Sample records for materials performance targeted

  1. S3 targets monitoring with an electron gun

    NASA Astrophysics Data System (ADS)

    Kallunkathariyil, J.; Stodel, Ch.; Marry, C.; Frémont, G.; Bastin, B.; Piot, J.; Clément, E.; Le Moal, S.; Morel, V.; Thomas, J.-C.; Kamalou, O.; Spitaëls, C.; Savajols, H.; Vostinar, M.; Pellemoine, F.; Mittig, W.

    2018-05-01

    The monitoring of targets under irradiation was investigated using a 20 keV electron beam. An integrated and automated electron beam deflection was developed allowing a monitoring over the whole surface of target materials. Thus, local defects could be identified on-line during an experiment performed at GANIL involving different materials irradiated with a focused krypton beam at 10.5 MeV/u. Performances of this target monitoring system are presented in this paper.

  2. Vigilance problems in orbiter processing

    NASA Technical Reports Server (NTRS)

    Swart, William W.; Safford, Robert R.; Kennedy, David B.; Yadi, Bert A.; Barth, Timothy S.

    1993-01-01

    A pilot experiment was done to determine what factors influence potential performance errors related to vigilance in Orbiter processing activities. The selected activities include post flight inspection for burned gap filler material and pre-rollout inspection for tile processing shim material. It was determined that the primary factors related to performance decrement were the color of the target and the difficulty of the target presentation.

  3. Shuttle Environmental Assurance: Brominated Flame Retardants - Concerns, Drivers, Potential Impacts and Mitigation Strategies

    NASA Technical Reports Server (NTRS)

    Clark-Ingram, Marceia

    2010-01-01

    Brominated Flame Retardants (BFRs) are widely used in the manufacture of electrical and electronic components and as additives in formulations for foams, plastics and rubbers. The United States (US) and the European Union (EU)have increased regulation and monitoring of of targeted BFRs, such as Polybrominated Diphenyl Ethers (PBDEs) due to the bioaccumulative effects in humans and animals. In response, manufacturers and vendors of BFR-containing materials are changing flame-retardant additives, sometimes without notifying BFR users. In some instances, Deca-bromodiphenylether (Deca-BDE) and other families of flame retardants are being used as replacement flame retardants for penta-BDE and octa-BDE. The reformulation of the BFR-containing material typically results in the removal of the targeted PBDE and replacement with a non-PBDE chemical or non-targeted PBDE. Many users of PBDE -based materials are concerned that vendors will perform reformulation and not inform the end user. Materials performance such as flammability, adhesion , and tensile strength may be altered due to reformulation. The requalification of newly formulated materials may be required, or replacement materials may have to be identified and qualified. The Shuttle Enviornmental Assurance (SEA) team indentified a risk to the Space Shuttle Program associated with the possibility that targeted PBDEs may be replaced without notification. Resultant decreases in flame retardancy, Liquid Oxygen (LOX) compatibility, or material performance could have serious consequences.

  4. High mobility high efficiency organic films based on pure organic materials

    DOEpatents

    Salzman, Rhonda F [Ann Arbor, MI; Forrest, Stephen R [Ann Arbor, MI

    2009-01-27

    A method of purifying small molecule organic material, performed as a series of operations beginning with a first sample of the organic small molecule material. The first step is to purify the organic small molecule material by thermal gradient sublimation. The second step is to test the purity of at least one sample from the purified organic small molecule material by spectroscopy. The third step is to repeat the first through third steps on the purified small molecule material if the spectroscopic testing reveals any peaks exceeding a threshold percentage of a magnitude of a characteristic peak of a target organic small molecule. The steps are performed at least twice. The threshold percentage is at most 10%. Preferably the threshold percentage is 5% and more preferably 2%. The threshold percentage may be selected based on the spectra of past samples that achieved target performance characteristics in finished devices.

  5. Material issues relating to high power spallation neutron sources

    NASA Astrophysics Data System (ADS)

    Futakawa, M.

    2015-02-01

    Innovative researches using neutrons are being performed at the Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex (J-PARC), in which a mercury target system is installed for MW-class pulse spallation neutron sources. In order to produce neutrons by the spallation reaction, proton beams are injected into the mercury target. At the moment, when the intense proton beam hits the target, pressure waves are generated in mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel, leading to negative pressure that may cause cavitation along the vessel wall, i.e. on the interface between liquid and solid metals. On the other hand, the structural materials are subjected to irradiation damage due to protons and neutrons, very high cycle fatigue damages and so-called "liquid metal embrittlement". That is, the structural materials must be said to be exposed to the extremely severe environments. In the paper, research and development relating to the material issues in the high power spallation neutron sources that has been performed so far at J-PARC is summarized.

  6. On the performance of infrared sensors in earth observations

    NASA Technical Reports Server (NTRS)

    Johnson, L. F.

    1972-01-01

    The performance of infrared sensing systems is dependent upon the radiative properties of targets in addition to constraints imposed by system components. The unclassified state-of-the-art of infrared system performance figures is reviewed to indicate the relevance to system performance of target radiative properties. A theory of rough surface scattering is developed which allows the formulation of the reflective characteristics of extended targets. The thermal radiation emission from extended targets is formulated on the basis of internal radiation characteristics of natural materials and the transmissive scattering effects at the surface. Finally, the total radiative characteristics may be expressed as functions of material properties and incident and received directions, although the expressions are extremely complex functions and do not account for the effects of shadowing or multiple scattering. It is believed that the theory may be extended to include these effects and to incorporate the local radii of curvature of the surface.

  7. ZT Optimization: An Application Focus

    PubMed Central

    Tuley, Richard; Simpson, Kevin

    2017-01-01

    Significant research has been performed on the challenge of improving thermoelectric materials, with maximum peak figure of merit, ZT, the most common target. We use an approximate thermoelectric material model, matched to real materials, to demonstrate that when an application is known, average ZT is a significantly better optimization target. We quantify this difference with some examples, with one scenario showing that changing the doping to increase peak ZT by 19% can lead to a performance drop of 16%. The importance of average ZT means that the temperature at which the ZT peak occurs should be given similar weight to the value of the peak. An ideal material for an application operates across the maximum peak ZT, otherwise maximum performance occurs when the peak value is reduced in order to improve the peak position. PMID:28772668

  8. Multispectral infrared target detection: phenomenology and modeling

    NASA Astrophysics Data System (ADS)

    Cederquist, Jack N.; Rogne, Timothy J.; Schwartz, Craig R.

    1993-10-01

    Many targets of interest provide only very small signature differences from the clutter background. The ability to detect these small difference targets should be improved by using data which is diverse in space, time, wavelength or some other observable. Target materials often differ from background materials in the variation of their reflectance or emittance with wavelength. A multispectral sensor is therefore considered as a means to improve detection of small signal targets. If this sensor operates in the thermal infrared, it will not need solar illumination and will be useful at night as well as during the day. An understanding of the phenomenology of the spectral properties of materials and an ability to model and simulate target and clutter signatures is needed to understand potential target detection performance from multispectral infrared sensor data. Spectral variations in material emittance are due to vibrational energy transitions in molecular bonds. The spectral emittances of many materials of interest have been measured. Examples are vegetation, soil, construction and road materials, and paints. A multispectral infrared signature model has been developed which includes target and background temperature and emissivity, sky, sun, cloud and background irradiance, multiple reflection effects, path radiance, and atmospheric attenuation. This model can be used to predict multispectral infrared signatures for small signal targets.

  9. Modeling of intense pulsed ion beam heated masked targets for extreme materials characterization

    DOE PAGES

    Barnard, John J.; Schenkel, Thomas

    2017-11-15

    Intense, pulsed ion beams locally heat materials and deliver dense electronic excitations that can induce material modifications and phase transitions. Material properties can potentially be stabilized by rapid quenching. Pulsed ion beams with pulse lengths of order ns have recently become available for materials processing. Here, we optimize mask geometries for local modification of materials by intense ion pulses. The goal is to rapidly excite targets volumetrically to the point where a phase transition or local lattice reconstruction is induced followed by rapid cooling that stabilizes desired material's properties fast enough before the target is altered or damaged by, e.g.,more » hydrodynamic expansion. By using a mask, the longitudinal dimension can be large compared to the transverse dimension, allowing the possibility of rapid transverse cooling. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of silicon targets with micro-structured masks and compare these to a simple analytical model. In conclusion, the model gives scaling laws that can guide the design of targets over a wide range of pulsed ion beam parameters.« less

  10. Modeling of intense pulsed ion beam heated masked targets for extreme materials characterization

    NASA Astrophysics Data System (ADS)

    Barnard, John J.; Schenkel, Thomas

    2017-11-01

    Intense, pulsed ion beams locally heat materials and deliver dense electronic excitations that can induce material modifications and phase transitions. Material properties can potentially be stabilized by rapid quenching. Pulsed ion beams with pulse lengths of order ns have recently become available for materials processing. Here, we optimize mask geometries for local modification of materials by intense ion pulses. The goal is to rapidly excite targets volumetrically to the point where a phase transition or local lattice reconstruction is induced followed by rapid cooling that stabilizes desired material's properties fast enough before the target is altered or damaged by, e.g., hydrodynamic expansion. By using a mask, the longitudinal dimension can be large compared to the transverse dimension, allowing the possibility of rapid transverse cooling. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of silicon targets with micro-structured masks and compare these to a simple analytical model. The model gives scaling laws that can guide the design of targets over a wide range of pulsed ion beam parameters.

  11. Advanced Materials for Exploration Task Research Results

    NASA Technical Reports Server (NTRS)

    Cook, M. B. (Compiler); Murphy, K. L.; Schneider, T.

    2008-01-01

    The Advanced Materials for Exploration (AME) Activity in Marshall Space Flight Center s (MSFC s) Exploration Science and Technology Directorate coordinated activities from 2001 to 2006 to support in-space propulsion technologies for future missions. Working together, materials scientists and mission planners identified materials shortfalls that are limiting the performance of long-term missions. The goal of the AME project was to deliver improved materials in targeted areas to meet technology development milestones of NASA s exploration-dedicated activities. Materials research tasks were targeted in five areas: (1) Thermal management materials, (2) propulsion materials, (3) materials characterization, (4) vehicle health monitoring materials, and (5) structural materials. Selected tasks were scheduled for completion such that these new materials could be incorporated into customer development plans.

  12. Material Targets for Scaling All-Spin Logic

    NASA Astrophysics Data System (ADS)

    Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A.

    2016-01-01

    All-spin-logic devices are promising candidates to augment and complement beyond-CMOS integrated circuit computing due to nonvolatility, ultralow operating voltages, higher logical efficiency, and high density integration. However, the path to reach lower energy-delay product performance compared to CMOS transistors currently is not clear. We show that scaling and engineering the nanoscale magnetic materials and interfaces is the key to realizing spin-logic devices that can surpass the energy-delay performance of CMOS transistors. With validated stochastic nanomagnetic and vector spin-transport numerical models, we derive the target material and interface properties for the nanomagnets and channels. We identify promising directions for material engineering and discovery focusing on the systematic scaling of magnetic anisotropy (Hk ) and saturation magnetization (Ms ), the use of perpendicular magnetic anisotropy, and the interface spin-mixing conductance of the ferromagnet-spin-channel interface (Gmix ). We provide systematic targets for scaling a spin-logic energy-delay product toward 2 aJ ns, comprehending the stochastic noise for nanomagnets.

  13. Development of a candidate reference material for adventitious virus detection in vaccine and biologicals manufacturing by deep sequencing

    PubMed Central

    Mee, Edward T.; Preston, Mark D.; Minor, Philip D.; Schepelmann, Silke; Huang, Xuening; Nguyen, Jenny; Wall, David; Hargrove, Stacey; Fu, Thomas; Xu, George; Li, Li; Cote, Colette; Delwart, Eric; Li, Linlin; Hewlett, Indira; Simonyan, Vahan; Ragupathy, Viswanath; Alin, Voskanian-Kordi; Mermod, Nicolas; Hill, Christiane; Ottenwälder, Birgit; Richter, Daniel C.; Tehrani, Arman; Jacqueline, Weber-Lehmann; Cassart, Jean-Pol; Letellier, Carine; Vandeputte, Olivier; Ruelle, Jean-Louis; Deyati, Avisek; La Neve, Fabio; Modena, Chiara; Mee, Edward; Schepelmann, Silke; Preston, Mark; Minor, Philip; Eloit, Marc; Muth, Erika; Lamamy, Arnaud; Jagorel, Florence; Cheval, Justine; Anscombe, Catherine; Misra, Raju; Wooldridge, David; Gharbia, Saheer; Rose, Graham; Ng, Siemon H.S.; Charlebois, Robert L.; Gisonni-Lex, Lucy; Mallet, Laurent; Dorange, Fabien; Chiu, Charles; Naccache, Samia; Kellam, Paul; van der Hoek, Lia; Cotten, Matt; Mitchell, Christine; Baier, Brian S.; Sun, Wenping; Malicki, Heather D.

    2016-01-01

    Background Unbiased deep sequencing offers the potential for improved adventitious virus screening in vaccines and biotherapeutics. Successful implementation of such assays will require appropriate control materials to confirm assay performance and sensitivity. Methods A common reference material containing 25 target viruses was produced and 16 laboratories were invited to process it using their preferred adventitious virus detection assay. Results Fifteen laboratories returned results, obtained using a wide range of wet-lab and informatics methods. Six of 25 target viruses were detected by all laboratories, with the remaining viruses detected by 4–14 laboratories. Six non-target viruses were detected by three or more laboratories. Conclusion The study demonstrated that a wide range of methods are currently used for adventitious virus detection screening in biological products by deep sequencing and that they can yield significantly different results. This underscores the need for common reference materials to ensure satisfactory assay performance and enable comparisons between laboratories. PMID:26709640

  14. A Monte Carlo studies of the entrance foil material in a target assembly for FDG production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merouani, A.; El Khayati, N.; EL Ghayour, A.

    2015-07-01

    In this work, a Monte Carlo simulation was performed for different entrance foil Materials in the target assembly for [{sup 18}F] FDG production, to investigate the neutron generations in the entrance foil. However, the objective is to study a materials that has the more or less similar mechanical properties as the Havar{sup R} foil with less generation of secondary particles and without affecting, the yield of FDG production. (authors)

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remec, Igor; Ronningen, Reginald Martin

    The research studied one-step and two-step Isotope Separation on Line (ISOL) targets for future radioactive beam facilities with high driver-beam power through advanced computer simulations. As a target material uranium carbide in the form of foils was used because of increasing demand for actinide targets in rare-isotope beam facilities and because such material was under development in ISAC at TRIUMF when this project started. Simulations of effusion were performed for one-step and two step targets and the effects of target dimensions and foil matrix were studied. Diffusion simulations were limited by availability of diffusion parameters for UC x material atmore » reduced density; however, the viability of the combined diffusion?effusion simulation methodology was demonstrated and could be used to extract physical parameters such as diffusion coefficients and effusion delay times from experimental isotope release curves. Dissipation of the heat from the isotope-producing targets is the limiting factor for high-power beam operation both for the direct and two-step targets. Detailed target models were used to simulate proton beam interactions with the targets to obtain the fission rates and power deposition distributions, which were then applied in the heat transfer calculations to study the performance of the targets. Results indicate that a direct target, with specification matching ISAC TRIUMF target, could operate in 500-MeV proton beam at beam powers up to ~40 kW, producing ~8 10 13 fission/s with maximum temperature in UCx below 2200 C. Targets with larger radius allow higher beam powers and fission rates. For the target radius in the range 9-mm to 30-mm the achievable fission rate increases almost linearly with target radius, however, the effusion delay time also increases linearly with target radius.« less

  16. Materials Science Research | Materials Science | NREL

    Science.gov Websites

    Structure Theory We use high-performance computing to design and discover materials for energy, and to study structure of surfaces and critical interfaces. Images of red and yellow particles Materials Discovery Our by traditional targeted experiments. Photo of a stainless steel piece of equipment with multiple

  17. The value of materials R&D in the fast track development of fusion power

    NASA Astrophysics Data System (ADS)

    Ward, D. J.; Taylor, N. P.; Cook, I.

    2007-08-01

    The objective of the international fusion program is the creation of power plants with attractive safety and environmental features and viable economics. There is a range of possible plants that can meet these objectives, as studied for instance in the recent EU studies of power plant concepts. All of the concepts satisfy safety and environmental objectives but the economic performance is interpreted differently in different world regions according to the perception of future energy markets. This leads to different materials performance targets and the direction and timescales of the materials development programme needed to meet those targets. In this paper, the implications for materials requirements of a fast track approach to fusion development are investigated. This includes a quantification of the overall benefits of more advanced materials: including the effect of trading off an extended development time against a reduced cost of electricity for resulting power plants.

  18. Radiological Protection and Nuclear Engineering Studies in Multi-MW Target Systems

    NASA Astrophysics Data System (ADS)

    Luis, Raul Fernandes

    Several innovative projects involving nuclear technology have emerged around the world in recent years, for applications such as spallation neutron sources, accelerator-driven systems for the transmutation of nuclear waste and radioactive ion beam (RIB) production. While the available neutron Wuxes from nuclear reactors did not increase substantially in intensity over the past three decades, the intensities of neutron sources produced in spallation targets have increased steadily, and should continue to do so during the 21st century. Innovative projects like ESS, MYRRHA and EURISOL lie at the forefront of the ongoing pursuit for increasingly bright neutron sources; driven by proton beams with energies up to 2 GeV and intensities up to several mA, the construction of their proposed facilities involves complex Nuclear Technology and Radiological Protection design studies executed by multidisciplinary teams of scientists and engineers from diUerent branches of Science. The intense neutron Wuxes foreseen for those facilities can be used in several scientiVc research Velds, such as Nuclear Physics and Astrophysics, Medicine and Materials Science. In this work, the target systems of two facilitites for the production of RIBs using the Isotope Separation On-Line (ISOL) method were studied in detail: ISOLDE, operating at CERN since 1967, and EURISOL, the next-generation ISOL facility to be built in Europe. For the EURISOL multi-MW target station, a detailed study of Radiological Protection was carried out using the Monte Carlo code FLUKA. Simulations were done to assess neutron Wuences, Vssion rates, ambient dose equivalent rates during operation and after shutdown and the production of radioactive nuclei in the targets and surrounding materials. DiUerent materials were discussed for diUerent components of the target system, aiming at improving its neutronics performance while keeping the residual activities resulting from material activation as low as possible. The second goal of this work was to perform an optimisation study for the ISOLDE neutron converter and Vssion target system. The target system was simulated using FLUKA and the cross section codes TALYS and ABRABLA, with the objective of maximising the performance of the system for the production of pure beams of neutron-rich isotopes, suppressing the contaminations by undesired neutron-deficient isobars. Two alternative target systems were proposed in the optimisation studies; the simplest of the two, with some modiVcations, was built as a prototype and tested at ISOLDE. The experimental results clearly show that it is possible, with simple changes in the layouts of the target systems, to produce purer beams of neutron-rich isotopes around the doubly magic nuclei 78Ni and 132Sn. A study of Radiological Protection was also performed, comparing the performances of the prototype target system and the standard ISOLDE target system. None

  19. Improving scanner wafer alignment performance by target optimization

    NASA Astrophysics Data System (ADS)

    Leray, Philippe; Jehoul, Christiane; Socha, Robert; Menchtchikov, Boris; Raghunathan, Sudhar; Kent, Eric; Schoonewelle, Hielke; Tinnemans, Patrick; Tuffy, Paul; Belen, Jun; Wise, Rich

    2016-03-01

    In the process nodes of 10nm and below, the patterning complexity along with the processing and materials required has resulted in a need to optimize alignment targets in order to achieve the required precision, accuracy and throughput performance. Recent industry publications on the metrology target optimization process have shown a move from the expensive and time consuming empirical methodologies, towards a faster computational approach. ASML's Design for Control (D4C) application, which is currently used to optimize YieldStar diffraction based overlay (DBO) metrology targets, has been extended to support the optimization of scanner wafer alignment targets. This allows the necessary process information and design methodology, used for DBO target designs, to be leveraged for the optimization of alignment targets. In this paper, we show how we applied this computational approach to wafer alignment target design. We verify the correlation between predictions and measurements for the key alignment performance metrics and finally show the potential alignment and overlay performance improvements that an optimized alignment target could achieve.

  20. Radiological assessment of target materials for accelerator transmutation of waste (ATW) applications

    NASA Astrophysics Data System (ADS)

    Vickers, Linda Diane

    This dissertation issues the first published document of the radiation absorbed dose rate (rad-h-1) to tissue from radioactive spallation products in Ta, W, Pb, Bi, and LBE target materials used in Accelerator Transmutation of Waste (ATW) applications. No previous works have provided an estimate of the absorbed dose rate (rad-h-1) from activated targets for ATW applications. The results of this dissertation are useful for planning the radiological safety assessment to personnel, and for the design, construction, maintenance, and disposition of target materials of high-energy particle accelerators for ATW applications (Charlton, 1996). In addition, this dissertation provides the characterization of target materials of high-energy particle accelerators for the parameters of: (1) spallation neutron yield (neutrons/proton), (2) spallation products yield (nuclides/proton), (3) energy-dependent spallation neutron fluence distribution, (4) spallation neutron flux, (5) identification of radioactive spallation products for consideration in safety of personnel to high radiation dose rates, and (6) identification of the optimum geometrical dimensions for the target applicable to the maximum radial spallation neutron leakage from the target. Pb and Bi target materials yielded the lowest absorbed dose rates (rad-h -1) for a 10-year irradiation/50-year decay scheme, and would be the preferred target materials for consideration of the radiological safety of personnel during ATW operations. A beneficial characteristic of these target materials is that they do not produce radioactive transuranic isotopes, which have very long half-lives and require special handling and disposition requirements. Furthermore, the targets are not considered High-Level Waste (HLW) such as reactor spent fuel for disposal purposes. It is a basic ATW system requirement that the spallation target after it has been expended should be disposable as Class C low-level radioactive waste. Therefore, the disposal of Pb and Bi targets would be optimally beneficial to the economy and environment. Future studies should relate the target performance to other system parameters, specifically solid and liquid blanket systems that contain the radioactive waste to be transmuted. The methodology of this dissertation may be applied to any target material of a high-energy particle accelerator.

  1. Determination of steroid sex hormones in wastewater by stir bar sorptive extraction based on poly(vinylpyridine-ethylene dimethacrylate) monolithic material and liquid chromatographic analysis.

    PubMed

    Huang, Xiaojia; Lin, Jianbin; Yuan, Dongxing; Hu, Rongzong

    2009-04-17

    In this study, a simple and rapid method was developed for the determination of seven steroid hormones in wastewater. Sample preparation and analysis were performed by stir bar sorptive extraction (SBSE) based on poly(vinylpyridine-ethylene dimethacrylate) monolithic material (SBSEM) combined with high-performance liquid chromatography with diode array detection. To achieve the optimum extraction performance, several main parameters, including extraction and desorption time, pH value and contents of inorganic salt in the sample matrix, were investigated. Under the optimized experimental conditions, the method showed good linearity and repeatability, as well as advantages such as sensitivity, simplicity, low cost and high feasibility. The extraction performance of SBSEM to the target compounds also compared with commercial SBSE which used polydimethylsiloxane as coating. Finally, the proposed method was successfully applied to the determination of the target compounds in wastewater samples. The recoveries of spiked target compounds in real samples ranged from 48.2% to 110%.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnard, John J.; Schenkel, Thomas

    Intense, pulsed ion beams locally heat materials and deliver dense electronic excitations that can induce material modifications and phase transitions. Material properties can potentially be stabilized by rapid quenching. Pulsed ion beams with pulse lengths of order ns have recently become available for materials processing. Here, we optimize mask geometries for local modification of materials by intense ion pulses. The goal is to rapidly excite targets volumetrically to the point where a phase transition or local lattice reconstruction is induced followed by rapid cooling that stabilizes desired material's properties fast enough before the target is altered or damaged by, e.g.,more » hydrodynamic expansion. By using a mask, the longitudinal dimension can be large compared to the transverse dimension, allowing the possibility of rapid transverse cooling. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of silicon targets with micro-structured masks and compare these to a simple analytical model. In conclusion, the model gives scaling laws that can guide the design of targets over a wide range of pulsed ion beam parameters.« less

  3. Scale-up of high specific activity 186gRe production using graphite-encased thick 186W targets and demonstration of an efficient target recycling process

    DOE PAGES

    Balkin, Ethan R.; Gagnon, Katherine; Dorman, Eric; ...

    2017-08-18

    Production of high specific activity 186gRe is of interest for development of theranostic radiopharmaceuticals. Previous studies have shown that high specific activity 186gRe can be obtained by cyclotron irradiation of enriched 186W via the 186W(d,2n) 186gRe reaction, but most irradiations were conducted at low beam currents and for short durations. In this paper, enriched 186W metal targets were irradiated at high incident deuteron beam currents to demonstrate production rates and contaminants produced when using thick targets. Full-stopping thick targets, as determined using SRIM, were prepared by uniaxial pressing of powdered natural abundance W metal or 96.86% enriched 186W metal encasedmore » between two layers of graphite flakes for target material stabilization. An assessment of structural integrity was made on each target preparation. To assess the performance of graphite-encased thick 186W metal targets, along with the impact of encasing on the separation chemistry, targets were first irradiated using a 22 MeV deuteron beam for 10 min at 10, 20, and 27 μA, with an estimated nominal deuteron energy of 18.7 MeV on the 186W target material (after energy degradation correction from top graphite layer). Gamma-ray spectrometry was performed post EOB on all targets to assess production yields and radionuclidic byproducts. The investigation also evaluated a method to recover and recycle enriched target material from a column isolation procedure. Material composition analyses of target materials, pass-through/wash solutions and recycling process isolates were conducted with SEM, FTIR, XRD, EDS and ICP-MS spectrometry. Finally, to demonstrate scaled-up production, a graphite-encased 186W target made from recycled 186W was irradiated for ~2 h with 18.7 MeV deuterons at a beam current of 27 μA to provide 0.90 GBq (24.3 mCi) of 186gRe, decay-corrected to the end of bombardment. ICP-MS analysis of the isolated 186gRe solution provided data that indicated the specific activity of 186gRe in this scaled-up production run was 2.6±0.5 GBq/μg (70±10 Ci/mg).« less

  4. Scale-up of high specific activity 186gRe production using graphite-encased thick 186W targets and demonstration of an efficient target recycling process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balkin, Ethan R.; Gagnon, Katherine; Dorman, Eric

    Production of high specific activity 186gRe is of interest for development of theranostic radiopharmaceuticals. Previous studies have shown that high specific activity 186gRe can be obtained by cyclotron irradiation of enriched 186W via the 186W(d,2n) 186gRe reaction, but most irradiations were conducted at low beam currents and for short durations. In this paper, enriched 186W metal targets were irradiated at high incident deuteron beam currents to demonstrate production rates and contaminants produced when using thick targets. Full-stopping thick targets, as determined using SRIM, were prepared by uniaxial pressing of powdered natural abundance W metal or 96.86% enriched 186W metal encasedmore » between two layers of graphite flakes for target material stabilization. An assessment of structural integrity was made on each target preparation. To assess the performance of graphite-encased thick 186W metal targets, along with the impact of encasing on the separation chemistry, targets were first irradiated using a 22 MeV deuteron beam for 10 min at 10, 20, and 27 μA, with an estimated nominal deuteron energy of 18.7 MeV on the 186W target material (after energy degradation correction from top graphite layer). Gamma-ray spectrometry was performed post EOB on all targets to assess production yields and radionuclidic byproducts. The investigation also evaluated a method to recover and recycle enriched target material from a column isolation procedure. Material composition analyses of target materials, pass-through/wash solutions and recycling process isolates were conducted with SEM, FTIR, XRD, EDS and ICP-MS spectrometry. Finally, to demonstrate scaled-up production, a graphite-encased 186W target made from recycled 186W was irradiated for ~2 h with 18.7 MeV deuterons at a beam current of 27 μA to provide 0.90 GBq (24.3 mCi) of 186gRe, decay-corrected to the end of bombardment. ICP-MS analysis of the isolated 186gRe solution provided data that indicated the specific activity of 186gRe in this scaled-up production run was 2.6±0.5 GBq/μg (70±10 Ci/mg).« less

  5. Calculations vs. Measurements for Remnant Dose Rates from SNS Spent Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popova, Irina I.; Gallmeier, Franz X.; Trotter, Steven M.

    The Spallation Neutron Source (SNS) in Oak Ridge, Tennessee, is an accelerator driven neutron scattering facility for materials research. Presently SNS is capable to operate at 1.4 MW proton beam power incident on a mercury target with a proton beam energy of 1 GeV and 60 Hz repetition rate. SNS target system components are periodically replaced because they reach their end-of-life due to radiation induced material damage. Target vessel, which houses mercury target, is exchanged about two-three times per year and the proton beam window (PBW) is exchanged every two – three years.Each spent structure that leaves the SNS sitemore » requires supporting documentation with radionuclide inventory and dose rate prediction for the time of the transportation. Neutronics analyses are performed, assuming realistic irradiation history and decay case to ensure that the container/package, housing the structure, is compliant with the waste management regulations. Analyses are complex due to geometry, multi-code usage and following data treatment.To validate analyses, measurements of dose rates from the spent target vessel # 13 and PBW module #5 were performed. Neutronics analyses were performed to calculate residual dose rates from both structures for the time of measurements.« less

  6. Apparatus for depositing a low work function material

    DOEpatents

    Balooch, Mehdi; Dinh, Long N.; Siekhaus, Wigbert J.

    2006-10-10

    Short-wavelength photons are used to ablate material from a low work function target onto a suitable substrate. The short-wavelength photons are at or below visible wavelength. The elemental composition of the deposit is controlled by the composition of the target and the gaseous environment in which the ablation process is performed. The process is carried out in a deposition chamber to which a short-wavelength laser is mounted and which includes a substrate holder which can be rotated, tilted, heated, or cooled. The target material is mounted onto a holder that spins the target during laser ablation. In addition, the deposition chamber is provided with a vacuum pump, an external gas supply with atomizer and radical generator, a gas generator for producing a flow of molecules on the substrate, and a substrate cleaning device, such as an ion gun. The substrate can be rotated and tilted, for example, whereby only the tip of an emitter can be coated with a low work function material.

  7. Development of ion beam sputtering techniques for actinide target preparation

    NASA Astrophysics Data System (ADS)

    Aaron, W. S.; Zevenbergen, L. A.; Adair, H. L.

    1985-06-01

    Ion beam sputtering is a routine method for the preparation of thin films used as targets because it allows the use of a minimum quantity of starting material, and losses are much lower than most other vacuum deposition techniques. Work is underway in the Isotope Research Materials Laboratory (IRML) at ORNL to develop the techniques that will make the preparation of actinide targets up to 100 μg/cm 2 by ion beam sputtering a routinely available service from IRML. The preparation of the actinide material in a form suitable for sputtering is a key to this technique, as is designing a sputtering system that allows the flexibility required for custom-ordered target production. At present, development work is being conducted on low-activity actinides in a bench-top system. The system will then be installed in a hood or glove box approved for radioactive materials handling where processing of radium, actinium, and plutonium isotopes among others will be performed.

  8. System Concept for Remote Measurement of Asteroid Molecular Composition

    NASA Astrophysics Data System (ADS)

    Hughes, G. B.; Lubin, P. M.; Zhang, Q.; Brashears, T.; Cohen, A. N.; Madajian, J.

    2016-12-01

    We propose a method for probing the molecular composition of cold solar system targets (asteroids, comets, planets, moons) from a distant vantage, such as from a spacecraft orbiting the object. A directed energy beam is focused on the target. With sufficient flux, the spot temperature rises rapidly, and evaporation of surface materials occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a plume of surface materials in front of the spot. Molecular and atomic absorption of the blackbody radiation occurs within the ejected plume. Bulk composition of the surface material is investigated by using a spectrometer to view the heated spot through the ejected material. Our proposed method differs from technologies such as Laser-Induced Breakdown Spectroscopy (LIBS), which atomizes and ionizes materials in the target; scattered ions emit characteristic radiation, and the LIBS detector performs atomic composition analysis by observing emission spectra. Standoff distance for LIBS is limited by the strength of characteristic emission, and distances greater than 10 m are problematic. Our proposed method detects atomic and molecular absorption spectra in the plume; standoff distance is limited by the size of heated spot, and the plume opacity; distances on the order of tens of kilometers are immediately feasible. Simulations have been developed for laser heating of a rocky target, with concomitant evaporation. Evaporation rates lead to determination of plume density and opacity. Absorption profiles for selected materials are estimated from plume properties. Initial simulations of absorption profiles with laser heating show great promise for molecular composition analysis from tens of kilometers distance. This paper explores the feasibility a hypothetical mission that seeks to perform surface molecular composition analysis of a near-earth asteroid while the craft orbits the asteroid. Such a system has compelling potential benefit for solar system exploration.

  9. Oblique impacts into low impedance layers

    NASA Astrophysics Data System (ADS)

    Stickle, A. M.; Schultz, P. H.

    2009-12-01

    Planetary impacts occur indiscriminately, in all locations and materials. Varied geologic settings can have significant effects on the impact process, including the coupling between the projectile and target, the final damage patterns and modes of deformation that occur. For example, marine impact craters are not identical to impacts directly into bedrock or into sedimentary materials, though many of the same fundamental processes occur. It is therefore important, especially when considering terrestrial impacts, to understand how a low impedance sedimentary layer over bedrock affects the deformation process during and after a hypervelocity impact. As a first step, detailed comparisons between impacts and hydrocode models were performed. Experiments performed at the NASA Ames Vertical Gun Range of oblique impacts into polymethylmethacrylate (PMMA) targets with low impedance layers were performed and compared to experiments of targets without low impedance layers, as well as to hydrocode models under identical conditions. Impact velocities ranged from 5 km/s to 5.6 km/s, with trajectories from 30 degrees to 90 degrees above the horizontal. High-speed imaging provided documentation of the sequence and location of failure due to impact, which was compared to theoretical models. Plasticine and ice were used to construct the low impedance layers. The combination of experiments and models reveals the modes of failure due to a hypervelocity impact. How such failure is manifested at large scales can present a challenge for hydrocodes. CTH models tend to overestimate the amount of damage occurring within the targets and have difficulties perfectly reproducing morphologies; nevertheless, they provide significant and useful information about the failure modes and style within the material. CTH models corresponding to the experiments allow interpretation of the underlying processes involved as well as provide a benchmark for the experimental analysis. The transparency of PMMA allows a clear view of failure patterns within the target, providing a 3D picture of the final damage, as well as damage formation and propagation. Secondly, PMMA has mechanical properties similar to those of brittle rocks in the upper crust, making it an appropriate material for comparison to geologic materials. An impact into a PMMA target with a one-projectile-diameter thick plasticine layer causes damage distinct from an impact into a PMMA target without a low impedance layer. The extent of the final damage is much less in the target with the low impedance layer and begins to form at later times, there is little to no crater visible on the surface, and the formation and propagation of the damage is completely different, creating distinct subsurface damage patterns. Three-dimensional CTH hydrocode models show that the pressure history of material around and underneath the impact point is also different when a low impedance layer is present, leading to the variations in damage forming within the targets.

  10. 1L Mark-IV Target Design Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koehler, Paul E.

    This presentation includes General Design Considerations; Current (Mark-III) Lower Tier; Mark-III Upper Tier; Performance Metrics; General Improvements for Material Science; General Improvements for Nuclear Science; Improving FOM for Nuclear Science; General Design Considerations Summary; Design Optimization Studies; Expected Mark-IV Performance: Material Science; Expected Mark-IV Performance: Nuclear Science (Disk); Mark IV Enables Much Wider Range of Nuclear-Science FOM Gains than Mark III; Mark-IV Performance Summary; Rod or Disk? Center or Real FOV?; and Project Cost and Schedule.

  11. Device for detection and identification of carbon- and nitrogen-containing materials

    DOEpatents

    Karev, Alexander Ivanovich; Raevsky, Valery Georgievich; Dzhilavyan, Leonid Zavenovich; Laptev, Valery Dmitrievich; Pakhomov, Nikolay Ivanovich; Shvedunov, Vasily Ivanovich; Rykalin, Vladimir Ivanovich; Brothers, Louis Joseph; Wilhide, Larry K

    2014-03-25

    A device for detection and identification of carbon- and nitrogen-containing materials is described. In particular, the device performs the detection and identification of carbon- and nitrogen-containing materials by photo-nuclear detection. The device may comprise a race-track microtron, a breaking target, and a water-filled Cherenkov radiation counter.

  12. Lujan Center Mark-IV Target Neutronics Design Internal Review Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisowski, Paul W.; Gallmeier, Franz; Guber, Klaus

    The 1L Target Moderator Reflector System (TMRS) at the Lujan Center will need to be replaced before the CY 2020 operating cycle. A Physics Division design team investigated options for improving the overall target performance for nuclear science research with minimal reduction in performance for materials science. This review concluded that devoting an optimized arrangement of the Lujan TMRS upper tier to nuclear science and using the lower tier for materials science can achieve those goals. This would open the opportunity for enhanced nuclear science research in an important neutron energy range for NNSA. There will be no other facilitymore » in the US that will compete in the keV energy range provided flight paths and instrumentation are developed to take advantage of the neutron flux and resolution.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Francis

    A team led by GE Global Research developed new magnetic refrigerant materials needed to enhance the commercialization potential of residential appliances such as refrigerators and air conditioners based on the magnetocaloric effect (a nonvapor compression cooling cycle). The new magnetic refrigerant materials have potentially better performance at lower cost than existing materials, increasing technology readiness level. The performance target of the new magnetocaloric material was to reduce the magnetic field needed to achieve 4 °C adiabatic temperature change from 1.5 Tesla to 0.75 Tesla. Such a reduction in field minimizes the cost of the magnet assembly needed for a magneticmore » refrigerator. Such a reduction in magnet assembly cost is crucial to achieving commercialization of magnetic refrigerator technology. This project was organized as an iterative alloy development effort with a parallel material modeling task being performed at George Washington University. Four families of novel magnetocaloric alloys were identified, screened, and assessed for their performance potential in a magnetic refrigeration cycle. Compositions from three of the alloy families were manufactured into regenerator components. At the beginning of the project a previously studied magnetocaloric alloy was selected for manufacturing into the first regenerator component. Each of the regenerators was tested in magnetic refrigerator prototypes at a subcontractor at at GE Appliances. The property targets for operating temperature range, operating temperature control, magnetic field sensitivity, and corrosion resistance were met. The targets for adiabatic temperature change and thermal hysteresis were not met. The high thermal hysteresis also prevented the regenerator components from displaying measurable cooling power when tested in prototype magnetic refrigerators. Magnetic refrigerant alloy compositions that were predicted to have low hysteresis were not attainable with conventional alloy processing methods. Preliminary experiments with rapid solidification methods showed a path towards attaining low hysteresis compositions should this alloy development effort be continued.« less

  14. Calculational investigation of impact cratering dynamics - Early time material motions

    NASA Technical Reports Server (NTRS)

    Thomsen, J. M.; Austin, M. G.; Ruhl, S. F.; Schultz, P. H.; Orphal, D. L.

    1979-01-01

    Early time two-dimensional finite difference calculations of laboratory-scale hypervelocity (6 km/sec) impact of 0.3 g spherical 2024 aluminum projectiles into homogeneous plasticene clay targets were performed and the resulting material motions analyzed. Results show that the initial jetting of vaporized target material is qualitatively similar to experimental observation. The velocity flow field developed within the target is shown to have features quite similar to those found in calculations of near-surface explosion cratering. Specific application of Maxwell's analytic Z-Model (developed to interpret the flow fields of near-surface explosion cratering calculations), shows that this model can be used to describe the flow fields resulting from the impact cratering calculations, provided that the flow field center is located beneath the target surface, and that application of the model is made late enough in time that most of the projectile momentum has been dissipated.

  15. Development of a flyer design to perform plate impact shock-release-shock experiments on explosives

    NASA Astrophysics Data System (ADS)

    Finnegan, Simon; Ferguson, James; Millett, Jeremy; Goff, Michael

    2017-06-01

    A flyer design to generate a shock-release-shock loading history within a gas gun target was developed before being used to study the response of an HMX based explosive. The flyer consisted of two flyer plates separated by a vacuum gap. This created a rear free surface that, with correct material choice, allowed the target to release to close to ambient pressure between the initial shock and subsequent re-shock. The design was validated by impacting piezoelectric pin arrays to record the front flyer deformation. Shots were performed on PCTFE targets to record the shock states generated in an inert material prior to subjecting an HMX based explosive to the same loading. The response of the explosive to this loading history was recorded using magnetic particle velocity (PV) gauges embedded within the targets. The behavior during the run to detonation is compared with the response to sustained shocks at similar input pressures.

  16. DoE Phase II SBIR: Spectrally-Assisted Vehicle Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villeneuve, Pierre V.

    2013-02-28

    The goal of this Phase II SBIR is to develop a prototype software package to demonstrate spectrally-aided vehicle tracking performance. The primary application is to demonstrate improved target vehicle tracking performance in complex environments where traditional spatial tracker systems may show reduced performance. Example scenarios in Figure 1 include a) the target vehicle obscured by a large structure for an extended period of time, or b), the target engaging in extreme maneuvers amongst other civilian vehicles. The target information derived from spatial processing is unable to differentiate between the green versus the red vehicle. Spectral signature exploitation enables comparison ofmore » new candidate targets with existing track signatures. The ambiguity in this confusing scenario is resolved by folding spectral analysis results into each target nomination and association processes. Figure 3 shows a number of example spectral signatures from a variety of natural and man-made materials. The work performed over the two-year effort was divided into three general areas: algorithm refinement, software prototype development, and prototype performance demonstration. The tasks performed under this Phase II to accomplish the program goals were as follows: 1. Acquire relevant vehicle target datasets to support prototype. 2. Refine algorithms for target spectral feature exploitation. 3. Implement a prototype multi-hypothesis target tracking software package. 4. Demonstrate and quantify tracking performance using relevant data.« less

  17. Using Reactive Transport Modeling to Understand Formation of the Stimson Sedimentary Unit and Altered Fracture Zones at Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Hausrath, E. M.; Ming, D. W.; Peretyazhko, T.; Rampe, E. B.

    2017-01-01

    Water flowing through sediments at Gale Crater, Mars created environments that were likely habitable, and sampled basin-wide hydrological systems. However, many questions remain about these environments and the fluids that generated them. Measurements taken by the Mars Science Laboratory Curiosity of multiple fracture zones can help constrain the environments that formed them because they can be compared to nearby associated parent material (Figure 1). For example, measurements of altered fracture zones from the target Greenhorn in the Stimson sandstone can be compared to parent material measured in the nearby Big Sky target, allowing constraints to be placed on the alteration conditions that formed the Greenhorn target from the Big Sky target. Similarly, CheMin measurements of the powdered < 150 micron fraction from the drillhole at Big Sky and sample from the Rocknest eolian deposit indicate that the mineralogies are strikingly similar. The main differences are the presence of olivine in the Rocknest eolian deposit, which is absent in the Big Sky target, and the presence of far more abundant Fe oxides in the Big Sky target. Quantifying the changes between the Big Sky target and the Rocknest eolian deposit can therefore help us understand the diagenetic changes that occurred forming the Stimson sedimentary unit. In order to interpret these aqueous changes, we performed reactive transport modeling of 1) the formation of the Big Sky target from a Rocknest eolian deposit-like parent material, and 2) the formation of the Greenhorn target from the Big Sky target. This work allows us to test the relationships between the targets and the characteristics of the aqueous conditions that formed the Greenhorn target from the Big Sky target, and the Big Sky target from a Rocknest eolian deposit-like parent material.

  18. High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kepler, Keith D.; Slater, Michael

    This Li-ion cell technology development project had three objectives: to develop advanced electrode materials and cell components to enable stable high-voltage operation; to design and demonstrate a Li-ion cell using these materials that meets the PHEV40 performance targets; and to design and demonstrate a Li-ion cell using these materials that meets the EV performance targets. The major challenge to creating stable high energy cells with long cycle life is system integration. Although materials that can give high energy cells are known, stabilizing them towards long-term cycling in the presence of other novel cell components is a major challenge. The majormore » technical barriers addressed by this work include low cathode specific energy, poor electrolyte stability during high voltage operation, and insufficient capacity retention during deep discharge for Si-containing anodes. Through the course of this project, Farasis was able to improve capacity retention of NCM materials for 4.4+ V operation, through both surface treatment and bulk-doping approaches. Other material advances include increased rate capability and of HE-NCM materials through novel synthesis approach, doubling the relative capacity at 1C over materials synthesized using standard methods. Silicon active materials proved challenging throughout the project and ultimately were the limiting factor in the energy density vs. cycle life trade off. By avoiding silicon anodes for the lower energy PHEV design, we manufactured cells with intermediate energy density and long cycle life under high voltage operation for PHEV applications. Cells with high energy density for EV applications were manufactured targeting a 300 Wh/kg design and were able to achieve > 200 cycles.« less

  19. Beauty and charm production at fixed-target experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erik E. Gottschalk

    Fixed-target experiments continue to provide insights into the physics of particle production in strong interactions. The experiments are performed with different types of beam particles of varying energies, and many different target materials. Studies of beauty and charm production are of particular interest, since experimental results can be compared to perturbative QCD calculations. It is in this context that recent results from fixed-target experiments on beauty and charm production will be reviewed.

  20. Investigating inertial confinement fusion target fuel conditions through x-ray spectroscopya)

    NASA Astrophysics Data System (ADS)

    Hansen, Stephanie B.

    2012-05-01

    Inertial confinement fusion (ICF) targets are designed to produce hot, dense fuel in a neutron-producing core that is surrounded by a shell of compressing material. The x-rays emitted from ICF plasmas can be analyzed to reveal details of the temperatures, densities, gradients, velocities, and mix characteristics of ICF targets. Such diagnostics are critical to understand the target performance and to improve the predictive power of simulation codes.

  1. Three-dimensional particle simulation of back-sputtered carbon in electric propulsion test facility

    NASA Astrophysics Data System (ADS)

    Zheng, Hongru; Cai, Guobiao; Liu, Lihui; Shang, Shengfei; He, Bijiao

    2017-03-01

    The back-sputtering deposition on thruster surface caused by ion bombardment on chamber wall material affects the performance of thrusters during the ground based electric propulsion endurance tests. In order to decrease the back-sputtering deposition, most of vacuum chambers applied in electric propulsion experiments are equipped with anti-sputtering targets. In this paper, a three-dimensional model of plume experimental system (PES) including double layer anti-sputtering target is established. Simulation cases are made to simulate the plasma environment and sputtering effects when an ion thruster is working. The particle in cell (PIC) method and direct simulation Monte Carlo (DSMC) method is used to calculate the velocity and position of particles. Yamamura's model is used to simulate the sputtering process. The distribution of sputtered anti-sputtering target material is presented. The results show that the double layer anti-sputtering target can significantly reduce the deposition on thruster surface. The back-sputtering deposition rates on thruster exit surface for different cases are compared. The chevrons on the secondary target are rearranged to improve its performance. The position of secondary target has relation with the ion beam divergence angle, and the radius of the vacuum chamber. The back-sputtering deposition rate is lower when the secondary target covers the entire ion beam.

  2. Computational modeling of joint U.S.-Russian experiments relevant to magnetic compression/magnetized target fusion (MAGO/MTF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheehey, P.T.; Faehl, R.J.; Kirkpatrick, R.C.

    1997-12-31

    Magnetized Target Fusion (MTF) experiments, in which a preheated and magnetized target plasma is hydrodynamically compressed to fusion conditions, present some challenging computational modeling problems. Recently, joint experiments relevant to MTF (Russian acronym MAGO, for Magnitnoye Obzhatiye, or magnetic compression) have been performed by Los Alamos National Laboratory and the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF). Modeling of target plasmas must accurately predict plasma densities, temperatures, fields, and lifetime; dense plasma interactions with wall materials must be characterized. Modeling of magnetically driven imploding solid liners, for compression of target plasmas, must address issues such as Rayleigh-Taylor instability growthmore » in the presence of material strength, and glide plane-liner interactions. Proposed experiments involving liner-on-plasma compressions to fusion conditions will require integrated target plasma and liner calculations. Detailed comparison of the modeling results with experiment will be presented.« less

  3. An oral colon-targeting controlled release system based on resistant starch acetate: synthetization, characterization, and preparation of film-coating pellets.

    PubMed

    Pu, Huayin; Chen, Ling; Li, Xiaoxi; Xie, Fengwei; Yu, Long; Li, Lin

    2011-05-25

    An oral colon-targeting controlled release system based on resistant starch acetate (RSA) as a film-coating material was developed. The RSA was successfully synthesized, and its digestion resistibility could be improved by increasing the degree of substitution (DS), which was favorable for the colon-targeting purpose. As a delivery carrier material, the characteristics of RSA were investigated by polarized light microscopy, FTIR spectroscopy, and X-ray diffraction. The results revealed a decrease of the crystallinity of RSA and a change of its crystalline structure from B + V hydrid type to V type. To evaluate the colon-targeting release performance, the RSA film-coated pellets loaded with different bioactive components were prepared by extrusion-spheronization and then by fluid bed coating. The effects of the DS, plasticizer content, and coating thickness of the RSA film and those of the content and molecular weight of the loaded bioactive component on the colon-targeting release performance of the resulting delivery system were investigated. By adjusting the DS, the coating thickness, and the plasticizer content of the RSA film, either the pellets loaded with a small molecular bioactive component such as 5-aminosalicylic acid or those with a macromolecular bioactive peptide or protein such as bovine serum albumin, hepatocyte growth-promoting factor, or insulin showed a desirable colon-targeting release performance. The release percentage was less than 12% in simulated upper gastrointestinal tract and went up to 70% over a period of 40 h in simulated colonic fluid. This suggests that the delivery system based on RSA film has an excellent colon-targeting release performance and the universality for a wide range of bioactive components.

  4. Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Yang, Dan-Qing; Liu, Shi-Lei; Yu, Si-Yuan; Lu, Ming-Hui; Zhu, Jie; Zhang, Shan-Tao; Zhu, Ming-Wei; Guo, Xia-Sheng; Wu, Hao-Dong; Wang, Xin-Long; Chen, Yan-Feng

    2017-02-01

    High-quality broadband ultrasound transducers yield superior imaging performance in biomedical ultrasonography. However, proper design to perfectly bridge the energy between the active piezoelectric material and the target medium over the operating spectrum is still lacking. Here, we demonstrate a new anisotropic cone-structured acoustic metamaterial matching layer that acts as an inhomogeneous material with gradient acoustic impedance along the ultrasound propagation direction. When sandwiched between the piezoelectric material unit and the target medium, the acoustic metamaterial matching layer provides a broadband window to support extraordinary transmission of ultrasound over a wide frequency range. We fabricated the matching layer by etching the peeled silica optical fibre bundles with hydrofluoric acid solution. The experimental measurement of an ultrasound transducer equipped with this acoustic metamaterial matching layer shows that the corresponding -6 dB bandwidth is able to reach over 100%. This new material fully enables new high-end piezoelectric materials in the construction of high-performance ultrasound transducers and probes, leading to considerably improved resolutions in biomedical ultrasonography and compact harmonic imaging systems.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balkin, Ethan R.; Gagnon, Katherine; Strong, Kevin T.

    This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity 186Re using deuteron irradiation of enriched 186W via the 186W(d,2n) 186Re reaction. Thick W and WO 3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxi-ally pressing powdered natural abundance W and WO 3, or 96.86% enriched 186W, into Al target supports. Alternatively, thick targets were prepared by pressing 186W between two layers of graphite powder or by placing pre-sintered (1105°C, 12 hours) natural abundance WO 3 pellets into an Al target support. Assessments ofmore » structural integrity were made on each target pre-pared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. With-in a minimum of 24 hours post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO 3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO 3 targets prepared and studied were unacceptable. By contrast, 186W metal was found to be a viable target material for 186Re production. Lastly, thick targets prepared with powdered 186W pressed between layers of graphite provided a particularly robust target configuration.« less

  6. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  7. Comparison of thermal insulation performance of fibrous materials for the advanced space suit.

    PubMed

    Paul, Heather L; Diller, Kenneth R

    2003-10-01

    The current multi-layer insulation used in the extravehicular mobility unit (EMU) will not be effective in the atmosphere of Mars due to the presence of interstitial gases. Alternative thermal insulation means have been subjected to preliminary evaluation by NASA to attempt to identify a material that will meet the target conductivity of 0.005 W/m-K. This study analyzes numerically the thermal conductivity performance for three of these candidate insulating fiber materials in terms of various denier (size), interstitial void fractions, interstitial void media, and orientations to the applied temperature gradient to evaluate their applicability for the new Mars suit insulation. The results demonstrate that the best conductive insulation is achieved for a high-void-fraction configuration with a grooved fiber cross section, aerogel void medium, and the fibers oriented normal to the heat flux vector. However, this configuration still exceeds the target thermal conductivity by a factor of 1.5.

  8. NREL's Education Program in Action in the Concentrating Solar Power Program Advanced Materials Task

    NASA Astrophysics Data System (ADS)

    Kennedy, Cheryl

    2010-03-01

    Concentrating solar power (CSP) technologies use large mirrors to concentrate sunlight and the thermal energy collected is converted to electricity. The CSP industry is growing rapidly and is expected to reach 25 GW globally by 2020. Cost target goals are for CSP technologies to produce electricity competitive with intermediate-load power generation (i.e., natural gas) by 2015 with 6 hours of thermal storage and competitive in carbon constrained base load power markets (i.e., coal) by 2020 with 12-17 hours of thermal storage. The solar field contributes more than 40% of the total cost of a parabolic trough plant and together the mirrors and receivers contribute more than 25% of the installed solar field cost. CSP systems cannot hit these targets without aggressive cost reductions and revolutionary performance improvements from technology advances. NREL's Advanced Materials task in the CSP Advanced R&D project performs research to develop low cost, high performance, durable solar reflector and high-temperature receiver materials to meet these needs. The Advanced Materials task leads the world in this research and the task's reliance on NREL's educational program will be discussed.

  9. Development and Validation of a Slurry Model for Chemical Hydrogen Storage in Fuel Cell Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Pires, Richard P.; Simmons, Kevin L.

    2014-07-25

    The US Department of Energy's (DOE) Hydrogen Storage Engineering Center of Excellence (HSECoE) is developing models for hydrogen storage systems for fuel cell-based light duty vehicle applications for a variety of promising materials. These transient models simulate the performance of the storage system for comparison to the DOE’s Technical Targets and a set of four drive cycles. The purpose of this research is to describe the models developed for slurry-based chemical hydrogen storage materials. The storage systems of both a representative exothermic system based on ammonia borane and endothermic system based on alane were developed and modeled in Simulink®. Oncemore » complete the reactor and radiator components of the model were validated with experimental data. The model was then run using a highway cycle, an aggressive cycle, cold-start cycle and hot drive cycle. The system design was adjusted to meet these drive cycles. A sensitivity analysis was then performed to identify the range of material properties where these DOE targets and drive cycles could be met. Materials with a heat of reaction greater than 11 kJ/mol H2 generated and a slurry hydrogen capacity of greater than 11.4% will meet the on-board efficiency and gravimetric capacity targets, respectively.« less

  10. Determination of target detection limits in hyperspectral data using band selection and dimensionality reduction

    NASA Astrophysics Data System (ADS)

    Gross, W.; Boehler, J.; Twizer, K.; Kedem, B.; Lenz, A.; Kneubuehler, M.; Wellig, P.; Oechslin, R.; Schilling, H.; Rotman, S.; Middelmann, W.

    2016-10-01

    Hyperspectral remote sensing data can be used for civil and military applications to robustly detect and classify target objects. High spectral resolution of hyperspectral data can compensate for the comparatively low spatial resolution, which allows for detection and classification of small targets, even below image resolution. Hyperspectral data sets are prone to considerable spectral redundancy, affecting and limiting data processing and algorithm performance. As a consequence, data reduction strategies become increasingly important, especially in view of near-real-time data analysis. The goal of this paper is to analyze different strategies for hyperspectral band selection algorithms and their effect on subpixel classification for different target and background materials. Airborne hyperspectral data is used in combination with linear target simulation procedures to create a representative amount of target-to-background ratios for evaluation of detection limits. Data from two different airborne hyperspectral sensors, AISA Eagle and Hawk, are used to evaluate transferability of band selection when using different sensors. The same target objects were recorded to compare the calculated detection limits. To determine subpixel classification results, pure pixels from the target materials are extracted and used to simulate mixed pixels with selected background materials. Target signatures are linearly combined with different background materials in varying ratios. The commonly used classification algorithms Adaptive Coherence Estimator (ACE) is used to compare the detection limit for the original data with several band selection and data reduction strategies. The evaluation of the classification results is done by assuming a fixed false alarm ratio and calculating the mean target-to-background ratio of correctly detected pixels. The results allow drawing conclusions about specific band combinations for certain target and background combinations. Additionally, generally useful wavelength ranges are determined and the optimal amount of principal components is analyzed.

  11. Low work function surface layers produced by laser ablation using short-wavelength photons

    DOEpatents

    Balooch, Mehdi; Dinh, Long N.; Siekhaus, Wigbert J.

    2000-01-01

    Short-wavelength photons are used to ablate material from a low work function target onto a suitable substrate. The short-wavelength photons are at or below visible wavelength. The elemental composition of the deposit is controlled by the composition of the target and the gaseous environment in which the ablation process is performed. The process is carried out in a deposition chamber to which a short-wavelength laser is mounted and which includes a substrate holder which can be rotated, tilted, heated, or cooled. The target material is mounted onto a holder that spins the target during laser ablation. In addition, the deposition chamber is provided with a vacuum pump, an external gas supply with atomizer and radical generator, a gas generator for producing a flow of molecules on the substrate, and a substrate cleaning device, such as an ion gun. The substrate can be rotated and tilted, for example, whereby only the tip of an emitter can be coated with a low work function material.

  12. Perforation of thin aluminum alloy plates by blunt projectiles: An experimental and numerical investigation

    NASA Astrophysics Data System (ADS)

    Wei, G.; Zhang, W.

    2014-04-01

    Reducing the armor weight has become a research focus in terms of armored material. Due to high strength-to-density ratio, aluminum alloy has become a potential light armored material. In this study, both lab-scale ballistic test and finite element simulation were adopted to examine the ballistic resistance of aluminum alloy targets. Blunt high strength steel projectiles with 12.7 mm diameter were launched by light gas gun against 3.3 mm thickness 7A04 aluminum alloy plates at a velocity of 90~170 m/s. The ballistic limit velocity was obtained. Plugging failure and obvious structure deformation of targets were observed. Corresponding 2D finite element simulations were conducted by ABAQUS/EXPLICIT combined with material performance testing. The validity of numerical simulations was verified by comparing with the experimental results. Detailed analysis of the failure modes and characters of the targets were carried out to reveal the target damage mechanism combined with the numerical simulation.

  13. Deuteron irradiation of W and WO 3 for production of high specific activity 186Re: Challenges associated with thick target preparation

    DOE PAGES

    Balkin, Ethan R.; Gagnon, Katherine; Strong, Kevin T.; ...

    2016-06-28

    This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity 186Re using deuteron irradiation of enriched 186W via the 186W(d,2n) 186Re reaction. Thick W and WO 3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxi-ally pressing powdered natural abundance W and WO 3, or 96.86% enriched 186W, into Al target supports. Alternatively, thick targets were prepared by pressing 186W between two layers of graphite powder or by placing pre-sintered (1105°C, 12 hours) natural abundance WO 3 pellets into an Al target support. Assessments ofmore » structural integrity were made on each target pre-pared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. With-in a minimum of 24 hours post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO 3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO 3 targets prepared and studied were unacceptable. By contrast, 186W metal was found to be a viable target material for 186Re production. Lastly, thick targets prepared with powdered 186W pressed between layers of graphite provided a particularly robust target configuration.« less

  14. Deuteron irradiation of W and WO3 for production of high specific activity (186)Re: Challenges associated with thick target preparation.

    PubMed

    Balkin, Ethan R; Gagnon, Katherine; Strong, Kevin T; Smith, Bennett E; Dorman, Eric F; Emery, Robert C; Pauzauskie, Peter J; Fassbender, Michael E; Cutler, Cathy S; Ketring, Alan R; Jurisson, Silvia S; Wilbur, D Scott

    2016-09-01

    This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity (186)Re using deuteron irradiation of enriched (186)W via the (186)W(d,2n)(186)Re reaction. Thick W and WO3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxially pressing powdered natural abundance W and WO3, or 96.86% enriched (186)W, into Al target supports. Alternatively, thick targets were prepared by pressing (186)W between two layers of graphite powder or by placing pre-sintered (1105°C, 12h) natural abundance WO3 pellets into an Al target support. Assessments of structural integrity were made on each target prepared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. Within a minimum of 24h post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO3 targets prepared and studied were unacceptable. By contrast, (186)W metal was found to be a viable target material for (186)Re production. Thick targets prepared with powdered (186)W pressed between layers of graphite provided a particularly robust target configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Near-infrared fluorescence image quality test methods for standardized performance evaluation

    NASA Astrophysics Data System (ADS)

    Kanniyappan, Udayakumar; Wang, Bohan; Yang, Charles; Ghassemi, Pejhman; Wang, Quanzeng; Chen, Yu; Pfefer, Joshua

    2017-03-01

    Near-infrared fluorescence (NIRF) imaging has gained much attention as a clinical method for enhancing visualization of cancers, perfusion and biological structures in surgical applications where a fluorescent dye is monitored by an imaging system. In order to address the emerging need for standardization of this innovative technology, it is necessary to develop and validate test methods suitable for objective, quantitative assessment of device performance. Towards this goal, we develop target-based test methods and investigate best practices for key NIRF imaging system performance characteristics including spatial resolution, depth of field and sensitivity. Characterization of fluorescence properties was performed by generating excitation-emission matrix properties of indocyanine green and quantum dots in biological solutions and matrix materials. A turbid, fluorophore-doped target was used, along with a resolution target for assessing image sharpness. Multi-well plates filled with either liquid or solid targets were generated to explore best practices for evaluating detection sensitivity. Overall, our results demonstrate the utility of objective, quantitative, target-based testing approaches as well as the need to consider a wide range of factors in establishing standardized approaches for NIRF imaging system performance.

  16. Engineering liposomal nanoparticles for targeted gene therapy.

    PubMed

    Zylberberg, C; Gaskill, K; Pasley, S; Matosevic, S

    2017-08-01

    Recent mechanistic studies have attempted to deepen our understanding of the process by which liposome-mediated delivery of genetic material occurs. Understanding the interactions between lipid nanoparticles and cells is still largely elusive. Liposome-mediated delivery of genetic material faces systemic obstacles alongside entry into the cell, endosomal escape, lysosomal degradation and nuclear uptake. Rational design approaches for targeted delivery have been developed to reduce off-target effects and enhance transfection. These strategies, which have included the modification of lipid nanoparticles with target-specific ligands to enhance intracellular uptake, have shown significant promise at the proof-of-concept stage. Control of physical and chemical specifications of liposome composition, which includes lipid-to-DNA charge, size, presence of ester bonds, chain length and nature of ligand complexation, is integral to the performance of targeted liposomes as genetic delivery agents. Clinical advances are expected to rely on such systems in the therapeutic application of liposome nanoparticle-based gene therapy. Here, we discuss the latest breakthroughs in the development of targeted liposome-based agents for the delivery of genetic material, paying particular attention to new ligand and cationic lipid design as well as recent in vivo advances.

  17. ARES Simulations of a Double Shell Surrogate Target

    NASA Astrophysics Data System (ADS)

    Sacks, Ryan; Tipton, Robert; Graziani, Frank

    2015-11-01

    Double shell targets provide an alternative path to ignition that allows for a less robust laser profile and non-cryogenic initial temperatures. The target designs call for a high-Z material to abut the gas/liquid DT fuel which is cause for concern due to possible mix of the inner shell with the fuel. This research concentrates on developing a surrogate target for a double shell capsule that can be fielded in a current NIF two-shock hohlraum. Through pressure-density scaling the hydrodynamic behavior of the high-Z pusher of a double shell can be approximated allowing for studies of performance and mix. Use of the ARES code allows for investigation of mix in one and two dimensions and analysis of instabilities in two dimensions. Development of a shell material that will allow for experiments similar to CD Mix is also discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC. Information Management release number LLNL-ABS-675098.

  18. Target design for materials processing very far from equilibrium

    NASA Astrophysics Data System (ADS)

    Barnard, John J.; Schenkel, Thomas

    2016-10-01

    Local heating and electronic excitations can trigger phase transitions or novel material states that can be stabilized by rapid quenching. An example on the few nanometer scale are phase transitions induced by the passage of swift heavy ions in solids where nitrogen-vacancy color centers form locally in diamonds when ions heat the diamond matrix to warm dense matter conditions at 0.5 eV. We optimize mask geometries for target materials such as silicon and diamond to induce phase transitions by intense ion pulses (e. g. from NDCX-II or from laser-plasma acceleration). The goal is to rapidly heat a solid target volumetrically and to trigger a phase transition or local lattice reconstruction followed by rapid cooling. The stabilized phase can then be studied ex situ. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of crystal targets with micro-structured masks. A simple analytical model, that includes ion heating and radial, diffusive cooling, was developed that agrees closely with the HYDRA simulations. The model gives scaling laws that can guide the design of targets over a wide range of parameters including those for NDCX-II and the proposed BELLA-i. This work was performed under the auspices of the U.S. DOE under contracts DE-AC52-07NA27344 (LLNL), DE-AC02-05CH11231 (LBNL) and was supported by the US DOE Office of Science, Fusion Energy Sciences. LLNL-ABS-697271.

  19. An Improved Thermal Blooming Model for the Laser Performance Code Anchor

    DTIC Science & Technology

    2016-06-01

    target, ANCHOR uses the following equations: Pmelt = FABS ⋅PBKT − Ploss (4) . (5) In this case, FABS is the fractional target absorption; is...for hard kill of a given target, several material properties for the target are used to calculate Qmelt, FABS , and Ploss, discussed previously in...is approximately 50 kJ, Ploss is approximately 2.5 kJ, and FABS is 15%. Using these values ANCHOR produces the dwell time plots shown in Figures 9

  20. Harmonisation of serum dihydrotestosterone analysis: establishment of an external quality assurance program.

    PubMed

    Greaves, Ronda F; Jolly, Lisa; Hartmann, Michaela F; Ho, Chung Shun; Kam, Richard K T; Joseph, John; Boyder, Conchita; Wudy, Stefan A

    2017-03-01

    Serum dihydrotestosterone (DHT) is an important analyte for the clinical assessment of disorders of sex development. It is also reportedly a difficult analyte to measure. Currently, there are significant gaps in the standardisation of this analyte, including no external quality assurance (EQA) program available worldwide to allow for peer review performance of DHT. We therefore proposed to establish a pilot EQA program for serum DHT. DHT was assessed in the 2015 Royal College of Pathologists of Australasia Quality Assurance Programs' Endocrine program material. The material's target (i.e. "true") values were established using a measurement procedure based on isotope dilution gas chromatography (GC) tandem mass spectrometry (MS/MS). DHT calibrator values were based on weighed values of pure DHT material (>97.5% purity) from Sigma. The allowable limits of performance (ALP) were established as ±0.1 up to 0.5 nmol/L and ±15% for targets >0.5 nmol/L. Target values for the six levels of RCPAQAP material for DHT ranged from 0.02 to 0.43 nmol/L (0.01-0.12 ng/mL). The material demonstrated linearity across the six levels. There were seven participating laboratories for this pilot study. Results of the liquid chromatography (LC) MS/MS methods were within the ALP; whereas the results from the immunoassay methods were consistently higher than the target values and outside the ALP. This report provides the first peer comparison of serum DHT measured by mass spectrometry (MS) and immunoassay laboratories. Establishment of this program provides one of the pillars to achieve method harmonisation. This supports accurate clinical decisions where DHT measurement is required.

  1. Low carbon technology performance vs infrastructure vulnerability: analysis through the local and global properties space.

    PubMed

    Dawson, David A; Purnell, Phil; Roelich, Katy; Busch, Jonathan; Steinberger, Julia K

    2014-11-04

    Renewable energy technologies, necessary for low-carbon infrastructure networks, are being adopted to help reduce fossil fuel dependence and meet carbon mitigation targets. The evolution of these technologies has progressed based on the enhancement of technology-specific performance criteria, without explicitly considering the wider system (global) impacts. This paper presents a methodology for simultaneously assessing local (technology) and global (infrastructure) performance, allowing key technological interventions to be evaluated with respect to their effect on the vulnerability of wider infrastructure systems. We use exposure of low carbon infrastructure to critical material supply disruption (criticality) to demonstrate the methodology. A series of local performance changes are analyzed; and by extension of this approach, a method for assessing the combined criticality of multiple materials for one specific technology is proposed. Via a case study of wind turbines at both the material (magnets) and technology (turbine generators) levels, we demonstrate that analysis of a given intervention at different levels can lead to differing conclusions regarding the effect on vulnerability. Infrastructure design decisions should take a systemic approach; without these multilevel considerations, strategic goals aimed to help meet low-carbon targets, that is, through long-term infrastructure transitions, could be significantly jeopardized.

  2. Impact cratering calculations. Part 1: Early time results

    NASA Technical Reports Server (NTRS)

    Thomsen, J. M.; Sauer, F. N.; Austin, M. G.; Ruhl, S. F.; Shultz, P. H.; Orphal, D. L.

    1979-01-01

    Early time two dimensional finite difference calculations of laboratory scale hypervelocity impact of 0.3 g spherical 2024 aluminum projectiles into homogeneous plasticene clay targets were performed. Analysis of resulting material motions showed that energy and momentum were coupled quickly from the aluminum projectile to the target material. In the process of coupling, some of the plasticene clay target was vaporized while the projectile become severely deformed. The velocity flow field developed within the target was shown to have features similar to those found in calculations of near surface explosion cratering. Specific application of Maxwell's analytic Z-Model showed that this model can be used to describe the early time flow fields resulting from the impact cratering calculations as well, provided the flow field centers are located beneath the target surface and most of the projectile momentum is dissipated before the model is applied.

  3. Nuclear reactor target assemblies, nuclear reactor configurations, and methods for producing isotopes, modifying materials within target material, and/or characterizing material within a target material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toth, James J.; Wall, Donald; Wittman, Richard S.

    Target assemblies are provided that can include a uranium-comprising annulus. The assemblies can include target material consisting essentially of non-uranium material within the volume of the annulus. Reactors are disclosed that can include one or more discrete zones configured to receive target material. At least one uranium-comprising annulus can be within one or more of the zones. Methods for producing isotopes within target material are also disclosed, with the methods including providing neutrons to target material within a uranium-comprising annulus. Methods for modifying materials within target material are disclosed as well as are methods for characterizing material within a targetmore » material.« less

  4. Target design optimization for an electron accelerator driven subcritical facility with circular and square beam profiles.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gohar, M. Y. A; Sofu, T.; Zhong, Z.

    2008-10-30

    A subcritical facility driven by an electron accelerator is planned at the Kharkov Institute of Physics and Technology (KIPT) in Ukraine for medical isotope production, materials research, training, and education. The conceptual design of the facility is being pursued through collaborations between ANL and KIPT. As part of the design effort, the high-fidelity analyses of various target options are performed with formulations to reflect the realistic configuration and the three dimensional geometry of each design. This report summarizes the results of target design optimization studies for electron beams with two different beam profiles. The target design optimization is performed viamore » the sequential neutronic, thermal-hydraulic, and structural analyses for a comprehensive assessment of each configuration. First, a target CAD model is developed with proper emphasis on manufacturability to provide a basis for separate but consistent models for subsequent neutronic, thermal-hydraulic, and structural analyses. The optimizations are pursued for maximizing the neutron yield, streamlining the flow field to avoid hotspots, and minimizing the thermal stresses to increase the durability. In addition to general geometric modifications, the inlet/outlet channel configurations, target plate partitioning schemes, flow manipulations and rates, electron beam diameter/width options, and cladding material choices are included in the design optimizations. The electron beam interactions with the target assembly and the neutronic response of the subcritical facility are evaluated using the MCNPX code. the results for the electron beam energy deposition, neutron generation, and utilization in the subcritical pile are then used to characterize the axisymmetric heat generation profiles in the target assembly with explicit simulations of the beam tube, the coolant, the clad, and the target materials. Both tungsten and uranium are considered as target materials. Neutron spectra from tungsten and uranium are very similar allowing the use of either material in the subcritical assembly without changing its characteristics. However, the uranium target has a higher neutron yield, which increases the neutron flux of the subcritical assembly. Based on the considered dimensions and heat generation profiles, the commercial CFD software Star-CD is used for the thermal-hydraulic analysis of each target design to satisfy a set of thermal criteria, the most limiting of which being to maintain the water temperature 50 below the boiling point. It is found that the turbulence in the inlet channels dissipates quickly in narrow gaps between the target plates and, as a result, the heat transfer is limited by the laminar flow conditions. On average, 3-D CFD analyses of target assemblies agree well with 1-D calculations using RELAP (performed by KIPT). However, the recirculation and stagnation zones predicted with the CFD models prove the importance of a 3-D analysis to avoid the resulting hotspots. The calculated temperatures are subsequently used for the structural analysis of each target configuration to satisfy the other engineering design requirements. The thermo-structural calculations are performed mostly with NASTRAN and the results occasionally compared with the results from MARC. Both, NASTRAN and MARC are commercially available structural-mechanics analysis software. Although, a significant thermal gradient forms in target elements along the beam direction, the high thermal stresses are generally observed peripherally around the edge of thin target disks/plates. Due to its high thermal conductivity, temperatures and thermal stresses in tungsten target are estimated to be significantly lower than in uranium target. The deformations of the target disks/plates are found to be insignificant, which eliminate concerns for flow blockages in narrow coolant channels. Consistent with the specifications of the KIPT accelerator to be used in this facility, the electron beam power is 100-kW with electron energy in the range of 100 to 200 MeV. As expected, the 100 MeV electrons deposit their energy faster while the 200-MeV electrons spread their energy deposition further along the beam direction. However in that electron energy range, the energy deposition profiles near the beam window require very thin target plates/disks to limit the temperatures and thermal stresses.« less

  5. Synthetic Aperture Acoustic Imaging of Canonical Targets with a 2-15 kHz Linear FM Chirp

    DTIC Science & Technology

    2011-04-25

    PERFORMING ORGANIZATION NAMES AND ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS...55997-CS.1 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8. PERFORMING ORGANIZATION REPORT NUMBER 19a. NAME OF...targets (bowling ball and softball ) • on dirt and grass • behind a metallic chain link fence d. Material study • open and closed cell foam • ceiling

  6. Hyperspectral material identification on radiance data using single-atmosphere or multiple-atmosphere modeling

    NASA Astrophysics Data System (ADS)

    Mariano, Adrian V.; Grossmann, John M.

    2010-11-01

    Reflectance-domain methods convert hyperspectral data from radiance to reflectance using an atmospheric compensation model. Material detection and identification are performed by comparing the compensated data to target reflectance spectra. We introduce two radiance-domain approaches, Single atmosphere Adaptive Cosine Estimator (SACE) and Multiple atmosphere ACE (MACE) in which the target reflectance spectra are instead converted into sensor-reaching radiance using physics-based models. For SACE, known illumination and atmospheric conditions are incorporated in a single atmospheric model. For MACE the conditions are unknown so the algorithm uses many atmospheric models to cover the range of environmental variability, and it approximates the result using a subspace model. This approach is sometimes called the invariant method, and requires the choice of a subspace dimension for the model. We compare these two radiance-domain approaches to a Reflectance-domain ACE (RACE) approach on a HYDICE image featuring concealed materials. All three algorithms use the ACE detector, and all three techniques are able to detect most of the hidden materials in the imagery. For MACE we observe a strong dependence on the choice of the material subspace dimension. Increasing this value can lead to a decline in performance.

  7. Mercury target R&D for the Oak Ridge spallation neutron source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haines, J.R.; DiStefano, J.; Farrell, K.

    1996-06-01

    The conceptual design for the Oak Ridge Spallation Neutron Source (ORSNS) incorporates liquid mercury as its reference target material. A flowing liquid target was selected mainly because of the increased power handling capability possible with the convective transport process. The major reasons for choosing mercury as the liquid target material are because it: (1) is a liquid at room temperature, (2) has good heat transport properties, and (3) has a high atomic number and mass density resulting in high neutron yield and source brightness. Since liquid targets are not widely utilized in presently operating accelerator targets and because of themore » challenges posed by the intense, pulsed thermal energy deposition ({approximately}20-100 kJ deposited during each 1-10 {mu}s pulse), considerable R&D is planned for the mercury target concept. The key feasibility issue that will be addressed in early R&D efforts are the effects of the thermal shock environment, which will include development and testing of approaches to mitigate these effects. Materials compatiblity and ES&H issues associated with the use of liquid mercury are also of major importance in early R&D efforts. A brief description of the mercury target design concept, results of initial evaluations of its performance characteristics, identification of its critical issues, and an outline of the R&D program aimed at addressing these issues will be presented.« less

  8. Advances in shock timing experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Hohenberger, M.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2016-03-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion (ICF) implosions were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique.

  9. Performance and cost of materials for lithium-based rechargeable automotive batteries

    NASA Astrophysics Data System (ADS)

    Schmuch, Richard; Wagner, Ralf; Hörpel, Gerhard; Placke, Tobias; Winter, Martin

    2018-04-01

    It is widely accepted that for electric vehicles to be accepted by consumers and to achieve wide market penetration, ranges of at least 500 km at an affordable cost are required. Therefore, significant improvements to lithium-ion batteries (LIBs) in terms of energy density and cost along the battery value chain are required, while other key performance indicators, such as lifetime, safety, fast-charging ability and low-temperature performance, need to be enhanced or at least sustained. Here, we review advances and challenges in LIB materials for automotive applications, in particular with respect to cost and performance parameters. The production processes of anode and cathode materials are discussed, focusing on material abundance and cost. Advantages and challenges of different types of electrolyte for automotive batteries are examined. Finally, energy densities and costs of promising battery chemistries are critically evaluated along with an assessment of the potential to fulfil the ambitious targets of electric vehicle propulsion.

  10. Preparation of a one-curie 171Tm target for the Detector for Advanced Neutron Capture Experiments (DANCE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwantes, Jon M.; Taylor, Wayne A.; Rundberg, Robert S.

    2008-05-15

    Roughly one curie of 171Tm (t1/2=1.92a) has been produced and purified for the purpose of making a nuclear target for the first measurements of its neutron capture cross section. Target preparation consisted of three key steps: (1) material production; (2) separation and purification; and (3) electrodeposition onto a suitable backing material. Approximately 1.5 mg of the target material (at the time of separation) was produced by irradiating roughly 250 mg of its stable enriched 170Er lanthanide neighbor with neutrons at the ILL reactor in France. This production method resulted in a “difficult-to-separate” 1:167 mixture of near-neighboring lanthanides, Tm and Er.more » Separation and purification was accomplished using high-performance liquid chromatorgraphy (HPLC), with a proprietary cation exchange column (Dionex, CS-3) and alpha-hydroxyisobutyric acid (a-HIB) eluent. This technique yielded a final product of ~95% purity with respect to Tm. A portion (20 ug) of the Tm was electrodeposited on thin Be foil and delivered to the Los Alamos Neutron Science CEnter (LANSCE) for preliminary analysis of its neutron capture cross section using the Detector for Advanced Neutron Capture Experiments (DANCE). This paper discusses the major hurdles associated with the separation and purification step including, scale-up issues related to the use of HPLC for material separation and purification of the target material from a-HIB and 4-(2-pyridylazo)resorcinol (PAR) colorant.« less

  11. Hyperspectral target detection using manifold learning and multiple target spectra

    DOE PAGES

    Ziemann, Amanda K.; Theiler, James; Messinger, David W.

    2016-03-31

    Imagery collected from satellites and airborne platforms provides an important tool for remotely analyzing the content of a scene. In particular, the ability to remotely detect a specific material within a scene is of critical importance in nonproliferation and other applications. The sensor systems that process hyperspectral images collect the high-dimensional spectral information necessary to perform these detection analyses. For a d-dimensional hyperspectral image, however, where d is the number of spectral bands, it is common for the data to inherently occupy an m-dimensional space with m << d. In the remote sensing community, this has led to recent interestmore » in the use of manifold learning, which seeks to characterize the embedded lower-dimensional, nonlinear manifold that the data discretely approximate. The research presented in this paper focuses on a graph theory and manifold learning approach to target detection, using an adaptive version of locally linear embedding that is biased to separate target pixels from background pixels. Finally, this approach incorporates multiple target signatures for a particular material, accounting for the spectral variability that is often present within a solid material of interest.« less

  12. Practical Applications of Math and Science in Junior High Schools

    DTIC Science & Technology

    1984-04-01

    APPLICATIONS OF MATH AND SCIENCE IN JUNIOR HIGH SCHOOLS AUTHOR(S) MAJOR LAWRENCE N. HYLAND, USAF FACULTY ADVISOR mAJoR JAMM WILSON, ACSC/EDDP SPONSOR LT COL...JUNIOR HIGH SCHOOLS 6 PERFORMING O1G. REPORT NUMBER "ś, Au THORrs) 8. CON’RACT OR GRANT NUMBER(.,) Lawrence N. Hyland, Major, USAF 9. PERFORMING...materials aimed at the jumior high school level. Material exposes target group to the mathematical and scientific skills required of Air Force

  13. Targeted partial surface modification with nano-SiO2@Li2CoPO4F as high-voltage cathode material for LIBs

    NASA Astrophysics Data System (ADS)

    Chang, Caiyun; Huang, Zhipeng; Tian, Runsai; Jiang, Xinyu; Li, Chunsheng; Feng, Jijun

    2017-10-01

    Tuning whole/partial surface modification on cathode material with oxide material is a sought-after method to enhance the electrochemical performance in power storage field. Herein, nano-SiO2 targeted partial surface modified high voltage cathode material Li2CoPO4F has been successfully fabricated via a facile self-assembly process in silica dispersion at ambient temperature. With the aid of polar -OH groups attracted on the surface of SiO2 micelles, the nano-SiO2 preferentially nestle up along the borders and boundaries of Li2CoPO4F particles, where protection should be deployed with emphasis against the undesirable interactions between materials and electrolytes. Compared with pristine Li2CoPO4F, the SiO2 selectively modified Li2CoPO4F cathode materials, especially LCPF-3S, exhibit desirable electrochemical performances with higher discharge capacity, more outstanding cycle stability and favorable rate capability without any additional carbon involved. The greatly enhanced electrochemical properties can be attributed to the improved lithium-ion diffusion kinetics and structure tolerance during repeated lithiation/delithiation process. Such findings reveal a great potential of nano-SiO2 modified Li2CoPO4F as high energy cathode material for lithium ion batteries.

  14. The National Ignition Facility: Transition to a User Facility

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Atherton, J.; Lagin, L.; Larson, D.; Keane, C.; MacGowan, B.; Patterson, R.; Spaeth, M.; Van Wonterghem, B.; Wegner, P.; Kauffman, R.

    2016-03-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density science (HEDS), national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The facility is on track to perform over 200 target shots this year in support of all of its user communities. The facility has nearly 60 diagnostic systems operational and has shown flexibility in laser pulse shape and performance to meet the requirements of its multiple users. Progress continues on its goal of demonstrating thermonuclear burn in the laboratory. It has performed over 40 indirect-drive experiments with cryogenic-layered capsules. New platforms are being developed for HEDS and fundamental science. Equation-of-state and material strength experiments have been done on a number of materials with pressures of over 50 MBars obtained in diamond, conditions never previously encountered in the laboratory and similar to those found in planetary interiors. Experiments are also in progress investigating radiation transport, hydrodynamic instabilities, and direct drive implosions. NIF continues to develop as an experimental facility. Advanced Radiographic Capability (ARC) is now being installed on NIF for producing high-energy radiographs of the imploded cores of ignition targets and for short pulse laser-plasma interaction experiments. One NIF beam is planned for conversion to two picosecond beams in 2014. Other new diagnostics such as x-ray Thomson scattering, low energy neutron spectrometer, and multi-layer reflecting x-ray optics are also planned. Incremental improvements in laser performance such as improved optics damage performance, beam balance, and back reflection control are being pursued.

  15. Recommendations for Exploring the Disfluency Hypothesis for Establishing Whether Perceptually Degrading Materials Impacts Performance

    ERIC Educational Resources Information Center

    Dunlosky, John; Mueller, Michael L.

    2016-01-01

    The target articles explore a common hypothesis pertaining to whether perceptually degrading materials will improve reasoning, memory, and metamemory. Outcomes are mixed, yet some evidence was garnered in support of a version of the disfluency hypothesis that includes moderators, and along with evidence from prior research, researchers will likely…

  16. A Retrieval System for Radioactive Target Materials at the NIF

    NASA Astrophysics Data System (ADS)

    Krieger, M.; Shibata, K.; Fallica, J.; Henchen, R.; Pogozelski, E.; Padalino, S.; Sangster, T. C.; Suny Collaboration; Laboratory Collaboration

    2011-10-01

    Currently, solid radioactive material collection from the NIF target chamber is performed via the DIM. The retrieval process takes several hours to complete. To decrease this time for short lived radioisotopes, the Target Materials Retrieval System (TMRS) is being designed to move a radioactive sample from the target chamber to the counting station in less than 50 seconds, using a closed-loop helium filled RaPToRS system. The TMRS consists of three components: the retrieval apparatus, RaPToRS and the counting station. Starting at 0.5 meters from TCC, the sample will move from the vacuum chamber, travel through 60 meters of 10 centimeter diameter RaPToRS tubes, reaching speeds of 10 m/s. The sample will then arrive at the counting station, where it be robotically placed in front of a gamma ray detector. The use of helium will decrease background gamma radiation produced by activated N2 normally found in a pressurized air system. This work was supported in part by the US Department of Energy through the LLE.

  17. Studies on Materials for Heavy-Liquid-Metal-Cooled Reactors in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minoru Takahashi; Masayuki Igashira; Toru Obara

    2002-07-01

    Recent studies on materials for the development of lead-bismuth (Pb-Bi)-cooled fast reactors (FR) and accelerator-driven sub-critical systems (ADS) in Japan are reported. The measurement of the neutron cross section of Bi to produce {sup 210}Po, the removal experiment of Po contamination and steel corrosion test in Pb-Bi flow were performed in Tokyo Institute of Technology. A target material corrosion test was performed in the project of Transmutation Experimental Facility for ADS in Japan Atomic Energy Research Institute (JAERI). Steel corrosion test was started in Mitsui Engineering and Shipbuilding Co., LTD (MES). The feasibility study for FR cycle performed in Japanmore » Nuclear Cycle Institute (JNC) are described. (authors)« less

  18. Reversible creation of nanostructures between identical or different species of materials

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Ik; Ko, Sungho; Park, Junyong; Lee, Dong-Eon; Jeon, Seokwoo; Ahn, Chi Won; Yoo, Kwang Soo; Park, Jae Hong

    2012-07-01

    In this study, accurate nanostructures with various aspect ratios are created on several types of material. This work is highly applicable to the energy, optical, and nano-bio fields, for example. A silicon (Si) nano-mold is preserved using the method described, and target nanostructures are replicated reversibly and unlimitedly to or from various hard and soft materials. It is also verified that various materials can be applied to the substrates. The results confirm that the target nanostructures are successfully created in precise straight line structures and circle structures with various aspect ratios, including extremely high aspect ratios of 1:18. It is suggested that the optimal replicating and demolding process of nanostructures with high aspect ratios, which are the most problematic, could be controlled by means of the surface energy between the functional materials. Relevant numerical and analytical studies are also performed. It is possible to expand the applicability of the nanostructured mold by adopting various backing materials, including rounded substrates. The scope of the applications is extended further by transferring the nanostructures between different species of materials including metallic materials as well as identical species.

  19. An assessment of surface emissivity variation effects on plasma uniformity analysis using IR cameras

    NASA Astrophysics Data System (ADS)

    Greenhalgh, Abigail; Showers, Melissa; Biewer, Theodore

    2017-10-01

    The Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) is a linear plasma device operating at Oak Ridge National Laboratory (ORNL). Its purpose is to test plasma source and heating concepts for the planned Material Plasma Exposure eXperiment (MPEX), which has the mission to test the plasma-material interactions under fusion reactor conditions. In this device material targets will be exposed to high heat fluxes (>10 MW/m2). To characterize the heat fluxes to the target a IR thermography system is used taking up to 432 frames per second videos. The data is analyzed to determine the surface temperature on the target in specific regions of interest. The IR analysis has indicated a low level of plasma uniformity; the plasma often deposits more heat to the edge of the plate than the center. An essential parameter for IR temperature calculation is the surface emissivity of the plate (stainless steel). A study has been performed to characterize the variation in the surface emissivity of the plate as its temperature changes and its surface finish is modified by plasma exposure.

  20. FT-IR standoff detection of thermally excited emissions of trinitrotoluene (TNT) deposited on aluminum substrates.

    PubMed

    Castro-Suarez, John R; Pacheco-Londoño, Leonardo C; Vélez-Reyes, Miguel; Diem, Max; Tague, Thomas J; Hernandez-Rivera, Samuel P

    2013-02-01

    A standoff detection system was assembled by coupling a reflecting telescope to a Fourier transform infrared spectrometer equipped with a cryo-cooled mercury cadmium telluride detector and used for detection of solid-phase samples deposited on substrates. Samples of highly energetic materials were deposited on aluminum substrates and detected at several collector-target distances by performing passive-mode, remote, infrared detection measurements on the heated analytes. Aluminum plates were used as support material, and 2,4,6-Trinitrotoluene (TNT) was used as the target. For standoff detection experiments, the samples were placed at different distances (4 to 55 m). Several target surface temperatures were investigated. Partial least squares regression analysis was applied to the analysis of the intensities of the spectra obtained. Overall, standoff detection in passive mode was useful for quantifying TNT deposited on the aluminum plates with high confidence up to target-collector distances of 55 m.

  1. Uranium carbide fission target R&D for RIA - an update

    NASA Astrophysics Data System (ADS)

    Greene, J. P.; Levand, A.; Nolen, J.; Burtseva, T.

    2004-12-01

    For the Rare Isotope Accelerator (RIA) facility, ISOL targets employing refractory compounds of uranium are being developed to produce radioactive ions for post-acceleration. The availability of refractory uranium compounds in forms that have good thermal conductivity, relatively high density, and adequate release properties for short-lived isotopes remains an important issue. Investigations using commercially obtained uranium carbide material and prepared into targets involving various binder materials have been carried out at ANL. Thin sample pellets have been produced for measurements of thermal conductivity using a new method based on electron bombardment with the thermal radiation observed using a two-color optical pyrometer and performed on samples as a function of grain size, pressing pressure and sintering temperature. Manufacture of uranium carbide powder has now been achieved at ANL. Simulations have been carried out on the thermal behavior of the secondary target assembly incorporating various heat shield configurations.

  2. Thermal Management and Reliability of Automotive Power Electronics and Electric Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narumanchi, Sreekant V; Bennion, Kevin S; Cousineau, Justine E

    Low-cost, high-performance thermal management technologies are helping meet aggressive power density, specific power, cost, and reliability targets for power electronics and electric machines. The National Renewable Energy Laboratory is working closely with numerous industry and research partners to help influence development of components that meet aggressive performance and cost targets through development and characterization of cooling technologies, and thermal characterization and improvements of passive stack materials and interfaces. Thermomechanical reliability and lifetime estimation models are important enablers for industry in cost-and time-effective design.

  3. Cratering at the Icy Satellites: Experimental Insights

    NASA Astrophysics Data System (ADS)

    Bruck Syal, M.; Schultz, P. H.

    2013-12-01

    Impact cratering processes play a central role in shaping the evolution of icy satellites and in guiding interpretations of various geologic features at these bodies. Accurate reconstruction of icy satellite histories depends in large part upon observed impact crater size-frequency distributions. Determining the extent of impact-induced thermal processing and the retention rates for impact-delivered materials of interest, e.g. organics, at these outer solar system moons is of fundamental importance for assessing their habitability and explaining differing geophysical histories. Hence, knowledge of how the impact process operates in ices or ice-rich materials is critically important. Recent progress in the development of water equations of state, coupled with increasingly efficient 3-D hydrocode calculations, has been used to construct careful numerical studies of melt and vapor generation for water ice targets. Complementary to this approach is experimental work to constrain the effects of differing ice target conditions, including porosity, rock mass fraction, and impact angle. Here we report on results from hypervelocity impact experiments (v~5.5 km/s) into water ice targets, performed at the NASA Ames Vertical Gun Range (AVGR). The setup at the AVGR allows for the use of particulate targets, which is useful for examining the effects of target porosity. Photometry and geophysical modeling both suggest that regolith porosity at the icy satellites is significant. We use a combination of half-space and quarter-space geometries, enabling analysis of the impact-generated vapor plume (half-space geometry), along with shock wave and transient crater growth tracking in a cross-sectional view (quarter-space geometry). Evaluating the impact-generated vapor from porous (φ = 0.5) and non-porous water ice targets provides an extension to previously published vapor production results for dolomite and CO2 ice targets. For the case of a 90 degree impact into porous ice, we calculate that 0.6% of the initial kinetic energy of the impactor is partitioned into the internal energy of the vapor plume. This is slightly higher than values determined in prior studies for non-porous CO2 ice (0.2%) [Schultz, 1996]. As CO2 ice possesses a lower vaporization temperature than water ice, this effect strongly suggests a role for porosity in enhancing vaporization. This is expected, as the compaction of porous materials performs additional, irreversible PdV work on the target, causing enhanced partitioning of kinetic energy into internal energy. At oblique impact angles, plume morphology changes dramatically while vaporization is enhanced. Comparing shock wave velocity attenuation in porous materials, including mixes of materials (e.g., quartz sand and porous ice), to numerical results obtained from shock physics codes such as CTH, provides insight into how impacts into porous ice-rich materials can be most accurately numerically modeled.

  4. CFD Analysis and Design of Detailed Target Configurations for an Accelerator-Driven Subcritical System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, Adam; Merzari, Elia; Sofu, Tanju

    2016-08-01

    High-fidelity analysis has been utilized in the design of beam target options for an accelerator driven subcritical system. Designs featuring stacks of plates with square cross section have been investigated for both tungsten and uranium target materials. The presented work includes the first thermal-hydraulic simulations of the full, detailed target geometry. The innovative target cooling manifold design features many regions with complex flow features, including 90 bends and merging jets, which necessitate three-dimensional fluid simulations. These were performed using the commercial computational fluid dynamics code STAR-CCM+. Conjugate heat transfer was modeled between the plates, cladding, manifold structure, and fluid. Steady-statemore » simulations were performed but lacked good residual convergence. Unsteady simulations were then performed, which converged well and demonstrated that flow instability existed in the lower portion of the manifold. It was established that the flow instability had little effect on the peak plate temperatures, which were well below the melting point. The estimated plate surface temperatures and target region pressure were shown to provide sufficient margin to subcooled boiling for standard operating conditions. This demonstrated the safety of both potential target configurations during normal operation.« less

  5. Butyl rubber O-ring seals: Revision of test procedures for stockpile materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domeier, L.A.; Wagter, K.R.

    1996-12-01

    Extensive testing showed little correlation between test slab and O-ring performance. New procedures, comparable to those used with the traditional test slabs, were defined for hardness, compression set, and tensile property testing on sacrificial O-ring specimens. Changes in target performance values were made as needed and were, in one case, tightened to reflect the O-ring performance data. An additional study was carried out on O-ring and slab performance vs cure cycle and showed little sensitivity of material performance to large changes in curing time. Aging and spectra of certain materials indicated that two sets of test slabs from current vendormore » were accidently made from EPDM rather than butyl rubber. Random testing found no O-rings made from EPDM. As a result, and additional spectroscope test will be added to the product acceptance procedures to verify the type of rubber compound used.« less

  6. Techniques for Strength Measurement at High Pressures and Strain-Rates Using Transverse Waves

    NASA Astrophysics Data System (ADS)

    Richmond, Victoria Stolyar

    The study of the strength of a material is relevant to a variety of applications including automobile collisions, armor penetration and inertial confinement fusion. Although dynamic behavior of materials at high pressures and strain-rates has been studied extensively using plate impact experiments, the results provide measurements in one direction only. Material behavior that is dependent on strength is unaccounted for. The research in this study proposes two novel configurations to mitigate this problem. The first configuration introduced is the oblique wedge experiment, which is comprised of a driver material, an angled target of interest and a backing material used to measure in-situ velocities. Upon impact, a shock wave is generated in the driver material. As the shock encounters the angled target, it is reflected back into the driver and transmitted into the target. Due to the angle of obliquity of the incident wave, a transverse wave is generated that allows the target to be subjected to shear while being compressed by the initial longitudinal shock such that the material does not slip. Using numerical simulations, this study shows that a variety of oblique wedge configurations can be used to study the shear response of materials and this can be extended to strength measurement as well. Experiments were performed on an oblique wedge setup with a copper impactor, polymethylmethacrylate driver, aluminum 6061-t6 target, and a lithium fluoride window. Particle velocities were measured using laser interferometry and results agree well with the simulations. The second novel configuration is the y-cut quartz sandwich design, which uses the anisotropic properties of y-cut quartz to generate a shear wave that is transmitted into a thin sample. By using an anvil material to back the thin sample, particle velocities measured at the rear surface of the backing plate can be implemented to calculate the shear stress in the material and subsequently the strength. Numerical simulations were conducted to show that this configuration has the ability to measure the strength for a variety of materials.

  7. Design of materials with prescribed nonlinear properties

    NASA Astrophysics Data System (ADS)

    Wang, F.; Sigmund, O.; Jensen, J. S.

    2014-09-01

    We systematically design materials using topology optimization to achieve prescribed nonlinear properties under finite deformation. Instead of a formal homogenization procedure, a numerical experiment is proposed to evaluate the material performance in longitudinal and transverse tensile tests under finite deformation, i.e. stress-strain relations and Poissons ratio. By minimizing errors between actual and prescribed properties, materials are tailored to achieve the target. Both two dimensional (2D) truss-based and continuum materials are designed with various prescribed nonlinear properties. The numerical examples illustrate optimized materials with rubber-like behavior and also optimized materials with extreme strain-independent Poissons ratio for axial strain intervals of εi∈[0.00, 0.30].

  8. Synthesis of ITO Powder by Dry Process and Lifetime Characteristics of the ITO Target Fabricated with its Powder

    NASA Astrophysics Data System (ADS)

    Takahashi, Seiichiro; Itoh, Hironori; Komatsu, Ryuichi

    Lifetime of an indium tin oxide (ITO) target is an important characteristic in the production of liquid crystal displays (LCDs). Increasing the sintering density of the ITO target is assumed to lead to an increased lifetime. So far, it has been clarified that the carbon concentration in In2O3 powder, the raw material of ITO targets, influences remarkably the target lifetime. In this study, with the aim of reducing the concentration of carbon in In2O3 powder, the synthesis of In2O3 powder containing dissolved Sn by a dry process was performed.

  9. Identification of amino acids by material enhanced laser desorption/ionisation mass spectrometry (MELDI-MS) in positive- and negative-ion mode

    NASA Astrophysics Data System (ADS)

    Hashir, Muhammad Ahsan; Stecher, Guenther; Mayr, Stefan; Bonn, Guenther K.

    2009-01-01

    In the present study, different silica gel modifications were evaluated for their application as target surface for material enhanced laser desorption/ionisation mass spectrometric (MELDI-MS) investigation of amino acids. 4,4'-Azodianiline (ADA-silica) modified silica gel was successfully employed for the qualitative analysis of amino acids in positive- and in negative-ion mode. Further no derivatisation of amino acids was necessary, as the introduced system allowed the direct analysis of targets and delivered spectra with excellent signal intensity and signal-to-noise ratio within a few minutes. The influence of surface chemistry, ionisation mode and the nature of analytes on signal intensity was studied and discussed. Detection limit of 2.10 pg (10 fmol) was achieved by employing ADA-silica in positive-ion mode. Finally, xylem saps from different types of trees were analysed. This proved the high performance and excellent behaviour of the introduced target surface material.

  10. Perforation of Thin Aluminum Alloy Plates by Blunt Projectiles - Experimental and Numerical Investigation

    NASA Astrophysics Data System (ADS)

    Wei, Gang; Zhang, Wei

    2013-06-01

    Reducing the armor weight has become a research focus in terms of armored material with the increasing requirement of the mobility and flexibility of tanks and armored vehicles in modern local wars. Due to high strength-to-density ratio, aluminum alloy has become a potential light armored material. In this study, both lab-scale ballistic test and finite element simulation were adopted to examine the ballistic resistance of aluminum alloy targets. Blunt high strength steel projectiles with 12.7 mm diameter were launched by light gas gun against 3.3 mm thick aluminum alloy plates at velocity of 90 ~ 170 m/s. The ballistic limit velocity was obtained. Plugging failure and obvious structure deformation of targets were observed, and with the impact velocity increasing, the target structure deformation decrease gradually. Corresponding 2D finite element simulations were conducted by ABAQUS/EXPLICIT combined with material performance testing. Good agreement between the numerical simulations and the experimental results was found. National Natural Science Foundation of China (No.: 11072072).

  11. A comparative study of Rayleigh-Taylor and Richtmyer-Meshkov instabilities in 2D and 3D in tantalum

    NASA Astrophysics Data System (ADS)

    Sternberger, Z.; Maddox, B. R.; Opachich, Y. P.; Wehrenberg, C. E.; Kraus, R. G.; Remington, B. A.; Randall, G. C.; Farrell, M.; Ravichandran, G.

    2017-01-01

    Driving a shock wave through the interface between two materials with different densities can result in the Richtmyer-Meshkov or Rayleigh-Taylor instability and initial perturbations at the interface will grow. If the shock wave is sufficiently strong, the instability will lead to plastic flow at the interface. Material strength will reduce the amount of plastic flow and suppress growth. While such instabilities have been investigated in 2D, no studies of this phenomena have been performed in 3D on materials with strength. Initial perturbations to seed the hydrodynamic instability were coined into tantalum recovery targets. Two types of perturbations were used, two dimensional (2D) perturbations (hill and valley) and three-dimensional (3D) perturbations (egg crate pattern). The targets were subjected to dynamic loading using the Janus laser at the Jupiter Laser Facility. Shock pressures ranged from 50 GPa up to 150 GPa and were calibrated using VISAR drive targets.

  12. Science and Technology Review September 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eimerl, D

    1999-09-01

    This review consists of the following titles; The Laboratory in the News; Life Performance of Complex Systems; A Better Picture of Aging Materials; Researchers Determine Chernobyl Liquidators' Exposure; and Target Chamber's Dedication Marks a Giant Milestone.

  13. The Exomet Project: EU/ESA Research on High-Performance Light-Metal Alloys and Nanocomposites

    NASA Astrophysics Data System (ADS)

    Sillekens, W. H.

    The performance of structural materials is commonly associated with such design parameters as strength and stiffness relative to their density; a recognized means to further enhance the weight-saving potential of low-density materials is thus to improve on their mechanical attributes. The European Community research project ExoMet that started in mid-2012 targets such high-performance aluminum- and magnesium-based materials by exploring novel grain-refining and nanoparticle additions in conjunction with melt treatment by means of external fields (electromagnetic, ultrasonic, mechanical). These external fields are to provide for an effective and efficient dispersion of the additions in the melt and their uniform distribution in the as-cast material. The consortium of 27 companies, universities and research organizations from eleven countries integrates various scientific and technological disciplines as well as application areas — including automotive and (aero)-space.

  14. Chemical modification of projectile residues and target material in a MEMIN cratering experiment

    NASA Astrophysics Data System (ADS)

    Ebert, Matthias; Hecht, Lutz; Deutsch, Alexander; Kenkmann, Thomas

    2013-01-01

    In the context of the MEMIN project, a hypervelocity cratering experiment has been performed using a sphere of the iron meteorite Campo del Cielo as projectile accelerated to 4.56 km s-1, and a block of Seeberger sandstone as target material. The ejecta, collected in a newly designed catcher, are represented by (1) weakly deformed, (2) highly deformed, and (3) highly shocked material. The latter shows shock-metamorphic features such as planar deformation features (PDF) in quartz, formation of diaplectic quartz glass, partial melting of the sandstone, and partially molten projectile, mixed mechanically and chemically with target melt. During mixing of projectile and target melts, the Fe of the projectile is preferentially partitioned into target melt to a greater degree than Ni and Co yielding a Fe/Ni that is generally higher than Fe/Ni in the projectile. This fractionation results from the differing siderophile properties, specifically from differences in reactivity of Fe, Ni, and Co with oxygen during projectile-target interaction. Projectile matter was also detected in shocked quartz grains. The average Fe/Ni of quartz with PDF (about 20) and of silica glasses (about 24) are in contrast to the average sandstone ratio (about 422), but resembles the Fe/Ni-ratio of the projectile (about 14). We briefly discuss possible reasons of projectile melting and vaporization in the experiment, in which the calculated maximum shock pressure does not exceed 55 GPa.

  15. The accomplishments of lithium target and test facility validation activities in the IFMIF/EVEDA phase

    NASA Astrophysics Data System (ADS)

    Arbeiter, Frederik; Baluc, Nadine; Favuzza, Paolo; Gröschel, Friedrich; Heidinger, Roland; Ibarra, Angel; Knaster, Juan; Kanemura, Takuji; Kondo, Hiroo; Massaut, Vincent; Saverio Nitti, Francesco; Miccichè, Gioacchino; O'hira, Shigeru; Rapisarda, David; Sugimoto, Masayoshi; Wakai, Eiichi; Yokomine, Takehiko

    2018-01-01

    As part of the engineering validation and engineering design activities (EVEDA) phase for the international fusion materials irradiation facility IFMIF, major elements of a lithium target facility and the test facility were designed, prototyped and validated. For the lithium target facility, the EVEDA lithium test loop was built at JAEA and used to test the stability (waves and long term) of the lithium flow in the target, work out the startup procedures, and test lithium purification and analysis. It was confirmed by experiments in the Lifus 6 plant at ENEA that lithium corrosion on ferritic martensitic steels is acceptably low. Furthermore, complex remote handling procedures for the remote maintenance of the target in the test cell environment were successfully practiced. For the test facility, two variants of a high flux test module were prototyped and tested in helium loops, demonstrating their good capabilities of maintaining the material specimens at the desired temperature with a low temperature spread. Irradiation tests were performed for heated specimen capsules and irradiation instrumentation in the BR2 reactor at SCK-CEN. The small specimen test technique, essential for obtaining material test results with limited irradiation volume, was advanced by evaluating specimen shape and test technique influences.

  16. Fluid-filled bomb-disrupting apparatus and method

    DOEpatents

    Cherry, Christopher R.

    2001-01-01

    An apparatus and method for disarming improvised bombs are disclosed. The apparatus comprises a fluid-filled bottle or container made of plastic or another soft material which contains a fixed or adjustable, preferably sheet explosive. The charge is fired centrally at its apex and can be adjusted to propel a fluid projectile that is broad or narrow, depending upon how it is set up. In one embodiment, the sheet explosive is adjustable so as to correlate the performance of the fluid projectile to the disarming needs for the improvised explosive device (IED). Common materials such as plastic water bottles or larger containers can be used, with the sheet explosive or other explosive material configured in a general chevron-shape to target the projectile toward the target. In another embodiment, a thin disk of metal is conformably mounted with the exterior of the container and radially aligned with the direction of fire of the fluid projectile. Depending on the configuration and the amount of explosive and fluid used, a projectile is fired at the target that has sufficient energy to penetrate rigid enclosures from fairly long stand-off and yet is focused enough to be targeted to specific portions of the IED for disablement.

  17. Enhanced electron emission from coated metal targets: Effect of surface thickness on performance

    NASA Astrophysics Data System (ADS)

    Madas, Saibabu; Mishra, S. K.; Upadhyay Kahaly, Mousumi

    2018-03-01

    In this work, we establish an analytical formalism to address the temperature dependent electron emission from a metallic target with thin coating, operating at a finite temperature. Taking into account three dimensional parabolic energy dispersion for the target (base) material and suitable thickness dependent energy dispersion for the coating layer, Fermi Dirac statistics of electron energy distribution and Fowler's mechanism of the electron emission, we discuss the dependence of the emission flux on the physical properties such as the Fermi level, work function, thickness of the coating material, and operating temperature. Our systematic estimation of how the thickness of coating affects the emission current demonstrates superior emission characteristics for thin coating layer at high temperature (above 1000 K), whereas in low temperature regime, a better response is expected from thicker coating layer. This underlying fundamental behavior appears to be essentially identical for all configurations when work function of the coating layer is lower than that of the bulk target work function. The analysis and predictions could be useful in designing new coated materials with suitable thickness for applications in the field of thin film devices and field emitters.

  18. Detection and classification of underwater targets by echolocating dolphins

    NASA Astrophysics Data System (ADS)

    Au, Whitlow

    2003-10-01

    Many experiments have been performed with echolocating dolphins to determine their target detection and discrimination capabilities. Target detection experiments have been performed in a naturally noisy environment, with masking noise and with both phantom echoes and masking noise, and in reverberation. The echo energy to rms noise spectral density for the Atlantic bottlenose dolphin (Tursiops truncatus) at the 75% correct response threshold is approximately 7.5 dB whereas for the beluga whale (Delphinapterus leucas) the threshold is approximately 1 dB. The dolphin's detection threshold in reverberation is approximately 2.5 dB vs 2 dB for the beluga. The difference in performance between species can probably be ascribed to differences in how both species perceived the task. The bottlenose dolphin may be performing a combination detection/discrimination task whereas the beluga may be performing a simple detection task. Echolocating dolphins also have the capability to make fine discriminate of target properties such as wall thickness difference of water-filled cylinders and material differences in metallic plates. The high resolution property of the animal's echolocation signals and the high dynamic range of its auditory system are important factors in their outstanding discrimination capabilities.

  19. Effects of environment and frequency on the fatigue behavior of the spallation neutron source (SNS) target container material - 316 LN stainless steel

    NASA Astrophysics Data System (ADS)

    Tian, Hongbo

    As the candidate target container material of the new Spallation Neutron Source (SNS) being designed and constructed at the Oak Ridge National Laboratory (ORNL), Type 316 low-carbon nitrogen-added (LN) stainless steel (SS) will operate in an aggressive environment, subjected to intense fluxes of high-energy protons and neutrons while exposed to liquid mercury. The current project is oriented toward materials studies regarding the effects of test environment and frequency on the fatigue behavior of 316 LN SS. In order to study the structural applications of this material and improve the fundamental understanding of the fatigue damage mechanisms, fatigue tests were performed in air and mercury environments at various frequencies and R ratios (R = sigma min/sigmamax, sigmamin and sigmamax are the applied minimum and maximum stresses, respectively). Fatigue data were developed for the structural design and engineering applications of this material. Specifically, high-cycle fatigue tests, fatigue crack-propagation tests, and ultrahigh cycle fatigue tests up to 10 9 cycles were conducted in air and mercury with test frequencies from 10 Hz to 700 Hz. Microstructure characterizations were performed using optical microscopy (OM), scanning-electron microscopy (SEM), and transmission-electron microscopy (TEM). It was found that mercury doesn't seem to have a large impact on the crack-initiation behavior of 316 LN SS. However, the crack-propagation mechanisms in air and mercury are different in some test conditions. Transgranular cracks seem to be the main mechanism in air, and intergranular in mercury. A significant specimen self-heating effect was found during high-cycle faituge. Theoretical calculation was performed to predict temperature responses of the material subjected to cyclic deformation. The predicted cyclic temperature evolution seems to be in good agreement with the experimental results.

  20. Ultrathin metallized PBI paper

    NASA Technical Reports Server (NTRS)

    Chenevey, E. C.

    1978-01-01

    A study to determine the feasibility of preparing ultrathin papers with a target weight of 3.5 g/m squared from polybenzimidazole (PBI) fibrids was undertaken. Small hand sheets of target weight were fabricated. They were light brown, low density materials with sufficient strength to be readily handleable. Characterization of these sheets included strength, fold endurance, thermal gravimetric analysis in air and nitrogen and photomicrographs. Two different batches of PBI fibrids were studied and differences in fabrication performance were noted. In neither case could target weight papers be prepared using conventional paper making techniques.

  1. Range estimation of passive infrared targets through the atmosphere

    NASA Astrophysics Data System (ADS)

    Cho, Hoonkyung; Chun, Joohwan; Seo, Doochun; Choi, Seokweon

    2013-04-01

    Target range estimation is traditionally based on radar and active sonar systems in modern combat systems. However, jamming signals tremendously degrade the performance of such active sensor devices. We introduce a simple target range estimation method and the fundamental limits of the proposed method based on the atmosphere propagation model. Since passive infrared (IR) sensors measure IR signals radiating from objects in different wavelengths, this method has robustness against electromagnetic jamming. The measured target radiance of each wavelength at the IR sensor depends on the emissive properties of target material and various attenuation factors (i.e., the distance between sensor and target and atmosphere environment parameters). MODTRAN is a tool that models atmospheric propagation of electromagnetic radiation. Based on the results from MODTRAN and atmosphere propagation-based modeling, the target range can be estimated. To analyze the proposed method's performance statistically, we use maximum likelihood estimation (MLE) and evaluate the Cramer-Rao lower bound (CRLB) via the probability density function of measured radiance. We also compare CRLB and the variance of MLE using Monte-Carlo simulation.

  2. Radiance and atmosphere propagation-based method for the target range estimation

    NASA Astrophysics Data System (ADS)

    Cho, Hoonkyung; Chun, Joohwan

    2012-06-01

    Target range estimation is traditionally based on radar and active sonar systems in modern combat system. However, the performance of such active sensor devices is degraded tremendously by jamming signal from the enemy. This paper proposes a simple range estimation method between the target and the sensor. Passive IR sensors measures infrared (IR) light radiance radiating from objects in dierent wavelength and this method shows robustness against electromagnetic jamming. The measured target radiance of each wavelength at the IR sensor depends on the emissive properties of target material and is attenuated by various factors, in particular the distance between the sensor and the target and atmosphere environment. MODTRAN is a tool that models atmospheric propagation of electromagnetic radiation. Based on the result from MODTRAN and measured radiance, the target range is estimated. To statistically analyze the performance of proposed method, we use maximum likelihood estimation (MLE) and evaluate the Cramer-Rao Lower Bound (CRLB) via the probability density function of measured radiance. And we also compare CRLB and the variance of and ML estimation using Monte-Carlo.

  3. Survival of the impactor during hypervelocity collisions - II. An analogue for high-porosity targets

    NASA Astrophysics Data System (ADS)

    Avdellidou, C.; Price, M. C.; Delbo, M.; Cole, M. J.

    2017-01-01

    We investigated how a target's porosity affects the outcome of a collision, with respect to the impactor's fate. Laboratory impact experiments using peridot projectiles were performed at a speed range between 0.3 and 3.0 km s-1, on to high-porosity water-ice (40 per cent) and fine-grained calcium carbonate (70 per cent) targets. We report that the amount of implanted material in the target body increases with increasing target's porosity, while the size frequency distribution of the projectile's ejecta fragments becomes steeper. A supplementary Raman study showed no sign of change of the Raman spectra of the recovered olivine projectile fragments indicate minimal physical change.

  4. Deep Search for Satellites Around the Lucy Mission Targets

    NASA Astrophysics Data System (ADS)

    Noll, Keith

    2017-08-01

    By performing the first deep search for Trojan satellites with HST we will obtain unique constraints on satellite-forming processes in this population. We have selected the targets from NASA's Lucy mission because they represent a taxonomically and physically diverse set of targets that allow intercomparisons from a small survey. Also, by searching now to identify any orbiting material around the Lucy targets, it will be possible impact hardware decisions and plan for maximum scientific return from the mission. This search also is a necessary step to assure mission safety as the Lucy spacecraft will fly within 1000 km of the targets, well within the region where stable orbits can exist.

  5. Continuous improvement of medical test reliability using reference methods and matrix-corrected target values in proficiency testing schemes: application to glucose assay.

    PubMed

    Delatour, Vincent; Lalere, Beatrice; Saint-Albin, Karène; Peignaux, Maryline; Hattchouel, Jean-Marc; Dumont, Gilles; De Graeve, Jacques; Vaslin-Reimann, Sophie; Gillery, Philippe

    2012-11-20

    The reliability of biological tests is a major issue for patient care in terms of public health that involves high economic stakes. Reference methods, as well as regular external quality assessment schemes (EQAS), are needed to monitor the analytical performance of field methods. However, control material commutability is a major concern to assess method accuracy. To overcome material non-commutability, we investigated the possibility of using lyophilized serum samples together with a limited number of frozen serum samples to assign matrix-corrected target values, taking the example of glucose assays. Trueness of the current glucose assays was first measured against a primary reference method by using human frozen sera. Methods using hexokinase and glucose oxidase with spectroreflectometric detection proved very accurate, with bias ranging between -2.2% and +2.3%. Bias of methods using glucose oxidase with spectrophotometric detection was +4.5%. Matrix-related bias of the lyophilized materials was then determined and ranged from +2.5% to -14.4%. Matrix-corrected target values were assigned and used to assess trueness of 22 sub-peer groups. We demonstrated that matrix-corrected target values can be a valuable tool to assess field method accuracy in large scale surveys where commutable materials are not available in sufficient amount with acceptable costs. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. A system structure for predictive relations in penetration mechanics

    NASA Astrophysics Data System (ADS)

    Korjack, Thomas A.

    1992-02-01

    The availability of a software system yielding quick numerical models to predict ballistic behavior is a requisite for any research laboratory engaged in material behavior. What is especially true about accessibility of rapid prototyping for terminal impaction is the enhancement of a system structure which will direct the specific material and impact situation towards a specific predictive model. This is of particular importance when the ranges of validity are at stake and the pertinent constraints associated with the impact are unknown. Hence, a compilation of semiempirical predictive penetration relations for various physical phenomena has been organized into a data structure for the purpose of developing a knowledge-based decision aided expert system to predict the terminal ballistic behavior of projectiles and targets. The ranges of validity and constraints of operation of each model were examined and cast into a decision tree structure to include target type, target material, projectile types, projectile materials, attack configuration, and performance or damage measures. This decision system implements many penetration relations, identifies formulas that match user-given conditions, and displays the predictive relation coincident with the match in addition to a numerical solution. The physical regimes under consideration encompass the hydrodynamic, transitional, and solid; the targets are either semi-infinite or plate, and the projectiles include kinetic and chemical energy. A preliminary databases has been constructed to allow further development of inductive and deductive reasoning techniques applied to ballistic situations involving terminal mechanics.

  7. Measurements of line-averaged electron density of pulsed plasmas using a He-Ne laser interferometer in a magnetized coaxial plasma gun device

    NASA Astrophysics Data System (ADS)

    Iwamoto, D.; Sakuma, I.; Kitagawa, Y.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    In next step of fusion devices such as ITER, lifetime of plasma-facing materials (PFMs) is strongly affected by transient heat and particle loads during type I edge localized modes (ELMs) and disruption. To clarify damage characteristics of the PFMs, transient heat and particle loads have been simulated by using a plasma gun device. We have performed simulation experiments by using a magnetized coaxial plasma gun (MCPG) device at University of Hyogo. The line-averaged electron density measured by a He-Ne interferometer is 2x10^21 m-3 in a drift tube. The plasma velocity measured by a time of flight technique and ion Doppler spectrometer was 70 km/s, corresponding to the ion energy of 100 eV for helium. Thus, the ion flux density is 1.4x10^26 m-2s-1. On the other hand, the MCPG is connected to a target chamber for material irradiation experiments. It is important to measure plasma parameters in front of target materials in the target chamber. In particular, a vapor cloud layer in front of the target material produced by the pulsed plasma irradiation has to be characterized in order to understand surface damage of PFMs under ELM-like plasma bombardment. In the conference, preliminary results of application of the He-Ne laser interferometer for the above experiment will be shown.

  8. Prediction of the High Thermoelectric Performance of Pnictogen Dichalcogenide Layered Compounds with Quasi-One-Dimensional Gapped Dirac-like Band Dispersion

    NASA Astrophysics Data System (ADS)

    Ochi, Masayuki; Usui, Hidetomo; Kuroki, Kazuhiko

    2017-12-01

    Thermoelectric power generation has been recognized as one of the most important technologies, and high-performance thermoelectric materials have long been pursued. However, because of the large number of candidate materials, this quest is extremely challenging, and it has become clear that a firm theoretical concept from the viewpoint of band-structure engineering is needed. We theoretically demonstrate that pnictogen dichalcogenide layered compounds, which originally attracted attention as a family of superconductors and have recently been investigated as thermoelectric materials, can exhibit very high thermoelectric performance with elemental substitution. Specifically, we clarify a promising guiding principle for material design and find that LaOAsSe2, a material that has yet to be synthesized, has a power factor that is 6 times as large as that of the known compound LaOBiS2 and can exhibit a very large Z T under some plausible assumptions. This large enhancement of the thermoelectric performance originates from the quasi-one-dimensional gapped Dirac-like band dispersion, which is realized by the square-lattice network. We offer one ideal limit of the band structure for thermoelectric materials. Because our target materials have high controllability of constituent elements and feasibility of carrier doping, experimental studies along this line are eagerly awaited.

  9. On the influence of particle morphology on the post-impact ballistic response of ceramic armour materials

    NASA Astrophysics Data System (ADS)

    Hameed, Amer; Appleby-Thomas, Gareth; Wood, David; Jaansalu, Kevin

    2015-06-01

    Recent studies have shown evidence that the ballistic-resistance of fragmented (comminuted) ceramics is independent of the original strength of the material. In particular, experimental investigations into the ballistic behaviour of such fragmented ceramics have indicated that this response is correlated to shattered ceramic morphology. This suggests that careful control of ceramic microstructure - and therefore failure paths - might provide a route to optimise post-impact ballistic performance, thereby enhancing multi-hit capability. In this study, building on previous in-house work, ballistic tests were conducted using pre-formed `fragmented-ceramic' analogues based around three morphologically differing (but chemically identical) alumina feedstock materials compacted into target `pucks. In an evolution of previous work, variation of target thickness provided additional insight into an apparent morphology-based contribution to ballistic response.

  10. (Indium, Aluminum) co-doped Zinc Oxide as a Novel Material System for Quantum-Well Multilayer Thermoelectrics

    NASA Astrophysics Data System (ADS)

    Teehan, Sean

    Waste heat recovery from low efficiency industrial processes requires high performance thermoelectric materials to meet challenging requirements. The efficiency such a device is quantified by the dimensionless figure of merit ZT=S2sigmaT/kappa, where S is the Seebeck coefficient, sigma is the electrical conductivity, T is the absolute temperature and kappa is the thermal conductivity. For practical applications these devices are only cost-effective if the ZT is higher than 2. Theoretically it has been proven that by engineering nanostructures with lower dimensionality one can significantly increase ZT. A superlattice, or a system of 2-dimensional multilayer quantum wells has previously shown the potential to be used for thermoelectric structures. However, the use of conventional materials within these structures has only allowed this at low temperatures and has utilized cross-plane transport. This study focuses on both high temperature range operation and the in-plane transport properties of such structures, which benefit from both quantum confinement and an enhancement in density of states near EF. The n-type structures are fabricated by alternately sputtering barrier and well materials of Al-doped ZnO (AZO) and indium co-doped AZO, respectively. Samples investigated consist of 50 periods with targeted layer thicknesses of 10nm, which results in sufficient sampling material as well as quantum well effects. The indium doping level within the quantum well was controlled by varying the target power, and ultimately results in a 3x improvement in power factor (S 2sigma) over the parent bulk materials. The film characterization was determined by X-ray reflectometry, transmission electron microscopy, X-ray diffraction, auger electron spectroscopy, as well as other relevant techniques. In addition, process optimization was performed on material parameters such as layer thickness, interface roughness, and band-gap offset which all play a major role in determining the thermoelectric performance. Within this study we theoretically and experimentally have developed correlations between each of these material parameters and its overall effect on thermoelectric performance.

  11. Benchmarking organic mixed conductors for transistors.

    PubMed

    Inal, Sahika; Malliaras, George G; Rivnay, Jonathan

    2017-11-24

    Organic mixed conductors have garnered significant attention in applications from bioelectronics to energy storage/generation. Their implementation in organic transistors has led to enhanced biosensing, neuromorphic function, and specialized circuits. While a narrow class of conducting polymers continues to excel in these new applications, materials design efforts have accelerated as researchers target new functionality, processability, and improved performance/stability. Materials for organic electrochemical transistors (OECTs) require both efficient electronic transport and facile ion injection in order to sustain high capacity. In this work, we show that the product of the electronic mobility and volumetric charge storage capacity (µC*) is the materials/system figure of merit; we use this framework to benchmark and compare the steady-state OECT performance of ten previously reported materials. This product can be independently verified and decoupled to guide materials design and processing. OECTs can therefore be used as a tool for understanding and designing new organic mixed conductors.

  12. Description of the EuroTARGET cohort: A European collaborative project on TArgeted therapy in renal cell cancer-GEnetic- and tumor-related biomarkers for response and toxicity.

    PubMed

    van der Zanden, Loes F M; Vermeulen, Sita H; Oskarsdottir, Arna; Maurits, Jake S F; Diekstra, Meta H M; Ambert, Valentin; Cambon-Thomsen, Anne; Castellano, Daniel; Fritsch, Achim; Garcia Donas, Jesus; Guarch Troyas, Rosa; Guchelaar, Henk-Jan; Hartmann, Arndt; Hulsbergen-van de Kaa, Christina; Jaehde, Ulrich; Junker, Kerstin; Martinez-Cardus, Anna; Masson, Gisli; Oosterwijk-Wakka, Jeannette; Radu, Marius T; Rafnar, Thorunn; Rodriguez-Antona, Cristina; Roessler, Max; Ruijtenbeek, Rob; Stefansson, Kari; Warren, Anne; Wessels, Lodewyk; Eisen, Tim; Kiemeney, Lambertus A L M; Oosterwijk, Egbert

    2017-08-01

    For patients with metastatic renal cell cancer (mRCC), treatment choice is mainly based on clinical parameters. With many treatments available and the limited response to treatment and associated toxicities, there is much interest in identifying better biomarkers for personalized treatment. EuroTARGET aims to identify and characterize host- and tumor-related biomarkers for prediction of response to tyrosine kinase inhibitor therapy in mRCC. Here, we describe the EuroTARGET mRCC patient cohort. EuroTARGET is a European collaborative project designed as an observational study for which patients with mRCC were recruited prospectively in 62 centers. In addition, 462 patients with mRCC from previous studies were included. Detailed clinical information (baseline and follow-up) from all patients was entered in web-based case record forms. Blood was collected for germline DNA and pharmacokinetic/pharmacodynamic analyses and, where available, fresh-frozen tumor material was collected to perform tumor DNA, RNA, kinome, and methylome analyses. In total, 1,210 patients with mRCC were included. Of these, 920 received a tyrosine kinase inhibitor as first-line targeted treatment (sunitinib [N = 713, 78%], sorafenib [N = 41, 4%], or pazopanib [N = 166, 18%]) and had at least 6 months of outcome assessment (median follow-up 15.3 months [interquartile range: 8.5-30.2 months]). Germline DNA samples were available from 824 of these patients, fresh-frozen tumor material from 142 patients, fresh-frozen normal kidney tissue from 95 patients, and tissue microarrays created from formalin-fixed paraffin-embedded tumor material from 247 patients. Of the 920 patients, germline DNA variant chip data were successfully generated for 811 patients (Illumina HumanOmniExpress BeadChip). For 80 patients, next-generation exome sequencing of germline and tumor DNA was performed, tumor RNA sequencing was performed for 124 patients, kinome activity measured and processed for 121 patients (PamChip), and methylome data (Illumina Infinium HumanMethylation450 BeadChip) were created for 116 RCC tissues (and 23 normal kidney tissues). For 73 out of the 920 patients, all platform data types were generated. In addition, 40 patients were included in a pharmacokinetic/pharmacodynamic phase IV substudy. Analysis of EuroTARGET cohort data will contribute to personalization of therapy for patients with mRCC. The extensive clinical data and multiplatform EuroTARGET data will be freely available. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Neutronics performance and activation calculation of dense tungsten granular target for China-ADS

    NASA Astrophysics Data System (ADS)

    Zhang, Yaling; Li, Jianyang; Zhang, Xunchao; Cai, Hanjie; Yan, Xuesong; Yu, Lin; Fu, Fen; Lin, Ping; Gao, Xiaofei; Zhang, Zhilei; Zhang, Yanshi; Yang, Lei

    2017-11-01

    Spallation target, which constitutes the physical and functional interface between the high power accelerator and the subcritical core, is one of the most important components in Accelerator Driven Subcritical System (ADS). In this paper, we investigated the neutronics performance, the radiation damage and the activation of dense tungsten granular flow spallation target by using the Monte Carlo programs GMT and FLUKA at the proton energy of 250 MeV with a beam current of 10 mA . First, the leaking neutron yield, leaking neutron energy spectrum and laterally leaking neutron distribution at several time nodes and with different target parameters are explored. After that, the displacement per atom (DPA) and the helium/hydrogen production for tungsten grains and structural materials with stainless steel 316L are estimated. Finally, the radioactivity, residual dose rate and afterheat of granular target are presented. Results indicate that granule diameter below 1 cm and the beam profile diameter have negligible impact on neutronics performance, while the target diameter and volume fraction of grain have notable influence. The maximum DPA for target vessel (beam tube) is about 1.0 (1.6) DPA/year in bare target, and increased to 2.6 (2.8) DPA/year in fission environment. Average DPA for tungsten grains is relatively low. The decline rate of radioactivity and afterheat with cooling time grows with the decrease of the irradiation time.

  14. Chemical hydrogen storage material property guidelines for automotive applications

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 °C), system gravimetric capacities (>0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  15. An optimization methodology for heterogeneous minor actinides transmutation

    NASA Astrophysics Data System (ADS)

    Kooyman, Timothée; Buiron, Laurent; Rimpault, Gérald

    2018-04-01

    In the case of a closed fuel cycle, minor actinides transmutation can lead to a strong reduction in spent fuel radiotoxicity and decay heat. In the heterogeneous approach, minor actinides are loaded in dedicated targets located at the core periphery so that long-lived minor actinides undergo fission and are turned in shorter-lived fission products. However, such targets require a specific design process due to high helium production in the fuel, high flux gradient at the core periphery and low power production. Additionally, the targets are generally manufactured with a high content in minor actinides in order to compensate for the low flux level at the core periphery. This leads to negative impacts on the fuel cycle in terms of neutron source and decay heat of the irradiated targets, which penalize their handling and reprocessing. In this paper, a simplified methodology for the design of targets is coupled with a method for the optimization of transmutation which takes into account both transmutation performances and fuel cycle impacts. The uncertainties and performances of this methodology are evaluated and shown to be sufficient to carry out scoping studies. An illustration is then made by considering the use of moderating material in the targets, which has a positive impact on the minor actinides consumption but a negative impact both on fuel cycle constraints (higher decay heat and neutron) and on assembly design (higher helium production and lower fuel volume fraction). It is shown that the use of moderating material is an optimal solution of the transmutation problem with regards to consumption and fuel cycle impacts, even when taking geometrical design considerations into account.

  16. Perforation of Thin Aluminum Alloy Plates by Blunt Projectiles - Experimental and Numerical Investigation

    NASA Astrophysics Data System (ADS)

    Wei, Gang; Zhang, Wei; Xiao, Xinke; Guo, Zitao

    2011-06-01

    Reducing the armor weight has become a research focus in terms of armored material with the increasing requirement of the mobility and flexibility of tanks and armored vehicles in modern local wars. Due to high strength-to-density ratio, aluminum alloy has become a potential light armored material. In this study, both lab-scale ballistic test and finite element simulation were adopted to examine the ballistic resistance of aluminum alloy targets. Blunt high strength steel projectiles with 12.7 mm diameter were launched by light gas gun against 3.3 mm thick aluminum alloy plates at velocity of 90 ~170 m/s. The ballistic limit velocity was obtained. Plugging failure and obvious structure deformation of targets were observed, and with the impact velocity increasing, the target structure deformation decrease gradually. Corresponding 2D finite element simulations were conducted by ABAQUS/EXPLICIT combined with material performance testing. Good agreement between the numerical simulations and the experimental results was found. Detailed computational results were provided to understand the deformation and failure mechanisms of the aluminum alloy plates.

  17. Multi-oxide active layer deposition using Applied Materials Pivot array coater for high-mobility metal oxide TFT

    NASA Astrophysics Data System (ADS)

    Park, Hyun Chan; Scheer, Evelyn; Witting, Karin; Hanika, Markus; Bender, Marcus; Hsu, Hao Chien; Yim, Dong Kil

    2015-11-01

    By controlling a thin indium tin oxide (ITO), indium zinc oxide interface layer between gate insulator and indium gallium zinc oxide (IGZO), the thin-film transistor (TFT) performance can reach higher mobility as conventional IGZO as well as superior stability. For large-area display application, Applied Materials static PVD array coater (Applied Materials GmbH & Co. KG, Alzenau, Germany) using rotary targets has been developed to enable uniform thin layer deposition in display industry. Unique magnet motion parameter optimization in Pivot sputtering coater is shown to provide very uniform thin ITO layer to reach TFT performance with high mobility, not only on small scale, but also on Gen8.5 (2500 × 2200 mm glass size) production system.

  18. Particle-in-Cell Modeling of Magnetron Sputtering Devices

    NASA Astrophysics Data System (ADS)

    Cary, John R.; Jenkins, T. G.; Crossette, N.; Stoltz, Peter H.; McGugan, J. M.

    2017-10-01

    In magnetron sputtering devices, ions arising from the interaction of magnetically trapped electrons with neutral background gas are accelerated via a negative voltage bias to strike a target cathode. Neutral atoms ejected from the target by such collisions then condense on neighboring material surfaces to form a thin coating of target material; a variety of industrial applications which require thin surface coatings are enabled by this plasma vapor deposition technique. In this poster we discuss efforts to simulate various magnetron sputtering devices using the Vorpal PIC code in 2D axisymmetric cylindrical geometry. Field solves are fully self-consistent, and discrete models for sputtering, secondary electron emission, and Monte Carlo collisions are included in the simulations. In addition, the simulated device can be coupled to an external feedback circuit. Erosion/deposition profiles and steady-state plasma parameters are obtained, and modifications due to self consistency are seen. Computational performance issues are also discussed. and Tech-X Corporation.

  19. Balloon Blocking Technique (BBT) for Superselective Catheterization of Inaccessible Arteries with Conventional and Modified Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morishita, Hiroyuki, E-mail: hmorif@koto.kpu-m.ac.jp, E-mail: mori-h33@xa2.so-net.ne.jp; Takeuchi, Yoshito, E-mail: yotake62@qg8.so-net.ne.jp; Ito, Takaaki, E-mail: takaaki@koto.kpu-m.ac.jp

    2016-06-15

    PurposeThe purpose of the study was to retrospectively evaluate the efficacy and safety of the balloon blocking technique (BBT).Materials and MethodsThe BBT was performed in six patients (all males, mean 73.5 years) in whom superselective catheterization for transcatheter arterial embolization by the conventional microcatheter techniques had failed due to anatomical difficulty, including targeted arteries originating steeply or hooked from parent arteries. All BBT procedures were performed using Seldinger’s transfemoral method. Occlusive balloons were deployed and inflated at the distal side of the target artery branching site in the parent artery via transfemoral access. A microcatheter was delivered from a 5-F cathetermore » via another femoral access and was advanced over the microguidewire into the target artery, under balloon blockage of advancement of the microguidewire into non-target branches. After the balloon catheter was deflated and withdrawn, optimal interventions were performed through the microcatheter.ResultsAfter success of accessing the targeted artery by BBT, optimal interventions were accomplished in all patients with no complications other than vasovagal hypotension, which responded to nominal therapy.ConclusionThe BBT may be useful in superselective catheterization of inaccessible arteries due to anatomical difficulties.« less

  20. Materials Genome in Action: Identifying the Performance Limits of Physical Hydrogen Storage

    PubMed Central

    2017-01-01

    The Materials Genome is in action: the molecular codes for millions of materials have been sequenced, predictive models have been developed, and now the challenge of hydrogen storage is targeted. Renewably generated hydrogen is an attractive transportation fuel with zero carbon emissions, but its storage remains a significant challenge. Nanoporous adsorbents have shown promising physical adsorption of hydrogen approaching targeted capacities, but the scope of studies has remained limited. Here the Nanoporous Materials Genome, containing over 850 000 materials, is analyzed with a variety of computational tools to explore the limits of hydrogen storage. Optimal features that maximize net capacity at room temperature include pore sizes of around 6 Å and void fractions of 0.1, while at cryogenic temperatures pore sizes of 10 Å and void fractions of 0.5 are optimal. Our top candidates are found to be commercially attractive as “cryo-adsorbents”, with promising storage capacities at 77 K and 100 bar with 30% enhancement to 40 g/L, a promising alternative to liquefaction at 20 K and compression at 700 bar. PMID:28413259

  1. Materials genome in action: Identifying the performance limits of physical hydrogen storage

    DOE PAGES

    Thornton, Aaron W.; Simon, Cory M.; Kim, Jihan; ...

    2017-03-08

    The Materials Genome is in action: the molecular codes for millions of materials have been sequenced, predictive models have been developed, and now the challenge of hydrogen storage is targeted. Renewably generated hydrogen is an attractive transportation fuel with zero carbon emissions, but its storage remains a significant challenge. Nanoporous adsorbents have shown promising physical adsorption of hydrogen approaching targeted capacities, but the scope of studies has remained limited. Here the Nanoporous Materials Genome, containing over 850 000 materials, is analyzed with a variety of computational tools to explore the limits of hydrogen storage. Optimal features that maximize net capacitymore » at room temperature include pore sizes of around 6 Å and void fractions of 0.1, while at cryogenic temperatures pore sizes of 10 Å and void fractions of 0.5 are optimal. Finally, our top candidates are found to be commercially attractive as “cryo-adsorbents”, with promising storage capacities at 77 K and 100 bar with 30% enhancement to 40 g/L, a promising alternative to liquefaction at 20 K and compression at 700 bar.« less

  2. Materials genome in action: Identifying the performance limits of physical hydrogen storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, Aaron W.; Simon, Cory M.; Kim, Jihan

    The Materials Genome is in action: the molecular codes for millions of materials have been sequenced, predictive models have been developed, and now the challenge of hydrogen storage is targeted. Renewably generated hydrogen is an attractive transportation fuel with zero carbon emissions, but its storage remains a significant challenge. Nanoporous adsorbents have shown promising physical adsorption of hydrogen approaching targeted capacities, but the scope of studies has remained limited. Here the Nanoporous Materials Genome, containing over 850 000 materials, is analyzed with a variety of computational tools to explore the limits of hydrogen storage. Optimal features that maximize net capacitymore » at room temperature include pore sizes of around 6 Å and void fractions of 0.1, while at cryogenic temperatures pore sizes of 10 Å and void fractions of 0.5 are optimal. Finally, our top candidates are found to be commercially attractive as “cryo-adsorbents”, with promising storage capacities at 77 K and 100 bar with 30% enhancement to 40 g/L, a promising alternative to liquefaction at 20 K and compression at 700 bar.« less

  3. Detergent Lysis of Animal Tissues for Immunoprecipitation.

    PubMed

    DeCaprio, James; Kohl, Thomas O

    2017-12-01

    This protocol details protein extraction from mouse tissues for immunoprecipitation purposes and has been applied for the performance of large-scale immunoprecipitations of target proteins from various tissues for the identification of associated proteins by mass spectroscopy. The key factors in performing a successful immunoprecipitation directly relate to the abundance of target protein in a particular tissue type and whether or not the embryonic, newborn, or adult mouse-derived tissues contain fibrous and other insoluble material. Several tissue types, including lung and liver as well as carcinomas, contain significant amounts of fibrous tissue that can interfere with an immunoprecipitation. © 2017 Cold Spring Harbor Laboratory Press.

  4. Surface characteristics modeling and performance evaluation of urban building materials using LiDAR data.

    PubMed

    Li, Xiaolu; Liang, Yu

    2015-05-20

    Analysis of light detection and ranging (LiDAR) intensity data to extract surface features is of great interest in remote sensing research. One potential application of LiDAR intensity data is target classification. A new bidirectional reflectance distribution function (BRDF) model is derived for target characterization of rough and smooth surfaces. Based on the geometry of our coaxial full-waveform LiDAR system, the integration method is improved through coordinate transformation to establish the relationship between the BRDF model and intensity data of LiDAR. A series of experiments using typical urban building materials are implemented to validate the proposed BRDF model and integration method. The fitting results show that three parameters extracted from the proposed BRDF model can distinguish the urban building materials from perspectives of roughness, specular reflectance, and diffuse reflectance. A comprehensive analysis of these parameters will help characterize surface features in a physically rigorous manner.

  5. Formulation and Characterization of Inhalable Magnetic Nanocomposite Microparticles (MnMs) for Targeted Pulmonary Delivery via Spray Drying

    PubMed Central

    Stocke, Nathanael A.; Meenach, Samantha A.; Arnold, Susanne M.; Mansour, Heidi M.; Hilt, J. Zach.

    2018-01-01

    Targeted pulmonary delivery facilitates the direct application of bioactive materials to the lungs in a controlled manner and provides an exciting platform for targeting magnetic nanoparticles (MNPs) to the lungs. Iron oxide MNPs remotely heat in the presence of an alternating magnetic field (AMF) providing unique opportunities for therapeutic applications such as hyperthermia. In this study, spray drying was used to formulate magnetic nanocomposite microparticles (“MnMs”) consisting of iron oxide MNPs and D-mannitol. The physicochemical properties of these MnMs were evaluated and the in vitro aerosol dispersion performance of the dry powders was measured by the Next Generation Impactor®. For all powders the mass median aerosol diameter (MMAD) was < 5 µm and deposition patterns revealed that MnMs could deposit throughout the lungs. Heating studies with a custom AMF showed that MNPs retain excellent thermal properties after spray drying into composite dry powders, with specific absorption ratios (SAR) >200 W/g, and in vitro studies on a human lung cell line indicated moderate cytotoxicity of these materials. These inhalable composites present a class of materials with many potential applications and pose a promising approach for thermal treatment of the lungs through targeted pulmonary administration of MNPs. PMID:25542988

  6. FY2017 Materials Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Felix; Gibbs, Jerry; Kleinbaum, Sarah

    The Materials Technology subprogram supports the Vehicle Technology Office’s mission to help consumers and businesses reduce their transportation energy costs while meeting or exceeding vehicle performance expectations. The Propulsion Materials research portfolio seeks to develop higher performance materials that can withstand increasingly extreme environments and address the future properties needs of a variety of high efficiency powertrain types, sizes, fueling concepts, and combustion modes. Advanced Lightweight Materials research enables improvements in fuel economy by providing properties that are equal to or better than traditional materials at a lower weight. Because it takes less energy to accelerate a lighter object, replacingmore » cast iron and traditional steel components with lightweight materials such as high-strength steel, magnesium (Mg), aluminum (Al), and polymer composites can directly reduce a vehicle’s fuel consumption. Materials technology activities focus on the following cost and performance targets: (1) enable a 25 percent weight reduction for light-duty vehicles including body, chassis, and interior as compared to a 2012 baseline at no more than a $5/lb-saved increase in cost; and (2) validate a 25 percent improvement in high temperature (300°C) component strength relative to components made with 2010 baseline cast Al alloys (A319 or A356) for improved efficiency light-duty engines.« less

  7. Magnetically attached sputter targets

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.

    1994-02-15

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material is described. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly. 11 figures.

  8. Magnetically attached sputter targets

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.

    1994-01-01

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly.

  9. Solid-State Nuclear Power

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.

    2012-01-01

    A strategy for "Solid-State" Nuclear Power is proposed to guide development of technologies and systems into the second 50 years of nuclear spaceflight. The strategy emphasizes a simple and highly integrated system architecture with few moving parts or fluid loops; the leverage of modern advances in materials, manufacturing, semiconductors, microelectromechanical and nanotechnology devices; and the targeted advancement of high temperature nuclear fuels, materials and static power conversion to enable high performance from simple system topologies.

  10. Synaptic electronics: materials, devices and applications.

    PubMed

    Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip

    2013-09-27

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.

  11. Performance Characteristics of Compact Mobile LIFS (Laser-Induced Fluorescence Spectrum) Lidar

    NASA Astrophysics Data System (ADS)

    Tomida, Takayuki; Nishizawa, Naoto; Sakurai, Kosuke; Suganumata, Hikaru; Tsukada, Shodai; Song, Sung-Moo; Park, Ho-Dong; Saito, Yasunori

    2016-06-01

    We developed a compact but versatile laser-induced fluorescence spectrum (LIFS) lidar that has potential use for material or aerosol identification outside experimental rooms. The compactness and mobility of the LIFS lidar means observations can be more freely conducted at any place and any time. Its performance characteristics were validated by threedimensional fluorescence imaging of targets and remote detection of quasi bio/organic aerosols.

  12. BP network identification technology of infrared polarization based on fuzzy c-means clustering

    NASA Astrophysics Data System (ADS)

    Zeng, Haifang; Gu, Guohua; He, Weiji; Chen, Qian; Yang, Wei

    2011-08-01

    Infrared detection system is frequently employed on surveillance operations and reconnaissance mission to detect particular targets of interest in both civilian and military communities. By incorporating the polarization of light as supplementary information, the target discrimination performance could be enhanced. So this paper proposed an infrared target identification method which is based on fuzzy theory and neural network with polarization properties of targets. The paper utilizes polarization degree and light intensity to advance the unsupervised KFCM (kernel fuzzy C-Means) clustering method. And establish different material pol1arization properties database. In the built network, the system can feedback output corresponding material types of probability distribution toward any input polarized degree such as 10° 15°, 20°, 25°, 30°. KFCM, which has stronger robustness and accuracy than FCM, introduces kernel idea and gives the noise points and invalid value different but intuitively reasonable weights. Because of differences in characterization of material properties, there will be some conflicts in classification results. And D - S evidence theory was used in the combination of the polarization and intensity information. Related results show KFCM clustering precision and operation rate are higher than that of the FCM clustering method. The artificial neural network method realizes material identification, which reasonable solved the problems of complexity in environmental information of infrared polarization, and improperness of background knowledge and inference rule. This method of polarization identification is fast in speed, good in self-adaption and high in resolution.

  13. Spallation Neutron Source Materials Studies

    NASA Astrophysics Data System (ADS)

    Sommer, W. F.

    1998-04-01

    Operation of accelerator facilities such as Los Alamos Neutron Science Center (LANSCE), ISIS at Rutherford Appleton Laboratory, the Swiss Institute Neutron Source (SINQ) at Paul Scherrer Institute, and others has provided valuable information on materials performance in high energy particle beams and high energy neutron environments. The Accelerator Production of Tritium (APT) project is sponsoring an extensive series of tests on the effect of spallation neutron source environments to physical and mechanical properties of candidate materials such as nickel-based alloys, stainless steel alloys, aluminum alloys and solid target materials such as tungsten. Measurements of corrosion rates of these candidate materials during irradiation and while in contact with flowing coolant water are being made. The APT tests use the irradiation facility in the beam stop area of the LANSCE accelerator using 800 MeV protons as well as the neutron flux-spectrum generated as these protons interact with targets. The initial irradiations were completed in summer 1997, exposing materials to a fluence approaching 4-6 x 10^21 protons/cm^2. Sample retrieval is now underway. Mechanical properties measurements are being conducted at several laboratories. Studies on components used in service have also been initiated.

  14. Development of a reference material of a single DNA molecule for the quality control of PCR testing.

    PubMed

    Mano, Junichi; Hatano, Shuko; Futo, Satoshi; Yoshii, Junji; Nakae, Hiroki; Naito, Shigehiro; Takabatake, Reona; Kitta, Kazumi

    2014-09-02

    We developed a reference material of a single DNA molecule with a specific nucleotide sequence. The double-strand linear DNA which has PCR target sequences at the both ends was prepared as a reference DNA molecule, and we named the PCR targets on each side as confirmation sequence and standard sequence. The highly diluted solution of the reference molecule was dispensed into 96 wells of a plastic PCR plate to make the average number of molecules in a well below one. Subsequently, the presence or absence of the reference molecule in each well was checked by real-time PCR targeting for the confirmation sequence. After an enzymatic treatment of the reaction mixture in the positive wells for the digestion of PCR products, the resultant solution was used as the reference material of a single DNA molecule with the standard sequence. PCR analyses revealed that the prepared samples included only one reference molecule with high probability. The single-molecule reference material developed in this study will be useful for the absolute evaluation of a detection limit of PCR-based testing methods, the quality control of PCR analyses, performance evaluations of PCR reagents and instruments, and the preparation of an accurate calibration curve for real-time PCR quantitation.

  15. Room temperature triplet state spectroscopy of organic semiconductors.

    PubMed

    Reineke, Sebastian; Baldo, Marc A

    2014-01-21

    Organic light-emitting devices and solar cells are devices that create, manipulate, and convert excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is 'dark' with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescence type emitters. Control of non-radiative modes in the matrix surrounding a target molecule may also have broader applications in light-emitting and photovoltaic devices.

  16. 14 MeV Neutron Irradiation Effect on Superconducting Magnet Materials for Fusion Device

    NASA Astrophysics Data System (ADS)

    Nishimura, A.; Hishinuma, Y.; Seo, K.; Tanaka, T.; Muroga, T.; Nishijima, S.; Katagiri, K.; Takeuchi, T.; Shindo, Y.; Ochiai, K.; Nishitani, T.; Okuno, K.

    2006-03-01

    As a large-scale plasma experimental device is planned and designed, the importance of investigations on irradiation effect of 14 MeV neutron increases and an experimental database is desired to be piled up. Recently, intense streaming of fast neutron from ports are reported and degradation of superconducting magnet performance is anticipated. To investigate the pure neutron effect on superconducting magnet materials, a cryogenic target system was newly developed and installed at Fusion Neutronics Source in Japan Atomic Energy Research Institute. Although production rate of 14 MeV neutron is not large, only 14 MeV neutron can be supplied to irradiation test without gamma ray. Copper wires, superconducting wires, glass fiber reinforced composites are irradiated and the irradiation effects are characterized. At the same time, sensors for measuring temperature and magnetic field are irradiated and their performance was investigated after irradiation. This paper presents outline of the cryogenic target system and some irradiation test results.

  17. Photo-Luminescent Targets in Space

    NASA Technical Reports Server (NTRS)

    Maida, James; Kolomenski, Andrei

    2017-01-01

    Photo-luminescent ("glow in the dark") products have seen a dramatic increase in performance is the last 15 years with the use of a strontium aluminate formulation. Because of this, ISS uses photo-luminescent markers for interior emergency egress guidance. The marker is COTS material composed of strontium aluminate doped with europium, imbedded in PVC and achieves a light emission performance rated at 600/90 (600 mcd at 10 minutes and 90 mcd at 1 hour, 2 mcd is minimum required for human visibility). The ICA goal is to determine this material's effectiveness for use externally on ISS and/or on visiting vehicles, when packaged in Lexan for UV protection. A thermal test was conducted by EC to characterize the luminance emission profile of the material at extreme cold and hot temperatures, such as experienced on ISS.

  18. Preparation of osmium targets with carbon backing

    NASA Astrophysics Data System (ADS)

    Fremont, Georges; Ngono-Ravache, Yvette; Schmitt, Christelle; Stodel, Christelle

    2018-05-01

    For nuclear reaction studies, thin metallic osmium targets, either natural or isotopically enriched (Os-192) of 200-300 µg/cm2 thicknesses deposited on a thin carbon backing are required. A challenging method was successfully performed at GANIL involving firstly the preparation of an aqueous solution of osmium tetrachloride, then its electro-deposition onto a thick copper backing (100 µm); this process was followed by the evaporation of a thin carbon layer (≈40 µg/cm²) and finally the dissolution of the copper material.

  19. Modeling and Simulation of Ceramic Arrays to Improve Ballaistic Performance

    DTIC Science & Technology

    2013-09-09

    targets with .30cal AP M2 projectile using SPH elements. -Model validation runs were conducted based on the DoP experiments described in reference...effect of material properties on DoP 15. SUBJECT TERMS .30cal AP M2 Projectile, 762x39 PS Projectile, SPH , Aluminum 5083, SiC, DoP Expeminets...and ceramic-faced aluminum targets with „30cal AP M2 projectile using SPH elements. □ Model validation runs were conducted based on the DoP

  20. Chemical hydrogen storage material property guidelines for automotive applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semelsberger, Troy; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 C), system gravimetric capacities (>0.05 kg H2/kg system), and system volumetric capacities (>0.05 kg H2/L system). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storagemore » material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material propertiesdand most important, their implications on system mass, system volume and system performance.« less

  1. Three-Dimensional Modeling of Low-Mode Asymmetries in OMEGA Cryogenic Implosions

    NASA Astrophysics Data System (ADS)

    Anderson, K. S.; McKenty, P. W.; Shvydky, A.; Collins, T. J. B.; Forrest, C. J.; Knauer, J. P.; Marozas, J. A.; Marshall, F. J.; Radha, P. B.; Sefkow, A. B.; Marinak, M. M.

    2017-10-01

    In direct-drive inertial confinement fusion implosions, long-wavelength asymmetries resulting from target offset, laser power imbalance, beam mispointing, etc. can be highly detrimental to target performance. Characterizing the effects of these asymmetry sources requires 3-D simulations performed in full-sphere geometry to accurately capture the evolution of shell perturbations and hot-spot flow. This paper will present 3-D HYDRA simulations characterizing the impact of these perturbation sources on yield and shell modulation. Various simulated observables are generated, and trends are analyzed and compared with experimental data. This material is based on work supported by the Department of Energy National Nuclear Security Administration under Award Numbers DE-NA0001944 and performed under the auspices of the LLNL under Contract No. DE-AC52-07NA27344.

  2. Multiple target laser ablation system

    DOEpatents

    Mashburn, Douglas N.

    1996-01-01

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film.

  3. Proposed industrial recoverd materials utilization targets for the textile mill products industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-05-01

    Materials recovery targets were established to represent the maximum technically and economically feasible increase in the use of energy-saving materials by January 1, 1987. This report describes targets for the textile industry and describes how those targets were determined. (MCW)

  4. Photo-ionization of aluminum in a hot cavity for the selective production of exotic species project

    NASA Astrophysics Data System (ADS)

    Scarpa, D.; Makhathini, L.; Tomaselli, A.; Grassi, D.; Corradetti, S.; Manzolaro, M.; Vasquez, J.; Calderolla, M.; Rossignoli, M.; Monetti, A.; Andrighetto, A.; Prete, G.

    2014-02-01

    SPES (Selective Production of Exotic Species) is an Isotope Separation On-Line (ISOL) based accelerator facility that will be built in the Legnaro-Istituto Nazionale di Fisica Nucleare (INFN) Laboratory (Italy), intended to provide intense neutron-rich radioactive ion beams obtained by proton-induced fission of a uranium carbide (UCx) target. Besides this main target material, silicon carbide (SiC) will be the first to be used to deliver p-rich beams. This target will also validate the functionality of the SPES facility with aluminum beam as result of impinging SiC target with proton beam. In the past, off line studies on laser photoionization of aluminum have been performed in Pavia Spectroscopy Laboratory and in Laboratori Nazionali di Legnaro; a XeCl excimer laser was installed in order to test the laser ionization in the SPES hot cavity. With the new Wien filter installed a better characterization of the ionization process in terms of efficiency was performed and results are discussed.

  5. Dynamically polarized target for the g p 2 and G p E experiments at Jefferson Lab

    DOE PAGES

    Pierce, J.; Maxwell, J.; Badman, T.; ...

    2013-12-16

    We describe a dynamically polarized target that has been utilized for two electron scattering experiments in Hall A at Jefferson Lab. The primary components of the target are a new, high cooling power 4 He evaporation refrigerator, and a re-purposed, superconducting split-coil magnet. It has been used to polarize protons in irradiated NH 3 at a temperature of 1 K and at fields of 2.5 and 5.0 Tesla. The performance of the target material in the electron beam under these conditions will be discussed. The maximum polarizations of 28% and 95% were obtained at those fields, respectively. To satisfy themore » requirements of both experiments, the magnet had to be routinely rotated between angles of 0, 6, and 90 degrees with respect to the incident electron beam. This was accomplished using a new rotating vacuum seal which permits rotations to be performed in only a few minutes.« less

  6. Ejecta Experiments at the Pegasus Pulsed Power Facility

    DTIC Science & Technology

    1997-06-01

    Laboratory (LANL ). The facility provides both radial and axial access for making measurements. There exist optical, laser , and X-Ray paths for performing...and axial access for making measurements. There exist optical, laser , and X-Ray paths for performing measurements on the target assembly located near...surface variations, microjets can be formed thus contributing to the amount of ejecta. In addition to material properties which contribute to ejecta

  7. Remote sensing based on hyperspectral data analysis

    NASA Astrophysics Data System (ADS)

    Sharifahmadian, Ershad

    In remote sensing, accurate identification of far objects, especially concealed objects is difficult. In this study, to improve object detection from a distance, the hyperspecral imaging and wideband technology are employed with the emphasis on wideband radar. As the wideband data includes a broad range of frequencies, it can reveal information about both the surface of the object and its content. Two main contributions are made in this study: 1) Developing concept of return loss for target detection: Unlike typical radar detection methods which uses radar cross section to detect an object, it is possible to enhance the process of detection and identification of concealed targets using the wideband radar based on the electromagnetic characteristics --conductivity, permeability, permittivity, and return loss-- of materials. During the identification process, collected wideband data is evaluated with information from wideband signature library which has already been built. In fact, several classes (e.g. metal, wood, etc.) and subclasses (ex. metals with high conductivity) have been defined based on their electromagnetic characteristics. Materials in a scene are then classified based on these classes. As an example, materials with high electrical conductivity can be conveniently detected. In fact, increasing relative conductivity leads to a reduction in the return loss. Therefore, metals with high conductivity (ex. copper) shows stronger radar reflections compared with metals with low conductivity (ex. stainless steel). Thus, it is possible to appropriately discriminate copper from stainless steel. 2) Target recognition techniques: To detect and identify targets, several techniques have been proposed, in particular the Multi-Spectral Wideband Radar Image (MSWRI) which is able to localize and identify concealed targets. The MSWRI is based on the theory of robust capon beamformer. During identification process, information from wideband signature library is utilized. The WB signature library includes such parameters as conductivity, permeability, permittivity, and return loss at different frequencies for possible materials related to a target. In the MSWRI approach, identification procedure is performed by calculating the RLs at different selected frequencies. Based on similarity of the calculated RLs and RL from WB signature library, targets are detected and identified. Based on the simulation and experimental results, it is concluded that the MSWRI technique is a promising approach for standoff target detection.

  8. Industrial recovered-materials-utilization targets for the textile-mill-products industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1979-01-01

    The Congress, in the National Energy Conservation and Policy Act of 1978 (NECPA), directed the Department of Energy to establish materials recovery targets for the metals and metal products, paper and allied products, rubber, and textile-mill-products industries. The targets were developed to provide incentives for using energy-saving recorded materials and to provied a yardstick for measuring progress and improvement in this endeavor. The NECPA indicates that the targets should represent the maximum technically and economically feasible increase in the use of energy-saving recovered materials that each industry can achieve progressively by January 1, 1987. Materials affected by recovered-materials targets includemore » and are limited to aluminum, copper, lead, zinc, iron, steel, paper and associated products, textile-mill, products, and rubber. Using information gathered from the textile-mill-products industry and from other textile-relaed sources, DOE has developed recovered materials targets for that industry. This report presents those targets and their basis and justification. Following an overview of the textile industry, the chapters are: Textile-Mill-Products Industry Operations; Economic Analysis of the Textile-Mill-Products Industry; Governmental and Regulatory Influence on the US Textile Industry; Current Mill Use of Recovered Materials in the Textile-Mill-Products Industry; Limitations on the Use of Recovered Materials in the US Textile-Mill-Products Industry; Materials-Recovery Targets; and Government and Industry Actions That Could Increase the Use of Recovered Materials.« less

  9. Analysis of legal high materials by ultra-performance liquid chromatography with time of flight mass spectrometry as part of a toxicology vigilance system: what are the most popular novel psychoactive substances in the UK?

    PubMed

    Ford, Loretta T; Berg, Jonathan D

    2017-03-01

    Introduction Legal highs also known as novel psychoactive substances mimic the effects of classic drugs of abuse. Challenges to developing screening services for novel psychoactive substances include identifying which novel psychoactive substances are available to target. Using new techniques such as exact mass time of flight can help identify common novel psychoactive substances to target for screening patient samples by routine methods such as tandem mass spectrometry. We demonstrate this strategy working in our own clinical toxicology laboratory after qualitative analysis of 98 suspect materials for novel psychoactive substances by ultra-performance liquid chromatography with time of flight mass spectrometry. Results From July 2014 to July 2015 we received 98 requests to test a range of different suspect materials for novel psychoactive substances including herbs, tobacco, liquids, pills and powders. Overall, 87% of the suspect materials tested positive for novel psychoactive substances, and 15% for controlled drugs. Three common novel psychoactive substances were present in 74% of the suspect materials: methiopropamine, a methamphetamine analogue; ethylphenidate, a cocaine mimic; and the third generation synthetic cannabinoid 5F-AKB-48. For the 55 branded products we tested only 24% of the stated contents matched exactly the compounds we detected. Conclusion Testing suspect materials using ultra-performance liquid chromatography with time of flight mass spectrometry has identified three common novel psychoactive substances in use in the UK, simplifying the development of a relevant novel psychoactive substances screening service to our population. By incorporating this into our routine liquid chromatography tandem mass spectrometry drugs of abuse screen, then offers a clinically relevant novel psychoactive substances service to our users. This strategy ensures our clinical toxicology service continues to remain effective to meet the challenges of the changing drug use in the UK.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, Jamie L.; Kuhn, Kevin John; Byerly, Benjamin

    Nuclear forensic publications, performance tests, and research and development efforts typically target the bulk global inventory of intentionally safeguarded materials, such as plutonium (Pu) and uranium (U). Other materials, such as neptunium (Np), pose a nuclear security risk as well. Trafficking leading to recovery of an interdicted Np sample is a realistic concern especially for materials originating in countries that reprocesses fuel. Using complementary forensic methods, potential signatures for an unknown Np oxide sample were investigated. Measurement results were assessed against published Np processes to present hypotheses as to the original intended use, method of production, and origin for thismore » Np oxide.« less

  11. Spectral analysis of ground penetrating radar signals in concrete, metallic and plastic targets

    NASA Astrophysics Data System (ADS)

    Santos, Vinicius Rafael N. dos; Al-Nuaimy, Waleed; Porsani, Jorge Luís; Hirata, Nina S. Tomita; Alzubi, Hamzah S.

    2014-01-01

    The accuracy of detecting buried targets using ground penetrating radar (GPR) depends mainly on features that are extracted from the data. The objective of this study is to test three spectral features and evaluate the quality to provide a good discrimination among three types of materials (concrete, metallic and plastic) using the 200 MHz GPR system. The spectral features which were selected to check the interaction of the electromagnetic wave with the type of material are: the power spectral density (PSD), short-time Fourier transform (STFT) and the Wigner-Ville distribution (WVD). The analyses were performed with simulated data varying the sizes of the targets and the electrical properties (relative dielectric permittivity and electrical conductivity) of the soil. To check if the simulated data are in accordance with the real data, the same approach was applied on the data obtained in the IAG/USP test site. A noticeable difference was found in the amplitude of the studies' features in the frequency domain and these results show the strength of the signal processing to try to differentiate buried materials using GPR, and so can be used in urban planning and geotechnical studies.

  12. Initial observations of cavitation-induced erosion of liquid metal spallation target vessels at the Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClintock, David A; Riemer, Bernie; Ferguson, Phillip D

    2012-01-01

    During operation of the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory the mechanical properties of the AISI 316L target module are altered by high-energy neutron and proton radiation. The interior surfaces of the target vessel are also damaged by cavitation-induced erosion, which results from repetitive rapid heating of the liquid mercury by high-energy proton beam pulses. Until recently no observations of cavitation-induced erosion were possible for conditions prototypical to the SNS. Post irradiation examination (PIE) of the first and second operational SNS targets was performed to gain insight into the radiation-induced changes in mechanical properties of the 316Lmore » target material and the extent of cavitation-induced erosion to the target vessel inner surfaces. Observations of cavitation-induced erosion of the first and second operational SNS target modules are presented here, including images of the target vessel interiors and specimens removed from the target beam-entrance regions.« less

  13. Three-Dimensional Hydrodynamic Simulations of the Effects of Laser Imprint in OMEGA Implosions

    NASA Astrophysics Data System (ADS)

    Igumenshchev, I. V.; Campbell, E. M.; Goncharov, V. N.; Regan, S. P.; Shvydky, A.; Schmitt, A. J.

    2017-10-01

    Illumination of direct-drive implosion targets by the OMEGA laser introduces large-amplitude broadband modulations in the absorbed energy from the largest (target size 900- μm) to smallest (speckle size 2- μm) spatial scales. These modulations ``imprint'' perturbations into a target that are amplified because of the secular and Rayleigh-Taylor growths during acceleration and deceleration of the target. The degradation of performance of room-temperature and cryogenic OMEGA implosions caused by these perturbations were simulated in three dimensions using the code ASTER. The highest-resolution simulations resolve perturbation modes as high as l 200 . The high modes l 50to 100 dominate in the perturbation spectrum during the linear growth, while the late-time nonlinear evolution results in domination of modes with l 30to 50 . Smoothing by spectral dispersion reduces the linear-phase mode amplitudes by a factor of 4 and results in substantial improvements in implosion performance that is in good agreement with measurements. The effects of imprint on implosion performance are compared with the effects of other implosion asymmetries, such as those induced because of laser beam imbalance, mistiming and mispointing, and target offset. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  14. Geophysical background and as-built target characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, J.W.

    1994-09-01

    The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) has provided a facility for DOE, other Government agencies, and the private sector to evaluate and document the utility of specific geophysical measurement techniques for detecting and defining cultural and environmental targets. This facility is the Rabbit Valley Geophysics Performance Evaluation Range (GPER). Geophysical surveys prior to the fiscal year (FY) 1994 construction of new test cells showed the primary test area to be relatively homogeneous and free from natural or man-made artifacts, which would generate spurious responses in performance evaluation data. Construction of nine new cell areas inmore » Rabbit Valley was completed in June 1994 and resulted in the emplacement of approximately 150 discrete targets selected for their physical and electrical properties. These targets and their geophysical environment provide a broad range of performance evaluation parameters from ``very easy to detect`` to ``challenging to the most advanced systems.`` Use of nonintrusive investigative techniques represents a significant improvement over intrusive characterization methods, such as drilling or excavation, because there is no danger of exposing personnel to possible hazardous materials and no risk of releasing or spreading contamination through the characterization activity. Nonintrusive geophysical techniques provide the ability to infer near-surface structure and waste characteristics from measurements of physical properties associated with those targets.« less

  15. Multiple target laser ablation system

    DOEpatents

    Mashburn, D.N.

    1996-01-09

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film. 3 figs.

  16. Centrifuge impact cratering experiments: Scaling laws for non-porous targets

    NASA Technical Reports Server (NTRS)

    Schmidt, Robert M.

    1987-01-01

    This research is a continuation of an ongoing program whose objective is to perform experiments and to develop scaling relationships for large body impacts onto planetary surfaces. The development of the centrifuge technique has been pioneered by the present investigator and is used to provide experimental data for actual target materials of interest. With both powder and gas guns mounted on a rotor arm, it is possible to match various dimensionless similarity parameters, which have been shown to govern the behavior of large scale impacts. Current work is directed toward the determination of scaling estimates for nonporous targets. The results are presented in summary form.

  17. Liquid crystals as on-demand, variable thickness targets for intense laser applications

    NASA Astrophysics Data System (ADS)

    Poole, Patrick L.; Andereck, C. David; Schumacher, Douglass W.

    2014-10-01

    Laser-based ion acceleration is currently studied for its applications to advanced imaging and cancer therapy, among others. Targets for these and other high-intensity laser experiments are often small metallic foils with few to sub-micron thicknesses, where the thickness determines the physics of the dominant acceleration mechanism. We have developed liquid crystal films that preserve the planar target geometry advantageous to ion acceleration schemes while providing on-demand thickness variation between 50 and 5000 nm. This thickness control is obtained in part by varying the temperature at which films are formed, which governs the phase (and hence molecular ordering) of the liquid crystal material. Liquid crystals typically have vapor pressures well below the 10-6 Torr operating pressures of intense laser target chambers, and films formed in air maintain their thickness during chamber evacuation. Additionally, the minute volume that comprises each film makes the cost of each target well below one cent, in stark contrast to many standard solid targets. We will discuss the details of liquid crystal film control and formation, as well as characterization experiments performed at the Scarlet laser facility. This work was performed with support from DARPA and NNSA.

  18. Simulation-based cheminformatic analysis of organelle-targeted molecules: lysosomotropic monobasic amines

    PubMed Central

    Zhang, Xinyuan; Zheng, Nan

    2008-01-01

    Cell-based molecular transport simulations are being developed to facilitate exploratory cheminformatic analysis of virtual libraries of small drug-like molecules. For this purpose, mathematical models of single cells are built from equations capturing the transport of small molecules across membranes. In turn, physicochemical properties of small molecules can be used as input to simulate intracellular drug distribution, through time. Here, with mathematical equations and biological parameters adjusted so as to mimic a leukocyte in the blood, simulations were performed to analyze steady state, relative accumulation of small molecules in lysosomes, mitochondria, and cytosol of this target cell, in the presence of a homogenous extracellular drug concentration. Similarly, with equations and parameters set to mimic an intestinal epithelial cell, simulations were also performed to analyze steady state, relative distribution and transcellular permeability in this non-target cell, in the presence of an apical-to-basolateral concentration gradient. With a test set of ninety-nine monobasic amines gathered from the scientific literature, simulation results helped analyze relationships between the chemical diversity of these molecules and their intracellular distributions. Electronic supplementary material The online version of this article (doi:10.1007/s10822-008-9194-7) contains supplementary material, which is available to authorized users. PMID:18338229

  19. Augmented Reality Visualization with Use of Image Overlay Technology for MR Imaging–guided Interventions: Assessment of Performance in Cadaveric Shoulder and Hip Arthrography at 1.5 T

    PubMed Central

    Fritz, Jan; U-Thainual, Paweena; Ungi, Tamas; Flammang, Aaron J.; Fichtinger, Gabor; Iordachita, Iulian I.

    2012-01-01

    Purpose: To prospectively assess overlay technology in providing accurate and efficient targeting for magnetic resonance (MR) imaging–guided shoulder and hip joint arthrography. Materials and Methods: A prototype augmented reality image overlay system was used in conjunction with a clinical 1.5-T MR imager. A total of 24 shoulder joint and 24 hip joint injections were planned in 12 human cadavers. Two operators (A and B) participated, each performing procedures on different cadavers using image overlay guidance. MR imaging was used to confirm needle positions, monitor injections, and perform MR arthrography. Accuracy was assessed according to the rate of needle adjustment, target error, and whether the injection was intraarticular. Efficiency was assessed according to arthrography procedural time. Operator differences were assessed with comparison of accuracy and procedure times between the operators. Mann-Whitney U test and Fisher exact test were used to assess group differences. Results: Forty-five arthrography procedures (23 shoulders, 22 hips) were performed. Three joints had prostheses and were excluded. Operator A performed 12 shoulder and 12 hip injections. Operator B performed 11 shoulder and 10 hip injections. Needle adjustment rate was 13% (six of 45; one for operator A and five for operator B). Target error was 3.1 mm ± 1.2 (standard deviation) (operator A, 2.9 mm ± 1.4; operator B, 3.5 mm ± 0.9). Intraarticular injection rate was 100% (45 of 45). The average arthrography time was 14 minutes (range, 6–27 minutes; 12 minutes [range, 6–25 minutes] for operator A and 16 minutes [range, 6–27 min] for operator B). Operator differences were not significant with regard to needle adjustment rate (P = .08), target error (P = .07), intraarticular injection rate (P > .99), and arthrography time (P = .22). Conclusion: Image overlay technology provides accurate and efficient MR guidance for successful shoulder and hip arthrography in human cadavers. © RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12112640/-/DC1 PMID:22843764

  20. Preliminary design for a reverse Brayton cycle cryogenic cooler

    NASA Technical Reports Server (NTRS)

    Swift, Walter L.

    1993-01-01

    A long life, single stage, reverse Brayton cycle cryogenic cooler is being developed for applications in space. The system is designed to provide 5 W of cooling at a temperature of 65 Kelvin with a total cycle input power of less than 200 watts. Key features of the approach include high speed, miniature turbomachines; an all metal, high performance, compact heat exchanger; and a simple, high frequency, three phase motor drive. In Phase 1, a preliminary design of the system was performed. Analyses and trade studies were used to establish the thermodynamic performance of the system and the performance specifications for individual components. Key mechanical features for components were defined and assembly layouts for the components and the system were prepared. Critical materials and processes were identified. Component and brassboard system level tests were conducted at cryogenic temperatures. The system met the cooling requirement of 5 W at 65 K. The system was also operated over a range of cooling loads from 0.5 W at 37 K to 10 W at 65 K. Input power to the system was higher than target values. The heat exchanger and inverter met or exceeded their respective performance targets. The compresssor/motor assembly was marginally below its performance target. The turboexpander met its aerodynamic efficiency target, but overall performance was below target because of excessive heat leak. The heat leak will be reduced to an acceptable value in the engineering model. The results of Phase 1 indicate that the 200 watt input power requirement can be met with state-of-the-art technology in a system which has very flexible integration requirements and negligible vibration levels.

  1. Preliminary design for a reverse Brayton cycle cryogenic cooler

    NASA Astrophysics Data System (ADS)

    Swift, Walter L.

    1993-12-01

    A long life, single stage, reverse Brayton cycle cryogenic cooler is being developed for applications in space. The system is designed to provide 5 W of cooling at a temperature of 65 Kelvin with a total cycle input power of less than 200 watts. Key features of the approach include high speed, miniature turbomachines; an all metal, high performance, compact heat exchanger; and a simple, high frequency, three phase motor drive. In Phase 1, a preliminary design of the system was performed. Analyses and trade studies were used to establish the thermodynamic performance of the system and the performance specifications for individual components. Key mechanical features for components were defined and assembly layouts for the components and the system were prepared. Critical materials and processes were identified. Component and brassboard system level tests were conducted at cryogenic temperatures. The system met the cooling requirement of 5 W at 65 K. The system was also operated over a range of cooling loads from 0.5 W at 37 K to 10 W at 65 K. Input power to the system was higher than target values. The heat exchanger and inverter met or exceeded their respective performance targets. The compresssor/motor assembly was marginally below its performance target. The turboexpander met its aerodynamic efficiency target, but overall performance was below target because of excessive heat leak. The heat leak will be reduced to an acceptable value in the engineering model. The results of Phase 1 indicate that the 200 watt input power requirement can be met with state-of-the-art technology in a system which has very flexible integration requirements and negligible vibration levels.

  2. Design tool for estimating chemical hydrogen storage system characteristics for light-duty fuel cell vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Sprik, Samuel J.; Tamburello, David A.

    The U.S. Department of Energy (DOE) has developed a vehicle framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to DOE’s Technical Targets using four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework model for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be easily estimated. To address this challenge, a design tool has been developed that allows researchers to directlymore » enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates the systems parameters required to run the storage system model. Additionally, this design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the framework model and compare it to the DOE Technical Targets. These models will be explained and exercised with existing hydrogen storage materials.« less

  3. Retro Rocket Motor Self-Penetrating Scheme for Heat Shield Exhaust Ports

    NASA Technical Reports Server (NTRS)

    Marrese-Reading, Colleen; St.Vaughn, Josh; Zell, Peter; Hamm, Ken; Corliss, Jim; Gayle, Steve; Pain, Rob; Rooney, Dan; Ramos, Amadi; Lewis, Doug; hide

    2009-01-01

    A preliminary scheme was developed for base-mounted solid-propellant retro rocket motors to self-penetrate the Orion Crew Module heat shield for configurations with the heat shield retained during landings on Earth. In this system the motors propel impactors into structural push plates, which in turn push through the heat shield ablator material. The push plates are sized such that the remaining port in the ablator material is large enough to provide adequate flow area for the motor exhaust plume. The push plate thickness is sized to assure structural integrity behind the ablative thermal protection material. The concept feasibility was demonstrated and the performance was characterized using a gas gun to launch representative impactors into heat shield targets with push plates. The tests were conducted using targets equipped with Fiberform(R) and PICA as the heat shield ablator material layer. The PICA penetration event times were estimated to be under 30 ms from the start of motor ignition. The mass of the system (not including motors) was estimated to be less than 2.3 kg (5 lbs) per motor. The configuration and demonstrations are discussed.

  4. TUNABLE IRRADIATION TESTBED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootan, David W.; Casella, Andrew M.; Asner, David M.

    PNNL has developed and continues to develop innovative methods for characterizing irradiated materials from nuclear reactors and particle accelerators for various clients and collaborators around the world. The continued development of these methods, in addition to the ability to perform unique scientific investigations of the effects of radiation on materials could be greatly enhanced with easy access to irradiation facilities. A Tunable Irradiation Testbed with customized targets (a 30 MeV, 1mA cyclotron or similar coupled to a unique target system) is shown to provide a much more flexible and cost-effective source of irradiating particles than a test reactor or isotopicmore » source. The configuration investigated was a single shielded building with multiple beam lines from a small, flexible, high flux irradiation source. Potential applications investigated were the characterization of radiation damage to materials applicable to advanced reactors, fusion reactor, legacy waste, (via neutron spectra tailored to HTGR, molten salt, LWR, LMR, fusion environments); 252Cf replacement; characterization of radiation damage to materials of interest to High Energy Physics to enable the neutrino program; and research into production of short lived isotopes for potential medical and other applications.« less

  5. Bacteriological analysis of indoor and outdoor water parks in Wisconsin.

    PubMed

    Davis, Tracynda L; Standridge, Jon H; Degnan, Alan J

    2009-09-01

    Water parks are a rapidly growing element of the United States tourist industry. To reduce incidence of abrasion and impact injuries in such parks, designers are searching for padding materials that can withstand the harsh oxidative environments of chlorinated water. Although padded features help reduce physical injuries, they may also compromise the microbiological safety of water attractions. This study describes bacteriological testing performed on 31 different pad materials, play features and pools from 10 Wisconsin water parks. Materials and surrounding pool waters were sampled and tested quantitatively for total coliforms, Escherichia coli, E. coli 0157:H7, enterococci, staphylococci, heterotrophic bacteria, and Pseudomonas aeruginosa, using standard methods. Each location was sampled during three visits, and results were averaged. Pool waters were within acceptable levels of target organisms and disinfectant residuals, but target organisms were found on water features, even those submerged in chlorinated water. Bacteria were detected more frequently in pools using pad materials compared with pools without. These findings provide data that will help the public health community understand the relations between designs, materials and maintenance of water features. Additionally, the information will help state regulators and owner/operators develop guidelines to improve public health and safety at water parks.

  6. Computational predictions of energy materials using density functional theory

    NASA Astrophysics Data System (ADS)

    Jain, Anubhav; Shin, Yongwoo; Persson, Kristin A.

    2016-01-01

    In the search for new functional materials, quantum mechanics is an exciting starting point. The fundamental laws that govern the behaviour of electrons have the possibility, at the other end of the scale, to predict the performance of a material for a targeted application. In some cases, this is achievable using density functional theory (DFT). In this Review, we highlight DFT studies predicting energy-related materials that were subsequently confirmed experimentally. The attributes and limitations of DFT for the computational design of materials for lithium-ion batteries, hydrogen production and storage materials, superconductors, photovoltaics and thermoelectric materials are discussed. In the future, we expect that the accuracy of DFT-based methods will continue to improve and that growth in computing power will enable millions of materials to be virtually screened for specific applications. Thus, these examples represent a first glimpse of what may become a routine and integral step in materials discovery.

  7. A simple and rapid technique for radiochemical separation of iodine radionuclides from irradiated tellurium using an activated charcoal column.

    PubMed

    Chattopadhyay, Sankha; Saha Das, Sujata

    2009-10-01

    A simple and inexpensive method for the separation of medically useful no-carrier-added (nca) iodine radionuclides from bulk amounts of irradiated tellurium dioxide (TeO(2)) target was developed. The beta(-) emitting (131)I radionuclide, produced by the decay of (131)Te through the (nat)Te(n, gamma)(131)Te nuclear reaction, was used for standardization of the radiochemical separation procedure. The radiochemical separation was performed by precipitation followed by column (activated charcoal) chromatography. Quantitative post-irradiation recovery of the TeO(2) target material (98-99%), in a form suitable for reuse in future irradiations, was achieved. The overall radiochemical yield for the complete separation of (131)I was 75-85% (n=8). The separated nca (131)I was of high, approximately 99%, radionuclidic and radiochemical purities and did not contain detectable amounts of the target material. This method can be adopted for the radiochemical separation of other different iodine radionuclides produced from tellurium matrices through cyclotron as well as reactor irradiation.

  8. Feature Transformation Detection Method with Best Spectral Band Selection Process for Hyper-spectral Imaging

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; McGurr, Mike; Brickhouse, Mark

    2015-11-01

    We present a newly developed feature transformation (FT) detection method for hyper-spectral imagery (HSI) sensors. In essence, the FT method, by transforming the original features (spectral bands) to a different feature domain, may considerably increase the statistical separation between the target and background probability density functions, and thus may significantly improve the target detection and identification performance, as evidenced by the test results in this paper. We show that by differentiating the original spectral, one can completely separate targets from the background using a single spectral band, leading to perfect detection results. In addition, we have proposed an automated best spectral band selection process with a double-threshold scheme that can rank the available spectral bands from the best to the worst for target detection. Finally, we have also proposed an automated cross-spectrum fusion process to further improve the detection performance in lower spectral range (<1000 nm) by selecting the best spectral band pair with multivariate analysis. Promising detection performance has been achieved using a small background material signature library for concept-proving, and has then been further evaluated and verified using a real background HSI scene collected by a HYDICE sensor.

  9. Low-Outgassing Photogrammetry Targets for Use in Outer Space

    NASA Technical Reports Server (NTRS)

    Gross, Jason N.; Sampler, Henry; Reed, Benjamin B.

    2011-01-01

    A short document discusses an investigation of materials for photogrammetry targets for highly sensitive optical scientific instruments to be operated in outer space and in an outer-space-environment- simulating thermal vacuum chamber on Earth. A key consideration in the selection of photogrammetry-target materials for vacuum environments is the need to prevent contamination that could degrade the optical responses of the instruments. Therefore, in addition to the high levels and uniformity of reflectivity required of photogrammetry-target materials suitable for use in air, the materials sought must exhibit minimal outgassing. Commercially available photogrammetry targets were found to outgas excessively under the thermal and vacuum conditions of interest; this finding prompted the investigators to consider optically equivalent or superior, lower-outgassing alternative target materials. The document lists several materials found to satisfy the requirements, but does not state explicitly whether the materials can be used individually or must be combined in the proper sequence into layered target structures. The materials in question are an aluminized polyimide tape, an acrylic pressure- sensitive adhesive, a 500-A-thick layer of vapor-deposited aluminum, and spherical barium titanate glass beads having various diameters from 20 to 63 microns..

  10. Facile synthesis and electrochemical performance of the nanoscaled FePy anode

    NASA Astrophysics Data System (ADS)

    Wang, Guixin; Zhang, Ruibo; Jiang, Tianchan; Chernova, Natasha A.; Dong, Zhixin; Whittingham, M. Stanley

    2014-12-01

    Fe-P alloys with high phosphorous content have been targeted as promising anode materials because of their high theoretical capacity. However, the synthesis and cycling performance remain great challenges. Hereby FePy (3 ≤ y ≤ 4) nanoparticles are facilely synthesized through a dry mechanochemical method by reacting iron and red phosphorus powders in an inert atmosphere. The morphology and crystal structure of this material are characterized by SEM and XRD, respectively, while the electrochemical performance is evaluated by a number of different techniques. The 1st and 2nd discharge capacity of FePy reaches 1984 mAh g-1 and 1486 mAh g-1, respectively, and after 10 cycles at 0.03 mA cm-2 (20 mA g-1, 0.03C), the capacity remains 1089 mAh g-1 with a coulombic efficiency of 97%, much higher than the reported results to date. The cyclability of this material becomes fairly better at a higher current density, but the specific capacity is lower compared to that of the smaller current density. By adding fluoroethylene carbonate (FEC) to the electrolyte, the cycling performance of this material was improved. The EIS analysis has also been performed in order to better understand the capacity fade mechanism of FePy.

  11. An ab initio electronic transport database for inorganic materials.

    PubMed

    Ricci, Francesco; Chen, Wei; Aydemir, Umut; Snyder, G Jeffrey; Rignanese, Gian-Marco; Jain, Anubhav; Hautier, Geoffroy

    2017-07-04

    Electronic transport in materials is governed by a series of tensorial properties such as conductivity, Seebeck coefficient, and effective mass. These quantities are paramount to the understanding of materials in many fields from thermoelectrics to electronics and photovoltaics. Transport properties can be calculated from a material's band structure using the Boltzmann transport theory framework. We present here the largest computational database of electronic transport properties based on a large set of 48,000 materials originating from the Materials Project database. Our results were obtained through the interpolation approach developed in the BoltzTraP software, assuming a constant relaxation time. We present the workflow to generate the data, the data validation procedure, and the database structure. Our aim is to target the large community of scientists developing materials selection strategies and performing studies involving transport properties.

  12. Temperature Controller System for Gas Gun Targets

    NASA Astrophysics Data System (ADS)

    Bucholtz, S. M.; Gehr, R. J.; Rupp, T. D.; Sheffield, S. A.; Robbins, D. L.

    2006-07-01

    A temperature controller system capable of heating and cooling gas gun targets over the range -75°C to +120°C was designed and tested. The system uses cold nitrogen gas from a liquid nitrogen Dewar for cooling and compressed air for heating. Two gas flow heaters control the gas temperature for both heating and cooling. One heater controls the temperature of the target mounting plate and the other the temperature of a copper tubing coil surrounding the target. Each heater is separately adjustable, so the target material will achieve a uniform temperature throughout its volume. A magnetic gauge membrane with integrated thermocouples was developed to measure the internal temperature of the target. Using this system, multiple magnetic gauge shock experiments, including equation-of-state measurements and shock initiation of high explosives, can be performed over a range of initial temperatures. Successful heating and cooling tests were completed on Teflon samples.

  13. Technical considerations for designing low-cost, long-wave infrared objectives

    NASA Astrophysics Data System (ADS)

    Desroches, Gerard; Dalzell, Kristy; Robitaille, Blaise

    2014-06-01

    With the growth of uncooled infrared imaging in the consumer market, the balance between cost implications and performance criteria in the objective lens must be examined carefully. The increased availability of consumer-grade, long-wave infrared cameras is related to a decrease in military usage but it is also due to the decreasing costs of the cameras themselves. This has also driven up demand for low-cost, long-wave objectives that can resolve smaller pixels while maintaining high performance. Smaller pixels are traditionally associated with high cost objectives because of higher resolution requirements but, with careful consideration of all the requirements and proper selection of materials, costs can be moderated. This paper examines the cost/performance trade-off implications associated with optical and mechanical requirements of long-wave infrared objectives. Optical performance, f-number, field of view, distortion, focus range and thermal range all affect the cost of the objective. Because raw lens material cost is often the most expensive item in the construction, selection of the material as well as the shape of the lens while maintaining acceptable performance and cost targets were explored. As a result of these considerations, a low-cost, lightweight, well-performing objective was successfully designed, manufactured and tested.

  14. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2014-04-29

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  15. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2013-04-30

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  16. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D [Reno, NV; Sulchek, Todd A [Oakland, CA; Feigin, Stuart C [Reno, NV

    2012-07-10

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  17. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D.; Sulchek, Todd A.; Feigin, Stuart C.

    2010-04-06

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  18. Novel Composites for Wing and Fuselage Applications. Task 1; Novel Wing Design Concepts

    NASA Technical Reports Server (NTRS)

    Suarez, J. A.; Buttitta, C.; Flanagan, G.; DeSilva, T.; Egensteiner, W.; Bruno, J.; Mahon, J.; Rutkowski, C.; Collins, R.; Fidnarick, R.; hide

    1996-01-01

    Design trade studies were conducted to arrive at advanced wing designs that integrated new material forms with innovative structural concepts and cost-effective fabrication methods. A representative spar was selected for design, fabrication, and test to validate the predicted performance. Textile processes, such as knitting, weaving and stitching, were used to produce fiber preforms that were later fabricated into composite span through epoxy Resin Transfer Molding (RTM), Resin Film Infusion (RFI), and consolidation of commingled thermoplastic and graphite tows. The target design ultimate strain level for these innovative structural design concepts was 6000 mu in. per in. The spars were subjected to four-point beam bending to validate their structural performance. The various material form /processing combination Y-spars were rated for their structural efficiency and acquisition cost. The acquisition cost elements were material, tooling, and labor.

  19. Simulation of hydrogen adsorption systems adopting the flow through cooling concept

    DOE PAGES

    Corgnale, Claudio; Hardy, Bruce; Chahine, Richard; ...

    2014-10-13

    Hydrogen storage systems based on adsorbent materials have the potential of achieving the U.S. Department of Energy (DOE) targets, especially in terms of gravimetric capacity. This paper deals with analysis of adsorption storage systems adopting the flow through cooling concept. By this approach the feeding hydrogen provides the needed cold to maintain the tank at low temperatures. Two adsorption systems have been examined and modeled adopting the Dubinin-Astakhov model, to see their performance under selected operating conditions. A first case has been analyzed, modeling a storage tank filled with carbon based material (namely MaxSorb®) and comparing the numerical outcomes withmore » the available experimental results for a 2.5 L tank. Under selected operating conditions (minimum inlet hydrogen temperature of approximately 100 K and maximum pressure on the order of 8.5 MPa) and adopting the flow through cooling concept the material shows a gravimetric capacity of about 5.7 %. A second case has been modeled, examining the same tank filled with metal organic framework material (MOF5®) under approximately the same conditions. The model shows that the latter material can achieve a (material) gravimetric capacity on the order of 11%, making the system potentially able to achieve the DOE 2017 target.« less

  20. SINQ layout, operation, applications and R&D to high power

    NASA Astrophysics Data System (ADS)

    Bauer, G. S.; Dai, Y.; Wagner, W.

    2002-09-01

    Since 1997, the Paul Scherrer Institut (PSI) is operating a 1 MW class research spallation neutron source, named SINQ. SINQ is driven by a cascade of three accelerators, the final stage being a 590 MeV isochronous ring cyclotron which delivers a beam current of 1.8 mA at an rf-frequency of 51 MHz. Since for neutron production this is essentially a dc-device, SINQ is a continuous neutron source and is optimized in its design for high time average neutron flux. This makes the facility similar to a research reactor in terms of utilization, but, in terms of beam power, it is, by a large margin, the most powerful spallation neutron source currently in operation world wide. As a consequence, target load levels prevail in SINQ which are beyond the realm of existing experience, demanding a careful approach to the design and operation of a high power target. While the best neutronic performance of the source is expected for a liquid lead-bismuth eutectic target, no experience with such systems exists. For this reason a staged approach has been embarked upon, starting with a heavy water cooled rod target of Zircaloy-2 and proceeding via steel clad lead rods towards the final goal of a target optimised in both, neutronic performance and service life time. Experience currently accruing with a test target containing sample rods with different materials specimens will help to select the proper structural material and make dependable life time estimates accounting for the real operating conditions that prevail in the facility. In parallel, both theoretical and experimental work is going on within the MEGAPIE (MEGAwatt Pilot Experiment) project, a joint initiative by six European research institutions and JAERI (Japan), DOE (USA) and KAERI (Korea), to design, build, operate and explore a liquid lead-bismuth spallation target for 1MW of beam power, taking advantage of the existing spallation neutron facility SINQ.

  1. Preliminary Mark-18A (Mk-18A) Target Material Recovery Program Product Acceptance Criteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Sharon M.; Patton, Bradley D.

    2016-09-01

    The Mk-18A Target Material Recovery Program (MTMRP) was established in 2015 to preserve the unique materials, e.g. 244Pu, in 65 previously irradiated Mk-18A targets for future use. This program utilizes existing capabilities at SRS and Savannah River National Laboratory (SRNL) to process targets, recover materials from them, and to package the recovered materials for shipping to ORNL. It also utilizes existing capabilities at ORNL to receive and store the recovered materials, and to provide any additional processing of the recovered materials or residuals required to prepare them for future beneficial use. The MTMRP is presently preparing for the processing ofmore » these valuable targets which is expected to begin in ~2019. As part of the preparations for operations, this report documents the preliminary acceptance criteria for the plutonium and heavy curium materials to be recovered from the Mk-18A targets at SRNL for transport and storage at ORNL. These acceptance criteria were developed based on preliminary concepts developed for processing, transporting, and storing the recovered Mk-18A materials. They will need to be refined as these concepts are developed in more detail.« less

  2. Board of Regents of the Nevada System of Higher Education, on behalf of the University of Nevada, Reno

    DOEpatents

    Adams, Jesse D.; Sulchek, Todd A.; Feigin, Stuart C.

    2017-07-11

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  3. Motivation and Performance in a Game-Based Intelligent Tutoring System

    ERIC Educational Resources Information Center

    Jackson, G. Tanner; McNamara, Danielle S.

    2013-01-01

    One strength of educational games stems from their potential to increase students' motivation and engagement during educational tasks. However, game features may also detract from principle learning goals and interfere with students' ability to master the target material. To assess the potential impact of game-based learning environments, in this…

  4. A Computational Study of the Energy Dissipation Through an Acrylic Target Impacted by Various Size FSP

    DTIC Science & Technology

    2009-06-01

    data, and then returns an array that describes the line. This function, when compared to the LOGEST statistical function of the Microsoft Excel, which...threats continues to grow, the ability to predict materials performances using advanced modeling tools increases. The current paper has demonstrated

  5. Requirements for the Development of Bacillus Anthracis Spore Reference Materials Used to Test Detection Systems

    PubMed Central

    Almeida, Jamie L.; Wang, Lili; Morrow, Jayne B.; Cole, Kenneth D.

    2006-01-01

    Bacillus anthracis spores have been used as biological weapons and the possibility of their further use requires surveillance systems that can accurately and reliably detect their presence in the environment. These systems must collect samples from a variety of matrices, process the samples, and detect the spores. The processing of the sample may include removal of inhibitors, concentration of the target, and extraction of the target in a form suitable for detection. Suitable reference materials will allow the testing of each of these steps to determine the sensitivity and specificity of the detection systems. The development of uniform and well-characterized reference materials will allow the comparison of different devices and technologies as well as assure the continued performance of detection systems. This paper discusses the special requirements of reference materials for Bacillus anthracis spores that could be used for testing detection systems. The detection of Bacillus anthracis spores is based on recognition of specific characteristics (markers) on either the spore surface or in the nucleic acids (DNA). We have reviewed the specific markers and their relevance to characterization of reference materials. We have also included the approach for the characterization of candidate reference materials that we are developing at the NIST laboratories. Additional applications of spore reference materials would include testing sporicidal treatments, techniques for sampling the environment, and remediation of spore-contaminated environments. PMID:27274929

  6. Polarization and Color Filtering Applied to Enhance Photogrammetric Measurements of Reflective Surfaces

    NASA Technical Reports Server (NTRS)

    Wells, Jeffrey M.; Jones, Thomas W.; Danehy, Paul M.

    2005-01-01

    Techniques for enhancing photogrammetric measurement of reflective surfaces by reducing noise were developed utilizing principles of light polarization. Signal selectivity with polarized light was also compared to signal selectivity using chromatic filters. Combining principles of linear cross polarization and color selectivity enhanced signal-to-noise ratios by as much as 800 fold. More typical improvements with combining polarization and color selectivity were about 100 fold. We review polarization-based techniques and present experimental results comparing the performance of traditional retroreflective targeting materials, cornercube targets returning depolarized light, and color selectivity.

  7. Laser ion source for isobaric heavy ion collider experiment.

    PubMed

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is (96)Ru + (96)Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  8. Artificial testing targets with controllable blur for adaptive optics microscopes

    NASA Astrophysics Data System (ADS)

    Hattori, Masayuki; Tamada, Yosuke; Murata, Takashi; Oya, Shin; Hasebe, Mitsuyasu; Hayano, Yutaka; Kamei, Yasuhiro

    2017-08-01

    This letter proposes a method of configuring a testing target to evaluate the performance of adaptive optics microscopes. In this method, a testing slide with fluorescent beads is used to simultaneously determine the point spread function and the field of view. The point spread function is reproduced to simulate actual biological samples by etching a microstructure on the cover glass. The fabrication process is simplified to facilitate an onsite preparation. The artificial tissue consists of solid materials and silicone oil and is stable for use in repetitive experiments.

  9. Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices

    NASA Astrophysics Data System (ADS)

    Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie

    2016-09-01

    Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes’ (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body.

  10. Performance of Waterless Concrete

    NASA Technical Reports Server (NTRS)

    Toutanji, Houssam; Evans, Steve; Grugel, Richard N.

    2010-01-01

    The development of permanent lunar bases is constrained by performance of construction materials and availability of in-situ resources. Concrete seems a suitable construction material for the lunar environment, but water, one of its major components, is an extremely scarce resource on the Moon. This study explores an alternative to hydraulic concrete by replacing the binding mix of concrete (cement and water) with sulfur. Sulfur is a volatile element on the lunar surface that can be extracted from lunar soils by heating. Sulfur concrete mixes were prepared to investigate the effect of extreme environmental conditions on the properties of sulfur concrete. A hypervelocity impact test was conducted, having as its target a 5-cm cubic sample of sulfur concrete. This item consisted of JSC-1 lunar regolith simulant (65%) and sulfur (35%). The sample was placed in the MSFC Impact Test Facility s Micro Light Gas Gun target chamber, and was struck by a 1-mm diameter (1.4e-03 g) aluminum projectile at 5.85 km/s. In addition, HZTERN code, provided by NASA was used to study the effectiveness of sulfur concrete when subjected to space radiation.

  11. Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices

    PubMed Central

    Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie

    2016-01-01

    Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes’ (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body. PMID:27670953

  12. Efficiency of ablative loading of material upon the fast-electron transfer of absorbed laser energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gus'kov, Sergei Yu; Kasperczuk, A; Pisarczyk, T

    2006-05-31

    We present the results of experiments on the short-term irradiation of a solid material by a laser beam. The data testify to a rise in efficiency of the energy transfer from the laser pulse to a shock wave due to the fast-electron energy transfer. The experiments were performed with massive aluminium targets on the PALS iodine laser, whose pulse duration (0.4 ns) was much shorter than the time of shock decay and crater formation in the target (50-200 ns). The irradiation experiments were carried out using the fundamental laser harmonic (1.315 {mu}m) with an energy of 360 J. The greatermore » part of the experiments were performed for the radiation intensity exceeding 10{sup 15} W cm{sup -2}, which corresponded to the efficient generation of fast electrons under the conditions where the relatively long-wavelength iodine-laser radiation was employed. The irradiation intensity was varied by varying the laser beam radius for a specified pulse energy. (interaction of laser radiation with matter. laser plasma)« less

  13. Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices.

    PubMed

    Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie

    2016-09-27

    Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes' (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body.

  14. Targeting 100! Advanced Energy Efficient Building Technologies for High Performance Hospitals: Executive Summary.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burpee, Heather; Loveland, Joel; Helmers, Aaron

    2015-09-02

    This research, Targeting 100!, provides a conceptual framework and decision-making structure at a schematic design level of precision for hospital owners, architects and engineers to radically reduce energy use in hospitals. Following the goals of Architecture 2030 and The 2030 Challenge, it offers access to design strategies and the cost implications of those strategies for new hospitals to utilize 60% less energy. The name, Targeting 100!, comes from the 2030 Challenge energy reduction goal for hospitals; a 60% energy use reduction from typical acute care hospital targets approximately 100 KBtu/SF Year, thus the name “Targeting 100!”. Targeting 100! was developedmore » through funding partnerships with the US Department of Energy and the Northwest Energy Efficiency’s BetterBricks Initiative. The technical team was led by the University of Washington Integrated Design Lab supported by deep collaboration with Solarc Architecture and Engineering, TBD Cost Consultants, and NBBJ Architecture. Through extensive research and design development, Targeting 100! provides a framework for developing high performance healthcare projects today and into the future. An online tool houses a Targeting 100! knowlegebase and roadmap. It can be accessed at: www.idlseattle.com/t100. The webtool is structured from high-level overview materials to detailed library with modeling inputs and outputs, providing a comprehensive report of the background, data, and outcomes from the project.« less

  15. An enhanced MMW and SMMW/THz imaging system performance prediction and analysis tool for concealed weapon detection and pilotage obstacle avoidance

    NASA Astrophysics Data System (ADS)

    Murrill, Steven R.; Jacobs, Eddie L.; Franck, Charmaine C.; Petkie, Douglas T.; De Lucia, Frank C.

    2015-10-01

    The U.S. Army Research Laboratory (ARL) has continued to develop and enhance a millimeter-wave (MMW) and submillimeter- wave (SMMW)/terahertz (THz)-band imaging system performance prediction and analysis tool for both the detection and identification of concealed weaponry, and for pilotage obstacle avoidance. The details of the MATLAB-based model which accounts for the effects of all critical sensor and display components, for the effects of atmospheric attenuation, concealment material attenuation, and active illumination, were reported on at the 2005 SPIE Europe Security and Defence Symposium (Brugge). An advanced version of the base model that accounts for both the dramatic impact that target and background orientation can have on target observability as related to specular and Lambertian reflections captured by an active-illumination-based imaging system, and for the impact of target and background thermal emission, was reported on at the 2007 SPIE Defense and Security Symposium (Orlando). Further development of this tool that includes a MODTRAN-based atmospheric attenuation calculator and advanced system architecture configuration inputs that allow for straightforward performance analysis of active or passive systems based on scanning (single- or line-array detector element(s)) or staring (focal-plane-array detector elements) imaging architectures was reported on at the 2011 SPIE Europe Security and Defence Symposium (Prague). This paper provides a comprehensive review of a newly enhanced MMW and SMMW/THz imaging system analysis and design tool that now includes an improved noise sub-model for more accurate and reliable performance predictions, the capability to account for postcapture image contrast enhancement, and the capability to account for concealment material backscatter with active-illumination- based systems. Present plans for additional expansion of the model's predictive capabilities are also outlined.

  16. Low-Cost Proton Conducting Membranes for PEM Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Hongxing

    Proton exchange membrane (PEM) is the key component in PEM fuel cells that critically determines the system performance and its economic viability. Presently, the state-of-the-art PEMs, such as Nafion membranes, are based on perfluorosulfonic acid (PFSA) ionomers. But these ionomer materials are expensive, particularly at the low volumes that will be needed for initial commercialization. Besides, they are not suitable for fuel cells operated beyond 100°C, because of the limitations connected to the humidification requirement of such membrane materials, limiting the maximum operating temperature to about 90°C. Fuel cells for transportation applications are required to operate in a wide temperaturemore » range from –20°C to 120°C. Low-cost PEMs with capabilities in a range of temperature and humidity conditions are urgently needed to meet the DOE fuel cell targets for transportation applications. Amsen Technologies LLC chooses to address the DOE call with a novel reinforced PEM approach based on new, non-PFSA proton conducting ionomers developed from our previous DOE SBIR projects. Along with this approach is the use of very cheap, ultra thin and highly porous microporous polymer meshes as the support for the membrane. The new PEM is expected to have significant cost advantages over traditional PEMs. The microporous polyolefin support costs $2-3/m 2; and the new ionomers that Amsen has developed are estimated at ~$250/kg at the higher end including material costs and labor costs (which may go down in the future as the processing is optimized and production scaled up). These have led to an estimate of total material cost for the membrane at $11 to $12/m 2, offering high potential of meeting the DOE cost targets (≤$20/m 2) after adding processing cost and profit margin. The Phase I results have successfully demonstrated that it is very promising to develop the intended low-cost, high-performance PEM membrane. Suitable material system has been identified, and suitable process for forming the new PEM has been developed. Uniform membranes have been reproducibly fabricated. These membranes have been extensively characterized and evaluated in terms of microstructural features, and relevant physical and chemical properties including proton conductivity and area specific proton resistance in a range of temperature and humidity conditions, resistance to electronic conduction, water uptake/swelling, dimensional stability, chemical stability, and mechanical durability. Membrane electrode assemblies (MEA) with the new membrane have been successfully prepared and tested for fuel cell operation. The new PEM showed higher proton conductivity than Nafion membranes for all measurement conditions used in Phase I. With high proton conductivity and ultra-thin thickness (~20 /m), the new membrane showed high promise to met DOE targets for the low ASR. The ASR targets have been met for relatively high RH but not yet for RH ≤ 70%. Further optimization in ionomer chemistry and membrane processing is needed in order to meet the ASR targets for a wide range of temperature and humidity conditions. The new membrane showed fairly high electronic resistance at 1373 ohm cm 2, meeting the DOE target for electronic resistance (> 1000 ohm cm 2). The new membrane also has demonstrated promisingly high chemical stability, high mechanical durability, and high dimensional stability. Fuel cell operation using MEAs with the new membrane have shown the same level of fuel cell performance as MEAs with Nafion membranes. Overall, the new membrane has been demonstrated to have high potential of meeting all DOE performance targets for fuel cell applications as well as the cost targets. The manufacturers of PEM fuel cells, PEM electrolyzers, redox flow batteries, and MEA are the end-users and customers of PEMs. For commercialization purpose and potential partnering relations, we have been talking with many such manufacturers. They have responded with extremely high interest in the new PEM being developed in the present technology. Accomplishments so far have laid down a strong base for Amsen to further the development efforts on this new PEM and to pursue commercialization. The near-term future work will be mainly focused on further development and systematical optimization of the material system, processing, and performance of the new membrane; systematical evaluation of the new membrane in terms of all relevant properties including long-term mechanical, chemical, and combined chemical/mechanical durabilities using DOE specified testing protocols; development of production scale-up scheme; and preparation for commercialization.« less

  17. Nuclear forensic analysis of a non-traditional actinide sample

    DOE PAGES

    Doyle, Jamie L.; Kuhn, Kevin John; Byerly, Benjamin; ...

    2016-06-15

    Nuclear forensic publications, performance tests, and research and development efforts typically target the bulk global inventory of intentionally safeguarded materials, such as plutonium (Pu) and uranium (U). Other materials, such as neptunium (Np), pose a nuclear security risk as well. Trafficking leading to recovery of an interdicted Np sample is a realistic concern especially for materials originating in countries that reprocesses fuel. Using complementary forensic methods, potential signatures for an unknown Np oxide sample were investigated. Measurement results were assessed against published Np processes to present hypotheses as to the original intended use, method of production, and origin for thismore » Np oxide.« less

  18. Nuclear forensic analysis of a non-traditional actinide sample.

    PubMed

    Doyle, Jamie L; Kuhn, Kevin; Byerly, Benjamin; Colletti, Lisa; Fulwyler, James; Garduno, Katherine; Keller, Russell; Lujan, Elmer; Martinez, Alexander; Myers, Steve; Porterfield, Donivan; Spencer, Khalil; Stanley, Floyd; Townsend, Lisa; Thomas, Mariam; Walker, Laurie; Xu, Ning; Tandon, Lav

    2016-10-01

    Nuclear forensic publications, performance tests, and research and development efforts typically target the bulk global inventory of intentionally safeguarded materials, such as plutonium (Pu) and uranium (U). Other materials, such as neptunium (Np), pose a nuclear security risk as well. Trafficking leading to recovery of an interdicted Np sample is a realistic concern especially for materials originating in countries that reprocesses fuel. Using complementary forensic methods, potential signatures for an unknown Np oxide sample were investigated. Measurement results were assessed against published Np processes to present hypotheses as to the original intended use, method of production, and origin for this Np oxide. Published by Elsevier B.V.

  19. Target Fabrication Technology and New Functional Materials for Laser Fusion and Laser-Plasma Experiment

    NASA Astrophysics Data System (ADS)

    Nagai, Keiji; Norimatsu, Takayoshi; Izawa, Yasukazu

    Target fabrication technique is a key issue of laser fusion. We present a comprehensive, up-to-data compilation of laser fusion target fabrication and relating new materials. To achieve highly efficient laser implosion, organic and inorganic highly spherical millimeter-sized capsules and cryogenic hydrogen layers inside should be uniform in diameter and thickness within sub-micrometer ˜ nanometer error. Porous structured targets and molecular cluster targets are required for laser-plasma experiments and applications. Various technologies and new materials concerning above purposes are summarized including fast-ignition targets, equation-of-state measurement targets, high energy ion generation targets, etc.

  20. Simulation of the Focal Spot of the Accelerator Bremsstrahlung Radiation

    NASA Astrophysics Data System (ADS)

    Sorokin, V.; Bespalov, V.

    2016-06-01

    Testing of thick-walled objects by bremsstrahlung radiation (BR) is primarily performed via high-energy quanta. The testing parameters are specified by the focal spot size of the high-energy bremsstrahlung radiation. In determining the focal spot size, the high- energy BR portion cannot be experimentally separated from the low-energy BR to use high- energy quanta only. The patterns of BR focal spot formation have been investigated via statistical modeling of the radiation transfer in the target material. The distributions of BR quanta emitted by the target for different energies and emission angles under normal distribution of the accelerated electrons bombarding the target have been obtained, and the ratio of the distribution parameters has been determined.

  1. SMIS PBX-9502 Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marr-Lyon, Mark; Sandoval, Thomas D.; Herrera, Dennis H.

    2014-04-11

    Two impact experiments in the Specific Munitions Impact Scenario (SMIS) configuration [1{3] were performed on September 3 and 4, 2013 at Lower Slobbovia ring site. Targets of the high explosive PBX-9502 were impacted with 1/2-inch diameter low-carbon steel spheres red from a 30-mm powder gun at velocities of approximately 2.5 km/s. In one experiment the target was cased in a steel cylinder with steel end plates, and in the second the target was cased in a plastic cylinder with a thin steel front cover plate and a thick steel rear plate. In neither experiment did the PBX-9502 detonate, though somemore » material reacted in the impact« less

  2. Biomimetic and bioinspired nanoparticles for targeted drug delivery.

    PubMed

    Gagliardi, Mariacristina

    2017-03-01

    In drug targeting, the urgent need for more effective and less iatrogenic therapies is pushing toward a complete revision of carrier setup. After the era of 'articles used as homing systems', novel prototypes are now emerging. Newly conceived carriers are endowed with better biocompatibility, biodistribution and targeting properties. The biomimetic approach bestows such improved functional properties. Exploiting biological molecules, organisms and cells, or taking inspiration from them, drug vector performances are now rapidly progressing toward the perfect carrier. Following this direction, researchers have refined carrier properties, achieving significant results. The present review summarizes recent advances in biomimetic and bioinspired drug vectors, derived from biologicals or obtained by processing synthetic materials with a biomimetic approach.

  3. Evolutionary grinding model for nanometric control of surface roughness for aspheric optical surfaces.

    PubMed

    Han, Jeong-Yeol; Kim, Sug-Whan; Han, Inwoo; Kim, Geon-Hee

    2008-03-17

    A new evolutionary grinding process model has been developed for nanometric control of material removal from an aspheric surface of Zerodur substrate. The model incorporates novel control features such as i) a growing database; ii) an evolving, multi-variable regression equation; and iii) an adaptive correction factor for target surface roughness (Ra) for the next machine run. This process model demonstrated a unique evolutionary controllability of machining performance resulting in the final grinding accuracy (i.e. averaged difference between target and measured surface roughness) of -0.2+/-2.3(sigma) nm Ra over seven trial machine runs for the target surface roughness ranging from 115 nm to 64 nm Ra.

  4. CAPABILITY TO RECOVER PLUTONIUM-238 IN H-CANYON/HB-LINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuller, Kenneth S. Jr.; Smith, Robert H. Jr.; Goergen, Charles R.

    2013-01-09

    Plutonium-238 is used in Radioisotope Thermoelectric Generators (RTGs) to generate electrical power and in Radioisotope Heater Units (RHUs) to produce heat for electronics and environmental control for deep space missions. The domestic supply of Pu-238 consists of scrap material from previous mission production or material purchased from Russia. Currently, the United States has no significant production scale operational capability to produce and separate new Pu-238 from irradiated neptunium-237 targets. The Department of Energy - Nuclear Energy is currently evaluating and developing plans to reconstitute the United States capability to produce Pu-238 from irradiated Np-237 targets. The Savannah River Site hadmore » previously produced and/or processed all the Pu-238 utilized in Radioisotope Thermoelectric Generators (RTGs) for deep space missions up to and including the majority of the plutonium for the Cassini Mission. The previous full production cycle capabilities included: Np-237 target fabrication, target irradiation, target dissolution and Np-237 and Pu-238 separation and purification, conversion of Np-237 and Pu-238 to oxide, scrap recovery, and Pu-238 encapsulation. The capability and equipment still exist and could be revitalized or put back into service to recover and purify Pu-238/Np-237 or broken General Purpose Heat Source (GPHS) pellets utilizing existing process equipment in HB-Line Scrap Recovery, and H-anyon Frame Waste Recovery processes. The conversion of Np-237 and Pu-238 to oxide can be performed in the existing HB-Line Phase-2 and Phase-3 Processes. Dissolution of irradiated Np-237 target material, and separation and purification of Np-237 and Pu-238 product streams would be possible at production rates of ~ 2 kg/month of Pu-238 if the existing H-Canyon Frames Process spare equipment were re-installed. Previously, the primary H-Canyon Frames equipment was removed to be replaced: however, the replacement project was stopped. The spare equipment is stored and still available for installation. Out of specification Pu-238 scrap material can be purified and recovered by utilizing the HB-Line Phase-1 Scrap Recovery Line and the Phase-3 Pu-238 Oxide Conversion Line along with H-Canyon Frame Waste Recovery process. In addition, it also covers and describes utilizing the Phase-2 Np-237 Oxide Conversion Line, in conjunction with the H-Canyon Frames Process to restore the H-Canyon capability to process and recover Np-237 and Pu-238 from irradiated Np-237 targets and address potential synergies with other programs like recovery of Pu-244 and heavy isotopes of curium from other target material.« less

  5. Study to investigate the trace levels of contamination on surfaces when narcotic contraband is concealed in a vehicle

    NASA Astrophysics Data System (ADS)

    Wilson, Rod; Brittain, Alan H.

    1997-01-01

    When a vehicle is used to transport narcotic contraband material trace levels of that material can be found on surfaces of the vehicle, people associated with the vehicle and surface they contact. The detection of these trace levels can help to target vehicles associated with the smuggling of the contraband. A study to determine the typical levels of narcotic material that can be detected from these surfaces has been performed by personnel from Graseby, using a variety of drug materials. The size and packaging of the drug materials has been prepared to try to reflect that typically found in smuggling operations. These tests show that for all hard drugs easily detectable traces of drug material can be found on the vehicle, the proxy and secondary surfaces handled by the proxy. For detection of cannabis, the condition of the original material had a great bearing ont he reliability of detection.

  6. Method for materials deposition by ablation transfer processing

    DOEpatents

    Weiner, Kurt H.

    1996-01-01

    A method in which a thin layer of semiconducting, insulating, or metallic material is transferred by ablation from a source substrate, coated uniformly with a thin layer of said material, to a target substrate, where said material is desired, with a pulsed, high intensity, patternable beam of energy. The use of a patternable beam allows area-selective ablation from the source substrate resulting in additive deposition of the material onto the target substrate which may require a very low percentage of the area to be covered. Since material is placed only where it is required, material waste can be minimized by reusing the source substrate for depositions on multiple target substrates. Due to the use of a pulsed, high intensity energy source the target substrate remains at low temperature during the process, and thus low-temperature, low cost transparent glass or plastic can be used as the target substrate. The method can be carried out atmospheric pressures and at room temperatures, thus eliminating vacuum systems normally required in materials deposition processes. This invention has particular application in the flat panel display industry, as well as minimizing materials waste and associated costs.

  7. Development of a concentrating solar power system using fluidized-bed technology for thermal energy conversion and solid particles for thermal energy storage

    DOE PAGES

    Ma, Z.; Mehos, M.; Glatzmaier, G.; ...

    2015-05-01

    Concentrating solar power (CSP) is an effective way to convert solar energy into electricity with an economic energy-storage capability for grid-scale, dispatchable renewable power generation. However, CSP plants need to reduce costs to be competitive with other power generation methods. Two ways to reduce CSP cost are to increase solar-to-electric efficiency by supporting a high-efficiency power conversion system, and to use low-cost materials in the system. The current nitrate-based molten-salt systems have limited potential for cost reduction and improved power-conversion efficiency with high operating temperatures. Even with significant improvements in operating performance, these systems face challenges in satisfying the costmore » and performance targets. This paper introduces a novel CSP system with high-temperature capability that can be integrated into a high-efficiency CSP plant and that meets the low-cost, high-performance CSP targets. Unlike a conventional salt-based CSP plant, this design uses gas/solid, two-phase flow as the heat-transfer fluid (HTF); separated solid particles as storage media; and stable, inexpensive materials for the high-temperature receiver and energy storage containment. We highlight the economic and performance benefits of this innovative CSP system design, which has thermal energy storage capability for base-load power generation.« less

  8. Isolation of 163Ho from dysprosium target material by HPLC for neutrino mass measurements

    DOE PAGES

    Mocko, Veronika; Taylor, Wayne  A.; Nortier, Francois M.; ...

    2015-04-29

    The rare earth isotope 163Ho is of interest for neutrino mass measurements. This report describes the isolation of 163Ho from a proton-irradiated dysprosium target and its purification. A Dy metal target was irradiated with 16 MeV protons for 10 h. After target dissolution, 163Ho was separated from the bulk Dy via cation-exchange high performance liquid chromatography using 70 mmol dm –3 α-hydroxyisobutyric acid as the mobile phase. Subsequent purification of the collected Ho fraction was performed to remove the α-hydroxyisobutyrate chelating agent and to concentrate the Ho in a low ionic strength aqueous matrix. The final solution was characterized bymore » MC-ICP-MS to determine the 163Ho/ 165Ho ratio, 163Ho and the residual Dy content. The HPLC purification process resulted in a decontamination factor 1.4E5 for Dy. As a result, the isolated Ho fraction contained 24.8 ±1.3 ng of 163Ho corresponding to holmium recovery of 72 ± 3%.« less

  9. Isolation of 163Ho from dysprosium target material by HPLC for neutrino mass measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mocko, Veronika; Taylor, Wayne  A.; Nortier, Francois M.

    The rare earth isotope 163Ho is of interest for neutrino mass measurements. This report describes the isolation of 163Ho from a proton-irradiated dysprosium target and its purification. A Dy metal target was irradiated with 16 MeV protons for 10 h. After target dissolution, 163Ho was separated from the bulk Dy via cation-exchange high performance liquid chromatography using 70 mmol dm –3 α-hydroxyisobutyric acid as the mobile phase. Subsequent purification of the collected Ho fraction was performed to remove the α-hydroxyisobutyrate chelating agent and to concentrate the Ho in a low ionic strength aqueous matrix. The final solution was characterized bymore » MC-ICP-MS to determine the 163Ho/ 165Ho ratio, 163Ho and the residual Dy content. The HPLC purification process resulted in a decontamination factor 1.4E5 for Dy. As a result, the isolated Ho fraction contained 24.8 ±1.3 ng of 163Ho corresponding to holmium recovery of 72 ± 3%.« less

  10. Morphological and Chemical Tuning of High-Energy-Density Metal Oxides for Lithium Ion Battery Electrode Applications

    DOE PAGES

    Wang, Lei; Yue, Shiyu; Zhang, Qing; ...

    2017-05-31

    We present that metal oxides represent a set of promising materials for use as electrodes within lithium ion batteries, but unfortunately, these tend to suffer from limitations associated with poor ionic and electron conductivity as well as low cycling performance. Hence, to achieve the goal of creating economical, relatively less toxic, thermally stable, and simultaneously high-energy-density electrode materials, we have put forth a number of targeted strategies, aimed at rationally improving upon electrochemical performance. Specifically, in this Perspective, we discuss the precise roles and effects of controllably varying not only (i) morphology but also (ii) chemistry as a means ofmore » advancing, ameliorating, and fundamentally tuning the development and evolution of Fe 3O 4, Li 4Ti 5O 12, TiO 2, and LiV 3O 8 as viable and ubiquitous energy storage materials.« less

  11. Sputtering erosion in ion and plasma thrusters

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1995-01-01

    An experimental set-up to measure low-energy (below 1 keV) sputtering of materials is described. The materials to be bombarded represent ion thruster components as well as insulators used in the stationary plasma thruster. The sputtering takes place in a 9 inch diameter spherical vacuum chamber. Ions of argon, krypton and xenon are used to bombard the target materials. The sputtered neutral atoms are detected by a secondary neutral mass spectrometer (SNMS). Samples of copper, nickel, aluminum, silver and molybdenum are being sputtered initially to calibrate the spectrometer. The base pressure of the chamber is approximately 2 x 10(exp -9) Torr. the primary ion beam is generated by an ion gun which is capable of delivering ion currents in the range of 20 to 500 nA. The ion beam can be focused to a size approximately 1 mm in diameter. The mass spectrometer is positioned 10 mm from the target and at 90 deg angle to the primary ion beam direction. The ion beam impinges on the target at 45 deg. For sputtering of insulators, charge neutralization is performed by flooding the sample with electrons generated from an electron gun. Preliminary sputtering results, methods of calculating the instrument response function of the spectrometer and the relative sensitivity factors of the sputtered elements will be discussed.

  12. Monte Carlo simulation to calculate the rate of 137Cs gamma rays dispersion in gallium arsenide compound

    NASA Astrophysics Data System (ADS)

    Haider, F. A.; Chee, F. P.; Abu Hassan, H.; Saafie, S.

    2017-01-01

    Radiation effects on Gallium Arsenide (GaAs) have been tested by exposing samples to Cesium-137 (137Cs) gamma rays. Gallium Arsenide is a basic photonic material for most of the space technology communication, and, therefore, lends itself for applications where this is of concern. Monte Carlo simulations of interaction between direct ionizing radiation and GaAs structure have been performed in TRIM software, being part of SRIM 2011 programming package. An adverse results shows that energy dose does not govern the displacement of atoms and is dependent on the changes of incident angles and thickness of the GaAs target element. At certain thickness of GaAs and incident angle of 137Cs ion, the displacement damage is at its highest value. From the simulation result, it is found that if the thickness of the GaAs semiconductor material is small compared to the projected range at that particular incident energy, the energy loss in the target GaAs will be small. Hence, when the depth of semiconductor material is reduced, the range of damage in the target also decreased. However, the other factors such as quantum size effect, the energy gap between the conduction and valence band must also be taken into consideration when the dimension of the device is diminished.

  13. GITR Simulation of Helium Exposed Tungsten Erosion and Redistribution in PISCES-A

    NASA Astrophysics Data System (ADS)

    Younkin, T. R.; Green, D. L.; Doerner, R. P.; Nishijima, D.; Drobny, J.; Canik, J. M.; Wirth, B. D.

    2017-10-01

    The extreme heat, charged particle, and neutron flux / fluence to plasma facing materials in magnetically confined fusion devices has motivated research to understand, predict, and mitigate the associated detrimental effects. Of relevance to the ITER divertor is the helium interaction with the tungsten divertor, the resulting erosion and migration of impurities. The linear plasma device PISCES A has performed dedicated experiments for high (4x10-22 m-2s-1) and low (4x10-21 m-2s-1) flux, 250 eV He exposed tungsten targets to assess the net and gross erosion of tungsten and volumetric transport. The temperature of the target was held between 400 and 600 degrees C. We present results of the erosion / migration / re-deposition of W during the experiment from the GITR (Global Impurity Transport) code coupled to materials response models. In particular, the modeled and experimental W I emission spectroscopy data for the 429.4 nm wavelength and net erosion through target and collector mass difference measurements are compared. Overall, the predictions are in good agreement with experiments. This material is supported by the US DOE, Office of Science, Office of Fusion Energy Sciences and Office of Advanced Scientific Computing Research through the SciDAC program on Plasma-Surface Interactions.

  14. Determining Li+-Coupled Redox Targeting Reaction Kinetics of Battery Materials with Scanning Electrochemical Microscopy.

    PubMed

    Yan, Ruiting; Ghilane, Jalal; Phuah, Kia Chai; Pham Truong, Thuan Nguyen; Adams, Stefan; Randriamahazaka, Hyacinthe; Wang, Qing

    2018-02-01

    The redox targeting reaction of Li + -storage materials with redox mediators is the key process in redox flow lithium batteries, a promising technology for next-generation large-scale energy storage. The kinetics of the Li + -coupled heterogeneous charge transfer between the energy storage material and redox mediator dictates the performance of the device, while as a new type of charge transfer process it has been rarely studied. Here, scanning electrochemical microscopy (SECM) was employed for the first time to determine the interfacial charge transfer kinetics of LiFePO 4 /FePO 4 upon delithiation and lithiation by a pair of redox shuttle molecules FcBr 2 + and Fc. The effective rate constant k eff was determined to be around 3.70-6.57 × 10 -3 cm/s for the two-way pseudo-first-order reactions, which feature a linear dependence on the composition of LiFePO 4 , validating the kinetic process of interfacial charge transfer rather than bulk solid diffusion. In addition, in conjunction with chronoamperometry measurement, the SECM study disproves the conventional "shrinking-core" model for the delithiation of LiFePO 4 and presents an intriguing way of probing the phase boundary propagations induced by interfacial redox reactions. This study demonstrates a reliable method for the kinetics of redox targeting reactions, and the results provide useful guidance for the optimization of redox targeting systems for large-scale energy storage.

  15. Sorbent Film-Coated Passive Samplers for Explosives Vapour Detection Part A: Materials Optimisation and Integration with Analytical Technologies.

    PubMed

    McEneff, Gillian L; Murphy, Bronagh; Webb, Tony; Wood, Dan; Irlam, Rachel; Mills, Jim; Green, David; Barron, Leon P

    2018-04-11

    A new thin-film passive sampler is presented as a low resource dependent and discrete continuous monitoring solution for explosives-related vapours. Using 15 mid-high vapour pressure explosives-related compounds as probes, combinations of four thermally stable substrates and six film-based sorbents were evaluated. Meta-aramid and phenylene oxide-based materials showed the best recoveries from small voids (~70%). Analysis was performed using liquid chromatography-high resolution accurate mass spectrometry which also enabled tentative identification of new targets from the acquired data. Preliminary uptake kinetics experiments revealed plateau concentrations on the device were reached between 3-5 days. Compounds used in improvised explosive devices, such as triacetone triperoxide, were detected within 1 hour and were stably retained by the sampler for up to 7 days. Sampler performance was consistent for 22 months after manufacture. Lastly, its direct integration with currently in-service explosives screening equipment including ion mobility spectrometry and thermal desorption mass spectrometry is presented. Following exposure to several open environments and targeted interferences, sampler performance was subsequently assessed and potential interferences identified. High-security building and area monitoring for concealed explosives using such cost-effective and discrete passive samplers can add extra assurance to search routines while minimising any additional burden on personnel or everyday site operation.

  16. Evaluating MC&A effectiveness to verify the presence of nuclear materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, P. G.; Morzinski, J. A.; Ostenak, Carl A.

    Traditional materials accounting is focused exclusively on the material balance area (MBA), and involves periodically closing a material balance based on accountability measurements conducted during a physical inventory. In contrast, the physical inventory for Los Alamos National Laboratory's near-real-time accounting system is established around processes and looks more like an item inventory. That is, the intent is not to measure material for accounting purposes, since materials have already been measured in the normal course of daily operations. A given unit process operates many times over the course of a material balance period. The product of a given unit process maymore » move for processing within another unit process in the same MBA or may be transferred out of the MBA. Since few materials are unmeasured the physical inventory for a near-real-time process area looks more like an item inventory. Thus, the intent of the physical inventory is to locate the materials on the books and verify information about the materials contained in the books. Closing a materials balance for such an area is a matter of summing all the individual mass balances for the batches processed by all unit processes in the MBA. Additionally, performance parameters are established to measure the program's effectiveness. Program effectiveness for verifying the presence of nuclear material is required to be equal to or greater than a prescribed performance level, process measurements must be within established precision and accuracy values, physical inventory results meet or exceed performance requirements, and inventory differences are less than a target/goal quantity. This approach exceeds DOE established accounting and physical inventory program requirements. Hence, LANL is committed to this approach and to seeking opportunities for further improvement through integrated technologies. This paper will provide a detailed description of this evaluation process.« less

  17. Planetary and Primitive Object Strength Measurements and Sampling Apparatus

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    1997-01-01

    We present experimental data and a model for the low-velocity (subsonic, 0 - 1000 m/s) penetration of brittle materials by both solid and hollow (i.e., coring) penetrators. The experiments show that penetration is proportional to momentum/frontal area of the penetrator. Because of the buildup of a cap in front of blunt penetrators, the presence or absence of a streamlined or sharp front end usually has a negligible effect for impact into targets with strength. The model accurately predicts the dependence of penetration depth on the various parameters of the target-penetrator system, as well as the qualitative condition of the target material ingested by a corer. In particular, penetration depth is approximately inversely proportional to the static bearing strength of the target. The bulk density of the target material has only a small effect on penetration, whereas friction can be significant, especially at higher impact velocities, for consolidated materials. This trend is reversed for impacts into unconsolidated materials. The present results suggest that the depth of penetration is a good measure of the strength, but not the density, of a consolidated target. Both experiments and model results show that, if passage through the mouth of a coring penetrator requires initially porous target material to be compressed to less than 26% porosity, the sample collected by the corer will be highly fragmented. If the final porosity remains above 26%, then most materials, except cohesionless materials, such as dry sand, will be collected as a compressed slug of material.

  18. Advanced surface-enhanced Raman gene probe systems and methods thereof

    DOEpatents

    Vo-Dinh, Tuan

    2001-01-01

    The subject invention is a series of methods and systems for using the Surface-Enhanced Raman (SER)-labeled Gene Probe for hybridization, detection and identification of SER-labeled hybridized target oligonucleotide material comprising the steps of immobilizing SER-labeled hybridized target oligonucleotide material on a support means, wherein the SER-labeled hybridized target oligonucleotide material comprise a SER label attached either to a target oligonucleotide of unknown sequence or to a gene probe of known sequence complementary to the target oligonucleotide sequence, the SER label is unique for the target oligonucleotide strands of a particular sequence wherein the SER-labeled oligonucleotide is hybridized to its complementary oligonucleotide strand, then the support means having the SER-labeled hybridized target oligonucleotide material adsorbed thereon is SERS activated with a SERS activating means, then the support means is analyzed.

  19. Development of Custom 465® Corrosion-Resisting Steel for Landing Gear Applications

    NASA Astrophysics Data System (ADS)

    Daymond, Benjamin T.; Binot, Nicolas; Schmidt, Michael L.; Preston, Steve; Collins, Richard; Shepherd, Alan

    2016-04-01

    Existing high-strength low-alloy steels have been in place on landing gear for many years owing to their superior strength and cost performance. However, there have been major advances in improving the strength of high-performance corrosion-resisting steels. These materials have superior environmental robustness and remove the need for harmful protective coatings such as chromates and cadmium now on the list for removal under REACH legislation. A UK government-funded collaborative project is underway targeting a refined specification Custom 465® precipitation hardened stainless steel to replace the current material on Airbus A320 family aircraft main landing gear, a main fitting component developed by Messier-Bugatti-Dowty. This is a collaborative project between Airbus, Messier-Bugatti-Dowty, and Carpenter Technology Corporation. An extensive series of coupon tests on four production Heats of the material have been conducted, to obtain a full range of mechanical, fatigue, and corrosion properties. Custom 465® is an excellent replacement to the current material, with comparable tensile strength and fracture toughness, better ductility, and very good general corrosion and stress corrosion cracking resistance. Fatigue performance is the only significant area of deficit with respect to incumbent materials, fatigue initiation being often related to carbo-titanium-nitride particles and cleavage zones.

  20. Advanced plastic scintillators for fast neutron discrimination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Patrick L; Anstey, Mitchell; Doty, F. Patrick

    2014-09-01

    The present work addresses the need for solid-state, fast neutron discriminating scintillators that possess higher light yields and faster decay kinetics than existing organic scintillators. These respective attributes are of critical importance for improving the gamma-rejection capabilities and increasing the neutron discrimination performance under high-rate conditions. Two key applications that will benefit from these improvements include large-volume passive detection scenarios as well as active interrogation search for special nuclear materials. Molecular design principles were employed throughout this work, resulting in synthetically tailored materials that possess the targeted scintillation properties.

  1. DEVICE TECHNOLOGY. Nanomaterials in transistors: From high-performance to thin-film applications.

    PubMed

    Franklin, Aaron D

    2015-08-14

    For more than 50 years, silicon transistors have been continuously shrunk to meet the projections of Moore's law but are now reaching fundamental limits on speed and power use. With these limits at hand, nanomaterials offer great promise for improving transistor performance and adding new applications through the coming decades. With different transistors needed in everything from high-performance servers to thin-film display backplanes, it is important to understand the targeted application needs when considering new material options. Here the distinction between high-performance and thin-film transistors is reviewed, along with the benefits and challenges to using nanomaterials in such transistors. In particular, progress on carbon nanotubes, as well as graphene and related materials (including transition metal dichalcogenides and X-enes), outlines the advances and further research needed to enable their use in transistors for high-performance computing, thin films, or completely new technologies such as flexible and transparent devices. Copyright © 2015, American Association for the Advancement of Science.

  2. Hypervelocity impact testing of advanced materials and structures for micrometeoroid and orbital debris shielding

    NASA Astrophysics Data System (ADS)

    Ryan, Shannon; Christiansen, Eric L.

    2013-02-01

    A series of 66 hypervelocity impact experiments have been performed to assess the potential of various materials (aluminium, titanium, copper, stainless steel, nickel, nickel/chromium, reticulated vitreous carbon, silver, ceramic, aramid, ceramic glass, and carbon fibre) and structures (monolithic plates, open-cell foam, flexible fabrics, rigid meshes) for micrometeoroid and orbital debris (MMOD) shielding. Arranged in various single-, double-, and triple-bumper configurations, screening tests were performed with 0.3175 cm diameter Al2017-T4 spherical projectiles at nominally 6.8 km/s and normal incidence. The top performing shields were identified through target damage assessments and their respective weight. The top performing candidate shield at the screening test condition was found to be a double-bumper configuration with a 0.25 mm thick Al3003 outer bumper, 6.35 mm thick 40 PPI aluminium foam inner bumper, and 1.016 mm thick Al2024-T3 rear wall (equal spacing between bumpers and rear wall). In general, double-bumper candidates with aluminium plate outer bumpers and foam inner bumpers were consistently found to be amongst the top performers. For this impact condition, potential weight savings of at least 47% over conventional all-aluminium Whipple shields are possible by utilizing the investigated materials and structures. The results of this study identify materials and structures of interest for further, more in-depth, impact investigations.

  3. Plasma-wall interactions in ITER

    NASA Astrophysics Data System (ADS)

    Parker, R.; Janeschitz, G.; Pacher, H. D.; Post, D.; Chiocchio, S.; Federici, G.; Ladd, P.; Iter Joint Central Team; Home Teams

    1997-02-01

    This paper reviews the status of the design of the divertor and first-wall/shield, the main in-vessel components for ITER. Under nominal ignited conditions, 300 MW of alpha power will be produced and must be removed from the divertor and first-wall. Additional power from auxiliary sources up to the level of 100 MW must also be removed in the case of driven burns. In the ignited case, about 100 MW will be radiated to the first wall as bremsstrahlung. Allowing the remaining power to be conducted to the divertor target plates would result in excessive heat fluxes. The power handling strategy is to radiate an additional 100-150 MW in the SOL and the divertor channel via a combination of radiation from hydrogen, and intrinsic and seeded impurities. Vertical targets have been adopted for the baseline divertor configuration. This geometry promotes partial detachment, as found in present experiments and in the results of modelling runs for ITER conditions, and power densities on the target plates can be ≤ 5 MW/ m2. Such regimes promote relatively high pressure (> 1 Pa) in the divertor and even with a low helium enrichment factor of 0.2, the required pumping speed to pump helium is ≤ 50 m3/ s. An important physics question is the quality of core confinement in these attractive divertor regimes. In addition to power and particle handling issues, the effects of disruptions play a major role in the design and performance of in-vessel components. Both centered disruptions and VDE's produce stresses in the first-wall/shield modules, backplate and the divertor wings and cassettes that are near or even somewhat in excess of allowables for normal operation. Also plasma-wall contact from disruptions, including at the divertor target, together with material properties are major factors determining component lifetime. Considering the potential for impurity contamination and minimizing tritium inventory as well as thermomechanical performance, the present material selection calls for carbon divertor targets near the strike point, tungsten on the rest of the target and on the baffle where the charge-exchange flux could be high, and beryllium elsewhere. All three materials and relevant joining techniques are being developed in the R&D program and the final selection for the first assembly will be made at the end of the EDA.

  4. Characterizing the interaction among bullet, body armor, and human and surrogate targets.

    PubMed

    Shen, Weixin; Niu, Yuqing; Bykanova, Lucy; Laurence, Peter; Link, Norman

    2010-12-01

    This study used a combined experimental and modeling approach to characterize and quantify the interaction among bullet, body armor, and human surrogate targets during the 10-1000 μs range that is crucial to evaluating the protective effectiveness of body armor against blunt injuries. Ballistic tests incorporating high-speed flash X-ray measurements were performed to acquire the deformations of bullets and body armor samples placed against ballistic clay and gelatin targets with images taken between 10 μs and 1 ms of the initial impact. Finite element models (FEMs) of bullet, armor, and gelatin and clay targets were developed with material parameters selected to best fit model calculations to the test measurements. FEMs of bullet and armor interactions were then assembled with a FEM of a human torso and FEMs of clay and gelatin blocks in the shape of a human torso to examine the effects of target material and geometry on the interaction. Test and simulation results revealed three distinct loading phases during the interaction. In the first phase, the bullet was significantly slowed in about 60 μs as it transferred a major portion of its energy into the body armor. In the second phase, fibers inside the armor were pulled toward the point of impact and kept on absorbing energy until about 100 μs after the initial impact when energy absorption reached its peak. In the third phase, the deformation on the armor's back face continued to grow and energies inside both armor and targets redistributed through wave propagation. The results indicated that armor deformation and energy absorption in the second and third phases were significantly affected by the material properties (density and stiffness) and geometrical characteristics (curvature and gap at the armor-target interface) of the targets. Valid surrogate targets for testing the ballistic resistance of the armor need to account for these factors and produce the same armor deformation and energy absorption as on a human torso until at least about 100 μs (maximum armor energy absorption) or more preferably 300 μs (maximum armor deformation).

  5. Foreword: Additive Manufacturing: Interrelationships of Fabrication, Constitutive Relationships Targeting Performance, and Feedback to Process Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, John S.; Beese, Allison M.; Bourell, David L.

    Additive manufacturing (AM) offers distinct advantages over conventional manufacturing processes including the capability to both build and repair complex part shapes; to integrate and consolidate parts and thus overcome joining concerns; and to locally tailor material compositions as well as properties. Moreover, a variety of fields such as aerospace, military, automotive, and biomedical are employing this manufacturing technique as a way to decrease costs, increase manufacturing agility, and explore novel geometry/functionalities. In order to increase acceptance of AM as a viable processing method, pathways for qualifying both the material and the process need to be developed and, perhaps, standardized. Thismore » symposium was designed to serve as a venue for the international AM community—including government, academia, and industry—to define the fundamental interrelationships between feedstock, processing, microstructure, shape, mechanical behavior/materials properties, and function/performance. Eventually, insight into the connections between processing, microstructure, property, and performance will be achieved through experimental observations, theoretical advances, and computational modeling of physical processes. Finally, once this insight matures, AM will be able to move from the realm of making parts to making qualified materials that are certified for use with minimal need for post-fabrication characterization.« less

  6. Foreword: Additive Manufacturing: Interrelationships of Fabrication, Constitutive Relationships Targeting Performance, and Feedback to Process Control

    DOE PAGES

    Carpenter, John S.; Beese, Allison M.; Bourell, David L.; ...

    2015-06-26

    Additive manufacturing (AM) offers distinct advantages over conventional manufacturing processes including the capability to both build and repair complex part shapes; to integrate and consolidate parts and thus overcome joining concerns; and to locally tailor material compositions as well as properties. Moreover, a variety of fields such as aerospace, military, automotive, and biomedical are employing this manufacturing technique as a way to decrease costs, increase manufacturing agility, and explore novel geometry/functionalities. In order to increase acceptance of AM as a viable processing method, pathways for qualifying both the material and the process need to be developed and, perhaps, standardized. Thismore » symposium was designed to serve as a venue for the international AM community—including government, academia, and industry—to define the fundamental interrelationships between feedstock, processing, microstructure, shape, mechanical behavior/materials properties, and function/performance. Eventually, insight into the connections between processing, microstructure, property, and performance will be achieved through experimental observations, theoretical advances, and computational modeling of physical processes. Finally, once this insight matures, AM will be able to move from the realm of making parts to making qualified materials that are certified for use with minimal need for post-fabrication characterization.« less

  7. A review on ab initio studies of static, transport, and optical properties of polystyrene under extreme conditions for inertial confinement fusion applications

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Collins, L. A.; Boehly, T. R.; Ding, Y. H.; Radha, P. B.; Goncharov, V. N.; Karasiev, V. V.; Collins, G. W.; Regan, S. P.; Campbell, E. M.

    2018-05-01

    Polystyrene (CH), commonly known as "plastic," has been one of the widely used ablator materials for capsule designs in inertial confinement fusion (ICF). Knowing its precise properties under high-energy-density conditions is crucial to understanding and designing ICF implosions through radiation-hydrodynamic simulations. For this purpose, systematic ab initio studies on the static, transport, and optical properties of CH, in a wide range of density and temperature conditions (ρ = 0.1 to 100 g/cm3 and T = 103 to 4 × 106 K), have been conducted using quantum molecular dynamics (QMD) simulations based on the density functional theory. We have built several wide-ranging, self-consistent material-properties tables for CH, such as the first-principles equation of state, the QMD-based thermal conductivity (κQMD) and ionization, and the first-principles opacity table. This paper is devoted to providing a review on (1) what results were obtained from these systematic ab initio studies; (2) how these self-consistent results were compared with both traditional plasma-physics models and available experiments; and (3) how these first-principles-based properties of polystyrene affect the predictions of ICF target performance, through both 1-D and 2-D radiation-hydrodynamic simulations. In the warm dense regime, our ab initio results, which can significantly differ from predictions of traditional plasma-physics models, compared favorably with experiments. When incorporated into hydrocodes for ICF simulations, these first-principles material properties of CH have produced significant differences over traditional models in predicting 1-D/2-D target performance of ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility. Finally, we will discuss the implications of these studies on the current small-margin ICF target designs using a CH ablator.

  8. Mesoscale Computational Investigation of Shocked Heterogeneous Materials with Application to Large Impact Craters

    NASA Technical Reports Server (NTRS)

    Crawford, D. A.; Barnouin-Jha, O. S.; Cintala, M. J.

    2003-01-01

    The propagation of shock waves through target materials is strongly influenced by the presence of small-scale structure, fractures, physical and chemical heterogeneities. Pre-existing fractures often create craters that appear square in outline (e.g. Meteor Crater). Reverberations behind the shock from the presence of physical heterogeneity have been proposed as a mechanism for transient weakening of target materials. Pre-existing fractures can also affect melt generation. In this study, we are attempting to bridge the gap in numerical modeling between the micro-scale and the continuum, the so-called meso-scale. To accomplish this, we are developing a methodology to be used in the shock physics hydrocode (CTH) using Monte-Carlo-type methods to investigate the shock properties of heterogeneous materials. By comparing the results of numerical experiments at the micro-scale with experimental results and by using statistical techniques to evaluate the performance of simple constitutive models, we hope to embed the effect of physical heterogeneity into the field variables (pressure, stress, density, velocity) allowing us to directly imprint the effects of micro-scale heterogeneity at the continuum level without incurring high computational cost.

  9. Application of ionic liquid for extraction and separation of bioactive compounds from plants.

    PubMed

    Tang, Baokun; Bi, Wentao; Tian, Minglei; Row, Kyung Ho

    2012-09-01

    In recent years, ionic liquids (ILs), as green and designer solvents, have accelerated research in analytical chemistry. This review highlights some of the unique properties of ILs and provides an overview of the preparation and application of IL or IL-based materials to extract bioactive compounds in plants. IL or IL-based materials in conjunction with liquid-liquid extraction (LLE), ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), high performance liquid chromatography (HPLC) and solid-phase extraction (SPE) analytical technologies etc., have been applied successfully to the extraction or separation of bioactive compounds from plants. This paper reviews the available data and references to examine the advantages of IL and IL-based materials in these applications. In addition, the main target compounds reviewed in this paper are bioactive compounds with multiple therapeutic effects and pharmacological activities. Based on the importance of the targets, this paper reviews the applications of ILs, IL-based materials or co-working with analytical technologies. The exploitation of new applications of ILs on the extraction of bioactive compounds from plant samples is expected to increase. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Pulsed—Laser Deposition Of Oxide Thin Films And Laser—Induced Breakdown Spectroscopy Of Multi—Element Materials

    NASA Astrophysics Data System (ADS)

    Pedarnig, Johannes D.

    2010-10-01

    New results of the Linz group on pulsed—laser deposition (PLD) of oxide thin films and on laser—induced breakdown spectroscopy (LIBS) of multi-element materials are reported. High-Tc superconducting (HTS) films with enhanced critical current density Jc are produced by laser ablation of novel nano-composite ceramic targets. The targets contain insulating nano-particles that are embedded into the YBa2Cu3O7 matrix. Epitaxial double-layers of lithium-doped and aluminum-doped ZnO are deposited on r-cut sapphire substrates. Acoustic over-modes in the GHz range are excited by piezoelectric actuation of layers. Smooth films of rare-earth doped glass are produced by F2—laser ablation. The transport properties of HTS thin films are modified by light—ion irradiation. Thin film nano—patterning is achieved by masked ion beam irradiation. LIBS is employed to analyze trace elements in industrial iron oxide powder and reference polymer materials. Various trace elements of ppm concentration are measured in the UV/VIS and vacuum-UV spectral range. Quantitative LIBS analysis of major components in oxide materials is performed by calibration-free methods.

  11. Determining the dissolution rates of actinide glasses: A time and temperature Product Consistency Test study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, W.E.; Best, D.R.

    1995-12-01

    Vitrification has been identified as one potential option for the e materials such as Americium (Am), Curium (Cm), Neptunium (Np), and Plutonium (Pu). A process is being developed at the Savannah River Site to safely vitrify all of the highly radioactive Am/Cm material and a portion of the fissile (Pu) actinide materials stored on site. Vitrification of the Am/Cm will allow the material to be transported and easily stored at the Oak Ridge National Laboratory. The Am/Cm glass has been specifically designed to be (1) highly durable in aqueous environments and (2) selectively attacked by nitric acid to allow recoverymore » of the valuable Am and Cm isotopes. A similar glass composition will allow for safe storage of surplus plutonium. This paper will address the composition, relative durability, and dissolution rate characteristics of the actinide glass, Loeffler Target, that will be used in the Americium/Curium Vitrification Project at Westinghouse Savannah River Company near Aiken, South Carolina. The first part discusses the tests performed on the Loeffler Target Glass concerning instantaneous dissolution rates. The second part presents information concerning pseudo-activation energy for the one week glass dissolution process.« less

  12. Understanding Laser-Imprint Effects on Plastic-Target Implosions on OMEGA with New Physics Models

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Michel, D. T.; Davis, A. K.; Betti, R.; Radha, P. B.; Campbell, E. M.; Froula, D. H.; Stoeckl, C.

    2016-10-01

    Using the state-of-the-art physics models (nonlocal thermal transport, cross-beam energy transfer, and first-principles equation of state) recently implemented in our two-dimensional hydrocode DRACO, we have performed a systematic study of laser-imprint effects on plastic-target implosions on OMEGA by both simulations and experiments. Through varying the laser picket intensity, the imploding shells were set at different adiabats ranging from α = 2 to α = 6 . As the shell adiabat α decreases, we observed: (1) the measured shell thickness at the hot spot emission becomes larger than the uniform prediction; (2) the hot-spot core emits and neutron burn starts earlier than the corresponding 1-D prediction; and (3) the measured neutron yields are significantly reduced from their 1-D designs. Most of these experimental observations are well reproduced by our DRACO simulations with laser imprints. These studies clearly identify that laser imprint is the major cause for target performance degradation of OMEGA implosions of α <= 3 . Mitigating laser imprints must be an essential effort to improve low- α target performance in direct-drive inertial confinement fusion ignition attempts. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  13. Movements, Markets and Fields: The Effects of Anti-Sweatshop Campaigns on U.S. Firms, 1993-2000

    ERIC Educational Resources Information Center

    Bartley, Tim; Child, Curtis

    2011-01-01

    How do social movements influence corporations? Recent work suggests that movements can inflict material damage on their targets and shape categories of evaluation in organizational fields. Extending these ideas, we examine the effects of anti-sweatshop campaigns on sales, stock performance, reputation and specialized ratings of U.S. firms, using…

  14. Advanced missile technology. A review of technology improvement areas for cruise missiles. [including missile design, missile configurations, and aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Cronvich, L. L.; Liepman, H. P.

    1979-01-01

    Technology assessments in the areas of aerodynamics, propulsion, and structures and materials for cruise missile systems are discussed. The cruise missiles considered cover the full speed, altitude, and target range. The penetrativity, range, and maneuverability of the cruise missiles are examined and evaluated for performance improvements.

  15. EDM machinability of SiCw/Al composites

    NASA Technical Reports Server (NTRS)

    Ramulu, M.; Taya, M.

    1989-01-01

    Machinability of high temperature composites was investigated. Target materials, 15 and 25 vol pct SiC whisker-2124 aluminum composites, were machined by electrodischarge sinker machining and diamond saw. The machined surfaces of these metal matrix composites were examined by SEM and profilometry to determine the surface finish. Microhardness measurements were also performed on the as-machined composites.

  16. One Novel Multiple-Target Plasmid Reference Molecule Targeting Eight Genetically Modified Canola Events for Genetically Modified Canola Detection.

    PubMed

    Li, Zhuqing; Li, Xiang; Wang, Canhua; Song, Guiwen; Pi, Liqun; Zheng, Lan; Zhang, Dabing; Yang, Litao

    2017-09-27

    Multiple-target plasmid DNA reference materials have been generated and utilized as good substitutes of matrix-based reference materials in the analysis of genetically modified organisms (GMOs). Herein, we report the construction of one multiple-target plasmid reference molecule, pCAN, which harbors eight GM canola event-specific sequences (RF1, RF2, MS1, MS8, Topas 19/2, Oxy235, RT73, and T45) and a partial sequence of the canola endogenous reference gene PEP. The applicability of this plasmid reference material in qualitative and quantitative PCR assays of the eight GM canola events was evaluated, including the analysis of specificity, limit of detection (LOD), limit of quantification (LOQ), and performance of pCAN in the analysis of various canola samples, etc. The LODs are 15 copies for RF2, MS1, and RT73 assays using pCAN as the calibrator and 10 genome copies for the other events. The LOQ in each event-specific real-time PCR assay is 20 copies. In quantitative real-time PCR analysis, the PCR efficiencies of all event-specific and PEP assays are between 91% and 97%, and the squared regression coefficients (R 2 ) are all higher than 0.99. The quantification bias values varied from 0.47% to 20.68% with relative standard deviation (RSD) from 1.06% to 24.61% in the quantification of simulated samples. Furthermore, 10 practical canola samples sampled from imported shipments in the port of Shanghai, China, were analyzed employing pCAN as the calibrator, and the results were comparable with those assays using commercial certified materials as the calibrator. Concluding from these results, we believe that this newly developed pCAN plasmid is one good candidate for being a plasmid DNA reference material in the detection and quantification of the eight GM canola events in routine analysis.

  17. Spectral Target Detection using Schroedinger Eigenmaps

    NASA Astrophysics Data System (ADS)

    Dorado-Munoz, Leidy P.

    Applications of optical remote sensing processes include environmental monitoring, military monitoring, meteorology, mapping, surveillance, etc. Many of these tasks include the detection of specific objects or materials, usually few or small, which are surrounded by other materials that clutter the scene and hide the relevant information. This target detection process has been boosted lately by the use of hyperspectral imagery (HSI) since its high spectral dimension provides more detailed spectral information that is desirable in data exploitation. Typical spectral target detectors rely on statistical or geometric models to characterize the spectral variability of the data. However, in many cases these parametric models do not fit well HSI data that impacts the detection performance. On the other hand, non-linear transformation methods, mainly based on manifold learning algorithms, have shown a potential use in HSI transformation, dimensionality reduction and classification. In target detection, non-linear transformation algorithms are used as preprocessing techniques that transform the data to a more suitable lower dimensional space, where the statistical or geometric detectors are applied. One of these non-linear manifold methods is the Schroedinger Eigenmaps (SE) algorithm that has been introduced as a technique for semi-supervised classification. The core tool of the SE algorithm is the Schroedinger operator that includes a potential term that encodes prior information about the materials present in a scene, and enables the embedding to be steered in some convenient directions in order to cluster similar pixels together. A completely novel target detection methodology based on SE algorithm is proposed for the first time in this thesis. The proposed methodology does not just include the transformation of the data to a lower dimensional space but also includes the definition of a detector that capitalizes on the theory behind SE. The fact that target pixels and those similar pixels are clustered in a predictable region of the low-dimensional representation is used to define a decision rule that allows one to identify target pixels over the rest of pixels in a given image. In addition, a knowledge propagation scheme is used to combine spectral and spatial information as a means to propagate the "potential constraints" to nearby points. The propagation scheme is introduced to reinforce weak connections and improve the separability between most of the target pixels and the background. Experiments using different HSI data sets are carried out in order to test the proposed methodology. The assessment is performed from a quantitative and qualitative point of view, and by comparing the SE-based methodology against two other detection methodologies that use linear/non-linear algorithms as transformations and the well-known Adaptive Coherence/Cosine Estimator (ACE) detector. Overall results show that the SE-based detector outperforms the other two detection methodologies, which indicates the usefulness of the SE transformation in spectral target detection problems.

  18. Method for materials deposition by ablation transfer processing

    DOEpatents

    Weiner, K.H.

    1996-04-16

    A method in which a thin layer of semiconducting, insulating, or metallic material is transferred by ablation from a source substrate, coated uniformly with a thin layer of said material, to a target substrate, where said material is desired, with a pulsed, high intensity, patternable beam of energy. The use of a patternable beam allows area-selective ablation from the source substrate resulting in additive deposition of the material onto the target substrate which may require a very low percentage of the area to be covered. Since material is placed only where it is required, material waste can be minimized by reusing the source substrate for depositions on multiple target substrates. Due to the use of a pulsed, high intensity energy source the target substrate remains at low temperature during the process, and thus low-temperature, low cost transparent glass or plastic can be used as the target substrate. The method can be carried out atmospheric pressures and at room temperatures, thus eliminating vacuum systems normally required in materials deposition processes. This invention has particular application in the flat panel display industry, as well as minimizing materials waste and associated costs. 1 fig.

  19. An ab initio electronic transport database for inorganic materials

    DOE PAGES

    Ricci, Francesco; Chen, Wei; Aydemir, Umut; ...

    2017-07-04

    Electronic transport in materials is governed by a series of tensorial properties such as conductivity, Seebeck coefficient, and effective mass. These quantities are paramount to the understanding of materials in many fields from thermoelectrics to electronics and photovoltaics. Transport properties can be calculated from a material’s band structure using the Boltzmann transport theory framework. We present here the largest computational database of electronic transport properties based on a large set of 48,000 materials originating from the Materials Project database. Our results were obtained through the interpolation approach developed in the BoltzTraP software, assuming a constant relaxation time. We present themore » workflow to generate the data, the data validation procedure, and the database structure. In conclusion, our aim is to target the large community of scientists developing materials selection strategies and performing studies involving transport properties.« less

  20. An ab initio electronic transport database for inorganic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricci, Francesco; Chen, Wei; Aydemir, Umut

    Electronic transport in materials is governed by a series of tensorial properties such as conductivity, Seebeck coefficient, and effective mass. These quantities are paramount to the understanding of materials in many fields from thermoelectrics to electronics and photovoltaics. Transport properties can be calculated from a material’s band structure using the Boltzmann transport theory framework. We present here the largest computational database of electronic transport properties based on a large set of 48,000 materials originating from the Materials Project database. Our results were obtained through the interpolation approach developed in the BoltzTraP software, assuming a constant relaxation time. We present themore » workflow to generate the data, the data validation procedure, and the database structure. In conclusion, our aim is to target the large community of scientists developing materials selection strategies and performing studies involving transport properties.« less

  1. High performance hybrid magnetic structure for biotechnology applications

    DOEpatents

    Humphries, David E [El Cerrito, CA; Pollard, Martin J [El Cerrito, CA; Elkin, Christopher J [San Ramon, CA

    2009-02-03

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are further improvements to aspects of the hybrid magnetic structure, including additional elements and for adapting the use of the hybrid magnetic structure for use in biotechnology and high throughput processes.

  2. Performance evaluation soil samples utilizing encapsulation technology

    DOEpatents

    Dahlgran, J.R.

    1999-08-17

    Performance evaluation soil samples and method of their preparation uses encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration. 1 fig.

  3. Performance evaluation soil samples utilizing encapsulation technology

    DOEpatents

    Dahlgran, James R.

    1999-01-01

    Performance evaluation soil samples and method of their preparation using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.

  4. Seeking instructional specificity: An example from analogical instruction

    NASA Astrophysics Data System (ADS)

    Kuo, Eric; Wieman, Carl E.

    2015-12-01

    Broad instructional methods like "interactive engagement" have been shown to be effective, but such general characterization provides little guidance on the details of how to structure instructional materials. In this study, we seek instructional specificity by comparing two ways of using an analogy to learn a target physical principle: (i) applying the analogy to the target physical domain on a case-by-case basis and (ii) using the analogy to create a general rule in the target physical domain. In the discussion sections of a large, introductory physics course (N =2 3 1 ), students who sought a general rule were better able to discover and apply a correct physics principle than students who analyzed the examples case by case. The difference persisted at a reduced level after subsequent direct instruction. We argue that students who performed case-by-case analyses were more likely to focus on idiosyncratic problem-specific features rather than the deep structural features. This study provides an example of investigations into how the specific structure of instructional materials can be consequential for what is learned.

  5. The influence of plasma-surface interaction on the performance of tungsten at the ITER divertor vertical targets

    NASA Astrophysics Data System (ADS)

    De Temmerman, G.; Hirai, T.; Pitts, R. A.

    2018-04-01

    The tungsten (W) material in the high heat flux regions of the ITER divertor will be exposed to high fluxes of low-energy particles (e.g. H, D, T, He, Ne and/or N). Combined with long-pulse operations, this implies fluences well in excess of the highest values reached in today’s tokamak experiments. Shaping of the individual monoblock top surface and tilting of the vertical targets for leading-edge protection lead to an increased surface heat flux, and thus increased surface temperature and a reduced margin to remain below the temperature at which recrystallization and grain growth begin. Significant morphology changes are known to occur on W after exposure to high fluences of low-energy particles, be it H or He. An analysis of the formation conditions of these morphology changes is made in relation to the conditions expected at the vertical targets during different phases of operations. It is concluded that both H and He-related effects can occur in ITER. In particular, the case of He-induced nanostructure (also known as ‘fuzz’) is reviewed. Fuzz formation appears possible over a limited region of the outer vertical target, the inner target being generally a net Be deposition area. A simple analysis of the fuzz growth rate including the effect of edge-localized modes (ELMs) and the reduced thermal conductivity of fuzz shows that the fuzz thickness is likely to be limited by the occurrence of annealing during ELM-induced thermal excursions. Not only the morphology, but the material mechanical and thermal properties can be modified by plasma exposure. A review of the existing literature is made, but the existing data are insufficient to conclude quantitatively on the importance and extent of these effects for ITER. As a consequence of the high surface temperatures in ITER, W recrystallization is an important effect to consider, since it leads to a decrease in material strength. An approach is proposed here to develop an operational budget for the W material, i.e. the time the divertor material can be operated at a given temperature before a significant fraction of the material is recrystallized. In general, while it is clear that significant surface damage can occur during ITER operations, the tolerable level of damage in terms of plasma operations currently remains unknown.

  6. Designing with non-linear viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Schuh, Jonathon; Lee, Yong Hoon; Allison, James; Ewoldt, Randy

    2017-11-01

    Material design is typically limited to hard materials or simple fluids; however, design with more complex materials can provide ways to enhance performance. Using the Criminale-Ericksen-Filbey (CEF) constitutive model in the thin film lubrication limit, we derive a modified Reynolds Equation (based on asymptotic analysis) that includes shear thinning, first normal stress, and terminal regime viscoelastic effects. This allows for designing non-linear viscoelastic fluids in thin-film creeping flow scenarios, i.e. optimizing the shape of rheological material properties to achieve different design objectives. We solve the modified Reynolds equation using the pseudo-spectral method, and describe a case study in full-film lubricated sliding where optimal fluid properties are identified. These material-agnostic property targets can then guide formulation of complex fluids which may use polymeric, colloidal, or other creative approaches to achieve the desired non-Newtonian properties.

  7. Design of a liquid membrane target for high repetition rate neutron generation

    NASA Astrophysics Data System (ADS)

    Poole, Patrick; Andereck, C. David; Storm, Mike; Schumacher, Douglass

    2013-10-01

    Ultra-bright, pulsed, spatially-small sources of energetic neutrons have applications in radiography and non-destructive remote sensing. Neutrons can be generated by a process wherein ions accelerated from a laser-irradiated primary target subsequently bombard a converter material, causing neutron-producing nuclear reactions, such as 7Li(d,n)8Be. Deuterons from this process are suppressed by contamination that builds up on the rear of the solid primary target. To eliminate this issue we propose a self-replenishing liquid membrane target consisting of heavy water and deuterated surfactant, formed in-vacuum within a moveable wire frame. In addition to removing issues associated with solid target positioning and collateral damage, this apparatus provides flow rate and target thickness control, and allows for the high repetition rates required to generate desired neutron fluxes with a portable laser-based system. The apparatus design will be presented, as well as a novel interferometric method that measures the membrane thickness using tightly-focused light. This work was performed with support from DARPA.

  8. Temperature Controller System for Gas Gun Targets

    NASA Astrophysics Data System (ADS)

    Bucholtz, Scott; Sheffield, Stephen

    2005-07-01

    A temperature controller system capable of heating and cooling gas gun targets over the range -75 C to +200 C was designed and tested. The system uses cold nitrogen gas from a liquid nitrogen Dewar for cooling and compressed air for heating. Two gas flow heaters control the gas temperature for both heating and cooling. One heater controls the temperature of the target mounting plate and the other the temperature of a copper tubing coil surrounding the target. Each heater is separately adjustable, so the target material will achieve a uniform temperature throughout its volume. A magnetic gauge with integrated thermocouples was developed to measure the internal temperature of the target. Using this system shock experiments, including equation-of-state measurements and shock initiation of high explosives, can be performed over a range of initial temperatures. Successful tests were completed on Teflon samples. This work was supported by the NNSA Enhanced Surveillance Campaign through contract DE-ACO4-01AL66850.

  9. Radiation effects in IFMIF Li target diagnostic systems

    NASA Astrophysics Data System (ADS)

    Molla, J.; Vila, R.; Shikama, T.; Horiike, H.; Simakov, S.; Ciotti, M.; Ibarra, A.

    2009-04-01

    Diagnostics for the lithium target will be crucial for the operation of IFMIF. Several parameters as the lithium temperature, target thickness or wave pattern must be monitored during operation. Radiation effects may produce malfunctioning in any of these diagnostics due to the exposure to high radiation fields. The main diagnostic systems proposed for the operation of IFMIF are reviewed in this paper from the point of view of radiation damage. The main tools for the assessment of the performance of these diagnostics are the neutronics calculations by using specialised codes and the information accumulated during the last decades on the radiation effects in functional materials, components and diagnostics for ITER. This analysis allows to conclude that the design of some of the diagnostic systems must be revised to assure the high availability required for the target system.

  10. Targeted resequencing reveals ALK fusions in non-small cell lung carcinomas detected by FISH, immunohistochemistry, and real-time RT-PCR: a comparison of four methods.

    PubMed

    Tuononen, Katja; Sarhadi, Virinder Kaur; Wirtanen, Aino; Rönty, Mikko; Salmenkivi, Kaisa; Knuuttila, Aija; Remes, Satu; Telaranta-Keerie, Aino I; Bloor, Stuart; Ellonen, Pekka; Knuutila, Sakari

    2013-01-01

    Anaplastic lymphoma receptor tyrosine kinase (ALK) gene rearrangements occur in a subgroup of non-small cell lung carcinomas (NSCLCs). The identification of these rearrangements is important for guiding treatment decisions. The aim of our study was to screen ALK gene fusions in NSCLCs and to compare the results detected by targeted resequencing with results detected by commonly used methods, including fluorescence in situ hybridization (FISH), immunohistochemistry (IHC), and real-time reverse transcription-PCR (RT-PCR). Furthermore, we aimed to ascertain the potential of targeted resequencing in detection of ALK-rearranged lung carcinomas. We assessed ALK fusion status for 95 formalin-fixed paraffin-embedded tumor tissue specimens from 87 patients with NSCLC by FISH and real-time RT-PCR, for 57 specimens from 56 patients by targeted resequencing, and for 14 specimens from 14 patients by IHC. All methods were performed successfully on formalin-fixed paraffin-embedded tumor tissue material. We detected ALK fusion in 5.7% (5 out of 87) of patients examined. The results obtained from resequencing correlated significantly with those from FISH, real-time RT-PCR, and IHC. Targeted resequencing proved to be a promising method for ALK gene fusion detection in NSCLC. Means to reduce the material and turnaround time required for analysis are, however, needed.

  11. Magnetic-particles-composed wire structures produced by pulsed laser deposition in a magnetic field

    NASA Astrophysics Data System (ADS)

    Nikov, Ru; Dikovska, A.; Nedyalkov, N.; Atanasov, P.

    2018-03-01

    We demonstrate the possibility to fabricate wire structures composed by arranged magnetic particles using pulsed laser deposition (PLD) in the presence of a magnetic field. Ablation of Ni and Co targets was performed in air by nanosecond laser pulses delivered by a Nd:YAG laser system oscillating at 355 nm. Due to the high density of the ambient, particles and clusters were formed by condensation in the plasma plume close to the target. The strong deceleration of the ablated material under these conditions further benefited the efficiency of applying a magnetic field to the plume. We also studied the effect of the target-to-substrate distance and the ambient pressure on the morphology of the deposited structures.

  12. Influence of prime-target relationship on semantic priming effects from words in a lexical-decision task.

    PubMed

    Abad, María J F; Noguera, Carmen; Ortells, Juan J

    2003-07-01

    The present research examines the influence of prime-target relationship (associative and categorical versus categorical only) on priming effects from attended and ignored parafoveal words. Participants performed a lexical-decision task on a single central target, which was preceded by two parafoveal prime words, one of which (the attended prime) was spatially precued. The results showed reliable positive and negative priming effects from attended and ignored words, respectively. However, this priming pattern was observed only for the "associative and categorical", but not for the "categorical only" relationship condition. These results suggest that the lack of semantic priming effects from words in some prior studies may be attributed to the kind of material used (i.e. weakly-associated word pairs).

  13. Dimensional scaling for impact cratering and perforation

    NASA Technical Reports Server (NTRS)

    Watts, Alan J.; Atkinson, Dale

    1995-01-01

    POD Associates have revisited the issue of generic scaling laws able to adequately predict (within better than 20 percent) cratering in semi-infinite targets and perforations through finite thickness targets. The approach used was to apply physical logic for hydrodynamics in a consistent manner able to account for chunky-body impacts such that the only variables needed are those directly related to known material properties for both the impactor and target. The analyses were compared and verified versus CTH hydrodynamic code calculations and existing data. Comparisons with previous scaling laws were also performed to identify which (if any) were good for generic purposes. This paper is a short synopsis of the full report available through the NASA Langley Research Center, LDEF Science Office.

  14. Avirulent Bacillus anthracis Strain with Molecular Assay Targets as Surrogate for Irradiation-Inactivated Virulent Spores.

    PubMed

    Plaut, Roger D; Staab, Andrea B; Munson, Mark A; Gebhardt, Joan S; Klimko, Christopher P; Quirk, Avery V; Cote, Christopher K; Buhr, Tony L; Rossmaier, Rebecca D; Bernhards, Robert C; Love, Courtney E; Berk, Kimberly L; Abshire, Teresa G; Rozak, David A; Beck, Linda C; Stibitz, Scott; Goodwin, Bruce G; Smith, Michael A; Sozhamannan, Shanmuga

    2018-04-01

    The revelation in May 2015 of the shipment of γ irradiation-inactivated wild-type Bacillus anthracis spore preparations containing a small number of live spores raised concern about the safety and security of these materials. The finding also raised doubts about the validity of the protocols and procedures used to prepare them. Such inactivated reference materials were used as positive controls in assays to detect suspected B. anthracis in samples because live agent cannot be shipped for use in field settings, in improvement of currently deployed detection methods or development of new methods, or for quality assurance and training activities. Hence, risk-mitigated B. anthracis strains are needed to fulfill these requirements. We constructed a genetically inactivated or attenuated strain containing relevant molecular assay targets and tested to compare assay performance using this strain to the historical data obtained using irradiation-inactivated virulent spores.

  15. Thin and thick targets for radioactive ion beam production at SPIRAL1 facility

    NASA Astrophysics Data System (ADS)

    Jardin, P.; Bajeat, O.; Delahaye, P.; Dubois, M.; Kuchi, V.; Maunoury, L.

    2018-05-01

    The upgrade of the Système de Production d'Ions Radioactifs Accélérés en Ligne (SPIRAL1) facility will deliver its new Radioactive Ion Beams (RIB) by summer 2017. The goal of the upgrade is an improvement of the performances of the installation in terms of isotopes species and ion charge states [1]. Ion beams are produced using the Isotope Separator On Line Method, consisting in an association of a primary beam of stable ions, a hot target and an ion source. The primary beam impinges on the material of the target. Radioactive isotopes are produced by nuclear reactions and propagate up to the source, where they are ionized and accelerated to create a RIB. One advantage of SPIRAL1 driver is the variety of its available primary beams, from carbon to uranium with energies up to 95 MeV/A. Within the SPIRAL1 upgrade, they will be combined with targets made of a large choice of materials, extending in this way the number of possible nuclear reactions (fusion-evaporation, transfer, fragmentation) for producing a wider range of isotopes, up to regions of the nuclide chart still scarcely explored. Depending on the reaction process, on the collision energy and on the primary beam power, thin and thick targets are used. As their functions can be different, their design must cope with specific constraints which will be described. After a presentation of the goals of present and future SPIRAL1 Target Ion Source System, the main target features, studies and designs under progress are presented.

  16. [Model and analysis of spectropolarimetric BRDF of painted target based on GA-LM method].

    PubMed

    Chen, Chao; Zhao, Yong-Qiang; Luo, Li; Pan, Quan; Cheng, Yong-Mei; Wang, Kai

    2010-03-01

    Models based on microfacet were used to describe spectropolarimetric BRDF (short for bidirectional reflectance distribution function) with experimental data. And the spectropolarimetric BRDF values of targets were measured with the comparison to the standard whiteboard, which was considered as Lambert and had a uniform reflectance rate up to 98% at arbitrary angle of view. And then the relationships between measured spectropolarimetric BRDF values and the angles of view, as well as wavelengths which were in a range of 400-720 nm were analyzed in details. The initial value needed to be input to the LM optimization method was difficult to get and greatly impacted the results. Therefore, optimization approach which combines genetic algorithm and Levenberg-Marquardt (LM) was utilized aiming to retrieve parameters of nonlinear models, and the initial values were obtained using GA approach. Simulated experiments were used to test the efficiency of the adopted optimization method. And the simulated experiment ensures the optimization method to have a good performance and be able to retrieve the parameters of nonlinear model efficiently. The correctness of the models was validated by real outdoor sampled data. The parameters of DoP model retrieved are the refraction index of measured targets. The refraction index of the same color painted target but with different materials was also obtained. Conclusion has been drawn that the refraction index from these two targets are very near and this slight difference could be understood by the difference in the conditions of paint targets' surface, not the material of the targets.

  17. Bioinspired engineering of thermal materials.

    PubMed

    Tao, Peng; Shang, Wen; Song, Chengyi; Shen, Qingchen; Zhang, Fangyu; Luo, Zhen; Yi, Nan; Zhang, Di; Deng, Tao

    2015-01-21

    In the development of next-generation materials with enhanced thermal properties, biological systems in nature provide many examples that have exceptional structural designs and unparalleled performance in their thermal or nonthermal functions. Bioinspired engineering thus offers great promise in the synthesis and fabrication of thermal materials that are difficult to engineer through conventional approaches. In this review, recent progress in the emerging area of bioinspired advanced materials for thermal science and technology is summarized. State-of-the-art developments of bioinspired thermal-management materials, including materials for efficient thermal insulation and heat transfer, and bioinspired materials for thermal/infrared detection, are highlighted. The dynamic balance of bioinspiration and practical engineering, the correlation of inspiration approaches with the targeted applications, and the coexistence of molecule-based inspiration and structure-based inspiration are discussed in the overview of the development. The long-term outlook and short-term focus of this critical area of advanced materials engineering are also presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Materials Organization, Planning, and Homework Completion in Middle School Students with ADHD: Impact on Academic Performance.

    PubMed

    Langberg, Joshua M; Epstein, Jeffery N; Girio, Erin L; Becker, Stephen P; Vaughn, Aaron J; Altaye, Mekibib

    2011-06-01

    This study evaluated the homework functioning of middle school students with ADHD to determine what aspects are most predictive of school grades and the best source (e.g., parents or teachers) for obtaining this information. Students with ADHD in grades 5-8 ( N = 57) and their parents and teachers completed the Children's Organization Skills Scales (COSS) to measure materials organization, planning, and time-management, and parents completed the Homework Problems Checklist (HPC) to examine homework completion and homework materials management behaviors. Regression analyses revealed that parent-rated homework materials management and teacher-rated memory and materials management were the best predictors of school grades. These findings suggest that organization of materials is a critical component of the homework completion process for students with ADHD and an important target for intervention. Teachers were the best source of information regarding materials organization and planning, whereas parents were a valuable source of information for specific homework materials management problems.

  19. Materials Organization, Planning, and Homework Completion in Middle School Students with ADHD: Impact on Academic Performance

    PubMed Central

    Langberg, Joshua M.; Epstein, Jeffery N.; Girio, Erin L.; Becker, Stephen P.; Vaughn, Aaron J.; Altaye, Mekibib

    2013-01-01

    This study evaluated the homework functioning of middle school students with ADHD to determine what aspects are most predictive of school grades and the best source (e.g., parents or teachers) for obtaining this information. Students with ADHD in grades 5–8 (N = 57) and their parents and teachers completed the Children’s Organization Skills Scales (COSS) to measure materials organization, planning, and time-management, and parents completed the Homework Problems Checklist (HPC) to examine homework completion and homework materials management behaviors. Regression analyses revealed that parent-rated homework materials management and teacher-rated memory and materials management were the best predictors of school grades. These findings suggest that organization of materials is a critical component of the homework completion process for students with ADHD and an important target for intervention. Teachers were the best source of information regarding materials organization and planning, whereas parents were a valuable source of information for specific homework materials management problems. PMID:23577045

  20. Post Irradiation Examination Results of the NT-02 Graphite Fins NUMI Target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ammigan, K.; Hurh, P.; Sidorov, V.

    2017-02-10

    The NT-02 neutrino target in the NuMI beamline at Fermilab is a 95 cm long target made up of segmented graphite fins. It is the longest running NuMI target, which operated with a 120 GeV proton beam with maximum power of 340 kW, and saw an integrated total proton on target of 6.1 1020. Over the last half of its life, gradual degradation of neutrino yield was observed until the target was replaced. The probable causes for the target performance degradation are attributed to radiation damage, possibly including cracking caused by reduction in thermal shock resistance, as well as potentialmore » localized oxidation in the heated region of the target. Understanding the long-termstructural response of target materials exposed to proton irradiation is critical as future proton accelerator sources are becoming increasingly more powerful. As a result, an autopsy of the target was carried out to facilitate post-irradiation examination of selected graphite fins. Advanced microstructural imaging and surface elemental analysis techniques were used to characterize the condition of the fins in an effort to identify degradation mechanisms, and the relevant findings are presented in this paper.« less

  1. Understanding the synthesis, performance, and passivation of metal oxide photocathodes

    NASA Astrophysics Data System (ADS)

    Flynn, Cory James

    Metal oxides are ubiquitous in semiconductor technologies for their ease of synthesis, chemical stability, and tunable optical/electronic properties. These properties are especially important to fabricating efficient photoelectrodes for solar-energy applications. To counter inherent problems in these materials, new strategies were developed and successfully implemented on the widely-utilized p-type semiconductor, NiO. As the size of semiconductor materials shrink, the surface-to-volume ratio increases and surface defects dominate the performance of the materials. Surface defects can alter the optical and electronic characteristics of materials by changing the Fermi level, charge-carrier mobility, and surface reactivity. We first present a strategy to increase the electrical mobility of mesoporous metal oxide electrode materials by optimizing shape morphology. Transitioning from nanospheres to hexagonal nanoplatelets increased the charge-carrier mobility by one order of magnitude. We then employed this improved material with a new vapor-phase deposition method termed targeted atomic deposition (TAD) to selectively passivate defect sites in semiconductor nanomaterials. We demonstrated the capabilities of this passivation method by applying a TAD of aluminum onto NiO. By exploiting a temperature-dependent deposition process, we selectively passivated the highly reactive sites in NiO: oxygen dangling bonds associated with Ni vacancies. The TAD treatment completely passivated all measurable surface defects, optically bleached the material, and significantly improved all photovoltaic performance metrics in dye-sensitized solar cells. The technique was proven to be generic to numerous forms of NiO. While the implementation of TAD of Al was successful, the process involved pulsing two precursors to passivate the material. Ideally, the TAD process should require only a single precursor and continuous exposure. We utilized a continuous flow of diborane to perform a TAD of B onto NiO. The TAD process was successfully implemented in a simplified manner. The treatment moderately increased DSSC performance and proved viability with a different vapor-phase precursor.

  2. Concentrating solar power (CSP) power cycle improvements through application of advanced materials

    NASA Astrophysics Data System (ADS)

    Siefert, John A.; Libby, Cara; Shingledecker, John

    2016-05-01

    Concentrating solar power (CSP) systems with thermal energy storage (TES) capability offer unique advantages to other renewable energy technologies in that solar radiation can be captured and stored for utilization when the sun is not shining. This makes the technology attractive as a dispatchable resource, and as such the Electric Power Research Institute (EPRI) has been engaged in research and development activities to understand and track the technology, identify key technical challenges, and enable improvements to meet future cost and performance targets to enable greater adoption of this carbon-free energy resource. EPRI is also involved with technically leading a consortium of manufacturers, government labs, and research organizations to enable the next generation of fossil fired power plants with advanced ultrasupercritical (A-USC) steam temperatures up to 760°C (1400°F). Materials are a key enabling technology for both of these seemingly opposed systems. This paper discusses how major strides in structural materials for A-USC fossil fired power plants may be translated into improved CSP systems which meet target requirements.

  3. [Development and application of reference materials containing mixed degradation products of amoxicillin and ampicillin].

    PubMed

    Li, Wei; Zhang, Wei-Qing; Li, Xiang; Hu, Chang-Qin

    2014-09-01

    Reference materials containing mixed degradation products of amoxicillin and ampicillin were developed after optimization of preparation processes. The target impurities were obtained by controlled stress testing, and each major component was identified with HPLC-MS and compared with single traceable reference standard each. The developed reference materials were applied to system suitability test for verifying HPLC system performed in accordance with set forth in China Pharmacopeia and identification of major impurities in samples based on retention and spectra information, which have advantages over the methods put forth in foreign pharmacopoeias. The development and application of the reference materials offer an effective way for rapid identification of impurities in chromatograms, and provide references for analyzing source of impurities and evaluation of drug quality.

  4. Stability of Gadolinium-Doped Liquid Organic Scintillators

    NASA Astrophysics Data System (ADS)

    Gromov, M. B.; Kuznetsov, D. S.; Murchenko, A. E.; Novikova, G. Ya.; Obinyakov, B. A.; Oralbaev, A. Yu.; Plakitina, K. V.; Skorokhvatov, M. D.; Sukhotin, S. V.; Chepurnov, A. S.; Etenko, A. V.

    2018-03-01

    The technology of preparing a linear-alkylbenzene-based gadolinium-doped liquid organic scintillator (Gd-LOS) as a target material in reactor antineutrino detectors has been developed. Results of longterm measurements of the light yield of Gd-LOS in contact with acryl and stainless steel are presented, which confirm the compatibility of Gd-LOS with these materials. The measurements were performed for two otherwise identical LOS detectors only differing in wall materials of the sensitive volume: acryl versus stainless steel. The results of measurements over about one year showed almost the same, relatively small decreases in the light yield of both detectors. It is concluded that both structural materials can be used in detector parts contacting with Gd-doped scintillator. Such a long-term parallel comparative test was carried out for the first time.

  5. Tailoring Anisotropic Li-Ion Transport Tunnels on Orthogonally Arranged Li-Rich Layered Oxide Nanoplates Toward High-Performance Li-Ion Batteries.

    PubMed

    Xu, Ming; Fei, Linfeng; Zhang, Weibing; Li, Tao; Lu, Wei; Zhang, Nian; Lai, Yanqing; Zhang, Zhian; Fang, Jing; Zhang, Kai; Li, Jie; Huang, Haitao

    2017-03-08

    High-performance Li-rich layered oxide (LRLO) cathode material is appealing for next-generation Li-ion batteries owing to its high specific capacity (>300 mAh g -1 ). Despite intense studies in the past decade, the low initial Coulombic efficiency and unsatisfactory cycling stability of LRLO still remain as great challenges for its practical applications. Here, we report a rational design of the orthogonally arranged {010}-oriented LRLO nanoplates with built-in anisotropic Li + ion transport tunnels. Such a novel structure enables fast Li + ion intercalation and deintercalation kinetics and enhances structural stability of LRLO. Theoretical calculations and experimental characterizations demonstrate the successful synthesis of target cathode material that delivers an initial discharge capacity as high as 303 mAh g -1 with an initial Coulombic efficiency of 93%. After 200 cycles at 1.0 C rate, an excellent capacity retention of 92% can be attained. Our method reported here opens a door to the development of high-performance Ni-Co-Mn-based cathode materials for high-energy density Li-ion batteries.

  6. Heterocyclic energetic materials: Synthesis, characterization and computational design

    NASA Astrophysics Data System (ADS)

    Tsyshevsky, Roman; Pagoria, Philip; Smirnov, Aleksander; Kuklja, Maija

    2017-06-01

    Achievement of the tailored properties (high performance, low sensitivity, etc.) in targeted new energetic materials (EM) remains a great challenge. Recently, attention of researchers has shifted from conventional nitroester-, nitramine-, and nitroaromatic-based explosives to new heterocyclic EM with oxygen- and nitrogenrich molecular structures. They have increased densities and formation enthalpies complemented by attractive performance and high stability to external stimuli. We will demonstrate that oxadiazol-containing heterocycles offer a convenient playground to probe specific chemical functional groups as building blocks for design of EM. We discuss a joint experimental and computational approach for design, characterization, synthesis, and modeling of novel heterocyclic EM. Combinatorically, we comprehensively analyzed how overall stability and performance of each material in the family (BNFF, LLM-172, LLM-175, LLM-191, LLM-192, LLM-200) depends upon their chemical composition and details of the molecular structure (such as a substitution of a nitro group by an amino group and 1,2,5-oxadiazole fragment by 1,2,3- or 1,2,4-oxadiazol ring). We will also discuss proposed new EM with predicted superior chemical and physical properties. P. Pagoria, R. Tsyshevsky, A. Smirnov.

  7. Modeling of a cyclotron target for the production of 11C with Geant4.

    PubMed

    Chiappiniello, Andrea; Zagni, Federico; Infantino, Angelo; Vichi, Sara; Cicoria, Gianfranco; Morigi, Maria Pia; Marengo, Mario

    2018-04-12

    In medical cyclotron facilities, 11C is produced according to the 14N(p,α)11C reaction and widely employed in studies of prostate and brain cancers by Positron Emission Tomography. It is known from literature [1] that the 11C-target assembly shows a reduction in efficiency during time, meaning a decrease of activity produced at the end of bombardment. This effect might depend on aspects still not completely known. Possible causes of the loss of performance of the 11C-target assembly were addressed by Monte Carlo simulations. Geant4 was used to model the 11C-target assembly of a GE PETtrace cyclotron. The physical and transport parameters to be used in the energy range of medical applications were extracted from literature data and 11C routine productions. The Monte Carlo assessment of 11C saturation yield was performed varying several parameters such as the proton energy and the angle of the target assembly with respect to the proton beam. The estimated 11C saturation yield is in agreement with IAEA data at the energy of interest, while is about the 35% greater than experimental value. A more comprehensive modeling of the target system, including thermodynamic effect, is required. The energy absorbed in the inner layer of the target chamber was up to 46.5 J/mm2 under typical irradiation conditions. This study shows that Geant4 is potentially a useful tool to design and optimize targetry for PET radionuclide productions. Tests to choose the Geant4 physics libraries should be performed before using this tool with different energies and materials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Consistency in seroma contouring for partial breast radiotherapy: Impact of guidelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Elaine K.; Truong, Pauline T.; Kader, Hosam A.

    2006-10-01

    Purpose: Inconsistencies in contouring target structures can undermine the precision of conformal radiation therapy (RT) planning and compromise the validity of clinical trial results. This study evaluated the impact of guidelines on consistency in target volume contouring for partial breast RT planning. Methods and Materials: Guidelines for target volume definition for partial breast radiation therapy (PBRT) planning were developed by members of the steering committee for a pilot trial of PBRT using conformal external beam planning. In phase 1, delineation of the breast seroma in 5 early-stage breast cancer patients was independently performed by a 'trained' cohort of four radiationmore » oncologists who were provided with these guidelines and an 'untrained' cohort of four radiation oncologists who contoured without guidelines. Using automated planning software, the seroma target volume (STV) was expanded into a clinical target volume (CTV) and planning target volume (PTV) for each oncologist. Means and standard deviations were calculated, and two-tailed t tests were used to assess differences between the 'trained' and 'untrained' cohorts. In phase 2, all eight radiation oncologists were provided with the same contouring guidelines, and were asked to delineate the seroma in five new cases. Data were again analyzed to evaluate consistency between the two cohorts. Results: The 'untrained' cohort contoured larger seroma volumes and had larger CTVs and PTVs compared with the 'trained' cohort in three of five cases. When seroma contouring was performed after review of contouring guidelines, the differences in the STVs, CTVs, and PTVs were no longer statistically significant. Conclusion: Guidelines can improve consistency among radiation oncologists performing target volume delineation for PBRT planning.« less

  9. Ensemble Methods for MiRNA Target Prediction from Expression Data.

    PubMed

    Le, Thuc Duy; Zhang, Junpeng; Liu, Lin; Li, Jiuyong

    2015-01-01

    microRNAs (miRNAs) are short regulatory RNAs that are involved in several diseases, including cancers. Identifying miRNA functions is very important in understanding disease mechanisms and determining the efficacy of drugs. An increasing number of computational methods have been developed to explore miRNA functions by inferring the miRNA-mRNA regulatory relationships from data. Each of the methods is developed based on some assumptions and constraints, for instance, assuming linear relationships between variables. For such reasons, computational methods are often subject to the problem of inconsistent performance across different datasets. On the other hand, ensemble methods integrate the results from individual methods and have been proved to outperform each of their individual component methods in theory. In this paper, we investigate the performance of some ensemble methods over the commonly used miRNA target prediction methods. We apply eight different popular miRNA target prediction methods to three cancer datasets, and compare their performance with the ensemble methods which integrate the results from each combination of the individual methods. The validation results using experimentally confirmed databases show that the results of the ensemble methods complement those obtained by the individual methods and the ensemble methods perform better than the individual methods across different datasets. The ensemble method, Pearson+IDA+Lasso, which combines methods in different approaches, including a correlation method, a causal inference method, and a regression method, is the best performed ensemble method in this study. Further analysis of the results of this ensemble method shows that the ensemble method can obtain more targets which could not be found by any of the single methods, and the discovered targets are more statistically significant and functionally enriched. The source codes, datasets, miRNA target predictions by all methods, and the ground truth for validation are available in the Supplementary materials.

  10. Ensemble Methods for MiRNA Target Prediction from Expression Data

    PubMed Central

    Le, Thuc Duy; Zhang, Junpeng; Liu, Lin; Li, Jiuyong

    2015-01-01

    Background microRNAs (miRNAs) are short regulatory RNAs that are involved in several diseases, including cancers. Identifying miRNA functions is very important in understanding disease mechanisms and determining the efficacy of drugs. An increasing number of computational methods have been developed to explore miRNA functions by inferring the miRNA-mRNA regulatory relationships from data. Each of the methods is developed based on some assumptions and constraints, for instance, assuming linear relationships between variables. For such reasons, computational methods are often subject to the problem of inconsistent performance across different datasets. On the other hand, ensemble methods integrate the results from individual methods and have been proved to outperform each of their individual component methods in theory. Results In this paper, we investigate the performance of some ensemble methods over the commonly used miRNA target prediction methods. We apply eight different popular miRNA target prediction methods to three cancer datasets, and compare their performance with the ensemble methods which integrate the results from each combination of the individual methods. The validation results using experimentally confirmed databases show that the results of the ensemble methods complement those obtained by the individual methods and the ensemble methods perform better than the individual methods across different datasets. The ensemble method, Pearson+IDA+Lasso, which combines methods in different approaches, including a correlation method, a causal inference method, and a regression method, is the best performed ensemble method in this study. Further analysis of the results of this ensemble method shows that the ensemble method can obtain more targets which could not be found by any of the single methods, and the discovered targets are more statistically significant and functionally enriched. The source codes, datasets, miRNA target predictions by all methods, and the ground truth for validation are available in the Supplementary materials. PMID:26114448

  11. Transorbital therapy delivery: phantom testing

    NASA Astrophysics Data System (ADS)

    Ingram, Martha-Conley; Atuegwu, Nkiruka; Mawn, Louise; Galloway, Robert L.

    2011-03-01

    We have developed a combined image-guided and minimally invasive system for the delivery of therapy to the back of the eye. It is composed of a short 4.5 mm diameter endoscope with a magnetic tracker embedded in the tip. In previous work we have defined an optimized fiducial placement for accurate guidance to the back of the eye and are now moving to system testing. The fundamental difficulty in testing performance is establishing a target in a manner which closely mimics the physiological task. We have to have a penetrable material which obscures line of sight, similar to the orbital fat. In addition we need to have some independent measure of knowing when a target has been reached to compare to the ideal performance. Lastly, the target cannot be rigidly attached to the skull phantom since the optic nerve lies buried in the orbital fat. We have developed a skull phantom with white cloth stellate balls supporting a correctly sized globe. Placed in the white balls are red, blue, orange and yellow balls. One of the colored balls has been soaked in barium to make it bright on CT. The user guides the tracked endoscope to the target as defined by the images and tells us its color. We record task accuracy and time to target. We have tested this with 28 residents, fellows and attending physicians. Each physician performs the task twice guided and twice unguided. Results will be presented.

  12. Electrically charged targets

    DOEpatents

    Goodman, Ronald K.; Hunt, Angus L.

    1984-01-01

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  13. Microgravity Impact Experiments: The Prime Campaign on the NASA KC-135

    NASA Astrophysics Data System (ADS)

    Colwell, Joshua E.; Sture, Stein; Lemos, Andreas R.

    2002-11-01

    Low velocity collisions (v less than 100 m/s) occur in a number of astrophysical contexts, including planetary rings, protoplanetary disks, the Kuiper belt of comets, and in secondary cratering events on asteroids and planetary satellites. In most of these situations the surface gravity of the target is less than a few per cent of 1 g. Asteroids and planetary satellites are observed to have a regolith consisting of loose, unconsolidated material. Planetary ring particles likely are also coated with dust based on observations of dust within ring systems. The formation of planetesimals in protoplanetary disks begins with the accretion of dust particles. The response of the surface dust layer to collisions in the near absence of gravity is necessary for understanding the evolution of these systems. The Collisions Into Dust Experiment (COLLIDE) performs six impact experiments into simulated regolith in microgravity conditions on the space shuttle. The parameter space to be explored is quite large, including effects such as impactor mass and velocity, impact angle, target porosity, size distribution, and particle shape. We have developed an experiment, the Physics of Regolith Impacts in Microgravity Experiment (PRIME), that is analogous to COLLIDE that is optimized for flight on the NASA KC-135 reduced gravity aircraft. The KC-135 environment provides the advantage of more rapid turnover between experiments, allowing a broader range of parameters to be studied quickly, and more room for the experiment so that more impact experiments can be performed each flight. The acceleration environment of the KC-135 is not as stable and minimal as on the space shuttle, and this requires impact velocities to be higher than the minimum achievable with COLLIDE. The experiment consists of an evacuated PRIME Impact Chamber (PIC) with an aluminum base plate and acrylic sides and top. A target tray, launcher, and mirror mount to the base plate. The launcher may be positioned to allow for impacts at angles of 30, 45, 60, and 90 degrees with respect to the target surface. The target material is contained in a 10 cm by 10 cm by 2 cm tray with a rotating door that is opened via a mechanical feed-through on the base plate. A spring-loaded inner door provides uniform compression on the target material prior to operation of the experiment to keep the material from settling or locking up during vibrations prior to the experiment. Data is recorded with the NASA high speed video camera. Frame rates are selected according to the impact parameters. The direct camera view is orthogonal to the projectile line of motion, and the mirrors within the PIC provide a view normal to the target surface. The spring-loaded launchers allow for projectile speeds between 10 cm/s and 500 cm/s with a variety of impactor sizes and densities. On each flight 8 PICs will be used, each one with a different set of impact parameters. Additional information is included in the original extended abstract.

  14. Shock timing measurements and analysis in deuterium-tritium-ice layered capsule implosions on NIF

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Hohenberger, M.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2014-02-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion implosions [Boehly et al., Phys. Rev. Lett. 106, 195005 (2011); Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique. Comparison of the data with simulation shows good agreement for the timing of the first three shocks, but reveals a considerable discrepancy in the timing of the 4th shock in DT ice layered implosions. Electron preheat is examined as a potential cause of the observed discrepancy in the 4th shock timing.

  15. Loop-Mediated Isothermal Amplification of Specific Endoglucanase Gene Sequence for Detection of the Bacterial Wilt Pathogen Ralstonia solanacearum

    PubMed Central

    Pirc, Manca; Llop, Pablo; Ravnikar, Maja; Dreo, Tanja

    2014-01-01

    The increased globalization of crops production and processing industries also promotes the side-effects of more rapid and efficient spread of plant pathogens. To prevent the associated economic losses, and particularly those related to bacterial diseases where their management relies on removal of the infected material from production, simple, easy-to-perform, rapid and cost-effective tests are needed. Loop-mediated isothermal amplification (LAMP) assays that target 16S rRNA, fliC and egl genes were compared and evaluated as on-site applications. The assay with the best performance was that targeted to the egl gene, which shows high analytical specificity for diverse strains of the betaproteobacterium Ralstonia solanacearum, including its non-European and non-race 3 biovar 2 strains. The additional melting curve analysis provides confirmation of the test results. According to our extensive assessment, the egl LAMP assay requires minimum sample preparation (a few minutes of boiling) for the identification of pure cultures and ooze from symptomatic material, and it can also be used in a high-throughput format in the laboratory. This provides sensitive and reliable detection of R. solanacearum strains of different phylotypes. PMID:24763488

  16. Modeling and validation of spectral BRDF on material surface of space target

    NASA Astrophysics Data System (ADS)

    Hou, Qingyu; Zhi, Xiyang; Zhang, Huili; Zhang, Wei

    2014-11-01

    The modeling and the validation methods of the spectral BRDF on the material surface of space target were presented. First, the microscopic characteristics of the space targets' material surface were analyzed based on fiber-optic spectrometer using to measure the direction reflectivity of the typical materials surface. To determine the material surface of space target is isotropic, atomic force microscopy was used to measure the material surface structure of space target and obtain Gaussian distribution model of microscopic surface element height. Then, the spectral BRDF model based on that the characteristics of the material surface were isotropic and the surface micro-facet with the Gaussian distribution which we obtained was constructed. The model characterizes smooth and rough surface well for describing the material surface of the space target appropriately. Finally, a spectral BRDF measurement platform in a laboratory was set up, which contains tungsten halogen lamp lighting system, fiber optic spectrometer detection system and measuring mechanical systems with controlling the entire experimental measurement and collecting measurement data by computers automatically. Yellow thermal control material and solar cell were measured with the spectral BRDF, which showed the relationship between the reflection angle and BRDF values at three wavelengths in 380nm, 550nm, 780nm, and the difference between theoretical model values and the measured data was evaluated by relative RMS error. Data analysis shows that the relative RMS error is less than 6%, which verified the correctness of the spectral BRDF model.

  17. Capability to Recover Plutonium-238 in H-Canyon/HB-Line - 13248

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuller, Kenneth S. Jr.; Smith, Robert H. Jr.; Goergen, Charles R.

    2013-07-01

    Plutonium-238 is used in Radioisotope Thermoelectric Generators (RTGs) to generate electrical power and in Radioisotope Heater Units (RHUs) to produce heat for electronics and environmental control for deep space missions. The domestic supply of Pu-238 consists of scrap material from previous mission production or material purchased from Russia. Currently, the United States has no significant production scale operational capability to produce and separate new Pu-238 from irradiated neptunium-237 targets. The Department of Energy - Nuclear Energy is currently evaluating and developing plans to reconstitute the United States capability to produce Pu-238 from irradiated Np-237 targets. The Savannah River Site hadmore » previously produced and/or processed all the Pu-238 utilized in Radioisotope Thermoelectric Generators (RTGs) for deep space missions up to and including the majority of the plutonium for the Cassini Mission. The previous full production cycle capabilities included: Np- 237 target fabrication, target irradiation, target dissolution and Np-237 and Pu-238 separation and purification, conversion of Np-237 and Pu-238 to oxide, scrap recovery, and Pu-238 encapsulation. The capability and equipment still exist and could be revitalized or put back into service to recover and purify Pu-238/Np-237 or broken General Purpose Heat Source (GPHS) pellets utilizing existing process equipment in HB-Line Scrap Recovery, and H-Canyon Frame Waste Recovery processes. The conversion of Np-237 and Pu-238 to oxide can be performed in the existing HB-Line Phase-2 and Phase- 3 Processes. Dissolution of irradiated Np-237 target material, and separation and purification of Np-237 and Pu-238 product streams would be possible at production rates of ∼2 kg/month of Pu-238 if the existing H-Canyon Frames Process spare equipment were re-installed. Previously, the primary H-Canyon Frames equipment was removed to be replaced: however, the replacement project was stopped. The spare equipment is stored and still available for installation. Out of specification Pu-238 scrap material can be purified and recovered by utilizing the HB-Line Phase- 1 Scrap Recovery Line and the Phase-3 Pu-238 Oxide Conversion Line along with H-Canyon Frame Waste Recovery process. In addition, it also covers and describes utilizing the Phase-2 Np-237 Oxide Conversion Line, in conjunction with the H-Canyon Frames Process to restore the H-Canyon capability to process and recover Np-237 and Pu-238 from irradiated Np-237 targets and address potential synergies with other programs like recovery of Pu-244 and heavy isotopes of curium from other target material. (authors)« less

  18. Developing Culturally Targeted Diabetes Educational Materials for Older Russian-Speaking Immigrants.

    PubMed

    Van Son, Catherine R

    2014-07-01

    Older adults who immigrate late in life face many challenges adapting to a new country. Immigrants bring their cultural beliefs and behaviors with them, which can influence their ability to make dietary changes required when they have type 2 diabetes. Culturally targeted patient education materials are needed to improve immigrants' health literacy and abilities to self-manage diabetes. Currently, there is a scarcity of diabetes patient education materials to meet the educational needs of the Russian-speaking immigrant group. The purpose of this article is to describe a project in which culturally targeted diabetes education materials for older Russian-speaking immigrants were designed and developed. Culturally targeted patient education materials are essential if they are to be accepted and used by clients from different ethnic minority populations. The creation of culturally relevant materials requires a team effort and community stakeholder input. The availability of materials on the internet facilitates access and use by health care providers. Culturally targeted education materials are an important component in addressing health literacy in ethnic minority populations. Next steps require that these materials be evaluated to test their impact on diabetes self-management behaviors and clinical outcomes such as adherence, amount of physical activity, and blood glucose levels. © 2014 The Author(s).

  19. High Performance MG-System Alloys For Weight Saving Applications: First Year Results From The Green Metallurgy EU Project

    NASA Astrophysics Data System (ADS)

    D'Errico, Fabrizio; Plaza, Gerardo Garces; Hofer, Markus; Kim, Shae K.

    The GREEN METALLURGY Project, a LIFE+ project co-financed by the EU Commission, has just concluded its first year. The Project seeks to set manufacturing processes at a pre-industrial scale for nanostructured-based high-performance Mg-Zn(Y) magnesium alloys. The Project's goal is the reduction of specific energy consumed and the overall carbon-footprint produced in the cradle-to-exit gate phases. Preliminary results addressed potentialities of the upstream manufacturing process pathway. Two Mg-Zn(Y) system alloys with rapid solidifying powders have been produced and directly extruded for 100% densification. Examination of the mechanical properties showed that such materials exhibit strength and elongation comparable to several high performing aluminum alloys; 390 MPa and 440 MPa for the average UTS for two different system alloys, and 10% and 15% elongations for two system alloys. These results, together with the low-environmental impact targeted, make these novel Mg alloys competitive as lightweight high-performance materials for automotive components.

  20. Multi-layer solid-phase extraction and evaporation-enrichment methods for polar organic chemicals from aqueous matrices.

    PubMed

    Köke, Niklas; Zahn, Daniel; Knepper, Thomas P; Frömel, Tobias

    2018-03-01

    Analysis of polar organic chemicals in the aquatic environment is exacerbated by the lack of suitable and widely applicable enrichment methods. In this work, we assessed the suitability of a novel combination of well-known solid-phase extraction (SPE) materials in one cartridge as well as an evaporation method and for the enrichment of 26 polar model substances (predominantly log D < 0) covering a broad range of physico-chemical properties in three different aqueous matrices. The multi-layer solid-phase extraction (mlSPE) and evaporation method were investigated for the recovery and matrix effects of the model substances and analyzed with hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS). In total, 65% of the model substances were amenable (> 10% recovery) to the mlSPE method with a mean recovery of 76% while 73% of the model substances were enriched with the evaporation method achieving a mean recovery of 78%. Target and non-target screening comparison of both methods with a frequently used reversed-phase SPE method utilizing "hydrophilic and lipophilic balanced" (HLB) material was performed. Target analysis showed that the mlSPE and evaporation method have pronounced advantages over the HLB method since the HLB material retained only 30% of the model substances. Non-target screening of a ground water sample with the investigated enrichment methods showed that the median retention time of all detected features on a HILIC system decreased in the order mlSPE (3641 features, median t R 9.7 min), evaporation (1391, 9.3 min), HLB (4414, 7.2 min), indicating a higher potential of the described methods to enrich polar analytes from water compared with HLB-SPE. Graphical abstract Schematic of the method evaluation (recovery and matrix effects) and method comparison (target and non-target analysis) of the two investigated enrichment methods for very polar chemicals in aqueousmatrices.

  1. Negative pressure and spallation in graphite targets under nano- and picosecond laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belikov, R S; Khishchenko, K V; Krasyuk, I K

    We present the results of experiments on the spallation phenomena in graphite targets under shock-wave nano- and picosecond irradiation, which have been performed on Kamerton-T (GPI, Moscow, Russia) and PHELIX (GSI, Darmstadt, Germany) laser facilities. In the range of the strain rates of 10{sup 6} – 10{sup 7} s{sup -1}, the data on the dynamic mechanical strength of the material at rapure (spallation) have been for the first time obtained. With a maximal strain rate of 1.4 × 10{sup 7} s{sup -1}, the spall strength of 2.1 GPa is obtained, which constitutes 64% of the theoretical ultimate tensile strength ofmore » graphite. The effect of spallation is observed not only on the rear side of the target, but also on its irradiated (front) surface. With the use of optical and scanning electron microscopes, the morphology of the front and rear surfaces of the targets is studied. By means of Raman scattering of light, the graphite structure both on the target front surface under laser exposure and on its rear side in the spall zone is investigated. A comparison of the dynamic strength of graphite and synthetic diamond is performed. (extreme light fields and their applications)« less

  2. Hydrogen Storage Engineering Center of Excellence Metal Hydride Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motyka, T.

    2014-05-31

    The Hydrogen Storage Engineering Center of Excellence (HSECoE) was established in 2009 by the U.S. Department of Energy (DOE) to advance the development of materials-based hydrogen storage systems for hydrogen-fueled light-duty vehicles. The overall objective of the HSECoE is to develop complete, integrated system concepts that utilize reversible metal hydrides, adsorbents, and chemical hydrogen storage materials through the use of advanced engineering concepts and designs that can simultaneously meet or exceed all the DOE targets. This report describes the activities and accomplishments during Phase 1 of the reversible metal hydride portion of the HSECoE, which lasted 30 months from Februarymore » 2009 to August 2011. A complete list of all the HSECoE partners can be found later in this report but for the reversible metal hydride portion of the HSECoE work the major contributing organizations to this effort were the United Technology Research Center (UTRC), General Motors (GM), Pacific Northwest National Laboratory (PNNL), the National Renewable Energy Laboratory (NREL) and the Savannah River National Laboratory (SRNL). Specific individuals from these and other institutions that supported this effort and the writing of this report are included in the list of contributors and in the acknowledgement sections of this report. The efforts of the HSECoE are organized into three phases each approximately 2 years in duration. In Phase I, comprehensive system engineering analyses and assessments were made of the three classes of storage media that included development of system level transport and thermal models of alternative conceptual storage configurations to permit detailed comparisons against the DOE performance targets for light-duty vehicles. Phase 1 tasks also included identification and technical justifications for candidate storage media and configurations that should be capable of reaching or exceeding the DOE targets. Phase 2 involved bench-level testing and evaluation of system configurations, including material packaging and balance-of-plant components, and conceptual design validation. Phase 3 includes fabrication and testing of the selected prototype storage system(s) for model validation and performance evaluation against the DOE targets. A DOE decision was needed for the HSECoE to advance to each phase and work on some classes of storage materials were recommended not to continue.« less

  3. Three dimensional separation trap based on dielectrophoresis and use thereof

    DOEpatents

    Mariella, Jr., Raymond P.

    2004-05-04

    An apparatus is adapted to separate target materials from other materials in a flow containing the target materials and other materials. A dielectrophoretic trap is adapted to receive the target materials and the other materials. At least one electrode system is provided in the trap. The electrode system has a three-dimensional configuration. The electrode system includes a first electrode and a second electrode that are shaped and positioned relative to each such that application of an electrical voltage to the first electrode and the second electrode creates a dielectrophoretic force and said dielectrophoretic force does not reach zero between the first electrode and the second electrode.

  4. Method and apparatus for optimized sampling of volatilizable target substances

    DOEpatents

    Lindgren, Eric R.; Phelan, James M.

    2004-10-12

    An apparatus for capturing, from gases such as soil gas, target analytes. Target analytes may include emanations from explosive materials or from residues of explosive materials. The apparatus employs principles of sorption common to solid phase microextraction, and is best used in conjunction with analysis means such as a gas chromatograph. To sorb target analytes, the apparatus functions using various sorptive structures to capture target analyte. Depending upon the embodiment, those structures may include a capillary tube including an interior surface on which sorptive material (similar to that on the surface of a SPME fiber) is supported (along with means for moving gases through the capillary tube so that the gases come into close proximity to the sorptive material). In one disclosed embodiment, at least one such sorptive structure is associated with an enclosure including an opening in communication with the surface of a soil region potentially contaminated with buried explosive material such as unexploded ordnance. Emanations from explosive materials can pass into and accumulate in the enclosure where they are sorbed by the sorptive structures. Also disclosed is the use of heating means such as microwave horns to drive target analytes into the soil gas from solid and liquid phase components of the soil.

  5. Identification of non-volatile compounds and their migration from hot melt adhesives used in food packaging materials characterized by ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry.

    PubMed

    Vera, Paula; Canellas, Elena; Nerín, Cristina

    2013-05-01

    The identification of unknown non-volatile migrant compounds from adhesives used in food contact materials is a very challenging task because of the number of possible compounds involved, given that adhesives are complex mixtures of chemicals. The use of ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-MS/QTOF) is shown to be a successful tool for identifying non-targeted migrant compounds from two hot melt adhesives used in food packaging laminates. Out of the seven migrants identified and quantified, five were amides and one was a compound classified in Class II of the Cramer toxicity. None of the migration values exceeded the recommended Cramer exposure values.

  6. Development of octreotide-conjugated polymeric prodrug of bufalin for targeted delivery to somatostatin receptor 2 overexpressing breast cancer in vitro and in vivo

    PubMed Central

    Liu, Tao; Jia, Tingting; Yuan, Xia; Liu, Cheng; Sun, Jian; Ni, Zhenhua; Xu, Jian; Wang, Xuhui; Yuan, Yi

    2016-01-01

    Background Development of polymeric prodrugs of small molecular anticancer drugs has become one of the most promising strategies to overcome the intrinsic shortcomings of small molecular anticancer drugs and improve their anticancer performance. Materials and methods In the current work, we fabricated a novel octreotide (Oct)-modified esterase-sensitive tumor-targeting polymeric prodrug of bufalin (BUF) and explored its anticancer performance against somatostatin receptor 2 overexpressing breast cancer. Results The obtained tumor-targeting polymeric prodrug of BUF, P(oligo[ethylene glycol] monomethyl ether methacrylate [OEGMA]-co-BUF-co-Oct), showed a nanosize dimension and controlled drug release features in the presence of esterase. It was demonstrated by in vitro experiment that P(OEGMA-co-BUF-co-Oct) showed enhanced cytotoxicity, cellular uptake, and apoptosis in comparison with those of free BUF. In vivo experiment further revealed the improved accumulation of drugs in tumor tissues and enhanced anticancer performance of P(OEGMA-co-BUF-co-Oct). Conclusion Taken together, this study indicated that polymeric prodrug of BUF holds promising potential toward the treatment of somatostatin receptor 2 overexpressing breast cancer. PMID:27284243

  7. Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye.

    PubMed

    Patel, Samirkumar R; Berezovsky, Damian E; McCarey, Bernard E; Zarnitsyn, Vladimir; Edelhauser, Henry F; Prausnitz, Mark R

    2012-07-01

    This study seeks to determine the intraocular pharmacokinetics of molecules and particles injected into the suprachoroidal space of the rabbit eye in vivo using a hollow microneedle. Suprachoroidal injections of fluorescein and fluorescently tagged dextrans (40 and 250 kDa), bevacizumab, and polymeric particles (20 nm to 10 μm in diameter) were performed using microneedles in New Zealand white rabbits. The fluorescence intensity within the eye was monitored in each animal using an ocular fluorophotometer to determine the distribution of the injected material in the eye over time as compared with intravitreal injection of fluorescein. Fundus photography and histology were performed as well. Molecules and particles injected near the limbus using a microneedle flowed circumferentially around the eye within the suprachoroidal space. By targeting the suprachoroidal space, the concentration of injected materials was at least 10-fold higher in the back of the eye tissues than in anterior tissues. In contrast, intravitreal injection of fluorescein targeted the vitreous humor with no significant selectivity for posterior versus anterior segment tissues. Half-lives in the suprachoroidal space for molecules of molecular weight from 0.3 to 250 kDa ranged from 1.2 to 7.9 hours. In contrast, particles ranging in size from 20 nm to 10 μm remained primarily in the suprachoroidal space and choroid for a period of months and did not clear the eye. No adverse effects of injection into the suprachoroidal space were observed. Injection into the suprachoroidal space using a microneedle offers a simple and minimally invasive way to target the delivery of drugs to the choroid and retina.

  8. Targeted Administration into the Suprachoroidal Space Using a Microneedle for Drug Delivery to the Posterior Segment of the Eye

    PubMed Central

    Patel, Samirkumar R.; Berezovsky, Damian E.; McCarey, Bernard E.; Zarnitsyn, Vladimir; Edelhauser, Henry F.; Prausnitz, Mark R.

    2012-01-01

    Purpose. This study seeks to determine the intraocular pharmacokinetics of molecules and particles injected into the suprachoroidal space of the rabbit eye in vivo using a hollow microneedle. Methods. Suprachoroidal injections of fluorescein and fluorescently tagged dextrans (40 and 250 kDa), bevacizumab, and polymeric particles (20 nm to 10 μm in diameter) were performed using microneedles in New Zealand white rabbits. The fluorescence intensity within the eye was monitored in each animal using an ocular fluorophotometer to determine the distribution of the injected material in the eye over time as compared with intravitreal injection of fluorescein. Fundus photography and histology were performed as well. Results. Molecules and particles injected near the limbus using a microneedle flowed circumferentially around the eye within the suprachoroidal space. By targeting the suprachoroidal space, the concentration of injected materials was at least 10-fold higher in the back of the eye tissues than in anterior tissues. In contrast, intravitreal injection of fluorescein targeted the vitreous humor with no significant selectivity for posterior versus anterior segment tissues. Half-lives in the suprachoroidal space for molecules of molecular weight from 0.3 to 250 kDa ranged from 1.2 to 7.9 hours. In contrast, particles ranging in size from 20 nm to 10 μm remained primarily in the suprachoroidal space and choroid for a period of months and did not clear the eye. No adverse effects of injection into the suprachoroidal space were observed. Conclusion. Injection into the suprachoroidal space using a microneedle offers a simple and minimally invasive way to target the delivery of drugs to the choroid and retina. PMID:22669719

  9. Analysis of isothiazolinones in environmental waters by gas chromatography-mass spectrometry.

    PubMed

    Rafoth, Astrid; Gabriel, Sabine; Sacher, Frank; Brauch, Heinz-Jürgen

    2007-09-14

    This paper describes an analytical method for the determination of five biocides of isothiazolinone type (2-methyl-3-isothiazolinone (MI), 5-chloro-2-methyl-3-isothiazolinone (CMI), 1,2-benzisothiazolinone (BIT), 2-octyl-3-isothiazolinone (OI), 4,5-dichloro-2-octyl-3-isothiazolinone (DCOI)) in environmental waters. The method is based on pre-concentration of the analytes by solid-phase extraction onto a mixture of a polymeric material and RP-C18 material and subsequent determination by gas chromatography-mass spectrometry (GC-MS). One of the target compounds (BIT) is derivatised with diazomethane after pre-concentration to improve its chromatographic performance. The method was optimised with respect to pre-concentration conditions (liquid-liquid extraction versus solid-phase extraction, solid-phase material, elution solvent and volume) and extensively validated. Applying the method to surface waters, groundwaters, and drinking waters, limits of detection between 0.01 and 0.1 microg/l could be achieved and the repeatability was below 10% for all compounds except for MI. Additional investigations showed that the stability of the isothiazolinones in environmental waters is limited and sample storage at 4 degrees C is mandatory to preserve the target biocides. First investigations of influents and effluents of a wastewater treatment plant showed that conventional wastewater treatment exhibits a high efficiency for removal of the isothiazolinones. In river waters, the target isothiazolinones could not be detected.

  10. Method for forming electrically charged laser targets

    DOEpatents

    Goodman, Ronald K.; Hunt, Angus L.

    1979-01-01

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  11. The chance of Sweden's public health targets making a difference.

    PubMed

    Lager, Anton; Guldbrandsson, Karin; Fossum, Bjöörn

    2007-03-01

    There is a trend in health policy towards more focus on determinants and societal interventions and less on individuals. The Swedish public health targets are in line with this trend. The value of public health targets lies in their ability to function as a tool in governing with targets. This paper examines the possibility of the Swedish targets functioning as such a tool. Document analyses were performed to examine three prerequisites of governing with targets: (1) the influence of the administration in the target setting process, (2) the explicitness of targets and (3) the follow-up system. The material consisted of the documents from the committee drafting the targets, the written opinions on the drafts, and the governmental bill with the adopted public health targets. The administration influenced the target setting process. Further, the government invests in a follow-up system that makes indicators on health determinants visible. However, although there existed explicit targets earlier in the process, the final targets in the bill are not explicit enough. The Swedish public health targets are not explicit enough to function in governing with targets. The reasons for this were political rather than technical. This suggests that policy makers focusing health determinants should not put time and resources in technical target formulating. Instead they could make indicators visible, thereby drawing attention to trends that are political by nature.

  12. Linear high-boost fusion of Stokes vector imagery for effective discrimination and recognition of real targets in the presence of multiple identical decoys

    NASA Astrophysics Data System (ADS)

    El-Saba, Aed; Sakla, Wesam A.

    2010-04-01

    Recently, the use of imaging polarimetry has received considerable attention for use in automatic target recognition (ATR) applications. In military remote sensing applications, there is a great demand for sensors that are capable of discriminating between real targets and decoys. Accurate discrimination of decoys from real targets is a challenging task and often requires the fusion of various sensor modalities that operate simultaneously. In this paper, we use a simple linear fusion technique known as the high-boost fusion method for effective discrimination of real targets in the presence of multiple decoys. The HBF assigns more weight to the polarization-based imagery in forming the final fused image that is used for detection. We have captured both intensity and polarization-based imagery from an experimental laboratory arrangement containing a mixture of sand/dirt, rocks, vegetation, and other objects for the purpose of simulating scenery that would be acquired in a remote sensing military application. A target object and three decoys that are identical in physical appearance (shape, surface structure and color) and different in material composition have also been placed in the scene. We use the wavelet-filter joint transform correlation (WFJTC) technique to perform detection between input scenery and the target object. Our results show that use of the HBF method increases the correlation performance metrics associated with the WFJTC-based detection process when compared to using either the traditional intensity or polarization-based images.

  13. A Cryogenic Infrared Calibration Target

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Kinzer, R. E., Jr.; Rinehart, S. A.

    2014-01-01

    A compact cryogenic calibration target is presented that has a peak diffuse reflectance, R < or = 0.003, from 800 to 4800/cm (12 - 2 microns ). Upon expanding the spectral range under consideration to 400-10,000/ cm-1 (25 - 1 microns) the observed performance gracefully degrades to R < or = 0.02 at the band edges. In the implementation described, a high-thermal-conductivity metallic substrate is textured with a pyramidal tiling and subsequently coated with a thin lossy dielectric coating that enables high absorption and thermal uniformity across the target. The resulting target assembly is lightweight, has a low-geometric profile, and has survived repeated thermal cycling from room temperature to approx.4 K. Basic design considerations, governing equations, and test data for realizing the structure described are provided. The optical properties of selected absorptive materials-Acktar Fractal Black, Aeroglaze Z306, and Stycast 2850 FT epoxy loaded with stainless steel powder-are characterized and presented

  14. Lead (Pb) Hohlraum: Target for Inertial Fusion Energy

    PubMed Central

    Ross, J. S.; Amendt, P.; Atherton, L. J.; Dunne, M.; Glenzer, S. H.; Lindl, J. D.; Meeker, D.; Moses, E. I.; Nikroo, A.; Wallace, R.

    2013-01-01

    Recent progress towards demonstrating inertial confinement fusion (ICF) ignition at the National Ignition Facility (NIF) has sparked wide interest in Laser Inertial Fusion Energy (LIFE) for carbon-free large-scale power generation. A LIFE-based fleet of power plants promises clean energy generation with no greenhouse gas emissions and a virtually limitless, widely available thermonuclear fuel source. For the LIFE concept to be viable, target costs must be minimized while the target material efficiency or x-ray albedo is optimized. Current ICF targets on the NIF utilize a gold or depleted uranium cylindrical radiation cavity (hohlraum) with a plastic capsule at the center that contains the deuterium and tritium fuel. Here we show a direct comparison of gold and lead hohlraums in efficiently ablating deuterium-filled plastic capsules with soft x rays. We report on lead hohlraum performance that is indistinguishable from gold, yet costing only a small fraction. PMID:23486285

  15. Lead (Pb) hohlraum: target for inertial fusion energy.

    PubMed

    Ross, J S; Amendt, P; Atherton, L J; Dunne, M; Glenzer, S H; Lindl, J D; Meeker, D; Moses, E I; Nikroo, A; Wallace, R

    2013-01-01

    Recent progress towards demonstrating inertial confinement fusion (ICF) ignition at the National Ignition Facility (NIF) has sparked wide interest in Laser Inertial Fusion Energy (LIFE) for carbon-free large-scale power generation. A LIFE-based fleet of power plants promises clean energy generation with no greenhouse gas emissions and a virtually limitless, widely available thermonuclear fuel source. For the LIFE concept to be viable, target costs must be minimized while the target material efficiency or x-ray albedo is optimized. Current ICF targets on the NIF utilize a gold or depleted uranium cylindrical radiation cavity (hohlraum) with a plastic capsule at the center that contains the deuterium and tritium fuel. Here we show a direct comparison of gold and lead hohlraums in efficiently ablating deuterium-filled plastic capsules with soft x rays. We report on lead hohlraum performance that is indistinguishable from gold, yet costing only a small fraction.

  16. A simple solution to the problem of effective utilisation of the target material for pulsed laser deposition of thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzanyan, A S; Kuzanyan, A A; Petrosyan, V A

    The factors determining the efficiency of the target material utilisation for pulsed laser deposition of films are considered. The target volume is calculated, which is evaporated in the ablation process by the focused laser radiation having a rectangular form. The new device is suggested and developed for obtaining thin films by the method of laser deposition, which is specific in the employment of a simple optical system mounted outside a deposition chamber that comprises two lenses and the diaphragm and focuses the laser beam onto a target in the form of a sector-like spot. Thin films of CuO and YBaCuOmore » were deposited with this device. Several deposition cycles revealed that the target material is consumed uniformly from the entire surface of the target. A maximal spread of the target thickness was not greater than ±2% both prior to deposition and after it. The device designed provides a high coefficient of the target material utilisation efficiency. (laser deposition of thin films)« less

  17. Rayleigh-Taylor instability experiments in cryogenic deuterium

    NASA Astrophysics Data System (ADS)

    Hansen, J. F.; Smalyuk, V. A.

    2005-10-01

    We report on experiments under way at the Omega laser, using cryogenic deuterium to study Rayleigh-Taylor instabilities in laser targets. These instabilities are important in astrophysical situations (e.g., mixing of the different shells during a supernova explosion) and in inertial fusion (during the compression stage of a fusion target). They can be studied in small (˜1 mm) shock tubes filled with one heavy and one light material, with an interface between the two materials that is machined to seed the instability. A high-energy laser (˜5 kJ) drives a shock from the heavy to the light material. The evolution of the interface is studied using gated x-ray cameras, where x-ray illumination is obtained from additional laser beams focused on metal backlighter foils. Traditionally the heavy material is CH (1 g/cm^3) doped with I or Br for improved contrast, while the light material is a low-density (˜0.1 g/cm^3) C foam. The goal of the current experiments is to determine if contrast can be improved even further by replacing the foam with cryogenic deuterium, which has a density similar to the foam, but a lower x-ray opacity allowing clearer images, including images taken at late times in the evolution. Work performed under the auspices of the Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48.

  18. Structure changes in steels and hard metal induced by nanosecond and femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Dumitru, Gabriel; Romano, Valerio; Weber, Heinz P.; Haefke, Henry; Gerbig, Yvonne; Sentis, Marc L.; Hermann, Joerg; Bruneau, Sebastien

    2003-11-01

    Investigations on the occurrence of structure and hardness changes (for two sorts of steel and for a hard metal substrate) in the immediate vicinity of laser induced craters are presented in this work. Experiments with femtosecond pulses were performed in air with a Ti:sapphire laser (800 nm, 100 fs) at mean fluences of 2, 5 and 10 J/cm2. Series of microcraters were induced with 100 to 5,000 laser pulses per hole. Experiments with similar fluences, but 10 to 40 pules per hole, were performed on the same materials using a Nd:YAG delivering 100 ns pulese. After laser irradiation, cuts were made through the processed samples and the changes occurred in the crystalline structure of the target materials were evidenced by metallographical analysis of the resulting cross-sections. Hardness measurements were performed in points situated in the immediate vicinity of the laser-induced pores. Affected zones in the material surrounding laser induced pores were always found in the ns-regime, however with different properties for various laser parameters. In the fs-regime, zones of modified materials were also found and in such zones a significant hardness increasing was evidenced; the limit of the low fluences regime, where no structure changes occurred, was found to be slightly above 2 J/cm2.

  19. Performance of different theories for the angular distribution of bremsstrahlung produced by keV electrons incident upon a target

    NASA Astrophysics Data System (ADS)

    Omar, Artur; Andreo, Pedro; Poludniowski, Gavin

    2018-07-01

    Different theories of the intrinsic bremsstrahlung angular distribution (i.e., the shape function) have been evaluated using Monte Carlo calculations for various target materials and incident electron energies between 20 keV and 300 keV. The shape functions considered were the plane-wave first Born approximation cross sections (i) 2BS [high-energy result, screened nucleus], (ii) 2BN [general result, bare nucleus], (iii) KM [2BS modified to emulate 2BN], and (iv) SIM [leading term of 2BN]; (v) expression based on partial-waves expansion, KQP; and (vi) a uniform spherical distribution, UNI [a common approximation in certain analytical models]. The shape function was found to have an important impact on the bremsstrahlung emerging from thin foil targets in which the incident electrons undergo few elastic scatterings before exiting the target material. For thick transmission and reflection targets the type of shape function had less importance, as the intrinsic bremsstrahlung angular distribution was masked by the diffuse directional distribution of multiple scattered electrons. Predictions made using the 2BN and KQP theories were generally in good agreement, suggesting that the effect of screening and the constraints of the Born approximation on the intrinsic angular distribution may be acceptable. The KM and SIM shape functions deviated notably from KQP for low electron energies (< 50 keV), while 2BS and UNI performed poorly over most of the energy range considered; the 2BS shape function was found to be too forward-focused in emission, while UNI was not forward-focused enough. The results obtained emphasize the importance of the intrinsic bremsstrahlung angular distribution for theoretical predictions of x-ray emission, which is relevant in various applied disciplines, including x-ray crystallography, electron-probe microanalysis, security and industrial inspection, medical imaging, as well as low- and medium (orthovoltage) energy radiotherapy.

  20. Method for non-intrusively identifying a contained material utilizing uncollided nuclear transmission measurements

    DOEpatents

    Morrison, John L.; Stephens, Alan G.; Grover, S. Blaine

    2001-11-20

    An improved nuclear diagnostic method identifies a contained target material by measuring on-axis, mono-energetic uncollided particle radiation transmitted through a target material for two penetrating radiation beam energies, and applying specially developed algorithms to estimate a ratio of macroscopic neutron cross-sections for the uncollided particle radiation at the two energies, where the penetrating radiation is a neutron beam, or a ratio of linear attenuation coefficients for the uncollided particle radiation at the two energies, where the penetrating radiation is a gamma-ray beam. Alternatively, the measurements are used to derive a minimization formula based on the macroscopic neutron cross-sections for the uncollided particle radiation at the two neutron beam energies, or the linear attenuation coefficients for the uncollided particle radiation at the two gamma-ray beam energies. A candidate target material database, including known macroscopic neutron cross-sections or linear attenuation coefficients for target materials at the selected neutron or gamma-ray beam energies, is used to approximate the estimated ratio or to solve the minimization formula, such that the identity of the contained target material is discovered.

  1. A content analysis of preconception health education materials: characteristics, strategies, and clinical-behavioral components.

    PubMed

    Levis, Denise M; Westbrook, Kyresa

    2013-01-01

    Many health organizations and practitioners in the United States promote preconception health (PCH) to consumers. However, summaries and evaluations of PCH promotional activities are limited. We conducted a content analysis of PCH health education materials collected from local-, state-, national-, and federal-level partners by using an existing database of partners, outreach to maternal and child health organizations, and a snowball sampling technique. Not applicable. Not applicable. Thirty-two materials were included for analysis, based on inclusion/exclusion criteria. A codebook guided coding of materials' characteristics (type, authorship, language, cost), use of marketing and behavioral strategies to reach the target population (target audience, message framing, call to action), and inclusion of PCH subject matter (clinical-behavioral components). The self-assessment of PCH behaviors was the most common material (28%) to appear in the sample. Most materials broadly targeted women, and there was a near-equal distribution in targeting by pregnancy planning status segments (planners and nonplanners). "Practicing PCH benefits the baby's health" was the most common message frame used. Materials contained a wide range of clinical-behavioral components. Strategic targeting of subgroups of consumers is an important but overlooked strategy. More research is needed around PCH components, in terms of packaging and increasing motivation, which could guide use and placement of clinical-behavioral components within promotional materials.

  2. Computational screening of organic polymer dielectrics for novel accelerator technologies

    DOE PAGES

    Pilania, Ghanshyam; Weis, Eric; Walker, Ethan M.; ...

    2018-06-18

    The use of infrared lasers to power accelerating dielectric structures is a developing area of research. Within this technology, the choice of the dielectric material forming the accelerating structures, such as the photonic band gap (PBG) structures, is dictated by a range of interrelated factors including their dielectric and optical properties, amenability to photo-polymerization, thermochemical stability and other target performance metrics of the particle accelerator. In this direction, electronic structure theory aided computational screening and design of dielectric materials can play a key role in identifying potential candidate materials with the targeted functionalities to guide experimental synthetic efforts. In anmore » attempt to systematically understand the role of chemistry in controlling the electronic structure and dielectric properties of organic polymeric materials, here we employ empirical screening and density functional theory (DFT) computations, as a part of our multi-step hierarchal screening strategy. Our DFT based analysis focused on the bandgap, dielectric permittivity, and frequency-dependent dielectric losses due to lattice absorption as key properties to down-select promising polymer motifs. In addition to the specific application of dielectric laser acceleration, the general methodology presented here is deemed to be valuable in the design of new insulators with an attractive combination of dielectric properties.« less

  3. Effect of preparation conditions on the characteristics and photocatalytic activity of TiO2/purified diatomite composite photocatalysts

    NASA Astrophysics Data System (ADS)

    Sun, Zhiming; Hu, Zhibo; Yan, Yang; Zheng, Shuilin

    2014-09-01

    TiO2/purified diatomite composite materials were prepared through a modified hydrolysis-deposition method under low temperature using titanium tetrachloride as precursor combined with a calcination crystallization process. The microstructure and crystalline phases of the obtained composites prepared under different preparation conditions were characterized by high resolution scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The photocatalytic performance of TiO2/purified diatomite composites was evaluated by Rhodamine B as the target pollutant under UV irradiation, and the optimum preparation conditions of composites were obtained. The TiO2 crystal form in composites prepared under optimum conditions was anatase, the grain size of which was 34.12 nm. The relationships between structure and property of composite materials were analyzed and discussed. It is indicated that the TiO2 nanoparticles uniformly dispersed on the surface of diatoms, and the photocatalytic performance of the composite materials was mainly determined by the dispersity and grain size of loaded TiO2 nanoparticles.

  4. Real-time oxide evolution of copper protected by graphene and boron nitride barriers.

    PubMed

    Galbiati, M; Stoot, A C; Mackenzie, D M A; Bøggild, P; Camilli, L

    2017-01-09

    Applying protective or barrier layers to isolate a target item from the environment is a common approach to prevent or delay its degradation. The impermeability of two-dimensional materials such as graphene and hexagonal boron nitride (hBN) has generated a great deal of interest in corrosion and material science. Owing to their different electronic properties (graphene is a semimetal, whereas hBN is a wide-bandgap insulator), their protection behaviour is distinctly different. Here we investigate the performance of graphene and hBN as barrier coatings applied on copper substrates through a real-time study in two different oxidative conditions. Our findings show that the evolution of the copper oxidation is remarkably different for the two coating materials.

  5. Preliminary design of laser-induced breakdown spectroscopy for proto-Material Plasma Exposure eXperiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, G., E-mail: shawgc@ornl.gov; University of Tennessee, Knoxville, Tennessee 37996; Martin, M. Z.

    2014-11-15

    Laser-induced breakdown spectroscopy (LIBS) is a technique for measuring surface matter composition. LIBS is performed by focusing laser radiation onto a target surface, ablating the surface, forming a plasma, and analyzing the light produced. LIBS surface analysis is a possible diagnostic for characterizing plasma-facing materials in ITER. Oak Ridge National Laboratory has enabled the initial installation of a laser-induced breakdown spectroscopy diagnostic on the prototype Material-Plasma Exposure eXperiment (Proto-MPEX), which strives to mimic the conditions found at the surface of the ITER divertor. This paper will discuss the LIBS implementation on Proto-MPEX, preliminary design of the fiber optic LIBS collectionmore » probe, and the expected results.« less

  6. Design and manufacturing considerations for high-performance gimbals used for land, sea, air, and space

    NASA Astrophysics Data System (ADS)

    Sweeney, Mike; Redd, Lafe; Vettese, Tom; Myatt, Ray; Uchida, David; Sellers, Del

    2015-09-01

    High performance stabilized EO/IR surveillance and targeting systems are in demand for a wide variety of military, law enforcement, and commercial assets for land, sea, air, and space. Operating ranges, wavelengths, and angular resolution capabilities define the requirements for EO/IR optics and sensors, and line of sight stabilization. Many materials and design configurations are available for EO/IR pointing gimbals depending on trade-offs of size, weight, power (SWaP), performance, and cost. Space and high performance military aircraft applications are often driven toward expensive but exceptionally performing beryllium and aluminum beryllium components. Commercial applications often rely on aluminum and composite materials. Gimbal design considerations include achieving minimized mass and inertia simultaneous with demanding structural, thermal, optical, and scene stabilization requirements when operating in dynamic operational environments. Manufacturing considerations include precision lapping and honing of ball bearing interfaces, brazing, welding, and casting of complex aluminum and beryllium alloy structures, and molding of composite structures. Several notional and previously developed EO/IR gimbal platforms are profiled that exemplify applicable design and manufacturing technologies.

  7. Characteristics of W-26% Re Target Material(LCC-0103)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunwoo, A.

    2003-10-07

    The W-26 wt-% Re alloy was selected as a Stanford Linear Collider (SLC) target material for its exceptional physics properties and for the high strength and good ductility at the anticipated target operating temperatures, above the DBTT. After several years of operation, the target failed catastrophically. A detailed microstructural and mechanical characterization of the non-irradiated disk indicates that the material has been PM processed, nonuniformly mechanically worked and stress relieved. As a result, the ductility of the material varies through the thickness of the disk, making it difficult to determine the DBTT. The results of tensile and fatigue properties aremore » reported with the corresponding fractography of the fracture surfaces.« less

  8. Assessing the environmental performance of construction materials testing using EMS: An Australian study.

    PubMed

    Dejkovski, Nick

    2016-10-01

    This paper reports the audit findings of the waste management practices at 30 construction materials testing (CMT) laboratories (constituting 4.6% of total accredited CMT laboratories at the time of the audit) that operate in four Australian jurisdictions and assesses the organisation's Environmental Management System (EMS) for indicators of progress towards sustainable development (SD). In Australia, waste indicators are 'priority indicators' of environmental performance yet the quality and availability of waste data is poor. National construction and demolition waste (CDW) data estimates are not fully disaggregated and the contribution of CMT waste (classified as CDW) to the national total CDW landfill burden is difficult to quantify. The environmental and human impacts of anthropogenic release of hazardous substances contained in CMT waste into the ecosphere can be measured by construing waste indicators from the EMS. An analytical framework for evaluating the EMS is developed to elucidate CMT waste indicators and assess these indicators against the principle of proportionality. Assessing against this principle allows for: objective evaluations of whether the environmental measures prescribed in the EMS are 'proportionate' to the 'desired' (subjective) level of protection chosen by decision-makers; and benchmarking CMT waste indicators against aspirational CDW targets set by each Australian jurisdiction included in the audit. Construed together, the EMS derived waste indicators and benchmark data provide a composite indicator of environmental performance and progress towards SD. The key audit findings indicate: CMT laboratories have a 'poor' environmental performance (and overall progress towards SD) when EMS waste data are converted into indicator scores and assessed against the principle of proportionality; CMT waste recycling targets are lower when benchmarked against jurisdictional CDW waste recovery targets; and no significant difference in the average quantity of waste diversion away from landfill was observed for laboratories with ISO14001 EMS certification compared to non-ISO14001 certified laboratories. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. LIQUID TARGET

    DOEpatents

    Martin, M.D.; Salsig, W.W. Jr.

    1959-01-13

    A liquid handling apparatus is presented for a liquid material which is to be irradiated. The apparatus consists essentially of a reservoir for the liquid, a target element, a drain tank and a drain lock chamber. The target is in the form of a looped tube, the upper end of which is adapted to be disposed in a beam of atomic particles. The lower end of the target tube is in communication with the liquid in the reservoir and a means is provided to continuously circulate the liquid material to be irradiated through the target tube. Means to heat the reservoir tank is provided in the event that a metal is to be used as the target material. The apparatus is provided with suitable valves and shielding to provide maximum safety in operation.

  10. Very low pressure high power impulse triggered magnetron sputtering

    DOEpatents

    Anders, Andre; Andersson, Joakim

    2013-10-29

    A method and apparatus are described for very low pressure high powered magnetron sputtering of a coating onto a substrate. By the method of this invention, both substrate and coating target material are placed into an evacuable chamber, and the chamber pumped to vacuum. Thereafter a series of high impulse voltage pulses are applied to the target. Nearly simultaneously with each pulse, in one embodiment, a small cathodic arc source of the same material as the target is pulsed, triggering a plasma plume proximate to the surface of the target to thereby initiate the magnetron sputtering process. In another embodiment the plasma plume is generated using a pulsed laser aimed to strike an ablation target material positioned near the magnetron target surface.

  11. Responsive hybrid inorganic-organic system derived from lanthanide luminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Zhan; Zheng, Yuhui, E-mail: yhzheng78@scnu.edu.cn; Jiang, Lasheng

    2016-05-15

    Highlights: • A novel covalent hybrid material was used to detect hemoglobin. • All the recognition experiments were performed in buffer solution. • Porous nano-structures was extensively studied for the recognition. - Abstract: Terbium ions were incorporated into new organic-inorganic matrices to achieve intense green emissions. Hemoglobin (HB) interactions lead to dramatic changes in the luminescence emission intensities. Infrared spectra, morphological studies and photoluminescence give information for the speciation and process of hemoglobin additions. The porous material has a large specific surface area of 351 cm{sup 2}/g and the detection limit for HB (0.7 μM) was much lower than itsmore » physical doped material (8 μM). This promising hybrid material will lead to the design of versatile optical probes that are efficiently responding to the external targets.« less

  12. Performance of novel polymer shields aboard the ESA Biopan-5 mission

    NASA Astrophysics Data System (ADS)

    Hajek, M.; Berger, T.; Fugger, M.; Vana, N.

    Radiation exposure of astronaut crew has been identified as a key issue in human spaceflight The reduction of dose by appropriate shielding measures is thus donated an essential role for the future development of space exploration particularly with regard to long-term interplanetary missions Optimization of shielding strategies and design may involve polymeric materials with enhanced hydrogen content specifically developed to attenuate high charge-and-energy HZE particles such as those encountered in galactic cosmic rays GCR The projectile energy loss is proportional to rho cdot Z A and reaches a maximum for hydrogen targets Light elements are also expected to minimize target fragmentation particularly the production of secondary neutrons The LETVAR experiment flow aboard the European Space Agency ESA Biopan-5 mission as part of a 27 kg payload attached to the external surface of the Foton-M2 descent capsule was dedicated to studying the shielding performance of three different polymers in reference to aluminium when exposed to the unshielded space environment in low-earth orbit LEO The mission was launched successfully on May 31 2005 from the Baikonur Cosmodrome Kazakhstan and spent 15 6 days at an orbital altitude between 262 and 304 km inclined by 63 r to the equatorial plane After recovery absorbed dose and average linear energy transfer LET were determined in front and behind the material slabs To support data interpretation material samples equivalent to those flown in space were exposed---to the extent possible

  13. On the feasibility to perform integral transmission experiments in the GELINA target hall at IRMM

    NASA Astrophysics Data System (ADS)

    Leconte, Pierre; Jean, Cyrille De Saint; Geslot, Benoit; Plompen, Arjan; Belloni, Francesca; Nyman, Markus

    2017-09-01

    Shielding experiments are relevant to validate elastic and inelastic scattering cross sections in the fast energy range. In this paper, we are focusing on the possibility to use the pulsed white neutron time-of-flight facility GELINA to perform this kind of measurement. Several issues need to be addressed: neutron source intensity, room return effect, distance of the materials to be irradiated from the source, and the sensitivity of various reaction rate distributions through the material to different input cross sections. MCNP6 and TRIPOLI4 calculations of the outgoing neutron spectrum are compared, based on electron/positron/gamma/neutron simulations. A first guess of an integral transmission experiment through a 238U slab is considered. It shows that a 10 cm thickness of uranium is sufficient to reach a high sensitivity to the 238U inelastic scattering cross section in the [2-5 MeV] energy range, with small contributions from elastic and fission cross sections. This experiment would contribute to reduce the uncertainty on this nuclear data, which has a significant impact on the power distribution in large commercial reactors. Other materials that would be relevant for the ASTRID 4th generation prototype reactor are also tested, showing that a sufficient sensitivity to nuclear data would be obtained by using a 50 to 100cm thick slab of side 60x60cm. This study concludes on the feasibility and interest of such experiments in the target hall of the GELINA facility.

  14. EVALUATING MC AND A EFFECTIVENESS TO VERIFY THE PRESENCE OF NUCLEAR MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. G. DAWSON; J. A MORZINSKI; ET AL

    Traditional materials accounting is focused exclusively on the material balance area (MBA), and involves periodically closing a material balance based on accountability measurements conducted during a physical inventory. In contrast, the physical inventory for Los Alamos National Laboratory's near-real-time accounting system is established around processes and looks more like an item inventory. That is, the intent is not to measure material for accounting purposes, since materials have already been measured in the normal course of daily operations. A given unit process operates many times over the course of a material balance period. The product of a given unit process maymore » move for processing within another unit process in the same MBA or may be transferred out of the MBA. Since few materials are unmeasured the physical inventory for a near-real-time process area looks more like an item inventory. Thus, the intent of the physical inventory is to locate the materials on the books and verify information about the materials contained in the books. Closing a materials balance for such an area is a matter of summing all the individual mass balances for the batches processed by all unit processes in the MBA. Additionally, performance parameters are established to measure the program's effectiveness. Program effectiveness for verifying the presence of nuclear material is required to be equal to or greater than a prescribed performance level, process measurements must be within established precision and accuracy values, physical inventory results meet or exceed performance requirements, and inventory differences are less than a target/goal quantity. This approach exceeds DOE established accounting and physical inventory program requirements. Hence, LANL is committed to this approach and to seeking opportunities for further improvement through integrated technologies. This paper will provide a detailed description of this evaluation process.« less

  15. Thermodynamic efficiency of nonimaging concentrators

    NASA Astrophysics Data System (ADS)

    Shatz, Narkis; Bortz, John; Winston, Roland

    2009-08-01

    The purpose of a nonimaging concentrator is to transfer maximal flux from the phase space of a source to that of a target. A concentrator's performance can be expressed relative to a thermodynamic reference. We discuss consequences of Fermat's principle of geometrical optics. We review étendue dilution and optical loss mechanisms associated with nonimaging concentrators, especially for the photovoltaic (PV) role. We introduce the concept of optical thermodynamic efficiency which is a performance metric combining the first and second laws of thermodynamics. The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. Examples are provided to illustrate the use of this new metric. In particular we discuss concentrating PV systems for solar power applications.

  16. Determination of radionuclides and radiochemical impurities produced by in-house cyclotron irradiation and subsequent radiosynthesis of PET tracers.

    PubMed

    Ishiwata, Kiichi; Hayashi, Kunpei; Sakai, Masanari; Kawauchi, Sugio; Hasegawa, Hideaki; Toyohara, Jun

    2017-01-01

    To elucidate the radionuclides and radiochemical impurities included in radiosynthesis processes of positron emission tomography (PET) tracers. Target materials and PET tracers were produced using a cyclotron/synthesis system from Sumitomo Heavy Industry. Positron and γ-ray emitting radionuclides were quantified by measuring radioactivity decay and using the high-purity Ge detector, respectively. Radiochemical species in gaseous and aqueous target materials were analyzed by gas and ion chromatography, respectively. Target materials had considerable levels of several positron emitters in addition to the positron of interest, and in the case of aqueous target materials extremely low levels of many γ-emitters. Five 11 C-, 15 O-, or 18 F-labeled tracers produced from gaseous materials via chemical reactions had no radionuclidic impurities, whereas 18 F-FDG, 18 F-NaF, and 13 N-NH 3 produced from aqueous materials had several γ-emitters as well as impure positron emitters. 15 O-Labeled CO 2 , O 2 , and CO had a radionuclidic impurity 13 N-N 2 (0.5-0.7 %). Target materials had several positron emitters other than the positron of interest, and extremely low level γ-emitters in the case of aqueous materials. PET tracers produced from gaseous materials except for 15 O-labeled gases had no impure radionuclides, whereas those derived from aqueous materials contained acceptable levels of impure positron emitters and extremely low levels of several γ-emitters.

  17. Dual-colored graphene quantum dots-labeled nanoprobes/graphene oxide: functional carbon materials for respective and simultaneous detection of DNA and thrombin

    NASA Astrophysics Data System (ADS)

    Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Chen, Jian Rong; Feng, Hui

    2014-10-01

    Convenient and simultaneous detection of multiple biomarkers such as DNA and proteins with biocompatible materials and good analytical performance still remains a challenge. Herein, we report the respective and simultaneous detection of DNA and bovine α-thrombin (thrombin) entirely based on biocompatible carbon materials through a specially designed fluorescence on-off-on process. Colorful fluorescence, high emission efficiency, good photostability and excellent compatibility enables graphene quantum dots (GQDs) as the best choice for fluorophores in bioprobes, and thus two-colored GQDs as labeling fluorophores were chemically bonded with specific oligonucleotide sequence and aptamer to prepare two probes targeting the DNA and thrombin, respectively. Each probe can be assembled on the graphene oxide (GO) platform spontaneously by π-π stacking and electrostatic attraction; as a result, fast electron transfer in the assembly efficiently quenches the fluorescence of probe. The presence of DNA or thrombin can trigger the self-recognition between capturing a nucleotide sequence and its target DNA or between thrombin and its aptamer due to their specific hybridization and duplex DNA structures or the formation of apatamer-substrate complex, which is taken advantage of in order to achieve a separate quantitative analysis of DNA and thrombin. A dual-functional biosensor for simultaneous detection of DNA and thrombin was also constructed by self-assembly of two probes with distinct colors and GO platform, and was further evaluated with the presence of various concentrations of DNA and thrombin. Both biosensors serving as a general detection model for multiple species exhibit outstanding analytical performance, and are expected to be applied in vivo because of the excellent biocompatibility of their used materials.

  18. Proposed industrial recovered materials utilization targets for the metals and metal products industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1979-05-01

    Set targets for increased utilization of energy-saving recovered materials in the metals and metal products industries (ferrous, aluminium, copper, zinc, and lead) are discussed. Data preparation and methodology development and analysis of the technological and economic factors in order to prepare draft targets for the use of recovered materials are covered. Chapter 2 provides an introductory discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33, including industry structure, process technology, materials and recyclingmore » flow, and future trends for the 5 industries: ferrous, aluminium, copper, zinc, and lead. Chapter 4 presents the evaluation of recycling targets for those industries. (MCW)« less

  19. Remote liquid target loading system for LANL two-stage gas gun

    NASA Astrophysics Data System (ADS)

    Gibson, L. L.; Bartram, B.; Dattelbaum, D. M.; Sheffield, S. A.; Stahl, D. B.

    2009-06-01

    A Remote Liquid Loading System (RLLS) was designed to load high hazard liquid materials into targets for gas-gun driven impact experiments. These high hazard liquids tend to react with confining materials in a short period of time, degrading target assemblies and potentially building up pressure through the evolution of gas in the reactions. Therefore, the ability to load a gas gun target in place immediately prior to firing the gun, provides the most stable and reliable target fielding approach. We present the design and evaluation of a RLLS built for the LANL two-stage gas gun. Targets for the gun are made of PMMA and assembled to form a liquid containment cell with a volume of approximately 25 cc. The compatibility of materials was a major consideration in the design of the system, particularly for its use with highly concentrated hydrogen peroxide. Teflon and 304-stainless steel were the two most compatible materials with the materials to be tested. Teflon valves and tubing, as well as stainless steel tubing, were used to handle the liquid, along with a stainless steel reservoir. Preliminary testing was done to ensure proper flow rate and safety. The system has been used to successfully load 97.5 percent hydrogen peroxide into a target cell just prior to a successful multiple magnetic gauge experiment. TV cameras on the target verified the bubble-free filling operation.

  20. Synthesis of lithium nitride for neutron production target of BNCT by in situ lithium deposition and ion implantation

    NASA Astrophysics Data System (ADS)

    Ishiyama, S.; Baba, Y.; Fujii, R.; Nakamura, M.; Imahori, Y.

    2012-12-01

    To achieve high performance of BNCT (Boron Neutron Capture Therapy) device, Li3N/Li/Pd/Cu four layered Li target was designed and the structures of the synthesized four layered target were characterized by X-ray photoelectron spectroscopy. For the purpose of avoiding the radiation blistering and lithium evaporation, in situ vacuum deposition and nitridation techniques were established for in situ production and repairing maintenance of the lithium target. Following conclusions were derived: Uniform lithium layer of a few hundreds nanometer was formed on Pd/Cu multilayer surface by in situ vacuum deposition technique using metallic lithium as a source material. Lithium nitrides were formed by in situ nitridation reaction by the implantation of low-energy nitrogen ions on the deposited lithium layer surface. The chemical states of the nitridated zone were close to the stoichiometric lithium nitride, Li3N. This nitridated zone formed on surface of four layered lithium target is stable for a long time in air condition. The in situ nitridation is effective to protect lithium target from degradation by unfavorable reactions.

  1. The utility of multiple synthesized views in the recognition of unfamiliar faces.

    PubMed

    Jones, Scott P; Dwyer, Dominic M; Lewis, Michael B

    2017-05-01

    The ability to recognize an unfamiliar individual on the basis of prior exposure to a photograph is notoriously poor and prone to errors, but recognition accuracy is improved when multiple photographs are available. In applied situations, when only limited real images are available (e.g., from a mugshot or CCTV image), the generation of new images might provide a technological prosthesis for otherwise fallible human recognition. We report two experiments examining the effects of providing computer-generated additional views of a target face. In Experiment 1, provision of computer-generated views supported better target face recognition than exposure to the target image alone and equivalent performance to that for exposure of multiple photograph views. Experiment 2 replicated the advantage of providing generated views, but also indicated an advantage for multiple viewings of the single target photograph. These results strengthen the claim that identifying a target face can be improved by providing multiple synthesized views based on a single target image. In addition, our results suggest that the degree of advantage provided by synthesized views may be affected by the quality of synthesized material.

  2. Mercury Cavitation Phenomenon in Pulsed Spallation Neutron Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futakawa, Masatoshi; Naoe, Takashi; Kawai, Masayoshi

    2008-06-24

    Innovative researches will be performed at Materials and Life Science Experimental Facility in J-PARC, in which a mercury target system will be installed as MW-class pulse spallation neutron sources. Proton beams will be injected into mercury target to induce the spallation reaction. At the moment the intense proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall. Localized impacts by micro-jets and/or shock waves which are caused by cavitation bubble collapse imposemore » pitting damage on the vessel wall. The pitting damage which degrades the structural integrity of target vessels is a crucial issue for high power mercury targets. Micro-gas-bubbles injection into mercury may be useful to mitigate the pressure wave and the pitting damage. The visualization of cavitation-bubble and gas-bubble collapse behaviors was carried out by using a high-speed video camera. The differences between them are recognized.« less

  3. On FAST3D simulations of directly-driven inertial-fusion targets with high-Z layers for reducing laser imprint and surface non-uniformity growth

    NASA Astrophysics Data System (ADS)

    Bates, Jason; Schmitt, Andrew; Klapisch, Marcel; Karasik, Max; Obenschain, Steve

    2013-10-01

    Modifications to the FAST3D code have been made to enhance its ability to simulate the dynamics of plastic ICF targets with high-Z overcoats. This class of problems is challenging computationally due in part to plasma conditions that are not in a state of local thermodynamic equilibrium and to the presence of mixed computational cells containing more than one material. Recently, new opacity tables for gold, palladium and plastic have been generated with an improved version of the STA code. These improved tables provide smoother, higher-fidelity opacity data over a wider range of temperature and density states than before, and contribute to a more accurate treatment of radiative transfer processes in FAST3D simulations. Furthermore, a new, more efficient subroutine known as ``MMEOS'' has been installed in the FAST3D code for determining pressure and temperature equilibrium conditions within cells containing multiple materials. We will discuss these topics, and present new simulation results for high-Z planar-target experiments performed recently on the NIKE Laser Facility. Work supported by DOE/NNSA.

  4. Automatic graphene transfer system for improved material quality and efficiency

    PubMed Central

    Boscá, Alberto; Pedrós, Jorge; Martínez, Javier; Palacios, Tomás; Calle, Fernando

    2016-01-01

    In most applications based on chemical vapor deposition (CVD) graphene, the transfer from the growth to the target substrate is a critical step for the final device performance. Manual procedures are time consuming and depend on handling skills, whereas existing automatic roll-to-roll methods work well for flexible substrates but tend to induce mechanical damage in rigid ones. A new system that automatically transfers CVD graphene to an arbitrary target substrate has been developed. The process is based on the all-fluidic manipulation of the graphene to avoid mechanical damage, strain and contamination, and on the combination of capillary action and electrostatic repulsion between the graphene and its container to ensure a centered sample on top of the target substrate. The improved carrier mobility and yield of the automatically transferred graphene, as compared to that manually transferred, is demonstrated by the optical and electrical characterization of field-effect transistors fabricated on both materials. In particular, 70% higher mobility values, with a 30% decrease in the unintentional doping and a 10% strain reduction are achieved. The system has been developed for lab-scale transfer and proved to be scalable for industrial applications. PMID:26860260

  5. Dynamic Behavior of Sand: Annual Report FY 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoun, T; Herbold, E; Johnson, S

    2012-03-15

    Currently, design of earth-penetrating munitions relies heavily on empirical relationships to estimate behavior, making it difficult to design novel munitions or address novel target situations without expensive and time-consuming full-scale testing with relevant system and target characteristics. Enhancing design through numerical studies and modeling could help reduce the extent and duration of full-scale testing if the models have enough fidelity to capture all of the relevant parameters. This can be separated into three distinct problems: that of the penetrator structural and component response, that of the target response, and that of the coupling between the two. This project focuses onmore » enhancing understanding of the target response, specifically granular geomaterials, where the temporal and spatial multi-scale nature of the material controls its response. As part of the overarching goal of developing computational capabilities to predict the performance of conventional earth-penetrating weapons, this project focuses specifically on developing new models and numerical capabilities for modeling sand response in ALE3D. There is general recognition that granular materials behave in a manner that defies conventional continuum approaches which rely on response locality and which degrade in the presence of strong response nonlinearities, localization, and phase gradients. There are many numerical tools available to address parts of the problem. However, to enhance modeling capability, this project is pursuing a bottom-up approach of building constitutive models from higher fidelity, smaller spatial scale simulations (rather than from macro-scale observations of physical behavior as is traditionally employed) that are being augmented to address the unique challenges of mesoscale modeling of dynamically loaded granular materials. Through understanding response and sensitivity at the grain-scale, it is expected that better reduced order representations of response can be formulated at the continuum scale as illustrated in Figure 1 and Figure 2. The final result of this project is to implement such reduced order models in the ALE3D material library for general use.« less

  6. Development of a 3D muon disappearance algorithm for muon scattering tomography

    NASA Astrophysics Data System (ADS)

    Blackwell, T. B.; Kudryavtsev, V. A.

    2015-05-01

    Upon passing through a material, muons lose energy, scatter off nuclei and atomic electrons, and can stop in the material. Muons will more readily lose energy in higher density materials. Therefore multiple muon disappearances within a localized volume may signal the presence of high-density materials. We have developed a new technique that improves the sensitivity of standard muon scattering tomography. This technique exploits these muon disappearances to perform non-destructive assay of an inspected volume. Muons that disappear have their track evaluated using a 3D line extrapolation algorithm, which is in turn used to construct a 3D tomographic image of the inspected volume. Results of Monte Carlo simulations that measure muon disappearance in different types of target materials are presented. The ability to differentiate between different density materials using the 3D line extrapolation algorithm is established. Finally the capability of this new muon disappearance technique to enhance muon scattering tomography techniques in detecting shielded HEU in cargo containers has been demonstrated.

  7. In-Bore 3-T MR-guided Transrectal Targeted Prostate Biopsy: Prostate Imaging Reporting and Data System Version 2–based Diagnostic Performance for Detection of Prostate Cancer

    PubMed Central

    Tan, Nelly; Lin, Wei-Chan; Khoshnoodi, Pooria; Asvadi, Nazanin H.; Yoshida, Jeffrey; Margolis, Daniel J. A.; Lu, David S. K.; Wu, Holden; Lu, David Y.; Huang, Jaioti

    2017-01-01

    Purpose To determine the diagnostic yield of in-bore 3-T magnetic resonance (MR) imaging–guided prostate biopsy and stratify performance according to Prostate Imaging Reporting and Data System (PI-RADS) versions 1 and 2. Materials and Methods This study was HIPAA compliant and institution review board approved. In-bore 3-T MR-guided prostate biopsy was performed in 134 targets in 106 men who (a) had not previously undergone prostate biopsy, (b) had prior negative biopsy findings with increased prostate-specific antigen (PSA) level, or (c) had a prior history of prostate cancer with increasing PSA level. Clinical, diagnostic 3-T MR imaging was performed with in-bore guided prostate biopsy, and pathology data were collected. The diagnostic yields of MR-guided biopsy per patient and target were analyzed, and differences between biopsy targets with negative and positive findings were determined. Results of logistic regression and areas under the curve were compared between PI-RADS versions 1 and 2. Results Prostate cancer was detected in 63 of 106 patients (59.4%) and in 72 of 134 targets (53.7%) with 3-T MR imaging. Forty-nine of 72 targets (68.0%) had clinically significant cancer (Gleason score ≥ 7). One complication occurred (urosepsis, 0.9%). Patients who had positive target findings had lower apparent diffusion coefficient values (875 × 10−6 mm2/sec vs 1111 × 10−6 mm2/sec, respectively; P < .01), smaller prostate volume (47.2 cm3 vs 75.4 cm3, respectively; P < .01), higher PSA density (0.16 vs 0.10, respectively; P < .01), and higher proportion of PI-RADS version 2 category 3–5 scores when compared with patients with negative target findings. MR targets with PI-RADS version 2 category 2, 3, 4, and 5 scores had a positive diagnostic yield of three of 23 (13.0%), six of 31 (19.4%), 39 of 50 (78.0%), and 24 of 29 (82.8%) targets, respectively. No differences were detected in areas under the curve for PI-RADS version 2 versus 1. Conclusion In-bore 3-T MR-guided biopsy is safe and effective for prostate cancer diagnosis when stratified according to PI-RADS versions 1 and 2. ©RSNA, 2016 PMID:27861110

  8. Advanced functional materials in solid phase extraction for ICP-MS determination of trace elements and their species - A review.

    PubMed

    He, Man; Huang, Lijin; Zhao, Bingshan; Chen, Beibei; Hu, Bin

    2017-06-22

    For the determination of trace elements and their species in various real samples by inductively coupled plasma mass spectrometry (ICP-MS), solid phase extraction (SPE) is a commonly used sample pretreatment technique to remove complex matrix, pre-concentrate target analytes and make the samples suitable for subsequent sample introduction and measurements. The sensitivity, selectivity/anti-interference ability, sample throughput and application potential of the methodology of SPE-ICP-MS are greatly dependent on SPE adsorbents. This article presents a general overview of the use of advanced functional materials (AFMs) in SPE for ICP-MS determination of trace elements and their species in the past decade. Herein the AFMs refer to the materials featuring with high adsorption capacity, good selectivity, fast adsorption/desorption dynamics and satisfying special requirements in real sample analysis, including nanometer-sized materials, porous materials, ion imprinting polymers, restricted access materials and magnetic materials. Carbon/silica/metal/metal oxide nanometer-sized adsorbents with high surface area and plenty of adsorption sites exhibit high adsorption capacity, and porous adsorbents would provide more adsorption sites and faster adsorption dynamics. The selectivity of the materials for target elements/species can be improved by using physical/chemical modification, ion imprinting and restricted accessed technique. Magnetic adsorbents in conventional batch operation offer unique magnetic response and high surface area-volume ratio which provide a very easy phase separation, greater extraction capacity and efficiency over conventional adsorbents, and chip-based magnetic SPE provides a versatile platform for special requirement (e.g. cell analysis). The performance of these adsorbents for the determination of trace elements and their species in different matrices by ICP-MS is discussed in detail, along with perspectives and possible challenges in the future development. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Computational design of high efficiency release targets for use at ISOL facilities

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Alton, G. D.; Middleton, J. W.

    1999-06-01

    This report describes efforts made at the Oak Ridge National Laboratory to design high-efficiency-release targets that simultaneously incorporate the short diffusion lengths, high permeabilities, controllable temperatures, and heat removal properties required for the generation of useful radioactive ion beam (RIB) intensities for nuclear physics and astrophysics research using the isotope separation on-line (ISOL) technique. Short diffusion lengths are achieved either by using thin fibrous target materials or by coating thin layers of selected target material onto low-density carbon fibers such as reticulated vitreous carbon fiber (RVCF) or carbon-bonded-carbon-fiber (CBCF) to form highly permeable composite target matrices. Computational studies which simulate the generation and removal of primary beam deposited heat from target materials have been conducted to optimize the design of target/heat-sink systems for generating RIBs. The results derived from diffusion release-rate simulation studies for selected targets and thermal analyses of temperature distributions within a prototype target/heat-sink system subjected to primary ion beam irradiation will be presented in this report.

  10. High-efficiency-release targets for use at ISOL facilities: computational design

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Alton, G. D.

    1999-12-01

    This report describes efforts made at the Oak Ridge National Laboratory to design high-efficiency-release targets that simultaneously incorporate the short diffusion lengths, high permeabilities, controllable temperatures, and heat-removal properties required for the generation of useful radioactive ion beam (RIB) intensities for nuclear physics and astrophysics research using the isotope separation on-line (ISOL) technique. Short diffusion lengths are achieved either by using thin fibrous target materials or by coating thin layers of selected target material onto low-density carbon fibers such as reticulated-vitreous-carbon fiber (RVCF) or carbon-bonded-carbon fiber (CBCF) to form highly permeable composite target matrices. Computational studies that simulate the generation and removal of primary beam deposited heat from target materials have been conducted to optimize the design of target/heat-sink systems for generating RIBs. The results derived from diffusion release-rate simulation studies for selected targets and thermal analyses of temperature distributions within a prototype target/heat-sink system subjected to primary ion beam irradiation are presented in this report.

  11. Biologically templated assembly of hybrid semiconducting nanomesh for high performance field effect transistors and sensors

    NASA Astrophysics Data System (ADS)

    Byeon, Hye-Hyeon; Lee, Seung-Woo; Lee, Eun-Hee; Kim, Woong; Yi, Hyunjung

    2016-10-01

    Delicately assembled composites of semiconducting nanomaterials and biological materials provide an attractive interface for emerging applications, such as chemical/biological sensors, wearable health monitoring devices, and therapeutic agent releasing devices. The nanostructure of composites as a channel and a sensing material plays a critical role in the performance of field effect transistors (FETs). Therefore, it is highly desirable to prepare elaborate composite that can allow the fabrication of high performance FETs and also provide high sensitivity and selectivity in detecting specific chemical/biological targets. In this work, we demonstrate that high performance FETs can be fabricated with a hydrodynamically assembled composite, a semiconducting nanomesh, of semiconducting single-walled carbon nanotubes (S-SWNTs) and a genetically engineered M13 phage to show strong binding affinity toward SWNTs. The semiconducting nanomesh enables a high on/off ratio (~104) of FETs. We also show that the threshold voltage and the channel current of the nanomesh FETs are sensitive to the change of the M13 phage surface charge. This biological gate effect of the phage enables the detection of biologically important molecules such as dopamine and bisphenol A using nanomesh-based FETs. Our results provide a new insight for the preparation of composite material platform for highly controllable bio/electronics interfaces.

  12. Characterization of 3 mm glass electrodes and development of RPC detectors for INO-ICAL experiment

    NASA Astrophysics Data System (ADS)

    Kaur, Daljeet; Kumar, Ashok; Gaur, Ankit; Kumar, Purnendu; Hasbuddin, Md.; Mishra, Swati; Kumar, Praveen; Naimuddin, Md.

    2015-02-01

    India-based Neutrino Observatory (INO) is a multi-institutional facility, planned to be built up in South India. The INO facility will host a 51 kton magnetized Iron CALorimeter (ICAL) detector to study atmospheric muon neutrinos. Iron plates have been chosen as the target material whereas Resistive Plate Chambers (RPCs) have been chosen as the active detector element for the ICAL experiment. Due to the large number of RPCs needed ( 28,000 of 2 m×2 m in size) for ICAL experiment and for the long lifetime of the experiment, it is necessary to perform a detailed R&D such that each and every parameter of the detector performance can be optimized to improve the physics output. In this paper, we report on the detailed material and electrical properties studies for various types of glass electrodes available locally. We also report on the performance studies carried out on the RPCs made with these electrodes as well as the effect of gas composition and environmental temperature on the detector performance. We also lay emphasis on the usage of materials for RPC electrodes and the suitable environmental conditions applicable for operating the RPC detector for optimal physics output at INO-ICAL experiment.

  13. Evaluation of a Thermoprotective Gel for Hydrodissection During Percutaneous Microwave Ablation: In Vivo Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Anna J., E-mail: ajmoreland@gmail.com; Lubner, Meghan G., E-mail: mlubner@uwhealth.org; Ziemlewicz, Timothy J., E-mail: tziemlewicz@uwhealth.org

    2015-06-15

    PurposeTo evaluate whether thermoreversible poloxamer 407 15.4 % in water (P407) can protect non-target tissues adjacent to microwave (MW) ablation zones in a porcine model.Materials and MethodsMW ablation antennas were placed percutaneously into peripheral liver, spleen, or kidney (target tissues) under US and CT guidance in five swine such that the expected ablation zones would extend into adjacent diaphragm, body wall, or bowel (non-target tissues). For experimental ablations, P407 (a hydrogel that transitions from liquid at room temperature to semi-solid at body temperature) was injected into the potential space between target and non-target tissues, and the presence of a gel barriermore » was verified on CT. No barrier was used for controls. MW ablation was performed at 65 W for 5 min. Thermal damage to target and non-target tissues was evaluated at dissection.ResultsAntennas were placed 7 ± 3 mm from the organ surface for both control and gel-protected ablations (p = 0.95). The volume of gel deployed was 49 ± 27 mL, resulting in a barrier thickness of 0.8 ± 0.5 cm. Ablations extended into non-target tissues in 12/14 control ablations (mean surface area = 3.8 cm{sup 2}) but only 4/14 gel-protected ablations (mean surface area = 0.2 cm{sup 2}; p = 0.0005). The gel barrier remained stable at the injection site throughout power delivery.ConclusionWhen used as a hydrodissection material, P407 protected non-targeted tissues and was successfully maintained at the injection site for the duration of power application. Continued investigations to aid clinical translation appear warranted.« less

  14. Chromatographic extraction with di(2-ethylhexyl)orthophosphoric acid for production and purification of promethium-147

    DOEpatents

    Boll, Rose A [Knoxville, TN; Mirzadeh, Saed [Knoxville, TN

    2008-10-14

    A method of producing and purifying promethium-147 including the steps of: irradiating a target material including neodymium-146 with neutrons to produce promethium-147 within the irradiated target material; dissolving the irradiated target material to form an acidic solution; loading the acidic solution onto a chromatographic separation apparatus containing HDEHP; and eluting the apparatus to chromatographically separate the promethium-147 from the neodymium-146.

  15. High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery.

    PubMed

    Yang, Jun; Sudik, Andrea; Wolverton, Christopher; Siegel, Donald J

    2010-02-01

    Widespread adoption of hydrogen as a vehicular fuel depends critically upon the ability to store hydrogen on-board at high volumetric and gravimetric densities, as well as on the ability to extract/insert it at sufficiently rapid rates. As current storage methods based on physical means--high-pressure gas or (cryogenic) liquefaction--are unlikely to satisfy targets for performance and cost, a global research effort focusing on the development of chemical means for storing hydrogen in condensed phases has recently emerged. At present, no known material exhibits a combination of properties that would enable high-volume automotive applications. Thus new materials with improved performance, or new approaches to the synthesis and/or processing of existing materials, are highly desirable. In this critical review we provide a practical introduction to the field of hydrogen storage materials research, with an emphasis on (i) the properties necessary for a viable storage material, (ii) the computational and experimental techniques commonly employed in determining these attributes, and (iii) the classes of materials being pursued as candidate storage compounds. Starting from the general requirements of a fuel cell vehicle, we summarize how these requirements translate into desired characteristics for the hydrogen storage material. Key amongst these are: (a) high gravimetric and volumetric hydrogen density, (b) thermodynamics that allow for reversible hydrogen uptake/release under near-ambient conditions, and (c) fast reaction kinetics. To further illustrate these attributes, the four major classes of candidate storage materials--conventional metal hydrides, chemical hydrides, complex hydrides, and sorbent systems--are introduced and their respective performance and prospects for improvement in each of these areas is discussed. Finally, we review the most valuable experimental and computational techniques for determining these attributes, highlighting how an approach that couples computational modeling with experiments can significantly accelerate the discovery of novel storage materials (155 references).

  16. Targeted Injection of a Biocomposite Material Alters Macrophage and Fibroblast Phenotype and Function following Myocardial Infarction: Relation to Left Ventricular Remodeling

    PubMed Central

    McGarvey, Jeremy R.; Pettaway, Sara; Shuman, James A.; Novack, Craig P.; Zellars, Kia N.; Freels, Parker D.; Echols, Randall L.; Burdick, Jason A.; Gorman, Joseph H.; Gorman, Robert C.

    2014-01-01

    A treatment target for progressive left ventricular (LV) remodeling prevention following myocardial infarction (MI) is to affect structural changes directly within the MI region. One approach is through targeted injection of biocomposite materials, such as calcium hydroxyapatite microspheres (CHAM), into the MI region. In this study, the effects of CHAM injections upon key cell types responsible for the MI remodeling process, the macrophage and fibroblast, were examined. MI was induced in adult pigs before randomization to CHAM injections (20 targeted 0.1-ml injections within MI region) or saline. At 7 or 21 days post-MI (n = 6/time point per group), cardiac magnetic resonance imaging was performed, followed by macrophage and fibroblast isolation. Isolated macrophage profiles for monocyte chemotactic macrophage inflammatory protein-1 as measured by real-time polymerase chain reaction increased at 7 days post-MI in the CHAM group compared with MI only (16.3 ± 6.6 versus 1.7 ± 0.6 cycle times values, P < 0.05), and were similar by 21 days post-MI. Temporal changes in fibroblast function and smooth muscle actin (SMA) expression relative to referent control (n = 5) occurred with MI. CHAM induced increases in fibroblast proliferation, migration, and SMA expression—indicative of fibroblast transformation. By 21 days, CHAM reduced LV dilation (diastolic volume: 75 ± 2 versus 97 ± 4 ml) and increased function (ejection fraction: 48 ± 2% versus 38 ± 2%) compared with MI only (both P < 0.05). This study identified that effects on macrophage and fibroblast differentiation occurred with injection of biocomposite material within the MI, which translated into reduced adverse LV remodeling. These unique findings demonstrate that biomaterial injections impart biologic effects upon the MI remodeling process over any biophysical effects. PMID:25022514

  17. Target materials for exotic ISOL beams

    NASA Astrophysics Data System (ADS)

    Gottberg, A.

    2016-06-01

    The demand for intensity, purity, reliability and availability of short-lived isotopes far from stability is steadily high, and considerably exceeding the supply. In many cases the ISOL (Isotope Separation On-Line) method can provide beams of high intensity and purity. Limitations in terms of accessible chemical species and minimum half-life are driven mainly by chemical reactions and physical processes inside of the thick target. A wide range of materials are in use, ranging from thin metallic foils and liquids to refractory ceramics, while poly-phasic mixed uranium carbides have become the reference target material for most ISOL facilities world-wide. Target material research and development is often complex and especially important post-irradiation analyses are hindered by the high intrinsic radiotoxicity of these materials. However, recent achievements have proven that these investigations are possible if the effort of different facilities is combined, leading to the development of new material matrices that can supply new beams of unprecedented intensity and beam current stability.

  18. Biomining of MoS2 with Peptide-based Smart Biomaterials.

    PubMed

    Cetinel, Sibel; Shen, Wei-Zheng; Aminpour, Maral; Bhomkar, Prasanna; Wang, Feng; Borujeny, Elham Rafie; Sharma, Kumakshi; Nayebi, Niloofar; Montemagno, Carlo

    2018-02-20

    Biomining of valuable metals using a target specific approach promises increased purification yields and decreased cost. Target specificity can be implemented with proteins/peptides, the biological molecules, responsible from various structural and functional pathways in living organisms by virtue of their specific recognition abilities towards both organic and inorganic materials. Phage display libraries are used to identify peptide biomolecules capable of specifically recognizing and binding organic/inorganic materials of interest with high affinities. Using combinatorial approaches, these molecular recognition elements can be converted into smart hybrid biomaterials and harnessed for biotechnological applications. Herein, we used a commercially available phage-display library to identify peptides with specific binding affinity to molybdenite (MoS 2 ) and used them to decorate magnetic NPs. These peptide-coupled NPs could capture MoS 2 under a variety of environmental conditions. The same batch of NPs could be re-used multiple times to harvest MoS 2 , clearly suggesting that this hybrid material was robust and recyclable. The advantages of this smart hybrid biomaterial with respect to its MoS 2 -binding specificity, robust performance under environmentally challenging conditions and its recyclability suggests its potential application in harvesting MoS 2 from tailing ponds and downstream mining processes.

  19. Super-contrast photoacoustic resonance imaging

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Zhang, Ruochong; Feng, Xiaohua; Liu, Siyu; Zheng, Yuanjin

    2018-02-01

    In this paper, a new imaging modality, named photoacoustic resonance imaging (PARI), is proposed and experimentally demonstrated. Being distinct from conventional single nanosecond laser pulse induced wideband PA signal, the proposed PARI method utilizes multi-burst modulated laser source to induce PA resonant signal with enhanced signal strength and narrower bandwidth. Moreover, imaging contrast could be clearly improved than conventional single-pulse laser based PA imaging by selecting optimum modulation frequency of the laser source, which originates from physical properties of different materials beyond the optical absorption coefficient. Specifically, the imaging steps is as follows: 1: Perform conventional PA imaging by modulating the laser source as a short pulse to identify the location of the target and the background. 2: Shine modulated laser beam on the background and target respectively to characterize their individual resonance frequency by sweeping the modulation frequency of the CW laser source. 3: Select the resonance frequency of the target as the modulation frequency of the laser source, perform imaging and get the first PARI image. Then choose the resonance frequency of the background as the modulation frequency of the laser source, perform imaging and get the second PARI image. 4: subtract the first PARI image from the second PARI image, then we get the contrast-enhanced PARI results over the conventional PA imaging in step 1. Experimental validation on phantoms have been performed to show the merits of the proposed PARI method with much improved image contrast.

  20. Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4cs00437j Click here for additional data file.

    PubMed Central

    Seoane, Beatriz; Coronas, Joaquin; Gascon, Ignacio; Benavides, Miren Etxeberria; Karvan, Oğuz; Caro, Jürgen; Kapteijn, Freek

    2015-01-01

    The field of metal–organic framework based mixed matrix membranes (M4s) is critically reviewed, with special emphasis on their application in CO2 capture during energy generation. After introducing the most relevant parameters affecting membrane performance, we define targets in terms of selectivity and productivity based on existing literature on process design for pre- and post-combustion CO2 capture. Subsequently, the state of the art in M4s is reviewed against these targets. Because final application of these membranes will only be possible if thin separation layers can be produced, the latest advances in the manufacture of M4 hollow fibers are discussed. Finally, the recent efforts in understanding the separation performance of these complex composite materials and future research directions are outlined. PMID:25692487

  1. Irradiation performance of PFBR MOX fuel after 112 GWd/t burn-up

    NASA Astrophysics Data System (ADS)

    Venkiteswaran, C. N.; Jayaraj, V. V.; Ojha, B. K.; Anandaraj, V.; Padalakshmi, M.; Vinodkumar, S.; Karthik, V.; Vijaykumar, Ran; Vijayaraghavan, A.; Divakar, R.; Johny, T.; Joseph, Jojo; Thirunavakkarasu, S.; Saravanan, T.; Philip, John; Rao, B. P. C.; Kasiviswanathan, K. V.; Jayakumar, T.

    2014-06-01

    The 500 MWe Prototype Fast Breeder Reactor (PFBR) which is in advanced stage of construction at Kalpakkam, India, will use mixed oxide (MOX) fuel with a target burnup of 100 GWd/t. The fuel pellet is of annular design to enable operation at a peak linear power of 450 W/cm with the requirement of minimum duration of pre-conditioning. The performance of the MOX fuel and the D9 clad and wrapper material was assessed through Post Irradiation Examinations (PIE) after test irradiation of 37 fuel pin subassembly in Fast Breeder Test Reactor (FBTR) to a burn-up of 112 GWd/t. Fission product distribution, swelling and fuel-clad gap evolution, central hole diameter variation, restructuring, fission gas release and clad wastage due to fuel-clad chemical interaction were evaluated through non-destructive and destructive examinations. The examinations have indicated that the MOX fuel can safely attain the desired target burn-up in PFBR.

  2. How to assess good candidate molecules for self-activated optical power limiting

    NASA Astrophysics Data System (ADS)

    Lundén, Hampus; Glimsdal, Eirik; Lindgren, Mikael; Lopes, Cesar

    2018-03-01

    Reverse saturable absorbers have shown great potential to attenuate laser radiation. Good candidate molecules and various particles have successfully been incorporated into different glass matrices, enabling the creation of self-activated filters against damaging laser radiation. Although the performance of such filters has been impressive, work is still ongoing to improve the performance in a wider range of wavelengths and pulse widths. The purpose of this tutorial is, from an optical engineering perspective, to give an understanding of the strengths and weaknesses of this class of smart materials, how relevant photophysical parameters are measured and influence system performance and comment on the pitfalls in experimental evaluation of materials. A numerical population model in combination with simple physical formulas is used to demonstrate system behavior from a performance standpoint. Geometrical reasoning shows the advantage of reverse saturable absorption over nonlinear scattering due to a fraction of scattered light being recollected by imaging system optics. The numerical population model illustrates the importance of the optical power limiting performance during the leading edge of a nanosecond pulse, which is most strongly influenced by changes in the two-photon absorption cross section and the triplet linear absorption cross section for a modeled Pt-acetylide. This tutorial not only targets optical engineers evaluating reverse saturable absorbing materials but also aims to assist researchers with a chemistry background working on optical power limiting materials. We also present photophysical data for a series of coumarins that can be useful for the determination of quantum yields and two-photon cross sections and show examples of characterization of molecules with excited triplet states.

  3. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650°C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from themore » receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650°C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650°C to 1000°C. Selective efficiency (η sel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200°C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies η sel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000°C in environments of nitrogen and forming gas.« less

  4. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    DOE PAGES

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.; ...

    2015-05-01

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650°C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from themore » receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650°C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650°C to 1000°C. Selective efficiency (η sel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200°C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies η sel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000°C in environments of nitrogen and forming gas.« less

  5. A review on ab initio studies of static, transport, and optical properties of polystyrene under extreme conditions for inertial confinement fusion applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, L. A.; Boehly, T. R.; Ding, Y. H.

    Polystyrene (CH), commonly known as “plastic,” has been one of the widely used ablator materials for capsule designs in inertial confinement fusion (ICF). Knowing its precise properties under high-energy-density conditions is crucial to understanding and designing ICF implosions through radiation–hydrodynamic simulations. For this purpose, systematic ab initio studies on the static, transport, and optical properties of CH, in a wide range of density and temperature conditions (ρ= 0.1 to 100 g/cm 3 and T = 10 3 to 4 × 10 6K), have been conducted using quantum molecular dynamics (QMD) simulations based on the density functional theory. We have builtmore » several wide-ranging, self-consistent material-properties tables for CH, such as the first-principles equation of state (FPEOS), the QMD-based thermal conductivity (Κ QMD) and ionization, and the first-principles opacity table (FPOT). This paper is devoted to providing a review on (1) what results were obtained from these systematic ab initio studies; (2) how these self-consistent results were compared with both traditional plasma-physics models and available experiments; and (3) how these first-principles–based properties of polystyrene affect the predictions of ICF target performance, through both 1-D and 2-D radiation–hydrodynamic simulations. In the warm dense regime, our ab initio results, which can significantly differ from predictions of traditional plasma-physics models, compared favorably with experiments. When incorporated into hydrocodes for ICF simulations, these first-principles material properties of CH have produced significant differences over traditional models in predicting 1-D/2-D target performance of ICF implosions on OMEGA and direct-drive–ignition designs for the National Ignition Facility. Lastly, we will discuss the implications of these studies on the current small-margin ICF target designs using a CH ablator.« less

  6. A review on ab initio studies of static, transport, and optical properties of polystyrene under extreme conditions for inertial confinement fusion applications

    DOE PAGES

    Collins, L. A.; Boehly, T. R.; Ding, Y. H.; ...

    2018-03-23

    Polystyrene (CH), commonly known as “plastic,” has been one of the widely used ablator materials for capsule designs in inertial confinement fusion (ICF). Knowing its precise properties under high-energy-density conditions is crucial to understanding and designing ICF implosions through radiation–hydrodynamic simulations. For this purpose, systematic ab initio studies on the static, transport, and optical properties of CH, in a wide range of density and temperature conditions (ρ= 0.1 to 100 g/cm 3 and T = 10 3 to 4 × 10 6K), have been conducted using quantum molecular dynamics (QMD) simulations based on the density functional theory. We have builtmore » several wide-ranging, self-consistent material-properties tables for CH, such as the first-principles equation of state (FPEOS), the QMD-based thermal conductivity (Κ QMD) and ionization, and the first-principles opacity table (FPOT). This paper is devoted to providing a review on (1) what results were obtained from these systematic ab initio studies; (2) how these self-consistent results were compared with both traditional plasma-physics models and available experiments; and (3) how these first-principles–based properties of polystyrene affect the predictions of ICF target performance, through both 1-D and 2-D radiation–hydrodynamic simulations. In the warm dense regime, our ab initio results, which can significantly differ from predictions of traditional plasma-physics models, compared favorably with experiments. When incorporated into hydrocodes for ICF simulations, these first-principles material properties of CH have produced significant differences over traditional models in predicting 1-D/2-D target performance of ICF implosions on OMEGA and direct-drive–ignition designs for the National Ignition Facility. Lastly, we will discuss the implications of these studies on the current small-margin ICF target designs using a CH ablator.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, H; Cho, H; Molloi, S

    Purpose: To investigate the feasibility of energy response calibration of a Si strip photon-counting detector by using the x-ray fluorescence technique. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on Si strips. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing Ag, I, Ba, and Gd, were placed in small plastic aliquots with a diameter of approximatelymore » 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known energies for materials. The energy resolution was derived from the full width at half maximum (FWHM) of the fluorescence peaks. In addition, the angular dependence of the recorded fluorescence spectra was studied at 30°, 60°, and 120°. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The recorded pulse height was calibrated with respect to photon energy and the gain and offset values were calculated to be 7.0 mV/keV and −69.3 mV, respectively. Negligible variation in energy calibration was observed among the four energy thresholds. The variation among different pixels was estimated to be approximately 1 keV. The energy resolution of the detector was estimated to be 7.9% within the investigated energy range. Conclusion: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the detector. The proposed x-ray fluorescence technique provides an accurate and efficient way to calibrate the energy response of a photon-counting detector.« less

  8. SU-F-J-76: Evaluation of the Performance of Different Deformable Image Registration Algorithms in Helical, Axial and Cone-Beam CT Images of a Mobile Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaskowiak, J; Ahmad, S; Ali, I

    Purpose: To investigate quantitatively the performance of different deformable-image-registration algorithms (DIR) with helical (HCT), axial (ACT) and cone-beam CT (CBCT) by evaluating the variations in the CT-numbers and lengths of targets moving with controlled motion-patterns. Methods: Four DIR-algorithms including demons, fast-demons, Horn-Schunk and Locas-Kanade from the DIRART-software are used to register CT-images of a mobile-phantom. A mobile-phantom is scanned with different imaging techniques that include helical, axial and cone-beam CT. The phantom includes three targets with different lengths that are made from water-equivalent material and inserted in low-density-foam which is moved with adjustable motion-amplitudes and frequencies. Results: Most of themore » DIR-algorithms are able to produce the lengths of the stationary-targets, however, they do not produce the CT-number values in CBCT. The image-artifacts induced by motion are more regular in CBCT imaging where the mobile-target elongation increases linearly with motion-amplitude. In ACT and HCT, the motion-artifacts are irregular where some mobile -targets are elongated or shrunk depending on the motion-phase during imaging. The DIR-algorithms are successful in deforming the images of the mobile-targets to the images of the stationary-targets producing the CT-number values and length of the target for motion-amplitudes < 20 mm. Similarly in ACT, all DIR-algorithms produced the actual CT-number and length of the stationary-targets for motion-amplitudes < 15 mm. As stronger motion-artifacts are induced in HCT and ACT, DIR-algorithms fail to produce CT-values and shape of the stationary-targets and fast-demons-algorithm has worst performance. Conclusion: Most of DIR-algorithms produce the CT-number values and lengths of the stationary-targets in HCT and ACT images that has motion-artifacts induced by small motion-amplitudes. As motion-amplitudes increase, the DIR-algorithms fail to deform mobile-target images to the stationary-images in HCT and ACT. In CBCT, DIR-algorithms are successful in producing length and shape of the stationary-targets, however, they fail to produce the accurate CT-number level.« less

  9. A magnetic resonance image-guided breast needle intervention robot system: overview and design considerations.

    PubMed

    Park, Samuel Byeongjun; Kim, Jung-Gun; Lim, Ki-Woong; Yoon, Chae-Hyun; Kim, Dong-Jun; Kang, Han-Sung; Jo, Yung-Ho

    2017-08-01

    We developed an image-guided intervention robot system that can be operated in a magnetic resonance (MR) imaging gantry. The system incorporates a bendable needle intervention robot for breast cancer patients that overcomes the space limitations of the MR gantry. Most breast coil designs for breast MR imaging have side openings to allow manual localization. However, for many intervention procedures, the patient must be removed from the gantry. A robotic manipulation system with integrated image guidance software was developed. Our robotic manipulator was designed to be slim, so as to fit between the patient's side and the MR gantry wall. Only non-magnetic materials were used, and an electromagnetic shield was employed for cables and circuits. The image guidance software was built using open source libraries. In situ feasibility tests were performed in a 3-T MR system. One target point in the breast phantom was chosen by the clinician for each experiment, and our robot moved the needle close to the target point. Without image-guided feedback control, the needle end could not hit the target point (distance = 5 mm) in the first experiment. Using our robotic system, the needle hits the target lesion of the breast phantom at a distance of 2.3 mm from the same target point using image-guided feedback. The second experiment was performed using other target points, and the distance between the final needle end point and the target point was 0.8 mm. We successfully developed an MR-guided needle intervention robot for breast cancer patients. Further research will allow the expansion of these interventions.

  10. Improving large class performance and engagement through student-generated question banks.

    PubMed

    Hancock, Dale; Hare, Nicole; Denny, Paul; Denyer, Gareth

    2018-03-12

    Disciplines such as Biochemistry and Molecular Biology, which involve concepts not included in the high-school curriculum, are very challenging for many first year university students. These subjects are particularly difficult for students accustomed to surface learning strategies involving memorization and recall of facts, as a deeper understanding of the relationship between concepts is needed for successful transfer to related areas and subsequent study. In this article, we explore an activity in a very large first year Molecular Biology course, in which students create multiple-choice questions related to targeted learning outcomes, and then answer and evaluate one another's questions. This activity encompasses elements of both self- and peer-assessment and the generative tasks of creating questions and producing written feedback may contribute to a deeper understanding of the material. We make use of a free online platform to facilitate all aspects of the process and analyze the effect of student engagement with the task on overall course performance. When compared to previous semester's cohorts, we observe a pronounced improvement in class performance on exam questions targeting similar concepts to the student-generated questions. In addition, those students that engage to a greater extent with the activity perform significantly better on the targeted exam questions than those who are less active, yet all students perform similarly on a set of isolated control questions appearing on the same exam. © 2018 by The International Union of Biochemistry and Molecular Biology, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.

  11. Efficient Parameter Searches for Colloidal Materials Design with Digital Alchemy

    NASA Astrophysics Data System (ADS)

    Dodd, Paul, M.; Geng, Yina; van Anders, Greg; Glotzer, Sharon C.

    Optimal colloidal materials design is challenging, even for high-throughput or genomic approaches, because the design space provided by modern colloid synthesis techniques can easily have dozens of dimensions. In this talk we present the methodology of an inverse approach we term ''digital alchemy'' to perform rapid searches of design-paramenter spaces with up to 188 dimensions that yield thermodynamically optimal colloid parameters for target crystal structures with up to 20 particles in a unit cell. The method relies only on fundamental principles of statistical mechanics and Metropolis Monte Carlo techniques, and yields particle attribute tolerances via analogues of familiar stress-strain relationships.

  12. Non-contact true temperature measurements in the microgravity environment

    NASA Technical Reports Server (NTRS)

    Khan, Mansoor A.; Allemand, Charly; Eagar, Thomas W.

    1989-01-01

    The theory developed is shown to be capable of calculating true temperature of any material from radiance measurements at a number of different wavelengths. This theory was also shown to be capable of predicting the uncertainty in these calculated temperatures. An additional advantage of these techniques is that they can estimate the emissivity of the target simultaneously with the temperature. This aspect can prove to be very important when a fast method of generating reflectivity vs. wavelength or emissivity vs. wavelength data is required. Experiments performed on various materials over a range of temperatures and experimental conditions were used to verify the accuracy of this theory.

  13. Production Of High Specific Activity Copper-67

    DOEpatents

    Jamriska, Sr., David J.; Taylor, Wayne A.; Ott, Martin A.; Fowler, Malcolm; Heaton, Richard C.

    2002-12-03

    A process for the selective production and isolation of high specific activity cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.

  14. Production Of High Specific Activity Copper-67

    DOEpatents

    Jamriska, Sr., David J.; Taylor, Wayne A.; Ott, Martin A.; Fowler, Malcolm; Heaton, Richard C.

    2003-10-28

    A process for the selective production and isolation of high specific activity Cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.

  15. Wireless sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamberti, Vincent E.; Howell, JR, Layton N.; Mee, David K.

    Disclosed is a sensor for detecting a target material. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon exposure to vapor or liquid from the target material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The target material is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.

  16. Wide band design on the scaled absorbing material filled with flaky CIPs

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Yuan, Liming; Gao, Wei; Wang, Xiaobing; Liang, Zichang; Liao, Yi

    2018-02-01

    The scaled target measurement is an important method to get the target characteristic. Radar absorbing materials are widely used in the low detectable target, considering the absorbing material frequency dispersion characteristics, it makes designing and manufacturing scaled radar absorbing materials on the scaled target very difficult. This paper proposed a wide band design method on the scaled absorbing material of the thin absorption coating with added carbonyl iron particles. According to the theoretical radar cross section (RCS) of the plate, the reflection loss determined by the permittivity and permeability was chosen as the main design factor. Then, the parameters of the scaled absorbing materials were designed using the effective medium theory, and the scaled absorbing material was constructed. Finally, the full-size coating plate and scaled coating plates (under three different scale factors) were simulated; the RCSs of the coating plates were numerically calculated and measured at 4 GHz and a scale factor of 2. The results showed that the compensated RCS of the scaled coating plate was close to that of the full-size coating plate, that is, the mean deviation was less than 0.5 dB, and the design method for the scaled material was very effective.

  17. Discrimination of poorly exposed lithologies in AVIRIS data

    NASA Technical Reports Server (NTRS)

    Farrand, William H.; Harsanyi, Joseph C.

    1993-01-01

    One of the advantages afforded by imaging spectrometers such as AVIRIS is the capability to detect target materials at a sub-pixel scale. This paper presents several examples of the identification of poorly exposed geologic materials - materials which are either subpixel in scale or which, while having some surface expression over several pixels, are partially covered by vegetation or other materials. Sabol et al. (1992) noted that a primary factor in the ability to distinguish sub-pixel targets is the spectral contrast between the target and its surroundings. In most cases, this contrast is best expressed as an absorption feature or features present in the target but absent in the surroundings. Under such circumstances, techniques such as band depth mapping (Clark et al., 1992) are feasible. However, the only difference between a target material and its surroundings is often expressed solely in the continuum. We define the 'continuum' as the reflectance or radiance spanning spectral space between spectral features. Differences in continuum slope and shape can only be determined by reduction techniques which considers the entire spectral range; i.e., techniques such as spectral mixture analysis (Adams et al., 1989) and recently developed techniques which utilize an orthogonal subspace projection operator (Harsanyi, 1993). Two of the three examples considered herein deal with cases where the target material differs from its surroundings only by such a subtle continuum change.

  18. Ionic liquid-assisted solvothermal synthesis of hollow Mn2O3 anode and LiMn2O4 cathode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    He, Xin; Wang, Jun; Jia, Haiping; Kloepsch, Richard; Liu, Haidong; Beltrop, Kolja; Li, Jie

    2015-10-01

    Mn-based Mn2O3 anode and LiMn2O4 cathode materials are prepared by a solvothermal method combined with post annealing process. Environmentally friendly ionic liquid 1-Butyl-3-methylimidazolium tetrafluoroborate as both structure-directing agent and fluorine source is used to prepare hollow polyhedron MnF2 precursor. Both target materials Mn2O3 anode and LiMn2O4 cathode have the morphology of the MnF2 precursor. The Mn2O3 anode using carboxymethyl cellulose as binder could deliver slight better electrochemical performance than the one using poly (vinyldifluoride) as binder. The former has an initial charge capacity of 800 mAh g-1 at a current density of 101.8 mA g-1, and exhibits no obvious capacity decay for 150 cycles at 101.8 mA g-1. The LiMn2O4 cathode material prepared with molten salt assistant could display much better electrochemical performance than the one prepared without molten salt assistance. In particular, it has an initial discharge capacity of 117.5 mAh g-1 at a current density of 0.5C and good rate capability. In the field of lithium ion batteries, both the Mn2O3 anode and LiMn2O4 cathode materials could exhibit enhanced electrochemical performance due to the well formed morphology based on the ionic liquid-assisted solvothermal method.

  19. Advanced Cancer Genomics Institute: Genetic Signatures and Therapeutic Targets in Cancer Progression

    DTIC Science & Technology

    2014-02-01

    Roswell Park Cancer Institute Division, Buffalo, NY 14263 REPORT DATE: February 2014 TYPE OF REPORT: Annual PREPARED FOR: U.S. Army...PERFORMING ORGANIZATION REPORT NUMBER Roswell Park Cancer Institute Elm and Carlton Streets Buffalo, NY 14263 9. SPONSORING...prostatectomy material to isolate RNA and DNA from AD- and CR-CaP cases. Roswell Park already has produced a 5- slide tumor microarray containing 722 CaP

  20. Ejecta Particle Size Distributions for Shock Loaded Sn And Al Targets

    DTIC Science & Technology

    1999-06-01

    respectively. For the first time, particle distributions that results from microjet production will be presented. Results from these experiments will...performed. For the first time, particle size distributions that result from microjet production will be presented. The energy in the microjets will...the metal to break up as a shock wave moves through the material. The figure also shows that if there are surface finish variations, microjets will

  1. Custom Super-Resolution Microscope for the Structural Analysis of Nanostructures

    DTIC Science & Technology

    2018-05-29

    research community. As part of our validation of the new design approach, we performed two - color imaging of pairs of adjacent oligo probes hybridized...nanostructures and biological targets. Our microscope features a large field of view and custom optics that facilitate 3D imaging and enhanced contrast in...our imaging throughput by creating two microscopy platforms for high-throughput, super-resolution materials characterization, with the AO set-up being

  2. Shock timing measurements and analysis in deuterium-tritium-ice layered capsule implosions on NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.

    2014-02-15

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion implosions [Boehly et al., Phys. Rev. Lett. 106, 195005 (2011); Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs.more » DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique. Comparison of the data with simulation shows good agreement for the timing of the first three shocks, but reveals a considerable discrepancy in the timing of the 4th shock in DT ice layered implosions. Electron preheat is examined as a potential cause of the observed discrepancy in the 4th shock timing.« less

  3. Operation of the NETL Chemical Looping Reactor with Natural Gas and a Novel Copper-Iron Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straub, Douglas; Bayham, Samuel; Weber, Justin

    The proposed Clean Power Plan requires CO 2 emission reductions of 30% by 2030 and further reductions are targeted by 2050. The current strategies to achieve the 30% reduction targets do not include options for coal. However, the 2016 Annual Energy Outlook suggests that coal will continue to provide more electricity than renewable sources for many regions of the country in 2035. Therefore, cost effective options to reduce greenhouse gas emissions from fossil fuel power plants are vital in order to achieve greenhouse gas reduction targets beyond 2030. As part of the U.S. Department of Energy’s Advanced Combustion Program, themore » National Energy Technology Laboratory’s Research and Innovation Center (NETL R&IC) is investigating the feasibility of a novel combustion concept in which the GHG emissions can be significantly reduced. This concept involves burning fuel and air without mixing these two reactants. If this concept is technically feasible, then CO 2 emissions can be significantly reduced at a much lower cost than more conventional approaches. This indirect combustion concept has been called Chemical Looping Combustion (CLC) because an intermediate material (i.e., a metal-oxide) is continuously cycled to oxidize the fuel. This CLC concept is the focus of this research and will be described in more detail in the following sections. The solid material that is used to transport oxygen is called an oxygen carrier material. The cost, durability, and performance of this material is a key issue for the CLC technology. Researchers at the NETL R&IC have developed an oxygen carrier material that consists of copper, iron, and alumina. This material has been tested extensively using lab scale instruments such as thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mechanical attrition (ASTM D5757), and small fluidized bed reactor tests. This report will describe the results from a realistic, circulating, proof-of-concept test that was completed using NETL’s 50kW th circulating Chemical Looping Reactor (CLR) test facility.« less

  4. Recovery of 131I from alkaline solution of n-irradiated tellurium target using a tiny Dowex-1 column.

    PubMed

    Chattopadhyay, Sankha; Saha Das, Sujata

    2010-10-01

    A simple and inexpensive ion-exchange chromatography method for the separation of medically useful no-carrier-added (nca) iodine radionuclides from bulk amounts of irradiated tellurium dioxide (TeO(2)) target was developed and tested using (131)I. The radiochemical separation was performed using a very small Dowex-1x8 ion-exchange column. The overall radiochemical yield for the complete separation of (131)I was 92+/-1.8 (standard deviation) % (n=8). The separated nca (131)I was of high, approximately 99%, radionuclidic and radiochemical purity and did not contain detectable amounts of the target material. This method may be adopted for the radiochemical separation of other different iodine radionuclides produced from tellurium matrices through cyclotron as well as reactor irradiation. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Hyperspectral imaging using novel LWIR OPO for hazardous material detection and identification

    NASA Astrophysics Data System (ADS)

    Ruxton, Keith; Robertson, Gordon; Miller, Bill; Malcolm, Graeme P. A.; Maker, Gareth T.

    2014-05-01

    Current stand-off hyperspectral imaging detection solutions that operate in the mid-wave infrared (MWIR), nominally 2.5 - 5 μm spectral region, are limited by the number of absorption bands that can be addressed. This issue is most apparent when evaluating a scene with multiple absorbers with overlapping spectral features making accurate material identification challenging. This limitation can be overcome by moving to the long wave IR (LWIR) region, which is rich in characteristic absorption features, which can provide ample molecular information in order to perform presumptive identification relative to a spectral library. This work utilises an instrument platform to perform negative contrast imaging using a novel LWIR optical parametric oscillator (OPO) as the source. The OPO offers continuous tuning in the region 5.5 - 9.5 μm, which includes a number of molecular vibrations associated with the target material compositions. Scanning the scene of interest whilst sweeping the wavelength of the OPO emission will highlight the presence of a suspect material and by analysing the resulting absorption spectrum, presumptive identification is possible. This work presents a selection of initial results using the LWIR hyperspectral imaging platform on a range of white powder materials to highlight the benefit operating in the LWIR region compared to the MWIR.

  6. Carbon fiber composites application in ITER plasma facing components

    NASA Astrophysics Data System (ADS)

    Barabash, V.; Akiba, M.; Bonal, J. P.; Federici, G.; Matera, R.; Nakamura, K.; Pacher, H. D.; Rödig, M.; Vieider, G.; Wu, C. H.

    1998-10-01

    Carbon Fiber Composites (CFCs) are one of the candidate armour materials for the plasma facing components of the International Thermonuclear Experimental Reactor (ITER). For the present reference design, CFC has been selected as armour for the divertor target near the plasma strike point mainly because of unique resistance to high normal and off-normal heat loads. It does not melt under disruptions and might have higher erosion lifetime in comparison with other possible armour materials. Issues related to CFC application in ITER are described in this paper. They include erosion lifetime, tritium codeposition with eroded material and possible methods for the removal of the codeposited layers, neutron irradiation effect, development of joining technologies with heat sink materials, and thermomechanical performance. The status of the development of new advanced CFCs for ITER application is also described. Finally, the remaining R&D needs are critically discussed.

  7. Preparation, characterization and environmental/electrochemical energy storage testing of low-cost biochar from natural chitin obtained via pyrolysis at mild conditions

    NASA Astrophysics Data System (ADS)

    Magnacca, Giuliana; Guerretta, Federico; Vizintin, Alen; Benzi, Paola; Valsania, Maria C.; Nisticò, Roberto

    2018-01-01

    Chitin (a biopolymer obtained from shellfish industry) was used as precursor for the production of biochars obtained via pyrolysis treatments performed at mild conditions (in the 290-540 °C range). Biochars were physicochemical characterized in order to evaluate the pyrolysis-induced effects in terms of both functional groups and material structure. Moreover, such carbonaceous materials were tested as adsorbent substrates for the removal of target molecules from aqueous environment as well as in solid-gas experiments, to measure the adsorption capacities and selectivity toward CO2. Lastly, biochars were also investigated as possible cathode materials in sustainable and low-cost electrochemical energy storage devices, such as lithium-sulphur (Li-S) batteries. Interestingly, experimental results evidenced that such chitin-derived biochars obtained via pyrolysis at mild conditions are sustainable, low-cost and easy scalable alternative materials suitable for both environmental and energetic applications.

  8. Multi-modality gellan gum-based tissue-mimicking phantom with targeted mechanical, electrical, and thermal properties.

    PubMed

    Chen, Roland K; Shih, A J

    2013-08-21

    This study develops a new class of gellan gum-based tissue-mimicking phantom material and a model to predict and control the elastic modulus, thermal conductivity, and electrical conductivity by adjusting the mass fractions of gellan gum, propylene glycol, and sodium chloride, respectively. One of the advantages of gellan gum is its gelling efficiency allowing highly regulable mechanical properties (elastic modulus, toughness, etc). An experiment was performed on 16 gellan gum-based tissue-mimicking phantoms and a regression model was fit to quantitatively predict three material properties (elastic modulus, thermal conductivity, and electrical conductivity) based on the phantom material's composition. Based on these material properties and the regression model developed, tissue-mimicking phantoms of porcine spinal cord and liver were formulated. These gellan gum tissue-mimicking phantoms have the mechanical, thermal, and electrical properties approximately equivalent to those of the spinal cord and the liver.

  9. The challenge of improvised explosives

    DOE PAGES

    Maienschein, Jon L.

    2012-06-14

    Energetic materials have been developed for decades, and indeed centuries, with a common set of goals in mind. Performance (as a detonating explosive, a propellant, or a pyrotechnic) has always been key, equally important have been the attributes of safety, stability, and reproducibility. Research and development with those goals has led to the set of energetic materials commonly used today. In the past few decades, the adoption and use of improvised explosives in attacks by terrorists or third-world parties has led to many questions about these materials, e.g., how they may be made, what threat they pose to the intendedmore » target, how to handle them safely, and how to detect them. The unfortunate advent of improvised explosives has opened the door for research into these materials, and there are active programs in many countries. I will discuss issues and opportunities facing research into improvised explosives.« less

  10. Astronomy Meets Biology: EFOSC2 and the Chirality of Life

    NASA Astrophysics Data System (ADS)

    Sterzik, M.; Bagnulo, S.; Azua, A.; Salinas, F.; Alfaro, J.; Vicuna, R.

    2010-12-01

    Homochirality, i.e., the exclusive use of L-amino acids and D-sugar in biological material, induces circular polarisation in the diffuse reflectance spectra of biotic material. Polarimetry may therefore become an interesting remote sensing technique in the future search for extraterrestrial life. We have explored this technique and performed a laboratory experiment making an exotic use of an astronomical instrument. During a period when EFOSC2 was detached from the Nasmyth focus to host a visitor instrument at the NTT, we have observed various samples of biotic and abiotic material and measured their linear and circular polarisation spectra. Among the various targets, we have included samples of the hypolithic cyanobacteria species Chroococcidiopsis isolated from the Coastal Range of the Atacama Desert. To our knowledge, these are the first and highest precision measurements of circular polarisation using living material and obtained with an astronomical instrument.

  11. Compatibility of structural materials with liquid bismuth, lead, and mercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weeks, J.R.

    1996-06-01

    During the 1950s and 1960s, a substantial program existed at Brookhaven National Laboratory as part of the Liquid Metal Fuel reactor program on the compatibility of bismuth, lead, and their alloys with structural materials. Subsequently, compatibility investigations of mercury with structural materials were performed in support of development of Rankine cycle mercury turbines for nuclear applications. The present talk will review present understanding of the corrosion/mass-transfer reactions of structural materials with these liquid metal coolants. Topics to be discussed include the basic solubility relationships of iron, chromium, nickel, and refractory metals in these liquid metals, the results of inhibition studies,more » the role of oxygen on the corrosion processes, and specialized topics such as cavitation-corrosion and liquid metal embrittlement. Emphasis will be placed on utilizing the understanding gained in this earlier work on the development of heavy liquid metal targets in spallation neutron sources.« less

  12. Benchmark studies of induced radioactivity produced in LHC materials, Part II: Remanent dose rates.

    PubMed

    Brugger, M; Khater, H; Mayer, S; Prinz, A; Roesler, S; Ulrici, L; Vincke, H

    2005-01-01

    A new method to estimate remanent dose rates, to be used with the Monte Carlo code FLUKA, was benchmarked against measurements from an experiment that was performed at the CERN-EU high-energy reference field facility. An extensive collection of samples of different materials were placed downstream of, and laterally to, a copper target, intercepting a positively charged mixed hadron beam with a momentum of 120 GeV c(-1). Emphasis was put on the reduction of uncertainties by taking measures such as careful monitoring of the irradiation parameters, using different instruments to measure dose rates, adopting detailed elemental analyses of the irradiated materials and making detailed simulations of the irradiation experiment. The measured and calculated dose rates are in good agreement.

  13. Actinide targets for the synthesis of super-heavy elements

    DOE PAGES

    Roberto, J.; Alexander, Charles W.; Boll, Rose Ann; ...

    2015-06-18

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing themore » production of rare actinides including 249Bk, 251Cf, and 254Es are described.« less

  14. [Simultaneous determination of 9 ultraviolet stabilizers in food plastic packaging materials by solid phase extraction-high performance liquid chromatography].

    PubMed

    Zhang, Juzhou; Li, Jing; Shao, Dongliang; Yao, Bangben; Jiang, Junshu

    2012-02-01

    An effective high performance liquid chromatographic (HPLC) method has been developed for the simultaneous determination of 9 ultraviolet stabilizers in food plastic packaging materials. The food packaging samples were firstly extracted by methanol-ethyl acetate, and then purified by a C18 solid-phase extraction (SPE) column. The target compounds were separated on a ZORBAX SB-C18 column (250 mm x 4.6 mm, 5 microm) in gradient elution mode using methanol and water as mobile phases. The detection wavelength was at 310 nm. The linear plots of the nine ultraviolet stabilizers were obtained between 0.2 and 10 mg/L, with the correlation coefficients of above 0. 999 for the nine ultraviolet stabilizers. The limits of detection for this method were in the range from 0.05 to 0.1 mg/L. The recoveries spiked in commercial food plastic packaging materials were in the range of 70.2% - 89.0% with the relative standard deviations of 0.4% - 4.5%. The results indicated that the method is simple, accurate, and suitable for the simultaneous determination of the nine ultraviolet stabilizers in food plastic packaging materials.

  15. Use Zircon-Ilmenite Concentrate in Steelmaking

    NASA Astrophysics Data System (ADS)

    Fedoseev, S. N.; Volkova, T. N.

    2016-08-01

    Market requirements cause a constant search for new materials and technologies, for their immediate use in increasing requirements for material and energy efficiency, as well as to the quality of steel. In practice, steel production in the tended recently of more stringent requirements for the chemical composition of the steel and its contamination by nonmetallic inclusions, gas and non-ferrous metals. The main ways of increasing of strength and performance characteristics fabricated metal products related to the profound and effective influence on the crystallizing metal structure by furnace processing of the melt with refining and modifying additives. It can be argued that the furnace processing of steel and iron chemically active metals (alkali-earth metals, rare-earth metals, and others.) is an integral part of modern production of high quality products and competitive technologies. Important condition for development of methods secondary metallurgy of steel is the use of relatively inexpensive materials in a variety of complex alloys and blends, allowing targeted control of physical and chemical state of the molten metal and, therefore, receive steel with improved performance. In this connection the development of modifying natural materials metallurgy technologies presented complex ores containing titanium and zirconium, is a very urgent task.

  16. In Vivo Near-Infrared Imaging of Fibrin Deposition in Thromboembolic Stroke in Mice

    PubMed Central

    Zhang, Yi; Fan, Shufeng; Yao, Yuyu; Ding, Jie; Wang, Yu; Zhao, Zhen; Liao, Lei; Li, Peicheng; Zang, Fengchao; Teng, Gao-Jun

    2012-01-01

    Objectives Thrombus and secondary thrombosis plays a key role in stroke. Recent molecular imaging provides in vivo imaging of activated factor XIII (FXIIIa), an important mediator of thrombosis or fibrinolytic resistance. The present study was to investigate the fibrin deposition in a thromboembolic stroke mice model by FXIIIa–targeted near-infrared fluorescence (NIRF) imaging. Materials and Methods The experimental protocol was approved by our institutional animal use committee. Seventy-six C57B/6J mice were subjected to thromboembolic middle cerebral artery occlusion or sham operation. Mice were either intravenously injected with the FXIIIa-targeted probe or control probe. In vivo and ex vivo NIRF imaging were performed thereafter. Probe distribution was assessed with fluorescence microscopy by spectral imaging and quantification system. MR scans were performed to measure lesion volumes in vivo, which were correlated with histology after animal euthanasia. Results In vivo significant higher fluorescence intensity over the ischemia-affected hemisphere, compared to the contralateral side, was detected in mice that received FXIIIa-targeted probe, but not in the controlled mice. Significantly NIRF signals showed time-dependent processes from 8 to 96 hours after injection of FXIIIa-targeted probes. Ex vivo NIRF image showed an intense fluorescence within the ischemic territory only in mice injected with FXIIIa-targeted probe. The fluorescence microscopy demonstrated distribution of FXIIIa-targeted probe in the ischemic region and nearby micro-vessels, and FXIIIa-targeted probe signals showed good overlap with immune-fluorescent fibrin staining images. There was a significant correlation between total targeted signal from in vivo or ex vivo NIRF images and lesion volume. Conclusion Non-invasive detection of fibrin deposition in ischemic mouse brain using NIRF imaging is feasible and this technique may provide an in vivo experimental tool in studying the role of fibrin in stroke. PMID:22272319

  17. Somatic mutations in salivary duct carcinoma and potential therapeutic targets

    PubMed Central

    Smith, Joel A.; Clarke, Angus J.; Luk, Peter P.; Selinger, Christina I.; Mahon, Kate L.; Kraitsek, Spiridoula; Palme, Carsten; Boyer, Michael J.; Dinger, Marcel E.; Cowley, Mark J.; O’Toole, Sandra A.

    2017-01-01

    Background Salivary duct carcinomas (SDCa) are rare highly aggressive malignancies. Most patients die from distant metastatic disease within three years of diagnosis. There are limited therapeutic options for disseminated disease. Results 11 cases showed androgen receptor expression and 6 cases showed HER2 amplification. 6 Somatic mutations with additional available targeted therapies were identified: EGFR (p.G721A: Gefitinib), PDGFRA (p.H845Y: Imatinib and Crenolanib), PIK3CA (p.H1047R: Everolimus), ERBB2 (p.V842I: Lapatinib), HRAS (p.Q61R: Selumetinib) and KIT (p.T670I: Sorafenib). Furthermore, alterations in PTEN, PIK3CA and HRAS that alter response to androgen deprivation therapy and HER2 inhibition were also seen. Materials and Methods Somatic mutation analysis was performed on DNA extracted from 15 archival cases of SDCa using the targeted Illumina TruSeq Amplicon Cancer Panel. Potential targetable genetic alterations were identified using extensive literature and international somatic mutation database (COSMIC, KEGG) search. Immunohistochemistry for androgen receptor and immunohistochemistry and fluorescent in situ hybridization for HER2 were also performed. Conclusions SDCa show multiple somatic mutations, some that are amenable to pharmacologic manipulation and others that confer resistance to treatments currently under investigation. These findings emphasize the need to develop testing and treatment strategies for SDCa. PMID:29100278

  18. Evaluation of municipal solid waste management performance by material flow analysis: Theoretical approach and case study.

    PubMed

    Zaccariello, Lucio; Cremiato, Raffaele; Mastellone, Maria Laura

    2015-10-01

    The main role of a waste management plan is to define which is the combination of waste management strategies and method needed to collect and manage the waste in such a way to ensure a given set of targets is reached. Objectives have to be sustainable and realistic, consistent with the environmental policies and regulations and monitored to verify the progressive achievement of the given targets. To get the aim, the setting up and quantification of indicators can allow the measurement of efficiency of a waste management system. The quantification of efficiency indicators requires the developing of a material flow analysis over the system boundary, from waste collection to secondary materials selling, processing and disposal. The material flow analysis has been carried out with reference to a case study for which a reliable, time- and site-specific database was available. The material flow analysis allowed the evaluation of the amount of materials sent to recycling, to landfilling and to waste-to-energy, by highlighting that the sorting of residual waste can further increase the secondary materials amount. The utilisation of energy recovery to treat the low-grade waste allows the maximisation of waste diversion from landfill with a low production of hazardous ash. A preliminary economic balance has been carried out to define the gate fee of the waste management system that was in the range of 84-145 € t(-1) without including the separate collection cost. The cost of door-by-door separate collection, designed to ensure the collection of five separate streams, resulted in 250 € t(-1) ±30%. © The Author(s) 2015.

  19. Converter target chemistry - A new challenge to radioanalytical chemistry.

    PubMed

    Choudhury, Dibyasree; Lahiri, Susanta

    2018-07-01

    The 1-2 GeV proton induced spallation reaction on the high Z materials like Hg, or lead bismuth eutectic (LBE), popularly known as converter targets, will produce strong flux of fast neutrons which would further react with fissile materials to produce intense radioactive ion beam (RIB). LBE offers suitability for use as converters over Hg but it suffers from the demerit of radiotoxic polonium production. These targets may be viewed as a store house of clinically important and other exotic radionuclides. For application of those radionuclides, radiochemical separation from bulk target material is of utmost importance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Scaling law deduced from impact-cratering experiments on basalt targets

    NASA Astrophysics Data System (ADS)

    Takagi, Y.; Hasegawa, S.; Suzuki, A.

    2014-07-01

    Since impact-cratering phenomena on planetary bodies were the key process which modified the surface topography and formed regolith layers, many experiments on non-cohesive materials (sand, glass beads) were performed. On the other hand, experiments on natural rocks were limited. Especially, experiments on basalt targets are rare, although basalt is the most common rocky material on planetary surfaces. The reason may be the difficulties of obtaining basalt samples suitable for cratering experiments. Recently, we obtained homogenous and crackless large basalt blocks. We performed systematic cratering experiments using the basalt targets. Experimental Procedure: Impact experiments were performed using a double stage light-gas (hydrogen) gun on the JAXA Sagamihara campus. Spherical projectiles of nylon, aluminum, stainless steel, and tungsten carbide were launched at velocities between 2400 and 6100 m/sec. The projectiles were 1.0 to 7.1 mm in diameter and 0.004 to 0.22 g in mass. The incidence angle was fixed at 90 degrees. The targets were rectangular blocks of Ukrainian basalt. The impact plane was a square with 20-cm sides. The thickness was 9 cm. Samples were cut out from a columnar block so that the impact plane might become perpendicular to the axis of the columnar joint. The mass was about 10.5 kg. The density was 2920 ± 10 kg/m^3 . Twenty eight shots were performed. Three-dimensional shapes of craters were measured by an X-Y stage with a laser displacement sensor (Keyence LK-H150). The interval between the measurement points was 200 micrometer. The volume, depth, and aperture area of the crater were calculated from the 3-D data using analytical software. Since the shapes of the formed craters are markedly asymmetrical, the diameter of the circle whose area is equal to the aperture area was taken as the crater diameter. Results: The diameter, depth, and the volume of the formed craters are normalized by the π parameters. Experimental conditions are also expressed by the π parameters. The figure shows the relation of the normalized volume and the π_3 parameter. A clear dependency on the projectile density is shown in the figure. Multiple regression analyses yield the relation π_V ∝ π_3^{-1.04 ± 0.14} π_4^{0.45 ± 0.18} . Other results and comparisons with those of previous studies are presented in the paper.

  1. R&D of A MW-class solid-target for a spallation neutron source

    NASA Astrophysics Data System (ADS)

    Kawai, Masayoshi; Furusaka, Michihiro; Kikuchi, Kenji; Kurishita, Hiroaki; Watanabe, Ryuzo; Li, Jing-Feng; Sugimoto, Katsuhisa; Yamamura, Tsutomu; Hiraoka, Yutaka; Abe, Katsunori; Hasegawa, Akira; Yoshiie, Masatoshi; Takenaka, Hiroyuki; Mishima, Katsuichiro; Kiyanagi, Yoshiaki; Tanabe, Tetsuo; Yoshida, Naoaki; Igarashi, Tadashi

    2003-05-01

    R&D for a MW-class solid target composed of tungsten was undertaken to produce a pulsed intense neutron source for a future neutron scattering-facility. In order to solve the corrosion of tungsten, tungsten target blocks were clad with tantalum by means of HIP'ing, brazing and electrolytic coating in a molten salt bath. The applicability of the HIP'ing method was tested through fabricating target blocks for KENS (spallation neutron source at KEK). A further investigation to certify the optimum HIP conditions was made with the small punch test method. The results showed that the optimum temperature was 1500 °C at which the W/Ta interface gave the strongest fracture strength. In the case of the block with a hole for thermocouple, it was found that the fabrication preciseness of a straight hole and a tantalum sheath influenced the results. The development of a tungsten stainless-steel alloy was tried to produce a bare tungsten target, using techniques in powder metallurgy. Corrosion tests for various tungsten alloys were made while varying the water temperature and velocity. The mass loss of tungsten in very slow water at 180 °C was as low as 0.022 mg/y, but increased remarkably with water velocity. Simulation experiments for radiation damage to supplement the STIP-III experiments were made to investigate material hardening by hydrogen and helium, and microstructures irradiated by electrons. Both experiments showed consistent results on the order of the dislocation numbers and irradiation hardness among the different tungsten materials. Thermal-hydraulic designs were made for two types of solid target system of tungsten: slab and rod geometry as a function of the proton beam power. The neutronic performance of a solid target system was compared with that of mercury target based on Monte Carlo calculations by using the MCNP code.

  2. Cloned plasmid DNA fragments as calibrators for controlling GMOs: different real-time duplex quantitative PCR methods.

    PubMed

    Taverniers, Isabel; Van Bockstaele, Erik; De Loose, Marc

    2004-03-01

    Analytical real-time PCR technology is a powerful tool for implementation of the GMO labeling regulations enforced in the EU. The quality of analytical measurement data obtained by quantitative real-time PCR depends on the correct use of calibrator and reference materials (RMs). For GMO methods of analysis, the choice of appropriate RMs is currently under debate. So far, genomic DNA solutions from certified reference materials (CRMs) are most often used as calibrators for GMO quantification by means of real-time PCR. However, due to some intrinsic features of these CRMs, errors may be expected in the estimations of DNA sequence quantities. In this paper, two new real-time PCR methods are presented for Roundup Ready soybean, in which two types of plasmid DNA fragments are used as calibrators. Single-target plasmids (STPs) diluted in a background of genomic DNA were used in the first method. Multiple-target plasmids (MTPs) containing both sequences in one molecule were used as calibrators for the second method. Both methods simultaneously detect a promoter 35S sequence as GMO-specific target and a lectin gene sequence as endogenous reference target in a duplex PCR. For the estimation of relative GMO percentages both "delta C(T)" and "standard curve" approaches are tested. Delta C(T) methods are based on direct comparison of measured C(T) values of both the GMO-specific target and the endogenous target. Standard curve methods measure absolute amounts of target copies or haploid genome equivalents. A duplex delta C(T) method with STP calibrators performed at least as well as a similar method with genomic DNA calibrators from commercial CRMs. Besides this, high quality results were obtained with a standard curve method using MTP calibrators. This paper demonstrates that plasmid DNA molecules containing either one or multiple target sequences form perfect alternative calibrators for GMO quantification and are especially suitable for duplex PCR reactions.

  3. Lightweight design of automobile frame based on magnesium alloy

    NASA Astrophysics Data System (ADS)

    Lyu, R.; Jiang, X.; Minoru, O.; Ju, D. Y.

    2018-06-01

    The structural performance and lightweighting of car base frame design is a challenging task due to all the performance targets that must be satisfied. In this paper, three kinds of materials (iron, aluminum and magnesium alloy) replacement along with section design optimization strategy is proposed to develop a lightweight car frame structure to satisfy the tensile and safety while reducing weight. Two kinds of cross-sections are considered as the design variables. Using Ansys static structure, the design optimization problem is solved, comparing the results of each step, structure of the base flame is optimized for lightweight.

  4. Testing Accuracy of Long-Range Ultrasonic Sensors for Olive Tree Canopy Measurements

    PubMed Central

    Gamarra-Diezma, Juan Luis; Miranda-Fuentes, Antonio; Llorens, Jordi; Cuenca, Andrés; Blanco-Roldán, Gregorio L.; Rodríguez-Lizana, Antonio

    2015-01-01

    Ultrasonic sensors are often used to adjust spray volume by allowing the calculation of the crown volume of tree crops. The special conditions of the olive tree require the use of long-range sensors, which are less accurate and faster than the most commonly used sensors. The main objectives of the study were to determine the suitability of the sensor in terms of sound cone determination, angle errors, crosstalk errors and field measurements. Different laboratory tests were performed to check the suitability of a commercial long-range ultrasonic sensor, as were the experimental determination of the sound cone diameter at several distances for several target materials, the determination of the influence of the angle of incidence of the sound wave on the target and distance on the accuracy of measurements for several materials and the determination of the importance of the errors due to interference between sensors for different sensor spacings and distances for two different materials. Furthermore, sensor accuracy was tested under real field conditions. The results show that the studied sensor is appropriate for olive trees because the sound cone is narrower for an olive tree than for the other studied materials, the olive tree canopy does not have a large influence on the sensor accuracy with respect to distance and angle, the interference errors are insignificant for high sensor spacings and the sensor's field distance measurements were deemed sufficiently accurate. PMID:25635414

  5. Investigating the Effects of Temperature on the Signatures of Shocks Propagated Through Impacts into Minerals Found in Comets and Asteroids

    NASA Technical Reports Server (NTRS)

    Lederer, Susan M.; Jensen, E. A.; Fane, M.; Smith, D. C.; Holmes, J.; Keller, L. P.; Lindsay, S. S.; Wooden, D. H.; Cintala, M. J.; Zolensky, M. E.

    2015-01-01

    Comets and asteroids are subjected to extremely cold conditions throughout their lifetimes. During their sojourns in the solar system, they are subjected to collisions at speeds that are easily capable of generating shock waves in their constituent materials. In addition to ices, more common silicate minerals such as olivines and pyroxenes are important components of these objects. The collision-induced shocks could affect the spectral signatures of those mineral components, which could in turn be detected telescopically. We have embarked on a project to determine how impact-generated shock might affect the reflectance spectra and structures of select silicates as both impact speed and target temperature are varied systematically. While the effects of impact speed (in the form of shock stress) on numerous materials have been and continue to be studied, the role of target temperature has received comparatively little attention, presumably because of the operational difficulties it can introduce to experimentation. Our experiments were performed with the vertical gun in the Experimental Impact Laboratory of the Johnson Space Center. A liquid-nitrogen system was plumbed to permit cooling of the target container and its contents under vacuum to temperatures as low as -100 C (173 K). Temperatures were monitored by thermocouples mounted on the outside of the target container. Because those sensors were not in contact with the target material at impact, the measured temperatures are treated as lower limits for the actual values. Peridot (Mg-rich olivine) and enstatite (Mg-rich orthopyroxene) were used as targets, which involved the impact of alumina (Al2O3) spheres at speeds of 2.0 - 2.7 km s(exp -1) and temperatures covering 25 C to -100 C (298 K to 173 K). We have begun collecting and analyzing data in the near to mid-IR with a Fourier-transform infrared spectrometer, and preliminary analyses show that notable differences in absorption-band strength and position occur as functions of both impact speed (peak shock stress) and initial temperature.

  6. Customized biomaterials to augment chondrocyte gene therapy.

    PubMed

    Aguilar, Izath Nizeet; Trippel, Stephen; Shi, Shuiliang; Bonassar, Lawrence J

    2017-04-15

    A persistent challenge in enhancing gene therapy is the transient availability of the target gene product. This is particularly true in tissue engineering applications. The transient exposure of cells to the product could be insufficient to promote tissue regeneration. Here we report the development of a new material engineered to have a high affinity for a therapeutic gene product. We focus on insulin-like growth factor-I (IGF-I) for its highly anabolic effects on many tissues such as spinal cord, heart, brain and cartilage. One of the ways that tissues store IGF-I is through a group of insulin like growth factor binding proteins (IGFBPs), such as IGFBP-5. We grafted the IGF-I binding peptide sequence from IGFBP-5 onto alginate in order to retain the endogenous IGF-I produced by transfected chondrocytes. This novel material bound IGF-I and released the growth factor for at least 30days in culture. We found that this binding enhanced the biosynthesis of transfected cells up to 19-fold. These data demonstrate the coordinated engineering of cell behavior and material chemistry to greatly enhance extracellular matrix synthesis and tissue assembly, and can serve as a template for the enhanced performance of other therapeutic proteins. The present manuscript focuses on the enhancement of chondrocyte gene therapy through the modification of scaffold materials to enhance the retention of targeted gene products. This study combined tissue engineering and gene therapy, where customized biomaterials augmented the action of IGF-I by enhancing the retention of protein produced by transfection of the IGF-I gene. This approach enabled tuning of binding of IGF-I to alginate, which increased GAG and HYPRO production by transfected chondrocytes. To our knowledge, peptide-based modification of materials to augment growth factor-targeted gene therapy has not been reported previously. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Smart Materials Meet Multifunctional Biomedical Devices: Current and Prospective Implications for Nanomedicine.

    PubMed

    Genchi, Giada Graziana; Marino, Attilio; Tapeinos, Christos; Ciofani, Gianni

    2017-01-01

    With the increasing advances in the fabrication and in monitoring approaches of nanotechnology devices, novel materials are being synthesized and tested for the interaction with biological environments. Among them, smart materials in particular provide versatile and dynamically tunable platforms for the investigation and manipulation of several biological activities with very low invasiveness in hardly accessible anatomical districts. In the following, we will briefly recall recent examples of nanotechnology-based materials that can be remotely activated and controlled through different sources of energy, such as electromagnetic fields or ultrasounds, for their relevance to both basic science investigations and translational nanomedicine. Moreover, we will introduce some examples of hybrid materials showing mutually beneficial components for the development of multifunctional devices, able to simultaneously perform duties like imaging, tissue targeting, drug delivery, and redox state control. Finally, we will highlight challenging perspectives for the development of theranostic agents (merging diagnostic and therapeutic functionalities), underlining open questions for these smart nanotechnology-based devices to be made readily available to the patients in need.

  8. PMMA-Etching-Free Transfer of Wafer-scale Chemical Vapor Deposition Two-dimensional Atomic Crystal by a Water Soluble Polyvinyl Alcohol Polymer Method

    PubMed Central

    Van Ngoc, Huynh; Qian, Yongteng; Han, Suk Kil; Kang, Dae Joon

    2016-01-01

    We have explored a facile technique to transfer large area 2-Dimensional (2D) materials grown by chemical vapor deposition method onto various substrates by adding a water-soluble Polyvinyl Alcohol (PVA) layer between the polymethyl-methacrylate (PMMA) and the 2D material film. This technique not only allows the effective transfer to an arbitrary target substrate with a high degree of freedom, but also avoids PMMA etching thereby maintaining the high quality of the transferred 2D materials with minimum contamination. We applied this method to transfer various 2D materials grown on different rigid substrates of general interest, such as graphene on copper foil, h-BN on platinum and MoS2 on SiO2/Si. This facile transfer technique has great potential for future research towards the application of 2D materials in high performance optical, mechanical and electronic devices. PMID:27616038

  9. International strategy for fusion materials development

    NASA Astrophysics Data System (ADS)

    Ehrlich, Karl; Bloom, E. E.; Kondo, T.

    2000-12-01

    In this paper, the results of an IEA-Workshop on Strategy and Planning of Fusion Materials Research and Development (R&D), held in October 1998 in Risø Denmark are summarised and further developed. Essential performance targets for materials to be used in first wall/breeding blanket components have been defined for the major materials groups under discussion: ferritic-martensitic steels, vanadium alloys and ceramic composites of the SiC/SiC-type. R&D strategies are proposed for their further development and qualification as reactor-relevant materials. The important role of existing irradiation facilities (mainly fission reactors) for materials testing within the next decade is described, and the limits for the transfer of results from such simulation experiments to fusion-relevant conditions are addressed. The importance of a fusion-relevant high-intensity neutron source for the development of structural as well as breeding and special purpose materials is elaborated and the reasons for the selection of an accelerator-driven D-Li-neutron source - the International Fusion Materials Irradiation Facility (IFMIF) - as an appropriate test bed are explained. Finally the necessity to execute the materials programme for fusion in close international collaboration, presently promoted by the International Energy Agency, IEA is emphasised.

  10. Modeling Patient-Specific Magnetic Drug Targeting Within the Intracranial Vasculature

    PubMed Central

    Patronis, Alexander; Richardson, Robin A.; Schmieschek, Sebastian; Wylie, Brian J. N.; Nash, Rupert W.; Coveney, Peter V.

    2018-01-01

    Drug targeting promises to substantially enhance future therapies, for example through the focussing of chemotherapeutic drugs at the site of a tumor, thus reducing the exposure of healthy tissue to unwanted damage. Promising work on the steering of medication in the human body employs magnetic fields acting on nanoparticles made of paramagnetic materials. We develop a computational tool to aid in the optimization of the physical parameters of these particles and the magnetic configuration, estimating the fraction of particles reaching a given target site in a large patient-specific vascular system for different physiological states (heart rate, cardiac output, etc.). We demonstrate the excellent computational performance of our model by its application to the simulation of paramagnetic-nanoparticle-laden flows in a circle of Willis geometry obtained from an MRI scan. The results suggest a strong dependence of the particle density at the target site on the strength of the magnetic forcing and the velocity of the background fluid flow. PMID:29725303

  11. Modeling Patient-Specific Magnetic Drug Targeting Within the Intracranial Vasculature.

    PubMed

    Patronis, Alexander; Richardson, Robin A; Schmieschek, Sebastian; Wylie, Brian J N; Nash, Rupert W; Coveney, Peter V

    2018-01-01

    Drug targeting promises to substantially enhance future therapies, for example through the focussing of chemotherapeutic drugs at the site of a tumor, thus reducing the exposure of healthy tissue to unwanted damage. Promising work on the steering of medication in the human body employs magnetic fields acting on nanoparticles made of paramagnetic materials. We develop a computational tool to aid in the optimization of the physical parameters of these particles and the magnetic configuration, estimating the fraction of particles reaching a given target site in a large patient-specific vascular system for different physiological states (heart rate, cardiac output, etc.). We demonstrate the excellent computational performance of our model by its application to the simulation of paramagnetic-nanoparticle-laden flows in a circle of Willis geometry obtained from an MRI scan. The results suggest a strong dependence of the particle density at the target site on the strength of the magnetic forcing and the velocity of the background fluid flow.

  12. A cryogenic infrared calibration target.

    PubMed

    Wollack, E J; Kinzer, R E; Rinehart, S A

    2014-04-01

    A compact cryogenic calibration target is presented that has a peak diffuse reflectance, R ⩽ 0.003, from 800 to 4800 cm(-1) (12 - 2 μm). Upon expanding the spectral range under consideration to 400-10,000 cm(-1) (25 - 1 μm) the observed performance gracefully degrades to R ⩽ 0.02 at the band edges. In the implementation described, a high-thermal-conductivity metallic substrate is textured with a pyramidal tiling and subsequently coated with a thin lossy dielectric coating that enables high absorption and thermal uniformity across the target. The resulting target assembly is lightweight, has a low-geometric profile, and has survived repeated thermal cycling from room temperature to ∼4 K. Basic design considerations, governing equations, and test data for realizing the structure described are provided. The optical properties of selected absorptive materials-Acktar Fractal Black, Aeroglaze Z306, and Stycast 2850 FT epoxy loaded with stainless steel powder-are characterized and presented.

  13. Application and comparison of large-scale solution-based DNA capture-enrichment methods on ancient DNA

    PubMed Central

    Ávila-Arcos, María C.; Cappellini, Enrico; Romero-Navarro, J. Alberto; Wales, Nathan; Moreno-Mayar, J. Víctor; Rasmussen, Morten; Fordyce, Sarah L.; Montiel, Rafael; Vielle-Calzada, Jean-Philippe; Willerslev, Eske; Gilbert, M. Thomas P.

    2011-01-01

    The development of second-generation sequencing technologies has greatly benefitted the field of ancient DNA (aDNA). Its application can be further exploited by the use of targeted capture-enrichment methods to overcome restrictions posed by low endogenous and contaminating DNA in ancient samples. We tested the performance of Agilent's SureSelect and Mycroarray's MySelect in-solution capture systems on Illumina sequencing libraries built from ancient maize to identify key factors influencing aDNA capture experiments. High levels of clonality as well as the presence of multiple-copy sequences in the capture targets led to biases in the data regardless of the capture method. Neither method consistently outperformed the other in terms of average target enrichment, and no obvious difference was observed either when two tiling designs were compared. In addition to demonstrating the plausibility of capturing aDNA from ancient plant material, our results also enable us to provide useful recommendations for those planning targeted-sequencing on aDNA. PMID:22355593

  14. On collisional disruption - Experimental results and scaling laws

    NASA Technical Reports Server (NTRS)

    Davis, Donald R.; Ryan, Eileen V.

    1990-01-01

    Both homogeneous and inhomogeneous targets have been addressed by the present experimental consideration of the impact strengths, fragment sizes, and fragment velocities generated by cement mortar targets whose crushing strengths vary by an order of magnitude, upon impact of projectiles in the velocity range of 50-5700 m/sec. When combined with additional published data, dynamic impact strength is found to correlate with quasi-static material strengths for materials ranging in character from basalt to ice; two materials not following this trend, however, are weak mortar and clay targets. Values consistent with experimental results are obtainable with a simple scaling algorithm based on impact energy, material properties, and collisional strain rate.

  15. Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, John E.; Gogotsi, Yury; Yildirim, Taner

    2010-01-07

    On-board hydrogen storage is a key requirement for fuel cell-powered cars and trucks. Porous carbon-based materials can in principle adsorb more hydrogen per unit weight at room temperature than liquid hydrogen at -176 oC. Achieving this goal requires interconnected pores with very high internal surface area, and binding energies between hydrogen and carbon significantly enhanced relative to H2 on graphite. In this project a systematic study of carbide-derived carbons, a novel form of porous carbon, was carried out to discover a high-performance hydrogen sorption material to meet the goal. In the event we were unable to improve on the statemore » of the art in terms of stored hydrogen per unit weight, having encountered the same fundamental limit of all porous carbons: the very weak interaction between H2 and the carbon surface. On the other hand we did discover several strategies to improve storage capacity on a volume basis, which should be applicable to other forms of porous carbon. Further discoveries with potentially broader impacts include • Proof that storage performance is not directly related to pore surface area, as had been previously claimed. Small pores (< 1.5 nm) are much more effective in storing hydrogen than larger ones, such that many materials with large total surface areas are sub-par performers. • Established that the distribution of pore sizes can be controlled during CDC synthesis, which opens the possibility of developing high performance materials within a common family while targeting widely disparate applications. Examples being actively pursued with other funding sources include methane storage, electrode materials for batteries and supercapacitors with record high specific capacitance, and perm-selective membranes which bind cytokines for control of infections and possibly hemodialysis filters.« less

  16. Effects of practice on tip-of-the-tongue states.

    PubMed

    Smith, S M; Balfour, S P; Brown, J M

    1994-03-01

    Tip-of-the-tongue (TOT) states were examined in relation to acquisition manipulations, using named imaginary animals (TOTimals) as targets. High levels of TOT states were found in three experiments. In the first experiment an increase in the duration of initial exposure to target material improved recall and recognition, and reduced the number of unrecalled items not in TOT states (NTOTs), but did not affect TOT levels. In Experiment 2 practice at writing target names, as compared with only reading them, improved recall performance and decreased TOT levels, but did not reduce NTOTs. Experiment 3 replicated the finding that writing during practice reduced TOT states, but did not reduce NTOTs, and also found that more frequent practice trials increased recall without affecting TOT levels. The results suggest that practice writing target names prevents TOT states by strengthening otherwise deficient phonological connections in memory, a deficiency that can cause TOT states when visual-to-lexical connections give only partial access to a target in memory. The results also demonstrate the usefulness of the TOTimal technique for testing effects of acquisition variables on TOT experiences.

  17. Canadian Activities in Space Debris Mitigation Technologies

    NASA Astrophysics Data System (ADS)

    Nikanpour, Darius; Jiang, Xin Xiang; Goroshin, Samuel; Haddad, Emile; Kruzelecky, Roman; Hoa, Suong; Merle, Philippe; Kleiman, Jacob; Gendron, Stephane; Higgins, Andrew; Jamroz, Wes

    The space environment, and in particular the Low Earth Orbit (LEO), is becoming increasingly populated with space debris which include fragments of dysfunctional spacecraft parts and materials traveling at speeds up to 15 km per second. These pose an escalating potential threat to LEO spacecraft, the international space station, and manned missions. This paper presents the Canadian activities to address the concerns over space debris in terms of debris mitigation measures and technologies; these include novel spacecraft demise technologies to safely decommission the spacecraft at the end of the mission, integrated self-healing material technologies for spacecraft structures to facilitate self-repair and help maintain the spacecraft structural and thermal performance, hypervelocity ground test capability to predict the impact of space debris on spacecraft performance, and ways of raising awareness within the space community through participation in targeted Science and Technology conferences and international forums.

  18. A new setup for experimental investigations of solar wind sputtering

    NASA Astrophysics Data System (ADS)

    Szabo, Paul S.; Berger, Bernhard M.; Chiba, Rimpei; Stadlmayr, Reinhard; Aumayr, Friedrich

    2017-04-01

    The surfaces of Mercury and Moon are not shielded by a thick atmosphere and therefore they are exposed to bombardment by charged particles, ultraviolet photons and micrometeorites. These influences lead to an alteration and erosion of the surface, and the emitted atoms and molecules form a thin atmosphere, an exosphere, around these celestial bodies [1]. The composition of these exospheres is connected to the surface composition and has been subject to flyby measurements by satellites. Model calculations which include the erosion mechanisms can be used as a method of comparison for such exosphere measurements and allow conclusions about the surface composition. Surface sputtering induced by solar wind ions hereby represents a major contribution to the erosion of the surfaces of Mercury and Moon [1]. However, the experimental database for sputtering of respective analogue materials by solar wind ions, which would be necessary for exact modelling of the space weathering process, is still in its early stages. Sputtering experiments have been performed at TU Wien during the past years using a quartz crystal microbalance (QCM) technique [2]. Target material is deposited on the quartz surface as a thin layer and the quartz's resonance frequency is measured under ion bombardment. The sputter yield can then be calculated from the frequency change and the ion current [2]. In order to remove the restrictions of a thin layer QCM target and simplify experiments with composite targets, a new QCM catcher setup was developed. In the new design, the QCM is placed beside the target holder and acts as a catcher for material that is sputtered from the target surface. By comparing the catcher signal to reference measurements and SDTrimSP simulations [3], the target sputter yield can be determined. In order to test the setup, we have performed experiments with a Au-coated QCM target under 2 keV Ar+ bombardment so that both the mass changes at the target and at the catcher could be obtained simultaneously. The results coincide very well with SDTrimSP predictions showing the feasibility of the new design [4]. Furthermore, Fe-coated QCM targets with different surface roughness were investigated in the new setup. The surface roughness represents a key factor for the solar wind induced erosion of planetary or lunar rocks. It has a strong influence on the absolute sputtering yield as well as on the spatial distribution of sputtered particles and was therefore investigated. As a next step, sputtering experiments with Mercury or Moon analogues will be conducted. Knowledge gained in the course of this research will enhance the understanding of surface sputtering by solar wind ions and used to improve theoretical models of the Mercury's and Moon's exosphere formation. References: [1] E. Kallio, et al., Planetary and Space Science, 56, 1506 (2008). [2] G. Hayderer, et al., Review of Scientific Instruments, 70, 3696 (1999). [3] A. Mutzke, R. Schneider, W. Eckstein, R. Dohmen, SDTrimSP: Version 5.00, IPP Report, 12/8, (2011). [4] B. M. Berger, P. S. Szabo, R. Stadlmayr, F. Aumayr, Nucl. Instrum. Meth. Phys. Res. B, doi: 10.1016/j.nimb.2016.11.039

  19. Assessment of candidates for target window material in accelerator-driven molybdenum-99 production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strons, Philip; Bailey, James; Makarashvili, Vakhtang

    2016-10-01

    NorthStar Medical Technologies is pursuing production of an important medical isotope, Mo-99, through a photo-nuclear reaction of a Mo-100 target using a high-power electron accelerator. The current target utilizes an Inconel 718 window. The purpose of this study was to evaluate other candidate materials for the target window, which separates the high-pressure helium gas inside the target from the vacuum inside the accelerator beamline and is subjected to significant stress. Our initial analysis assessed the properties (density, thermal conductivity, maximum stress, minimum window thickness, maximum temperature, and figure of merit) for a range of materials, from which the three mostmore » promising were chosen: Inconel 718, 250 maraging steel, and standard-grade beryllium. These materials were subjected to further analysis to determine the effects of thermal and mechanical strain versus beam power at varying thicknesses. Both beryllium and the maraging steel were calculated to withstand more than twice as high beam power than Inconel 718.« less

  20. Detection of sub-MeV dark matter with three-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; Zurek, Kathryn M.; Grushin, Adolfo G.; Ilan, Roni; Griffin, Sinéad M.; Liu, Zhen-Fei; Weber, Sophie F.; Neaton, Jeffrey B.

    2018-01-01

    We propose the use of three-dimensional Dirac materials as targets for direct detection of sub-MeV dark matter. Dirac materials are characterized by a linear dispersion for low-energy electronic excitations, with a small band gap of O (meV ) if lattice symmetries are broken. Dark matter at the keV scale carrying kinetic energy as small as a few meV can scatter and excite an electron across the gap. Alternatively, bosonic dark matter as light as a few meV can be absorbed by the electrons in the target. We develop the formalism for dark matter scattering and absorption in Dirac materials and calculate the experimental reach of these target materials. We find that Dirac materials can play a crucial role in detecting dark matter in the keV to MeV mass range that scatters with electrons via a kinetically mixed dark photon, as the dark photon does not develop an in-medium effective mass. The same target materials provide excellent sensitivity to absorption of light bosonic dark matter in the meV to hundreds of meV mass range, superior to all other existing proposals when the dark matter is a kinetically mixed dark photon.

  1. Optical Radiation from Shock-Compressed Materials. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Svendsen, Robert F., Jr.

    1987-01-01

    Recent observations of shock-induced radiation from oxides, silicates, and metals of geophysical interest constrain the shock-compressed temperature of these materials. The relationships between the temperature inferred from the observed radiation and the temperature of the shock-compressed film or foil and/or window were investigated. Changes of the temperature field in each target component away from that of their respective shock-compressed states occur because of: shock-impedance mismatch between target components; thermal mismatch between target components; surface roughness at target interfaces; and conduction within and between target components. In particular, conduction may affect the temperature of the film/foil window interface on the time scale of the experiments, and so control the intensity and history of the dominant thermal radiation sources in the target. This type of model was used to interpret the radiation emitted by a variety of shock-compressed materials and interfaces.

  2. Research and development on materials for the SPES target

    NASA Astrophysics Data System (ADS)

    Corradetti, Stefano; Andrighetto, Alberto; Manzolaro, Mattia; Scarpa, Daniele; Vasquez, Jesus; Rossignoli, Massimo; Monetti, Alberto; Calderolla, Michele; Prete, Gianfranco

    2014-03-01

    The SPES project at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro) is focused on the production of radioactive ion beams. The core of the SPES facility is constituted by the target, which will be irradiated with a 40 MeV, 200 µA proton beam in order to produce radioactive species. In order to efficiently produce and release isotopes, the material constituting the target should be able to work under extreme conditions (high vacuum and temperatures up to 2000 °C). Both neutron-rich and proton-rich isotopes will be produced; in the first case, carbon dispersed uranium carbide (UCx) will be used as a target, whereas to produce p-rich isotopes, several types of targets will have to be irradiated. The synthesis and characterization of different types of material will be reported. Moreover, the results of irradiation and isotopes release tests on different uranium carbide target prototypes will be discussed.

  3. Ultra high molecular weight polyethylene (UHMWPE) fiber epoxy composite hybridized with Gadolinium and Boron nanoparticles for radiation shielding

    NASA Astrophysics Data System (ADS)

    Mani, Venkat; Prasad, Narasimha S.; Kelkar, Ajit

    2016-09-01

    Deep space radiations pose a major threat to the astronauts and their spacecraft during long duration space exploration missions. The two sources of radiation that are of concern are the galactic cosmic radiation (GCR) and the short lived secondary neutron radiations that are generated as a result of fragmentation that occurs when GCR strikes target nuclei in a spacecraft. Energy loss, during the interaction of GCR and the shielding material, increases with the charge to mass ratio of the shielding material. Hydrogen with no neutron in its nucleus has the highest charge to mass ratio and is the element which is the most effective shield against GCR. Some of the polymers because of their higher hydrogen content also serve as radiation shield materials. Ultra High Molecular Weight Polyethylene (UHMWPE) fibers, apart from possessing radiation shielding properties by the virtue of the high hydrogen content, are known for extraordinary properties. An effective radiation shielding material is the one that will offer protection from GCR and impede the secondary neutron radiations resulting from the fragmentation process. Neutrons, which result from fragmentation, do not respond to the Coulombic interaction that shield against GCR. To prevent the deleterious effects of secondary neutrons, targets such as Gadolinium are required. In this paper, the radiation shielding studies that were carried out on the fabricated sandwich panels by vacuum-assisted resin transfer molding (VARTM) process are presented. VARTM is a manufacturing process used for making large composite structures by infusing resin into base materials formed with woven fabric or fiber using vacuum pressure. Using the VARTM process, the hybridization of Epoxy/UHMWPE composites with Gadolinium nanoparticles, Boron, and Boron carbide nanoparticles in the form of sandwich panels were successfully carried out. The preliminary results from neutron radiation tests show that greater than 99% shielding performance was achieved with these sandwich panels. Moreover, the mechanical testing and thermo-physical analysis performed show that core materials can preserve their thermo-physical and mechanical integrity after radiation.

  4. Magnetron with flux switching cathode and method of operation

    DOEpatents

    Aaron, D.B.; Wiley, J.D.

    1989-09-12

    A magnetron sputtering apparatus is formed with a plurality of cells each for generating an independent magnetic field within a different region in the chamber of the apparatus. Each magnetic field aids in maintaining an ion plasma in the respective region of the chamber. One of a plurality of sputtering material targets is positioned on an electrode adjacent to each region so that said ions strike the target ejecting some of the target material. By selectively generating each magnetic field, the ion plasma may be moved from region to region to sputter material from different targets. The sputtered material becomes deposited on a substrate mounted on another electrode within the chamber. The duty cycle of each cell can be dynamically varied during the deposition to produce a layer having a graded composition throughout its thickness. 5 figs.

  5. Magnetron with flux switching cathode and method of operation

    DOEpatents

    Aaron, David B.; Wiley, John D.

    1989-01-01

    A magnetron sputtering apparatus is formed with a plurality of cells each for generating an independent magnetic field within a different region in the chamber of the apparatus. Each magnetic field aids in maintaining an ion plasma in the respective region of the chamber. One of a plurality of sputtering material targets is positioned on an electrode adjacent to each region so that said ions strike the target ejecting some of the target material. By selectively generating each magnetic field, the ion plasma may be moved from region to region to sputter material from different targets. The sputtered material becomes deposited on a substrate mounted on another electrode within the chamber. The duty cycle of each cell can be dynamically varied during the deposition to produce a layer having a graded composition throughout its thickness.

  6. Method and apparatus for optimized sampling of volatilizable target substances

    DOEpatents

    Lindgren, Eric R.; Phelan, James M.

    2002-01-01

    An apparatus for capturing, from gases such as soil gas, target analytes. Target analytes may include emanations from explosive materials or from residues of explosive materials. The apparatus employs principles of sorption common to solid phase microextraction, and is best used in conjunction with analysis means such as a gas chromatograph. To sorb target analytes, the apparatus functions using various sorptive structures to capture target analyte. Depending upon the embodiment, those structures may include 1) a conventional solid-phase microextraction (SPME) fiber, 2) a SPME fiber suspended in a capillary tube (with means provided for moving gases through the capillary tube so that the gases come into close proximity to the suspended fiber), and 3) a capillary tube including an interior surface on which sorptive material (similar to that on the surface of a SPME fiber) is supported (along with means for moving gases through the capillary tube so that the gases come into close proximity to the sorptive material). In one disclosed embodiment, at least one such sorptive structure is associated with an enclosure including an opening in communication with the surface of a soil region potentially contaminated with buried explosive material such as unexploded ordnance. Emanations from explosive materials can pass into and accumulate in the enclosure where they are sorbed by the sorptive structures. Also disclosed is the use of heating means such as microwave horns to drive target analytes into the soil gas from solid and liquid phase components of the soil.

  7. Solar Sail Material Performance Property Response to Space Environmental Effects

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (L1) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager' and the L1 Diamond '. The Environmental Effects Group at NASA's Marshall Space Fliglit Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail3-'. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar TM, Teonexm, and CP1 (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were characterized. The contribution of Near Ultraviolet (NUV) radiation combined with electron and proton radiation was also investigated. Conclusions will be presented providing a gauge of measure for engineering performance stability for sails operating in the L1 space environment.

  8. Key features for ATA / ATR database design in missile systems

    NASA Astrophysics Data System (ADS)

    Özertem, Kemal Arda

    2017-05-01

    Automatic target acquisition (ATA) and automatic target recognition (ATR) are two vital tasks for missile systems, and having a robust detection and recognition algorithm is crucial for overall system performance. In order to have a robust target detection and recognition algorithm, an extensive image database is required. Automatic target recognition algorithms use the database of images in training and testing steps of algorithm. This directly affects the recognition performance, since the training accuracy is driven by the quality of the image database. In addition, the performance of an automatic target detection algorithm can be measured effectively by using an image database. There are two main ways for designing an ATA / ATR database. The first and easy way is by using a scene generator. A scene generator can model the objects by considering its material information, the atmospheric conditions, detector type and the territory. Designing image database by using a scene generator is inexpensive and it allows creating many different scenarios quickly and easily. However the major drawback of using a scene generator is its low fidelity, since the images are created virtually. The second and difficult way is designing it using real-world images. Designing image database with real-world images is a lot more costly and time consuming; however it offers high fidelity, which is critical for missile algorithms. In this paper, critical concepts in ATA / ATR database design with real-world images are discussed. Each concept is discussed in the perspective of ATA and ATR separately. For the implementation stage, some possible solutions and trade-offs for creating the database are proposed, and all proposed approaches are compared to each other with regards to their pros and cons.

  9. Final Report on MEGAPIE Target Irradiation and Post-Irradiation Examination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yong, Dai

    2015-06-30

    Megawatt pilot experiment (MEGAPIE) was successfully performed in 2006. One of the important goals of MEGAPIE is to understand the behaviour of structural materials of the target components exposed to high fluxes of high-energy protons and spallation neutrons in flowing LBE (liquid lead-bismuth eutectic) environment by conducting post-irradiation examination (PIE). The PIE includes four major parts: non-destructive test, radiochemical analysis of production and distribution of radionuclides produced by spallation reaction in LBE, analysis of LBE corrosion effects on structural materials, T91 and SS 316L steels, and mechanical testing of the T91 and SS 316L steels irradiated in the lower partmore » of the target. The non-destructive test (NDT) including visual inspection and ultrasonic measurement was performed in the proton beam window area of the T91 calotte of the LBE container, the most intensively irradiated part of the MEGAPIE target. The visual inspection showed no visible failure and the ultrasonic measurement demonstrated no detectable change in thickness in the beam window area. Gamma mapping was also performed in the proton beam window area of the AlMg 3 safety-container. The gamma mapping results were used to evaluate the accumulated proton fluence distribution profile, the input data for determining irradiation parameters. Radiochemical analysis of radionuclides produced by spallation reaction in LBE is to improve the understanding of the production and distribution of radionuclides in the target. The results demonstrate that the radionuclides of noble metals, 207Bi, 194Hg/Au are rather homogeneously distributed within the target, while radionuclides of electropositive elements are found to be deposited on the steel-LBE interface. The corrosion effect of LBE on the structural components under intensive irradiation was investigated by metallography. The results show that no evident corrosion damages. However, unexpected deep cracks were found in the EBW (electron beam weld) of the LBE container in the intensive irradiation zone of the target, which should be formed during irradiation. In the SS 316L steel of the flow guide tube, inclusions or precipitates enriched with O, Si, S, Ca, Ti and Mn were observed. Many of them are very long, up to a few mm, and located on grain boundaries along the extrusion direction of the tube. The degradation of the mechanical properties of the T91 and SS 316L steels has been investigated by conducting tensile tests on the specimens extracted from the T91 and SS 316L components in the intensive irradiation region. The results obtained from the proton beam window of the T91 calotte exhibit a good ductility of T91 steel after irradiation at 6-7 dpa (displacement per atom) in contact with flowing LBE.« less

  10. Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, Juergen; Aaron, A. M.; Bell, Gary L.

    2015-10-20

    Fusion energy is the most promising energy source for the future, and one of the most important problems to be solved progressing to a commercial fusion reactor is the identification of plasma-facing materials compatible with the extreme conditions in the fusion reactor environment. The development of plasma–material interaction (PMI) science and the technology of plasma-facing components are key elements in the development of the next step fusion device in the United States, the so-called Fusion Nuclear Science Facility (FNSF). All of these PMI issues and the uncertain impact of the 14-MeV neutron irradiation have been identified in numerous expert panelmore » reports to the fusion community. The 2007 Greenwald report classifies reactor plasma-facing materials (PFCs) and materials as the only Tier 1 issues, requiring a “. . . major extrapolation from the current state of knowledge, need for qualitative improvements and substantial development for both the short and long term.” The Greenwald report goes on to list 19 gaps in understanding and performance related to the plasma–material interface for the technology facilities needed for DEMO-oriented R&D and DEMO itself. Of the 15 major gaps, six (G7, G9, G10, G12, G13) can possibly be addressed with ORNL’s proposal of an advanced Material Plasma Exposure eXperiment. Establishing this mid-scale plasma materials test facility at ORNL is a key element in ORNL’s strategy to secure a leadership role for decades of fusion R&D. That is to say, our end goal is to bring the “signature facility” FNSF home to ORNL. This project is related to the pre-conceptual design of an innovative target station for a future Material–Plasma Exposure eXperiment (MPEX). The target station will be designed to expose candidate fusion reactor plasma-facing materials and components (PFMs and PFCs) to conditions anticipated in fusion reactors, where PFCs will be exposed to dense high-temperature hydrogen plasmas providing steady-state heat fluxes of 5–20 MW/m 2 and ion fluxes up to 10 24 m -2s -1. Since PFCs will have to withstand neutron irradiation displacement damage up to 50 dpa, the target station design must accommodate radioactive specimens (materials to be irradiated in HFIR or at SNS) to enable investigations of the impact of neutron damage on materials. Therefore, the system will have to be able to install and extract irradiated specimens using equipment and methods to avoid sample modification, control contamination, and minimize worker dose. Included in the design considerations will be an assessment of all the steps between neutron irradiation and post-exposure materials examination/characterization, as well as an evaluation of the facility hazard categorization. In particular, the factors associated with the acquisition of radioactive specimens and their preparation, transportation, experimental configuration at the plasma-specimen interface, post-plasma-exposure sample handling, and specimen preparation will be evaluated. Neutronics calculations to determine the dose rates of the samples were carried out for a large number of potential plasma-facing materials.« less

  11. Measuring the Density of Different Materials by Using the Fast Neutron Beam and Associated Alpha Particle Technique

    NASA Astrophysics Data System (ADS)

    Sudac, D.; Nad, K.; Orlic, Z.; Obhodas, J.; Valkovic, V.

    2016-06-01

    It was demonstrated in the previous work that various threat materials could be detected inside the sea going cargo container by measuring the three variables, carbon and oxygen concentration and density of investigated material. Density was determined by measuring transmitted neutrons, which is not always practical in terms of setting up the instrument geometry. In order to enable more geometry flexibility, we have investigated the possibility of using the scattered neutrons in cargo material identification. For that purpose, the densities of different materials were measured depending on the position of neutron detectors and neutron generator with respect to the target position. One neutron detector was put above the target, one behind and one in front of the target, above the neutron generator. It was shown that all three positions of neutron detectors can be successfully used to measure the target density, but only if the detected neutrons are successfully discriminated from the gamma rays.

  12. Enhancement of visible-light photoactivity by polypropylene coated plasmonic Au/TiO2 for dye degradation in water solution

    NASA Astrophysics Data System (ADS)

    D'Amato, C. A.; Giovannetti, R.; Zannotti, M.; Rommozzi, E.; Ferraro, S.; Seghetti, C.; Minicucci, M.; Gunnella, R.; Di Cicco, A.

    2018-05-01

    A new approach to obtain a heterogeneous photocatalytic material with gold nanoparticles and TiO2 semiconductor was performed exploiting the reducing ability of acetylacetone, a chemical present in the TiO2 paste formulation. Gold/TiO2 heterogeneous catalyst supported on polypropylene [PP@Au-TiO2]A was prepared; composition, structure and morphology of this new material were defined by using UV-Vis spectroscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), X-ray diffraction (XRD), X-ray Fluorescence (XRF), Raman Spectroscopy, Photoluminescence and Diffuse Reflectance Spectroscopy. The new material was tested in the photocatalytic degradation of Alizarin Red S in water solution, as target pollutant, under visible light and correlated with structural and spectroscopic characterizations. [PP@Au-TiO2]A showed higher photocatalytic activity respect to pure [PP@TiO2]A with an improvement of photodegradation kinetic. The best performance was obtained using [PP@Au-TiO2]A sample with 0.006 wt.% of Au and the photocatalytic improvement was correlated with the band gap energy decrease of photocatalyst.

  13. Multishot Targeted PROPELLER Magnetic Resonance Imaging: Description of the Technique and Initial Applications

    PubMed Central

    Deng, Jie; Larson, Andrew C.

    2010-01-01

    Objectives To test the feasibility of combining inner-volume imaging (IVI) techniques with conventional multishot periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) techniques for targeted-PROPELLER magnetic resonance imaging. Materials and Methods Perpendicular section-selective gradients for spatially selective excitation and refocusing RF pulses were applied to limit the refocused field-of-view (FOV) along the phase-encoding direction for each rectangular blade image. We performed comparison studies in phantoms and normal volunteers by using targeted-PROPELLER methods for a wide range of imaging applications that commonly use turbo-spin-echo (TSE) approaches (brain, abdominal, vessel wall, cardiac). Results In these initial studies, we demonstrated the feasibility of using targeted-PROPELLER approaches to limit the imaging FOV thereby reducing the number of blades or permitting increased spatial resolution without commensurate increases in scan time. Both phantom and in vivo motion studies demonstrated the potential for more robust regional self-navigated motion correction compared with conventional full FOV PROPELLER methods. Conclusion We demonstrated that the reduced FOV targeted-PROPELLER technique offers the potential for reducing imaging time, increasing spatial resolution, and targeting specific areas for robust regional motion correction. PMID:19465860

  14. A simulation study of fast neutron interrogation for standoff detection of improvised explosive devices

    NASA Astrophysics Data System (ADS)

    Heider, S. A.; Dunn, W. L.

    2015-11-01

    The signature-based radiation-scanning technique utilizes radiation detector responses, called "signatures," and compares these to "templates" in order to differentiate targets that contain certain materials, such as explosives or drugs, from those that do not. Our investigations are aimed at the detection of nitrogen-rich explosives contained in improvised explosive devices. We use the term "clutter" to refer to any non-explosive materials with which the interrogating radiation may interact between source and detector. To deal with the many target types and clutter configurations that may be encountered in the field, the use of "artificial templates" is proposed. The MCNP code was used to simulate 14.1 MeV neutron source beams incident on one type of target containing various clutter and sample materials. Signatures due to inelastic-scatter and prompt-capture gamma rays from hydrogen, carbon, nitrogen, and oxygen and two scattered neutron signatures were considered. Targets containing explosive materials in the presence of clutter were able to be identified from targets that contained only non-explosive ("inert") materials. This study demonstrates that a finite number of artificial templates is sufficient for IED detection with fairly good sensitivity and specificity.

  15. Near Infrared Fluorescence Imaging in Nano-Therapeutics and Photo-Thermal Evaluation

    PubMed Central

    Vats, Mukti; Mishra, Sumit Kumar; Baghini, Mahdieh Shojaei; Chauhan, Deepak S.; Srivastava, Rohit; De, Abhijit

    2017-01-01

    The unresolved and paramount challenge in bio-imaging and targeted therapy is to clearly define and demarcate the physical margins of tumor tissue. The ability to outline the healthy vital tissues to be carefully navigated with transection while an intraoperative surgery procedure is performed sets up a necessary and under-researched goal. To achieve the aforementioned objectives, there is a need to optimize design considerations in order to not only obtain an effective imaging agent but to also achieve attributes like favorable water solubility, biocompatibility, high molecular brightness, and a tissue specific targeting approach. The emergence of near infra-red fluorescence (NIRF) light for tissue scale imaging owes to the provision of highly specific images of the target organ. The special characteristics of near infra-red window such as minimal auto-fluorescence, low light scattering, and absorption of biomolecules in tissue converge to form an attractive modality for cancer imaging. Imparting molecular fluorescence as an exogenous contrast agent is the most beneficial attribute of NIRF light as a clinical imaging technology. Additionally, many such agents also display therapeutic potentials as photo-thermal agents, thus meeting the dual purpose of imaging and therapy. Here, we primarily discuss molecular imaging and therapeutic potentials of two such classes of materials, i.e., inorganic NIR dyes and metallic gold nanoparticle based materials. PMID:28452928

  16. A framework for assessing the uncertainty in wave energy delivery to targeted subsurface formations

    NASA Astrophysics Data System (ADS)

    Karve, Pranav M.; Kallivokas, Loukas F.; Manuel, Lance

    2016-02-01

    Stress wave stimulation of geological formations has potential applications in petroleum engineering, hydro-geology, and environmental engineering. The stimulation can be applied using wave sources whose spatio-temporal characteristics are designed to focus the emitted wave energy into the target region. Typically, the design process involves numerical simulations of the underlying wave physics, and assumes a perfect knowledge of the material properties and the overall geometry of the geostructure. In practice, however, precise knowledge of the properties of the geological formations is elusive, and quantification of the reliability of a deterministic approach is crucial for evaluating the technical and economical feasibility of the design. In this article, we discuss a methodology that could be used to quantify the uncertainty in the wave energy delivery. We formulate the wave propagation problem for a two-dimensional, layered, isotropic, elastic solid truncated using hybrid perfectly-matched-layers (PMLs), and containing a target elastic or poroelastic inclusion. We define a wave motion metric to quantify the amount of the delivered wave energy. We, then, treat the material properties of the layers as random variables, and perform a first-order uncertainty analysis of the formation to compute the probabilities of failure to achieve threshold values of the motion metric. We illustrate the uncertainty quantification procedure using synthetic data.

  17. Characterization and fabrication of target materials for RIB generation

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Janney, M. A.; Mueller, P. E.; Ortman, W. K.; Rauniyar, R.; Stracener, D. W.; Williams, C. L.

    2001-07-01

    This report discusses two techniques developed at the Oak Ridge National Laboratory (ORNL) that are employed for the fabrication and characterization of targets used in the production of Radioactive Ion Beams (RIBs). First, our method of in-house fabrication of uranium carbide targets is discussed. We have found that remarkably uniform coatings of UC2 can be formed on the microstructure of porous C matrices. The technique has been used to form UC2 layers on highly thermally conductive graphitic foams. Targets fabricated in this fashion have been tested under low-intensity proton bombardment and yields of selected radioactive species are reported. This report also describes an off-line test stand for the investigation of effusive and diffusive transport in RIB target/ion sources. Permeation rates of gases and vapors passing through a high temperature membrane or through an effusive channel constructed from the material under investigation are recorded. Diffusion coefficients and adsorption enthalpies, which characterize the interaction of RIB species with materials of the target/ion source, are extracted from the time profile of the recorded data. Examples of diffusion, effusion, and conductance measurements are provided.

  18. Optimal Design of Gradient Materials and Bi-Level Optimization of Topology Using Targets (BOTT)

    NASA Astrophysics Data System (ADS)

    Garland, Anthony

    The objective of this research is to understand the fundamental relationships necessary to develop a method to optimize both the topology and the internal gradient material distribution of a single object while meeting constraints and conflicting objectives. Functionally gradient material (FGM) objects possess continuous varying material properties throughout the object, and they allow an engineer to tailor individual regions of an object to have specific mechanical properties by locally modifying the internal material composition. A variety of techniques exists for topology optimization, and several methods exist for FGM optimization, but combining the two together is difficult. Understanding the relationship between topology and material gradient optimization enables the selection of an appropriate model and the development of algorithms, which allow engineers to design high-performance parts that better meet design objectives than optimized homogeneous material objects. For this research effort, topology optimization means finding the optimal connected structure with an optimal shape. FGM optimization means finding the optimal macroscopic material properties within an object. Tailoring the material constitutive matrix as a function of position results in gradient properties. Once, the target macroscopic properties are known, a mesostructure or a particular material nanostructure can be found which gives the target material properties at each macroscopic point. This research demonstrates that topology and gradient materials can both be optimized together for a single part. The algorithms use a discretized model of the domain and gradient based optimization algorithms. In addition, when considering two conflicting objectives the algorithms in this research generate clear 'features' within a single part. This tailoring of material properties within different areas of a single part (automated design of 'features') using computational design tools is a novel benefit of gradient material designs. A macroscopic gradient can be achieved by varying the microstructure or the mesostructures of an object. The mesostructure interpretation allows for more design freedom since the mesostructures can be tuned to have non-isotropic material properties. A new algorithm called Bi-level Optimization of Topology using Targets (BOTT) seeks to find the best distribution of mesostructure designs throughout a single object in order to minimize an objective value. On the macro level, the BOTT algorithm optimizes the macro topology and gradient material properties within the object. The BOTT algorithm optimizes the material gradient by finding the best constitutive matrix at each location with the object. In order to enhance the likelihood that a mesostructure can be generated with the same equivalent constitutive matrix, the variability of the constitutive matrix is constrained to be an orthotropic material. The stiffness in the X and Y directions (of the base coordinate system) can change in addition to rotating the orthotropic material to align with the loading at each region. Second, the BOTT algorithm designs mesostructures with macroscopic properties equal to the target properties found in step one while at the same time the algorithm seeks to minimize material usage in each mesostructure. The mesostructure algorithm maximizes the strain energy of the mesostructures unit cell when a pseudo strain is applied to the cell. A set of experiments reveals the fundamental relationship between target cell density and the strain (or pseudo strain) applied to a unit cell and the output effective properties of the mesostructure. At low density, a few mesostructure unit cell design are possible, while at higher density the mesostructure unit cell designs have many possibilities. Therefore, at low densities the effective properties of the mesostructure are a step function of the applied pseudo strain. At high densities, the effective properties of the mesostructure are continuous function of the applied pseudo strain. Finally, the macro and mesostructure designs are coordinated so that the macro and meso levels agree on the material properties at each macro region. In addition, a coordination effort seeks to coordinate the boundaries of adjacent mesostructure designs so that the macro load path is transmitted from one mesostructure design to its neighbors. The BOTT algorithm has several advantages over existing algorithms within the literature. First, the BOTT algorithm significantly reduces the computational power required to run the algorithm. Second, the BOTT algorithm indirectly enforces a minimum mesostructure density constraint which increases the manufacturability of the final design. Third, the BOTT algorithm seeks to transfer the load from one mesostructure to its neighbors by coordinating the boundaries of adjacent mesostructure designs. However, the BOTT algorithm can still be improved since it may have difficulty converging due to the step function nature of the mesostructure design problem at low density.

  19. Experimental and computational studies of electromagnetic cloaking at microwaves

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohui

    An invisibility cloak is a device that can hide the target by enclosing it from the incident radiation. This intriguing device has attracted a lot of attention since it was first implemented at a microwave frequency in 2006. However, the problems of existing cloak designs prevent them from being widely applied in practice. In this dissertation, we try to remove or alleviate the three constraints for practical applications imposed by loosy cloaking media, high implementation complexity, and small size of hidden objects compared to the incident wavelength. To facilitate cloaking design and experimental characterization, several devices and relevant techniques for measuring the complex permittivity of dielectric materials at microwave frequencies are developed. In particular, a unique parallel plate waveguide chamber has been set up to automatically map the electromagnetic (EM) field distribution for wave propagation through the resonator arrays and cloaking structures. The total scattering cross section of the cloaking structures was derived based on the measured scattering field by using this apparatus. To overcome the adverse effects of lossy cloaking media, microwave cloaks composed of identical dielectric resonators made of low loss ceramic materials are designed and implemented. The effective permeability dispersion was provided by tailoring dielectric resonator filling fractions. The cloak performances had been verified by full-wave simulation of true multi-resonator structures and experimental measurements of the fabricated prototypes. With the aim to reduce the implementation complexity caused by metamaterials employment for cloaking, we proposed to design 2-D cylindrical cloaks and 3-D spherical cloaks by using multi-layer ordinary dielectric material (epsilon r>1) coating. Genetic algorithm was employed to optimize the dielectric profiles of the cloaking shells to provide the minimum scattering cross sections of the cloaked targets. The designed cloaks can be easily scaled to various operating frequencies. The simulation results show that the multi-layer cylindrical cloak essentially outperforms the similarly sized metamaterials-based cloak designed by using the transformation optics-based reduced parameters. For the designed spherical cloak, the simulated scattering pattern shows that the total scattering cross section is greatly reduced. In addition, the scattering in specific directions could be significantly reduced. It is shown that the cloaking efficiency for larger targets could be improved by employing lossy materials in the shell. At last, we propose to hide a target inside a waveguide structure filled with only epsilon near zero materials, which are easy to implement in practice. The cloaking efficiency of this method, which was found to increase for large targets, has been confirmed both theoretically and by simulations.

  20. Quality Assurance Assessment of Diagnostic and Radiation Therapy–Simulation CT Image Registration for Head and Neck Radiation Therapy: Anatomic Region of Interest–based Comparison of Rigid and Deformable Algorithms

    PubMed Central

    Mohamed, Abdallah S. R.; Ruangskul, Manee-Naad; Awan, Musaddiq J.; Baron, Charles A.; Kalpathy-Cramer, Jayashree; Castillo, Richard; Castillo, Edward; Guerrero, Thomas M.; Kocak-Uzel, Esengul; Yang, Jinzhong; Court, Laurence E.; Kantor, Michael E.; Gunn, G. Brandon; Colen, Rivka R.; Frank, Steven J.; Garden, Adam S.; Rosenthal, David I.

    2015-01-01

    Purpose To develop a quality assurance (QA) workflow by using a robust, curated, manually segmented anatomic region-of-interest (ROI) library as a benchmark for quantitative assessment of different image registration techniques used for head and neck radiation therapy–simulation computed tomography (CT) with diagnostic CT coregistration. Materials and Methods Radiation therapy–simulation CT images and diagnostic CT images in 20 patients with head and neck squamous cell carcinoma treated with curative-intent intensity-modulated radiation therapy between August 2011 and May 2012 were retrospectively retrieved with institutional review board approval. Sixty-eight reference anatomic ROIs with gross tumor and nodal targets were then manually contoured on images from each examination. Diagnostic CT images were registered with simulation CT images rigidly and by using four deformable image registration (DIR) algorithms: atlas based, B-spline, demons, and optical flow. The resultant deformed ROIs were compared with manually contoured reference ROIs by using similarity coefficient metrics (ie, Dice similarity coefficient) and surface distance metrics (ie, 95% maximum Hausdorff distance). The nonparametric Steel test with control was used to compare different DIR algorithms with rigid image registration (RIR) by using the post hoc Wilcoxon signed-rank test for stratified metric comparison. Results A total of 2720 anatomic and 50 tumor and nodal ROIs were delineated. All DIR algorithms showed improved performance over RIR for anatomic and target ROI conformance, as shown for most comparison metrics (Steel test, P < .008 after Bonferroni correction). The performance of different algorithms varied substantially with stratification by specific anatomic structures or category and simulation CT section thickness. Conclusion Development of a formal ROI-based QA workflow for registration assessment demonstrated improved performance with DIR techniques over RIR. After QA, DIR implementation should be the standard for head and neck diagnostic CT and simulation CT allineation, especially for target delineation. © RSNA, 2014 Online supplemental material is available for this article. PMID:25380454

  1. Dynamic Failure and Fragmentation of a Hot-Pressed Boron Carbide

    NASA Astrophysics Data System (ADS)

    Sano, Tomoko; Vargas-Gonzalez, Lionel; LaSalvia, Jerry; Hogan, James David

    2017-12-01

    This study investigates the failure and fragmentation of a hot-pressed boron carbide during high rate impact experiments. Four impact experiments are performed using a composite-backed target configuration at similar velocities, where two of the impact experiments resulted in complete target penetration and two resulted in partial penetration. This paper seeks to evaluate and understand the dynamic behavior of the ceramic that led to either the complete or partial penetration cases, focusing on: (1) surface and internal failure features of fragments using optical, scanning electron, and transmission electron microscopy, and (2) fragment size analysis using state-of-the-art particle-sizing technology that informs about the consequences of failure. Detailed characterization of the mechanical properties and the microstructure is also performed. Results indicate that transgranular fracture was the primary mode of failure in this boron carbide material, and no stress-induced amorphization features were observed. Analysis of the fragment sizes for the partial and completely penetrated experiments revealed a possible correlation between larger fragment sizes and impact performance. The results will add insight into designing improved advanced ceramics for impact protection applications.

  2. Angular dependence of source-target-detector in active mode standoff infrared detection

    NASA Astrophysics Data System (ADS)

    Pacheco-Londoño, Leonardo C.; Castro-Suarez, John R.; Aparicio-Bolaños, Joaquín. A.; Hernández-Rivera, Samuel P.

    2013-06-01

    Active mode standoff measurement using infrared spectroscopy were carried out in which the angle between target and the source was varied from 0-70° with respect to the surface normal of substrates containing traces of highly energetic materials (explosives). The experiments were made using three infrared sources: a modulated source (Mod-FTIR), an unmodulated source (UnMod-FTIR) and a scanning quantum cascade laser (QCL), part of a dispersive mid infrared (MIR) spectrometer. The targets consisted of PENT 200 μg/cm2 deposited on aluminum plates placed at 1 m from the sources. The evaluation of the three modalities was aimed at verifying the influence of the highly collimated laser beam in the detection in comparison with the other sources. The Mod-FTIR performed better than QCL source in terms of the MIR signal intensity decrease with increasing angle.

  3. Composition and methods of preparation of target material for producing radionuclides

    DOEpatents

    Seropeghin, Yurii D; Zhuikov, Boris L

    2013-05-28

    A composition suitable for use as a target containing antimony to be irradiated by accelerated charged particles (e.g., by protons to produce tin-117m) comprises an intermetallic compound of antimony and titanium which is synthesized at high-temperature, for example, in an arc furnace. The formed material is powdered and melted in an induction furnace, or heated at high gas pressure in gas static camera. The obtained product has a density, temperature stability, and heat conductivity sufficient to provide an appropriate target material.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, William, E-mail: William.Chu@sunnybrook.ca; Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario; Staruch, Robert M.

    Purpose: To evaluate the feasibility of magnetic resonance–guided high-intensity focused ultrasound (MR-HIFU) mild hyperthermia in deep tissue targets for enhancing radiation therapy and chemotherapy in the context of recurrent rectal cancer. A preclinical study was performed to evaluate the safety and performance of MR-HIFU mild hyperthermia. A prospective imaging study was performed in volunteers with rectal cancer to evaluate MR thermometry quality near the rectum and accessibility of rectal tumors using MR-HIFU. Methods and Materials: Mild hyperthermia was performed in pig thigh (9 sonications, 6 pigs) using a clinical MR-HIFU system. Targets near the rectal wall and deep thigh weremore » evaluated. Thermal maps obtained in 6 planes every 3.2 seconds were used to control sonications in 18-mm diameter treatment regions at temperatures of 42°C to 42.5°C for 10 to 60 minutes. Volunteer imaging-only studies to assess the quality of MR thermometry (without heating) were approved by the institutional research ethics board. Anatomic and MR thermometry images were acquired in consenting volunteers with rectal cancer. In 3 of 6 study participants, rectal filling with saline was used to reduce motion-related MR thermometry artifacts near the tumor. Results: In pigs, mean target temperature matched the desired hyperthermia temperature within 0.2°C; temporal standard deviation ≤0.5°C. With optimized control thresholds, no undesired tissue damage was observed. In human volunteers, MR temperature measurements had adequate precision and stability, especially when rectal filling was used to reduce bowel motion. Conclusions: In pigs, MR-HIFU can safely deliver mild hyperthermia (41°C-43°C) to a targeted volume for 30 minutes. In humans, careful patient selection and preparation will enable adequate targeting for recurrent rectal cancers and sufficient MR temperature mapping stability to control mild hyperthermia. These results enable human trials of MR-HIFU hyperthermia.« less

  5. Efficient material decomposition method for dual-energy X-ray cargo inspection system

    NASA Astrophysics Data System (ADS)

    Lee, Donghyeon; Lee, Jiseoc; Min, Jonghwan; Lee, Byungcheol; Lee, Byeongno; Oh, Kyungmin; Kim, Jaehyun; Cho, Seungryong

    2018-03-01

    Dual-energy X-ray inspection systems are widely used today for it provides X-ray attenuation contrast of the imaged object and also its material information. Material decomposition capability allows a higher detection sensitivity of potential targets including purposely loaded impurities in agricultural product inspections and threats in security scans for example. Dual-energy X-ray transmission data can be transformed into two basis material thickness data, and its transformation accuracy heavily relies on a calibration of material decomposition process. The calibration process in general can be laborious and time consuming. Moreover, a conventional calibration method is often challenged by the nonuniform spectral characteristics of the X-ray beam in the entire field-of-view (FOV). In this work, we developed an efficient material decomposition calibration process for a linear accelerator (LINAC) based high-energy X-ray cargo inspection system. We also proposed a multi-spot calibration method to improve the decomposition performance throughout the entire FOV. Experimental validation of the proposed method has been demonstrated by use of a cargo inspection system that supports 6 MV and 9 MV dual-energy imaging.

  6. Effect of the target power density on high-power impulse magnetron sputtering of copper

    NASA Astrophysics Data System (ADS)

    Kozák, Tomáš

    2012-04-01

    We present a model analysis of high-power impulse magnetron sputtering of copper. We use a non-stationary global model based on the particle and energy conservation equations in two zones (the high density plasma ring above the target racetrack and the bulk plasma region), which makes it possible to calculate time evolutions of the averaged process gas and target material neutral and ion densities, as well as the fluxes of these particles to the target and substrate during a pulse period. We study the effect of the increasing target power density under conditions corresponding to a real experimental system. The calculated target current waveforms show a long steady state and are in good agreement with the experimental results. For an increasing target power density, an analysis of the particle densities shows a gradual transition to a metal dominated discharge plasma with an increasing degree of ionization of the depositing flux. The average fraction of target material ions in the total ion flux onto the substrate is more than 90% for average target power densities higher than 500 W cm-2 in a pulse. The average ionized fraction of target material atoms in the flux onto the substrate reaches 80% for a maximum average target power density of 3 kW cm-2 in a pulse.

  7. Full space device optimization for solar cells.

    PubMed

    Baloch, Ahmer A B; Aly, Shahzada P; Hossain, Mohammad I; El-Mellouhi, Fedwa; Tabet, Nouar; Alharbi, Fahhad H

    2017-09-20

    Advances in computational materials have paved a way to design efficient solar cells by identifying the optimal properties of the device layers. Conventionally, the device optimization has been governed by single or double descriptors for an individual layer; mostly the absorbing layer. However, the performance of the device depends collectively on all the properties of the material and the geometry of each layer in the cell. To address this issue of multi-property optimization and to avoid the paradigm of reoccurring materials in the solar cell field, a full space material-independent optimization approach is developed and presented in this paper. The method is employed to obtain an optimized material data set for maximum efficiency and for targeted functionality for each layer. To ensure the robustness of the method, two cases are studied; namely perovskite solar cells device optimization and cadmium-free CIGS solar cell. The implementation determines the desirable optoelectronic properties of transport mediums and contacts that can maximize the efficiency for both cases. The resulted data sets of material properties can be matched with those in materials databases or by further microscopic material design. Moreover, the presented multi-property optimization framework can be extended to design any solid-state device.

  8. Removal of target odorous molecules on to activated carbon cloths.

    PubMed

    Le Leuch, L M; Subrenat, A; Le Cloirec, P

    2004-01-01

    Activated carbon materials are adsorbents whose physico-chemical properties are interesting for the treatment of odorous compounds like hydrogen sulfide. Indeed, their structural parameters (pore structure) and surface chemistry (presence of heteroatoms such as oxygen, hydrogen, nitrogen, sulfur, phosphorus) play an important role in H2S removal. The cloth texture of these adsorbents (activated carbon cloths) is particularly adapted for dealing with high flows, often found in the treatment of odor emissions. Thus, this paper first presents the influence of these parameters through adsorption isothermal curves performed on several materials. Secondly, tests in a dynamic system are described. They highlight the low critical thickness of the fabric compared to granular activated carbon.

  9. Review—Ultra-Wide-Bandgap AlGaN Power Electronic Devices

    DOE PAGES

    Kaplar, R. J.; Allerman, A. A.; Armstrong, A. M.; ...

    2016-12-20

    “Ultra” wide-bandgap semiconductors are an emerging class of materials with bandgaps greater than that of gallium nitride (EG > 3.4 eV) that may ultimately benefit a wide range of applications, including switching power conversion, pulsed power, RF electronics, UV optoelectronics, and quantum information. This paper describes the progress made to date at Sandia National Laboratories to develop one of these materials, aluminum gallium nitride, targeted toward high-power devices. The advantageous material properties of AlGaN are reviewed, questions concerning epitaxial growth and defect physics are covered, and the processing and performance of vertical- and lateral-geometry devices are described. The paper concludesmore » with an assessment of the outlook for AlGaN, including outstanding research opportunities and a brief discussion of other potential applications.« less

  10. Multifunction Imaging and Spectroscopic Instrument

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2004-01-01

    A proposed optoelectronic instrument would perform several different spectroscopic and imaging functions that, heretofore, have been performed by separate instruments. The functions would be reflectance, fluorescence, and Raman spectroscopies; variable-color confocal imaging at two different resolutions; and wide-field color imaging. The instrument was conceived for use in examination of minerals on remote planets. It could also be used on Earth to characterize material specimens. The conceptual design of the instrument emphasizes compactness and economy, to be achieved largely through sharing of components among subsystems that perform different imaging and spectrometric functions. The input optics for the various functions would be mounted in a single optical head. With the exception of a targeting lens, the input optics would all be aimed at the same spot on a specimen, thereby both (1) eliminating the need to reposition the specimen to perform different imaging and/or spectroscopic observations and (2) ensuring that data from such observations can be correlated with respect to known positions on the specimen. The figure schematically depicts the principal components and subsystems of the instrument. The targeting lens would collect light into a multimode optical fiber, which would guide the light through a fiber-selection switch to a reflection/ fluorescence spectrometer. The switch would have four positions, enabling selection of spectrometer input from the targeting lens, from either of one or two multimode optical fibers coming from a reflectance/fluorescence- microspectrometer optical head, or from a dark calibration position (no fiber). The switch would be the only moving part within the instrument.

  11. Effect of a viscoelastic target on the impact response of a flat-nosed projectile

    NASA Astrophysics Data System (ADS)

    Liu, Hu; Yang, Jialing; Liu, Hua

    2018-02-01

    Taylor impact is a widely used strategy in which a flat-nosed projectile is fired onto a rigid anvil directly to determine the dynamic strength of rod specimens. Nowadays, the rigid anvil is often replaced by an output target bar to ensure the accuracy of measurement via recording strain signals in the output bar. For testing the dynamic strength of low-density materials, a low-impedance target bar, which exhibits viscoelastic characteristics is often employed. In this paper, an extended Taylor model is proposed to improve the idealization of treating the target bar as perfectly rigid material in the classic Taylor model, and the viscoelastic effect of the target bar is incorporated. The viscoelastic target bar is depicted by two elastic springs and one dashpot. Based on the plastic shock wave theory in the flat-nosed projectile associated with the viscoelastic wave analysis in the target bar, the viscoelastic effect of the target bar on the impact response of the flat-nosed projectile is investigated. The finite element simulation is also carried out to verify the theoretical model, and good agreement is found. The present theoretical model is also called the Taylor-cylinder Hopkinson impact, which provides a more accurate way to identify the dynamic material parameters. The dynamic responses of the present model are further compared with previous elastic and rigid target bar models. It is found that the viscoelastic effect of the target bar should be taken into consideration in the Taylor-cylinder Hopkinson impact test for low-impedance materials.

  12. Two-dimensional simulation of high-power laser-surface interaction

    NASA Astrophysics Data System (ADS)

    Goldman, S. Robert; Wilke, Mark D.; Green, Ray E.; Busch, George E.; Johnson, Randall P.

    1998-09-01

    For laser intensities in the range of 108 - 109 W/cm2, and pulse lengths of order 10 microseconds or longer, we have modified the inertial confinement fusion code Lasnex to simulate gaseous and some dense material aspects of the laser-matter interaction. The unique aspect of our treatment consists of an ablation model which defines a dense material-vapor interface and then calculates the mass flow across this interface. The model treats the dense material as a rigid two-dimensional mass and heat reservoir suppressing all hydrodynamic motion in the dense material. The computer simulations and additional post-processors provide predictions for measurements including impulse given to the target, pressures at the target interface, electron temperatures and densities in the vapor-plasma plume region, and emission of radiation from the target. We will present an analysis of some relatively well diagnosed experiments which have been useful in developing our modeling. The simulations match experimentally obtained target impulses, pressures at the target surface inside the laser spot, and radiation emission from the target to within about 20%. Hence our simulational technique appears to form a useful basis for further investigation of laser-surface interaction in this intensity, pulse-width range.

  13. Conjugated Polymers/DNA Hybrid Materials for Protein Inactivation.

    PubMed

    Zhao, Likun; Zhang, Jiangyan; Xu, Huiming; Geng, Hao; Cheng, Yongqiang

    2016-09-07

    Chromophore-assisted light inactivation (CALI) is a powerful tool for analyzing protein functions due to the high degree of spatial and temporal resolution. In this work, we demonstrate a CALI approach based on conjugated polymers (CPs)/DNA hybrid material for protein inactivation. The target protein is conjugated with single-stranded DNA in advance. Single-stranded DNA can form CPs/DNA hybrid material with cationic CPs via electrostatic and hydrophobic interactions. Through the formation of CPs/DNA hybrid material, the target protein that is conjugated with DNA is brought into close proximity to CPs. Under irradiation, CPs harvest light and generate reactive oxygen species (ROS), resulting in the inactivation of the adjacent target protein. This approach can efficiently inactivate any target protein which is conjugated with DNA and has good specificity and universality, providing a new strategy for studies of protein function and adjustment of protein activity.

  14. Fabrication of aerogel capsule, bromine-doped capsule, and modified gold cone in modified target for the Fast Ignition Realization Experiment (FIREX) Project

    NASA Astrophysics Data System (ADS)

    Nagai, Keiji; Yang, H.; Norimatsu, T.; Azechi, H.; Belkada, F.; Fujimoto, Y.; Fujimura, T.; Fujioka, K.; Fujioka, S.; Homma, H.; Ito, F.; Iwamoto, A.; Jitsuno, T.; Kaneyasu, Y.; Nakai, M.; Nemoto, N.; Saika, H.; Shimoyama, T.; Suzuki, Y.; Yamanaka, K.; Mima, K.

    2009-09-01

    The development of target fabrication for the Fast Ignition Realization EXperiment (FIREX) Project is described in this paper. For the first stage of the FIREX Project (FIREX-I), the previously designed target has been modified by using a bromine-doped ablator and coating the inner gold cone with a low-density material. A high-quality bromine-doped capsule without vacuoles was fabricated from bromine-doped deuterated polystyrene. The gold surface was coated with a low-density material by electrochemical plating. For the cryogenic fuel target, a brand new type of aerogel material, phloroglucinol/formaldehyde (PF), was investigated and encapsulated to meet the specifications of 500 µm diameter and 20 µm thickness, with 30 nm nanopores. Polystyrene-based low-density materials were investigated and the relationship between the crosslinker content and the nanopore structure was observed.

  15. The Dependency of Penetration on the Momentum Per Unit Area of the Impacting Projectile and the Resistance of Materials to Penetration

    NASA Technical Reports Server (NTRS)

    Collins, Rufus D., Jr.; Kinard, William H.

    1960-01-01

    The results of this investigation indicate that the penetration of projectiles into quasi-infinite targets can be correlated as a function of the maximum momentum per unit area possessed by the projectiles. The penetration of projectiles into aluminum, copper, and steel targets was found to be a linear function while the penetration into lead targets was a nonlinear function of the momentum per unit area of the impacting projectiles. Penetration varied inversely as the projectile density and the elastic modulus of the target material for a given projectile momentum per unit area. Crater volumes were found to be a linear function of the kinetic energy of the projectile, the greater volumes being obtained in the target materials which had the lowest yield strength and the lowest speed of sound.

  16. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy.

    PubMed

    Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira

    2015-12-01

    The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Surface driven biomechanical breast image registration

    NASA Astrophysics Data System (ADS)

    Eiben, Björn; Vavourakis, Vasileios; Hipwell, John H.; Kabus, Sven; Lorenz, Cristian; Buelow, Thomas; Williams, Norman R.; Keshtgar, M.; Hawkes, David J.

    2016-03-01

    Biomechanical modelling enables large deformation simulations of breast tissues under different loading conditions to be performed. Such simulations can be utilised to transform prone Magnetic Resonance (MR) images into a different patient position, such as upright or supine. We present a novel integration of biomechanical modelling with a surface registration algorithm which optimises the unknown material parameters of a biomechanical model and performs a subsequent regularised surface alignment. This allows deformations induced by effects other than gravity, such as those due to contact of the breast and MR coil, to be reversed. Correction displacements are applied to the biomechanical model enabling transformation of the original pre-surgical images to the corresponding target position. The algorithm is evaluated for the prone-to-supine case using prone MR images and the skin outline of supine Computed Tomography (CT) scans for three patients. A mean target registration error (TRE) of 10:9 mm for internal structures is achieved. For the prone-to-upright scenario, an optical 3D surface scan of one patient is used as a registration target and the nipple distances after alignment between the transformed MRI and the surface are 10:1 mm and 6:3 mm respectively.

  18. Carbon capture test unit design and development using amine-based solid sorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breault, Ronald W.; Spenik, James L.; Shadle, Lawrence J.

    This study presents the design and development of a reactor system and the subsequent modifications to evaluate an integrated process to scrub carbon dioxide (CO 2) from synthetic flue gas using amine based solid sorbents. The paper presents the initial system design and then discusses the various changes implemented to address the change in sorbent from a 180 μm Geldart group B material to a 115 μm Geldart group A material as well as issues discovered during experimental trials where the major obstacle in system operation was the ability to maintain a constant circulation of a solid sorbent stemming frommore » this change in sorbent material. The system primarily consisted of four fluid beds, through which an amine impregnated solid sorbent was circulated and adsorption, pre-heat, regeneration, and cooling processes occurred. Instrumentation was assembled to characterize thermal, hydrodynamic, and gas adsorption performance in this integrated unit. A series of shakedown tests were performed and the configuration altered to meet the needs of the sorbent performance and achieve desired target capture efficiencies. Finally, methods were identified, tested, and applied to continuously monitor critical operating parameters including solids circulation rate, adsorbed and desorbed CO 2, solids inventories, and pressures.« less

  19. Detection of rabbit and hare processed material in compound feeds by TaqMan real-time PCR.

    PubMed

    Pegels, N; López-Calleja, I; García, T; Martín, R; González, I

    2013-01-01

    Food and feed traceability has become a priority for governments due to consumer demand for comprehensive and integrated safety policies. In the present work, a TaqMan real-time PCR assay targeting the mitochondrial 12S rRNA gene was developed for specific detection of rabbit and hare material in animal feeds and pet foods. The technique is based on the use of three species-specific primer/probe detection systems targeting three 12S rRNA gene fragments: one from rabbit species, another one from hare species and a third fragment common to rabbit and hare (62, 102 and 75 bp length, respectively). A nuclear 18S rRNA PCR system, detecting a 77-bp amplicon, was used as positive amplification control. Assay performance and sensitivity were assessed through the analysis of a batch of laboratory-scale feeds treated at 133°C at 3 bar for 20 min to reproduce feed processing conditions dictated by European regulations. Successful detection of highly degraded rabbit and hare material was achieved at the lowest target concentration assayed (0.1%). Furthermore, the method was applied to 96 processed commercial pet food products to determine whether correct labelling had been used at the market level. The reported real-time PCR technique detected the presence of rabbit tissues in 80 of the 96 samples analysed (83.3%), indicating a possible labelling fraud in some pet foods. The real-time PCR method reported may be a useful tool for traceability purposes within the framework of feed control.

  20. Analysis of Operating Strategies Using Different Target Designs For 238Pu Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Tomcy; Sherman, Steven R; Sawhney, Dr. Rapinder

    2017-01-01

    An engineering effort is underway to re-establish capability to produce 238Pu oxide at the kilogram scale in the United States. A multi-step batch process is being developed to produce this important material. Recently, a portion of this process was studied using discrete-event simulation tools to determine whether the conceptual process might achieve its yearly production goal. The study showed the conceptual process can meet the yearly production goal under some circumstances, but process improvements would be needed to ensure greater likelihood of success. This study extends the work performed previously by examining the effects of changing the reactor target designmore » on the yearly process output. Two new reactor target configurations are considered an aluminum-clad reactor target containing 50% greater 237Np oxide content than the original target, and a zirconium alloy-clad target using no aluminum. The results indicate that use of the new aluminum-clad target configuration may allow the process to achieve the same yearly production goal in less time using fewer targets. If the zirconium alloy-clad target is used, then even fewer targets would be needed to reach the production goal, but some process changes would be required to handle the zirconium cladding. The number of days needed to process a target batch to completion, and the steady state 238Pu oxide production rate, for each configuration are compared to the results from the initial simulation study.« less

  1. Polarimetry of the polarized hydrogen deuteride HDice target under an electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laine, Vivien E.

    2013-10-01

    The study of the nucleon structure has been a major research focus in fundamental physics in the past decades and still is the main research line of the Thomas Jefferson National Accelerator Facility (Jefferson Lab). For this purpose and to obtain statistically meaningful results, having both a polarized beam and a highly efficient polarized target is essential. For the target, this means high polarization and high relative density of polarized material. A Hydrogen Deuteride (HD) target that presents both such characteristics has been developed first at Brookhaven National Lab (BNL) and brought to the Hall B of Jefferson Lab inmore » 2008. The HD target has been shown to work successfully under a high intensity photon beam (BNL and Jefferson Lab). However, it remained to be seen if the target could stand an electron beam of reasonably high current (nA). In this perspective, the target was tested for the first time in its frozen spin mode under an electron beam at Jefferson Lab in 2012 during the g14 experiment. This dissertation presents the principles and usage procedures of this HD target. The polarimetry of this target with Nuclear Magnetic Resonance (NMR) during the electron beam tests is also discussed. In addition, this dissertation also describes another way to perform target polarimetry with the elastic scattering of electrons off a polarized target by using data taken on helium-3 during the E97-110 experiment that occurred in Jefferson Lab's Hall A in 2003.« less

  2. Use of electrochromic materials in adaptive optics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammler, Daniel R.; Sweatt, William C.; Verley, Jason C.

    Electrochromic (EC) materials are used in 'smart' windows that can be darkened by applying a voltage across an EC stack on the window. The associated change in refractive index (n) in the EC materials might allow their use in tunable or temperature-insensitive Fabry-Perot filters and transmissive-spatial-light-modulators (SLMs). The authors are conducting a preliminary evaluation of these materials in many applications, including target-in-the-loop systems. Data on tungsten oxide, WO{sub 3}, the workhorse EC material, indicate that it's possible to achieve modest changes in n with only slight increases in absorption between the visible and {approx}10 {micro}m. This might enable construction ofmore » a tunable Fabry-Perot filter consisting of an active EC layer (e.g. WO{sub 3}) and a proton conductor (e.g.Ta{sub 2}O{sub 5}) sandwiched between two gold electrodes. A SLM might be produced by replacing the gold with a transparent conductor (e.g. ITO). This SLM would allow broad-band operation like a micromirror array. Since it's a transmission element, simple optical designs like those in liquid-crystal systems would be possible. Our team has fabricated EC stacks and characterized their switching speed and optical properties (n, k). We plan to study the interplay between process parameters, film properties, and performance characteristics associated with the FP-filter and then extend what we learn to SLMs. Our goals are to understand whether the changes in absorption associated with changes in n are acceptable, and whether it's possible to design an EC-stack that's fast enough to be interesting. We'll present our preliminary findings regarding the potential viability of EC materials for target-in-the-loop applications.« less

  3. Shock-isolation material selection for electronic packages in hard-target environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stotts, Jarrett Eugene

    High velocity munitions and kinetic penetrators experience monumental external forces, impulses, and accelerations. The hard target environment is immensely taxing on sophisticated electronic components and recorders designed to retrieve valuable data related to the systems performance and characteristics in the periods of flight, impact, and post-impact. Such electronic systems have upper limits of overall shock intensity which, if exceeded, will either shorten the operating life of the parts or risk destruction resulting in loss of both the data and the principal value of the recorder. The focus of this project was to refine the categorization of leading material types formore » encapsulation and passive shock isolation and implement them in a method useable for a wide variety of environments. Namely, a design methodology capable of being tailored to the specific impact conditions to maximize the lively hood of sensitive electronics and the information recorded. The results of the study concluded that the materials observed under consistent dynamic high strain rate tests, which include Conathane® EN-4/9, Slygard®-184, and Stycast™-2651, behaved well in certain aspects of energy transmission and shock when considering the frequency environment or package coupled with the isolation material’s application. Key points about the implementation of the materials in extreme shock environments is discussed with the connection to energy analysis, loss attributes, and pulse transmissibility modeling. However, attempts to model the materials solely based on energy transmissibility in the frequency domain using only external experimental data and simplified boundary conditions was not found to be consistent with that acquired from the pressure bar experiments. Further work will include the addition of further material experimentation of the encapsulants in other frequency and temperature states, confined and pre-load boundary states, and composite constructions.« less

  4. Simulation of impact ballistic of Cu-10wt%Sn frangible bullet using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Hidayat, Mas Irfan P.; Widyastuti, Simaremare, Peniel

    2018-04-01

    Frangible bullet is designed to disintegrate upon impact against a hard target. Understanding the impact response and performance of frangible bullet is therefore of highly interest. In this paper, simulation of impact ballistic of Cu-IOwt%Sn frangible bullet using smoothed particle hydrodynamics (SPH) method is presented. The frangible bullet is impacted against a hard, cylindrical stainless steel target. Effect of variability of the frangible bullet material properties due to the variation of sintering temperature in its manufacturing process to the bullet frangibility factor (FF) is investigated numerically. In addition, the bullet kinetic energy during impact as well as its ricochet and fragmentation are also examined and simulated. Failure criterion based upon maximum strain is employed in the simulation. It is shown that the SPH simulation can produce good estimation for kinetic energy of bullet after impact, thus giving the FF prediction with respect to the variation of frangible bullet material properties. In comparison to explicit finite element (FE) simulation, in which only material/element deletion is shown, convenience in showing frangible bullet fragmentation is shown using the SPH simulation. As a result, the effect of sintering temperature to the way of the frangible bullet fragmented can be also observed clearly.

  5. Spectral slope variations for OSIRIS-REx target Asteroid (101955) Bennu: Possible evidence for a fine-grained regolith equatorial ridge

    NASA Astrophysics Data System (ADS)

    Binzel, Richard P.; DeMeo, Francesca E.; Burt, Brian J.; Cloutis, Edward A.; Rozitis, Ben; Burbine, Thomas H.; Campins, Humberto; Clark, Beth Ellen; Emery, Joshua P.; Hergenrother, Carl W.; Howell, Ellen S.; Lauretta, Dante S.; Nolan, Michael C.; Mansfield, Megan; Pietrasz, Valerie; Polishook, David; Scheeres, Daniel J.

    2015-08-01

    Ongoing spectroscopic reconnaissance of the OSIRIS-REx target Asteroid (101955) Bennu was performed in July 2011 and May 2012. Near-infrared spectra taken during these apparitions display slightly more positive ("redder") spectral slopes than most previously reported measurements. While observational systematic effects can produce such slope changes, and these effects cannot be ruled out, we entertain the hypothesis that the measurements are correct. Under this assumption, we present laboratory measurements investigating a plausible explanation that positive spectral slopes indicate a finer grain size for the most directly observed sub-Earth region on the asteroid. In all cases, the positive spectral slopes correspond to sub-Earth latitudes nearest to the equatorial ridge of Bennu. If confirmed by OSIRIS-REx in situ observations, one possible physical implication is that if the equatorial ridge is created by regolith migration during episodes of rapid rotation, that migration is most strongly dominated by finer grain material. Alternatively, after formation of the ridge (by regolith of any size distribution), larger-sized equatorial material may be more subject to loss due to centrifugal acceleration relative to finer grain material, where cohesive forces can preferentially retain the finest fraction (Rozitis, B., Maclennan, E., Emery, J.P. [2014]. Nature 512, 174-176).

  6. Development and validation of a method for mercury determination in seawater for the process control of a candidate certified reference material.

    PubMed

    Sánchez, Raquel; Snell, James; Held, Andrea; Emons, Hendrik

    2015-08-01

    A simple, robust and reliable method for mercury determination in seawater matrices based on the combination of cold vapour generation and inductively coupled plasma mass spectrometry (CV-ICP-MS) and its complete in-house validation are described. The method validation covers parameters such as linearity, limit of detection (LOD), limit of quantification (LOQ), trueness, repeatability, intermediate precision and robustness. A calibration curve covering the whole working range was achieved with coefficients of determination typically higher than 0.9992. The repeatability of the method (RSDrep) was 0.5 %, and the intermediate precision was 2.3 % at the target mass fraction of 20 ng/kg. Moreover, the method was robust with respect to the salinity of the seawater. The limit of quantification was 2.7 ng/kg, which corresponds to 13.5 % of the target mass fraction in the future certified reference material (20 ng/kg). An uncertainty budget for the measurement of mercury in seawater has been established. The relative expanded (k = 2) combined uncertainty is 6 %. The performance of the validated method was demonstrated by generating results for process control and a homogeneity study for the production of a candidate certified reference material.

  7. A review of blended cathode materials for use in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Chikkannanavar, Satishkumar B.; Bernardi, Dawn M.; Liu, Lingyun

    2014-02-01

    Several commercial automotive battery suppliers have developed lithium ion cells which use cathodes that consist of a mixture of two different active materials. This approach is intended to take advantage of the unique properties of each material and optimize the performance of the battery with respect to the automotive operating requirements. Certain cathode materials have high coulombic capacity and good cycling characteristics, but are costly and exhibit poor thermal stability (e.g., LiNixCo1-x-yAlyO2). Alternately, other cathode materials exhibit good thermal stability, high voltage and high rate capability, but have low capacity (e.g., LiMn2O4). By blending two cathode materials the shortcomings of the parent materials could be minimized and the resultant blend can be tailored to have a higher energy or power density coupled with enhanced stability and lower cost. In this review, we survey the developing field of blended cathode materials from a new perspective. Targeting a range of cathode materials, we survey the advances in the field in the current review. Limitations, such as capacity decay due to metal dissolution are also discussed, as well as how the appropriate balance of characteristics of the blended materials can be optimized for hybrid- and electric-vehicle applications.

  8. Plasma Immersion Ion Implantation with Solid Targets for Space and Aerospace Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, R. M.; Goncalves, J. A. N.; Ueda, M.

    2009-01-05

    This paper describes successful results obtained by a new type of plasma source, named as Vaporization of Solid Targets (VAST), for treatment of materials for space and aerospace applications, by means of plasma immersion ion implantation and deposition (PIII and D). Here, the solid element is vaporized in a high pressure glow discharge, being further ionized and implanted/deposited in a low pressure cycle, with the aid of an extra electrode. First experiments in VAST were run using lithium as the solid target. Samples of silicon and aluminum alloy (2024) were immersed into highly ionized lithium plasma, whose density was measuredmore » by a double Langmuir probe. Measurements performed with scanning electron microscopy (SEM) showed clear modification of the cross-sectioned treated silicon samples. X-ray photoelectron spectroscopy (XPS) analysis revealed that lithium was implanted/deposited into/onto the surface of the silicon. Implantation depth profiles may vary according to the condition of operation of VAST. One direct application of this treatment concerns the protection against radiation damage for silicon solar cells. For the case of the aluminum alloy, X-ray diffraction analysis indicated the appearance of prominent new peaks. Surface modification of A12024 by lithium implantation/deposition can lower the coefficient of friction and improve the resistance to fatigue of this alloy. Recently, cadmium was vaporized and ionized in VAST. The main benefit of this element is associated with the improvement of corrosion resistance of metallic substrates. Besides lithium and cadmium, VAST allows to performing PIII and D with other species, leading to the modification of the near-surface of materials for distinct purposes, including applications in the space and aerospace areas.« less

  9. Specular Reflectivity and Hot-Electron Generation in High-Contrast Relativistic Laser-Plasma Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemp, Gregory Elijah

    2013-01-01

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the costmore » of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic laser-plasma interactions.« less

  10. Enhanced terahertz imaging system performance analysis and design tool for concealed weapon identification

    NASA Astrophysics Data System (ADS)

    Murrill, Steven R.; Franck, Charmaine C.; Espinola, Richard L.; Petkie, Douglas T.; De Lucia, Frank C.; Jacobs, Eddie L.

    2011-11-01

    The U.S. Army Research Laboratory (ARL) and the U.S. Army Night Vision and Electronic Sensors Directorate (NVESD) have developed a terahertz-band imaging system performance model/tool for detection and identification of concealed weaponry. The details of the MATLAB-based model which accounts for the effects of all critical sensor and display components, and for the effects of atmospheric attenuation, concealment material attenuation, and active illumination, were reported on at the 2005 SPIE Europe Security & Defence Symposium (Brugge). An advanced version of the base model that accounts for both the dramatic impact that target and background orientation can have on target observability as related to specular and Lambertian reflections captured by an active-illumination-based imaging system, and for the impact of target and background thermal emission, was reported on at the 2007 SPIE Defense and Security Symposium (Orlando). This paper will provide a comprehensive review of an enhanced, user-friendly, Windows-executable, terahertz-band imaging system performance analysis and design tool that now includes additional features such as a MODTRAN-based atmospheric attenuation calculator and advanced system architecture configuration inputs that allow for straightforward performance analysis of active or passive systems based on scanning (single- or line-array detector element(s)) or staring (focal-plane-array detector elements) imaging architectures. This newly enhanced THz imaging system design tool is an extension of the advanced THz imaging system performance model that was developed under the Defense Advanced Research Project Agency's (DARPA) Terahertz Imaging Focal-Plane Technology (TIFT) program. This paper will also provide example system component (active-illumination source and detector) trade-study analyses using the new features of this user-friendly THz imaging system performance analysis and design tool.

  11. Detection of sub-MeV dark matter with three-dimensional Dirac materials

    DOE PAGES

    Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; ...

    2018-01-08

    Here, we propose the use of three-dimensional Dirac materials as targets for direct detection of sub-MeV dark matter. Dirac materials are characterized by a linear dispersion for low-energy electronic excitations, with a small band gap of Ο(meV) if lattice symmetries are broken. Dark matter at the keV scale carrying kinetic energy as small as a few meV can scatter and excite an electron across the gap. Alternatively, bosonic dark matter as light as a few meV can be absorbed by the electrons in the target. We develop the formalism for dark matter scattering and absorption in Dirac materials and calculatemore » the experimental reach of these target materials. We find that Dirac materials can play a crucial role in detecting dark matter in the keV to MeV mass range that scatters with electrons via a kinetically mixed dark photon, as the dark photon does not develop an in-medium effective mass. The same target materials provide excellent sensitivity to absorption of light bosonic dark matter in the meV to hundreds of meV mass range, superior to all other existing proposals when the dark matter is a kinetically mixed dark photon.« less

  12. Detection of sub-MeV dark matter with three-dimensional Dirac materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela

    Here, we propose the use of three-dimensional Dirac materials as targets for direct detection of sub-MeV dark matter. Dirac materials are characterized by a linear dispersion for low-energy electronic excitations, with a small band gap of Ο(meV) if lattice symmetries are broken. Dark matter at the keV scale carrying kinetic energy as small as a few meV can scatter and excite an electron across the gap. Alternatively, bosonic dark matter as light as a few meV can be absorbed by the electrons in the target. We develop the formalism for dark matter scattering and absorption in Dirac materials and calculatemore » the experimental reach of these target materials. We find that Dirac materials can play a crucial role in detecting dark matter in the keV to MeV mass range that scatters with electrons via a kinetically mixed dark photon, as the dark photon does not develop an in-medium effective mass. The same target materials provide excellent sensitivity to absorption of light bosonic dark matter in the meV to hundreds of meV mass range, superior to all other existing proposals when the dark matter is a kinetically mixed dark photon.« less

  13. Comparison of the development of performance skills in ultrasound-guided regional anesthesia simulations with different phantom models.

    PubMed

    Liu, Yang; Glass, Nancy L; Glover, Chris D; Power, Robert W; Watcha, Mehernoor F

    2013-12-01

    Ultrasound-guided regional anesthesia (UGRA) skills are traditionally obtained by supervised performance on patients, but practice on phantom models improves success. Currently available models are expensive or use perishable products, for example, olive-in-chicken breasts (OCB). We constructed 2 inexpensive phantom (transparent and opaque) models with readily available nonperishable products and compared the process of learning UGRA skills by novice practitioners on these models with the OCB model. Three experts first established criteria for a satisfactory completion of the simulated UGRA task in the 3 models. Thirty-six novice trainees (<20 previous UGRA experience) were randomly assigned to perform a UGRA task on 1 of 3 models-the transparent, opaque, and OCB models, where the hyperechoic target was identified, a needle was advanced to it under ultrasound guidance, fluid was injected, and images were saved. We recorded the errors during task completion, number of attempts and needle passes, and the time for target identification and needle placement until the predetermined benchmark of 3 consecutive successful UGRA simulations was accomplished. The number of errors, needle passes, and time for task completion per attempt progressively decreased in all 3 groups. However, failure to identify the target and to visualize the needle on the ultrasound image occurred more frequently with the OCB model. The time to complete simulator training was shortest with the transparent model, owing to shorter target identification times. However, trainees were less likely to agree strongly that this model was realistic for teaching UGRA skills. Training on inexpensive synthetic simulation models with no perishable products permits learning of UGRA skills by novices. The OCB model has disadvantages of containing potentially infective material, requires refrigeration, cannot be used after multiple needle punctures, and is associated with more failures during simulated UGRA. Direct visualization of the target in the transparent model allows the trainee to focus on needle insertion skills, but the opaque model may be more realistic for learning target identification skills required when UGRA is performed on real patients in the operating room.

  14. ELECTRONUCLEAR REACTOR

    DOEpatents

    Lawrence, E.O.; McMillan, E.M.; Alvarez, L.W.

    1960-04-19

    An electronuclear reactor is described in which a very high-energy particle accelerator is employed with appropriate target structure to produce an artificially produced material in commercial quantities by nuclear transformations. The principal novelty resides in the combination of an accelerator with a target for converting the accelerator beam to copious quantities of low-energy neutrons for absorption in a lattice of fertile material and moderator. The fertile material of the lattice is converted by neutron absorption reactions to an artificially produced material, e.g., plutonium, where depleted uranium is utilized as the fertile material.

  15. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    DOEpatents

    Yoon, W.Y.; Jones, J.L.; Nigg, D.W.; Harker, Y.D.

    1999-05-11

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0{times}10{sup 9} neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use. 3 figs.

  16. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    DOEpatents

    Yoon, Woo Y.; Jones, James L.; Nigg, David W.; Harker, Yale D.

    1999-01-01

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0.times.10.sup.9 neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use.

  17. Quantitative subpixel spectral detection of targets in multispectral images. [terrestrial and planetary surfaces

    NASA Technical Reports Server (NTRS)

    Sabol, Donald E., Jr.; Adams, John B.; Smith, Milton O.

    1992-01-01

    The conditions that affect the spectral detection of target materials at the subpixel scale are examined. Two levels of spectral mixture analysis for determining threshold detection limits of target materials in a spectral mixture are presented, the cases where the target is detected as: (1) a component of a spectral mixture (continuum threshold analysis) and (2) residuals (residual threshold analysis). The results of these two analyses are compared under various measurement conditions. The examples illustrate the general approach that can be used for evaluating the spectral detectability of terrestrial and planetary targets at the subpixel scale.

  18. Protocells and their use for targeted delivery of multicomponent cargos to cancer cells

    DOEpatents

    Brinker, Jeffrey C.; Ashley, Carlee Erin; Jiang, Xingmao; Liu, Juewen; Peabody, David S.; Wharton, Walker Richard; Carnes, Eric; Chackerian, Bryce; Willman, Cheryl L.

    2016-11-01

    Various embodiments provide materials and methods for synthesizing protocells for use in targeted delivery of cargo components to cancer cells. In one embodiment, the lipid bilayer can be fused to the porous particle core to form a protocell. The lipid bilayer can be modified with targeting ligands or other ligands to achieve targeted delivery of cargo components that are loaded within the protocell to a target cell, e.g., a type of cancer. Shielding materials can be conjugated to the surface of the lipid bilayer to reduce undesired non-specific binding.

  19. Protocells and their use for targeted delivery of multicomponent cargos to cancer cells

    DOEpatents

    Brinker, C Jeffrey; Ashley, Carlee Erin; Jiang, Xingmao; Liu, Juewen; Peabody, David S; Wharton, Walker Richard; Carnes, Eric; Chackerian, Bryce; Willman, Cheryl L

    2015-03-31

    Various embodiments provide materials and methods for synthesizing protocells for use in targeted delivery of cargo components to cancer cells. In one embodiment, the lipid bilayer can be fused to the porous particle core to form a protocell. The lipid bilayer can be modified with targeting ligands or other ligands to achieve targeted delivery of cargo components that are loaded within the protocell to a target cell, e.g., a type of cancer. Shielding materials can be conjugated to the surface of the lipid bilayer to reduce undesired non-specific binding.

  20. Women's critical responses to sexually explicit material: the role of hyperfemininity and processing style.

    PubMed

    van Oosten, Johanna M F; Peter, Jochen; Boot, Inge

    2015-01-01

    Previous research on women's responses to male-targeted sexually explicit material (SEM) suggests that women may be critical toward such content. However, women's critical responses to SEM have not been explained empirically. The present study had two goals: (1) to investigate whether women's critical responses to male-targeted SEM depend on individual differences in gender role orientation (i.e., hyperfemininity) and (2) to explain the effect of hyperfemininity on critical responses to SEM by looking at the way sexual material is processed. In an online experiment among women aged 18 to 30 (N = 195), both the type of SEM (a male- versus female-targeted erotic story) and processing style (stimulus- versus response-focused) were manipulated. In addition, participants were divided into three groups based on low, moderate, or high hyperfemininity. When using stimulus-focused processing (i.e., attending to the characters and situational context of the story), women were more critical toward male-targeted SEM (relative to female-targeted material), but only when they had low and moderate degrees of hyperfemininity.

  1. Introduction to spallation physics and spallation-target design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, G.J.; Pitcher, E.J.; Daemen, L.L.

    1995-10-01

    When coupled with the spallation process in appropriate target materials, high-power accelerators can be used to produce large numbers of neutrons, thus providing an alternate method to the use of nuclear reactors for this purpose. Spallation offers exciting new possibilities for generating intense neutron fluxes for a variety of applications, including: (a) spallation-neutron sources for materials science research; (b) accelerator-based production of tritium; (c) accelerator-based transmutation of waste; (d) accelerator-based destruction of plutonium; and (e) radioisotope production for medical and energy applications. Target design plays a key role in these applications, with neutron production/leakage being strongly dependent on the incidentmore » particle type and energy, and target material and geometry.« less

  2. Cross Section Measurements Using the Zero Degree Detector

    NASA Technical Reports Server (NTRS)

    Christl, M. J.; Adams, J. H., Jr.; Heilbronn, L.; Kuznetsov, E. N.; Miller, J.; Zeitlin, C.

    2007-01-01

    The Zero Degree Detector (ZDD) is an instrument that has been used in accelerator exposures to measure the angular dependence of particles produced in heavy ion fragmentation experiments. The ZDD uses two identical layers of pixelated silicon detectors that make coincident measurements over the active area of the instrument. The angular distribution of secondary particle produced in nuclear interactions for several heavy ions: and target materials will be presented along with performance characteristic of the instrument.

  3. Evaluation of korzincalloy prepared by Hohman Plating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korinko, P. S.; Hollingshad, A. N.

    2017-07-17

    A commercial vendor, Hohman Plating performed contract engineering work to determine the feasibility of producing pin hole free KorZincAlloy bronze material used for zinc gettering. Samples were tested for Sn plating thickness, heat treatability, and chemistry prior to being subjected to a standardized zinc exposure. The samples absorbed zinc and were examined using visual and scanning electron microscopy. Hohman Plating successfully produced KZA that met the target composition, was pin hole free, and was an effective zinc getter.

  4. Process design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates.

    PubMed

    Aldor, Ilana S; Keasling, Jay D

    2003-10-01

    Implementing several metabolic engineering strategies, either individually or in combination, it is possible to construct microbial plastic factories to produce a variety of polyhydroxyalkanoate (PHA) biopolymers with desirable structures and material properties. Approaches include external substrate manipulation, inhibitor addition, recombinant gene expression, host cell genome manipulation and, most recently, protein engineering of PHA biosynthetic enzymes. In addition, mathematical models and molecular methods can be used to elucidate metabolically engineered systems and to identify targets for performance improvement.

  5. Evaluation and Improvement of Eddy Current Position Sensors in Magnetically Suspended Flywheel Systems

    NASA Technical Reports Server (NTRS)

    Dever, Timothy P.; Palazzolo, Alan B.; Thomas, Erwin M., III; Jansen, Ralph H.; McLallin, Kerry (Technical Monitor); Soeder, James (Technical Monitor)

    2001-01-01

    Eddy current position sensor performance is evaluated for use in a high-speed flywheel development system. The flywheel utilizes a five axis active magnetic bearing system. The eddy current sensors are used for position feedback for the bearing controller. Measured characteristics include sensitivity to multiple target materials and susceptibility to noise from the magnetic bearings and from sensor-to-sensor crosstalk. Improvements in axial sensor configuration and techniques for noise reduction are described.

  6. Compositions of Spherules and Rock Surfaces at Meridiani

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Jolliff, B. L.; Clark, B. C.; Gellert, R.

    2007-01-01

    The Alpha Particle X-ray Spectrometers (APXS) on the Mars Exploration Rovers (MER) have proven extremely valuable for analyzing rocks and soils on the surface of Mars. The precision of their compositional measurements has been shown to be phenomenal through analyses of the compositionally very uniform Meridiani soils. Through combined use of the rock abrasion tool (RAT) and the analytical instruments on the in-situ deployment device (IDD), analyses of the interiors of fine-grained and texturally uniform rocks with surfaces ground flat have been made under conditions that are nearly ideal for this mode of analysis. The APXS has also been used frequently to analyze materials whose characteristics, surface morphologies, and sample-detector geometries are less than ideal, but the analyses of which are nonetheless very useful for understanding the makeup of the target materials. Such targets include undisturbed rocks with irregular and sometimes coated surfaces and mixed targets such as soils that include fine-grained components as well as coarse grains and pieces of rocks. Such target materials include the well known hematite-rich concretions, referred to as blueberries because of their multispectral color, size, and mode of occurrence. In addition to non-ideal target geometry, such mixed materials also present a heterogeneous target in terms of density. These irregularities violate the assumptions commonly associated with analyses done in the laboratory to achieve the highest possible accuracy. Here we acknowledge the irregularities and we examine the inferences drawn from specific chemical trends obtained on imperfect targets in light of one of the potential pitfalls of natural materials on the surface of Mars, namely thin dust coatings.

  7. Automated campaign system

    NASA Astrophysics Data System (ADS)

    Vondran, Gary; Chao, Hui; Lin, Xiaofan; Beyer, Dirk; Joshi, Parag; Atkins, Brian; Obrador, Pere

    2006-02-01

    To run a targeted campaign involves coordination and management across numerous organizations and complex process flows. Everything from market analytics on customer databases, acquiring content and images, composing the materials, meeting the sponsoring enterprise brand standards, driving through production and fulfillment, and evaluating results; all processes are currently performed by experienced highly trained staff. Presented is a developed solution that not only brings together technologies that automate each process, but also automates the entire flow so that a novice user could easily run a successful campaign from their desktop. This paper presents the technologies, structure, and process flows used to bring this system together. Highlighted will be how the complexity of running a targeted campaign is hidden from the user through technologies, all while providing the benefits of a professionally managed campaign.

  8. Concept for a dark matter detector using liquid helium-4

    NASA Astrophysics Data System (ADS)

    Guo, W.; McKinsey, D. N.

    2013-06-01

    Direct searches for light dark matter particles (mass<10GeV) are especially challenging because of the low energies transferred in elastic scattering to typical heavy nuclear targets. We investigate the possibility of using liquid helium-4 as a target material, taking advantage of the favorable kinematic matching of the helium nucleus to light dark matter particles. Monte Carlo simulations are performed to calculate the charge, scintillation, and triplet helium molecule signals produced by recoil He ions, for a variety of energies and electric fields. We show that excellent background rejection might be achieved based on the ratios between different signal channels. The sensitivity of the helium-based detector to light dark matter particles is estimated for various electric fields and light collection efficiencies.

  9. LDEF's map experiment foil perforations yield hypervelocity impact penetration parameters

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.

    1992-01-01

    The space exposure of LDEF for 5.75 years, forming a host target in low earth orbit (LEO) orbit to a wide distribution of hypervelocity particulates of varying dimensions and different impact velocities, has yielded a multiplicity of impact features. Although the projectile parameters are generally unknown and, in fact not identical for any two impacts on a target, the great number of impacts provides statistically meaningful basis for the valid comparison of the response of different targets. Given sufficient impacts for example, a comparison of impact features (even without knowledge of the project parameters) is possible between: (1) differing material types (for the same incident projectile distribution); (2) differing target configurations (e.g., thick and thin targets for the same material projectiles; and (3) different velocities (using LDEF's different faces). A comparison between different materials is presented for infinite targets of aluminum, Teflon, and brass in the same pointing direction; the maximum finite-target penetration (ballistic limit) is also compared to that of the penetration of similar materials comprising of a semi-infinite target. For comparison of impacts on similar materials at different velocities, use is made of the pointing direction relative to LDEF's orbital motion. First, however, care must be exercised to separate the effect of spatial flux anisotropies from those resulting from the spacecraft velocity through a geocentrically referenced dust distribution. Data comprising thick and thin target impacts, impacts on different materials, and in different pointing directions is presented; hypervelocity impact parameters are derived. Results are also shown for flux modeling codes developed to decode the relative fluxes of Earth orbital and unbound interplanetary components intercepting LDEF. Modeling shows the west and space pointing faces are dominated by interplanetary particles and yields a mean velocity of 23.5 km/s at LDEF, corresponding to a V(infinity) Earth approach velocity = 20.9 km/s. Normally resolved average impact velocities on LDEF's cardinal point faces are shown. As 'excess' flux on the east, north, and south faces is observed, compatible with an Earth orbital component below some 5 microns in particle diameter.

  10. Vapor shielding models and the energy absorbed by divertor targets during transient events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skovorodin, D. I., E-mail: dskovorodin@gmail.com; Arakcheev, A. S.; Pshenov, A. A.

    2016-02-15

    The erosion of divertor targets caused by high heat fluxes during transients is a serious threat to ITER operation, as it is going to be the main factor determining the divertor lifetime. Under the influence of extreme heat fluxes, the surface temperature of plasma facing components can reach some certain threshold, leading to an onset of intense material evaporation. The latter results in formation of cold dense vapor and secondary plasma cloud. This layer effectively absorbs the energy of the incident plasma flow, turning it into its own kinetic and internal energy and radiating it. This so called vapor shieldingmore » is a phenomenon that may help mitigating the erosion during transient events. In particular, the vapor shielding results in saturation of energy (per unit surface area) accumulated by the target during single pulse of heat load at some level E{sub max}. Matching this value is one of the possible tests to verify complicated numerical codes, developed to calculate the erosion rate during abnormal events in tokamaks. The paper presents three very different models of vapor shielding, demonstrating that E{sub max} depends strongly on the heat pulse duration, thermodynamic properties, and evaporation energy of the irradiated target material. While its dependence on the other shielding details such as radiation capabilities of material and dynamics of the vapor cloud is logarithmically weak. The reason for this is a strong (exponential) dependence of the target material evaporation rate, and therefore the “strength” of vapor shield on the target surface temperature. As a result, the influence of the vapor shielding phenomena details, such as radiation transport in the vapor cloud and evaporated material dynamics, on the E{sub max} is virtually completely masked by the strong dependence of the evaporation rate on the target surface temperature. However, the very same details define the amount of evaporated particles, needed to provide an effective shielding to the target, and, therefore, strongly influence resulting erosion rate. Thus, E{sub max} cannot be used for validation of shielding models and codes, aimed at the target material erosion calculations.« less

  11. X-ray laser microscope apparatus

    DOEpatents

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  12. Beam heating of thick targets for on-line mass separators

    NASA Astrophysics Data System (ADS)

    Eaton, T. W.; Ravn, H. L.; Isolde Collaboration

    1987-05-01

    Energy deposition computations have been made on a variety of target materials utilized for the production of radioisotopes by means of 600-MeV protons. Results have shown that, when a proton current of 100 μA is assumed, dispersed target materials, such as uranium carbide powder and magnesium oxide, are best able to withstand the energy absorption and consequent beam heating without the need of additional cooling. Modified foil targets of titanium, zirconium and tantalum also appear capable of withstanding a full beam current, whilst liquid metal targets in their present form appear to have limitations in terms of the maximum allowable beam current. A redesign of the target container is proposed which allows higher proton currents to be used with these targets also.

  13. Research on major antitumor active components in Zi-Cao-Cheng-Qi decoction based on hollow fiber cell fishing with high performance liquid chromatography.

    PubMed

    Li, Miaomiao; Hu, Shuang; Chen, Xuan; Wang, Runqin; Bai, Xiaohong

    2018-02-05

    Hollow fiber cell fishing (HFCF) based on hepatoma HepG-2 cells, human renal tubular ACHN cells or human cervical carcinoma HeLa cells, coupled with high-performance liquid chromatography (HPLC), was developed and employed to research the major active components in Zi-Cao-Cheng-Qi decoction both in vitro and in vivo. The research showed that the active components, such as hesperidin, magnolol, honokiol, shikonin, emodin and β,β'-dimethylacrylshikonin were screened out by HFCF based on the cancer cells in vitro, furthermore they can be absorbed into blood and reach in the target organ, and some of the active components can be fished by the cells and maintain effective concentrations. Before application of HFCF with HPLC, cell growth state, cell survival rate, positive effect on screening results binding between active centers on the fiber and target components, repeatability of retention times and relative peak areas of the target analytes were analysed and investigated. In short, HFCF with HPLC is a simple, inexpensive, effective, and reliable method that can be used in researching active components from traditional Chinese medicine (TCM) and its formula both in vitro and in vivo, elucidating preliminarily the TCM characteristics of multiple components and multiple targets, laying a foundation for expounding the antitumor efficacy material basis in TCM. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Molecular interactions between single layered MoS2 and biological molecules† †Electronic supplementary information (ESI) available: SFG data analysis methods, spectral fitting parameters, additional spectra, CD spectrum, and details about MD simulation methods. See DOI: 10.1039/c7sc04884j

    PubMed Central

    Xiao, Minyu; Wei, Shuai; Li, Yaoxin; Jasensky, Joshua; Chen, Junjie; Brooks, Charles L.

    2017-01-01

    Two-dimensional (2D) materials such as graphene, molybdenum disulfide (MoS2), tungsten diselenide (WSe2), and black phosphorous are being developed for sensing applications with excellent selectivity and high sensitivity. In such applications, 2D materials extensively interact with various analytes including biological molecules. Understanding the interfacial molecular interactions of 2D materials with various targets becomes increasingly important for the progression of better-performing 2D-material based sensors. In this research, molecular interactions between several de novo designed alpha-helical peptides and monolayer MoS2 have been studied. Molecular dynamics simulations were used to validate experimental data. The results suggest that, in contrast to peptide–graphene interactions, peptide aromatic residues do not interact strongly with the MoS2 surface. It is also found that charged amino acids are important for ensuring a standing-up pose for peptides interacting with MoS2. By performing site-specific mutations on the peptide, we could mediate the peptide–MoS2 interactions to control the peptide orientation on MoS2. PMID:29675220

  15. Energy density and rate limitations in structural composite supercapacitors

    NASA Astrophysics Data System (ADS)

    Snyder, J. F.; Gienger, E.; Wetzel, E. D.; Xu, K.

    2012-06-01

    The weight and volume of conventional energy storage technologies greatly limits their performance in mobile platforms. Traditional research efforts target improvements in energy density to reduce device size and mass. Enabling a device to perform additional functions, such as bearing mechanical load, is an alternative approach as long as the total mass efficiency exceeds that of the individual materials it replaces. Our research focuses on structural composites that function as batteries and supercapacitors. These multifunctional devices could be used to replace conventional structural components, such as vehicle frame elements, to provide significant system-level weight reductions and extend mission times. Our approach is to design structural properties directly into the electrolyte and electrode materials. Solid polymer electrolyte materials bind the system and transfer load to the fibers while conducting ions between the electrodes. Carbon fiber electrodes provide a route towards optimizing both energy storage and load-bearing capabilities, and may also obviate the need for a separate current collector. The components are being integrated using scalable, cost-effective composite processing techniques that are amenable to complex part shapes. Practical considerations of energy density and rate behavior are described here as they relate to materials used. Our results highlight the viability as well as the challenges of this multifunctional approach towards energy storage.

  16. 20 CFR 416.1041 - Standards of performance.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... performance. (a) General. The performance standards include both a target level of performance and a threshold level of performance for the State agency. The target level represents a level of performance that we... performance levels to the target levels. (b) The target level. The target level is the optimum level of...

  17. High performance hybrid magnetic structure for biotechnology applications

    DOEpatents

    Humphries, David E; Pollard, Martin J; Elkin, Christopher J

    2005-10-11

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.

  18. High performance hybrid magnetic structure for biotechnology applications

    DOEpatents

    Humphries, David E.; Pollard, Martin J.; Elkin, Christopher J.

    2006-12-12

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.

  19. Propagation velocities of laser-produced plasmas from copper wire targets and water droplets

    NASA Technical Reports Server (NTRS)

    Song, Kyo-Dong; Alexander, Dennis R.

    1994-01-01

    Experiments were performed to determine the plasma propagation velocities resulting from KrF laser irradiation of copper wire target (75 microns diameter) and water droplets (75 microns diameter) at irradiance levels ranging from 25 to 150 GW/sq cm. Plasma propagation velocities were measured using a streak camera system oriented orthogonally to the high-energy laser propagation axis. Plasma velocities were studied as a function of position in the focused beam. Results show that both the shape of the plasma formation and material removal from the copper wire are different and depend on whether the targets are focused or slightly defocused (approximately = 0.5 mm movement in the beam axis). Plasma formation and its position relative to the target is an important factor in determining the practical focal point during high-energy laser interaction with materials. At irradiance of 100 GW/sq cm, the air plasma has two weak-velocity components which propagate toward and away from the incident laser while a strong-velocity component propagates away from the laser beam as a detonation wave. Comparison of the measured breakdown velocities (in the range of 2.22-2.27 x 10(exp 5) m/s) for air and the value calculated by the nonlinear breakdown wave theory at irradiance of 100 GW/sq cm showed a quantitative agreement within approximately 50% while the linear theory and Gaussian pulse theory failed. The detonation wave velocities of plasma generated from water droplets and copper wire targets for different focused cases were measured and analyzed theoretically. The propagation velocities of laser-induced plasma liquid droplets obtained by previous research are compared with current work.

  20. Development of potential candidate reference materials for drugs in bottom sediment, cod and herring tissues.

    PubMed

    Baranowska, Irena; Buszewski, Bogusław; Namieśnik, Jacek; Konieczka, Piotr; Magiera, Sylwia; Polkowska-Motrenko, Halina; Kościelniak, Paweł; Gadzała-Kopciuch, Renata; Woźniakiewicz, Aneta; Samczyński, Zbigniew; Kochańska, Kinga; Rutkowska, Małgorzata

    2017-02-01

    Regular use of a reference material and participation in a proficiency testing program can improve the reliability of analytical data. This paper presents the preparation of candidate reference materials for the drugs metoprolol, propranolol, carbamazepine, naproxen, and acenocoumarol in freshwater bottom sediment and cod and herring tissues. These reference materials are not available commercially. Drugs (between 7 ng/g and 32 ng/g) were added to the samples, and the spiked samples were freeze-dried, pulverized, sieved, homogenized, bottled, and sterilized by γ-irradiation to prepare the candidate materials. Procedures for extraction and liquid chromatography coupled with tandem mass spectrometry were developed to determine the drugs of interest in the studied material. Each target drug was quantified using two analytical procedures, and the results obtained from these two procedures were in good agreement with each other. Stability and homogeneity assessments were performed, and the relative uncertainties due to instability (for an expiration date of 12 months) and inhomogeneity were 10-25% and 4.0-6.8%, respectively. These procedures will be useful in the future production of reference materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Method for continuous control of composition and doping of pulsed laser deposited films

    DOEpatents

    Lowndes, Douglas H.; McCamy, James W.

    1995-01-01

    A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.

  2. Method for continuous control of composition and doping of pulsed laser deposited films by pressure control

    DOEpatents

    Lowndes, Douglas H.; McCamy, James W.

    1996-01-01

    A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.

  3. Repetition rates in heavy ion beam driven fusion reactors

    NASA Astrophysics Data System (ADS)

    Peterson, Robert R.

    1986-01-01

    The limits on the cavity gas density required for beam propagation and condensation times for material vaporized by target explosions can determine the maximum repetition rate of Heavy Ion Beam (HIB) driven fusion reactors. If the ions are ballistically focused onto the target, the cavity gas must have a density below roughly 10-4 torr (3×1012 cm-3) at the time of propagation; other propagation schemes may allow densities as high as 1 torr or more. In some reactor designs, several kilograms of material may be vaporized off of the target chamber walls by the target generated x-rays, raising the average density in the cavity to 100 tor or more. A one-dimensional combined radiation hydrodynamics and vaporization and condensation computer code has been used to simulate the behavior of the vaporized material in the target chambers of HIB fusion reactors.

  4. Fusion technologies for Laser Inertial Fusion Energy (LIFE)

    NASA Astrophysics Data System (ADS)

    Kramer, K. J.; Latkowski, J. F.; Abbott, R. P.; Anklam, T. P.; Dunne, A. M.; El-Dasher, B. S.; Flowers, D. L.; Fluss, M. J.; Lafuente, A.; Loosmore, G. A.; Morris, K. R.; Moses, E.; Reyes, S.

    2013-11-01

    The Laser Inertial Fusion-based Energy (LIFE) engine design builds upon on going progress at the National Ignition Facility (NIF) and offers a near-term pathway to commercial fusion. Fusion technologies that are critical to success are reflected in the design of the first wall, blanket and tritium separation subsystems. The present work describes the LIFE engine-related components and technologies. LIFE utilizes a thermally robust indirect-drive target and a chamber fill gas. Coolant selection and a large chamber solid-angle coverage provide ample tritium breeding margin and high blanket gain. Target material selection eliminates the need for aggressive chamber clearing, while enabling recycling. Demonstrated tritium separation and storage technologies limit the site tritium inventory to attractive levels. These key technologies, along with the maintenance and advanced materials qualification program have been integrated into the LIFE delivery plan. This describes the development of components and subsystems, through prototyping and integration into a First Of A Kind power plant. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Multivariate analysis of variance of designed chromatographic data. A case study involving fermentation of rooibos tea.

    PubMed

    Marini, Federico; de Beer, Dalene; Walters, Nico A; de Villiers, André; Joubert, Elizabeth; Walczak, Beata

    2017-03-17

    An ultimate goal of investigations of rooibos plant material subjected to different stages of fermentation is to identify the chemical changes taking place in the phenolic composition, using an untargeted approach and chromatographic fingerprints. Realization of this goal requires, among others, identification of the main components of the plant material involved in chemical reactions during the fermentation process. Quantitative chromatographic data for the compounds for extracts of green, semi-fermented and fermented rooibos form the basis of preliminary study following a targeted approach. The aim is to estimate whether treatment has a significant effect based on all quantified compounds and to identify the compounds, which contribute significantly to it. Analysis of variance is performed using modern multivariate methods such as ANOVA-Simultaneous Component Analysis, ANOVA - Target Projection and regularized MANOVA. This study is the first one in which all three approaches are compared and evaluated. For the data studied, all tree methods reveal the same significance of the fermentation effect on the extract compositions, but they lead to its different interpretation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Dynamics of laser ablation at the early stage during and after ultrashort pulse

    NASA Astrophysics Data System (ADS)

    Ilnitsky, D. K.; Khokhlov, V. A.; Zhakhovsky, V. V.; Petrov, Yu V.; Migdal, K. P.; Inogamov, N. A.

    2016-11-01

    Study of material flow in two-temperature states is needed for a fundamental understanding the physics of femtosecond laser ablation. To explore phenomena at a very early stage of laser action on a metallic target our in-house two-temperature hydrodynamics code is used here. The early stage covers duration of laser pulse with next first few picoseconds. We draw attention to the difference in behavior at this stage between the cases: (i) of an ultrathin film (thickness of order of skin depth d skin or less), (ii) thin films (thickness of a film is 4-7 of d skin for gold), and (iii) bulk targets (more than 10d skin for gold). We demonstrate that these differences follow from a competition among conductive cooling of laser excited electrons in a skin layer, electron-ion coupling, and hydrodynamics of unloading caused by excess of pressure of excited free electrons. Conductive cooling of the skin needs a heat sink, which is performed by the cold material outside the skin. Such sink is unavailable in the ultrathin films.

  7. Strategic Defense Initiative Organization adaptive structures program overview

    NASA Astrophysics Data System (ADS)

    Obal, Michael; Sater, Janet M.

    In the currently envisioned architecture none of the Strategic Defense System (SDS) elements to be deployed will receive scheduled maintenance. Assessments of performance capability due to changes caused by the uncertain effects of environments will be difficult, at best. In addition, the system will have limited ability to adjust in order to maintain its required performance levels. The Materials and Structures Office of the Strategic Defense Initiative Organization (SDIO) has begun to address solutions to these potential difficulties via an adaptive structures technology program that combines health and environment monitoring with static and dynamic structural control. Conceivable system benefits include improved target tracking and hit-to-kill performance, on-orbit system health monitoring and reporting, and threat attack warning and assessment.

  8. Locating Sensors for Detecting Source-to-Target Patterns of Special Nuclear Material Smuggling: A Spatial Information Theoretic Approach

    PubMed Central

    Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong

    2010-01-01

    In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy. PMID:22163641

  9. Locating sensors for detecting source-to-target patterns of special nuclear material smuggling: a spatial information theoretic approach.

    PubMed

    Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong

    2010-01-01

    In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy.

  10. The effect of sudden server breakdown on the performance of a disassembly line

    NASA Astrophysics Data System (ADS)

    Udomsawat, Gun; Gupta, Surendra M.

    2005-11-01

    Product and material recovery relies on the disassembly process to separate target components or materials from the end-of-life (EOL) products. Disassembly line is especially effective when products in large quantity are disassembled. Unlike an assembly line, a disassembly line is more complex and is subjected to numerous uncertainties including stochastic and multi-level arrivals of component demands, stochastic arrival times for EOL products, and process interruption due to equipment failure. These factors seriously impair the control mechanism in the disassembly line. A common production control mechanism is the traditional push system (TPS). TPS responds to the aforementioned complications by carrying substantial amounts of inventories. An alternative control mechanism is a newly developed multi-kanban pull system (MKS) that relies on dynamic routing of kanbans, which tends to minimize the system's inventories while maintaining demand serviceability. In this paper we explore the impact of sudden breakdown of server on the performance of a disassembly line. We compare the overall performances of the TPS and MKS by considering two scenarios. We present the solution procedure and results for these cases.

  11. Interpenetrating Polymer Networks as Innovative Drug Delivery Systems

    PubMed Central

    Lohani, Alka; Singh, Garima; Bhattacharya, Shiv Sankar; Verma, Anurag

    2014-01-01

    Polymers have always been valuable excipients in conventional dosage forms, also have shown excellent performance into the parenteral arena, and are now capable of offering advanced and sophisticated functions such as controlled drug release and drug targeting. Advances in polymer science have led to the development of several novel drug delivery systems. Interpenetrating polymer networks (IPNs) have shown superior performances over the conventional individual polymers and, consequently, the ranges of applications have grown rapidly for such class of materials. The advanced properties of IPNs like swelling capacity, stability, biocompatibility, nontoxicity and biodegradability have attracted considerable attention in pharmaceutical field especially in delivering bioactive molecules to the target site. In the past few years various research reports on the IPN based delivery systems showed that these carriers have emerged as a novel carrier in controlled drug delivery. The present review encompasses IPNs, their types, method of synthesis, factors which affects the morphology of IPNs, extensively studied IPN based drug delivery systems, and some natural polymers widely used for IPNs. PMID:24949205

  12. Detection of pulsed bremsstrahlung-induced prompt neutron capture gamma rays with a HPGe detector

    NASA Astrophysics Data System (ADS)

    Jones, James L.

    1997-02-01

    The Idaho National Engineering Laboratory (INEL) is developing a novel photoneutron-based nondestructive evaluation technique which uses a pulsed, high-energy electron accelerator and gamma-ray spectrometry. Highly penetrating pulses of bremsstrahlung photons are produced by each pulse of electrons. Interrogating neutrons are generated by the bremsstrahlung photons interacting within a photoneutron source material. The interactions of the neutrons within a target result in the emission of elemental characteristic gamma-rays. Spectrometry is performed by analyzing the photoneutron-induced, prompt gama-rays acquired between accelerator pulses with a unique, high- purity germanium gamma-ray detection system using a modified transistor reset preamplifier. The detection system, the experimental configuration, and the accelerator operation used to characterize the detection systems performance are described. Using a 6.5-MeV electron accelerator and a beryllium metal photoneutron source, gamma-ray spectra were successfully acquired for Al, Cu, polyethylene, NaCl, and depleted uranium targets as soon as 30 microsecond(s) after each bremsstrahlung flash.

  13. Advanced Demonstration of Motion Correction for Ship-to-Ship Passive Inspections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziock, Klaus-Peter; Boehnen, Chris Bensing; Ernst, Joseph

    2013-09-30

    Passive radiation detection is a key tool for detecting illicit nuclear materials. In maritime applications it is most effective against small vessels where attenuation is of less concern. Passive imaging provides: discrimination between localized (threat) and distributed (non-threat) sources, removal of background fluctuations due to nearby shorelines and structures, source localization to an individual craft in crowded waters, and background subtracted spectra. Unfortunately, imaging methods cannot be easily applied in ship-to-ship inspections because relative motion of the vessels blurs the results over many pixels, significantly reducing sensitivity. This is particularly true for the smaller water craft where passive inspections aremore » most valuable. In this project we performed tests and improved the performance of an instrument (developed earlier under, “Motion Correction for Ship-to-Ship Passive Inspections”) that uses automated tracking of a target vessel in visible-light images to generate a 3D radiation map of the target vessel from data obtained using a gamma-ray imager.« less

  14. Optical simulation of flying targets using physically based renderer

    NASA Astrophysics Data System (ADS)

    Cheng, Ye; Zheng, Quan; Peng, Junkai; Lv, Pin; Zheng, Changwen

    2018-02-01

    The simulation of aerial flying targets is widely needed in many fields. This paper proposes a physically based method for optical simulation of flying targets. In the first step, three-dimensional target models are built and the motion speed and direction are defined. Next, the material of the outward appearance of a target is also simulated. Then the illumination conditions are defined. After all definitions are given, all settings are encoded in a description file. Finally, simulated results are generated by Monte Carlo ray tracing in a physically based renderer. Experiments show that this method is able to simulate materials, lighting and motion blur for flying targets, and it can generate convincing and highquality simulation results.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ammigan, K.; Hurh, P.

    The Radiation Damage In Accelerator Target Environments (RaDIATE) collaboration was founded in 2012 and currently consists of over 50 participants and 11 institutions globally. Due to the increasing power of future proton accelerator sources in target facilities, there is a critical need to further understand the physical and thermo-mechanical radiation response of target facility materials. Thus, the primary objective of the RaDIATE collaboration is to draw on existing expertise in the nuclear materials and accelerator targets fields to generate new and useful materials data for application within the accelerator and fission/fusion communities. Current research activities of the collaboration include postmore » irradiation examination (PIE) of decommissioned components from existing beamlines such as the NuMI beryllium beam window and graphite NT-02 target material. PIE of these components includes advanced microstructural analyses (SEM/TEM, EBSD, EDS) and micro-mechanics technique such as nano-indentation, to help characterize any microstructural radiation damage incurred during operation. New irradiation campaigns of various candidate materials at both low and high energy beam facilities are also being pursued. Beryllium helium implantation studies at the University of Surrey as well as high energy proton irradiation of various materials at Brookhaven National Laboratory’s BLIP facility have been initiated. The program also extends to beam-induced thermal shock experiments using high intensity beam pulses at CERN’s HiRadMat facility, followed by advanced PIE activities to evaluate thermal shock resistance of the materials. Preliminary results from ongoing research activities, as well as the future plans of the RaDIATE collaboration R&D program will be discussed.« less

  16. Porous composite with negative thermal expansion obtained by photopolymer additive manufacturing

    NASA Astrophysics Data System (ADS)

    Takezawa, Akihiro; Kobashi, Makoto; Kitamura, Mitsuru

    2015-07-01

    Additive manufacturing (AM) could be a novel method of fabricating composite and porous materials having various effective performances based on mechanisms of their internal geometries. Materials fabricated by AM could rapidly be used in industrial application since they could easily be embedded in the target part employing the same AM process used for the bulk material. Furthermore, multi-material AM has greater potential than usual single-material AM in producing materials with effective properties. Negative thermal expansion is a representative effective material property realized by designing a composite made of two materials with different coefficients of thermal expansion. In this study, we developed a porous composite having planar negative thermal expansion by employing multi-material photopolymer AM. After measurement of the physical properties of bulk photopolymers, the internal geometry was designed by topology optimization, which is the most effective structural optimization in terms of both minimizing thermal stress and maximizing stiffness. The designed structure was converted to a three-dimensional stereolithography (STL) model, which is a native digital format of AM, and assembled as a test piece. The thermal expansions of the specimens were measured using a laser scanning dilatometer. Negative thermal expansion corresponding to less than -1 × 10-4 K-1 was observed for each test piece of the N = 3 experiment.

  17. Design and development of a bio-inspired, under-actuated soft gripper.

    PubMed

    Hassan, Taimoor; Manti, Mariangela; Passetti, Giovanni; d'Elia, Nicolò; Cianchetti, Matteo; Laschi, Cecilia

    2015-08-01

    The development of robotic devices able to perform manipulation tasks mimicking the human hand has been assessed on large scale. This work stands in the challenging scenario where soft materials are combined with bio-inspired design in order to develop soft grippers with improved grasping and holding capabilities. We are going to show a low-cost, under-actuated and adaptable soft gripper, highlighting the design and the manufacturing process. In particular, a critical analysis is made among three versions of the gripper with same design and actuation mechanism, but based on different materials. A novel actuation principle has been implemented in both cases, in order to reduce the encumbrance of the entire system and improve its aesthetics. Grasping and holding capabilities have been tested for each device, with target objects varying in shape, size and material. Results highlight synergy between the geometry and the intrinsic properties of the soft material, showing the way to novel design principles for soft grippers.

  18. Biodegradable Shape Memory Polymers in Medicine.

    PubMed

    Peterson, Gregory I; Dobrynin, Andrey V; Becker, Matthew L

    2017-11-01

    Shape memory materials have emerged as an important class of materials in medicine due to their ability to change shape in response to a specific stimulus, enabling the simplification of medical procedures, use of minimally invasive techniques, and access to new treatment modalities. Shape memory polymers, in particular, are well suited for such applications given their excellent shape memory performance, tunable materials properties, minimal toxicity, and potential for biodegradation and resorption. This review provides an overview of biodegradable shape memory polymers that have been used in medical applications. The majority of biodegradable shape memory polymers are based on thermally responsive polyesters or polymers that contain hydrolyzable ester linkages. These materials have been targeted for use in applications pertaining to embolization, drug delivery, stents, tissue engineering, and wound closure. The development of biodegradable shape memory polymers with unique properties or responsiveness to novel stimuli has the potential to facilitate the optimization and development of new medical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Hierarchical pulmonary target nanoparticles via inhaled administration for anticancer drug delivery.

    PubMed

    Chen, Rui; Xu, Liu; Fan, Qin; Li, Man; Wang, Jingjing; Wu, Li; Li, Weidong; Duan, Jinao; Chen, Zhipeng

    2017-11-01

    Inhalation administration, compared with intravenous administration, significantly enhances chemotherapeutic drug exposure to the lung tissue and may increase the therapeutic effect for pulmonary anticancer. However, further identification of cancer cells after lung deposition of inhaled drugs is necessary to avoid side effects on normal lung tissue and to maximize drug efficacy. Moreover, as the action site of the major drug was intracellular organelles, drug target to the specific organelle is the final key for accurate drug delivery. Here, we designed a novel multifunctional nanoparticles (MNPs) for pulmonary antitumor and the material was well-designed for hierarchical target involved lung tissue target, cancer cell target, and mitochondrial target. The biodistribution in vivo determined by UHPLC-MS/MS method was employed to verify the drug concentration overwhelmingly increasing in lung tissue through inhaled administration compared with intravenous administration. Cellular uptake assay using A549 cells proved the efficient receptor-mediated cell endocytosis. Confocal laser scanning microscopy observation showed the location of MNPs in cells was mitochondria. All results confirmed the intelligent material can progressively play hierarchical target functions, which could induce more cell apoptosis related to mitochondrial damage. It provides a smart and efficient nanocarrier platform for hierarchical targeting of pulmonary anticancer drug. So far, this kind of material for pulmonary mitochondrial-target has not been seen in other reports.

  20. Production of an 15O beam using a stable oxygen ion beam for in-beam PET imaging

    NASA Astrophysics Data System (ADS)

    Mohammadi, Akram; Yoshida, Eiji; Tashima, Hideaki; Nishikido, Fumihiko; Inaniwa, Taku; Kitagawa, Atsushi; Yamaya, Taiga

    2017-03-01

    In advanced ion therapy, the 15O ion beam is a promising candidate to treat hypoxic tumors and simultaneously monitor the delivered dose to a patient using PET imaging. This study aimed at production of an 15O beam by projectile fragmentation of a stable 16O beam in an optimal material, followed by in-beam PET imaging using a prototype OpenPET system, which was developed in the authors' group. The study was carried out in three steps: selection of the optimal target based on the highest production rate of 15O fragments; experimental production of the beam using the optimal target in the Heavy Ion Medical Accelerator Chiba (HIMAC) secondary beam course; and realization of in-beam PET imaging for the produced beam. The optimal target evaluations were done using the Monte Carlo simulation code PHITS. The fluence and mean energy of the secondary particles were simulated and the optimal target was selected based on the production rate of 15O fragments. The highest production rate of 15O was observed for a liquid hydrogen target, 3.27% for a 53 cm thick target from the 16O beam of 430 MeV/u. Since liquid hydrogen is not practically applicable in the HIMAC secondary beam course a hydrogen-rich polyethylene material, which was the second optimal target from the simulation results, was selected as the experimental target. Three polyethylene targets with thicknesses of 5, 11 or 14 cm were used to produce the 15O beam without any degrader in the beam course. The highest production rate was measured as around 0.87% for the 11 cm thick polyethylene target from the 16O beam of 430 MeV/u when the angular acceptance and momentum acceptance were set at ±13 mrad and ±2.5%, respectively. The purity of the produced beam for the three targets were around 75%, insufficient for clinical application, but it was increased to 97% by inserting a wedge shape aluminum degrader with a thickness of 1.76 cm into the beam course and that is sufficiently high. In-beam PET imaging was also performed for all produced beams using the OpenPET system. The purity improvement of the produced 15O beams was confirmed from the PET images.

Top