 5 and 10% fat. As fat level increased, shear force value decreased indicating soft texture. Subjective colour evaluation indicated that 5% patties were darker and redder than patties with more fat. Sensory analysis revealed that goat meat patties with 5 and 10% fat had less flavour and juicer than patties with 15 and 20% fat. Goat meat patties with 20% fat were the juiciest. Tenderness and oiliness increased significantly with an increase in fat level. Patties with 15% fat were rated higher overall palatability than others. PMID:24426036

  11. Electromagnetic and microwave absorbing properties of the composites containing flaky FeSiAl powders mixed with MnO2 in 1-18 GHz

    NASA Astrophysics Data System (ADS)

    Xu, Haibing; Bie, Shaowei; Jiang, Jianjun; Yuan, Wei; Chen, Qian; Xu, Yongshun

    2016-03-01

    The flaky FeSiAl/ irregular shaped MnO2 composite with the different mass ratios were prepared by using a two-roll mixer and a vulcanizing machine. The morphologies of the composite absorbers were characterized by a scanning electron microscope. The microwave electromagnetic properties of the composites were measured using a vector network analyzer in the range of 1-18 GHz. The effect of the mass ratio of FeSiAl/MnO2 on the microwave loss properties of the composites was investigated. The results show that the reflection loss (RL) values exceeding -20 dB from 3.5 to 16.5 GHz can be obtained for the flaky FeSiAl/MnO2 mass ratio of 1:1 from 1.5 mm to 5 mm. In addition, the FeSiAl/MnO2 composite with the FeSiAl/MnO2 mass ratio of 7:3 has -10 dB bandwidth of 6.6 GHz (from 11.4-18 GHz) with a thickness of 1.5 mm. It is found that the flaky FeSiAl/MnO2 composites can be potential microwave absorption materials.

  12. Structure, magnetic and microwave properties of FeNi invar nanoparticles obtained by electrical explosion of wire in different preparation conditions

    NASA Astrophysics Data System (ADS)

    Kurlyandskaya, G. V.; Bhagat, S. M.; Bagazeev, A. V.; Medvedev, A. I.; Ballesteros, A.; Beketov, I. V.; Safronov, A. P.

    2016-11-01

    Magnetic nanoparticles (MNPs) of close to invar (Fe0.635Ni0.365) composition were prepared by the electrical explosion of wire using different conditions to insure different values of overheating rates. X-ray diffraction, transmission electron microscopy, low temperature nitrogen adsorption, magnetic and microwave measurements were used for the characterization of MNPs. Increase of the energy injected into the wire led to increase of the specific surface (Ssp) of the produced MNPs from 4.6 to 13.5 m2/g. The fabricated MNPs were spherical and weakly aggregated with the average weighted diameter in the range of 54-160 nm depending on the Ssp. The phase composition of FeNi MNPs consists of two solid solutions of Ni in α-phase and γ-phase lattices. The increase of the energy injected into the wire leads to increase of the α-phase from 5 to 10 wt% as the injected energy raised from 0.8 to 2.5 times the sublimation energies of the wire material. Comparative analysis of structure magnetic and microwave properties showed that the obtained MNPs are important magnetic materials with high saturation magnetization and significant zero field microwave absorption which can be expected to lead to important technological applications.

  13. Exploring a Code's Material Properties Capability

    NASA Astrophysics Data System (ADS)

    Kaul, Ann

    2011-06-01

    LANL is moving its simulation workload to the laboratory's 2- and 3-D ASC hydrodynamic codes. Aggressive validation of these material simulation capabilities against experimental data is underway. Choosing appropriate material properties models and parameter values for a simulation is an area of particular concern. To address this issue, each material and experiment combination should be systematically examined through a set of code simulations. In addition to comparing competing materials models, the effect of simulation choices such as mesh size and ALE schemes for mesh untangling needs to be explored. Thoroughly understanding how such choices affect the calculated results of single physics simulations provides a user with a well-informed basis from which to ascertain how accurately a more complicated simulation portrays physical reality. Results for Lagrangian/ALE simulations of some experiments which are typically used for validation of strength and damage models will be presented. These material processes are the result of significant localization of strain and stress, which can be difficult to capture adequately on a finite-size mesh. Modeled strength experiments may include the lower strain rate (~104 s-1) gas gun driven Taylor impacts, the higher strain rate (~105 - 106 s-1) HE products driven perturbed plates, and the high shear tophats. Modeled damage experiments may include gas-gun driven flyer plates and electro-magnetically-driven cylindrical configurations.

  14. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1989-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. Work performed has shown that laboratory measurements of the millimeter-wave opacity of ammonia between 7.5 mm and 9.3 mm and also at the 3.2 mm wavelength require a different lineshape to be used in the theoretical prediction for millimeter-wave ammonia opacity than was previously used. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.

  15. Structural, Magnetic, and Electrical Properties of Microwave-Sintered Cr3+-Doped Sr Hexaferrites

    NASA Astrophysics Data System (ADS)

    Praveena, K.; Bououdina, M.; Penchal Reddy, M.; Srinath, S.; Sandhya, R.; Katlakunta, Sadhana

    2015-01-01

    SrCr x Fe12- x O19 ( x = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9) hexaferrites were prepared by a microwave-hydrothermal method and subsequently sintered at 950°C for 90 min using the microwave sintering method. The results show that, with increasing Cr3+ content, the lattice parameters changed anisotropically. The average grain sizes of sintered samples were in the range of 280 nm to 660 nm. The saturation magnetization systematically decreased with increasing Cr3+ doping, but the coercivity values increased. The electrical resistivity (log ρ) decreased linearly with increasing temperature up to a certain temperature known as the transition temperature ( T c), and T c decreased with further increase ( x > 0.5) of the Cr3+ content. This decrease in log ρ and the activation energy ( E g) is due to electron hopping and occupancy of doped ions at different lattice sites. We found that the dielectric constant and dielectric loss for all the samples decreased with the Cr3+ content. The structural, magnetic, and electrical properties of Cr3+-doped SrFe12O19 hexaferrites have thus been investigated.

  16. Microwave-absorbing properties of NiCoZn spinel ferrites

    NASA Astrophysics Data System (ADS)

    Xie, JianLiang; Han, Mangui; Chen, Liang; Kuang, Renxiong; Deng, Longjiang

    2007-07-01

    In this paper, the microwave-absorbing properties of (Ni 1-x-yCo xZn y)Fe 2O 4 spinel ferrites have been investigated within the frequency range of 0.5-14 GHz. There are two kinds of resonance peaks observed in the permeability spectra: domain-wall resonances at lower frequency and spin-rotation resonances at higher frequency. The reflection loss (RL) calculations show that the prepared NiCoZn spinel ferrites are good electromagnetic (EM) wave absorbers in microwave range. In terms of the absorbing frequency band (AFB) and the matching thickness ( tm), (Ni 0.407Co 0.207Zn 0.386)Fe 2O 4 shows the best performances: tm=3.15 mm and the AFB is 8.64-11.2 GHz. Decreasing the weight ratio of NiCoZn ferrites in ferrites/wax composites, the matching thickness decreases and the AFB shifts to higher frequencies. Compared with the absorbers with single-layer ferrites, the absorbers with double-layers ferrites have better absorbing performances, such as a thinner matching thickness and a wider EM wave AFB.

  17. Influence of matching thickness on the absorption properties of doped barium ferrites at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Ghasemi, A.; Saatchi, A.; Salehi, M.; Hossienpour, A.; Morisako, A.; Liu, X.

    2006-02-01

    The development and characterization of hexagonal ferrite powders of BaFe9Mn1.5Ti1.5O19, BaFe9Mn1.5Co1.5O19, and BaFe9Ti1.5Co1.5O19 as the microwave absorbers have been investigated. The ferrites were fabricated by conventional ceramic technology. The developed ferrite powders 80% by weight were mixed with polyvinylchloride plasticizer and fired to form rubber-ferrite with the thickness of 1.5 mm, 2 mm and 2.5 mm. XRD was used to identify structures of the samples. The magnetoplumbite structures for all the samples have been formed. Vibrating sample magnetometer was used to determine the hysteresis loops of barium ferrite and BaFe9Mn1.5Ti1.5O19 at room temperature. The vector network analyzers in the frequency range of 12 to 20 GHz have measured the reflection loss properties of rubber-ferrite. It was concluded that BaFe9Mn1.5Ti1.5O19 with thickness of 2 mm could be designed as a wide-band microwave absorber. By SEM, the size and morphology of grains in BaFe9Mn1.5Ti1.5O19 ferrite were examined. The results showed that ferrite with grain size of 5 μm do not have any impurities.

  18. Microwave properties of ferromagnetic nanowire arrays patterned with periodic and quasi-periodic structures

    NASA Astrophysics Data System (ADS)

    Lei, Yuxiong; Chen, Zheng; Li, Liangliang

    2015-05-01

    Microwave properties of ferromagnetic nanowire arrays patterned with periodic and quasi-periodic structures were investigated in this study. The periodic and quasi-periodic structures were designed based on Fibonacci sequence and golden ratio. Ni nanowires arrays were electrodeposited in anodic aluminum oxide (AAO) templates with patterned Cu electrodes, and then the AAO templates were attached to the coplanar waveguide lines fabricated on quartz substrate for measurement. The S21 of both periodic and quasi-periodic structure-patterned Ni nanowire arrays showed an extra absorption peak besides the absorption peak due to the ferromagnetic resonance of Ni nanowires. The frequency of the absorption peak caused by the patterned structure could be higher than 40 GHz when the length and arrangement of the structural units were modified. In addition, the frequency of the absorption peak due to the quasi-periodic structure was calculated based on a simple analytical model, and the calculated value was consistent with the measured one. The experimental data showed that it could be a feasible approach to tune the performance of microwave devices by patterning ferromagnetic nanowires.

  19. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1988-01-01

    In the first half of this grant year, laboratory measurements were conducted on the millimeter-wave properties of atmospheric gases under simulated conditions for the outer planet. Significant improvements in the current system have made it possible to accurately characterize the opacity from gaseous NH3 at longer millimeter wavelengths (7 to 10 mm) under simulated Jovian conditions. In the second half of the grant year, it is hoped to extend such measurements to even shorter millimeter-wavelengths. Further analysis and application of the laboratory results to microwave and millimeter-wave absorption data for the outer planets, such as results from Voyager Radio Occultation experiments and earth-based radio astronomical observations will be continued. The analysis of available multispectral microwave opacity data from Venus, including data from the most recent radio astronomical ovservations in the 1.3 to 3.6 cm wavelength range and newly obtained Pioneer-Venus Radio Occulatation measurements at 13 cm, using the laboratory measurements as an interpretative tool will be pursued.

  20. Microwave-induced synthesis of carboxymethyl hemicelluloses and their rheological properties.

    PubMed

    Peng, Xin-Wen; Ren, Jun-Li; Zhong, Lin-Xin; Cao, Xue-Fei; Sun, Run-Cang

    2011-01-26

    In this article, a facile, rapid, and efficient method was developed for the preparation of carboxymethyl hemicelluloses using microwave-induced organic reaction enhancement chemistry. The influences of the factors including reaction time, temperature, and the amount of sodium monochloroacetate and sodium hydroxide on the degree of substitution (DS) of the products were investigated. The rheological properties and the chemical structure of the resulting polymers were also studied. It was found that microwave irradiation could significantly promote the chemical reaction efficiency and accelerate the carboxymethylation of hemicelluloses with sodium monochloroacetate. Therefore, carboxymethyl hemicelluloses with higher DS of 1.02 could be obtained in much shorter time scales as compared to the conventional heating method. Results from rheological analysis indicated that carboxymethyl hemicellulose solutions exhibited shear-thinning behavior in the range of shear rates tested and showed lower viscosity and modulus in comparison with those of the native hemicelluloses due to lower molecular weight and the role of carboxymethyl groups in reducing the entanglements between hemicelluloses chains. PMID:21166416

  1. The role of material properties in adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1984-01-01

    When two solid surfaces are brought into contact strong adhesive bond forces can develop between the materials. The magnitude of the forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between solids is addressed from a theoretical consideration of the electronic nature of the surfaces and experimentally relating bond forces to the nature of the interface resulting from solid state contact. Surface properties correlated with adhesion include, atomic or molecular orientation, reconstruction and segregation as well as the chemistry of the surface specie. Where dissimilar solids are in contact the contribution of each is considered as is the role of their interactive chemistry on bond strength. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structure, crystallographic orientation and state. Materials examined with respect to interfacial adhesive interactions include metals, alloys, ceramics, polymers and diamond. They are reviewed both in single and polycrystalline form. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  2. Mechanical properties of thermal protection system materials.

    SciTech Connect

    Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul; Hofer, John H.

    2005-06-01

    An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPS materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.

  3. CREST-Snow Field Experiment: analysis of snowpack properties using multi-frequency microwave remote sensing data

    NASA Astrophysics Data System (ADS)

    Lakhankar, T. Y.; Muñoz, J.; Romanov, P.; Powell, A. M.; Krakauer, N. Y.; Rossow, W. B.; Khanbilvardi, R. M.

    2013-02-01

    The CREST-Snow Analysis and Field Experiment (CREST-SAFE) was carried out during January-March 2011 at the research site of the National Weather Service office, Caribou, ME, USA. In this experiment dual-polarized microwave (37 and 89 GHz) observations were accompanied by detailed synchronous observations of meteorology and snowpack physical properties. The objective of this long-term field experiment was to improve understanding of the effect of changing snow characteristics (grain size, density, temperature) under various meteorological conditions on the microwave emission of snow and hence to improve retrievals of snow cover properties from satellite observations. In this paper we present an overview of the field experiment and comparative preliminary analysis of the continuous microwave and snowpack observations and simulations. The observations revealed a large difference between the brightness temperature of fresh and aged snowpack even when the snow depth was the same. This is indicative of a substantial impact of evolution of snowpack properties such as snow grain size, density and wetness on microwave observations. In the early spring we frequently observed a large diurnal variation in the 37 and 89 GHz brightness temperature with small depolarization corresponding to daytime snowmelt and nighttime refreeze events. SNTHERM (SNow THERmal Model) and the HUT (Helsinki University of Technology) snow emission model were used to simulate snowpack properties and microwave brightness temperatures, respectively. Simulated snow depth and snowpack temperature using SNTHERM were compared to in situ observations. Similarly, simulated microwave brightness temperatures using the HUT model were compared with the observed brightness temperatures under different snow conditions to identify different states of the snowpack that developed during the winter season.

  4. Electromagnetic Property and Tunable Microwave Absorption of 3D Nets from Nickel Chains at Elevated Temperature.

    PubMed

    Liu, Jia; Cao, Mao-Sheng; Luo, Qiang; Shi, Hong-Long; Wang, Wen-Zhong; Yuan, Jie

    2016-08-31

    We fabricated the nickel chains by a facile wet chemical method. The morphology of nickel chains were tailored by adjusting the amount of PVP during the synthesis process. Both the complex permittivity and permeability of the three-dimensional (3D) nets constructed by nickel chains present strong dependences on temperature in the frequency range of 8.2-12.4 GHz and temperature range of 323-573 K. The peaks in imaginary component of permittivity and permeability mainly derive from interfacial polarizations and resonances, devoting to dielectric and magnetic loss, respectively. The effect from both dielectric and magnetism contribute to enhancing the microwave absorption. The maximum absorption value of the 3D nickel chain nets is approximately -50 dB at 8.8 GHz and 373 K with a thickness of 1.8 mm, and the bandwidth less than -10 dB almost covers the whole investigated frequency band. These are encouraging findings, which provide the potential advantages of magnetic transition metal-based materials for microwave absorption application at elevated temperature. PMID:27509241

  5. Effect of Neodymium on Optical Bandgap and Microwave Dielectric Properties of Barium Zirconate Ceramic

    NASA Astrophysics Data System (ADS)

    Parida, Sabyasachi; Satapathy, A.; Sinha, E.; Bisen, Anurag; Rout, S. K.

    2015-03-01

    The ceramics with general formula Ba(1- x) Nd(2 x/3)ZrO3 ( x = 0.0,0.02, 0.04, 0.06, 0.08, and 0.1) were prepared by solid-state reaction. The phase formation of the powders was analyzed by means of X-ray diffraction (XRD), Fourier transform-Raman (FT-Raman), and Fourier transform infrared (FTIR) spectroscopy. XRD patterns revealed that all powders show a perovskite-type cubic structure with space group Pm-3 m. FT-Raman and FTIR spectra suggested the formation of higher degree of symmetry in the crystal. The optical bandgap was found to be decreasing while Urbach energy was found to be increasing with an increase of Nd3+ content. The surface morphology of sintered pellets was studied by scanning electron microscope. Microwave dielectric constant and quality factor were investigated by the TE01 δ mode dielectric resonator method. The microwave dielectric constant and temperature coefficient of resonant frequency decreases with increase in of Nd3+ content. The irregular nature of quality factor ( Q × f) was observed due to the extrinsic losses in materials. The dielectric resonator antenna (DRA) characteristics were investigated experimentally and numerically using a monopole antenna through an infinite ground plane and Ansoft's high-frequency structure simulator software, respectively. The resonant frequency and bandwidth of DRAs were also investigated for the ceramics.

  6. Characterization of smart microwave window materials based on conducting polymer composites: coaxial line, waveguide, and cyclic voltammetry measurements

    NASA Astrophysics Data System (ADS)

    Barnes, Alan; Wright, Peter V.; Despotakis, Anthony; Lees, K.; Chambers, Barry

    1998-07-01

    Discs of polyaniline-silver-polymer electrolyte composites exhibit rapid and reversible changes in their microwave impedance when small electric fields are applied across then in a resonant coaxial line test set. The experimental data show that the initial conductivity of the materials is dependent on the concentration of silver metal and suggests that changes in resistance due to chemical switching take plane, at least in part, in the manufacture of the composites. The experimental data show that changes in the gradient of the cyclic voltammograms coincide with large changes in microwave reflectivity consistent with increasing conductivity of the composite when fields are applied. The reverse change occurs when the fields are removed. Measurements of the switching speed have shown that the composites are able to switch between the different states at in times of less than a second for more than one million switching operations with no depreciation of the material. Large area films have also been studied in the front of waveguide devices and measured in a microwave transmission mode. The results show that large changes in microwave impedance occur with the application of small electric fields (~ 15 V cm-1).

  7. Synthesis of new materials with properties ameliorated

    NASA Astrophysics Data System (ADS)

    Baira, F.; Benfarhi, S.; Zidani, S.

    2012-09-01

    Cellulose is the most abundant polymer in nature. It is used mainly for the production of paper bet also as a reinforcement in the polymer matrixes[1]. The modification of this polysaccharide presents a great interest, for it is the main constituent of agricultural wastes. It is well known that the microcrystalline cellulose gives, after chemical modification, new biodegradable materials[2], which may be used, for instance, for packaging. The esterification of cellulose necessitates an acid pretreatment which makes hydroxyl groups more accessible by breaking hydrogen bonds. X-rays diffraction analysis showed a feeble diminution of the treated samples cristallinity[3]. Cellulose, activated in this way, is esterified in a classic way in DMF, in the presence of triethylamine, LiCl and acid chloride at 60C° for 24 hours[4]. The obtained ester is precipitated in MeOH. The residue, dissolved in CHCl3, gives after evaporation in the open air, a plastic film surface. The water drop test has shown the hydrophobe properties of the plastic film surface. Our work is the study of the preparation of composite materials from the basis of their derivatives. Well as the study of the photopolymerisation kinetic, and the chemical degradation. The obtained films were analyzed by IR-TF, and the volumetrie[5,6]. As a conclusion, we have prepared composite materials with improved properties with reference to the matrix alone.

  8. Evanescent Microwave Probes Using Coplanar Waveguide and Stripline for Super-Resolution Imaging of Materials

    NASA Technical Reports Server (NTRS)

    Ponchak, G. E.; Akinwande, D.; Ciocan, R.; LeClair, S. R.; Tabib-Azar, M.

    2000-01-01

    An evanescent field microwave imaging probe based on half-wavelength, microwave transmission line resonators is described. Optimization of the probe tip design, the coupling gap, and the data analysis has resulted in images of metal lines on semiconductor substrates with 2.6 microns spatial resolution and a minimum detectable line width of 0.4 microns at 1 GHz.

  9. MEASUREMENT OF MATERIAL PROPERTIES OF DAMAGED ENERGETIC MATERIALS

    SciTech Connect

    Hsu, P C; Hust, G; Dehaven, M; Chidester, S; Glascoe, L; Hoffman, M; Maienschein, J L

    2010-03-10

    We recently conducted damaged experiments on three explosives (mechanical damage on LX-04 and thermal experiments on HPP and PBXN-9) and characterized the effect of damage on some material properties. The MTS equipment was used to apply compressive cycling to LX-04 pressed parts and the results showed that older LX-04 parts became mechanically weaker than newer parts. After repeated compressive cycling for over 20,000 times, older LX-04 parts failed but newer LX-04 parts survived. Thermal insults were applied to PBXN-9 and HPP at 180 C and 200 C, respectively in unconfined conditions for several hours. The thermally-damaged HPP sample suffered 12.0% weight losses and a volume expansion of 20% was observed. Porosity of the damaged HPP increased to 25% after thermal exposure, which led to higher gas permeability. Burn rates of damaged PBXN-9 were 2 orders of magnitude higher than those of pristine samples but burn rates of damaged HPP were only slightly higher than those of pristine HPP. Small-scale safety tests (impact, friction, and spark) showed no significant sensitization when the damaged samples were tested at room temperature. Gas permeation measurements showed that gas permeability in damaged materials was several orders of magnitude higher than that in pristine materials. In-situ measurements of gas permeability at high temperatures were made on HPP samples and the results showed that the gas permeability increased by 3 to 4 orders of magnitude.

  10. Using indium tin oxide material to implement the imaging of microwave plasma ignition process

    SciTech Connect

    Wang, Qiang; Hou, Lingyun; Zhang, Guixin Zhang, Boya; Liu, Cheng; Wang, Zhi; Huang, Jian

    2014-02-17

    In this paper, a method is introduced to get global observation of microwave plasma ignition process at high pressure. A microwave resonator was designed with an indium tin oxide coated glass at bottom. Microwave plasma ignition was implemented in methane and air mixture at 10 bars by a 2 ms-3 kW-2.45 GHz microwave pulse, and the high speed images of the ignition process were obtained. The images visually proved that microwave plasma ignition could lead to a multi-point ignition. The system may also be applied to obtain Schlieren images, which is commonly used to observe the development of flame kernel in an ignition process.

  11. Physical Properties of Synthetic Resin Materials

    NASA Technical Reports Server (NTRS)

    Fishbein, Meyer

    1939-01-01

    A study was made to determine the physical properties of synthetic resins having paper, canvas, and linen reinforcements, and of laminated wood impregnated with a resin varnish. The results show that commercial resins have moduli of elasticity that are too low for structural considerations. Nevertheless, there do exist plastics that have favorable mechanical properties and, with further development, it should be possible to produce resin products that compare favorably with the light-metal alloys. The results obtained from tests on Compound 1840, resin-impregnated wood, show that this material can stand on its own merit by virtue of a compressive strength four times that of the natural wood. This increase in compressive strength was accomplished with an increase of density to a value slightly below three times the normal value and corrected one of the most serious defects of the natural product.

  12. Enhanced Microwave Absorption Properties of Intrinsically Core/shell Structured La(0.6)Sr(0.4)MnO(3) Nanoparticles.

    PubMed

    Cheng, Y L; Dai, J M; Zhu, X B; Wu, D J; Yang, Z R; Sun, Y P

    2009-06-17

    The intrinsically core/shell structured La(0.6)Sr(0.4)MnO(3) nanoparticles with amorphous shells and ferromagnetic cores have been prepared. The magnetic, dielectric and microwave absorption properties are investigated in the frequency range from 1 to 12 GHz. An optimal reflection loss of -41.1 dB is reached at 8.2 GHz with a matching thickness of 2.2 mm, the bandwidth with a reflection loss less than -10 dB is obtained in the 5.5-11.3 GHz range for absorber thicknesses of 1.5-2.5 mm. The excellent microwave absorption properties are a consequence of the better electromagnetic matching due to the existence of the protective amorphous shells, the ferromagnetic cores, as well as the particular core/shell microstructure. As a result, the La(0.6)Sr(0.4)MnO(3) nanoparticles with amorphous shells and ferromagnetic cores may become attractive candidates for the new types of electromagnetic wave absorption materials. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11671-009-9374-y) contains supplementary material, which is available to authorized users.

  13. New Monolayered Materials Exhibiting Unusual Electronic Properties

    NASA Astrophysics Data System (ADS)

    Lopez-Bezanilla, Alejandro; Martin, Ivar; Littlewood, Peter B.

    Computationally based approaches are allowing to progress in the discovery and design of nano-scaled materials. Here we propose a series of new mono-layered compounds with exotic properties. By means of density functional theory calculations we demonstrate that the pentagonal arrangement of SiC2 yields an inverted distribution of the p-bands which leads to an unusual electronic behaviour of the material under strain [J. Phys. Chem. C, 2015, 119 (33), pp 19469]. A different pentagonal arrangement of C atoms enables the formation of Dirac cones which, unlike graphene, exhibit a strain-mediated tunable band gap. This work is supported by DOE-BES under Contract No. DE-AC02-06CH11357.

  14. Physical Properties of Thin Film Semiconducting Materials

    NASA Astrophysics Data System (ADS)

    Bouras, N.; Djebbouri, M.; Outemzabet, R.; Sali, S.; Zerrouki, H.; Zouaoui, A.; Kesri, N.

    2005-10-01

    The physics and chemistry of semiconducting materials is a continuous question of debate. We can find a large stock of well-known properties but at the same time, many things are not understood. In recent years, porous silicon (PS-Si), diselenide of copper and indium (CuInSe2 or CIS) and metal oxide semiconductors like tin oxide (SnO2) and zinc oxide (ZnO) have been subjected to extensive studies because of the rising interest their potential applications in fields such as electronic components, solar panels, catalysis, gas sensors, in biocompatible materials, in Li-based batteries, in new generation of MOSFETS. Bulk structure and surface and interface properties play important roles in all of these applications. A deeper understanding of these fundamental properties would impact largely on technological application performances. In our laboratory, thin films of undoped and antimony-doped films of tin oxide have been deposited by chemical vapor deposition. Spray pyrolysis was used for ZnO. CIS was prepared by flash evaporation or close-space vapor transport. Some of the deposition parameters have been varied, such as substrate temperature, time of deposition (or anodization), and molar concentration of bath preparation. For some samples, thermal annealing was carried out under oxygen (or air), under nitrogen gas and under vacuum. Deposition and post-deposition parameters are known to strongly influence film structure and electrical resistivity. We investigated the influence of film thickness and thermal annealing on structural optical and electrical properties of the films. Examination of SnO2 by x-ray diffraction showed that the main films are polycrystalline with rutile structure. The x-ray spectra of ZnO indicated a hexagonal wurtzite structure. Characterizations of CIS films with compositional analysis, x-ray diffraction, scanning microscopy, spectrophotometry, and photoluminescence were carried out.

  15. Structural, Optical, and Magnetic Properties of NiMoO4 Nanorods Prepared by Microwave Sintering

    PubMed Central

    de Moura, Ana P.; de Oliveira, Larissa H.; Rosa, Ieda L. V.; Xavier, Camila S.; Lisboa-Filho, Paulo N.; Li, Máximo S.; La Porta, Felipe A.; Longo, Elson; Varela, José A.

    2015-01-01

    We report on the structural, optical, and magnetic properties of α,β-NiMoO4 nanorods synthesized by annealing the NiMoO4:nH2O precursor at 600°C for 10 minutes in a domestic microwave. The crystalline structure properties of α,β-NiMoO4 were investigated using X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Raman (FT-Raman) spectroscopies. The particle morphologies and size distributions were identified by field emission microscopy (FE-SEM). Experimental data were obtained by magnetization measurements for different applied magnetic fields. Optical properties were analyzed by ultraviolet-visible (UV-vis) and photoluminescence (PL) measurements. Our results revealed that the oxygen atoms occupy different positions and are very disturbed in the lattice and exhibit a particular characteristic related to differences in the length of the chemical bonds (Ni-O and Mo-O) of the cluster structure or defect densities in the crystalline α,β-NiMoO4 nanorods, which are the key to a deeper understanding of the exploitable physical and chemical properties in this study. PMID:25802887

  16. Infrared Radiative Properties of Food Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precisely, infrared radiation is electromagnetic radiation whose wavelength is longer than that of visible light, but shorter than that of terahertz radiation and microwaves. The infrared portion of the electromagnetic spectrum spans roughly three orders of magnitude (750 nm to 100 µm) and has been...

  17. A comparison of properties of different population radio galaxies based on the Planck mission microwave data

    NASA Astrophysics Data System (ADS)

    Verkhodanov, O. V.; Solovyov, D. I.; Ulakhovich, O. S.; Khabibullina, M. L.

    2016-04-01

    Applying the stacking method, we examine the areas of the cosmic microwave background radiation (CMB) maps, constructed according to the Planck SpaceObservatory data in the neighbourhood of different populations of radio sources and giant elliptical galaxies. The samples of objects include giant radio galaxies (GRG), radio sources, selected by the radio-spectral index and redshift, as well as the gamma-ray bursts, used as a secondary comparative sample. We have studied the topological properties of the CMB signal in the neighbourhood of the average object of the population, namely, we searched for the presence of the maxima and minima in the average area. The difference of the signal in the neighbourhood of GRGs from the other types of objects was discovered.

  18. Microwave assisted synthesis, spectroscopic studies and non linear optical properties of bis-chromophores.

    PubMed

    Khan, Salman A; Razvi, M A N; Bakry, Ahmed H; Afzal, S M; Asiri, Abdullah M; El-Daly, Samy A

    2015-02-25

    Bis chromophores were synthesized by the terephthalaldehyde with (4-nitrophenyl) acetonitrile/(4-flurophenyl) acetonitrile under microwave irradiation. Bis-chromophores were obtained in good to excellent yields. The structures of bis-chromophores were established by FT-IR, (1)H NMR, (13)C NMR, EI-MS and elemental analyses. Physical chemical properties such as singlet absorption, extinction coefficient, stokes shift, oscillator strength and dipole moment, were investigated by UV-Vis and fluorescence spectroscopy measurements. Further we also measured the nonlinear refractive index and nonlinear absorption coefficients of these compounds using the single beam z-scan technique with a cw argon ion laser at 514.5 nm at different concentrations in DMSO solvent. The third order nonlinear susceptibility was estimated from these measurements and it shows high nonlinearity. The high negative refractive index makes these compounds suitable for optical limiting application.

  19. Microwave and physical properties of sea ice in the winter marginal ice zone

    NASA Technical Reports Server (NTRS)

    Tucker, W. B., III; Perovich, D. K.; Gow, A. J.; Grenfell, T. C.; Onstott, R. G.

    1991-01-01

    Surface-based active and passive microwave measurements were made in conjunction with ice property measurements for several distinct ice types in the Fram Strait during March and April 1987. Synthesis aperture radar imagery downlinked from an aircraft was used to select study sites. The surface-based radar scattering cross section and emissivity spectra generally support previously inferred qualitative relationships between ice types, exhibiting expected separation between young, first-year and multiyear ice. Gradient ratios, calculated for both active and passive data, appear to allow clear separation of ice types when used jointly. Surface flooding of multiyear floes, resulting from excessive loading and perhaps wave action, causes both active and passive signatures to resemble those of first-year ice. This effect could possibly cause estimates of ice type percentages in the marginal ice zone to be in error when derived from aircraft- or satellite-born sensors.

  20. Discrimination of soil hydraulic properties by combined thermal infrared and microwave remote sensing

    NASA Technical Reports Server (NTRS)

    Vandegriend, A. A.; Oneill, P. E.

    1986-01-01

    Using the De Vries models for thermal conductivity and heat capacity, thermal inertia was determined as a function of soil moisture for 12 classes of soil types ranging from sand to clay. A coupled heat and moisture balance model was used to describe the thermal behavior of the top soil, while microwave remote sensing was used to estimate the soil moisture content of the same top soil. Soil hydraulic parameters are found to be very highly correlated with the combination of soil moisture content and thermal inertia at the same moisture content. Therefore, a remotely sensed estimate of the thermal behavior of the soil from diurnal soil temperature observations and an independent remotely sensed estimate of soil moisture content gives the possibility of estimating soil hydraulic properties by remote sensing.

  1. Electrical properties of CZTS pellets made from microwave-processed powder

    SciTech Connect

    Ghediya, Prashant R. Chaudhuri, Tapas K.

    2015-06-24

    Electrical properties of the kesterite copper zinc tin sulphide (CZTS) pellets in the temperature range from 300 K to 500 K are reported. The pellets are p-type with thermoelectric power (TEP) of + 175 µV/K. Electrical conductivity (σ) increases with the temperatures and is found to be due to thermionic emission (TE) over grain boundary (GB) barriers with activation energy of 170 meV. CZTS pellets are made from micropowders synthesized by microwave irradiation of precursor solution. Formation of kesterite CZTS is confirmed by X-ray diffraction (XRD) and Raman spectroscopy. Scanning Electron Microscope (SEM) shows that powder is micron sized spherical particles.

  2. Microwave Dielectric Properties of Ceramic and Nanocomposite Titanates of Transition Metal

    NASA Astrophysics Data System (ADS)

    Rinkevich, Anatoly B.; Kuznetsov, Evgeny A.; Perov, Dmitry V.; Ryabkov, Yury I.; Samoylovich, Mikhail I.; Klescheva, Svetlana M.

    2014-10-01

    Ceramic and nanocomosite samples of the titanates of transition metals have been synthesized and their microwave dielectric properties have been investigated. Frequency and magnetic field dependences of the transmission and reflection coefficients in centimeter and millimeter wavebands were measured. It is established for most of studied ceramic titanates that transmission coefficient increases and reflection coefficient decreases when frequency increases. An absorption maximum has been found for ceramic sample made of Co0.9Fe0.1TiO3. The real and imaginary parts of complex dielectric permittivity were determined from measurements of transmission and reflection coefficients. On the whole, real part of dielectric permittivity of nanocomposite titanates based on an opal matrix is less than for ceramic titanates.

  3. Modeling of the dielectric properties of trabecular bone samples at microwave frequency.

    PubMed

    Irastorza, Ramiro M; Blangino, Eugenia; Carlevaro, Carlos M; Vericat, Fernando

    2014-05-01

    In this paper, the dielectric properties of human trabecular bone are evaluated under physiological condition in the microwave range. Assuming a two components medium, simulation and experimental data are presented and discussed. A special experimental setup is developed in order to deal with inhomogeneous samples. Simulation data are obtained using finite difference time domain from a realistic sample. The bone mineral density of the samples are also measured. The simulation and experimental results of the present study suggest that there is a negative relation between bone volume fraction (BV/TV) and permittivity/conductivity: the higher the BV/TV, the lower the permittivity/conductivity. This is in agreement with the recently published in vivo data.

  4. Microwave assisted synthesis, spectroscopic studies and non linear optical properties of bis-chromophores.

    PubMed

    Khan, Salman A; Razvi, M A N; Bakry, Ahmed H; Afzal, S M; Asiri, Abdullah M; El-Daly, Samy A

    2015-02-25

    Bis chromophores were synthesized by the terephthalaldehyde with (4-nitrophenyl) acetonitrile/(4-flurophenyl) acetonitrile under microwave irradiation. Bis-chromophores were obtained in good to excellent yields. The structures of bis-chromophores were established by FT-IR, (1)H NMR, (13)C NMR, EI-MS and elemental analyses. Physical chemical properties such as singlet absorption, extinction coefficient, stokes shift, oscillator strength and dipole moment, were investigated by UV-Vis and fluorescence spectroscopy measurements. Further we also measured the nonlinear refractive index and nonlinear absorption coefficients of these compounds using the single beam z-scan technique with a cw argon ion laser at 514.5 nm at different concentrations in DMSO solvent. The third order nonlinear susceptibility was estimated from these measurements and it shows high nonlinearity. The high negative refractive index makes these compounds suitable for optical limiting application. PMID:25300042

  5. Zero-bias-field microwave dynamic magnetic properties in trapezoidal ferromagnetic stripe

    NASA Astrophysics Data System (ADS)

    Bi, Mei; Wang, Xin; Lu, Haipeng; Zhang, Li; Deng, Longjiang; Xie, Jianliang

    2016-06-01

    Dynamic magnetization response of the axially magnetized ferromagnetic stripe with trapezoidal cross section has been studied. The stripe with beveled edges exhibits multiple resonant peaks modes under an in-plane microwave excitation compared with the single resonant of vertical edge surfaces. The complexity of the observed response is attributed to the spatially nonuniform equilibrium spin distribution at the stripe edges. Micromagnetic simulations identify spin waves as spatially localized mode at the modified edges. This one is also described by effective pinning boundary conditions taking into account finite-size effects, which is related to the exchange interaction, surface anisotropy and dipole-dipole interaction. These results provide detailed insights into the nonlinear spin dynamics of microstructures influenced by the edge properties.

  6. Characterization and antibacterial properties of stable silver substituted hydroxyapatite nanoparticles synthesized through surfactant assisted microwave process

    SciTech Connect

    Iqbal, Nida; Abdul Kadir, Mohammed Rafiq; Nik Malek, Nik Ahmad Nazim; Mahmood, Nasrul Humaimi Bin; Murali, Malliga Raman; Kamarul, T.

    2013-09-01

    Highlights: • Stable nano sized silver substitute hydroxyapatite is prepared under surfactant assisted microwave process at 600 W power for 7 min. • The nanoparticles are in the size range of 58–72 nm and exert uniform elongated spheroid morphology. • Increase in silver concentration resulted in better dielectric properties. • Good antibacterial activity and silver release. - Abstract: The present study reports a relatively simple method for the synthesis of stable silver substituted hydroxyapatite nanoparticles with controlled morphology and particle size. In order to achieve this, CTAB is included as a surfactant in the microwave refluxing process (600 W for 7 min). The nanoparticles produced with different silver ion concentrations (0.05, 0.1 and 0.2 wt%) were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX) and Brunauer–Emmett–Teller (BET) analysis. XRD and FTIR analyses reveal that the Ag-HA nanoparticles were phase pure at 1000 °C. FESEM images showed that the produced nanoparticles are in the size range of 58–72 nm and exert uniform elongated spheroid morphology. The dielectric properties suggest that the increase in dielectric constant (ε′) and dissipation factor (D) values with increasing Ag concentrations. Antibacterial performance of the Ag-HA samples elucidated using disk diffusion technique (DDT) and minimum inhibitory concentration (MIC) demonstrates anti-bacterial activity against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli. This effect was dose dependent and was more pronounced against Gram-negative bacteria than Gram-positive organisms.

  7. Enhanced Microwave Absorption Properties of Carbon Black/Silicone Rubber Coating by Frequency-Selective Surface

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoning; Luo, Fa; Gao, Lu; Qing, Yuchang; Zhou, Wancheng; Zhu, Dongmei

    2016-06-01

    A square frequency-selective surface (FSS) design has been employed to improve the microwave absorption properties of carbon black/silicone rubber (CBSR) composite coating. The FSS is placed on the surface of the CBSR coating. The effects of FSS design parameters on the microwave absorption properties of the CBSR coating have been investigated, including the size and period of the FSS design, and the thickness and permittivity of the coating. Simulation results indicate that the absorption peak for the CBSR coating alone is related to its thickness and electromagnetic parameters, while the combination of the CBSR coating with a FSS can exhibit a new absorption peak in the reflection curve; the frequency of the new absorption peak is determined by the resonance of the square FSS design and tightly depends on the size of the squares, with larger squares in the FSS design leading to a lower frequency of the new absorption peak. The enhancement of the absorption performance depends on achievement of a new absorption peak using a suitable␣size and period of the FSS design. In addition, the FSS design has a stable␣frequency response for both transverse electromagnetic (TE) and transverse magnetic (TM) polarizations as the incident angle varies from 0° to 40°. The optimized results indicate that the bandwidth with reflection loss below -5 dB can encompass the whole frequency range from 8 GHz to 18 GHz for thickness of the CBSR coating of only 1.8 mm. The simulation results are confirmed by experiments.

  8. Facilely preparation and microwave absorption properties of Fe{sub 3}O{sub 4} nanoparticles

    SciTech Connect

    Wang, Guiqin; Chang, Yongfeng; Wang, Lifang; Liu, Lidong; Liu, Chao

    2013-03-15

    Highlights: ► A bran-new method is firstly used to fabricate Fe{sub 3}O{sub 4} nanoparticles. ► The detailed analysis of formation mechanism is discussed. ► The electromagnetic absorption properties are defined. ► The effect of nanometer-sized is considered for the excellent microwave absorption. - Abstract: The Fe{sub 3}O{sub 4} nanoparticles were prepared by a novel wet-chemical method which shows its highly synthesizing efficiency and controllability. A possible formation mechanism was also proposed to explain the synthesizing process. X-ray diffraction (XRD) and transmission electron microscope (TEM) were employed and yielded an examination of an average diameter of 77 nm of the as-synthesized Fe{sub 3}O{sub 4} nanoparticles with face-centered cubic structure. Vibrating sample magnetometer (VSM) and vector network analyzer were employed to measure the magnetic property and electromagnetic parameters of the nanoparticles, then reflection losses (RL (dB)) were calculated in the frequency range of 2–18 GHz. A large saturation magnetization (72.36 emu/g) and high coercivity (95 Oe) were determined and indicated that the Fe{sub 3}O{sub 4} nanoparticles own strong magnetic performance. Following simulation results showed that the lowest reflection loss of the sample was −21.2 dB at 5.6 GHz with layer thickness of 6 mm. Effect of nanometer-sized further provided an explanation for the excellent microwave absorption behavior shown by the Fe{sub 3}O{sub 4} nanoparticles.

  9. Some properties of a microwave boosted glow discharge source using neon as the operating gas.

    PubMed

    Leis, F; Steers, E B

    1996-07-01

    The use of neon as the operating gas for the analysis of aluminium samples with the microwave boosted glow discharge source has been studied. A new type of anode tube allowed the gas to enter the source near the sample surface so that more material was transported into the discharge. Erosion rates have been measured under conditions optimised for high line-to-background ratios and found to be lower than with argon (9 and 21 n/s, respectively). Despite the lower erosion rate the detection limits measured for a number of elements in aluminium are in the range 0.02-1 microg/g and comparable to those obtained with argon as the operating gas.

  10. Quality assessment of microwave-vacuum dried material with the use of computer image analysis and neural model

    NASA Astrophysics Data System (ADS)

    Koszela, K.; OtrzÄ sek, J.; Zaborowicz, M.; Boniecki, P.; Mueller, W.; Raba, B.; Lewicki, A.; Przybył, K.

    2014-04-01

    The farming area for vegetables in Poland is constantly changed and modified. Each year the cultivation structure of particular vegetables is different. However, it is the cultivation of carrots that plays a significant role among vegetables. According to the Main Statistical Office (GUS), in 2012 carrot held second position among the cultivated root vegetables, and it was estimated at 835 thousand tons. In the world we are perceived as the leading producer of carrot, due to the fourth place in the ranking of global producers. Poland is the largest producer of this vegetable in the EU [1]. It is also noteworthy, that the demand for dried vegetables is still increasing. This tendency affects the development of drying industry in our country, contributing to utilization of the product surplus. Dried vegetables are used increasingly often in various sectors of food products industry, due to high nutrition value, as well as to changing alimentary preferences of consumers [2-3]. Dried carrot plays a crucial role among dried vegetables, because of its wide scope of use and high nutrition value. It contains a lot of carotene and sugar present in the form of crystals. Carrot also undergoes many different drying processes, which makes it difficult to perform a reliable quality assessment and classification of this dried material. One of many qualitative properties of dried carrot, having important influence on a positive or negative result of the quality assessment, is color and shape. The aim of the research project was to develop a method for the analysis of microwave-vacuum dried carrot images, and its application for the classification of individual fractions in the sample studied for quality assessment. During the research digital photographs of dried carrot were taken, which constituted the basis for assessment performed by a dedicated computer programme developed as a part of the research. Consequently, using a neural model, the dried material was classified [4-6].

  11. Closed vessel microwave assisted extraction - An innovative method for determination of trace metals in plant materials

    NASA Astrophysics Data System (ADS)

    Oeztan, S.; Duering, R.-A.

    2012-04-01

    Determination of metal concentrations in plant samples is important for better understanding of effects of toxic metals that are biologically magnified through the food chain and compose a great danger to all living beings. In recent years the use of microwave assisted extraction for plant samples has shown tremendous research interest which will probably substitute conventional procedures in the future. Generally conventional procedures have disadvantages including consuming of time and solvents. The objective of this study is to investigate and compare a new closed vessel microwave extraction (MAE) method with the combination of EDTA (MAE-EDTA) for the determination of metal contents (Cd, Mn, Pb, Zn) in plant samples (Lolio-Cynosuretum) by ICP-OES. Validation of the method was done by comparison of the results with another MAE procedure (MAE-H) which is applied with the mixture of 69% nitric acid (HNO3) and 30% hydrogen peroxide (H2O2). Moreover, conventional plant extraction (CE) method, for which the dissolution of plant samples were handled in HNO3 after dry ashing at 420° C, was used as a reference method. Approximately 0.5 g of sample was digested in 5 ml HNO3, 3 ml H2O2, and 5 ml deionized H2O for MAE-H and in 8 ml EDTA solution for MAE-EDTA. Certified plant reference materials (CRMs) were used for comparison of recovery rates from different extraction protocols. Thereby, the applicability of both MAE-H and MAE-EDTA procedures could be demonstrated. For 58 plant samples MAE-H showed the same extraction yields as CE in the determination of trace metal contents of the investigated elements in plant samples. MAE-EDTA gave similar values when compared to MAE-H and highly linear relationships were found for determination of Cd, Mn, Pb and Zn amounts. The recoveries for the CRMs were within the range 89.6-115%. Finally, strategic characteristics of MAE-EDTA for determination metal contents (Cd, Mn, Pb, Zn) in plant samples are: (i) applicability to a large set

  12. Theory of sublinear power dependence for microwave heating in some ceramic materials

    SciTech Connect

    Kenkre, V.M.; Kus, M.; Katz, J.D.

    1992-07-01

    A sublinear dependence of the microwave heating rate on the incident microwave power implying a saturation effect appears to have been observed recently. We present simple model calculations to address this observation on the basis of an idea of spatial confinement of the absorbing charges in grain boundary regions. Two natural lengths exist in this model: the spatial extent of the confining region, and the maximum distance an absorbing charge travels under the combined action of damping and of the oscillating microwave field. We suggest that a mismatch of these lengths results in the observed saturation, more generally, in the observed decrease in absorption efficiency.

  13. Theory of sublinear power dependence for microwave heating in some ceramic materials

    SciTech Connect

    Kenkre, V.M.; Kus, M. ); Katz, J.D. )

    1992-01-01

    A sublinear dependence of the microwave heating rate on the incident microwave power implying a saturation effect appears to have been observed recently. We present simple model calculations to address this observation on the basis of an idea of spatial confinement of the absorbing charges in grain boundary regions. Two natural lengths exist in this model: the spatial extent of the confining region, and the maximum distance an absorbing charge travels under the combined action of damping and of the oscillating microwave field. We suggest that a mismatch of these lengths results in the observed saturation, more generally, in the observed decrease in absorption efficiency.

  14. Comparative Evaluation of Dimensional Accuracy of Elastomeric Impression Materials when Treated with Autoclave, Microwave, and Chemical Disinfection

    PubMed Central

    Kamble, Suresh S; Khandeparker, Rakshit Vijay; Somasundaram, P; Raghav, Shweta; Babaji, Rashmi P; Varghese, T Joju

    2015-01-01

    Background: Impression materials during impression procedure often get infected with various infectious diseases. Hence, disinfection of impression materials with various disinfectants is advised to protect the dental team. Disinfection can alter the dimensional accuracy of impression materials. The present study was aimed to evaluate the dimensional accuracy of elastomeric impression materials when treated with different disinfectants; autoclave, chemical, and microwave method. Materials and Methods: The impression materials used for the study were, dentsply aquasil (addition silicone polyvinylsiloxane syringe and putty), zetaplus (condensation silicone putty and light body), and impregum penta soft (polyether). All impressions were made according to manufacturer’s instructions. Dimensional changes were measured before and after different disinfection procedures. Result: Dentsply aquasil showed smallest dimensional change (−0.0046%) and impregum penta soft highest linear dimensional changes (−0.026%). All the tested elastomeric impression materials showed some degree of dimensional changes. Conclusion: The present study showed that all the disinfection procedures produce minor dimensional changes of impression material. However, it was within American Dental Association specification. Hence, steam autoclaving and microwave method can be used as an alternative method to chemical sterilization as an effective method. PMID:26435611

  15. Tailoring material properties of sputtered beryllium

    SciTech Connect

    McEachern, R.M.

    1999-03-01

    Doped beryllium is a material of considerable interest to both the ICF and the weapons communities, as well as finding application in specialized industrial settings (e.g., x-ray windows and mirrors). Some of these uses require conformal coating of thin films on (possibly) irregularly-shaped surfaces. Physical vapor deposition (PVD) is often used to accomplish this, and sputtering is often the technique of choice. Among its advantages are that the depositing atoms are relatively energetic, leading to more compact films. Moreover, by simply applying a voltage bias to the substrate, ambient noble gas ions will bombard the growing film, which can cause further densification and other modifications to the microstructure. Sputtering is also well suited to the introduction of dopants, even those that are insoluble. Most applications of these novel materials will require fundamental knowledge of their properties. Because so many can be devised, such information is generally unavailable. The objective of the effort has been to systematically study the properties of films produced under different conditions, with an emphasis on surface finish and permeability. They have made extensive use of atomic force microscopy (AFM) and electron microscopy to determine the microstructure of the films, along with composition probes (mainly x-ray fluorescence) to quantify the chemical structure. The studies can be roughly divided into three categories. First, there are those in which the properties of pure or Cu-doped Be films have been investigated, especially on randomly-agitated spherical capsules. Included are studies of the effects of a constant substrate bias ranging from 0 to 120 v and application of an intermittent bias during deposition. Second, there are experiments in which the structure of the depositing films has been modified via the incorporation of dopants, primarily boron. Finally, there have been numerous attempts to characterize the permeability of Be coatings at

  16. Interdisciplinary research on the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Several investigations concerning the properties and processing of brittle ceramic materials as related to design considerations are briefly described. Surface characterization techniques, fractography, high purity materials, creep properties, impact and thermal shock resistance, and reaction bonding are discussed.

  17. Soft magnetic property and enhanced microwave absorption of nanoparticles of Co0.5Zn0.5Fe2O4 incorporated in MWCNT

    NASA Astrophysics Data System (ADS)

    Mallick, A.; Mahapatra, A. S.; Mitra, A.; Chakrabarti, P. K.

    2016-10-01

    Nanoparticles of Co0.5Zn0.5Fe2O4 (CZFO) are prepared by coprecipitation method where CoCl2·H2O, ZnCl2·6H2O and FeCl3 are used as precursor materials. To enhance the microwave absorption, nanoparticles of CZFO are incorporated in the matrix of multiwall carbon nanotubes (MWCNT). X-ray diffractogram (XRD) and its analysis confirmed the formation of the desired crystallographic phase of the sample. The average crystallite size is evaluated by using the Debye-Scherrer formula. Micrographs observed in high resolution transmission electron microscope confirm the successful incorporation of CZFO in the matrix of MWCNT. Results obtained from the high resolution lattice fringe and selected area electron diffraction patterns are in good agreement with the findings extracted from the XRD analysis. Analysis of Raman spectra confirms the presence of CZFO and MWCNT in the nanocomposite sample. Magnetic properties recorded in SQUID magnetometer confirm the presence of mixed state of superparamagnetic and ferrimagnetic nanoparticles. Reflection losses in X (8-12 GHz) and Ku (12-18 GHz) bands of microwave region are significantly high (~-38.2 dB at 16.9 GHz). High magnetization (~36.5 emu/g at 300 K), low coercive field (~30.1 Oe at 300 K) and high reflection loss of CZFO-MWCNT would be suitable for application in microwave devices.

  18. Hyperuniform disordered photonic bandgap materials, from microwave to infrared wavelength regime

    NASA Astrophysics Data System (ADS)

    Man, Weining

    Recently, we have introduced a new class of hyperuniform disordered (HUD) photonic bandgap (PBG) materials enabled by a novel constrained optimization method for engineering the material's Fourier transform to be continuous, isotropic and stealthy. Their structure factor S (k) is equal to zero for small kand exhibits a broad ring of maximum values around a characteristic wave-length range. Experimentally, an isotropic complete PBG (at all angles and for all polarizations) in an alumina-based HUD structure and single-polarized PBGs for plastic-based HUD structure have been demonstrated. Using measured and simulated transmission and phase delay information through these HUD structures, we also unfolded their band structures and reconstructed the effective dispersion relations of propagating electromagnetic modes in them. The intrinsic isotropy in these disordered structures is an inherent advantage associated with the lack of crystalline order, offering unprecedented freedom for functional defect design impossible to achieve in photonic crystals. In the microwave regime, we have shown the creation of freeform waveguides, which can channel photons robustly along arbitrarily curved paths and around sharp bends, and be decorated with defects to produce sharply resonant structures useful for filtering and frequency splitting. Recent simulation and experimental results for waveguides and modulators based on submicron-scale planar hyperuniform disordered PBG structures further highlight their ability to serve as highly compact, flexible and energy-efficient platforms for photonic integrated circuits. NSF DMR-1308084, EPSRC (UK) DTG Grant KD5050, EPSRC (UK) Strategic Equipment Grant EP/M008576/1, NSF SBIR-1345168, NSF MRI-1040444.

  19. Microwave absorption properties and infrared emissivities of ordered mesoporous C-TiO{sub 2} nanocomposites with crystalline framework

    SciTech Connect

    Wang, Tao; He, Jianping; Zhou, Jianhua; Tang, Jing; Guo, Yunxia; Ding, Xiaochun; Wu, Shichao; Zhao, Jianqing

    2010-12-15

    Ordered mesoporous C-TiO{sub 2} nanocomposites with crystalline framework were prepared by the evaporation-induced triconstituent co-assembly method. The products were characterized by XRD, TEM, N{sub 2} adsorption-desorption and TG. Their microwave absorption properties were investigated by mixing the product and epoxy resin. It is found that the peak with minimum reflection loss value moves to lower frequencies and the ordered mesoporous C-TiO{sub 2} nanocomposite possesses an excellent microwave absorbing property with the maximum reflection loss of -25.4 dB and the bandwidth lower than -10 dB is 6.6 GHz. The attenuation of microwave can be attributed to dielectric loss and their absorption mechanism is discussed in detail. The mesoporous C-TiO{sub 2} nanocomposites also exhibit a lower infrared emissivity in the wavelength from 8 to 14 {mu}m than that of TiO{sub 2}-free powder. -- Graphical abstract: Ordered mesoporous C-TiO{sub 2} nanocomposite with crystalline framework possess excellent microwave absorbing properties with the maximum reflection loss of -25.4 dB and the bandwidth lower than -10 dB is 6.6 GHz. Display Omitted

  20. Headspace single drop microextraction coupled with microwave extraction of essential oil from plant materials.

    PubMed

    Zhai, Yujuan; Sun, Shuo; Wang, Ziming; Zhang, Yupu; Liu, He; Sun, Ye; Zhang, Hanqi; Yu, Aimin

    2011-05-01

    Headspace single drop microextraction (HS-SDME) coupled with microwave extraction (ME) was developed and applied to the extraction of the essential oil from dried Syzygium aromaticum (L.) Merr. et Perry and Cuminum cyminum L. The operational parameters, such as microdrop volume, microwave absorption medium (MAM), extraction time, and microwave power were optimized. Ten microliters of decane was used as the microextraction solvent. Ionic liquid and carbonyl iron powder were used as MAM. The extraction time was less than 7 min at the microwave power of 440 W. The proposed method was compared with hydrodistillation (HD). There were no obvious differences in the constituents of essential oils obtained by the two methods. PMID:21416601

  1. Microwave absorption property of aligned MWCNT/Fe3O4

    NASA Astrophysics Data System (ADS)

    Hekmatara, H.; Seifi, M.; Forooraghi, K.

    2013-11-01

    This study investigated the microwave absorption properties of magnetic modified multiwall carbon nanotubes (MWCNTs) with different alignments to the electric field (E vector) of the incident electromagnetic (EM) waves. MWCNTs were decorated with Fe3O4 nanoparticles using the wet chemical method and the resulting MWCNT/Fe3O4 was then used as a filler in a MWCNT/Fe3O4/epoxy resin composite at different weight-to-epoxy-resin ratios (2%, 5%, and 8%) with good uniformity and alignment. For each filler concentration, three samples were produced with different alignments of carbon nanotubes using the solution-casting method. For sample one, the nanotube axis (k) was parallel to the E vector of the EM wave, for sample two, k was perpendicular to E, and the third sample contained randomly oriented nanotubes. Magnetic MWCNTs were exposed to a 0.4 T magnetic field in the desired direction to achieve the desired alignment of carbon nanotubes in epoxy resin. Microwave absorption characterization of the considered ranging band (X-band) at all concentrations where the alignment of MWCNT/Fe3O4 was parallel to the incident E vector showed increased absorption. Samples with a perpendicular alignment of MWCNT/Fe3O4 to incident E had the lowest absorption. Samples containing 2 wt% and 8 wt% MWCNT/Fe3O4 aligned parallel to E and had reflection losses exceeding 14.4 dB and 23.6 dB, respectively, over a 10-11 GHz range. The 5 wt% parallel aligned MWCNT/Fe3O4 showed an absorbing peak of 27 dB and a bandwidth broadened to 1.2 GHz.

  2. Microwave bonding of MEMS component

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Mai, John D. (Inventor); Jackson, Henry W. (Inventor); Budraa, Nasser K. (Inventor); Pike, William T. (Inventor)

    2005-01-01

    Bonding of MEMs materials is carried out using microwave. High microwave absorbing films are placed within a microwave cavity, and excited to cause selective heating in the skin of the material. This causes heating in one place more than another. Thereby minimizing the effects of the bonding microwave energy.

  3. Spacecraft dielectric material properties and spacecraft charging

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Wall, J. A.; Cotts, D. B.; Bouquet, F. L.

    1986-01-01

    The physics of spacecraft charging is reviewed, and criteria for selecting and testing semiinsulating polymers (SIPs) to avoid charging are discussed and illustrated. Chapters are devoted to the required properties of dielectric materials, the charging process, discharge-pulse phenomena, design for minimum pulse size, design to prevent pulses, conduction in polymers, evaluation of SIPs that might prevent spacecraft charging, and the general response of dielectrics to space radiation. SIPs characterized include polyimides, fluorocarbons, thermoplastic polyesters, poly(alkanes), vinyl polymers and acrylates, polymers containing phthalocyanine, polyacene quinones, coordination polymers containing metal ions, conjugated-backbone polymers, and 'metallic' conducting polymers. Tables summarizing the results of SIP radiation tests (such as those performed for the NASA Galileo Project) are included.

  4. Interdisciplinary research on the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The advancement of material performance and design methodology as related to brittle materials was investigated. The processing and properties of ceramic materials as related to design requirements was also studied.

  5. Numerical Studies of Scattering Properties of Leaves and Leaf Moisture Influences on the Scattering at Microwave Wavelengths

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Hu, Yongxiang; Sun, Wenbo; Min, Qilong

    2008-01-01

    This study uses 3-dimensional finite difference time domain method to accurately calculate single-scattering properties of randomly orientated leaves and evaluate the influences of vegetation water content (VWC) on these properties at 19 and 37 GHz frequencies. The studied leaves are assumed to be thin elliptic disks with two different sizes and have various VWC values. Although the leaf moisture produces considerable absorption during scattering processes, the effective efficiencies of extinction and scattering of leaves still near-linearly increase with VWC. Calculated asymmetry factors and phase functions indicate that there are significant amounts of scattering at large scattering angles in microwave wavelengths, which provides good opportunities for off-nadir microwave remote sensing of forests. This study lays a basic foundation in future quantifications of the relations between satellite measurements and physical properties of vegetation canopies.

  6. Microwave thawing apparatus and method

    DOEpatents

    Fathi, Zakaryae; Lauf, Robert J.; McMillan, April D.

    2004-06-01

    An apparatus for thawing a frozen material includes: a microwave energy source; a microwave applicator which defines a cavity for applying microwave energy from the microwave source to a material to be thawed; and a shielded region which is shielded from the microwave source, the shielded region in fluid communication with the cavity so that thawed material may flow from the cavity into the shielded region.

  7. Phase and Microstructure Evaluation and Microwave Dielectric Properties of Mg1- x Ni x SiO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Ullah, Atta; Liu, Hanxing; Hao, Hua; Iqbal, Javed; Yao, Zhonghua; Cao, Minghe; Xu, Qi

    2016-10-01

    The ceramics were prepared using the solid-state reaction method and their phase, microstructure and microwave dielectric properties were investigated. A single-phase clinoenstatite system with monoclinic structure (space group P21/c) was confirmed through x-ray diffraction (XRD) analysis for the compositions with x ≤ 0.1. The compositions with x ≥ 0.15 contain SiO2 and (Mg1- x Ni x )2SiO4 phases only as confirmed from the XRD data of their sintered samples. The unit cell volume was decreased while the theoretical density was increased with increase in x from 0 to 0.1. A decrease in dielectric constant ( ɛ r) while an increase in unloaded quality factor multiplying the resonant frequency ( Q u f o) and temperature coefficient of resonant frequency ( τ f) was observed with increase in Ni content from 0 to x = 0.1. In the present study, ɛ r ˜ 6.10, Q u f o ˜ 118,702 GHz and τ f ˜ -10 ppm/°C was achieved for the composition with x = 0.1 sintered at 1425°C for 9 h. The material is a good candidate for millimeter wave applications.

  8. Facile synthesis and enhanced microwave absorption properties of novel hierarchical heterostructures based on a Ni microsphere-CuO nano-rice core-shell composite.

    PubMed

    Zhao, Biao; Shao, Gang; Fan, Bingbing; Zhao, Wanyu; Zhang, Rui

    2015-02-28

    A novel hierarchical heterostructure of Ni microspheres-CuO nano-rices was fabricated using a simple two-step process. The CuO rices were densely deposited on the surfaces of Ni microspheres. The phase purity, morphology, and structure of composite heterostructures are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). Different structured Ni-CuO composite heterostructures are also investigated by adjusting the volume ratio of the reactants. The core-shell rice-like CuO-coated Ni exhibits better antioxidation capability than pure Ni due to the presence of the barrier effect of the CuO shell, which is revealed by the thermogravimetric analysis (TGA). In comparison with pristine Ni microspheres and CuO nanoflakes, the Ni-CuO composites exhibit excellent microwave absorption properties. Moreover, the amount of CuO plays a vital role in the microwave attenuation of Ni-CuO composites. The Ni-CuO heterostructures prepared at 0.017 M Cu(2+) exhibit the best electromagnetic wave absorption capabilities. A minimum reflection loss reaches -62.2 dB (>99.9999% microwave absorption) at 13.8 GHz with the thickness of only 1.7 mm. The effective absorption (below -10 dB) bandwidth can be tuned between 6.4 GHz and 18.0 GHz by tuning the absorber thickness of 1.3-3.0 mm. Thus, the Ni-CuO composite possesses a fascinating microwave absorption performance as a novel absorbing material with strong absorption, wide-band gap and thin thickness. PMID:25639203

  9. Facile synthesis and enhanced microwave absorption properties of novel hierarchical heterostructures based on a Ni microsphere-CuO nano-rice core-shell composite.

    PubMed

    Zhao, Biao; Shao, Gang; Fan, Bingbing; Zhao, Wanyu; Zhang, Rui

    2015-02-28

    A novel hierarchical heterostructure of Ni microspheres-CuO nano-rices was fabricated using a simple two-step process. The CuO rices were densely deposited on the surfaces of Ni microspheres. The phase purity, morphology, and structure of composite heterostructures are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). Different structured Ni-CuO composite heterostructures are also investigated by adjusting the volume ratio of the reactants. The core-shell rice-like CuO-coated Ni exhibits better antioxidation capability than pure Ni due to the presence of the barrier effect of the CuO shell, which is revealed by the thermogravimetric analysis (TGA). In comparison with pristine Ni microspheres and CuO nanoflakes, the Ni-CuO composites exhibit excellent microwave absorption properties. Moreover, the amount of CuO plays a vital role in the microwave attenuation of Ni-CuO composites. The Ni-CuO heterostructures prepared at 0.017 M Cu(2+) exhibit the best electromagnetic wave absorption capabilities. A minimum reflection loss reaches -62.2 dB (>99.9999% microwave absorption) at 13.8 GHz with the thickness of only 1.7 mm. The effective absorption (below -10 dB) bandwidth can be tuned between 6.4 GHz and 18.0 GHz by tuning the absorber thickness of 1.3-3.0 mm. Thus, the Ni-CuO composite possesses a fascinating microwave absorption performance as a novel absorbing material with strong absorption, wide-band gap and thin thickness.

  10. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1991-01-01

    Laboratory measurements of microwave and millimeter wave properties of the simulated atmosphere of the outer planets and their satellites has continued. One of the focuses is on the development of a radiative transfer model of the Jovian atmosphere at wavelengths from 1 mm to 10 cm. This modeling effort led to laboratory measurements of the millimeter wave opacity of hydrogen sulfide (H2S) under simulated Jovian conditions. Descriptions of the modeling effort, the Laboratory experiment, and the observations are presented. Correlative studies of measurements with Pioneer-Venus radio occultation measurements with longer wavelength emission measurements have provided new ways for characterizing temporal and spatial variations in the abundance of both gases H2SO4 and SO2, and for modeling their roles in the subcloud atmosphere. Laboratory measurements were conducted on 1.35 cm (and 13 cm) opacity of gaseous SO2 and absorptivity of gaseous SO2 at the 3.2 mm wavelength under simulated Venus conditions. Laboratory measurements were completed on millimeter wave dielectric properties of liquid H2SO4, in order to model the effects of the opacity of the clouds of Venus onto millimeter wave emission spectrum.

  11. Impact of active ingredients on the swelling properties of orally disintegrating tablets prepared by microwave treatment.

    PubMed

    Sano, Syusuke; Iwao, Yasunori; Kimura, Susumu; Noguchi, Shuji; Itai, Shigeru

    2014-07-01

    The impact of different active pharmaceutical ingredients (APIs) loading on the properties of orally disintegrating tablets (ODTs) prepared according to our previously reported microwave (MW) treatment process was evaluated using famotidine (FAM), acetaminophen (AAP), and ibuprofen (IBU). None of the APIs interrupted the tablet swelling during the MW treatment and the tablet hardness were improved by more than 20 N. MW treatment, however, led to a significant increase in the disintegration time of the ODTs containing IBU, but it had no impact on that of the ODTs containing FAM or AAP. This increased disintegration time of the ODTs containing IBU was attributed to the relatively low melting point of IBU (Tm=76 °C), with the IBU particles melting during the MW treatment to form agglomerates, which interrupted the penetration of water into the tablets and delayed their disintegration. The effects of the MW treatment on the chemical stability and dissolution properties of ODTs were also evaluated. The results revealed that MW treatment did not promote the degradations of FAM and AAP or delay their release from the ODTs, while dissolution of the ODTs containing IBU delayed by MW treatment. Based on these results, the MW method would be applicable to the preparation of ODTs containing APIs with melting points higher than 110 °C.

  12. Effect of Ce Doping on Microwave Absorption Properties of Pr2Fe17 Alloy

    NASA Astrophysics Data System (ADS)

    Cheng, Lichun; Xiong, Jilei; Zhou, Huaiying; Pan, Shunkang; Huang, Hehua

    2016-02-01

    Ce x Pr2- x Fe17 ( x = 0.0, 0.1, 0.2, 0.3, 0.4) alloy powders were successfully synthesized by arc smelting and a high energy ball milling method. The structure, morphology, magnetic properties and electromagnetic parameters of the powders were studied by x-ray diffraction (XRD), scanning electron microscopy (SEM), a vibrating sample magnetometer (VSM) and a vector network analyzer (VNA), respectively. The results show that the saturation magnetization decreases with an increase of Ce concentration. The minimum absorption peak frequency shifts towards a higher frequency region firstly and then towards a lower frequency region based upon the Ce concentration. The Ce x Pr2- x Fe17 alloys exhibit good microwave absorbing properties. The minimum reflection loss of Ce0.1Pr1.9Fe17 powder is about -13.67 dB at 6.40 GHz, and the frequency bandwidth of RL < -8 dB reaches about 2.24 GHz with a thickness of 1.8 mm.

  13. Laboratory measurements of microwave and millimeter-wave properties of planetary constituents

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1990-01-01

    Accurate data on microwave and millimeter-wave properties of potential planetary atmospheric constituents is critical for the proper interpretation of radio occultation measurements, and of radio astronomical observations of both continuum and spectral line emissions. Such data is also needed to correct for atmospheric effects on radar studies of surface reflectivity. Since the refractive and absorptive properties of atmospheric constituents often vary drastically from theoretically predicted profiles, especially under the extreme conditions characteristic of the planetary atmosphere, laboratory measurements under simulated planetary conditions are required. The instrumentation and techniques used for laboratory measurement of the refractivity and absorptivity of atmospheric constituents at wavelengths longward of 1 mm, under simulated planetary conditions (temperature, pressure, and broadening gases) are reviewed. Techniques for measuring both gases and condensates are considered. Also reviewed are the relative accuracies of the various techniques. Laboratory measurements are reviewed which have already been made, and additional measurements which are needed for interpretation of data from Venus and the outer planets, are highlighted.

  14. Laboratory measurements of microwave and millimeter-wave properties of planetary atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1989-01-01

    Accurate data on microwave and millimeter-wave properties of potential planetary atmospheric constituents is critical for the proper interpretation of radio occultation measurements, and of radio astronomical observations of both continuum and spectral line emissions. Such data is also needed to correct for atmospheric effects on radar studies of surface reflectivity. Since the refractive and absorptive properties of atmospheric constituents often vary drastically from theoretically-predicted profiles, especially under the extreme conditions characteristic of the planetary atmosphere, laboratory measurements under simulated planetary conditions are required. This paper reviews the instrumentation and techniques used for laboratory measurement of the refractivity and absorptivity of atmospheric constituents at wavelengths longward of 1 mm, under simulated planetary conditions (temperature, pressure, and broadening gases). Techniques for measuring both gases and condensates are considered. Also reviewed are the relative accuracies of the various techniques. Laboratory measurements are reviewed which have already been made, and additional measurements which are needed for interpretation of data from Venus and the outer planets, are highlighted.

  15. Magnetic and Microwave Properties of Barium Hexaferrite Ceramics Doped with Gd and Nd

    NASA Astrophysics Data System (ADS)

    Jamalian, Majid; Ghasemi, Ali; Pourhosseini Asl, Mohammad Javad

    2015-08-01

    Substituted barium hexaferrite nanoparticles with the chemical formula BaFe12- x (GdNd) x/2O19 ( x = 0-2, in steps of 0.5) were prepared by a co-precipitation method. Phase identification and crystal structure of the nanoparticles were investigated by x-ray diffraction. The morphology of the nanopowders was investigated by field-emission scanning electron microscopy. Results from Fourier-transform infrared spectroscopy enabled identification of stretching and bending modes. Magnetic properties were measured by use of a vibrating sample magnetometer. The results revealed that saturation magnetization and coercivity decreased as x increased. Investigation of microwave-absorption properties, by use of a vector network analyzer, revealed that the maximum reflection loss of substituted Ba-ferrite of thickness 1.6 mm reached -41.8 dB at a frequency of 4.3 GHz and a bandwidth of 7.5 GHz, with reflection loss being >-20 dB. From these results it was concluded that the composites had good potential as absorbers in the gigahertz frequency range.

  16. Mechanical properties of low dimensional materials

    NASA Astrophysics Data System (ADS)

    Saini, Deepika

    Recent advances in low dimensional materials (LDMs) have paved the way for unprecedented technological advancements. The drive to reduce the dimensions of electronics has compelled researchers to devise newer techniques to not only synthesize novel materials, but also tailor their properties. Although micro and nanomaterials have shown phenomenal electronic properties, their mechanical robustness and a thorough understanding of their structure-property relationship are critical for their use in practical applications. However, the challenges in probing these mechanical properties dramatically increase as their dimensions shrink, rendering the commonly used techniques inadequate. This dissertation focuses on developing techniques for accurate determination of elastic modulus of LDMs and their mechanical responses under tensile and shear stresses. Fibers with micron-sized diameters continuously undergo tensile and shear deformations through many phases of their processing and applications. Significant attention has been given to their tensile response and their structure-tensile properties relations are well understood, but the same cannot be said about their shear responses or the structure-shear properties. This is partly due to the lack of appropriate instruments that are capable of performing direct shear measurements. In an attempt to fill this void, this dissertation describes the design of an inexpensive tabletop instrument, referred to as the twister, which can measure the shear modulus (G) and other longitudinal shear properties of micron-sized individual fibers. An automated system applies a pre-determined twist to the fiber sample and measures the resulting torque using a sensitive optical detector. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers. Two industrially important fibers, IM7 carbon fiber and KevlarRTM 119, were found to have G = 17 and 2.4 GPa, respectively. In addition to measuring the shear

  17. Effect of conventional water-bath and experimental microwave polymerization cycles on the flexural properties of denture base acrylic resins.

    PubMed

    Spartalis, Guilherme Kloster; Cappelletti, Lucas Kravchychyn; Schoeffel, Amanda Cristina; Michél, Milton Domingos; Pegoraro, Thiago Amadei; Arrais, César Augusto Galvão; Neppelenbroek, Karin Hermana; Urban, Vanessa Migliorini

    2015-01-01

    The effect of polymerization cycles on flexural properties of conventional (Vipi Cril(®)-VC) or microwave-processed (Vipi Wave(®)-VW) denture base acrylic resins was evaluated. Specimens (n=10) were submitted to the cycles: WB=65ºC for 1 h+1 h boiling water (VC cycle); M630/25=10 min at 270 W+5 min at 0 W+10 min at 360 W (VW cycle); M650/5=5 min at 650 W; M700/4=4 min at 700 W; and M550/3=3 min at 550 W. Specimens were submitted to a three-point bending test at 5 mm/min until fracture. Flexural strength (MPa) and elastic modulus (GPa) data were analyzed by 2-way ANOVA/Tukey HSD (α=0.05). Overall, VC showed higher values than VW. The results obtained with microwave polymerization did not differ from those obtained with water-bath for both acrylic resins. The results observed when polymerization cycles using medium power and shorter time were used did not differ from those when manufacturer's recommended microwave cycle was applied. Conventional VC might be microwave-processed without compromising its flexural properties. PMID:26438986

  18. Effect of conventional water-bath and experimental microwave polymerization cycles on the flexural properties of denture base acrylic resins.

    PubMed

    Spartalis, Guilherme Kloster; Cappelletti, Lucas Kravchychyn; Schoeffel, Amanda Cristina; Michél, Milton Domingos; Pegoraro, Thiago Amadei; Arrais, César Augusto Galvão; Neppelenbroek, Karin Hermana; Urban, Vanessa Migliorini

    2015-01-01

    The effect of polymerization cycles on flexural properties of conventional (Vipi Cril(®)-VC) or microwave-processed (Vipi Wave(®)-VW) denture base acrylic resins was evaluated. Specimens (n=10) were submitted to the cycles: WB=65ºC for 1 h+1 h boiling water (VC cycle); M630/25=10 min at 270 W+5 min at 0 W+10 min at 360 W (VW cycle); M650/5=5 min at 650 W; M700/4=4 min at 700 W; and M550/3=3 min at 550 W. Specimens were submitted to a three-point bending test at 5 mm/min until fracture. Flexural strength (MPa) and elastic modulus (GPa) data were analyzed by 2-way ANOVA/Tukey HSD (α=0.05). Overall, VC showed higher values than VW. The results obtained with microwave polymerization did not differ from those obtained with water-bath for both acrylic resins. The results observed when polymerization cycles using medium power and shorter time were used did not differ from those when manufacturer's recommended microwave cycle was applied. Conventional VC might be microwave-processed without compromising its flexural properties.

  19. Magnetic and microwave absorbing properties of Co-Fe thin films plated on hollow ceramic microspheres of low density

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Soo; Kim, Seon-Tae; Ahn, Joon-Mo; Kim, Keun-Hong

    2004-04-01

    Conductive and magnetic microspheres are fabricated by plating of Co-Fe alloy thin films on hollow ceramic microspheres of low density for the application to lightweight microwave absorbers. Metal plating was carried out in a two-step electroless plating process (pre-treatment of sensitizing and subsequent plating). Uniform coating of the film with about 2 μm thickness was identified by SEM. High-frequency magnetic and microwave absorbing properties were determined in the rubber composites containing the metal-coated microspheres. Due to the conductive and ferromagnetic behavior of the Co-Fe thin films, high dielectric constant and magnetic loss can be obtained in the microwave frequencies. In particular, the magnetic loss increases with Fe content in the alloy films and its frequency dispersion can be explained by ferromagnetic resonance theory. Due to the electromagnetic properties, high absorption rate and thin matching thickness are predicted in the composite layers containing the metal-coated microspheres of low density (about 0.8 g/cc) for the electromagnetic radiation in microwave frequencies.

  20. Evaluation of oxygen pressurized microwave-assisted digestion of botanical materials using diluted nitric acid.

    PubMed

    Bizzi, Cezar Augusto; Barin, Juliano Smanioto; Müller, Edson Irineu; Schmidt, Lucas; Nóbrega, Joaquim A; Flores, Erico Marlon Moraes

    2011-02-15

    The feasibility of diluted nitric acid solutions for microwave-assisted decomposition of botanical samples in closed vessels was evaluated. Oxygen pressurized atmosphere was used to improve the digestion efficiency and Al, Ca, K, Fe, Mg and Na were determined in digests by inductively coupled plasma optical emission spectrometry (ICP OES). Efficiency of digestion was evaluated taking into account the residual carbon content (RCC) and residual acidity in digests. Samples were digested using nitric acid solutions (2, 3, 7, and 14 mol L(-1) HNO(3)) and the effect of gas phase composition inside the reaction vessels by purging the vessel with Ar (inert atmosphere, 1 bar), air (20% of oxygen, 1 bar) and pure O(2) (100% of oxygen, 1 bar) was evaluated. The influence of oxygen pressure was studied using pressures of 5, 10, 15 and 20 bar. It was demonstrated that a diluted nitric acid solution as low as 3 mol L(-1) was suitable for an efficient digestion of sample masses up to 500 mg of botanical samples using 5 bar of oxygen pressure. The residual acidities in final digests were lower than 45% in relation to the initial amount of acid used for digestion (equivalent to 1.3 mol L(-1) HNO(3)). The accuracy of the proposed procedure was evaluated using certified reference materials of olive leaves, apple leaves, peach leaves and pine needles. Using the optimized conditions for sample digestion, the results obtained were in agreement with certified values. The limit of quantification was improved up to a factor of 14.5 times for the analytes evaluated. In addition, the proposed procedure was in agreement with the recommendations of the green chemistry once it was possible to obtain relatively high digestion efficiency (RCC<5%) using only diluted HNO(3), which is important to minimize the generation of laboratory residues. PMID:21238716