Sample records for materials science chemical

  1. Materials and Chemical Sciences Division annual report, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

  2. Materials Science Laboratory

    NASA Technical Reports Server (NTRS)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  3. Dr. William Tumas - Associate Laboratory Director, Materials and Chemical

    Science.gov Websites

    Chemical Science and Technology Dr. William Tumas - Associate Laboratory Director, Materials and Chemical , technical direction, and workforce development of the materials and chemical science and technology , program management, and program execution. He joined NREL in December 2009 as Director of the Chemical and

  4. Density functional theory in materials science.

    PubMed

    Neugebauer, Jörg; Hickel, Tilmann

    2013-09-01

    Materials science is a highly interdisciplinary field. It is devoted to the understanding of the relationship between (a) fundamental physical and chemical properties governing processes at the atomistic scale with (b) typically macroscopic properties required of materials in engineering applications. For many materials, this relationship is not only determined by chemical composition, but strongly governed by microstructure. The latter is a consequence of carefully selected process conditions (e.g., mechanical forming and annealing in metallurgy or epitaxial growth in semiconductor technology). A key task of computational materials science is to unravel the often hidden composition-structure-property relationships using computational techniques. The present paper does not aim to give a complete review of all aspects of materials science. Rather, we will present the key concepts underlying the computation of selected material properties and discuss the major classes of materials to which they are applied. Specifically, our focus will be on methods used to describe single or polycrystalline bulk materials of semiconductor, metal or ceramic form.

  5. MSRR Rack Materials Science Research Rack

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn

    2017-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and the European Space Agency (ESA) for materials science investigations on the International Space Station (ISS). The MSRR is managed at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The MSRR facility subsystems were manufactured by Teledyne Brown Engineering (TBE) and integrated with the ESA/EADS-Astrium developed Materials Science Laboratory (MSL) at the MSFC Space Station Integration and Test Facility (SSITF) as part of the Systems Development Operations Support (SDOS) contract. MSRR was launched on STS-128 in August 2009, and is currently installed in the U. S. Destiny Laboratory Module on the ISS. Materials science is an integral part of developing new, safer, stronger, more durable materials for use throughout everyday life. The goal of studying materials processing in space is to develop a better understanding of the chemical and physical mechanisms involved, and how they differ in the microgravity environment of space. To that end, the MSRR accommodates advanced investigations in the microgravity environment of the ISS for basic materials science research in areas such as solidification of metals and alloys. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials

  6. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samara, G.A.

    1997-05-01

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfacesmore » for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.« less

  7. 75 FR 39664 - Grant of Authority For Subzone Status Materials Science Technology, Inc. (Specialty Elastomers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ... Status Materials Science Technology, Inc. (Specialty Elastomers and Fire Retardant Chemicals) Conroe... specialty elastomer manufacturing and distribution facility of Materials Science Technology, Inc., located... and distribution of specialty elastomers and fire retardant chemicals at the facility of Materials...

  8. The materials processing sciences glovebox

    NASA Technical Reports Server (NTRS)

    Traweek, Larry

    1990-01-01

    The Materials Processing Sciences Glovebox is a rack mounted workstation which allows on orbit sample preparation and characterization of specimens from various experiment facilities. It provides an isolated safe, clean, and sterile environment for the crew member to work with potentially hazardous materials. It has to handle a range of chemicals broader than even PMMS. The theme is that the Space Station Laboratory experiment preparation and characterization operations provide the fundamental glovebox design characteristics. Glovebox subsystem concepts and how internal material handling operations affect the design are discussed.

  9. Computational Materials Science and Chemistry: Accelerating Discovery and Innovation through Simulation-Based Engineering and Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crabtree, George; Glotzer, Sharon; McCurdy, Bill

    This report is based on a SC Workshop on Computational Materials Science and Chemistry for Innovation on July 26-27, 2010, to assess the potential of state-of-the-art computer simulations to accelerate understanding and discovery in materials science and chemistry, with a focus on potential impacts in energy technologies and innovation. The urgent demand for new energy technologies has greatly exceeded the capabilities of today's materials and chemical processes. To convert sunlight to fuel, efficiently store energy, or enable a new generation of energy production and utilization technologies requires the development of new materials and processes of unprecedented functionality and performance. Newmore » materials and processes are critical pacing elements for progress in advanced energy systems and virtually all industrial technologies. Over the past two decades, the United States has developed and deployed the world's most powerful collection of tools for the synthesis, processing, characterization, and simulation and modeling of materials and chemical systems at the nanoscale, dimensions of a few atoms to a few hundred atoms across. These tools, which include world-leading x-ray and neutron sources, nanoscale science facilities, and high-performance computers, provide an unprecedented view of the atomic-scale structure and dynamics of materials and the molecular-scale basis of chemical processes. For the first time in history, we are able to synthesize, characterize, and model materials and chemical behavior at the length scale where this behavior is controlled. This ability is transformational for the discovery process and, as a result, confers a significant competitive advantage. Perhaps the most spectacular increase in capability has been demonstrated in high performance computing. Over the past decade, computational power has increased by a factor of a million due to advances in hardware and software. This rate of improvement, which shows no sign of

  10. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn E.; Lehman, John R.; Frazier, Natalie C.

    2014-01-01

    The Materials Science Research Rack (MSRR) is a highly automated facility developed in a joint venture/partnership between NASA and ESA center dot Allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses onboard the International Space Station (ISS) center dot Multi-user facility for high temperature materials science research center dot Launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module ?Research goals center dot Provide means of studying materials processing in space to develop a better understanding of the chemical and physical mechanisms involved center dot Benefit materials science research via the microgravity environment of space where the researcher can better isolate the effects of gravity during solidification on the properties of materials center dot Use the knowledge gained from experiments to make reliable predictions about conditions required on Earth to achieve improved materials

  11. Argonne Chemical Sciences & Engineering - Awards Home

    Science.gov Websites

    Argonne National Laboratory Chemical Sciences & Engineering DOE Logo CSE Home About CSE Argonne Home > Chemical Sciences & Engineering > Fundamental Interactions Catalysis & Energy Computational Postdoctoral Fellowships Contact Us CSE Intranet Awards Argonne's Chemical Sciences and

  12. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Frazier, Natalie C.; Johnson, Jimmie; Aicher, Winfried

    2011-01-01

    The Materials Science Research Rack (MSRR) allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses onboard the International Space Station (ISS). MSRR was launched on STS-128 in August 2009, and is currently installed in the U. S. Destiny Laboratory Module. Since that time, MSRR has performed virtually flawlessly logging more than 550 hours of operating time. Materials science is an integral part of development of new materials for everyday life here on Earth. The goal of studying materials processing in space is to develop a better understanding of the chemical and physical mechanisms involved. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility containing two furnace inserts in which Sample Cartridge Assemblies (SCAs), each containing one material sample, can be processed up to temperatures of 1400C. Once an SCA is installed by a Crew Member, the experiment can be run by automatic command or science conducted via telemetry commands from the ground. Initially, 12 SCAs were processed in the first furnace insert for a team of European and US investigators. The processed samples have been returned to Earth for evaluation and comparison of their properties to samples similarly processed on the ground. A preliminary examination of the samples indicates that the majority of the desired science objectives have been successfully met leading to significant improvements in the understanding of alloy solidification processes. The second furnace insert will be installed in the facility in January 2011 for processing the remaining SCA currently on orbit. Six SCAs are planned for launch summer 2011, and additional batches are

  13. Mineral Surface Reactivity in teaching of Science Materials

    NASA Astrophysics Data System (ADS)

    Del Hoyo Martínez, Carmen

    2013-04-01

    In the last fifty years, science materials issues has required the study of air pollution, water and soil to prevent and remedy the adverse effects of waste originating from anthropogenic activity and the development of new energies and new materials. The teaching of this discipline has been marked by lectures on general lines, materials, disciplines, who explained biased objects of reality, but often forgot the task of reconstruction and integration of such visions. Moving from that model, otherwise quite static, to a dynamic relational model, would in our view, a real revolution in education. This means taking a systematic approach to complex both in interpreting reality and in favor when learning. Children relationships are as important or more than single objects, and it is to discover fundamental organizational principles of phenomena we seek to interpret or in other words, find the pattern that connects. Thus, we must work on relationships and also take into account the relation between the observer and the observed. Educate about relationships means that studies should always be considered within a framework of probabilities, not absolute certainties. This model of systemic thinking, dealing with complexity, is a possibility to bring coherence to our educational work, because the complexity is not taught, complexity is live, so that complex thinking is extended (and fed) in a form educate complex. It is the task of teaching to help people move from level to level of decision reviews. This means that systems thinking should be extended in a local action, action that engages the individual and the environment. Science Materials has emerged as a discipline of free choice for pupils attending chemical engineering which has been assigned 6.0 credits. The chemical engineer's professional profile within the current framework is defined as a professional knowledge as a specialization technical / functional, working in a learning organization and the formation of

  14. Chemical reactor and method for chemically converting a first material into a second material

    DOEpatents

    Kong, Peter C.

    2008-04-08

    A chemical reactor and method for converting a first material into a second material is disclosed and wherein the chemical reactor is provided with a feed stream of a first material which is to be converted into a second material; and wherein the first material is combusted in the chemical reactor to produce a combustion flame, and a resulting gas; and an electrical arc is provided which is passed through or superimposed upon the combustion flame and the resulting gas to facilitate the production of the second material.

  15. Material Science

    NASA Image and Video Library

    2003-01-22

    Dr. Richard Grugel, a materials scientist at NASA's Marshall Space Flight in Huntsville, Ala., examines the furnace used to conduct his Pore Formation and Mobility Investigation -- one of the first two materials science experiments to be conducted on the International Space Station. This experiment studies materials processes similar to those used to make components used in jet engines. Grugel's furnace was installed in the Microgravity Science Glovebox through the circular port on the side. In space, crewmembers are able to change out samples using the gloves on the front of the facility's work area.

  16. Electronic Materials Science

    NASA Astrophysics Data System (ADS)

    Irene, Eugene A.

    2005-02-01

    A thorough introduction to fundamental principles and applications From its beginnings in metallurgy and ceramics, materials science now encompasses such high- tech fields as microelectronics, polymers, biomaterials, and nanotechnology. Electronic Materials Science presents the fundamentals of the subject in a detailed fashion for a multidisciplinary audience. Offering a higher-level treatment than an undergraduate textbook provides, this text benefits students and practitioners not only in electronics and optical materials science, but also in additional cutting-edge fields like polymers and biomaterials. Readers with a basic understanding of physical chemistry or physics will appreciate the text's sophisticated presentation of today's materials science. Instructive derivations of important formulae, usually omitted in an introductory text, are included here. This feature offers a useful glimpse into the foundations of how the discipline understands such topics as defects, phase equilibria, and mechanical properties. Additionally, concepts such as reciprocal space, electron energy band theory, and thermodynamics enter the discussion earlier and in a more robust fashion than in other texts. Electronic Materials Science also features: An orientation towards industry and academia drawn from the author's experience in both arenas Information on applications in semiconductors, optoelectronics, photocells, and nanoelectronics Problem sets and important references throughout Flexibility for various pedagogical needs Treating the subject with more depth than any other introductory text, Electronic Materials Science prepares graduate and upper-level undergraduate students for advanced topics in the discipline and gives scientists in associated disciplines a clear review of the field and its leading technologies.

  17. Expanding the chemical information science gateway.

    PubMed

    Bajorath, Jürgen

    2017-01-01

    Broadly defined, chemical information science (CIS) covers chemical structure and data analysis including biological activity data as well as processing, organization, and retrieval of any form of chemical information. The CIS Gateway (CISG) of F1000Research was created to communicate research involving the entire spectrum of chemical information, including chem(o)informatics. CISG provides a forum for high-quality publications and a meaningful alternative to conventional journals. This gateway is supported by leading experts in the field recognizing the need for open science and a flexible publication platform enabling off-the-beaten path contributions. This editorial aims to further rationalize the scope of CISG, position it within its scientific environment, and open it up to a wider audience. Chemical information science is an interdisciplinary field with high potential to interface with experimental work.

  18. Materials Science

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Materials Science Program is structured so that NASA s headquarters is responsible for the program content and selection, through the Enterprise Scientist, and MSFC provides for implementation of ground and flight programs with a Discipline Scientist and Discipline Manager. The Discipline Working Group of eminent scientists from outside of NASA acts in an advisory capacity and writes the Discipline Document from which the NRA content is derived. The program is reviewed approximately every three years by groups such as the Committee on Microgravity Research, the National Materials Advisory Board, and the OBPR Maximization and Prioritization (ReMaP) Task Force. The flight program has had as many as twenty-six principal investigators (PIs) in flight or flight definition stage, with the numbers of PIs in the future dependent on the results of the ReMaP Task Force and internal reviews. Each project has a NASA-appointed Project Scientist, considered a half-time job, who assists the PI in understanding and preparing for internal reviews such as the Science Concept Review and Requirements Definition Review. The Project Scientist also insures that the PI gets the maximum science support from MSFC, represents the PI to the MSFC community, and collaborates with the Project Manager to insure the project is well-supported and remains vital. Currently available flight equipment includes the Materials Science Research Rack (MSRR-1) and Microgravity Science Glovebox. Ground based projects fall into one or more of several categories. Intellectual Underpinning of Flight Program projects include theoretical studies backed by modeling and computer simulations; bring to maturity new research, often by young researchers, and may include preliminary short duration low gravity experiments in the KC-135 aircraft or drop tube; enable characterization of data sets from previous flights; and provide thermophysical property determinations to aid PIs. Radiation Shielding and preliminary In

  19. 2002 Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Gillies, Donald (Editor); Ramachandran, Narayanan (Editor); Murphy, Karen (Editor); McCauley, Dannah (Editor); Bennett, Nancy (Editor)

    2003-01-01

    The 2002 Microgravity Materials Science Conference was held June 25-26, 2002, at the Von Braun Center, Huntsville, Alabama. Organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Physical Sciences Research Division, NASA Headquarters, and hosted by NASA Marshall Space Flight Center and member institutions under the Cooperative Research in Biology and Materials Science (CORBAMS) agreement, the conference provided a forum to review the current research and activities in materials science, discuss the envisioned long-term goals, highlight new crosscutting research areas of particular interest to the Physical Sciences Research Division, and inform the materials science community of research opportunities in reduced gravity. An abstracts book was published and distributed at the conference to the approximately 240 people attending, who represented industry, academia, and other NASA Centers. This CD-ROM proceedings is comprised of the research reports submitted by the Principal Investigators in the Microgravity Materials Science program.

  20. Aerospace, Chemical and Material Sciences

    DTIC Science & Technology

    2012-03-05

    Origami , ASDR&E COI Materials, Joint AFOSR/RX/RH Center of Excellence at Georgia Tech on Bio Materials Rice professor’s nanotube theory confirmed...Jason’s Study) • (Schmisseur invited expert and our newest AIAA Fellow!!!) • AFOSR-NSF collaborative agreement & Origami Initiative • (collaborative

  1. Expanding the chemical information science gateway

    PubMed Central

    Bajorath, Jürgen

    2017-01-01

    Broadly defined, chemical information science (CIS) covers chemical structure and data analysis including biological activity data as well as processing, organization, and retrieval of any form of chemical information. The CIS Gateway (CISG) of F1000Research was created to communicate research involving the entire spectrum of chemical information, including chem(o)informatics. CISG provides a forum for high-quality publications and a meaningful alternative to conventional journals. This gateway is supported by leading experts in the field recognizing the need for open science and a flexible publication platform enabling off-the-beaten path contributions. This editorial aims to further rationalize the scope of CISG, position it within its scientific environment, and open it up to a wider audience. Chemical information science is an interdisciplinary field with high potential to interface with experimental work. PMID:29043072

  2. Introducing High School Students and Science Teachers to Chemical Engineering.

    ERIC Educational Resources Information Center

    Bayles, Taryn Melkus; Aguirre, Fernando J.

    1992-01-01

    Describes a summer institute for science teachers and their students in which the main goal was to increase enrollment in engineering and to encourage women and minority groups to increase their representation in the engineering workforce. Includes a description of typical chemical engineering jobs and general instruction in material balances,…

  3. NASA Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Szofran, Frank R. (Compiler); McCauley, D. (Compiler); Walker, C. (Compiler)

    1996-01-01

    The Microgravity Materials Science Conference was held June 10-11, 1996 at the Von Braun Civic Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Science and Applications Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the second NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 80 investigations and 69 principal investigators in FY96, all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement (NRA) scheduled for release in late 1996 by the Microgravity Science and Applications Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the MSFC microgravity research facilities was held on June 12, 1996. This volume is comprised of the research reports submitted by the principal investigators after the conference and presentations made by various NASA microgravity science managers.

  4. Chemical processing of lunar materials

    NASA Technical Reports Server (NTRS)

    Criswell, D. R.; Waldron, R. D.

    1979-01-01

    The paper highlights recent work on the general problem of processing lunar materials. The discussion covers lunar source materials, refined products, motivations for using lunar materials, and general considerations for a lunar or space processing plant. Attention is given to chemical processing through various techniques, including electrolysis of molten silicates, carbothermic/silicothermic reduction, carbo-chlorination process, NaOH basic-leach process, and HF acid-leach process. Several options for chemical processing of lunar materials are well within the state of the art of applied chemistry and chemical engineering to begin development based on the extensive knowledge of lunar materials.

  5. Ultrafast electron microscopy in materials science, biology, and chemistry

    NASA Astrophysics Data System (ADS)

    King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan; Reed, Bryan; Schmerge, John F.; Siwick, Bradley J.; Stuart, Brent C.; Weber, Peter M.

    2005-06-01

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental

  6. Applications of the Analytical Electron Microscope to Materials Science

    NASA Technical Reports Server (NTRS)

    Goldstein, J. I.

    1992-01-01

    In the last 20 years, the analytical electron microscope (AEM) as allowed investigators to obtain chemical and structural information from less than 50 nanometer diameter regions in thin samples of materials and to explore problems where reactions occur at boundaries and interfaces or within small particles or phases in bulk samples. Examples of the application of the AEM to materials science problems are presented in this paper and demonstrate the usefulness and the future potential of this instrument.

  7. Institute for Materials Science

    Science.gov Websites

    Search Site submit National Security Education Center Los Alamos National LaboratoryInstitute for Materials Science Incubate - Innovate - Integrate Los Alamos National Laboratory Institute for Materials educational center in NSEC focused on fostering the advancement of materials science at Los Alamos National

  8. Analytical Microscopy and Imaging Science | Materials Science | NREL

    Science.gov Websites

    Microanalysis (EPMA) for quantitative compositional analysis. It relies on wavelength-dispersive spectroscopy to Science group in NREL's Materials Science Center. Mowafak Al-Jassim Group Manager Dr. Al-Jassim manages the Analytical Microscopy and Imaging Science group with the Materials Science Center. Email | 303-384

  9. Material Science

    NASA Image and Video Library

    2003-01-22

    One of the first materials science experiments on the International Space Station -- the Solidification Using a Baffle in Sealed Ampoules (SUBSA) -- will be conducted during Expedition Five inside the Microgravity Science Glovebox. The glovebox is the first dedicated facility delivered to the Station for microgravity physical science research, and this experiment will be the first one operated inside the glovebox. The glovebox's sealed work environment makes it an ideal place for the furnace that will be used to melt semiconductor crystals. Astronauts can change out samples and manipulate the experiment by inserting their hands into a pair of gloves that reach inside the sealed box. Dr. Aleksandar Ostrogorsky, a materials scientist from the Rensselaer Polytechnic Institute, Troy, N.Y., and the principal investigator for the SUBSA experiment, uses the gloves to examine an ampoule like the ones used for his experiment inside the glovebox's work area. The Microgravity Science Glovebox and the SUBSA experiment are managed by NASA's Marshall Space Flight Center in Huntsville, Ala.

  10. NASA Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Gillies, D. C. (Compiler); McCauley, D. E. (Compiler)

    1999-01-01

    The Microgravity Materials Science Conference was held July 14-16, 1998 at the Von Braun Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications. It was the third NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 125 investigations and 100 principal investigators in FY98, almost all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement scheduled for release in late 1998 by the Microgravity Research Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the Marshall Space Flight Center microgravity research facilities was held on July 16, 1998. This volume is comprised of the research reports submitted by the principal investigators after the conference.

  11. Safety in the Chemical Laboratory: Evaluation of Chemical Atmospheres in Science Laboratories.

    ERIC Educational Resources Information Center

    Renfrew, Malcolm M., Ed.; Bayer, Richard E.

    1980-01-01

    Recommends that science teachers make evaluations of chemical atmospheres in science laboratories so that serious health problems can be avoided. Uses data from methylene chloride to provide guidelines for understanding the effects of chemicals on the human body. (CS)

  12. Nanobiotechnology: synthetic biology meets materials science.

    PubMed

    Jewett, Michael C; Patolsky, Fernando

    2013-08-01

    Nanotechnology, the area of science focused on the control of matter in the nanometer scale, allows ground-breaking changes of the fundamental properties of matter that are often radically different compared to those exhibited by the bulk counterparts. In view of the fact that dimensionality plays a key role in determining the qualities of matter, the realization of the great potential of nanotechnology has opened the door to other disciplines such as life sciences and medicine, where the merging between them offers exciting new applications, along with basic science research. The application of nanotechnology in life sciences, nanobiotechnology, is now having a profound impact on biological circuit design, bioproduction systems, synthetic biology, medical diagnostics, disease therapy and drug delivery. This special issue is dedicated to the overview of how we are learning to control biopolymers and biological machines at the molecular- and nanoscale. In addition, it covers far-reaching progress in the design and synthesis of nanoscale materials, thus enabling the construction of integrated systems in which the component blocks are comparable in size to the chemical and biological entities under investigation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. FOREWORD: Focus on Combinatorial Materials Science Focus on Combinatorial Materials Science

    NASA Astrophysics Data System (ADS)

    Chikyo, Toyohiro

    2011-10-01

    About 15 years have passed since the introduction of modern combinatorial synthesis and high-throughput techniques for the development of novel inorganic materials; however, similar methods existed before. The most famous was reported in 1970 by Hanak who prepared composition-spread films of metal alloys by sputtering mixed-material targets. Although this method was innovative, it was rarely used because of the large amount of data to be processed. This problem is solved in the modern combinatorial material research, which is strongly related to computer data analysis and robotics. This field is still at the developing stage and may be enriched by new methods. Nevertheless, given the progress in measurement equipment and procedures, we believe the combinatorial approach will become a major and standard tool of materials screening and development. The first article of this journal, published in 2000, was titled 'Combinatorial solid state materials science and technology', and this focus issue aims to reintroduce this topic to the Science and Technology of Advanced Materials audience. It covers recent progress in combinatorial materials research describing new results in catalysis, phosphors, polymers and metal alloys for shape memory materials. Sophisticated high-throughput characterization schemes and innovative synthesis tools are also presented, such as spray deposition using nanoparticles or ion plating. On a technical note, data handling systems are introduced to familiarize researchers with the combinatorial methodology. We hope that through this focus issue a wide audience of materials scientists can learn about recent and future trends in combinatorial materials science and high-throughput experimentation.

  14. Materials sciences programs: Fiscal year 1994

    NASA Astrophysics Data System (ADS)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  15. Materials sciences programs, fiscal year 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance andmore » other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.« less

  16. Metallo-supramolecular modules as a paradigm for materials science

    PubMed Central

    Kurth, Dirk G.

    2008-01-01

    Metal ion coordination in discrete or extended metallo-supramolecular assemblies offers ample opportunity to fabricate and study devices and materials that are equally important for fundamental research and new technologies. Metal ions embedded in a specific ligand field offer diverse thermodynamic, kinetic, chemical, physical and structural properties that make these systems promising candidates for active components in functional materials. A key challenge is to improve and develop methodologies for placing these active modules in suitable device architectures, such as thin films or mesophases. This review highlights recent developments in extended, polymeric metallo-supramolecular systems and discrete polyoxometalates with an emphasis on materials science. PMID:27877929

  17. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn; Frazier, Natalie; Lehman, John; Aicher, Winfried

    2013-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1000 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  18. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, S. E.; Lehman, J. R.; Frazier, N. C.

    2016-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1400 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400degC. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  19. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn; Frazier, Natalie; Lehman, John

    2016-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1400 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400?C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  20. Chemical Retraction Agents - in vivo and in vitro Studies into their Physico-Chemical Properties, Biocompatibility with Gingival Margin Tissues and Compatibility with Elastomer Impression Materials.

    PubMed

    Nowakowska, Danuta; Saczko, Jolanta; Kulbacka, Julita; Wicckiewicz, Wlodzimierz

    2017-01-01

    Gingival margin retraction/displacement (GMR/D) is a commonly accepted procedure in restorative dentistry. Of the various retraction methods, the chemo-mechanical approach with retraction media and chemical retraction agents (ChRAs) is mostly used. Different local and/or systemic side effects were observed after "chemical attacks" from these retraction agents. Moreover, no consensus exists as to the compatibility of chemical agents with different impression materials. This paper reports the findings of in vivo and in vitro studies and we discuss the physico-chemical properties of chemical retraction agents, their undesirable clinical side effects, biological activity and compatibility with selected groups of elastomer impression materials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Chemical reactor for converting a first material into a second material

    DOEpatents

    Kong, Peter C

    2012-10-16

    A chemical reactor and method for converting a first material into a second material is disclosed and wherein the chemical reactor is provided with a feed stream of a first material which is to be converted into a second material; and wherein the first material is combusted in the chemical reactor to produce a combustion flame, and a resulting gas; and an electrical arc is provided which is passed through or superimposed upon the combustion flame and the resulting gas to facilitate the production of the second material.

  2. Zambian pre-service junior high school science teachers' chemical reasoning and ability

    NASA Astrophysics Data System (ADS)

    Banda, Asiana

    The purpose of this study was two-fold: examine junior high school pre-service science teachers' chemical reasoning; and establish the extent to which the pre-service science teachers' chemical abilities explain their chemical reasoning. A sample comprised 165 junior high school pre-service science teachers at Mufulira College of Education in Zambia. There were 82 males and 83 females. Data were collected using a Chemical Concept Reasoning Test (CCRT). Pre-service science teachers' chemical reasoning was established through qualitative analysis of their responses to test items. The Rasch Model was used to determine the pre-service teachers' chemical abilities and item difficulty. Results show that most pre-service science teachers had incorrect chemical reasoning on chemical concepts assessed in this study. There was no significant difference in chemical understanding between the Full-Time and Distance Education pre-service science teachers, and between second and third year pre-service science teachers. However, there was a significant difference in chemical understanding between male and female pre-service science teachers. Male pre-service science teachers showed better chemical understanding than female pre-service science teachers. The Rasch model revealed that the pre-service science teachers had low chemical abilities, and the CCRT was very difficult for this group of pre-service science teachers. As such, their incorrect chemical reasoning was attributed to their low chemical abilities. These results have implications on science teacher education, chemistry teaching and learning, and chemical education research.

  3. PREFACE: 26th Symposium on Plasma Science for Materials (SPSM-26)

    NASA Astrophysics Data System (ADS)

    2014-06-01

    26th Symposium on Plasma Science for Materials (SPSM-26) Takayuki Watanabe The 26th Symposium on Plasma Science for Materials (SPSM-26) was held in Fukuoka, Japan on September 23-24, 2013. SPSM has been held annually since 1988 under the sponsorship of The 153rd Committee on Plasma Materials Science, Japan Society for the Promotion of Science (JSPS). This symposium is one of the major activities of the Committee, which is organized by researchers in academia and industry for the purpose of advancing intersectional scientific information exchange and discussion of science and technology of plasma materials processing. Plasma processing have attracted extensive attention due to their unique advantages, and it is expected to be utilized for a number of innovative industrial applications such as synthesis of high-quality and high-performance nanomaterials. The advantages of plasmas including high chemical reactivity in accordance with required chemical reactions are beneficial for innovative processing. In recent years, plasma materials processing with reactive plasmas has been extensively employed in the fields of environmental issues and biotechnology. This conference seeks to bring different scientific communities together to create a forum for discussing the latest developments and issues. The conference provides a platform for the exploration of both fundamental topics and new applications of plasmas by the contacts between science, technology, and industry. The conference was organized in plenary lectures, invited, contributed oral presentations, and poster sessions. At this meeting, we had 142 participants from 10 countries and 104 presentations, including 11 invited presentations. This year, we arranged special topical sessions that cover Plasma Medicine and Biotechnologies, Business and Academia Cooperation, Plasma with Liquids, Plasma Processes for Nanomaterials, together with Basic, Electronics, and Thermal Plasma sessions. This special issue presents 28

  4. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Sciences Division About Organization Contact Research Core Programs Materials Discovery, Design and

  5. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Computational Study of Excited-State Phenomena in Energy Materials Center for X-ray Optics MSD Facilities Ion and Materials Physics Scattering and Instrumentation Science Centers Center for Computational Study of Sciences Centers Center for Computational Study of Excited-State Phenomena in Energy Materials Center for X

  6. Thermally emissive sensing materials for chemical spectroscopy analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poole, Zsolt; Ohodnicki, Paul R.

    A sensor using thermally emissive materials for chemical spectroscopy analysis includes an emissive material, wherein the emissive material includes the thermally emissive materials which emit electromagnetic radiation, wherein the electromagnetic radiation is modified due to chemical composition in an environment; and a detector adapted to detect the electromagnetic radiation, wherein the electromagnetic radiation is indicative of the chemical interaction changes and hence chemical composition and/or chemical composition changes of the environment. The emissive material can be utilized with an optical fiber sensor, with the optical fiber sensor operating without the emissive material probed with a light source external to themore » material.« less

  7. The Center for Nanophase Materials Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christen, Hans; Ovchinnikova, Olga; Jesse, Stephen

    2016-03-11

    The Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory (ORNL) integrates nanoscale science with neutron science; synthesis science; and theory, modeling, and simulation. Operating as a national user facility, the CNMS supports a multidisciplinary environment for research to understand nanoscale materials and phenomena.

  8. The Center for Nanophase Materials Sciences

    ScienceCinema

    Christen, Hans; Ovchinnikova, Olga; Jesse, Stephen; Mazumder, Baishakhi; Norred, Liz; Idrobo, Juan Carlos; Berlijn, Tom

    2018-06-25

    The Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory (ORNL) integrates nanoscale science with neutron science; synthesis science; and theory, modeling, and simulation. Operating as a national user facility, the CNMS supports a multidisciplinary environment for research to understand nanoscale materials and phenomena.

  9. Investigating the Chemical Safety of Household Products. Teacher's Guide [and] Student Materials.

    ERIC Educational Resources Information Center

    Davison, Phil J.

    This document provides teaching guidelines and student material for a unit intended for use in high school science or consumer programs. Time allotment is from four to six hours of classroom time. The objective of this capsule is to investigate the chemical safety of household products by teaching students how to form a hypothesis through the…

  10. Symposium on Current Research in the Chemical Sciences: Third Annual Southern Station Chemical Sciences Meeting

    Treesearch

    Timothy G. Rials; [Editor

    1994-01-01

    The original charter for this annual meeting of chemical sciences personnel called for an informal atmosphere for the discussion of common concerns and needs. The years have seen the definition of our "common concern" evolve into a sharing of our efforts in applying the science of chemistry to the resolution of problems faced by our forest resource. I believe...

  11. Materials science and architecture

    NASA Astrophysics Data System (ADS)

    Bechthold, Martin; Weaver, James C.

    2017-12-01

    Materiality — the use of various materials in architecture — has been fundamental to the design and construction of buildings, and materials science has traditionally responded to needs formulated by design, engineering and construction professionals. Material properties and processes are shaping buildings and influencing how they perform. The advent of technologies such as digital fabrication, robotics and 3D printing have not only accelerated the development of new construction solutions, but have also led to a renewed interest in materials as a catalyst for novel architectural design. In parallel, materials science has transformed from a field that explains materials to one that designs materials from the bottom up. The conflation of these two trends is giving rise to materials-based design research in which architects, engineers and materials scientists work as partners in the conception of new materials systems and their applications. This Review surveys this development for different material classes (wood, ceramics, metals, concrete, glass, synthetic composites and polymers), with an emphasis on recent trends and innovations.

  12. Materials Advance Chemical Propulsion Technology

    NASA Technical Reports Server (NTRS)

    2012-01-01

    In the future, the Planetary Science Division of NASA's Science Mission Directorate hopes to use better-performing and lower-cost propulsion systems to send rovers, probes, and observers to places like Mars, Jupiter, and Saturn. For such purposes, a new propulsion technology called the Advanced Materials Bipropellant Rocket (AMBR) was developed under NASA's In-Space Propulsion Technology (ISPT) project, located at Glenn Research Center. As an advanced chemical propulsion system, AMBR uses nitrogen tetroxide oxidizer and hydrazine fuel to propel a spacecraft. Based on current research and development efforts, the technology shows great promise for increasing engine operation and engine lifespan, as well as lowering manufacturing costs. In developing AMBR, ISPT has several goals: to decrease the time it takes for a spacecraft to travel to its destination, reduce the cost of making the propulsion system, and lessen the weight of the propulsion system. If goals like these are met, it could result in greater capabilities for in-space science investigations. For example, if the amount (and weight) of propellant required on a spacecraft is reduced, more scientific instruments (and weight) could be added to the spacecraft. To achieve AMBR s maximum potential performance, the engine needed to be capable of operating at extremely high temperatures and pressure. To this end, ISPT required engine chambers made of iridium-coated rhenium (strong, high-temperature metallic elements) that allowed operation at temperatures close to 4,000 F. In addition, ISPT needed an advanced manufacturing technique for better coating methods to increase the strength of the engine chamber without increasing the costs of fabricating the chamber.

  13. Summaries of FY 1980 research in the chemical sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-09-01

    Brief summaries are given of research programs being pursued by DOE laboratories and offsite facilities in the fields of photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations, analysis, and chemical engineering sciences. No actual data is given. Indexes of topics, offsite institutions, and investigators are included. (DLC)

  14. Materials Informatics: Statistical Modeling in Material Science.

    PubMed

    Yosipof, Abraham; Shimanovich, Klimentiy; Senderowitz, Hanoch

    2016-12-01

    Material informatics is engaged with the application of informatic principles to materials science in order to assist in the discovery and development of new materials. Central to the field is the application of data mining techniques and in particular machine learning approaches, often referred to as Quantitative Structure Activity Relationship (QSAR) modeling, to derive predictive models for a variety of materials-related "activities". Such models can accelerate the development of new materials with favorable properties and provide insight into the factors governing these properties. Here we provide a comparison between medicinal chemistry/drug design and materials-related QSAR modeling and highlight the importance of developing new, materials-specific descriptors. We survey some of the most recent QSAR models developed in materials science with focus on energetic materials and on solar cells. Finally we present new examples of material-informatic analyses of solar cells libraries produced from metal oxides using combinatorial material synthesis. Different analyses lead to interesting physical insights as well as to the design of new cells with potentially improved photovoltaic parameters. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Materials emission of chemicals--PVC flooring materials.

    PubMed

    Lundgren, B; Jonsson, B; Ek-Olausson, B

    1999-09-01

    Data of chemical emissions from flooring materials have been collected and investigated in a database known as METS. The emission tests are performed using the Field and Laboratory Emission Cell (FLEC). The emission rates of total volatile organic compounds (TVOC) in the boiling point range of hexane to octadecane varies from around 4,000 micrograms/(m2.h) to less than 10 micrograms/(m2.h). Results obtained 1994/95 are presented and compared with the results obtained in 1992 for similar materials. The tests are performed 4 weeks and 26 weeks after the manufacturing of the material. The emission rates of TVOC decrease on the average approximately 60% from 4 to 26 weeks. The differences and trends in emission rates of individual chemicals and their use are discussed. For many VOCs emission rates decrease rapidly and become near to or below 2 micrograms/(m2.h) (the detection limit) after 26 weeks. For a small number of individual compounds the emission rate decrease little over 26 weeks. A small number of chemicals are singled out for particular interest in a health and comfort evaluation based on the emission results.

  16. Summaries of FY 1982 research in the chemical sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-09-01

    The purpose of this booklet is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program to members of the scientific and technological public and interested persons in the Legislative and Executive Branches of the Government. Areas of research supported by the Division are to be seen in the section headings, the index and the summaries themselves. Energymore » technologies which may be advanced by use of the basic knowledge discovered in this program can be seen in the index and again (by reference) in the summaries. The table of contents lists the following: photochemical and radiation sciences; chemical physics; atomic physics; chemical energy; separation and analysis; chemical engineering sciences; offsite contracts; equipment funds; special facilities; topical index; institutional index for offsite contracts; investigator index.« less

  17. Material Science

    NASA Image and Video Library

    2003-01-22

    Video images sent to the ground allow scientists to watch the behavior of the bubbles as they control the melting and freezing of the material during the Pore Formation and Mobility Investigation (PFMI) in the Microgravity Science Glovebox aboard the International Space Station. While the investigation studies the way that metals behave at the microscopic scale on Earth -- and how voids form -- the experiment uses a transparent material called succinonitrile that behaves like a metal to study this problem. The bubbles do not float to the top of the material in microgravity, so they can study their interactions.

  18. Chemically Tunable 2D Materials

    DTIC Science & Technology

    new opto-electronic silicon based 2D materials, (ii) new material coatings that can change color from transparent to blue chemically or with heat, and...conduction and transparency . Activities are integrated with in-situ fundamental investigation to synergistically develop a complete understanding in materials research.

  19. Chemical Fingerprinting Program for RSRM Critical Materials

    NASA Technical Reports Server (NTRS)

    McClennen, William H.; Fife, Dennis J.; Killpack, Michael O.; Golde, Rick P.; Cash, Steve (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the chemical fingerprinting of RSRM (Reusable Sold Rocket Motor) components. A chemical fingerprint can be used to identify a material, to differentiate it from similar looking materials, or lead to its source. It can also identify unexpected changes to a vendor or supplier's material, and monitor aging.

  20. Chemical Fingerprinting of Materials Developed Due to Environmental Issues

    NASA Technical Reports Server (NTRS)

    Smith, Doris A.; McCool, A. (Technical Monitor)

    2000-01-01

    Instrumental chemical analysis methods are developed and used to chemically fingerprint new and modified External Tank materials made necessary by changing environmental requirements. Chemical fingerprinting can detect and diagnose variations in material composition. To chemically characterize each material, fingerprint methods are selected from an extensive toolbox based on the material's chemistry and the ability of the specific methods to detect the material's critical ingredients. Fingerprint methods have been developed for a variety of materials including Thermal Protection System foams, adhesives, primers, and composites.

  1. Materials Science & Engineering | Classification | College of Engineering &

    Science.gov Websites

    ChairMaterials Science and Engineering(414) 229-2668nidal@uwm.eduEng & Math Sciences E351 profile photo (414) 229-2615jhchen@uwm.eduEng & Math Sciences 1225 profile photo Benjamin Church, Ph.D.Associate ProfessorMaterials Science & Engineering(414) 229-2825church@uwm.eduEng & Math Sciences EMS 1175 profile

  2. Material Science

    NASA Image and Video Library

    2003-01-12

    The Center for Advanced Microgravity Materials Processing (CAMMP) in Cambridge, MA, a NASA-sponsored Commercial Space Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Depicted here is one of the many here complex geometric shapes which make them highly absorbent. Zeolite experiments have also been conducted aboard the International Space Station

  3. The structural science of functional materials.

    PubMed

    Catlow, C Richard A

    2018-01-01

    The growing complexity of functional materials and the major challenges this poses to structural science are discussed. The diversity of structural materials science and the contributions that computation is making to the field are highlighted.

  4. Chemical Compatibility of Polymeric Materials.

    ERIC Educational Resources Information Center

    Solen, Kenneth A.; Kuchar, Marvin C.

    1990-01-01

    Presents some principles for specifying general classes of polymers for predicting relative chemical attack from acids, bases, oxidants, and certain common antagonists. Also discusses predicting relative solvent effects. Suggests uses of this information in two or three lectures in a chemical engineering materials course. (YP)

  5. Microgravity Materials Science Conference 2000. Volume 1

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan (Editor); Bennett, Nancy (Editor); McCauley, Dannah (Editor); Murphy, Karen (Editor); Poindexter, Samantha (Editor)

    2001-01-01

    This is Volume 1 of 3 of the 2000 Microgravity Material Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approx. 200 investigators, all of whom made oral or poster presentations at this conference. In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference was to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in materials science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance was

  6. Microgravity Materials Science Conference 2000. Volume 3

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Bennett, Nancy; McCauley, Dannah; Murphy, Karen; Poindexter, Samantha

    2001-01-01

    This is Volume 3 of 3 of the 2000 Microgravity Materials Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the Microgravity materials science discipline. The microgravity science program sponsored 200 investigators, all of whom made oral or poster presentations at this conference- In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference was to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in material,, science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance was close

  7. Microgravity Materials Science Conference 2000. Volume 2

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan (Editor); Bennett, Nancy (Editor); McCauley, Dannah (Editor); Murphy, Karen (Editor); Poindexter, Samantha (Editor)

    2001-01-01

    This is Volume 2 of 3 of the 2000 Microgravity Materials Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the Microgravity materials science discipline. The microgravity science program sponsored approx. 200 investigators, all of whom made oral or poster presentations at this conference- In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference %%,its to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in material,, science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance

  8. [Applications of synthetic biology in materials science].

    PubMed

    Zhao, Tianxin; Zhong, Chao

    2017-03-25

    Materials are the basis for human being survival and social development. To keep abreast with the increasing needs from all aspects of human society, there are huge needs in the development of advanced materials as well as high-efficiency but low-cost manufacturing strategies that are both sustainable and tunable. Synthetic biology, a new engineering principle taking gene regulation and engineering design as the core, greatly promotes the development of life sciences. This discipline has also contributed to the development of material sciences and will continuously bring new ideas to future new material design. In this paper, we review recent advances in applications of synthetic biology in material sciences, with the focus on how synthetic biology could enable synthesis of new polymeric biomaterials and inorganic materials, phage display and directed evolution of proteins relevant to materials development, living functional materials, engineered bacteria-regulated artificial photosynthesis system as well as applications of gene circuits for material sciences.

  9. Material Science

    NASA Image and Video Library

    2003-01-12

    The Center for Advanced Microgravity Materials Processing (CAMMP), a NASA-sponsored Research Partnership Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Shown here are zeolite crystals (top) grown in a ground control experiment and grown in microgravity on the USML-2 mission (bottom). Zeolite experiments have also been conducted aboard the International Space Station.

  10. Chemical Differentiation of Osseous, Dental, and Non-skeletal Materials in Forensic Anthropology using Elemental Analysis.

    PubMed

    Zimmerman, Heather A; Meizel-Lambert, Cayli J; Schultz, John J; Sigman, Michael E

    2015-03-01

    Forensic anthropologists are generally able to identify skeletal materials (bone and tooth) using gross anatomical features; however, highly fragmented or taphonomically altered materials may be problematic to identify. Several chemical analysis techniques have been shown to be reliable laboratory methods that can be used to determine if questionable fragments are osseous, dental, or non-skeletal in nature. The purpose of this review is to provide a detailed background of chemical analysis techniques focusing on elemental compositions that have been assessed for use in differentiating osseous, dental, and non-skeletal materials. More recently, chemical analysis studies have also focused on using the elemental composition of osseous/dental materials to evaluate species and provide individual discrimination, but have generally been successful only in small, closed groups, limiting their use forensically. Despite significant advances incorporating a variety of instruments, including handheld devices, further research is necessary to address issues in standardization, error rates, and sample size/diversity. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Center for Nanophase Materials Sciences

    NASA Astrophysics Data System (ADS)

    Horton, Linda

    2002-10-01

    The Center for Nanophase Materials Sciences (CNMS) will be a user facility with a strong component of joint, collaborative research. CNMS is being developed, together with the scientific community, with support from DOE's Office of Basic Energy Sciences. The Center will provide a thriving, multidisciplinary environment for research as well as the education of students and postdoctoral scholars. It will be co-located with the Spallation Neutron Source (SNS) and the Joint Institute for Neutron Sciences (JINS). The CNMS will integrate nanoscale research with neutron science, synthesis science, and theory/modeling/simulation, bringing together four areas in which the United States has clear national research and educational needs. The Center's research will be organized under three scientific thrusts: nano-dimensioned "soft" materials (including organic, hybrid, and interfacial nanophases); complex "hard" materials systems (including the crosscutting areas of interfaces and reduced dimensionality that become scientifically critical on the nanoscale); and theory/modeling/simulation. This presentation will summarize the progress towards identification of the specific research focus topics for the Center. Currently proposed topics, based on two workshops with the potential user community, include catalysis, nanomagnetism, synthetic and bio-inspired macromolecular materials, nanophase biomaterials, nanofluidics, optics/photonics, carbon-based nanostructures, collective behavior, nanoscale interface science, virtual synthesis and nanomaterials design, and electronic structure, correlations, and transport. In addition, the proposed 80,000 square foot facility (wet/dry labs, nanofabrication clean rooms, and offices) and the associated technical equipment will be described. The CNMS is scheduled to begin construction in spring, 2003. Initial operations are planned for late in 2004.

  12. Material Cycles and Chemicals: Dynamic Material Flow Analysis of Contaminants in Paper Recycling.

    PubMed

    Pivnenko, Kostyantyn; Laner, David; Astrup, Thomas F

    2016-11-15

    This study provides a systematic approach for assessment of contaminants in materials for recycling. Paper recycling is used as an illustrative example. Three selected chemicals, bisphenol A (BPA), diethylhexyl phthalate (DEHP) and mineral oil hydrocarbons (MOHs), are evaluated within the paper cycle. The approach combines static material flow analysis (MFA) with dynamic material and substance flow modeling. The results indicate that phasing out of chemicals is the most effective measure for reducing chemical contamination. However, this scenario was also associated with a considerable lag phase (between approximately one and three decades) before the presence of chemicals in paper products could be considered insignificant. While improved decontamination may appear to be an effective way of minimizing chemicals in products, this may also result in lower production yields. Optimized waste material source-segregation and collection was the least effective strategy for reducing chemical contamination, if the overall recycling rates should be maintained at the current level (approximately 70% for Europe). The study provides a consistent approach for evaluating contaminant levels in material cycles. The results clearly indicate that mass-based recycling targets are not sufficient to ensure high quality material recycling.

  13. Material Science

    NASA Image and Video Library

    2003-01-22

    Pores and voids often form in metal castings on Earth (above) making them useless. A transparent material that behaves at a large scale in microgravity the way that metals behave at the microscopic scale on Earth, will help show how voids form and learn how to prevent them. Scientists are using the microgravity environment on the International Space Station to study how these bubbles form, move and interact. The Pore Formation and Mobility Investigation (PFMI) in the Microgravity Science Glovebox aboard the International Space Station uses a transparent material called succinonitrile that behaves like a metal to study this problem. Video images sent to the ground allow scientists to watch the behavior of the bubbles as they control the melting and freezing of the material. The bubbles do not float to the top of the material in microgravity, so they can study their interactions.

  14. Intriguing Freshmen with Materials Science.

    ERIC Educational Resources Information Center

    Pond, Robert B., Sr.

    Described is a course designed for engineering science and natural science freshmen and open to upperclass nonscience majors entitled "Science of Modern Materials" and which has been successfully presented for several years. This paper presents the philosophy behind the course, the teaching methods employed, and the content of the course. The…

  15. Standard and reference materials for marine science. Third edition. Technical memo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantillo, A.Y.

    1992-08-01

    The third edition of the catalog of reference materials suited for use in marine science, originally compiled in 1986 for NOAA, IOC, and UNEP. The catalog lists close to 2,000 reference materials from sixteen producers and contains information about their proper use, sources, availability, and analyte concentrations. Indices are included for elements, isotopes, and organic compounds, as are cross references to CAS registry numbers, alternate names, and chemical structures of selected organic compounds. The catalog is being published independently by both NOAA and IOC/UNEP and is available from NOAA/NOS/ORCA in electronic form.

  16. Theoretical Problems in Materials Science

    NASA Technical Reports Server (NTRS)

    Langer, J. S.; Glicksman, M. E.

    1985-01-01

    Interactions between theoretical physics and material sciences to identify problems of common interest in which some of the powerful theoretical approaches developed for other branches of physics may be applied to problems in materials science are presented. A unique structure was identified in rapidly quenched Al-14% Mn. The material has long-range directed bonds with icosahedral symmetry which does not form a regular structure but instead forms an amorphous-like quasiperiodic structure. Finite volume fractions of second phase material is advanced and is coupled with nucleation theory to describe the formation and structure of precipitating phases in alloys. Application of the theory of pattern formation to the problem of dendrite formation is studied.

  17. Overview of NASA's Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Downey, James Patton

    2012-01-01

    The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.

  18. Biological issues in materials science and engineering: Interdisciplinarity and the bio-materials paradigm

    NASA Astrophysics Data System (ADS)

    Murr, L. E.

    2006-07-01

    Biological systems and processes have had, and continue to have, important implications and applications in materials extraction, processing, and performance. This paper illustrates some interdisciplinary, biological issues in materials science and engineering. These include metal extraction involving bacterial catalysis, galvanic couples, bacterial-assisted corrosion and degradation of materials, biosorption and bioremediation of toxic and other heavy metals, metal and material implants and prostheses and related dental and medical biomaterials developments and applications, nanomaterials health benefits and toxicity issue, and biomimetics and biologically inspired materials developments. These and other examples provide compelling evidence and arguments for emphasizing biological sicences in materials science and engineering curricula and the implementation of a bio-materials paradigm to facilitate the emergence of innovative interdisciplinarity involving the biological sciences and materials sciences and engineering.

  19. Summaries of FY 1979 research in the chemical sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-05-01

    The purpose of this report is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. Chemists, physicists, chemical engineers and others who are considering the possibility of proposing research for support by this Division wll find the booklet useful for gauging the scope of the program in basic research, and the relationship of their interests to the overall program. These smmaries are intended to provide a rapid means for becoming acquainted with the Chemicalmore » Sciences program for members of the scientific and technological public, and interested persons in the Legislative and Executive Branches of the Government, in order to indicate the areas of research supported by the Division and energy technologies which may be advanced by use of basic knowledge discovered in this program. Scientific excellence is a major criterion applied in the selection of research supported by Chemical Sciences. Another important consideration is the identifying of chemical, physical and chemical engineering subdisciplines which are advancing in ways which produce new information related to energy, needed data, or new ideas.« less

  20. Chemical modifications of renewable cellulosic materials

    USDA-ARS?s Scientific Manuscript database

    In agriculture, there is a fair amount of byproducts and waste materials. These materials typically contain significant portions of cellulose and hemicellulose. A good opportunity is to take advantage of these relatively cheap renewable materials, carry out chemical reactions, and increase their v...

  1. Strategic Research Directions In Microgravity Materials Science

    NASA Technical Reports Server (NTRS)

    Clinton, Raymond G., Jr.; Wargo, Michael J.; Marzwell, Neville L.; Sanders, Gerald; Schlagheck, Ron; Semmes, Ed; Bassler, Julie; Cook, Beth

    2004-01-01

    The Office of Biological and Physical Research (OBPR) is moving aggressively to align programs, projects, and products with the vision for space exploration. Research in advanced materials is a critical element in meeting exploration goals. Research in low gravity materials science in OBPR is being focused on top priority needs in support of exploration: 1) Space Radiation Shielding; 2) In Situ Resource Utilization; 3) In Situ Fabrication and Repair; 4) Materials Science for Spacecraft and Propulsion Systems; 5) Materials Science for Advanced Life Support Systems. Roles and responsibilities in low gravity materials research for exploration between OBPR and the Office of Exploration Systems are evolving.

  2. PREFACE: Tsukuba International Conference on Materials Science 2013

    NASA Astrophysics Data System (ADS)

    Kijima, Masashi; Ohshima, Kenichi; Kojima, Seiji; Nagasaki, Yukio; Miyazaki, Shuichi; Kim, Hee Young; Kadowaki, Kazuo; Kashiwagi, Takanari; Nakamura, Junji; Yamamoto, Yohei; Goto, Hiromasa

    2014-03-01

    Tsukuba International Conference on Materials Science (TICMS) was held from 28th August to 6th September, 2013 for the celebration of 40th year anniversary of the University of Tsukuba. The conference was organized by the Division of Materials Science, in cooperation with the Graduate School of Pure and Applied Sciences, and Tsukuba Research Center for Interdisciplinary Materials Science. The purpose of the conference was to provide a unique forum for researchers and students working in various fields of materials science, which have been progressing so rapidly that no single society could cover. The conference consists of following seven workshops to cover various fields. The organizing committee believed that the conference gave all participants new insights into the widespread development of materials science and enhanced the circulation, among them, of information released at the conference. The organizers are grateful for the financial support from University of Tsukuba. This volume contains 25 selected papers from invited and contributed papers, all of which have been screened on the basis of the standard review process of the program committee. The editors express their thanks to those authors who contributed the papers published in this proceedings, which reflects the scientific value of the conference. Nov. 20, 2013 Seiji Kojima, Prof. Dr. Chair, Division of Materials Science Chair, Doctoral Program in Materials Science TICMS 2013 (http://www.ticonfms.tsukuba.ac.jp/) Workshop list The 13th Japan-Korea Joint Workshop on Materials Science Summer School of Biomaterials Science The Japan-Korea Joint Workshop on Shape Memory and Superelastic Technologies The 2nd Workshop on THz Radiation from Intrinsic Josephson Junctions The 3rd German-Japan Nanoworkshop TICMS and IWP Joint Workshop on Conjugated Polymers International Workshop on Science and Patents (IWP) 2013

  3. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for ; Finance Templates Travel One-Stop Core Programs Materials Discovery, Design and Synthesis Condensed Matter

  4. Hybrid Light-Matter States in a Molecular and Material Science Perspective.

    PubMed

    Ebbesen, Thomas W

    2016-11-15

    The notion that light and matter states can be hybridized the way s and p orbitals are mixed is a concept that is not familiar to most chemists and material scientists. Yet it has much potential for molecular and material sciences that is just beginning to be explored. For instance, it has already been demonstrated that the rate and yield of chemical reactions can be modified and that the conductivity of organic semiconductors and nonradiative energy transfer can be enhanced through the hybridization of electronic transitions. The hybridization is not limited to electronic transitions; it can be applied for instance to vibrational transitions to selectively perturb a given bond, opening new possibilities to change the chemical reactivity landscape and to use it as a tool in (bio)molecular science and spectroscopy. Such results are not only the consequence of the new eigenstates and energies generated by the hybridization. The hybrid light-matter states also have unusual properties: they can be delocalized over a very large number of molecules (up to ca. 10 5 ), and they become dispersive or momentum-sensitive. Importantly, the hybridization occurs even in the absence of light because it is the zero-point energies of the molecular and optical transitions that generate the new light-matter states. The present work is not a review but rather an Account from the author's point of view that first introduces the reader to the underlying concepts and details of the features of hybrid light-matter states. It is shown that light-matter hybridization is quite easy to achieve: all that is needed is to place molecules or a material in a resonant optical cavity (e.g., between two parallel mirrors) under the right conditions. For vibrational strong coupling, microfluidic IR cells can be used to study the consequences for chemistry in the liquid phase. Examples of modified properties are given to demonstrate the full potential for the molecular and material sciences. Finally an

  5. In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials Research.

    PubMed

    Wu, Jianbo; Shan, Hao; Chen, Wenlong; Gu, Xin; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

    2016-11-01

    Gas and liquid phase chemical reactions cover a broad range of research areas in materials science and engineering, including the synthesis of nanomaterials and application of nanomaterials, for example, in the areas of sensing, energy storage and conversion, catalysis, and bio-related applications. Environmental transmission electron microscopy (ETEM) provides a unique opportunity for monitoring gas and liquid phase reactions because it enables the observation of those reactions at the ultra-high spatial resolution, which is not achievable through other techniques. Here, the fundamental science and technology developments of gas and liquid phase TEM that facilitate the mechanistic study of the gas and liquid phase chemical reactions are discussed. Combined with other characterization tools integrated in TEM, unprecedented material behaviors and reaction mechanisms are observed through the use of the in situ gas and liquid phase TEM. These observations and also the recent applications in this emerging area are described. The current challenges in the imaging process are also discussed, including the imaging speed, imaging resolution, and data management. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Materials Data Science: Current Status and Future Outlook

    NASA Astrophysics Data System (ADS)

    Kalidindi, Surya R.; De Graef, Marc

    2015-07-01

    The field of materials science and engineering is on the cusp of a digital data revolution. After reviewing the nature of data science and Big Data, we discuss the features of materials data that distinguish them from data in other fields. We introduce the concept of process-structure-property (PSP) linkages and illustrate how the determination of PSPs is one of the main objectives of materials data science. Then we review a selection of materials databases, as well as important aspects of materials data management, such as storage hardware, archiving strategies, and data access strategies. We introduce the emerging field of materials data analytics, which focuses on data-driven approaches to extract and curate materials knowledge from available data sets. The critical need for materials e-collaboration platforms is highlighted, and we conclude the article with a number of suggestions regarding the near-term future of the materials data science field.

  7. Materials Science Research Rack Onboard the International Space Station Hardware and Operations

    NASA Technical Reports Server (NTRS)

    Lehman, John R.; Frazier, Natalie C.; Johnson, Jimmie

    2012-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module. Since that time, MSRR has performed virtually flawlessly, logging more than 620 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials Science Laboratory (MSL) which accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample-Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400 C. Once an SCA is installed, the experiment can be run by automatic command or science conducted via

  8. Writing Material in Chemical Physics Research: The Laboratory Notebook as Locus of Technical and Textual Integration

    ERIC Educational Resources Information Center

    Wickman, Chad

    2010-01-01

    This article, drawing on ethnographic study in a chemical physics research facility, explores how notebooks are used and produced in the conduct of laboratory science. Data include written field notes of laboratory activity; visual documentation of "in situ" writing processes; analysis of inscriptions, texts, and material artifacts produced in the…

  9. Materials science challenges in paintings

    NASA Astrophysics Data System (ADS)

    Walter, Philippe; de Viguerie, Laurence

    2018-02-01

    Through the paintings of the old masters, we showcase how materials science today provides us with a vision of the processes involved in the creation of a work of art: the choice of materials, the painter's skill in handling these materials, and the perception of the finished work.

  10. Materials science challenges in paintings.

    PubMed

    Walter, Philippe; de Viguerie, Laurence

    2018-01-23

    Through the paintings of the old masters, we showcase how materials science today provides us with a vision of the processes involved in the creation of a work of art: the choice of materials, the painter's skill in handling these materials, and the perception of the finished work.

  11. Materials science and engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesuer, D.R.

    1997-02-01

    During FY-96, work within the Materials Science and Engineering Thrust Area was focused on material modeling. Our motivation for this work is to develop the capability to study the structural response of materials as well as material processing. These capabilities have been applied to a broad range of problems, in support of many programs at Lawrence Livermore National Laboratory. These studies are described in (1) Strength and Fracture Toughness of Material Interfaces; (2) Damage Evolution in Fiber Composite Materials; (3) Flashlamp Envelope Optical Properties and Failure Analysis; (4) Synthesis and Processing of Nanocrystalline Hydroxyapatite; and (5) Room Temperature Creep Compliancemore » of Bulk Kel-E.« less

  12. Materials Science and Technology Teachers Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry,more » physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.« less

  13. The Interface Between Chemical and Oxide Materials in the DSPEC

    NASA Astrophysics Data System (ADS)

    Meyer, Thomas; Alibabaei, Leila; Sherman, Benjamin; Sheridan, Matthew; Ashford, Dennis; Lapides, Alex; Brennaman, Kyle; Nayak, Animesh; Roy, Subhangi

    Significant challenges exist for both chemical and oxide materials in the Dye Sensitized Photoelectrosynthesis Cell (DSPEC) for water oxidation or CO2 reduction. They arise from light absorption, the energetics of electron or hole injection, the accumulation of multiple redox equivalents at catalysts for water oxidation or water/CO2 reduction in competition with back electron transfer, and sustained, long term performance. These challenges are being met by the use of a variety of chromophores (metal complexes, organic dyes, porphyrins), broad application of nanoparticle mesoscopic oxide films, atomic layer deposition (ALD) to prepare core/shell and stabilizing overlayer structures, and recent advances in the molecular catalysis of water oxidation and CO2 reduction. UNC EFRC Center for Solar Fuels, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001011.

  14. Systems metabolic engineering for chemicals and materials.

    PubMed

    Lee, Jeong Wook; Kim, Tae Yong; Jang, Yu-Sin; Choi, Sol; Lee, Sang Yup

    2011-08-01

    Metabolic engineering has contributed significantly to the enhanced production of various value-added and commodity chemicals and materials from renewable resources in the past two decades. Recently, metabolic engineering has been upgraded to the systems level (thus, systems metabolic engineering) by the integrated use of global technologies of systems biology, fine design capabilities of synthetic biology, and rational-random mutagenesis through evolutionary engineering. By systems metabolic engineering, production of natural and unnatural chemicals and materials can be better optimized in a multiplexed way on a genome scale, with reduced time and effort. Here, we review the recent trends in systems metabolic engineering for the production of chemicals and materials by presenting general strategies and showcasing representative examples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Nuffield Secondary Science, Theme 7, Using Materials.

    ERIC Educational Resources Information Center

    Blackledge, J.; And Others

    Nuffield Secondary Science is a set of tested materials from which teachers can prepare courses for students in grades 9-11 (approximately) who do not intend to major in science. The materials are designed for British secondary schools but are adaptable for other countries. The Teachers' Guide to the entire set of materials is described in SE 015…

  16. Research in the chemical sciences. Summaries of FY 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    This summary book is published annually to provide information on research supported by the Department of Energy`s Division of Chemical Sciences, which is one of four Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries provide the scientific and technical public, as well as the legislative and executive branches of the Government, information, either generally or in some depth, about the Chemical Sciences program. Scientists interested in proposing research for support will find the publication useful for gauging the scope of the present basic research program and it`s relationship to their interests. Proposalsmore » that expand this scope may also be considered or directed to more appropriate offices. The primary goal of the research summarized here is to add significantly to the knowledge base in which existing and future efficient and safe energy technologies can evolve. As a result, scientific excellence is a major criterion applied in the selection of research supported by the Division of Chemical Sciences, but another important consideration is emphasis on science that is advancing in ways that will produce new information related to energy.« less

  17. Nuclear Materials Science

    NASA Astrophysics Data System (ADS)

    Whittle, Karl

    2016-06-01

    Concerns around global warming have led to a nuclear renaissance in many countries, meanwhile the nuclear industry is warning already of a need to train more nuclear engineers and scientists, who are needed in a range of areas from healthcare and radiation detection to space exploration and advanced materials as well as for the nuclear power industry. Here Karl Whittle provides a solid overview of the intersection of nuclear engineering and materials science at a level approachable by advanced students from materials, engineering and physics. The text explains the unique aspects needed in the design and implementation of materials for use in demanding nuclear settings. In addition to material properties and their interaction with radiation the book covers a range of topics including reactor design, fuels, fusion, future technologies and lessons learned from past incidents. Accompanied by problems, videos and teaching aids the book is suitable for a course text in nuclear materials and a reference for those already working in the field.

  18. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for materials and phenomena at multiple time and length scales. Through our core programs and research centers Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials

  19. Chemical compatibility of cartridge materials

    NASA Technical Reports Server (NTRS)

    Wilcox, Roy C.; Zee, R. H.

    1991-01-01

    This twelve month progress report deals with the chemical compatibility of semiconductor crystals grown in zero gravity. Specifically, it studies the chemical compatibility between TZM, a molybdenum alloy containing titanium and zirconium, and WC 103, a titanium alloy containing Niobium and Hafnium, and Gallium arsenide (GaAs) and Cadmium Zinc Tellurite (CdZnTe). Due to the health hazards involved, three approaches were used to study the chemical compatibility between the semiconductor and cartridge materials: reaction retort, thermogravimetric analysis, and bulk cylindrical cartridge containers. A scanning electron microscope with an energy dispersive X-ray analyzer was used to examine all samples after testing. The first conclusion drawn is that reaction rates with TZM were not nearly as great as they were with WC 103. Second, the total reaction between GaAs and WC 103 was almost twice that with TZM. Therefore, even though WC 103 is easier to fabricate, at least half of the cartridge thickness will be degraded if contact is made with one of the semiconductor materials leading to a loss of strength properties.

  20. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  1. Perceptions of Crop Science Instructional Materials.

    ERIC Educational Resources Information Center

    Elkins, D. M.

    1994-01-01

    A number of crop science instructors have indicated that there is a shortage of quality, current crop/plant science teaching materials, particularly textbooks. A survey instrument was developed to solicit information from teachers about the use and adequacy of textbooks, laboratory manuals, and videotapes in crop/plant science instruction. (LZ)

  2. Preservice Science Teachers' Attitudes towards Chemistry and Misconceptions about Chemical Kinetics

    ERIC Educational Resources Information Center

    Çam, Aylin; Topçu, Mustafa Sami; Sülün, Yusuf

    2015-01-01

    The present study investigates preservice science teachers' attitudes towards chemistry; their misconceptions about chemical kinetics; and relationships between pre-service science teachers' attitudes toward chemistry and misconceptions about chemical kinetics were examined. The sample of this study consisted of 81 freshman pre-service science…

  3. Enabling science support for better decision-making when responding to chemical spills

    USGS Publications Warehouse

    Weidhass, Jennifer L.; Dietrich, Andrea M.; DeYonker, Nathan J.; Dupont, R. Ryan; Foreman, William T.; Gallagher, Daniel; Gallagher, Jennifer E. G.; Whelton, Andrew J.; Alexander, William

    2016-01-01

    Chemical spills and accidents contaminate the environment and disrupt societies and economies around the globe. In the United States there were approximately 172,000 chemical spills that affected US waterbodies from 2004 to 2014. More than 8000 of these spills involved non–petroleum-related chemicals. Traditional emergency responses or incident command structures (ICSs) that respond to chemical spills require coordinated efforts by predominantly government personnel from multiple disciplines, including disaster management, public health, and environmental protection. However, the requirements of emergency response teams for science support might not be met within the traditional ICS. We describe the US ICS as an example of emergency-response approaches to chemical spills and provide examples in which external scientific support from research personnel benefitted the ICS emergency response, focusing primarily on nonpetroleum chemical spills. We then propose immediate, near-term, and long-term activities to support the response to chemical spills, focusing on nonpetroleum chemical spills. Further, we call for science support for spill prevention and near-term spill-incident response and identify longer-term research needs. The development of a formal mechanism for external science support of ICS from governmental and nongovernmental scientists would benefit rapid responders, advance incident- and crisis-response science, and aid society in coping with and recovering from chemical spills.

  4. Swedish materials science experiment equipment

    NASA Astrophysics Data System (ADS)

    Jonsson, R.

    1982-09-01

    Details of the apparatus and experimentation performed with the Swedish MURMEC (multi-purpose Rocket-borne Materials science Experiment Carrier) and other materials science equipment for sounding rocket and airborne trials are presented. The MURMEC science modules contain four isothermal furnaces, 12 pore formation experiment furnaces, and two gradient furnaces. The modules feature a power system, experimental control, and monitoring sensors. Design details and operational features of each of the furnaces are provided, and results of the first MURMEC flight on-board a Swedish sounding rocket with the PIRAT (Pointed IR Astronomical Telescope) are discussed. Additional tests were performed using a modified NASA F-104 aircraft flown in a parabolic trajectory to produce a 0.3-0.1 g environment for 50-60 sec. Films were made of melting and resolidification processes during nine different flights using three different samples.

  5. New Directions in NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Recently, NASA's Microgravity Research Division was re-aligned to match the Agency's increasing awareness of the importance of biological and nano-structural sciences. The Division has become the Physical Sciences Research section within the newly created Office of Biological and Physical Research. Within materials science and in the last few years, new programs aimed at biomaterials have been initiated. Results from these programs and also new research pertaining to materials for radiation protection will be discussed.

  6. Biological materials: a materials science approach.

    PubMed

    Meyers, Marc A; Chen, Po-Yu; Lopez, Maria I; Seki, Yasuaki; Lin, Albert Y M

    2011-07-01

    The approach used by Materials Science and Engineering is revealing new aspects in the structure and properties of biological materials. The integration of advanced characterization, mechanical testing, and modeling methods can rationalize heretofore unexplained aspects of these structures. As an illustration of the power of this methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3-PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Materials Science Experiment Module Accommodation within the Materials Science Research Rack (MSRR-1) on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Higgins, D. B.; Jayroe, R. R.; McCarley, K. S.

    2000-01-01

    The Materials Science Research Rack I (MSRR-1) of the Materials Science Research Facility (MSRF) is a modular facility designed to accommodate two Experiment Modules (EM) simultaneously on board the International Space Station (ISS). One of these EMs will be the NASA/ESA EM being, developed collaboratively by NASA and the European Space Agency. The other EM position will be occupied by various multi-user EMs that will be exchanged in-orbit to accommodate a variety of materials science investigations. This paper discusses the resources, services, and allocations available to the EMs and briefly describes performance capabilities of the EMs currently planned for flight.

  8. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of ? Click Here! Commitment to Safety at MSD In the Materials Sciences Division, our mission is to do world -class science in a safe environment. We proudly support a strong safety culture in which all staff and

  9. Course and Curriculum Improvement Materials: Mathematics, Science, Social Sciences - Elementary, Intermediate, Secondary.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    This is a list of curriculum improvement materials produced by major course and curriculum projects supported by the National Science Foundation's Division of Pre-College Education in Science. The materials are grouped by educational level (elementary, intermediate, and secondary) and within each level by broad discipline groupings (mathematics,…

  10. Materials Science and the Problem of Garbage

    ERIC Educational Resources Information Center

    McPherson, Heather

    2016-01-01

    Materials science--the science of stuff--has made our lives better by making it possible for manufacturers to supply us with products. Students have misconceptions about materials use. Many may think using bottled water, for example, is harmless because they recycle the plastic empties, but they fail to consider the resources and energy used to…

  11. Chemical hydrogen storage material property guidelines for automotive applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semelsberger, Troy; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 C), system gravimetric capacities (>0.05 kg H2/kg system), and system volumetric capacities (>0.05 kg H2/L system). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storagemore » material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material propertiesdand most important, their implications on system mass, system volume and system performance.« less

  12. Chemical hydrogen storage material property guidelines for automotive applications

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 °C), system gravimetric capacities (>0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  13. Materials Science

    NASA Image and Video Library

    1998-09-30

    Dr. Jan Rogers, project scientist for the Electrostatic Levitator (ESL) at NASA's Marshall Space Flight Center(MSFC). The ESL uses static electricity to suspend an obejct (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials sciences program.

  14. Chemical Case Studies: Science-Society "Bonding."

    ERIC Educational Resources Information Center

    Hofstein, Avi; Nae, Nehemia

    1981-01-01

    Describes a unit designed to illustrate the "science-society-technology connection," in which three case studies of the chemical industry in Israel are presented to high school chemistry students. Chosen for the unit are case studies on copper production in Timna, on plastics, and on life from the Dead Sea. (CS)

  15. Optics & Materials Science & Technology (OMST) Organization at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suratwala,; Tayyab,; Nguyen, Hoang

    The Optics and Materials Science & Technology (OMST) organization at Lawrence Livermore National Laboratory (LLNL) supplies optics, recycles optics, and performs the materials science and technology to advance optics and optical materials for high-power and high-energy lasers for a variety of missions. The organization is a core capability at LLNL. We have a strong partnership with many optical fabricators, universities and national laboratories to accomplish our goals. The organization has a long history of performing fundamental optical materials science, developing them into useful technologies, and transferring them into production both on-site and off-site. We are successfully continuing this same strategymore » today.« less

  16. Optics & Materials Science & Technology (OMST) Organization at LLNL

    ScienceCinema

    Suratwala,; Tayyab,; Nguyen, Hoang; Bude, Jeff; Dylla-Spears, Rebecca

    2018-06-13

    The Optics and Materials Science & Technology (OMST) organization at Lawrence Livermore National Laboratory (LLNL) supplies optics, recycles optics, and performs the materials science and technology to advance optics and optical materials for high-power and high-energy lasers for a variety of missions. The organization is a core capability at LLNL. We have a strong partnership with many optical fabricators, universities and national laboratories to accomplish our goals. The organization has a long history of performing fundamental optical materials science, developing them into useful technologies, and transferring them into production both on-site and off-site. We are successfully continuing this same strategy today.

  17. The development of learning materials based on core model to improve students’ learning outcomes in topic of Chemical Bonding

    NASA Astrophysics Data System (ADS)

    Avianti, R.; Suyatno; Sugiarto, B.

    2018-04-01

    This study aims to create an appropriate learning material based on CORE (Connecting, Organizing, Reflecting, Extending) model to improve students’ learning achievement in Chemical Bonding Topic. This study used 4-D models as research design and one group pretest-posttest as design of the material treatment. The subject of the study was teaching materials based on CORE model, conducted on 30 students of Science class grade 10. The collecting data process involved some techniques such as validation, observation, test, and questionnaire. The findings were that: (1) all the contents were valid, (2) the practicality and the effectiveness of all the contents were good. The conclusion of this research was that the CORE model is appropriate to improve students’ learning outcomes for studying Chemical Bonding.

  18. Chemical vapor deposition modeling for high temperature materials

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.

    1992-01-01

    The formalism for the accurate modeling of chemical vapor deposition (CVD) processes has matured based on the well established principles of transport phenomena and chemical kinetics in the gas phase and on surfaces. The utility and limitations of such models are discussed in practical applications for high temperature structural materials. Attention is drawn to the complexities and uncertainties in chemical kinetics. Traditional approaches based on only equilibrium thermochemistry and/or transport phenomena are defended as useful tools, within their validity, for engineering purposes. The role of modeling is discussed within the context of establishing the link between CVD process parameters and material microstructures/properties. It is argued that CVD modeling is an essential part of designing CVD equipment and controlling/optimizing CVD processes for the production and/or coating of high performance structural materials.

  19. Discovery of optimal zeolites for challenging separations and chemical conversions through predictive materials modeling

    NASA Astrophysics Data System (ADS)

    Siepmann, J. Ilja; Bai, Peng; Tsapatsis, Michael; Knight, Chris; Deem, Michael W.

    2015-03-01

    Zeolites play numerous important roles in modern petroleum refineries and have the potential to advance the production of fuels and chemical feedstocks from renewable resources. The performance of a zeolite as separation medium and catalyst depends on its framework structure and the type or location of active sites. To date, 213 framework types have been synthesized and >330000 thermodynamically accessible zeolite structures have been predicted. Hence, identification of optimal zeolites for a given application from the large pool of candidate structures is attractive for accelerating the pace of materials discovery. Here we identify, through a large-scale, multi-step computational screening process, promising zeolite structures for two energy-related applications: the purification of ethanol beyond the ethanol/water azeotropic concentration in a single separation step from fermentation broths and the hydroisomerization of alkanes with 18-30 carbon atoms encountered in petroleum refining. These results demonstrate that predictive modeling and data-driven science can now be applied to solve some of the most challenging separation problems involving highly non-ideal mixtures and highly articulated compounds. Financial support from the Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Award DE-FG02-12ER16362 is gratefully acknowledged.

  20. Method for distributing chemicals through a fibrous material using low-headspace dielectric heating

    DOEpatents

    Banerjee, Sujit; Malcolm, Earl

    2002-01-01

    System and method for diffusing chemicals rapidly and evenly into and through fibrous material, such as wood. Chemicals are introduced into the fibrous material by applying the chemicals to the fibrous material. After treating the fibrous material with the chemicals, the fibrous material is maintained under low-headspace conditions. Thermal energy or dielectric heating, such as microwave or radio frequency energy, is applied to the fibrous material. As a result, the chemicals are able to distribute evenly and quickly throughout the fibrous material.

  1. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for ; Finance Templates Travel One-Stop Latest News Postdoc Forum Research Highlights Awards Publications

  2. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Materials science experiments in space

    NASA Technical Reports Server (NTRS)

    Gelles, S. H.; Giessen, B. C.; Glicksman, M. E.; Margrave, J. L.; Markovitz, H.; Nowick, A. S.; Verhoeven, J. D.; Witt, A. F.

    1978-01-01

    The criteria for the selection of the experimental areas and individual experiments were that the experiment or area must make a meaningful contribution to the field of material science and that the space environment was either an absolute requirement for the successful execution of the experiment or that the experiment can be more economically or more conveniently performed in space. A number of experimental areas and individual experiments were recommended for further consideration as space experiments. Areas not considered to be fruitful and others needing additional analysis in order to determine their suitability for conduct in space are also listed. Recommendations were made concerning the manner in which these materials science experiments are carried out and the related studies that should be pursued.

  4. Research and Applications of Chemical Sciences in Forestry: Proceedings of the 4th Southern Station Chemical Sciences Meeting

    Treesearch

    J.A. Vozzo; [Compiler

    1994-01-01

    This proceedings is the result of 65 scientists representing 34 facilities reported in 28 presentations. As titled, Research and Applications of Chemical Sciences in Forestry, the contributors represent academic, basic, and applied researchers from universities and U.S. Department of Agriculture. Their presence and experience represent a significant showing toward...

  5. Chemical Change. Learning in Science Project. Working Paper No. 27.

    ERIC Educational Resources Information Center

    Schollum, Brendan

    One area explored in the second (in-depth) phase of the Learning in Science Project was "children's science," defined as views of the world and the meanings for words that children have and bring with them to science lessons. The investigation reported focuses on students' (N=37) views of chemical change. Data were obtained using the…

  6. Ground-Based Research within NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Ground-based research in Materials Science for NASA's Microgravity program serves several purposes, and includes approximately four Principal Investigators for every one in the flight program. While exact classification is difficult. the ground program falls roughly into the following categories: (1) Intellectual Underpinning of the Flight Program - Theoretical Studies; (2) Intellectual Underpinning of the Flight Program - Bringing to Maturity New Research; (3) Intellectual Underpinning of the Flight Program - Enabling Characterization; (4) Intellectual Underpinning of the Flight Program - Thermophysical Property Determination; (5) Radiation Shielding; (6) Preliminary In Situ Resource Utilization; (7) Biomaterials; (8) Nanostructured Materials; (9) Materials Science for Advanced Space Propulsion. It must be noted that while the first four categories are aimed at using long duration low gravity conditions, the other categories pertain more to more recent NASA initiatives in materials science. These new initiatives address NASA's future materials science needs in the realms of crew health and safety, and exploration, and have been included in the most recent NASA Research Announcements (NRA). A description of each of these nine categories will be given together with examples of the kinds of research being undertaken.

  7. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Issue 3, March Issue 2, February Issue 1, January A U.S. Department of Energy National Laboratory

  8. Chemical Literacy Levels of Science and Mathematics Teacher Candidates

    ERIC Educational Resources Information Center

    Celik, Suat

    2014-01-01

    The goal of this study was to investigate Turkish science and mathematics teacher candidates' levels of attainment in chemical literacy. These candidates had all studied the new Turkish chemistry curriculum in high school. The sample of the study consisted of 112 students, who were first-year students in the Department of Secondary Science and…

  9. The Physics and Materials Science of Superheroes

    NASA Astrophysics Data System (ADS)

    Kakalios, James

    While physicists, engineers and materials scientists don't typically consult comic books when selecting research topics; innovations first introduced in superhero adventures as fiction can sometimes find their way off the comic book page and into reality. As amazing as the Fantastic Four's powers is the fact that their costumes are undamaged when the Human Torch flames on or Mr. Fantastic stretches his elastic body. In shape memory materials, an external force or torque induces a structural change that is reversed upon warming, a feature appreciated by Mr. Fantastic. Spider-Man's wall crawling ability has been ascribed to the same van der Waals attractive force that gecko lizards employ through the millions of microscopic hairs on their toes. Scientists have developed ``gecko tape, consisting of arrays of fibers that provide a strong enough attraction to support a modest weight (if this product ever becomes commercially available, I for one will never wait for the elevator again!). All this, and important topics such as: was it ``the fall or the webbing that killed Gwen Stacy, Spider-Man's girlfriend in the classic Amazing Spider-Man # 121, and the chemical composition of Captain America's shield, will be discussed. Superhero comic books often get their science right more often than one would expect!

  10. Materials science with muon spin rotation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    During this reporting period, the focus of activity in the Materials Science with Muon Spin Rotation (MSMSR) program was muon spin rotation studies of superconducting materials, in particular the high critical temperature and heavy-fermion materials. Apart from these studies, work was continued on the analysis of muon motion in metal hydrides. Results of these experiments are described in six papers included as appendices.

  11. Materials Science | Concentrating Solar Power | NREL

    Science.gov Websites

    include higher-reflectivity mirrors, better thermal-absorbing receivers, and more corrosion-resistant electron-beam evaporation with ion-beam assist, plasma-enhanced chemical vapor deposition, and thermal Thermal Storage Materials Laboratory Our Thermal Storage Materials Laboratory supports NREL's research and

  12. Chemical and Physical Interactions of Martian Surface Material

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.

    1999-09-01

    A model of alteration and maturation of the Martian surface material is described involving both chemical and physical interactions. Physical processes involve distribution and mixing of the fine-grained soil particles across the surface and into the atmosphere. Chemical processes include reaction of sulfate, salt and oxidizing components of the soil particles; these agents in the soils deposited on rocks will chew through the rock minerals forming coatings and will bind surface soils together to form duricrust deposits. Formation of crystalline iron oxide/oxyhydroxide minerals through hydrothermal processes and of poorly crystalline and amorphous phases through palagonitic processes both contribute to formation of the soil particles. Chemical and physical alteration of these soil minerals and phases contribute to producing the chemical, magnetic and spectroscopic character of the Martian soil as observed by Mars Pathfinder and Mars Global Surveyor. Minerals such as maghemite/magnetite and jarosite/alunite have been observed in terrestrial volcanic soils near steam vents and may be important components of the Martian surface material. The spectroscopic properties of several terrestrial volcanic soils containing these minerals have been analyzed and evaluated in terms of the spectroscopic character of the surface material on Mars.

  13. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Berkeley National Laboratory 1 Cyclotron Road MS 66R0200 Berkeley CA 94720 510-486-4957 A U.S. Department

  14. Advanced Chemical Propulsion for Science Missions

    NASA Technical Reports Server (NTRS)

    Liou, Larry

    2008-01-01

    The advanced chemical propulsion technology area of NASA's In-Space Technology Project is investing in systems and components for increased performance and reduced cost of chemical propulsion technologies applicable to near-term science missions. Presently the primary investment in the advanced chemical propulsion technology area is in the AMBR high temperature storable bipropellant rocket engine. Scheduled to be available for flight development starting in year 2008, AMBR engine shows a 60 kg payload gain in an analysis for the Titan-Enceladus orbiter mission and a 33 percent manufacturing cost reduction over its baseline, state-of-the-art counterpart. Other technologies invested include the reliable lightweight tanks for propellant and the precision propellant management and mixture ratio control. Both technologies show significant mission benefit, can be applied to any liquid propulsion system, and upon completion of the efforts described in this paper, are at least in parts ready for flight infusion. Details of the technologies are discussed.

  15. Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Elementary Science

    ERIC Educational Resources Information Center

    Forbes, Cory T.

    2011-01-01

    Curriculum materials are important resources with which teachers make pedagogical decisions about the design of science learning environments. To become well-started beginning elementary teachers capable of engaging their students in inquiry-based science, preservice elementary teachers need to learn to use science curriculum materials…

  16. New materials: Fountainhead for new technologies and new science

    NASA Technical Reports Server (NTRS)

    Rustum, Roy

    1993-01-01

    The role of materials as the benchmark technologies which give epochs of human history their names continues into the present. The discovery of new materials has nearly always been the source of new materials science, and frequently of new technologies. This paper analyzes the actual processes by which new materials are synthesized, i.e. whether driven by serendipitous observations, new knowledge is pulled by the market, or integrated into a technological thrust. This analysis focuses on modern ceramic materials discoveries, since World War 2 and uses 45 years experience in materials synthesis in the author's own laboratory as case studies. A dozen different families of materials or processes are involved: hydrothermal reactions; sol-gel processing; clays and zeolites; electroceramics; zero expansion ceramics; diamond films; and radioactive waste host phases. Nanocomposite concepts introduced by the author a decade ago offer an entire, large, new class of materials which will dominate synthesis for the next period. The future of materials research for the next 25 years cannot be extrapolated from the past 25 years. We are near the asymptote for materials utilization in most metals. Likewise we are approaching saturation in improvement of many useful properties. Justifying much further 'basic' R/D for incremental improvement in civilian-oriented industries will not be easy. In materials synthesis, the near-term future is sure to emphasize not new phases, but tailored micro- and nanocomposites for chemical, electrical, optical, and magnetic uses. Unexpected new discoveries such as the Lanxide process may offer rarer chances for step function advances. The new structure of knowledge management will rely less on local research than on integration of worldwide inputs. Better scientific and technological opportunities will lie in designing knowledge intensive materials to meet the new environmental and conservation goals, and the human needs of the very large numbers at

  17. Functionalized apertures for the detection of chemical and biological materials

    DOEpatents

    Letant, Sonia E.; van Buuren, Anthony W.; Terminello, Louis J.; Thelen, Michael P.; Hope-Weeks, Louisa J.; Hart, Bradley R.

    2010-12-14

    Disclosed are nanometer to micron scale functionalized apertures constructed on a substrate made of glass, carbon, semiconductors or polymeric materials that allow for the real time detection of biological materials or chemical moieties. Many apertures can exist on one substrate allowing for the simultaneous detection of numerous chemical and biological molecules. One embodiment features a macrocyclic ring attached to cross-linkers, wherein the macrocyclic ring has a biological or chemical probe extending through the aperture. Another embodiment achieves functionalization by attaching chemical or biological anchors directly to the walls of the apertures via cross-linkers.

  18. EDITORIAL: Computational materials science Computational materials science

    NASA Astrophysics Data System (ADS)

    Kahl, Gerhard; Kresse, Georg

    2011-10-01

    Special issue in honour of Jürgen Hafner On 30 September 2010, Jürgen Hafner, one of the most prominent and influential members within the solid state community, retired. His remarkably broad scientific oeuvre has made him one of the founding fathers of modern computational materials science: more than 600 scientific publications, numerous contributions to books, and a highly cited monograph, which has become a standard reference in the theory of metals, witness not only the remarkable productivity of Jürgen Hafner but also his impact in theoretical solid state physics. In an effort to duly acknowledge Jürgen Hafner's lasting impact in this field, a Festsymposium was held on 27-29 September 2010 at the Universität Wien. The organizers of this symposium (and authors of this editorial) are proud to say that a large number of highly renowned scientists in theoretical condensed matter theory—co-workers, friends and students—accepted the invitation to this celebration of Hafner's jubilee. Some of these speakers also followed our invitation to submit their contribution to this Festschrift, published in Journal of Physics: Condensed Matter, a journal which Jürgen Hafner served in 2000-2003 and 2003-2006 as a member of the Advisory Editorial Board and member of the Executive Board, respectively. In the subsequent article, Volker Heine, friend and co-worker of Jürgen Hafner over many decades, gives an account of Hafner's impact in the field of theoretical condensed matter physics. Computational materials science contents Theoretical study of structural, mechanical and spectroscopic properties of boehmite (γ-AlOOH) D Tunega, H Pašalić, M H Gerzabek and H Lischka Ethylene epoxidation catalyzed by chlorine-promoted silver oxide M O Ozbek, I Onal and R A Van Santen First-principles study of Cu2ZnSnS4 and the related band offsets for photovoltaic applicationsA Nagoya, R Asahi and G Kresse Renormalization group study of random quantum magnetsIstván A Kovács and

  19. Materials Knowledge Systems in Python - A Data Science Framework for Accelerated Development of Hierarchical Materials.

    PubMed

    Brough, David B; Wheeler, Daniel; Kalidindi, Surya R

    2017-03-01

    There is a critical need for customized analytics that take into account the stochastic nature of the internal structure of materials at multiple length scales in order to extract relevant and transferable knowledge. Data driven Process-Structure-Property (PSP) linkages provide systemic, modular and hierarchical framework for community driven curation of materials knowledge, and its transference to design and manufacturing experts. The Materials Knowledge Systems in Python project (PyMKS) is the first open source materials data science framework that can be used to create high value PSP linkages for hierarchical materials that can be leveraged by experts in materials science and engineering, manufacturing, machine learning and data science communities. This paper describes the main functions available from this repository, along with illustrations of how these can be accessed, utilized, and potentially further refined by the broader community of researchers.

  20. Materials Knowledge Systems in Python - A Data Science Framework for Accelerated Development of Hierarchical Materials

    PubMed Central

    Brough, David B; Wheeler, Daniel; Kalidindi, Surya R.

    2017-01-01

    There is a critical need for customized analytics that take into account the stochastic nature of the internal structure of materials at multiple length scales in order to extract relevant and transferable knowledge. Data driven Process-Structure-Property (PSP) linkages provide systemic, modular and hierarchical framework for community driven curation of materials knowledge, and its transference to design and manufacturing experts. The Materials Knowledge Systems in Python project (PyMKS) is the first open source materials data science framework that can be used to create high value PSP linkages for hierarchical materials that can be leveraged by experts in materials science and engineering, manufacturing, machine learning and data science communities. This paper describes the main functions available from this repository, along with illustrations of how these can be accessed, utilized, and potentially further refined by the broader community of researchers. PMID:28690971

  1. Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science

    NASA Astrophysics Data System (ADS)

    Agrawal, Ankit; Choudhary, Alok

    2016-05-01

    Our ability to collect "big data" has greatly surpassed our capability to analyze it, underscoring the emergence of the fourth paradigm of science, which is data-driven discovery. The need for data informatics is also emphasized by the Materials Genome Initiative (MGI), further boosting the emerging field of materials informatics. In this article, we look at how data-driven techniques are playing a big role in deciphering processing-structure-property-performance relationships in materials, with illustrative examples of both forward models (property prediction) and inverse models (materials discovery). Such analytics can significantly reduce time-to-insight and accelerate cost-effective materials discovery, which is the goal of MGI.

  2. ChemHTPS - A virtual high-throughput screening program suite for the chemical and materials sciences

    NASA Astrophysics Data System (ADS)

    Afzal, Mohammad Atif Faiz; Evangelista, William; Hachmann, Johannes

    The discovery of new compounds, materials, and chemical reactions with exceptional properties is the key for the grand challenges in innovation, energy and sustainability. This process can be dramatically accelerated by means of the virtual high-throughput screening (HTPS) of large-scale candidate libraries. The resulting data can further be used to study the underlying structure-property relationships and thus facilitate rational design capability. This approach has been extensively used for many years in the drug discovery community. However, the lack of openly available virtual HTPS tools is limiting the use of these techniques in various other applications such as photovoltaics, optoelectronics, and catalysis. Thus, we developed ChemHTPS, a general-purpose, comprehensive and user-friendly suite, that will allow users to efficiently perform large in silico modeling studies and high-throughput analyses in these applications. ChemHTPS also includes a massively parallel molecular library generator which offers a multitude of options to customize and restrict the scope of the enumerated chemical space and thus tailor it for the demands of specific applications. To streamline the non-combinatorial exploration of chemical space, we incorporate genetic algorithms into the framework. In addition to implementing smarter algorithms, we also focus on the ease of use, workflow, and code integration to make this technology more accessible to the community.

  3. Carbon Nanotubes: Miracle of Materials Science?

    NASA Technical Reports Server (NTRS)

    Files, Bradley S.; Mayeaux, Brian M.

    1999-01-01

    Article to be sent to Advanced Materials and Processes, journal of ASM International, as attached. This is a news-type technical journal for a large organization of scientists, engineers, salesmen, and managers. The article is quite general, meant to be an introduction to the properties of nanotubes. This is a materials science organization, therefore the article is geared toward using nanotubes for materials uses. Pictures have not been included in this version.

  4. PREFACE: Selected papers from the Fourth Topical Conference on Nanoscale Science and Engineering of the American Institute of Chemical Engineers

    NASA Astrophysics Data System (ADS)

    Wong, Michael S.; Lee, Gil U.

    2005-07-01

    This special issue of Nanotechnology contains research papers contributed by the participants of the Fourth Topical Conference on Nanoscale Science and Engineering at the Annual Meeting of the American Institute of Chemical Engineers (AIChE), which was held in Austin, Texas, USA, 7-12 November, 2004. This conference saw 284 oral presentations from institutions around the world, which is the highest number for this topical conference series to date. These presentations were organized into 64 sessions, covering the range of nanotechnology subject areas in which chemical engineers are currently engaged. These sessions included the following areas. • Fundamentals: thermodynamics at the nanoscale; applications of nanostructured fluids; transport properties in nanophase and nanoscale systems; molecular modelling methods; self and directed assembly at the nanoscale; nanofabrication and nanoscale processing; manipulation of nanophases by external fields; nanoscale systems; adsorption and transport in carbon nanotubes; nanotribology; making the transition from materials and phenomena to new technologies; operation of micro-and nano-systems. • Materials: nanoparticle synthesis and stabilization; nanoscale structure in polymers; nanotemplating of polymers; synthesis of carbon nanotubes and nanotube-based materials; nanowires; nanoparticle assemblies and superlattices; nanoelectronic materials; self-assembly of templated inorganic materials; nanostructured hybrid organic/inorganic materials; gas phase synthesis of nanoparticles; multicomponent structured particles; nano energetic materials; liquid-phase synthesis of nanoparticles. • Energy: synthesis and characterization of nanostructured catalytic materials; nanomaterials and devices for energy applications. • Biotechnology: nanobiotechnology; nanotechnology for the biotechnology and pharmaceuticals industries; nanotechnology and nanobiotechnology for sensors; advances in biomaterials, bionanotechnology, biomimetic

  5. First Materials Science Research Rack Capabilities and Design Features

    NASA Technical Reports Server (NTRS)

    Schaefer, D.; King, R.; Cobb, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The first Materials Science Research Rack (MSRR-1) will accommodate dual Experiment Modules (EM's) and provide simultaneous on-orbit processing operations capability. The first international Materials Science Experiment Module for the MSRR-1 is an international cooperative research activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center. (ESTEC). This International Standard Payload Rack (ISPR) will contain the Materials Science Laboratory (MSL) developed by ESA as an Experiment Module. The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts. Module Inserts currently planned are a Quench Module Insert, Low Gradient Furnace, Solidification with Quench Furnace, and Diffusion Module Insert. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Department (SPD). It includes capabilities for vapor transport processes and liquid metal sintering. This Experiment Module will be replaced on-orbit with other NASA Materials Science EMs.

  6. Hyperspectral depth-profiling with deep Raman spectroscopy for detecting chemicals in building materials.

    PubMed

    Cho, Youngho; Song, Si Won; Sung, Jiha; Jeong, Young-Su; Park, Chan Ryang; Kim, Hyung Min

    2017-09-25

    Toxic chemicals inside building materials have long-term harmful effects on human bodies. To prevent secondary damage caused by the evaporation of latent chemicals, it is necessary to detect the chemicals inside building materials at an early stage. Deep Raman spectroscopy is a potential candidate for on-site detection because it can provide molecular information about subsurface components. However, it is very difficult to spectrally distinguish the Raman signal of the internal chemicals from the background signal of the surrounding materials and to acquire the geometric information of chemicals. In this study, we developed hyperspectral wide-depth spatially offset Raman spectroscopy coupled with a data processing algorithm to identify toxic chemicals, such as chemical warfare agent (CWA) simulants in building materials. Furthermore, the spatial distribution of the chemicals and the thickness of the building material were also measured from one-dimensional (1D) spectral variation.

  7. Materials and Molecular Research Division annual report 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Searcy, A.W.; Muller, R.H.; Peterson, C.V.

    1984-07-01

    Progress is reported in the following fields: materials sciences (metallurgy and ceramics, solid-state physics, materials chemistry), chemical sciences (fundamental interactions, processes and techniques), actinide chemistry, fossil energy, electrochemical energy storage systems, superconducting magnets, semiconductor materials and devices, and work for others. (DLC)

  8. Technical Education Outreach in Materials Science and Technology Based on NASA's Materials Research

    NASA Technical Reports Server (NTRS)

    Jacobs, James A.

    2003-01-01

    The grant NAG-1 -2125, Technical Education Outreach in Materials Science and Technology, based on NASA s Materials Research, involves collaborative effort among the National Aeronautics and Space Administration s Langley Research Center (NASA-LaRC), Norfolk State University (NSU), national research centers, private industry, technical societies, colleges and universities. The collaboration aims to strengthen math, science and technology education by providing outreach related to materials science and technology (MST). The goal of the project is to transfer new developments from LaRC s Center for Excellence for Structures and Materials and other NASA materials research into technical education across the nation to provide educational outreach and strengthen technical education. To achieve this goal we are employing two main strategies: 1) development of the gateway website and 2) using the National Educators Workshop: Update in Engineering Materials, Science and Technology (NEW:Updates). We have also participated in a number of national projects, presented talks at technical meetings and published articles aimed at improving k-12 technical education. Through the three years of this project the NSU team developed the successful MST-Online site and continued to upgrade and update it as our limited resources permitted. Three annual NEW:Updates conducted from 2000 though 2002 overcame the challenges presented first by the September 11,2001 terrorist attacks and the slow U.S. economy and still managed to conduct very effective workshops and expand our outreach efforts. Plans began on NEW:Update 2003 to be hosted by NASA Langley as a part of the celebration of the Centennial of Controlled Flight.

  9. Classroom Demonstrations in Materials Science/Engineering.

    ERIC Educational Resources Information Center

    Hirschhorn, J. S.; And Others

    Examples are given of demonstrations used at the University of Wisconsin in a materials science course for nontechnical students. Topics include crystal models, thermal properties, light, and corrosion. (MLH)

  10. Conceptual Integration of Chemical Equilibrium by Prospective Physical Sciences Teachers

    ERIC Educational Resources Information Center

    Ganaras, Kostas; Dumon, Alain; Larcher, Claudine

    2008-01-01

    This article describes an empirical study concerning the mastering of the chemical equilibrium concept by prospective physical sciences teachers. The main objective was to check whether the concept of chemical equilibrium had become an integrating and unifying concept for them, that is to say an operational and functional knowledge to explain and…

  11. Materials science tools for regenerative medicine

    NASA Astrophysics Data System (ADS)

    Richardson, Wade Nicholas

    Regenerative therapies originating from recent technological advances in biology could revolutionize medicine in the coming years. In particular, the advent of human pluripotent stem cells (hPSCs), with their ability to become any cell in the adult body, has opened the door to an entirely new way of treating disease. However, currently these medical breakthroughs remain only a promise. To make them a reality, new tools must be developed to surmount the new technical hurdles that have arisen from dramatic departure from convention that this field represents. The collected work presented in this dissertation covers several projects that seek to apply the skills and knowledge of materials science to this tool synthesizing effort. The work is divided into three chapters. The first deals with our work to apply Raman spectroscopy, a tool widely used for materials characterization, to degeneration in cartilage. We have shown that Raman can effectively distinguish the matrix material of healthy and diseased tissue. The second area of work covered is the development of a new confocal image analysis for studying hPSC colonies that are chemical confined to uniform growth regions. This tool has important application in understanding the heterogeneity that may slow the development of hPSC -based treatment, as well as the use of such confinement in the eventually large-scale manufacture of hPSCs for therapeutic use. Third, the use of structural templating in tissue engineering scaffolds is detailed. We have utilized templating to tailor scaffold structures for engineering of constructs mimicking two tissues: cartilage and lung. The work described here represents several important early steps towards large goals in regenerative medicine. These tools show a great deal of potential for accelerating progress in this field that seems on the cusp of helping a great many people with otherwise incurable disease.

  12. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    sponsors. Distinguish by scope/specific aspects of research; or by institution; or by individual. Example Sciences Division About Organization Contact Research Core Programs Materials Discovery, Design and Postdoc Forum Research Highlights Awards Publications Database Events Calendar Newsletter Archive People

  13. The Usage of Recycle Materials for Science Practicum: Is There Any Effect on Science Process Skills?

    ERIC Educational Resources Information Center

    Prajoko, Setiyo; Amin, Mohamad; Rohman, Fatchur; Gipayana, Muhana

    2017-01-01

    This study aimed at determining the effect of recycle materials usage for science practicum on students' basic science process skills of the Open University, Surakarta. Recycle materials are the term used for the obtained materials and equipment from the students' environment by taking back the garbage or secondhand objects into goods or new…

  14. Shopping for Science.

    ERIC Educational Resources Information Center

    Ward, John; And Others

    1992-01-01

    Describes inexpensive science materials for doing science activities using the steps in the learning cycle: engage, explore, explain, extend, and evaluate. The hands-on activities help students construct knowledge of dissolving and filtering, chemical reactions, conductivity of metals, heat absorption, motion (frictionless puck), sound production…

  15. Materials Science Experiments on the International Space Station

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1999-01-01

    The Performance Goal for NASA's Microgravity Materials Science Program reads "Use microgravity to establish and improve quantitative and predictive relationships between the structure, processing and properties of materials." The advent of the International Space Station will open up a new era in Materials Science Research including the ability to perform long term and frequent experiments in microgravity. As indicated the objective is to gain a greater understanding of issues of materials science in an environment in which the force of gravity can be effectively switched off. Thus gravity related issues of convection, buoyancy and hydrostatic forces can be reduced and the science behind the structure/processing/properties relationship can more easily be understood. The specific areas of research covered within the program are (1) the study of Nucleation and Metastable States, (2) Prediction and Control of Microstructure (including pattern formation and morphological stability), (3) Phase Separation and Interfacial Stability, (4) Transport Phenomena (including process modeling and thermophysical properties measurement), and (5) Crystal Growth, and Defect Generation and Control. All classes of materials, including metals and alloys, glasses and ceramics, polymers, electronic materials (including organic and inorganic single crystals), aerogels and nanostructures, are included in these areas. The principal experimental equipment available to the materials scientist on the International Space Station (ISS) will be the Materials Science Research Facility (MSRF). Each of these systems will be accommodated in a single ISS rack, which can operate autonomously, will accommodate telescience operations, and will provide real time data to the ground. Eventual plans call for three MSRF racks, the first of which will be shared with the European Space Agency (ESA). Under international agreements, ESA and other partners will provide some of the equipment, while NASA covers launch

  16. Chemical digestion of low level nuclear solid waste material

    DOEpatents

    Cooley, Carl R.; Lerch, Ronald E.

    1976-01-01

    A chemical digestion for treatment of low level combustible nuclear solid waste material is provided and comprises reacting the solid waste material with concentrated sulfuric acid at a temperature within the range of 230.degree.-300.degree.C and simultaneously and/or thereafter contacting the reacting mixture with concentrated nitric acid or nitrogen dioxide. In a special embodiment spent ion exchange resins are converted by this chemical digestion to noncombustible gases and a low volume noncombustible residue.

  17. Advanced Nanoporous Materials for Micro-Gravimetric Sensing to Trace-Level Bio/Chemical Molecules

    PubMed Central

    Xu, Pengcheng; Li, Xinxin; Yu, Haitao; Xu, Tiegang

    2014-01-01

    Functionalized nanoporous materials have been developed recently as bio/chemical sensing materials. Due to the huge specific surface of the nano-materials for molecular adsorption, high hopes have been placed on gravimetric detection with micro/nano resonant cantilevers for ultra-sensitive sensing of low-concentration bio/chemical substances. In order to enhance selectivity of the gravimetric resonant sensors to the target molecules, it is crucial to modify specific groups onto the pore-surface of the nano-materials. By loading the nanoporous sensing material onto the desired region of the mass-type transducers like resonant cantilevers, the micro-gravimetric bio/chemical sensors can be formed. Recently, such micro-gravimetric bio/chemical sensors have been successfully applied for rapid or on-the-spot detection of various bio/chemical molecules at the trace-concentration level. The applicable nanoporous sensing materials include mesoporous silica, zeolite, nanoporous graphene oxide (GO) and so on. This review article focuses on the recent achievements in design, preparation, functionalization and characterization of advanced nanoporous sensing materials for micro-gravimetric bio/chemical sensing. PMID:25313499

  18. The Center for Nanophase Materials Sciences

    NASA Astrophysics Data System (ADS)

    Lowndes, Douglas

    2005-03-01

    The Center for Nanophase Materials Sciences (CNMS) located at Oak Ridge National Laboratory (ORNL) will be the first DOE Nanoscale Science Research Center to begin operation, with construction to be completed in April 2005 and initial operations in October 2005. The CNMS' scientific program has been developed through workshops with the national community, with the goal of creating a highly collaborative research environment to accelerate discovery and drive technological advances. Research at the CNMS is organized under seven Scientific Themes selected to address challenges to understanding and to exploit particular ORNL strengths (see http://cnms.ornl.govhttp://cnms.ornl.gov). These include extensive synthesis and characterization capabilities for soft, hard, nanostructured, magnetic and catalytic materials and their composites; neutron scattering at the Spallation Neutron Source and High Flux Isotope Reactor; computational nanoscience in the CNMS' Nanomaterials Theory Institute and utilizing facilities and expertise of the Center for Computational Sciences and the new Leadership Scientific Computing Facility at ORNL; a new CNMS Nanofabrication Research Laboratory; and a suite of unique and state-of-the-art instruments to be made reliably available to the national community for imaging, manipulation, and properties measurements on nanoscale materials in controlled environments. The new research facilities will be described together with the planned operation of the user research program, the latter illustrated by the current ``jump start'' user program that utilizes existing ORNL/CNMS facilities.

  19. Thermodynamic analysis of chemical compatibility of several reinforcement materials with niobium aluminides

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1989-01-01

    Chemical compatibility of several reinforcement materials with three niobium aluminides, Nb3Al, Nb2Al, and NbAl3, were examined from thermodynamic considerations. The reinforcement materials considered in this study include carbides, borides, nitrides, oxides, silicides, and Engel-Brewer compounds. Thermodynamics of the Nb-Al system were reviewed and activities of Nb and Al were derived at desired calculation temperatures. Criteria for chemical compatibility between the reinforcement material and Nb-Al compounds have been defined and several chemically compatible reinforcement materials have been identified.

  20. Nature of science in instruction materials of science through the model of educational reconstruction

    NASA Astrophysics Data System (ADS)

    Azizah, Nur; Mudzakir, Ahmad

    2016-02-01

    The study was carried out to reconstruct the science teaching materials charged view of the nature of science (VNOS). This reconstruction process using the Model of Educational Reconstruction (MER), which is the framework for research and development of science education as well as a guide for planning the teaching of science in the schools is limited in two stages, namely: content structure analysis, and empirical studies of learners. The purpose of this study is to obtain a pre-conception of learners and prospective scientists to the topic of the nature of the material and utilization. The method used to descriptive with the instruments is guidelines for interviews for 15 students of class VIII, text analysis sheet, sheet analysis of the concept, and the validation sheet indicators and learning objectives NOS charged on cognitive and affective aspects. The results obtained in the form of pre-conceptions of learners who demonstrate almost 100% of students know the types of materials and some of its nature, the results of the scientist's perspective on the topic of the nature of the material and its use, as well as the results of the validation indicators and learning objectives charged NOS and competencies PISA 2015 cognitive and affective aspects with CVI value of 0.99 and 1.0 after being validated by five experts. This suggests that the indicators and the resulting learning objectives feasible and can proceed to the reconstruction of teaching materials on the topic of material properties and utilization.

  1. Exposure Assessment of Chemicals from Packaging Materials

    NASA Astrophysics Data System (ADS)

    Poças, Maria De Fátima; Hogg, Timothy

    A variety of chemicals may enter our food supply, by means of intentional or unintentional addition, at different stages of the food chain. These chemicals include food additives, pesticide residues, environmental contaminants, mycotox-ins, flavoring substances, and micronutrients. Packaging systems and other food-contact materials are also a source of chemicals contaminating food products and beverages. Monitoring exposure to these chemicals has become an integral part of ensuring the safety of the food supply. Within the context of the risk analysis approach and more specifically as an integral part of risk assessment procedures, the exercise known as exposure assessment is crucial in providing data to allow sound judgments concerning risks to human health. The exercise of obtaining this data is part of the process of revealing sources of contamination and assessing the effectiveness of strategies for minimizing the risk from chemical contamination in the food supply (Lambe, 2002).

  2. Nanofluidics: A New Arena for Materials Science.

    PubMed

    Xu, Yan

    2018-01-01

    A significant growth of research in nanofluidics is achieved over the past decade, but the field is still facing considerable challenges toward the transition from the current physics-centered stage to the next application-oriented stage. Many of these challenges are associated with materials science, so the field of nanofluidics offers great opportunities for materials scientists to exploit. In addition, the use of unusual effects and ultrasmall confined spaces of well-defined nanofluidic environments would offer new mechanisms and technologies to manipulate nanoscale objects as well as to synthesize novel nanomaterials in the liquid phase. Therefore, nanofluidics will be a new arena for materials science. In the past few years, burgeoning progress has been made toward this trend, as overviewed in this article, including materials and methods for fabricating nanofluidic devices, nanofluidics with functionalized surfaces and functional material components, as well as nanofluidics for manipulating nanoscale materials and fabricating new nanomaterials. Many critical challenges as well as fantastic opportunities in this arena lie ahead. Some of those, which are of particular interest, are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Silica sol as grouting material: a physio-chemical analysis.

    PubMed

    Sögaard, Christian; Funehag, Johan; Abbas, Zareen

    2018-01-01

    At present there is a pressing need to find an environmentally friendly grouting material for the construction of tunnels. Silica nanoparticles hold great potential of replacing the organic molecule based grouting materials currently used for this purpose. Chemically, silica nanoparticles are similar to natural silicates which are essential components of rocks and soil. Moreover, suspensions of silica nanoparticles of different sizes and desired reactivity are commercially available. However, the use of silica nanoparticles as grouting material is at an early stage of its technological development. There are some critical parameters such as long term stability and functionality of grouted silica that need to be investigated in detail before silica nanoparticles can be considered as a reliable grouting material. In this review article we present the state of the art regarding the chemical properties of silica nanoparticles commercially available, as well as experience gained from the use of silica as grouting material. We give a detailed description of the mechanisms underlying the gelling of silica by different salt solutions such as NaCl and KCl and how factors such as particle size, pH, and temperature affect the gelling and gel strength development. Our focus in this review is on linking the chemical properties of silica nanoparticles to the mechanical properties to better understand their functionality and stability as grouting material. Along the way we point out areas which need further research.

  4. Chemistry and materials science progress report, FY 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-07-01

    Research is reported in the areas of surface science, fundamentals of the physics and processing of metals, energetic materials, transactinide materials and properties and other indirectly related areas of weapons research.

  5. In silico environmental chemical science: properties and processes from statistical and computational modelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tratnyek, Paul G.; Bylaska, Eric J.; Weber, Eric J.

    2017-01-01

    Quantitative structure–activity relationships (QSARs) have long been used in the environmental sciences. More recently, molecular modeling and chemoinformatic methods have become widespread. These methods have the potential to expand and accelerate advances in environmental chemistry because they complement observational and experimental data with “in silico” results and analysis. The opportunities and challenges that arise at the intersection between statistical and theoretical in silico methods are most apparent in the context of properties that determine the environmental fate and effects of chemical contaminants (degradation rate constants, partition coefficients, toxicities, etc.). The main example of this is the calibration of QSARs usingmore » descriptor variable data calculated from molecular modeling, which can make QSARs more useful for predicting property data that are unavailable, but also can make them more powerful tools for diagnosis of fate determining pathways and mechanisms. Emerging opportunities for “in silico environmental chemical science” are to move beyond the calculation of specific chemical properties using statistical models and toward more fully in silico models, prediction of transformation pathways and products, incorporation of environmental factors into model predictions, integration of databases and predictive models into more comprehensive and efficient tools for exposure assessment, and extending the applicability of all the above from chemicals to biologicals and materials.« less

  6. Special issue on "Frontiers in Materials Science: Condensed matters"

    NASA Astrophysics Data System (ADS)

    Hoang, Nam-Nhat; Yamamoto, Tomoyuki; Pham, Duc-Thang

    2018-03-01

    This special issue includes the editor-invited and selected papers from 3rd International Symposium on Frontiers in Materials Science (FMS2016), held in Hanoi, Vietnam, from the 28th to 30th of September 2016, which coincided with the 65th anniversary of the Faculty of Physics, Hanoi University of Education. The FMS2016 is a continuation of a series of meetings starting from 2010. A first event was a bilateral Vietnamese-German meeting in Hanoi, Vietnam, in 2010, and the second one was held in Frankfurt, Germany, in 2011. The idea at that time was to initiate interactions between scientists from both countries and to further develop the field of materials science in Southeast Asia. After these successful bilateral meetings, a next step was taken by advancing the format of the symposium into an international event. In 2013, the 1st International Symposium on Frontiers in Materials Science (FMS2013) was successfully organized in Hanoi, which followed 2nd symposium, FMS2015, in Tokyo, in 2015. The FMS2016 continues this idea of providing an international forum for physicists, material scientists and chemists for discussing their latest results and the recent developments in the important field of materials science.

  7. Biological and chemical sensors based on graphene materials.

    PubMed

    Liu, Yuxin; Dong, Xiaochen; Chen, Peng

    2012-03-21

    Owing to their extraordinary electrical, chemical, optical, mechanical and structural properties, graphene and its derivatives have stimulated exploding interests in their sensor applications ever since the first isolation of free-standing graphene sheets in year 2004. This article critically and comprehensively reviews the emerging graphene-based electrochemical sensors, electronic sensors, optical sensors, and nanopore sensors for biological or chemical detection. We emphasize on the underlying detection (or signal transduction) mechanisms, the unique roles and advantages of the used graphene materials. Properties and preparations of different graphene materials, their functionalizations are also comparatively discussed in view of sensor development. Finally, the perspective and current challenges of graphene sensors are outlined (312 references).

  8. Material Objects. Basic Edition. Science for Micronesia.

    ERIC Educational Resources Information Center

    Trust Territory of the Pacific Islands Dept. of Education, Saipan.

    Presented is a teacher's guide for an elementary science unit designed for use with first grade students in the Trust Territory of Micronesia. Although there is a degree of similarity to the curriculum materials developed for the Science Curriculum Improvement Study, this Micronesian unit does not purport to be an adaptation or edition of the SCIS…

  9. Models and Materials: Bridging Art and Science in the Secondary Curriculum

    NASA Astrophysics Data System (ADS)

    Pak, D.; Cavazos, L.

    2006-12-01

    Creating and sustaining student engagement in science is one challenge facing secondary teachers. The visual arts provide an alternative means of communicating scientific concepts to students who may not respond to traditional formats or identify themselves as interested in science. We have initiated a three-year teacher professional development program at U C Santa Barbara focused on bridging art and science in secondary curricula, to engage students underrepresented in science majors, including girls, English language learners and non-traditional learners. The three-year format provides the teams of teachers with the time and resources necessary to create innovative learning experiences for students that will enhance their understanding of both art and science content. Models and Materials brings together ten secondary art and science teachers from six Santa Barbara County schools. Of the five participating science teachers, three teach Earth Science and two teach Life Science. Art and science teachers from each school are teamed and challenged with the task of creating integrated curriculum projects that bring visual art concepts to the science classroom and science concepts to the art classroom. Models and Materials were selected as unifying themes; understanding the concept of models, their development and limitations, is a prominent goal in the California State Science and Art Standards. Similarly, the relationship between composition, structure and properties of materials is important to both art and science learning. The program began with a 2-week institute designed to highlight the natural links between art and science through presentations and activities by both artists and scientists, to inspire teachers to develop new ways to present models in their classrooms, and for the teacher teams to brainstorm ideas for curriculum projects. During the current school year, teachers will begin to integrate science and art and the themes of modeling and materials

  10. 75 FR 15675 - Professional Research Experience Program in Chemical Science and Technology Laboratory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... in physics, chemistry, mathematics, computer science, or engineering. Institutions should have a 4..., mathematics, computer science, or engineering with work experiences in laboratories or other settings...-0141-01] Professional Research Experience Program in Chemical Science and Technology Laboratory...

  11. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Ramamoorthy Ramesh The Metals Society Bardeen Prize in Electronic Materials Rob Ritchie Elected as a Foreign into the earth Rob Ritchie Elected Foreign Member of the Royal Swedish Academy of Engineering Sciences PECASE (Presidential Early Career Award for Scientists and Engineers) Eli Yablonovitch Elected as Foreign

  12. Bipolar electrochemistry: from materials science to motion and beyond.

    PubMed

    Loget, Gabriel; Zigah, Dodzi; Bouffier, Laurent; Sojic, Neso; Kuhn, Alexander

    2013-11-19

    crucial aspect, as there is no directed motion without symmetry breaking. Controlling the motion of objects at the micro- and nanoscale is of primary importance for many potential applications, ranging from medical diagnosis to nanosurgery, and has generated huge interest in the scientific community in recent years. Several original approaches to design micro- and nanomotors have been explored, with propulsion strategies based on chemical fuelling or on external fields. The first strategy is using the asymmetric particles generated by bipolar electrodeposition and employing them directly as micromotors. We have demonstrated this by using the catalytic and magnetic properties of Janus objects. The second strategy is utilizing bipolar electrochemistry as a direct trigger of motion of isotropic particles. We developed mechanisms based on a simultaneous dissolution and deposition, or on a localized asymmetric production of bubbles. We then used these for the translation, the rotation and the levitation of conducting objects. These examples give insight into two interesting fields of applications of the concept of bipolar electrochemistry, and open perspectives for future developments in materials science and for generating motion at different scales.

  13. Trends in the Use of Supplementary Materials in Environmental Science Journals

    ERIC Educational Resources Information Center

    Kenyon, Jeremy; Sprague, Nancy R.

    2014-01-01

    Our research examined the use of supplementary materials in six environmental science disciplines: atmospheric sciences, biology, fisheries, forestry, geology, and plant sciences. Ten key journals were selected from each of these disciplines and the number of supplementary materials, such as data files or videos, in each issue was noted over a…

  14. Chemical signal activation of an organocatalyst enables control over soft material formation.

    PubMed

    Trausel, Fanny; Maity, Chandan; Poolman, Jos M; Kouwenberg, D S J; Versluis, Frank; van Esch, Jan H; Eelkema, Rienk

    2017-10-12

    Cells can react to their environment by changing the activity of enzymes in response to specific chemical signals. Artificial catalysts capable of being activated by chemical signals are rare, but of interest for creating autonomously responsive materials. We present an organocatalyst that is activated by a chemical signal, enabling temporal control over reaction rates and the formation of materials. Using self-immolative chemistry, we design a deactivated aniline organocatalyst that is activated by the chemical signal hydrogen peroxide and catalyses hydrazone formation. Upon activation of the catalyst, the rate of hydrazone formation increases 10-fold almost instantly. The responsive organocatalyst enables temporal control over the formation of gels featuring hydrazone bonds. The generic design should enable the use of a large range of triggers and organocatalysts, and appears a promising method for the introduction of signal response in materials, constituting a first step towards achieving communication between artificial chemical systems.Enzymes regulated by chemical signals are common in biology, but few such artificial catalysts exist. Here, the authors design an aniline catalyst that, when activated by a chemical trigger, catalyses formation of hydrazone-based gels, demonstrating signal response in a soft material.

  15. The 2010 Rankings of Chemical Education and Science Education Journals by Faculty Engaged in Chemical Education Research

    ERIC Educational Resources Information Center

    Towns, Marcy H.; Kraft, Adam

    2012-01-01

    Faculty active in chemical education research from around the world ranked 22 journals publishing research in chemical education and science education. The results of this survey can be used to supplement impact factors that are often used to compare the quality of journals in a field. Knowing which journals those in the field rank as top tier is…

  16. Chemical Fingerprinting of Materials Developed Due To Environmental Issues

    NASA Technical Reports Server (NTRS)

    Smith, Doris A.; McCool, A. (Technical Monitor)

    2000-01-01

    This paper presents viewgraphs on chemical fingerprinting of materials developed due to environmental issues. Some of the topics include: 1) Aerospace Materials; 2) Building Blocks of Capabilities; 3) Spectroscopic Techniques; 4) Chromatographic Techniques; 5) Factors that Determine Fingerprinting Approach; and 6) Fingerprinting: Combination of instrumental analysis methods that diagnostically characterize a material.

  17. Machine learning and data science in soft materials engineering

    NASA Astrophysics Data System (ADS)

    Ferguson, Andrew L.

    2018-01-01

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by ‘de-jargonizing’ data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  18. Machine learning and data science in soft materials engineering.

    PubMed

    Ferguson, Andrew L

    2018-01-31

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by 'de-jargonizing' data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  19. Resource Materials for Nanoscale Science and Technology Education

    NASA Astrophysics Data System (ADS)

    Lisensky, George

    2006-12-01

    Nanotechnology and advanced materials examples can be used to explore science and engineering concepts, exhibiting the "wow" and potential of nanotechnology, introducing prospective scientists to key ideas, and educating a citizenry capable of making well-informed technology-driven decisions. For example, material syntheses an atomic layer at a time have already revolutionized lighting and display technologies and dramatically expanded hard drive storage capacities. Resource materials include kits, models, and demonstrations that explain scanning probe microscopy, x-ray diffraction, information storage, energy and light, carbon nanotubes, and solid-state structures. An online Video Lab Manual, where movies show each step of the experiment, illustrates more than a dozen laboratory experiments involving nanoscale science and technology. Examples that are useful at a variety of levels when instructors provide the context include preparation of self-assembled monolayers, liquid crystals, colloidal gold, ferrofluid nanoparticles, nickel nanowires, solar cells, electrochromic thin films, organic light emitting diodes, and quantum dots. These resources have been developed, refined and class tested at institutions working with the Materials Research Science and Engineering Center on Nanostructured Interfaces at the University of Wisconsin-Madison (http://mrsec.wisc.edu/nano).

  20. Implementation of the National Security Personnel System at the U.S. Army Chemical Materials Agency

    DTIC Science & Technology

    2008-06-01

    Chemical Materials Agency civilian employees , at various levels of responsibilities, were surveyed to determine, from their perspective, how...current management/ employee relationship at the Chemical Materials Agency. 15. NUMBER OF PAGES 129 14. SUBJECT TERMS Communication...the current management/ employee relationship at the Chemical Materials Agency. Twenty-eight (28) Chemical Materials Agency civilian employees , at

  1. Two-Dimensional Spectroscopy Is Being Used to Address Core Scientific Questions in Biology and Materials Science.

    PubMed

    Petti, Megan K; Lomont, Justin P; Maj, Michał; Zanni, Martin T

    2018-02-15

    Two-dimensional spectroscopy is a powerful tool for extracting structural and dynamic information from a wide range of chemical systems. We provide a brief overview of the ways in which two-dimensional visible and infrared spectroscopies are being applied to elucidate fundamental details of important processes in biological and materials science. The topics covered include amyloid proteins, photosynthetic complexes, ion channels, photovoltaics, batteries, as well as a variety of promising new methods in two-dimensional spectroscopy.

  2. Materials science tetrahedron--a useful tool for pharmaceutical research and development.

    PubMed

    Sun, Changquan Calvin

    2009-05-01

    The concept of materials science tetrahedron (MST) concisely depicts the inter-dependent relationship among the structure, properties, performance, and processing of a drug. Similar to its role in traditional materials science, MST encompasses the development in the emerging field of pharmaceutical materials science and forms a scientific foundation to the design and development of new drug products. Examples are given to demonstrate the applicability of MST to both pharmaceutical research and product development. It is proposed that a systematic implementation of MST can expedite the transformation of pharmaceutical product development from an art to a science. By following the principle of MST, integration of research among different laboratories can be attained. The pharmaceutical science community as a whole can conduct more efficient, collaborative, and coherent research.

  3. Symposium introduction: the first joint American Chemical Society Agricultural and Food Chemistry Division and the American Chemical Society International Chemical Sciences Chapter in Thailand

    USDA-ARS?s Scientific Manuscript database

    The American Chemical Society (ACS) Agricultural and Food Chemistry Division (AGFD) and the ACS International Chemical Sciences Chapter in Thailand (ICSCT) worked together to stage the “1st Joint ACS AGFD - ACS ICSCT Symposium on Agricultural and Food Chemistry,” which was held in Bangkok, Thailand ...

  4. Materials for solar fuels and chemicals.

    PubMed

    Montoya, Joseph H; Seitz, Linsey C; Chakthranont, Pongkarn; Vojvodic, Aleksandra; Jaramillo, Thomas F; Nørskov, Jens K

    2016-12-20

    The conversion of sunlight into fuels and chemicals is an attractive prospect for the storage of renewable energy, and photoelectrocatalytic technologies represent a pathway by which solar fuels might be realized. However, there are numerous scientific challenges in developing these technologies. These include finding suitable materials for the absorption of incident photons, developing more efficient catalysts for both water splitting and the production of fuels, and understanding how interfaces between catalysts, photoabsorbers and electrolytes can be designed to minimize losses and resist degradation. In this Review, we highlight recent milestones in these areas and some key scientific challenges remaining between the current state of the art and a technology that can effectively convert sunlight into fuels and chemicals.

  5. High Fidelity Raman Chemical Imaging of Materials

    NASA Astrophysics Data System (ADS)

    Bobba, Venkata Nagamalli Koteswara Rao

    The development of high fidelity Raman imaging systems is important for a number of application areas including material science, bio-imaging, bioscience and healthcare, pharmaceutical analysis, and semiconductor characterization. The use of Raman imaging as a characterization tool for detecting the amorphous and crystalline regions in the biopolymer poly-L-lactic acid (PLLA) is the precis of my thesis. In the first chapter, a brief insight about the basics of Raman spectroscopy, Raman chemical imaging, Raman mapping, and Raman imaging techniques has been provided. The second chapter contains details about the successful development of tailored sample of PLLA. Biodegradable polymers are used in areas of tissue engineering, agriculture, packaging, and in medical field for drug delivery, implant devices, and surgical sutures. Detailed information about the sample preparation and characterization of these cold-drawn PLLA polymer substrates has been provided. Wide-field Raman hyperspectral imaging using an acousto-optic tunable filter (AOTF) was demonstrated in the early 1990s. The AOTF contributed challenges such as image walk, distortion, and image blur. A wide-field AOTF Raman imaging system has been developed as part of my research and methods to overcome some of the challenges in performing AOTF wide-field Raman imaging are discussed in the third chapter. This imaging system has been used for studying the crystalline and amorphous regions on the cold-drawn sample of PLLA. Of all the different modalities that are available for performing Raman imaging, Raman point-mapping is the most extensively used method. The ease of obtaining the Raman hyperspectral cube dataset with a high spectral and spatial resolution is the main motive of performing this technique. As a part of my research, I have constructed a Raman point-mapping system and used it for obtaining Raman hyperspectral image data of various minerals, pharmaceuticals, and polymers. Chapter four offers

  6. Polymeric materials science in the microgravity environment

    NASA Technical Reports Server (NTRS)

    Coulter, Daniel R.

    1989-01-01

    The microgravity environment presents some interesting possibilities for the study of polymer science. Properties of polymeric materials depend heavily on their processing history and environment. Thus, there seem to be some potentially interesting and useful new materials that could be developed. The requirements for studying polymeric materials are in general much less rigorous than those developed for studying metals, for example. Many of the techniques developed for working with other materials, including heat sources, thermal control hardware and noncontact temperature measurement schemes should meet the needs of the polymer scientist.

  7. Synthesis and Engineering Materials Properties of Fluid Phase Chemical Hydrogen Storage Materials for Automotive Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Young Joon; Westman, Matthew P.; Karkamkar, Abhijeet J.

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high practical hydrogen content of 14-16 wt%. This material is selected as a surrogate chemical for a hydrogen storage system. For easier transition to the existing infrastructure, a fluid phase hydrogen storage material is very attractive and thus, we investigated the engineering materials properties of AB in liquid carriers for a chemical hydrogen storage slurry system. Slurries composed of AB and high temperature liquids were prepared by mechanical milling and sonicationmore » in order to obtain stable and fluidic properties. Volumetric gas burette system was adopted to observe the kinetics of the H2 release reactions of the AB slurry and neat AB. Viscometry and microscopy were employed to further characterize slurries engineering properties. Using a tip-sonication method we have produced AB/silicone fluid slurries at solid loadings up to 40wt% (6.5wt% H2) with viscosities less than 500cP at 25°C.« less

  8. Composite-Material Tanks with Chemically Resistant Liners

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K.

    2004-01-01

    Lightweight composite-material tanks with chemically resistant liners have been developed for storage of chemically reactive and/or unstable fluids . especially hydrogen peroxide. These tanks are similar, in some respects, to the ones described in gLightweight Composite-Material Tanks for Cryogenic Liquids h (MFS-31379), NASA Tech Briefs, Vol. 25, No. 1 (January, 2001), page 58; however, the present tanks are fabricated by a different procedure and they do not incorporate insulation that would be needed to prevent boil-off of cryogenic fluids. The manufacture of a tank of this type begins with the fabrication of a reusable multisegmented aluminum mandrel in the shape and size of the desired interior volume. One or more segments of the mandrel can be aluminum bosses that will be incorporated into the tank as end fittings. The mandrel is coated with a mold-release material. The mandrel is then heated to a temperature of about 400 F (approximately equal to 200 C) and coated with a thermoplastic liner material to the desired thickness [typically approxiamtely equal to 15 mils (approximately equal to 0.38 mm)] by thermal spraying. In the thermal-spraying process, the liner material in powder form is sprayed and heated to the melting temperature by a propane torch and the molten particles land on the mandrel. The sprayed liner and mandrel are allowed to cool, then the outer surface of the liner is chemically and/or mechanically etched to enhance bonding of a composite overwrap. The etched liner is wrapped with multiple layers of an epoxy resin reinforced with graphite fibers; the wrapping can be done either by manual application of epoxy-impregnated graphite cloth or by winding of epoxy-impregnated filaments. The entire assembly is heated in an autoclave to cure the epoxy. After the curing process, the multisegmented mandrel is disassembled and removed from inside, leaving the finished tank. If the tank is to be used for storing hydrogen peroxide, then the liner material

  9. Opportunities for Computational Discovery in Basic Energy Sciences

    NASA Astrophysics Data System (ADS)

    Pederson, Mark

    2011-03-01

    An overview of the broad-ranging support of computational physics and computational science within the Department of Energy Office of Science will be provided. Computation as the third branch of physics is supported by all six offices (Advanced Scientific Computing, Basic Energy, Biological and Environmental, Fusion Energy, High-Energy Physics, and Nuclear Physics). Support focuses on hardware, software and applications. Most opportunities within the fields of~condensed-matter physics, chemical-physics and materials sciences are supported by the Officeof Basic Energy Science (BES) or through partnerships between BES and the Office for Advanced Scientific Computing. Activities include radiation sciences, catalysis, combustion, materials in extreme environments, energy-storage materials, light-harvesting and photovoltaics, solid-state lighting and superconductivity.~ A summary of two recent reports by the computational materials and chemical communities on the role of computation during the next decade will be provided. ~In addition to materials and chemistry challenges specific to energy sciences, issues identified~include a focus on the role of the domain scientist in integrating, expanding and sustaining applications-oriented capabilities on evolving high-performance computing platforms and on the role of computation in accelerating the development of innovative technologies. ~~

  10. History and Philosophy of Science through Models: The Case of Chemical Kinetics.

    ERIC Educational Resources Information Center

    Justi, Rosaria; Gilbert, John K.

    1999-01-01

    A greater role for the history and philosophy of science in science education can only be realized if it is based on both a credible analytical approach--such as that of Lakatos--and if the evolution of a sufficient number of major themes in science is known in suitable detail. Considers chemical kinetics as an example topic. Contains 62…

  11. History and Philosophy of Science through Models: The Case of Chemical Kinetics

    NASA Astrophysics Data System (ADS)

    Justi, Rosária; Gilbert, John K.

    The case for a greater role for the history and philosophy of science in science education is reviewed. It is argued that such a role can only be realised if it is based on both a credible analytical approach to the history and philosophy of science and if the evolution of a sufficient number of major themes in science is known in suitable detail. Adopting Lakatos' Theory of Scientific Research Programmes as the analytical approach, it is proposed that the development, use, and replacement, of specific models forms the core of such programmes.Chemical kinetics was selected as an exemplar major topic in chemistry. Eight models which have played a central role in the evolution of the study of chemical kinetics were identified by an analysis of the literature. The implications that these models have for the teaching and learning of chemistry today are discussed.

  12. Learning physical descriptors for materials science by compressed sensing

    NASA Astrophysics Data System (ADS)

    Ghiringhelli, Luca M.; Vybiral, Jan; Ahmetcik, Emre; Ouyang, Runhai; Levchenko, Sergey V.; Draxl, Claudia; Scheffler, Matthias

    2017-02-01

    The availability of big data in materials science offers new routes for analyzing materials properties and functions and achieving scientific understanding. Finding structure in these data that is not directly visible by standard tools and exploitation of the scientific information requires new and dedicated methodology based on approaches from statistical learning, compressed sensing, and other recent methods from applied mathematics, computer science, statistics, signal processing, and information science. In this paper, we explain and demonstrate a compressed-sensing based methodology for feature selection, specifically for discovering physical descriptors, i.e., physical parameters that describe the material and its properties of interest, and associated equations that explicitly and quantitatively describe those relevant properties. As showcase application and proof of concept, we describe how to build a physical model for the quantitative prediction of the crystal structure of binary compound semiconductors.

  13. Materials Problems in Chemical Liquid-Propellant Rocket Systems

    NASA Technical Reports Server (NTRS)

    Gilbert, L. L.

    1959-01-01

    With the advent of the space age, new adjustments in technical thinking and engineering experience are necessary. There is an increasing and extensive interest in the utilization of materials for components to be used at temperatures ranging from -423 to over 3500 deg F. This paper presents a description of the materials problems associated with the various components of chemical liquid rocket systems. These components include cooled and uncooled thrust chambers, injectors, turbine drive systems, propellant tanks, and cryogenic propellant containers. In addition to materials limitations associated with these components, suggested research approaches for improving materials properties are made. Materials such as high-temperature alloys, cermets, carbides, nonferrous alloys, plastics, refractory metals, and porous materials are considered.

  14. Application of Electro Chemical Machining for materials used in extreme conditions

    NASA Astrophysics Data System (ADS)

    Pandilov, Z.

    2018-03-01

    Electro-Chemical Machining (ECM) is the generic term for a variety of electrochemical processes. ECM is used to machine work pieces from metal and metal alloys irrespective of their hardness, strength or thermal properties, through the anodic dissolution, in aerospace, automotive, construction, medical equipment, micro-systems and power supply industries. The Electro Chemical Machining is extremely suitable for machining of materials used in extreme conditions. General overview of the Electro-Chemical Machining and its application for different materials used in extreme conditions is presented.

  15. The material co-construction of hard science fiction and physics

    NASA Astrophysics Data System (ADS)

    Hasse, Cathrine

    2015-12-01

    This article explores the relationship between hard science fiction and physics and a gendered culture of science. Empirical studies indicate that science fiction references might spur some students' interest in physics and help develop this interest throughout school, into a university education and even further later inspire the practice of doing science. There are many kinds of fiction within the science fiction genre. In the presented empirical exploration physics students seem particularly fond of what is called `hard science fiction': a particular type of science fiction dealing with technological developments (Hartwell and Cramer in The hard SF renaissance, Orb/TOR, New York, 2002). Especially hard science fiction as a motivating fantasy may, however, also come with a gender bias. The locally materialized techno-fantasies spurring dreams of the terraforming of planets like Mars and travels in time and space may not be shared by all physics students. Especially female students express a need for other concerns in science. The entanglement of physics with hard science fiction may thus help develop some students' interest in learning school physics and help create an interest for studying physics at university level. But research indicates that especially female students are not captured by the hard techno-fantasies to the same extent as some of their male colleagues. Other visions (e.g. inspired by soft science fiction) are not materialized as a resource in the local educational culture. It calls for an argument of how teaching science is also teaching cultural values, ethics and concerns, which may be gendered. Teaching materials, like the use of hard science fiction in education, may not just be (yet another) gender bias in science education but also carrier of particular visions for scientific endeavours.

  16. Trends in Materials Science for Ligament Reconstruction.

    PubMed

    Sava, Oana Roxana; Sava, Daniel Florin; Radulescu, Marius; Albu, Madalina Georgiana; Ficai, Denisa; Veloz-Castillo, Maria Fernanda; Mendez-Rojas, Miguel Angel; Ficai, Anton

    2017-01-01

    The number of ligament injuries increases every year and concomitantly the need for materials or systems that can reconstruct the ligament. Limitations imposed by autografts and allografts in ligament reconstruction together with the advances in materials science and biology have attracted a lot of interest for developing systems and materials for ligament replacement or reconstruction. This review intends to synthesize the major steps taken in the development of polymer-based materials for anterior cruciate ligament, their advantages and drawbacks and the results of different in vitro and in vivo tests. Until present, there is no successful polymer system for ligament reconstruction implanted in humans. The developing field of synthetic polymers for ligament reconstruction still has a lot of potential. In addition, several nano-structured materials, made of nanofibers or in the form of ceramic/polymeric nanocomposites, are attracting the interest of several groups due to their potential use as engineered scaffolds that mimic the native environment of cells, increasing the chances for tissue regeneration. Here, we review the last 15 years of literature in order to obtain a better understanding on the state-of-the-art that includes the usage of nano- and poly-meric materials for ligament reconstruction, and to draw perspectives on the future development of the field. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Chemical Pollution from Combustion of Modern Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Mudgett, Paul D.

    2013-01-01

    Fire is one of the most critical contingencies in spacecraft and any closed environment including submarines. Currently, NASA uses particle based technology to detect fires and hand-held combustion product monitors to track the clean-up and restoration of habitable cabin environment after the fire is extinguished. In the future, chemical detection could augment particle detection to eliminate frequent nuisance false alarms triggered by dust. In the interest of understanding combustion from both particulate and chemical generation, NASA Centers have been collaborating on combustion studies at White Sands Test Facility using modern spacecraft materials as fuels, and both old and new technology to measure the chemical and particulate products of combustion. The tests attempted to study smoldering pyrolysis at relatively low temperatures without ignition to flaming conditions. This paper will summarize the results of two 1-week long tests undertaken in 2012, focusing on the chemical products of combustion. The results confirm the key chemical products are carbon monoxide (CO), hydrogen cyanide (HCN), hydrogen fluoride (HF) and hydrogen chloride (HCl), whose concentrations depend on the particular material and test conditions. For example, modern aerospace wire insulation produces significant concentration of HF, which persists in the test chamber longer than anticipated. These compounds are the analytical targets identified for the development of new tunable diode laser based hand-held monitors, to replace the aging electrochemical sensor based devices currently in use on the International Space Station.

  18. Materials science. Materials that couple sensing, actuation, computation, and communication.

    PubMed

    McEvoy, M A; Correll, N

    2015-03-20

    Tightly integrating sensing, actuation, and computation into composites could enable a new generation of truly smart material systems that can change their appearance and shape autonomously. Applications for such materials include airfoils that change their aerodynamic profile, vehicles with camouflage abilities, bridges that detect and repair damage, or robotic skins and prosthetics with a realistic sense of touch. Although integrating sensors and actuators into composites is becoming increasingly common, the opportunities afforded by embedded computation have only been marginally explored. Here, the key challenge is the gap between the continuous physics of materials and the discrete mathematics of computation. Bridging this gap requires a fundamental understanding of the constituents of such robotic materials and the distributed algorithms and controls that make these structures smart. Copyright © 2015, American Association for the Advancement of Science.

  19. Regulating chemicals: law, science, and the unbearable burdens of regulation.

    PubMed

    Silbergeld, Ellen K; Mandrioli, Daniele; Cranor, Carl F

    2015-03-18

    The challenges of regulating industrial chemicals remain unresolved in the United States. The Toxic Substances Control Act (TSCA) of 1976 was the first legislation to extend coverage to the regulation of industrial chemicals, both existing and newly registered. However, decisions related to both law and science that were made in passing this law inevitably rendered it ineffectual. Attempts to fix these shortcomings have not been successful. In light of the European Union's passage of innovative principles and requirements for chemical regulation, it is no longer possible to deny the opportunity and need for reform in US law and practice.

  20. Analytical Chemistry at the Interface Between Materials Science and Biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Janese C.

    2000-09-21

    Likedlessentid sciences, anal~cd chetis~continues toreinvent itself. Moving beyond its traditional roles of identification and quantification, analytical chemistry is now expanding its frontiers into areas previously reserved to other disciplines. This work describes several research efforts that lie at the new interfaces between analytical chemistry and two of these disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detectionmore » of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry’s newest forays into these disciplines. The introduction section to this dissertation provides a literature review on several of the key aspects of this work. In advance of the materials science discussion, a brief introduction into electrochemically-modulated liquid chromatography (EMLC) and sol-gel chemistry is provided. In advance of the biological discussions, brief overviews of scanning force microscopy (SFM) and the oxidative chemistry used to construct our biological arrays are provided. This section is followed by four chapters, each of which is presented as a separate manuscript, and focuses on work that describes some of our cross-disciplinary efforts within materials science and biology. This dissertation concludes with a general summary and future prospectus.« less

  1. Chemical information matters: an e-Research perspective on information and data sharing in the chemical sciences.

    PubMed

    Bird, Colin L; Frey, Jeremy G

    2013-08-21

    Recently, a number of organisations have called for open access to scientific information and especially to the data obtained from publicly funded research, among which the Royal Society report and the European Commission press release are particularly notable. It has long been accepted that building research on the foundations laid by other scientists is both effective and efficient. Regrettably, some disciplines, chemistry being one, have been slow to recognise the value of sharing and have thus been reluctant to curate their data and information in preparation for exchanging it. The very significant increases in both the volume and the complexity of the datasets produced has encouraged the expansion of e-Research, and stimulated the development of methodologies for managing, organising, and analysing "big data". We review the evolution of cheminformatics, the amalgam of chemistry, computer science, and information technology, and assess the wider e-Science and e-Research perspective. Chemical information does matter, as do matters of communicating data and collaborating with data. For chemistry, unique identifiers, structure representations, and property descriptors are essential to the activities of sharing and exchange. Open science entails the sharing of more than mere facts: for example, the publication of negative outcomes can facilitate better understanding of which synthetic routes to choose, an aspiration of the Dial-a-Molecule Grand Challenge. The protagonists of open notebook science go even further and exchange their thoughts and plans. We consider the concepts of preservation, curation, provenance, discovery, and access in the context of the research lifecycle, and then focus on the role of metadata, particularly the ontologies on which the emerging chemical Semantic Web will depend. Among our conclusions, we present our choice of the "grand challenges" for the preservation and sharing of chemical information.

  2. Living in a material world: Development and evaluation of a new materials science course for non-science majors

    NASA Astrophysics Data System (ADS)

    Brust, Gregory John

    This study was designed to discover if there is a difference in the scientific attitudes and process skills between a group of students who were instructed with Living in a Material World and groups of students in non-science majors sections of introductory biology, chemistry, and geology courses at the University of Southern Mississippi (USM). Each of the four courses utilized different instructional techniques. Students' scientific attitudes were measured with the Scientific Attitudes Inventory (SAI II) and their knowledge of science process skills were measured with the Test of Integrated Process Skills (TIPS II). The Group Assessment of Logical Thinking (GALT) was also administered to determine if the cognitive levels of students are comparable. A series of four questionnaires called Qualitative Course Assessments (QCA) were also administered to students in the experimental course to evaluate subtle changes in their understanding of the nature and processes of science and attitudes towards science. Student responses to the QCA questionnaires were triangulated with results of the qualitative instruments, and students' work on the final project. Results of the GALT found a significant difference in the cognitive levels of students in the experimental course (PSC 190) and in one of the control group, the introductory biology (BSC 107). Results of the SAI II and the TIPS II found no significant difference between the experimental group and the control groups. Qualitative analyses of students' responses to selected questions from the TIPS II, selected items on the SAI II, QCA questionnaires, and Materials that Fly project reports demonstrate an improvement in the understanding of the nature and processes of science and a change to positive attitude toward science of students in the experimental group. Students indicated that hands-on, inquiry-based labs and performance assessment were the most effective methods for their learning. These results indicate that science

  3. Fusion power: a challenge for materials science.

    PubMed

    Duffy, D M

    2010-07-28

    The selection and design of materials that will withstand the extreme conditions of a fusion power plant has been described as one of the greatest materials science challenges in history. The high particle flux, high thermal load, thermal mechanical stress and the production of transmutation elements combine to produce a uniquely hostile environment. In this paper, the materials favoured for the diverse roles in a fusion power plant are discussed, along with the experimental and modelling techniques that are used to advance the understanding of radiation damage in materials. Areas where further research is necessary are highlighted.

  4. Proceedings of the frst joint american chemical society agricultural and food chemistry division – american chemical society international chemical sciences chapter in Thailand symposium on agricultural and food chemistry

    USDA-ARS?s Scientific Manuscript database

    This Proceedings is a compilation of papers from contributed oral and poster presentations presented at the first joint symposium organized by the American Chemical Society Agricultural and Food Chemistry Division and the American Chemical Society International Chemical Sciences Chapter in Thailand ...

  5. Living in a Materials World: Materials Science Engineering Professional Development for K-12 Educators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anne Seifert; Louis Nadelson

    2011-06-01

    Advances in materials science are fundamental to technological developments and have broad societal impacs. For example, a cellular phone is composed of a polymer case, liquid crystal displays, LEDs, silicon chips, Ni-Cd batteries, resistors, capacitors, speakers, microphones all of which have required advances in materials science to be compacted into a phone which is typically smaller than a deck of cards. Like many technological developments, cellular phones have become a ubiquitous part of society, and yet most people know little about the materials science associated with their manufacture. The probable condition of constrained knowledge of materials science was the motivationmore » for developing and offering a 20 hour fourday course called 'Living in a Materials World.' In addition, materials science provides a connection between our every day experiences and the work of scientists and engineers. The course was offered as part of a larger K-12 teacher professional development project and was a component of a week-long summer institute designed specifically for upper elementary and middle school teachers which included 20 hour content strands, and 12 hours of plenary sessions, planning, and collaborative sharing. The focus of the institute was on enhancing teacher content knowledge in STEM, their capacity for teaching using inquiry, their comfort and positive attitudes toward teaching STEM, their knowledge of how people learn, and strategies for integrating STEM throughout the curriculum. In addition to the summer institute the participating teachers were provided with a kit of about $300 worth of materials and equipment to use to implement the content they learned in their classrooms. As part of this professional development project the participants were required to design and implement 5 lesson plans with their students this fall and report on the results, as part of the continuing education course associated with the project. 'Living in a Materials World

  6. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  7. Materials for Nonlinear Optics Chemical Perspectives

    DTIC Science & Technology

    1991-01-01

    formation of these polarized states has been referred to in terms of " viru transitions". The polarization behavior can be written in terms of the...MATERIALS FOR NONUNEAR OPTICS: CHEMICAL PERSPECTIVES also be corona -poled. Either way, the films are ideally suited for guided wave applications. With...electrodes, or a corona charging station, similar to that used in electrophotographic copiers, can be used to apply charged particles to the insulating

  8. U.S. Materials Science on the International Space Station: Status and Plans

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis P.; Kelton, Kenneth F.; Matson, Douglas M.; Poirier, David R.; Trivedi, Rohit K.; Su, Ching-Hua; Volz, Martin P.; Voorhees, Peter W.

    2010-01-01

    This viewgraph presentation reviews the current status and NASA plans for materials science on the International Space Station. The contents include: 1) Investigations Launched in 2009; 2) DECLIC in an EXPRESS rack; 3) Dynamical Selection of Three-Dimensional Interface Patterns in Directional Solidification (DSIP); 4) Materials Science Research Rack (MSRR); 5) Materials Science Laboratory; 6) Comparison of Structure and Segregation in Alloys Directionally Solidified in Terrestrial and Microgravity Environments (MICAST/CETSOL); 7) Coarsening in Solid Liquid Mixtures 2 Reflight (CSLM 2R); 8) Crystal Growth Investigations; 9) Levitator Investigations; 10) Quasi Crystalline Undercooled Alloys for Space Investigation (QUASI); 11) The Role of Convection and Growth Competition in Phase Selection in Microgravity (LODESTARS); 12) Planned Additional Investigations; 13) SETA; 14) METCOMP; and 15) Materials Science NRA.

  9. Separated Representations and Fast Algorithms for Materials Science

    DTIC Science & Technology

    2007-10-29

    Quantum Chemisty , 127 (1999), pp. 143–269. [28] A. Smilde, R. Bro, and P. Geladi, Multi-way Analysis. Applications in the Chemical Sciences, John...Advances in highly correlated approaches. Advances in Quantum Chemisty , 127:143–269, 1999. [58] Age Smilde, Rasmus Bro, and Paul Geladi. Multi-way Analysis

  10. Advancing Materials Science using Neutrons at Oak Ridge National Laboratory

    ScienceCinema

    Carpenter, John

    2018-02-14

    Jack Carpenter, pioneer of accelerator-based pulsed spallation neutron sources, talks about neutron science at Oak Ridge National Laboratory (ORNL) and a need for a second target station at the Spallation Neutron Source (SNS). ORNL is the Department of Energy's largest multiprogram science and energy laboratory, and is home to two scientific user facilities serving the neutron science research community: the High Flux Isotope Reactor (HFIR) and SNS. HFIR and SNS provide researchers with unmatched capabilities for understanding the structure and properties of materials, macromolecular and biological systems, and the fundamental physics of the neutron. Neutrons provide a window through which to view materials at a microscopic level that allow researchers to develop better materials and better products. Neutrons enable us to understand materials we use in everyday life. Carpenter explains the need for another station to produce long wavelength neutrons, or cold neutrons, to answer questions that are addressed only with cold neutrons. The second target station is optimized for that purpose. Modern technology depends more and more upon intimate atomic knowledge of materials, and neutrons are an ideal probe.

  11. Materials Safety Data Sheets: the basis for control of toxic chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketchen, E.E.; Porter, W.E.

    1979-09-01

    The Material Safety Data Sheets contained in this volume are the basis for the Toxic Chemical Control Program developed by the Industrial Hygiene Department, Health Division, ORNL. The three volumes are the update and expansion of ORNL/TM-5721 and ORNL/TM-5722 Material Safety Data Sheets: The Basis for Control of Toxic Chemicals, Volume I and Volume II. As such, they are a valuable adjunct to the data cards issued with specific chemicals. The chemicals are identified by name, stores catalog number where appropriate, and sequence numbers from the NIOSH Registry of Toxic Effects of Chemical Substances, 1977 Edition, if available. The datamore » sheets were developed and compiled to aid in apprising the employees of hazards peculiar to the handling and/or use of specific toxic chemicals. Space limitation necessitate the use of descriptive medical terms and toxicological abbreviations. A glossary and an abbreviation list were developed to define some of those sometimes unfamiliar terms and abbreviations. The page numbers are keyed to the catalog number in the chemical stores at ORNL.« less

  12. Materials Safety Data Sheets: the basis for control of toxic chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketchen, E.E.; Porter, W.E.

    The Material Safety Data Sheets contained in this volume are the basis for the Toxic Chemical Control Program developed by the Industrial Hygiene Department, Health Division, ORNL. The three volumes are the update and expansion of ORNL/TM-5721 and ORNL/TM-5722 Material Safety Data Sheets: The Basis for Control of Toxic Chemicals, Volume I and Volume II. As such, they are a valuable adjunct to the data cards issued with specific chemicals. The chemicals are identified by name, stores catalog number where appropriate, and sequence numbers from the NIOSH Registry of Toxic Effects of Chemical Substances, 1977 Edition, if available. The datamore » sheets were developed and compiled to aid in apprising the employees of hazards peculiar to the handling and/or use of specific toxic chemicals. Space limitation necessitate the use of descriptive medical terms and toxicological abbreviations. A glossary and an abbreviation list were developed to define some of those sometimes unfamiliar terms and abbreviations. The page numbers are keyed to the catalog number in the chemical stores at ORNL.« less

  13. A New Direction for NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)

    2001-01-01

    NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be

  14. A New Direction for the NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human

  15. Assembling new technologies at the interface of materials science and biology

    NASA Astrophysics Data System (ADS)

    Stendahl, John C.

    Molecular self-assembly can be used to construct advanced materials by taking cues from nature and harnessing noncovalent interactions. This bottom-up approach affords molecular level precision that can cultivate pathways to improved materials function. The graduate research presented in this thesis integrates molecular self-assembly with traditional concepts in chemistry and materials science, with the ultimate goal of developing innovative solutions in technology and medicine. In the field of polymer engineering, self-assembly was used to create supramolecular nanoribbons that, when incorporated into polystyrene, modify its microstructure and significantly enhance its toughness and ductility. In medicine, self-assembly was used to create ordered, chemically functional materials to improve interactions with cells and other constituents of the biological environment. One system that was investigated is based on a triblock molecule in which cholesterol is connected to a lysine dendron by a flexible oligo-(L-lactic acid) spacer. These molecules self-assemble into polar surface coatings on fibrous poly(L-lactic acid) scaffolds that improve the scaffold's wettability and increase its retention of cells during seeding. Another self-assembling system that was investigated for biomedical applications is a family of molecules referred to as peptide amphiphiles (PA's). PA's consist of hydrophobic alkyl tails connected to short, hydrophilic peptides that incorporate biological signaling epitopes. These molecules spontaneously assemble into networks of well-defined nanofibers in aqueous environments, with the signaling epitopes presented in high density on the nanofiber exteriors. Nanofiber assembly is triggered by charge screening on the peptides and is able to produce self-supporting gels in concentrations of less than 1.0 wt.-%. The assembly process and mechanical properties of PA gels was investigated in detail with vibrational spectroscopy and oscillatory rheology. PA

  16. Modern Sport and Chemistry: What a Chemically Aware Sports Fanatic Should Know.

    ERIC Educational Resources Information Center

    Giffin, Guinevere A.; Boone, Steven R.; Cole, Renee S.; McKay, Scott E.; Kopitzke, Robert

    2002-01-01

    Advances in the chemical and materials sciences have had dramatic impact on sporting events. Discusses some of the chemicals and materials involved in these advances with the intention of providing a mechanism to interest students in chemistry. Presents structures and properties of some materials that led to their adoption in sports and ideas for…

  17. Eighth Grade Marine Science; Resource Units.

    ERIC Educational Resources Information Center

    Butler, Edwin B.

    A resource unit on the marine sciences is described. Designed for eighth-grade students with some basic science background, the unit can be taught in a minimum of four weeks. Content includes emphasis on the biological, chemical, and physical sciences. Each lesson contains objectives, goals, materials, and follow-up activities (often an…

  18. Chemical characterization of selected LDEF polymeric materials

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Slemp, Wayne S.

    1991-01-01

    Chemical characterization of selected polymeric materials which received exposure on the Long Duration Exposure Facility (LDEF) is reported. The specimens examined include silvered fluorinated ethylene propylene Teflon thermal blanket material, polysulfone, epoxy, polyimide matrix resin/graphite fiber reinforced composites, and several high performance polymer films. These specimens came from numerous LDEF locations, and thus received different environmental exposures. The results to date show no significant change at the molecular level in the polymer that survived exposure. Scanning electron and scanning tunneling microscopes show resin loss and a texturing of some specimens which resulted in a change in optical properties. The potential effect of a silicon-containing molecular contamination on these materials is addressed. The possibility of continued post-exposure degradation of some polymeric films is also proposed.

  19. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).

  20. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. A larger image is available without labels (No. 0101755).

  1. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101830, and TBD).

  2. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).

  3. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830).

  4. The concept verification testing of materials science payloads

    NASA Technical Reports Server (NTRS)

    Griner, C. S.; Johnston, M. H.; Whitaker, A.

    1976-01-01

    The concept Verification Testing (CVT) project at the Marshall Space Flight Center, Alabama, is a developmental activity that supports Shuttle Payload Projects such as Spacelab. It provides an operational 1-g environment for testing NASA and other agency experiment and support systems concepts that may be used in shuttle. A dedicated Materials Science Payload was tested in the General Purpose Laboratory to assess the requirements of a space processing payload on a Spacelab type facility. Physical and functional integration of the experiments into the facility was studied, and the impact of the experiments on the facility (and vice versa) was evaluated. A follow-up test designated CVT Test IVA was also held. The purpose of this test was to repeat Test IV experiments with a crew composed of selected and trained scientists. These personnel were not required to have prior knowledge of the materials science disciplines, but were required to have a basic knowledge of science and the scientific method.

  5. Non-chemically amplified 248-nm resist materials

    NASA Astrophysics Data System (ADS)

    Willson, C. Grant; Yueh, Wang; Leeson, Michael J.; Steinhausler, Thomas; McAdams, Christopher L.; Dammel, Ralph R.; Sounik, James R.; Aslam, M.; Vicari, Richard; Sheehan, Michael

    1997-07-01

    Remarkable progress has been made in the formulation of chemically amplified resists for deep-UV (DUV or 248 nm) lithography. These materials are now in general use in full scale manufacturing. One of the deterrents to rapid and universal adoption of DUV lithography has been the combination of high cost of ownership and a narrow process latitude when compared to conventional i-line process alternatives. A significant part of the high cost of the DUV process is associated with installing and maintaining special air handling equipment that is required to remove basic contaminants from the ambient. Manufacture process latitude demands this special air handling. The chemically amplified resists were developed originally to support mercury lamp powered exposure systems. The sensitivity realized by chemical amplification is required to enable useful productivity with such systems that generate very little DUV flux at the wafer plane. With the advent of high powered excimer laser based illumination systems for 248 nm steppers and step-and-scan systems, it is appropriate to re-examine the applicability of non-chemically amplified DUV resist systems. These systems are less sensitive but have the potential to offer both lower cost of ownership and improved process latitude. A series of photoactive compounds (PACs) have been synthesized and auditioned for use in the formulation of a non-chemically amplified 248 nm resist. The most promising of these materials are analogs of 3-oxo-3-diazocoumarin. This chromophore displays photochemistry that is analogous to that of the diazonaphthoquinones (DNQ) that are the basis of i-line resist formulations, but it bleaches at 248 nm. Several structural analogs of the chromophore have been synthesized and a variety of ballast groups have been studied with the goal of enhancing the dissolution inhibition properties of the molecule. The diazocoumarin PACs have been formulated with customized phenolic resins that were designed to provide the

  6. The chemical (not mechanical) paradigm of thermodynamics of colloid and interface science.

    PubMed

    Kaptay, George

    2018-06-01

    In the most influential monograph on colloid and interfacial science by Adamson three fundamental equations of "physical chemistry of surfaces" are identified: the Laplace equation, the Kelvin equation and the Gibbs adsorption equation, with a mechanical definition of surface tension by Young as a starting point. Three of them (Young, Laplace and Kelvin) are called here the "mechanical paradigm". In contrary it is shown here that there is only one fundamental equation of the thermodynamics of colloid and interface science and all the above (and other) equations of this field follow as its derivatives. This equation is due to chemical thermodynamics of Gibbs, called here the "chemical paradigm", leading to the definition of surface tension and to 5 rows of equations (see Graphical abstract). The first row is the general equation for interfacial forces, leading to the Young equation, to the Bakker equation and to the Laplace equation, etc. Although the principally wrong extension of the Laplace equation formally leads to the Kelvin equation, using the chemical paradigm it becomes clear that the Kelvin equation is generally incorrect, although it provides right results in special cases. The second row of equations provides equilibrium shapes and positions of phases, including sessile drops of Young, crystals of Wulff, liquids in capillaries, etc. The third row of equations leads to the size-dependent equations of molar Gibbs energies of nano-phases and chemical potentials of their components; from here the corrected versions of the Kelvin equation and its derivatives (the Gibbs-Thomson equation and the Freundlich-Ostwald equation) are derived, including equations for more complex problems. The fourth row of equations is the nucleation theory of Gibbs, also contradicting the Kelvin equation. The fifth row of equations is the adsorption equation of Gibbs, and also the definition of the partial surface tension, leading to the Butler equation and to its derivatives

  7. Applications of Neutron Scattering in the Chemical Industry: Proton Dynamics of Highly Dispersed Materials, Characterization of Fuel Cell Catalysts, and Catalysts from Large-Scale Chemical Processes

    NASA Astrophysics Data System (ADS)

    Albers, Peter W.; Parker, Stewart F.

    The attractiveness of neutron scattering techniques for the detailed characterization of materials of high degrees of dispersity and structural complexity as encountered in the chemical industry is discussed. Neutron scattering picks up where other analytical methods leave off because of the physico-chemical properties of finely divided products and materials whose absorption behavior toward electromagnetic radiation and electrical conductivity causes serious problems. This is demonstrated by presenting typical applications from large-scale production technology and industrial catalysis. These include the determination of the proton-related surface chemistry of advanced materials that are used as reinforcing fillers in the manufacture of tires, where interrelations between surface chemistry, rheological properties, improved safety, and significant reduction of fuel consumption are the focus of recent developments. Neutron scattering allows surface science studies of the dissociative adsorption of hydrogen on nanodispersed, supported precious metal particles of fuel cell catalysts under in situ loading at realistic gas pressures of about 1 bar. Insight into the occupation of catalytically relevant surface sites provides valuable information about the catalyst in the working state and supplies essential scientific input for tailoring better catalysts by technologists. The impact of deactivation phenomena on industrial catalysts by coke deposition, chemical transformation of carbonaceous deposits, and other processes in catalytic hydrogenation processes that result in significant shortening of the time of useful operation in large-scale plants can often be traced back in detail to surface or bulk properties of catalysts or materials of catalytic relevance. A better understanding of avoidable or unavoidable aspects of catalyst deactivation phenomena under certain in-process conditions and the development of effective means for reducing deactivation leads to more energy

  8. 2004 research briefs :Materials and Process Sciences Center.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-sciencemore » base has on the ultimate success of the NW program and the overall DOE technology portfolio.« less

  9. Recycled material-based science instruments to support science education in rural area at Central Sulawesi District of Indonesia

    NASA Astrophysics Data System (ADS)

    Ali, M.; Supriyatman; Saehana, S.

    2018-03-01

    It has been successfully designing low cost of science experiment from recycled materials. The science instruments were produced to explain expansion concept and hydrostatic pressure inside the liquid. Science instruments were calibrated and then validated. It was also implemented in science learning.

  10. [Reciprocal material agency: an ecology for studies of science].

    PubMed

    Maia, Carlos Alvarez

    2017-01-01

    In the historiography of the sciences there are consolidated dichotomies that can hinder better research. Fissures include mental-material, subject-object and nature-society, and the bitter conflict between relativism and realism that draws on these dichotomies and can block research. The aim of this article is to tackle these disputes, to unravel them and to move on. The proposed solution is to give consideration to the agency of material things alongside the actions of human subjects. One obstacle is presented by Latour who simulates this result by means of hylozoistic rhetoric. Here, an alternative to Latour is presented, containing no elements of animism, which gives evidence of the concrete way in which the material agency of objects participates in the doing of science, alongside humans.

  11. Metalorganic chemical vapor deposition and characterization of ZnO materials

    NASA Astrophysics Data System (ADS)

    Sun, Shangzu; Tompa, Gary S.; Hoerman, Brent; Look, David C.; Claflin, Bruce B.; Rice, Catherine E.; Masaun, Puneet

    2006-04-01

    Zinc oxide is attracting growing interest for potential applications in electronics, optoelectronics, photonics, and chemical and biochemical sensing, among other applications. We report herein our efforts in the growth and characterization of p- and n-type ZnO materials by metalorganic chemical vapor deposition (MOCVD), focusing on recent nitrogen-doped films grown using diethyl zinc as the zinc precursor and nitric oxide (NO) as the dopant. Characterization results, including resistivity, Hall measurements, photoluminescence, and SIMS, are reported and discussed. Electrical behavior was observed to be dependent on illumination, atmosphere, and heat treatment, especially for p-type material.

  12. The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stagg, Elizabeth

    2004-01-01

    In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned

  13. Chemical Achievers: The Human Face of the Chemical Sciences (by Mary Ellen Bowden)

    NASA Astrophysics Data System (ADS)

    Kauffman, George B.

    1999-02-01

    Chemical Heritage Foundation: Philadelphia, PA, 1997. viii + 180 pp. 21.6 x 27.8 cm. ISBN 0-941901-15-1. Paper. 20.00 (10.00 for high school teachers who provide documentation). At a 1991 summer workshop sponsored by the Chemical Heritage Foundation and taught by Derek A. Davenport and William B. Jensen, high school and college teachers of introductory chemistry requested a source of pictorial material about famous chemical scientists suitable as a classroom aid. CHF responded by publishing this attractive, inexpensive paperback volume, which reflects the considerable research effort needed to locate appropriate images and to write the biographical essays. Printed on heavy, glossy paper and spiral bound to facilitate conversion to overhead transparencies, it contains 157 images from pictorial collections at CHF and many other institutions on two types of achievers: the historical "greats" most often referred to in introductory courses, and scientists who made contributions in areas of the chemical sciences that are of special relevance to modern life and the career choices students will make. The pictures are intended to provide the "human face" of the book's subtitle- "to point to the human beings who had the insights and made the major advances that [teachers] ask students to master." Thus, for example, Boyle's law becomes less cold and abstract if the student can connect it with the two portraits of the Irish scientist even if his face is topped with a wig. Marie Curie can be seen in the role of wife and mother as well as genius scientist in the photographs of her with her two daughters, one of whom also became a Nobel laureate. And students are reminded of the ubiquity of the contribution of the chemical scientists to all aspects of our everyday life by the stories and pictures of Wallace Hume Carothers' path to nylon, Percy Lavon Julian's work on hormones, and Charles F. Chandler and Rachel Carson's efforts to preserve the environment. In addition to portraits

  14. Chemical plating method of preparing radiation source material

    DOEpatents

    Smith, P.K.; Huntoon, R.T.; Mosley, W.C. Jr.

    1973-12-11

    A uniform dispersion of a radioisotope within a noble metal matrix is provided by chemically plating a noble metal coating onto particles including a dissociable compound of the mdioisotope. A suspension of the dissociable compound in a chemically reductive solution is prepared and noble metal cations added to produce the noble metal coatings. The coated particles are filtered, dried and heated to calcine the dissociable compound to a refractory powder. The powder can be encapsulated in measured portions or consolidated and shaped into an elongated form for easy apportionnnent as radiation source material. (Official Gazette)

  15. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Here the transparent furnace is extracted for servicing. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).

  16. Assessment of a Library Science Program Specializing in Chemical Information.

    ERIC Educational Resources Information Center

    Wiggins, Gary; Monnier, Cynthia

    1994-01-01

    Reports on a survey of Indiana University Master in Library Science (M.L.S.)-Chemical Information Specialist program graduates. Information includes graduates' educational background; the nature of first jobs and current positions held; and databases most frequently used. Graduates generally favored more training in computer skills, patent…

  17. To Kit or Not to Kit? Evaluating and Implementing Science Materials and Resources

    ERIC Educational Resources Information Center

    Schiller, Ellen; Melin, Jacque; Bair, Mary

    2016-01-01

    With the release of the "Next Generation Science Standards," many schools are reexamining the science materials they are using. Textbook companies and kit developers are eager to meet the demand for "NGSS"-aligned teaching materials. Teacher may have been asked to serve on a science curriculum committee, or to evaluate current…

  18. 3D construction and repair from welding and material science perspectives

    NASA Astrophysics Data System (ADS)

    Marya, Surendar; Hascoet, Jean-Yves

    2016-10-01

    Additive manufacturing, based on layer-by-layer deposition of a feedstock material from a 3D data, can be mechanistically associated to welding. With feedstock fusion based processes, both additive manufacturing and welding implement similar heat sources, feedstock materials and translation mechanisms. From material science perspectives, additive manufacturing can take clue from lessons learned by millennium old welding technology to rapidly advance in its quest to generate fit for service metallic parts. This paper illustrates material science highlights extracted from the fabrication of a 316 L air vent and the functional repair of a Monel K500 (UNS N0500) with Inconel 625.

  19. Chemistry and Materials Science progress report, FY 1994. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-01-01

    Thrust areas of the weapons-supporting research include surface science, fundamentals of the physics and processing of metals, energetic materials, etc. The laboratory directed R and D include director`s initiatives, individual projects, and transactinium science studies.

  20. Science and Emerging Technology of 2D Atomic Layered Materials and Devices

    DTIC Science & Technology

    2017-09-09

    AFRL-AFOSR-JP-TR-2017-0067 Science & Emerging Technology of 2D Atomic Layered Materials and Devices Angel Rubio UNIVERSIDAD DEL PAIS VASCO - EUSKAL...Emerging Technology of 2D Atomic Layered Materials and Devices 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-15-1-0006 5c.  PROGRAM ELEMENT NUMBER...reporting documents for AOARD project 144088, “2D Materials and Devices Beyond Graphene Science & Emerging Technology of 2D Atomic Layered Materials and

  1. Interplay between materials and microfluidics

    NASA Astrophysics Data System (ADS)

    Hou, Xu; Zhang, Yu Shrike; Santiago, Grissel Trujillo-De; Alvarez, Mario Moisés; Ribas, João; Jonas, Steven J.; Weiss, Paul S.; Andrews, Anne M.; Aizenberg, Joanna; Khademhosseini, Ali

    2017-04-01

    Developments in the field of microfluidics have triggered technological revolutions in many disciplines, including chemical synthesis, electronics, diagnostics, single-cell analysis, micro- and nanofabrication, and pharmaceutics. In many of these areas, rapid growth is driven by the increasing synergy between fundamental materials development and new microfluidic capabilities. In this Review, we critically evaluate both how recent advances in materials fabrication have expanded the frontiers of microfluidic platforms and how the improved microfluidic capabilities are, in turn, furthering materials design. We discuss how various inorganic and organic materials enable the fabrication of systems with advanced mechanical, optical, chemical, electrical and biointerfacial properties — in particular, when these materials are combined into new hybrids and modular configurations. The increasing sophistication of microfluidic techniques has also expanded the range of resources available for the fabrication of new materials, including particles and fibres with specific functionalities, 3D (bio)printed composites and organoids. Together, these advances lead to complex, multifunctional systems, which have many interesting potential applications, especially in the biomedical and bioengineering domains. Future exploration of the interactions between materials science and microfluidics will continue to enrich the diversity of applications across engineering as well as the physical and biomedical sciences.

  2. Chemistry as the defining science: discipline and training in nineteenth-century chemical laboratories.

    PubMed

    Jackson, Catherine M

    2011-06-01

    The institutional revolution has become a major landmark of late-nineteenth century science, marking the rapid construction of large, institutional laboratories which transformed scientific training and practice. Although it has served historians of physics well, the institutional revolution has proved much more contentious in the case of chemistry. I use published sources, mainly written by chemists and largely focused on laboratories built in German-speaking lands between about 1865 and 1900, to show that chemical laboratory design was inextricably linked to productive practice, large-scale pedagogy and disciplinary management. I argue that effective management of the novel risks inherent in teaching and doing organic synthesis was significant in driving and shaping the construction of late-nineteenth century institutional chemical laboratories, and that these laboratories were essential to the disciplinary development of chemistry. Seen in this way, the laboratory necessarily becomes part of the material culture of late-nineteenth century chemistry, and I show how this view leads not only to a revision of what is usually known as the laboratory revolution in chemistry but also to a new interpretation of the institutional revolution in physics. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Chemical properties and colors of fermenting materials in salmon fish sauce production.

    PubMed

    Nakano, Mitsutoshi; Sagane, Yoshimasa; Koizumi, Ryosuke; Nakazawa, Yozo; Yamazaki, Masao; Watanabe, Toshihiro; Takano, Katsumi; Sato, Hiroaki

    2018-02-01

    This data article reports the chemical properties (moisture, pH, salinity, and soluble solid content) and colors of fermenting materials in salmon fish sauce products. The fish sauce was produced by mixing salt with differing proportions of raw salmon materials and fermenting for three months; the salmon materials comprised flesh, viscera, an inedible portion, and soft roe. Chemical properties and colors of the unrefined fish sauce ( moromi ), and the refined fish sauce, were analyzed at one, two, and three months following the start of fermentation. Data determined for all products are provided in table format.

  4. Gender Equity in Materials Science and Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angus Rockett

    At the request of the University Materials Council, a national workshop was convened to examine 'Gender Equity Issues in Materials Science and Engineering.' The workshop considered causes of the historic underrepresentation of women in materials science and engineering (MSE), with a goal of developing strategies to increase the gender diversity of the discipline in universities and national laboratories. Specific workshop objectives were to examine efforts to level the playing field, understand implicit biases, develop methods to minimize bias in all aspects of training and employment, and create the means to implement a broadly inclusive, family-friendly work environment in MSE departments.more » Held May 18-20, 2008, at the Conference Center at the University of Maryland, the workshop included heads and chairs of university MSE departments and representatives of the National Science Foundation (NSF), the Office of Basic Energy Sciences of the Department of Energy (DOE-BES), and the national laboratories. The following recommendations are made based on the outcomes of the discussions at the workshop. Many or all of these apply equally well to universities and national laboratories and should be considered in context of industrial environments as well. First, there should be a follow-up process by which the University Materials Council (UMC) reviews the status of women in the field of MSE on a periodic basis and determines what additional changes should be made to accelerate progress in gender equity. Second, all departments should strengthen documentation and enforcement of departmental procedures such that hiring, promotion, compensation, and tenure decisions are more transparent, that the reasons why a candidate was not selected or promoted are clear, and that faculty are less able to apply their biases to personnel decisions. Third, all departments should strengthen mentoring of junior faculty. Fourth, all departments must raise awareness of gender biases and

  5. Applications of inductively coupled plasma mass spectrometry and laser ablation inductively coupled plasma mass spectrometry in materials science

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine

    2002-12-01

    Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have been applied as the most important inorganic mass spectrometric techniques having multielemental capability for the characterization of solid samples in materials science. ICP-MS is used for the sensitive determination of trace and ultratrace elements in digested solutions of solid samples or of process chemicals (ultrapure water, acids and organic solutions) for the semiconductor industry with detection limits down to sub-picogram per liter levels. Whereas ICP-MS on solid samples (e.g. high-purity ceramics) sometimes requires time-consuming sample preparation for its application in materials science, and the risk of contamination is a serious drawback, a fast, direct determination of trace elements in solid materials without any sample preparation by LA-ICP-MS is possible. The detection limits for the direct analysis of solid samples by LA-ICP-MS have been determined for many elements down to the nanogram per gram range. A deterioration of detection limits was observed for elements where interferences with polyatomic ions occur. The inherent interference problem can often be solved by applying a double-focusing sector field mass spectrometer at higher mass resolution or by collision-induced reactions of polyatomic ions with a collision gas using an ICP-MS fitted with collision cell. The main problem of LA-ICP-MS is quantification if no suitable standard reference materials with a similar matrix composition are available. The calibration problem in LA-ICP-MS can be solved using on-line solution-based calibration, and different procedures, such as external calibration and standard addition, have been discussed with respect to their application in materials science. The application of isotope dilution in solution-based calibration for trace metal determination in small amounts of noble metals has been developed as a new calibration strategy. This review discusses new

  6. A thermodynamic framework for thermo-chemo-elastic interactions in chemically active materials

    NASA Astrophysics Data System (ADS)

    Zhang, XiaoLong; Zhong, Zheng

    2017-08-01

    In this paper, a general thermodynamic framework is developed to describe the thermo-chemo-mechanical interactions in elastic solids undergoing mechanical deformation, imbibition of diffusive chemical species, chemical reactions and heat exchanges. Fully coupled constitutive relations and evolving laws for irreversible fluxes are provided based on entropy imbalance and stoichiometry that governs reactions. The framework manifests itself with a special feature that the change of Helmholtz free energy is attributed to separate contributions of the diffusion-swelling process and chemical reaction-dilation process. Both the extent of reaction and the concentrations of diffusive species are taken as independent state variables, which describe the reaction-activated responses with underlying variation of microstructures and properties of a material in an explicit way. A specialized isothermal formulation for isotropic materials is proposed that can properly account for volumetric constraints from material incompressibility under chemo-mechanical loadings, in which inhomogeneous deformation is associated with reaction and diffusion under various kinetic time scales. This framework can be easily applied to model the transient volumetric swelling of a solid caused by imbibition of external chemical species and simultaneous chemical dilation arising from reactions between the diffusing species and the solid.

  7. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD). This image is from a digital still camera; higher resolution is not available.

  8. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, and TBD). This composite is from a digital still camera; higher resolution is not available.

  9. Chemical Sciences and Engineering - US China Electric Vehicle and Battery

    Science.gov Websites

    Technology Workshop Argonne National Laboratory Chemical Sciences & Engineering DOE Logo Photo Gallery Hotels Maps Bus Schedule Contact Us TCS Building and Conference Center, Argonne National Lab TCS Building and Conference Center United States Flag China flag 2011 U.S.-China Electric Vehicle

  10. Teachers' Use of Educative Curriculum Materials to Engage Students in Science Practices

    ERIC Educational Resources Information Center

    Arias, Anna Maria; Davis, Elizabeth A.; Marino, John-Carlos; Kademian, Sylvie M.; Palincsar, Annemarie Sullivan

    2016-01-01

    New reform documents underscore the importance of integrating science practices into the learning of science. This integration requires sophisticated teaching that does not often happen. Educative curriculum materials--materials explicitly designed to support teacher and student learning--have been posited as a way to support teachers to achieve…

  11. New applications of particle accelerators in medicine, materials science, and industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp, E.A.

    1981-01-01

    Recently, the application of particle accelerators to medicine, materials science, and other industrial uses has increased dramatically. A random sampling of some of these new programs is discussed, primarily to give the scope of these new applications. The three areas, medicine, materials science or solid-state physics, and industrial applications, are chosen for their diversity and are representative of new accelerator applications for the future.

  12. Green Toxicology: a strategy for sustainable chemical and material development.

    PubMed

    Crawford, Sarah E; Hartung, Thomas; Hollert, Henner; Mathes, Björn; van Ravenzwaay, Bennard; Steger-Hartmann, Thomas; Studer, Christoph; Krug, Harald F

    2017-01-01

    Green Toxicology refers to the application of predictive toxicology in the sustainable development and production of new less harmful materials and chemicals, subsequently reducing waste and exposure. Built upon the foundation of "Green Chemistry" and "Green Engineering", "Green Toxicology" aims to shape future manufacturing processes and safe synthesis of chemicals in terms of environmental and human health impacts. Being an integral part of Green Chemistry, the principles of Green Toxicology amplify the role of health-related aspects for the benefit of consumers and the environment, in addition to being economical for manufacturing companies. Due to the costly development and preparation of new materials and chemicals for market entry, it is no longer practical to ignore the safety and environmental status of new products during product development stages. However, this is only possible if toxicologists and chemists work together early on in the development of materials and chemicals to utilize safe design strategies and innovative in vitro and in silico tools. This paper discusses some of the most relevant aspects, advances and limitations of the emergence of Green Toxicology from the perspective of different industry and research groups. The integration of new testing methods and strategies in product development, testing and regulation stages are presented with examples of the application of in silico, omics and in vitro methods. Other tools for Green Toxicology, including the reduction of animal testing, alternative test methods, and read-across approaches are also discussed.

  13. Deciphering chemical order/disorder and material properties at the single-atom level.

    PubMed

    Yang, Yongsoo; Chen, Chien-Chun; Scott, M C; Ophus, Colin; Xu, Rui; Pryor, Alan; Wu, Li; Sun, Fan; Theis, Wolfgang; Zhou, Jihan; Eisenbach, Markus; Kent, Paul R C; Sabirianov, Renat F; Zeng, Hao; Ercius, Peter; Miao, Jianwei

    2017-02-01

    Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling 'real' materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily on average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. This work combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure-property relationships at the fundamental level.

  14. Deciphering chemical order/disorder and material properties at the single-atom level

    DOE PAGES

    Yang, Yongsoo; Chen, Chien-Chun; Scott, M. C.; ...

    2017-02-01

    Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling ‘real’ materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily onmore » average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. The work presented here combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure–property relationships at the fundamental level.« less

  15. Materials processing in space, 1980 science planning document. [crystal growth, containerless processing, solidification, bioprocessing, and ultrahigh vacuum processes

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1980-01-01

    The scientific aspects of the Materials Processing in Space program are described with emphasis on the major categories of interest: (1) crystal growth; (2) solidification of metals, alloys, and composites; (3) fluids and chemical processes; (4) containerless processing, glasses, and refractories; (5) ultrahigh vacuum processes; and (6) bioprocessing. An index is provided for each of these areas. The possible contributions that materials science experiments in space can make to the various disciplines are summarized, and the necessity for performing experiments in space is justified. What has been learned from previous experiments relating to space processing, current investigations, and remaining issues that require resolution are discussed. Recommendations for the future direction of the program are included.

  16. Fast Atomic-Scale Chemical Imaging of Crystalline Materials and Dynamic Phase Transformations.

    PubMed

    Lu, Ping; Yuan, Ren Liang; Ihlefeld, Jon F; Spoerke, Erik David; Pan, Wei; Zuo, Jian Min

    2016-04-13

    Atomic-scale phenomena fundamentally influence materials form and function that makes the ability to locally probe and study these processes critical to advancing our understanding and development of materials. Atomic-scale chemical imaging by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) is a powerful approach to investigate solid crystal structures. Inefficient X-ray emission and collection, however, require long acquisition times (typically hundreds of seconds), making the technique incompatible with electron-beam sensitive materials and study of dynamic material phenomena. Here we describe an atomic-scale STEM-EDS chemical imaging technique that decreases the acquisition time to as little as one second, a reduction of more than 100 times. We demonstrate this new approach using LaAlO3 single crystal and study dynamic phase transformation in beam-sensitive Li[Li0.2Ni0.2Mn0.6]O2 (LNMO) lithium ion battery cathode material. By capturing a series of time-lapsed chemical maps, we show for the first time clear atomic-scale evidence of preferred Ni-mobility in LNMO transformation, revealing new kinetic mechanisms. These examples highlight the potential of this approach toward temporal, atomic-scale mapping of crystal structure and chemistry for investigating dynamic material phenomena.

  17. The Effectiveness of Guided Inquiry-based Learning Material on Students’ Science Literacy Skills

    NASA Astrophysics Data System (ADS)

    Aulia, E. V.; Poedjiastoeti, S.; Agustini, R.

    2018-01-01

    The purpose of this research is to describe the effectiveness of guided inquiry-based learning material to improve students’ science literacy skills on solubility and solubility product concepts. This study used Research and Development (R&D) design and was implemented to the 11th graders of Muhammadiyah 4 Senior High School Surabaya in 2016/2017 academic year with one group pre-test and post-test design. The data collection techniques used were validation, observation, test, and questionnaire. The results of this research showed that the students’ science literacy skills are different after implementation of guided inquiry-based learning material. The guided inquiry-based learning material is effective to improve students’ science literacy skills on solubility and solubility product concepts by getting N-gain score with medium and high category. This improvement caused by the developed learning material such as lesson plan, student worksheet, and science literacy skill tests were categorized as valid and very valid. In addition, each of the learning phases in lesson plan has been well implemented. Therefore, it can be concluded that the guided inquiry-based learning material are effective to improve students’ science literacy skills on solubility and solubility product concepts in senior high school.

  18. Basic Energy Sciences FY 2011 Research Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  19. Material science lesson from the biological photosystem.

    PubMed

    Kim, Younghye; Lee, Jun Ho; Ha, Heonjin; Im, Sang Won; Nam, Ki Tae

    2016-01-01

    Inspired by photosynthesis, artificial systems for a sustainable energy supply are being designed. Each sequential energy conversion process from light to biomass in natural photosynthesis is a valuable model for an energy collection, transport and conversion system. Notwithstanding the numerous lessons of nature that provide inspiration for new developments, the features of natural photosynthesis need to be reengineered to meet man's demands. This review describes recent strategies toward adapting key lessons from natural photosynthesis to artificial systems. We focus on the underlying material science in photosynthesis that combines photosystems as pivotal functional materials and a range of materials into an integrated system. Finally, a perspective on the future development of photosynthesis mimetic energy systems is proposed.

  20. Free Teaching Materials: Classroom and Curriculum Aids for Elementary School Science.

    ERIC Educational Resources Information Center

    Raimist, Roger J.; Mester, Rose A.

    Free teaching materials suitable for elementary school science available from 168 agencies and companies are listed. Materials include booklets, teacher's source books and guides, charts and posters, and concrete materials such as mineral samples. Suggestions and materials for student activities range from experiments to song sheets. Topics…

  1. Methods of chemically converting first materials to second materials utilizing hybrid-plasma systems

    DOEpatents

    Kong, Peter C.; Grandy, Jon D.

    2002-01-01

    In one aspect, the invention encompasses a method of chemically converting a first material to a second material. A first plasma and a second plasma are formed, and the first plasma is in fluid communication with the second plasma. The second plasma comprises activated hydrogen and oxygen, and is formed from a water vapor. A first material is flowed into the first plasma to at least partially ionize at least a portion of the first material. The at least partially ionized first material is flowed into the second plasma to react at least some components of the first material with at least one of the activated hydrogen and activated oxygen. Such converts at least some of the first material to a second material. In another aspect, the invention encompasses a method of forming a synthetic gas by flowing a hydrocarbon-containing material into a hybrid-plasma system. In yet another aspect, the invention encompasses a method of degrading a hydrocarbon-containing material by flowing such material into a hybrid-plasma system. In yet another aspect, the invention encompasses a method of releasing an inorganic component of a complex comprising the inorganic component and an other component, wherein the complex is flowed through a hybrid-plasma system.

  2. Overview of the US Fusion Materials Sciences Program

    NASA Astrophysics Data System (ADS)

    Zinkle, Steven

    2004-11-01

    The challenging fusion reactor environment (radiation, heat flux, chemical compatibility, thermo-mechanical stresses) requires utilization of advanced materials to fulfill the promise of fusion to provide safe, economical, and environmentally acceptable energy. This presentation reviews recent experimental and modeling highlights on structural materials for fusion energy. The materials requirements for fusion will be compared with other demanding technologies, including high temperature turbine components, proposed Generation IV fission reactors, and the current NASA space fission reactor project to explore the icy moons of Jupiter. A series of high-performance structural materials have been developed by fusion scientists over the past ten years with significantly improved properties compared to earlier materials. Recent advances in the development of high-performance ferritic/martensitic and bainitic steels, nanocomposited oxide dispersion strengthened ferritic steels, high-strength V alloys, improved-ductility Mo alloys, and radiation-resistant SiC composites will be reviewed. Multiscale modeling is providing important insight on radiation damage and plastic deformation mechanisms and fracture mechanics behavior. Electron microscope in-situ straining experiments are uncovering fundamental physical processes controlling deformation in irradiated metals. Fundamental modeling and experimental studies are determining the behavior of transmutant helium in metals, enabling design of materials with improved resistance to void swelling and helium embrittlement. Recent chemical compatibility tests have identified promising new candidates for magnetohydrodynamic insulators in lithium-cooled systems, and have established the basic compatibility of SiC with Pb-Li up to high temperature. Research on advanced joining techniques such as friction stir welding will be described. ITER materials research will be briefly summarized.

  3. Pre-Service Science Teachers Views on STEM Materials and STEM Competition in Instructional Technologies and Material Development Course

    ERIC Educational Resources Information Center

    Cetin, Ali; Balta, Nuri

    2017-01-01

    This qualitative study was designed to introduce STEM (Science, Technology, Engineering, Mathematics) activities to preservice science teachers and identify their views about STEM materials. In this context, a competition was organized with 42 preservice science teachers (13 male- 29 female) who took Instructional Technologies and Material…

  4. High Temperature Materials for Chemical Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Elam, Sandra; Hickman, Robert; O'Dell, Scott

    2007-01-01

    Radiation or passively cooled thrust chambers are used for a variety of chemical propulsion functions including apogee insertion, reaction control for launch vehicles, and primary propulsion for planetary spacecraft. The performance of these thrust chambers is limited by the operating temperature of available materials. Improved oxidation resistance and increased operating temperatures can be achieved with the use of thermal barrier coatings such as zirconium oxide (ZrO2) and hafnium oxide (HfO2). However, previous attempts to include these materials showed cracking and spalling of the oxide layer due to poor bonding. Current research at NASA's Marshall Space Flight Center (MSFC) has generated unique, high temperature material options for in-space thruster designs that are capable of up to 2500 C operating temperatures. The research is focused on fabrication technologies to form low cost Iridium,qF_.henium (Ir/Re) components with a ceramic hot wall created as an integral, functionally graded material (FGM). The goal of this effort is to further de?celop proven technologies for embedding a protective ceramic coating within the Ir/Re liner to form a robust functional gradient material. Current work includes the fabrication and testing of subscale samples to evaluate tensile, creep, thermal cyclic/oxidation, and thermophysical material properties. Larger test articles have also being fabricated and hot-fire tested to demonstrate the materials in prototype thrusters at 1O0 lbf thrust levels.

  5. Natural plant chemicals: source of industrial and medicinal materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balandrin, M.F.; Klocke, J.A.; Wurtele, E.S.

    1985-01-01

    Many higher plants produce economically important organic compounds such as oils, resins, tannins, natural rubber, gums, waxes, dyes, flavors and fragrances, pharmaceuticals, and pesticides. However, most species of higher plants have never been described, much less surveyed for chemical or biologically active constituents, and new sources of commercially valuable materials remain to be discovered. Advances in biotechnology, particularly methods for culturing plants cells and tissues, should provide new means for the commercial processing of even rare plants and the chemicals they produce. These new technologies will extend and enhance the usefulness of plants as renewable resources of valuable chemicals. Inmore » the future, biologically active plant-derived chemicals can be expected to play an increasingly significant role in the commercial development of new products for regulating plant growth and for insect and weed control. 65 references.« less

  6. Towards Cluster-Assembled Materials of True Monodispersity in Size and Chemical Environment: Synthesis, Dynamics and Activity

    DTIC Science & Technology

    2016-10-27

    AFRL-AFOSR-UK-TR-2016-0037 Towards cluster-assembled materials of true monodispersity in size and chemical environment: Synthesis, Dynamics and...Towards cluster-assembled materials of true monodispersity in size and chemical environment: synthesis, dynamics and activity 5a.  CONTRACT NUMBER 5b...report Towards cluster-assembled materials of true monodispersity in size and chemical environment: Synthesis, Dynamics and Activity Ulrich Heiz

  7. Teachers and Science Curriculum Materials: Where We Are and Where We Need to Go

    ERIC Educational Resources Information Center

    Davis, Elizabeth A.; Janssen, Fred J. J. M.; Van Driel, Jan H.

    2016-01-01

    Curriculum materials serve as a key conceptual tool for science teachers, and better understanding how science teachers use these tools could help to improve both curriculum design and theory related to teacher learning and decision-making. The authors review the literature on teachers and science curriculum materials. The review is organised…

  8. Five experiments in materials science for less than $10.00

    NASA Technical Reports Server (NTRS)

    Spiegel, F. Xavier

    1992-01-01

    Diffusion, twinning, fatigue, acoustic emission, and aging can be studied using readily available materials and the household oven. Each experiment can be expanded to a more extensive investigation of the properties of the material investigated, as well as other materials, and offers an opportunity for the student to learn about the relationship between engineering, science, society, and politics.

  9. Content analysis of science material in junior school-based inquiry and science process skills

    NASA Astrophysics Data System (ADS)

    Patonah, S.; Nuvitalia, D.; Saptaningrum, E.

    2018-03-01

    The purpose of this research is to obtain the characteristic map of science material content in Junior School which can be optimized using inquiry learning model to tone the science process skill. The research method used in the form of qualitative research on SMP science curriculum document in Indonesia. Documents are reviewed on the basis of the basic competencies of each level as well as their potential to trace the skills of the science process using inquiry learning models. The review was conducted by the research team. The results obtained, science process skills in grade 7 have the potential to be trained using the model of inquiry learning by 74%, 8th grade by 83%, and grade 9 by 75%. For the dominant process skills in each chapter and each level is the observing skill. Follow-up research is used to develop instructional inquiry tools to trace the skills of the science process.

  10. Teaching General Chemistry: A Materials Science Companion.

    ERIC Educational Resources Information Center

    Ellis, Arthur B.; And Others

    Many teachers and other educators have expressed a concern regarding the lack of student interest in many of the traditional science courses. To help rectify this problem a collaborative effort among educators and others concerned has led to the development of instructional materials that are more relevant to the lives of students. This document…

  11. Elementary Students' Learning of Materials Science Practices Through Instruction Based on Engineering Design Tasks

    NASA Astrophysics Data System (ADS)

    Wendell, Kristen Bethke; Lee, Hee-Sun

    2010-12-01

    Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine students who participated in engineering design-based science instruction with the goal of constructing a stable, quiet, thermally comfortable model house. The learning outcome of materials science practices was assessed by clinical interviews conducted before and after the instruction, and the learning process was assessed by students' workbooks completed during the instruction. The interviews included two materials selection tasks for designing a sturdy stepstool and an insulated pet habitat. Results indicate that: (1) students significantly improved on both materials selection tasks, (2) their gains were significantly positively associated with the degree of completion of their workbooks, and (3) students who were highly engaged with the workbook's reflective record-keeping tasks showed the greatest improvement on the interviews. These findings suggest the important role workbooks can play in facilitating elementary students' learning of science through authentic activity such as engineering design.

  12. Virtual Laboratory as an Element of Visualization When Teaching Chemical Contents in Science Class

    ERIC Educational Resources Information Center

    Herga, Nataša Rizman; Grmek, Milena Ivanuš; Dinevski, Dejan

    2014-01-01

    Using a variety of visualization tools for teaching and learning science and chemistry is necessary because pupils better understand chemical phenomena and formulate appropriate mental models. The purpose of the presented study was to determine the importance of a virtual laboratory as a visualization element when addressing chemical contents…

  13. Multimodal hard x-ray imaging with resolution approaching 10 nm for studies in material science

    NASA Astrophysics Data System (ADS)

    Yan, Hanfei; Bouet, Nathalie; Zhou, Juan; Huang, Xiaojing; Nazaretski, Evgeny; Xu, Weihe; Cocco, Alex P.; Chiu, Wilson K. S.; Brinkman, Kyle S.; Chu, Yong S.

    2018-03-01

    We report multimodal scanning hard x-ray imaging with spatial resolution approaching 10 nm and its application to contemporary studies in the field of material science. The high spatial resolution is achieved by focusing hard x-rays with two crossed multilayer Laue lenses and raster-scanning a sample with respect to the nanofocusing optics. Various techniques are used to characterize and verify the achieved focus size and imaging resolution. The multimodal imaging is realized by utilizing simultaneously absorption-, phase-, and fluorescence-contrast mechanisms. The combination of high spatial resolution and multimodal imaging enables a comprehensive study of a sample on a very fine length scale. In this work, the unique multimodal imaging capability was used to investigate a mixed ionic-electronic conducting ceramic-based membrane material employed in solid oxide fuel cells and membrane separations (compound of Ce0.8Gd0.2O2‑x and CoFe2O4) which revealed the existence of an emergent material phase and quantified the chemical complexity at the nanoscale.

  14. Computation material science of structural-phase transformation in casting aluminium alloys

    NASA Astrophysics Data System (ADS)

    Golod, V. M.; Dobosh, L. Yu

    2017-04-01

    Successive stages of computer simulation the formation of the casting microstructure under non-equilibrium conditions of crystallization of multicomponent aluminum alloys are presented. On the basis of computer thermodynamics and heat transfer during solidification of macroscale shaped castings are specified the boundary conditions of local heat exchange at mesoscale modeling of non-equilibrium formation the solid phase and of the component redistribution between phases during coalescence of secondary dendrite branches. Computer analysis of structural - phase transitions based on the principle of additive physico-chemical effect of the alloy components in the process of diffusional - capillary morphological evolution of the dendrite structure and the o of local dendrite heterogeneity which stochastic nature and extent are revealed under metallographic study and modeling by the Monte Carlo method. The integrated computational materials science tools at researches of alloys are focused and implemented on analysis the multiple-factor system of casting processes and prediction of casting microstructure.

  15. Deconstructing the Constructed Experience: Reforming Science Materials to Develop Creativity

    ERIC Educational Resources Information Center

    Goodale, Timothy A.; Hughes, Claire E.

    2018-01-01

    For over 50 years, science educators have been calling for increased opportunities for students to engage with science in creative manners, but teachers are still reliant on packaged materials that promote single and 'correct' responses with cookbook approaches. This article suggests five strategies that teachers can use to enhance constructed…

  16. Basic Energy Sciences FY 2012 Research Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  17. Basic Energy Sciences FY 2014 Research Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  18. STANDARD REFERENCE MATERIALS FOR THE POLYMERS INDUSTRY.

    PubMed

    McDonough, Walter G; Orski, Sara V; Guttman, Charles M; Migler, Kalman D; Beers, Kathryn L

    2016-01-01

    The National Institute of Standards and Technology (NIST) provides science, industry, and government with a central source of well-characterized materials certified for chemical composition or for some chemical or physical property. These materials are designated Standard Reference Materials ® (SRMs) and are used to calibrate measuring instruments, to evaluate methods and systems, or to produce scientific data that can be referred readily to a common base. In this paper, we discuss the history of polymer based SRMs, their current status, and challenges and opportunities to develop new standards to address industrial measurement challenges.

  19. Thermal and Chemical Characterization of Non-Metallic Materials Using Coupled Thermogravimetric Analysis and Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Huff, Timothy L.

    2002-01-01

    Thermogravimetric analysis (TGA) is widely employed in the thermal characterization of non-metallic materials, yielding valuable information on decomposition characteristics of a sample over a wide temperature range. However, a potential wealth of chemical information is lost during the process, with the evolving gases generated during thermal decomposition escaping through the exhaust line. Fourier Transform-Infrared spectroscopy (FT-IR) is a powerful analytical technique for determining many chemical constituents while in any material state, in this application, the gas phase. By linking these two techniques, evolving gases generated during the TGA process are directed into an appropriately equipped infrared spectrometer for chemical speciation. Consequently, both thermal decomposition and chemical characterization of a material may be obtained in a single sample run. In practice, a heated transfer line is employed to connect the two instruments while a purge gas stream directs the evolving gases into the FT-IR. The purge gas can be either high purity air or an inert gas such as nitrogen to allow oxidative and pyrolytic processes to be examined, respectively. The FT-IR data is collected realtime, allowing continuous monitoring of chemical compositional changes over the course of thermal decomposition. Using this coupled technique, an array of diverse materials has been examined, including composites, plastics, rubber, fiberglass epoxy resins, polycarbonates, silicones, lubricants and fluorocarbon materials. The benefit of combining these two methodologies is of particular importance in the aerospace community, where newly developing materials have little available data with which to refer. By providing both thermal and chemical data simultaneously, a more definitive and comprehensive characterization of the material is possible. Additionally, this procedure has been found to be a viable screening technique for certain materials, with the generated data useful in

  20. Thermal and Chemical Characterization of Non-metallic Materials Using Coupled Thermogravimetric Analysis and Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Huff, Timothy L.; Griffin, Dennis E. (Technical Monitor)

    2001-01-01

    Thermogravimetric analysis (TGA) is widely employed in the thermal characterization of non-metallic materials, yielding valuable information on decomposition characteristics of a sample over a wide temperature range. However, a potential wealth of chemical information is lost during the process, with the evolving gases generated during thermal decomposition escaping through the exhaust line. Fourier Transform-Infrared spectroscopy (FT-IR) is a powerful analytical technique for determining many chemical constituents while in any material state, in this application, the gas phase. By linking these two techniques, evolving gases generated during the TGA process are directed into an appropriately equipped infrared spectrometer for chemical speciation. Consequently, both thermal decomposition and chemical characterization of a material may be obtained in a single sample run. In practice, a heated transfer line is employed to connect the two instruments while a purge gas stream directs the evolving gases into the FT-IR, The purge gas can be either high purity air or an inert gas such as nitrogen to allow oxidative and pyrolytic processes to be examined, respectively. The FT-IR data is collected real-time, allowing continuous monitoring of chemical compositional changes over the course of thermal decomposition. Using this coupled technique, an array of diverse materials has been examined, including composites, plastics, rubber, fiberglass epoxy resins, polycarbonates, silicones, lubricants and fluorocarbon materials. The benefit of combining these two methodologies is of particular importance in the aerospace community, where newly developing materials have little available data with which to refer. By providing both thermal and chemical data simultaneously, a more definitive and comprehensive characterization of the material is possible. Additionally, this procedure has been found to be a viable screening technique for certain materials, with the generated data useful in

  1. Materials ``alchemy'': Shape-preserving chemical transformation of micro-to-macroscopic 3-D structures

    NASA Astrophysics Data System (ADS)

    Sandhage, Kenneth H.

    2010-06-01

    The scalable fabrication of nano-structured materials with complex morphologies and tailorable chemistries remains a significant challenge. One strategy for such synthesis consists of the generation of a solid structure with a desired morphology (a “preform”), followed by reactive conversion of the preform into a new chemistry. Several gas/solid and liquid/solid reaction processes that are capable of such chemical conversion into new micro-to-nano-structured materials, while preserving the macroscopic-to-microscopic preform morphologies, are described in this overview. Such shape-preserving chemical transformation of one material into another could be considered a modern type of materials “alchemy.”

  2. Transmission/Scanning Transmission Electron Microscopy | Materials Science

    Science.gov Websites

    imaging such as high resolution TEM. Transmission electron diffraction patterns help to determine the microstructure of a material and its defects. Phase-contrast imaging or high-resolution (HR) TEM imaging gives high scattering angle can be collected to form high-resolution, chemically sensitive, atomic number (Z

  3. Ukrainian Program for Material Science in Microgravity

    NASA Astrophysics Data System (ADS)

    Fedorov, Oleg

    Ukrainian Program for Material Sciences in Microgravity O.P. Fedorov, Space Research Insti-tute of NASU -NSAU, Kyiv, The aim of the report is to present previous and current approach of Ukrainian research society to the prospect of material sciences in microgravity. This approach is based on analysis of Ukrainian program of research in microgravity, preparation of Russian -Ukrainian experiments on Russian segment of ISS and development of new Ukrainian strategy of space activity for the years 2010-2030. Two parts of issues are discussed: (i) the evolution of our views on the priorities in microgravity research (ii) current experiments under preparation and important ground-based results. item1 The concept of "space industrialization" and relevant efforts in Soviet and post -Soviet Ukrainian research institutions are reviewed. The main topics are: melt supercooling, crystal growing, testing of materials, electric welding and study of near-Earth environment. The anticipated and current results are compared. item 2. The main experiments in the framework of Ukrainian-Russian Research Program for Russian Segment of ISS are reviewed. Flight installations under development and ground-based results of the experiments on directional solidification, heat pipes, tribological testing, biocorrosion study is presented. Ground-based experiments and theoretical study of directional solidification of transparent alloys are reviewed as well as preparation of MORPHOS installation for study of succinonitrile -acetone in microgravity.

  4. Elementary Students' Learning of Materials Science Practices through Instruction Based on Engineering Design Tasks

    ERIC Educational Resources Information Center

    Wendell, Kristen Bethke; Lee, Hee-Sun

    2010-01-01

    Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine…

  5. An Overview of the History of Library Science Teaching Materials.

    ERIC Educational Resources Information Center

    Metzger, Philip A.

    1986-01-01

    This introduction to, and overview of, history of library science instructional materials covers the Williamson Report, teaching materials from early Columbia days onward, American Library Association book publishing activity, media in curricula and library school publication of syllabi, commercial publishing of textbooks, and periodicals in…

  6. Pulsed Neutron Powder Diffraction for Materials Science

    NASA Astrophysics Data System (ADS)

    Kamiyama, T.

    2008-03-01

    fully funded by Ibaraki prefecture for the promotion of new industries based on advanced science and technologies. It is for the first time in neutron facilities in Japan that a prefecture owns neutron instruments as well as neutron beam will be provided widely to industrial users. To make it successful, the user system is quite important because those users are expected to use IPD like chemical analyzers in their materials development process. Based on questionnaire data to several hundreds industries, IPD is designed as a versatile diffractometer including texture measurement, small angle scattering and total scattering as well as usual powder diffraction. IPD covers d range 0.15materials with the highest resolution of Δd/d = 0.2% (corresponding to 10˜5 to 10˜6 strain precision). The typical gauge volume will be 1 mm3. JED has transmission

  7. Computational Materials Science | Materials Science | NREL

    Science.gov Websites

    of water splitting and fuel cells Nanoparticles for thermal storage New Materials for High-Capacity Theoretical Methodologies for Studying Complex Materials Contact Stephan Lany Staff Scientist Dr. Lany is a

  8. An Interdisciplinary Program in Materials Science at James Madison University.

    NASA Astrophysics Data System (ADS)

    Hughes, Chris

    2008-03-01

    Over the past decade a core group of faculty at James Madison University has created an interdisciplinary program in materials science that provides our students with unique courses and research experiences that augment the existing, high-quality majors in physics and astronomy, chemistry and biochemistry, geology and environmental science, mathematics and statistics, and integrated science and technology. The university started this program by creating a Center for Materials Science whose budget is directly allocated by the provost. This source of funds acts as seed money for research, support for students, and a motivating factor for each of the academic units to support the participation of their faculty in the program. Courses were created at the introductory and intermediate level that are cross-listed by the departments to encourage students to enroll in them as electives toward their majors. Furthermore, the students are encouraged to participate in undergraduate research in materials since this is the most fundamental unifying theme across the disciplines. This talk will cover some of the curricular innovations that went into the design of the program to make it successful, examples of faculty and student research and how that feeds back into the classroom, and success stories of the interactions that have developed between departments because of this program. Student outcomes and future plans to improve the program will also be discussed.

  9. Teleconferences and Audiovisual Materials in Earth Science Education

    NASA Astrophysics Data System (ADS)

    Cortina, L. M.

    2007-05-01

    Unidad de Educacion Continua y a Distancia, Universidad Nacional Autonoma de Mexico, Coyoaca 04510 Mexico, MEXICO As stated in the special session description, 21st century undergraduate education has access to resources/experiences that go beyond university classrooms. However in some cases, resources may go largely unused and a number of factors may be cited such as logistic problems, restricted internet and telecommunication service access, miss-information, etc. We present and comment on our efforts and experiences at the National University of Mexico in a new unit dedicated to teleconferences and audio-visual materials. The unit forms part of the geosciences institutes, located in the central UNAM campus and campuses in other States. The use of teleconference in formal graduate and undergraduate education allows teachers and lecturers to distribute course material as in classrooms. Course by teleconference requires learning and student and teacher effort without physical contact, but they have access to multimedia available to support their exhibition. Well selected multimedia material allows the students to identify and recognize digital information to aid understanding natural phenomena integral to Earth Sciences. Cooperation with international partnerships providing access to new materials and experiences and to field practices will greatly add to our efforts. We will present specific examples of the experiences that we have at the Earth Sciences Postgraduate Program of UNAM with the use of technology in the education in geosciences.

  10. Physics and Chemistry of Earth Materials

    NASA Astrophysics Data System (ADS)

    Navrotsky, Alexandra

    1994-11-01

    Stressing the fundamental solid state behavior of minerals, and emphasizing both theory and experiment, this text surveys the physics and chemistry of earth materials. The author begins with a systematic tour of crystal chemistry of both simple and complex structures (with completely new structural drawings) and discusses how to obtain structural and thermodynamic information experimentally. Dr. Navrotsky also reviews the quantitative concepts of chemical bonding--band theory, molecular orbit and ionic models. She then covers physical properties and relates microscopic features to macroscopic thermodynamic behavior and treats high pressure phase transitions, amorphous materials and solid state reactions. The author concludes with a look at the interface between mineral physics and materials science. Highly illustrated throughout, this book fills the gap between undergraduate texts and specialized review volumes and is appropriate for students and researchers in earth science and materials science.

  11. Marginalization of Socioscientific Material in Science-Technology-Society Science Curricula: Some Implications for Gender Inclusivity and Curriculum Reform

    NASA Astrophysics Data System (ADS)

    Hughes, Gwyneth

    2000-05-01

    Science education reformers have argued that presenting science in the abstract is neither motivating nor inclusive of the majority of students. Science-technology-society (STS) curricula that give science an accessible social context have developed in response, but controversy surrounds the extent to which students should be introduced to socioscientific debate. Using material from a case study of Salters' Advanced Chemistry in the United Kingdom, this article demonstrates how socioscientific material is marginalized through the structures and language of syllabus texts and through classroom practices. This means students are unlikely to engage with socioscientific aspects in their course. Socioscientific content is gendered through association with social concerns and epistemological uncertainty, and because gender is asymmetric, socioscience is devalued with respect to the masculinity of abstract science. Teachers fear that extensive coverage of socioscience devalues the curriculum, alienates traditional science students and jeopardizes their own status as gatekeepers of scientific knowledge. Thus, although STS curricula such as Salters' offer potential for making science more accessible, the article concludes that greater awareness of, and challenges to, gender binaries could result in more effective STS curriculum reform.

  12. Applications of synchrotron radiation to materials science: Diffraction imaging (topography) and microradiography

    NASA Technical Reports Server (NTRS)

    Kuriyama, Masao

    1988-01-01

    Synchrotron radiation sources are now available throughout the world. The use of hard X-ray radiation from these sources for materials science is described with emphasis on diffraction imaging for material characterization. With the availability of synchrotron radiation, real-time in situ measurements of dynamic microstructural phenomena have been started. This is a new area where traditional application of X-rays has been superseded. Examples are chosen from limited areas and are by no means exhaustive. The new emerging information will, no doubt, have great impact on materials science and engineering.

  13. Superior material qualities and transport properties of InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ya-Chao, Zhang; Xiao-Wei, Zhou; Sheng-Rui, Xu; Da-Zheng, Chen; Zhi-Zhe, Wang; Xing, Wang; Jin-Feng, Zhang; Jin-Cheng, Zhang; Yue, Hao

    2016-01-01

    Pulsed metal organic chemical vapor deposition is introduced into the growth of InGaN channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy imaging shows the phase separation free InGaN channel with smooth and abrupt interface. A very high two-dimensional electron gas density of approximately 1.85 × 1013 cm-2 is obtained due to the superior carrier confinement. In addition, the Hall mobility reaches 967 cm2/V·s, owing to the suppression of interface roughness scattering. Furthermore, temperature-dependent Hall measurement results show that InGaN channel heterostructure possesses a steady two-dimensional electron gas density over the tested temperature range, and has superior transport properties at elevated temperatures compared with the traditional GaN channel heterostructure. The gratifying results imply that InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition is a promising candidate for microwave power devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 61306017, 61334002, 61474086, and 11435010) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61306017).

  14. First Materials Science Research Facility Rack Capabilities and Design Features

    NASA Technical Reports Server (NTRS)

    Cobb, S.; Higgins, D.; Kitchens, L.; Curreri, Peter (Technical Monitor)

    2002-01-01

    The first Materials Science Research Rack (MSRR-1) is the primary facility for U.S. sponsored materials science research on the International Space Station. MSRR-1 is contained in an International Standard Payload Rack (ISPR) equipped with the Active Rack Isolation System (ARIS) for the best possible microgravity environment. MSRR-1 will accommodate dual Experiment Modules and provide simultaneous on-orbit processing operations capability. The first Experiment Module for the MSRR-1, the Materials Science Laboratory (MSL), is an international cooperative activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center (ESTEC). The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts which provide distinct thermal processing capabilities. Module Inserts currently planned for the MSL are a Quench Module Insert, Low Gradient Furnace, and a Solidification with Quench Furnace. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Development (SPD) Group. Transparent furnace assemblies include capabilities for vapor transport processes and annealing of glass fiber preforms. This Experiment Module is replaceable on-orbit. This paper will describe facility capabilities, schedule to flight and research opportunities.

  15. The U.S. Chemical Industry, the Raw Materials It Uses

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1972

    1972-01-01

    The raw materials used by the industry are considered in this section of the annual chemical industry report, including data covering: natural gas, lead, mercury, phosphate rock, potash, salt, petroleum products including petrochemical feedstocks. (PR)

  16. Multiscale Materials Science - A Mathematical Approach to the Role of Defects and Uncertainty

    DTIC Science & Technology

    2016-10-28

    AFRL-AFOSR-UK-TR-2016-0034 Multiscale materials science - a mathematical approach to the role of defects and uncertainty Claude Le Bris ECOLE...science - a mathematical approach to the role of defects and uncertainty 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA8655-13-1-3061 5c.  PROGRAM ELEMENT...1FORM SF 298 10/31/2016https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll Contract FA 8655-13-1-3061 Multiscale materials science: a mathematical

  17. Report on the WPI Conference: General Chemistry and Materials Science: The Interrelationships

    NASA Astrophysics Data System (ADS)

    Beall, Herbert

    1996-08-01

    Of the recent accomplishments of chemistry, some of the most spectacular have been in the area of materials. New miracle materials have revolutionized our lives in almost every aspect from semiconductors to metallic eyeglass frames that return to a "memorized" shape when bent. However, materials receive surprisingly little attention as examples of chemical phenomena in fundamental chemistry classes, which are still built largely on the behavior of gases and liquids. These issues were the basis for the Ninth Annual Worcester Polytechnic Institute Conference on Chemical Education. This article addresses the conference and the issues.

  18. Le Châtelier's conjecture: Measurement of colloidal eigenstresses in chemically reactive materials

    NASA Astrophysics Data System (ADS)

    Abuhaikal, Muhannad; Ioannidou, Katerina; Petersen, Thomas; Pellenq, Roland J.-M.; Ulm, Franz-Josef

    2018-03-01

    Volume changes in chemically reactive materials, such as hydrating cement, play a critical role in many engineering applications that require precise estimates of stress and pressure developments. But a means to determine bulk volume changes in the absence of other deformation mechanisms related to thermal, pressure and load variations, is still missing. Herein, we present such a measuring devise, and a hybrid experimental-theoretical technique that permits the determination of colloidal eigenstresses. Applied to cementitious materials, it is found that bulk volume changes in saturated cement pastes at constant pressure and temperature conditions result from a competition of repulsive and attractive phenomena that originate from the relative distance of the solid particles - much as Henry Louis Le Châtelier, the father of modern cement science, had conjectured in the late 19th century. Precipitation of hydration products in confined spaces entails a repulsion, whereas the concurrent reduction in interparticle distance entails activation of attractive forces in charged colloidal particles. This cross-over from repulsion to attraction can be viewed as a phase transition between a liquid state (below the solid percolation) and the limit packing of hard spheres, separated by an energy barrier that defines the temperature-dependent eigenstress magnitude.

  19. Material science and Condensed matter Physics. 8th International Conference. Abstracts.

    NASA Astrophysics Data System (ADS)

    Kulyuk, L. L.; Paladi, Florentin; Canter, Valeriu; Nikorich, Valentina; Filippova, Irina

    2016-08-01

    The book includes the abstracts of the communications presented at the 8th International Conference on Materials Science and Condensed Matter Physics (MSCMP 2016), a traditional biennial meeting organized by the Institute of Applied Physics of the Academy of Sciences of Moldova (IAP).A total of 346 abstracts has been included in the book. The Conference programm included plenary lectures, topical keynote lectures, contributed oral and poster presentations distributed into 7 sections: * Condensed Matter Theory; * Advanced Bulk Materials; * Design and Structural Characterization of Materials; * Solid State Nanophysics and Nanotechnology; * Energy Conversion and Storage. Solid State Devices; * Surface Engineering and Applied Electrochemistry; * Digital and Optical holography: Materials and Methods. The abstracts are arranged according to the sections mentioned above. The Abstracts book includes a table of matters at the beginning of the book and an index of authors at the finish of the book.

  20. Low Gravity Materials Science Research for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Semmes, Edmund B.; Schlagheck, Ronald A.; Bassler, Julie A.; Cook, Mary Beth; Wargo, Michael J.; Sanders, Gerald B.; Marzwell, Neville I.

    2004-01-01

    On January 14, 2004, the President of the United States announced a new vision for the United States civil space program. The Administrator of the National Aeronautics and Space Administration (NASA) has the responsibility to implement this new vision. The President also created a Presidential Commission 'to obtain recommendations concerning implementation of the new vision for space exploration.' The President's Commission recognized that achieving the exploration objectives would require significant technical innovation, research, and development in focal areas defined as 'enabling technologies.' Among the 17 enabling technologies identified for initial focus were advanced structures; advanced power and propulsion; closed-loop life support and habitability; extravehicular activity system; autonomous systems and robotics; scientific data collection and analysis; biomedical risk mitigation; and planetary in situ resource utilization. The Commission also recommended realignment of NASA Headquarters organizations to support the vision for space exploration. NASA has aggressively responded in its planning to support the vision for space exploration and with the current considerations of the findings and recommendations from the Presidential Commission. This presentation will examine the transformation and realignment activities to support the vision for space exploration that are underway in the microgravity materials science program. The heritage of the microgravity materials science program, in the context of residence within the organizational structure of the Office of Biological and Physical Research, and thematic and sub-discipline based research content areas, will be briefly examined as the starting point for the ongoing transformation. Overviews of future research directions will be presented and the status of organizational restructuring at NASA Headquarters, with respect to influences on the microgravity materials science program, will be discussed

  1. Materials Science Research | Materials Science | NREL

    Science.gov Websites

    Structure Theory We use high-performance computing to design and discover materials for energy, and to study structure of surfaces and critical interfaces. Images of red and yellow particles Materials Discovery Our by traditional targeted experiments. Photo of a stainless steel piece of equipment with multiple

  2. Inventory of Innovative Learning Materials in Marine Science and Technology. UNESCO Reports in Marine Science 60.

    ERIC Educational Resources Information Center

    Richards, Adrian F.; Richards, Efrosine A.

    The Inventory of Innovative Learning Materials in Marine Science and Technology includes 32 computer-, 148 video-, 16 film-, and 11 CD-ROM-based entries. They concern materials in biosciences (67), chemistry (5), geosciences (16), physics (23), technology (76) and other (20). This first, initial compilations is conceived as the basis for more…

  3. Fostering Student Sense Making in Elementary Science Learning Environments: Elementary Teachers' Use of Science Curriculum Materials to Promote Explanation Construction

    ERIC Educational Resources Information Center

    Zangori, Laura; Forbes, Cory T.; Biggers, Mandy

    2013-01-01

    While research has shown that elementary (K-5) students are capable of engaging in the scientific practice of explanation construction, commonly-used elementary science curriculum materials may not always afford them opportunities to do so. As a result, elementary teachers must often adapt their science curriculum materials to better support…

  4. On the evolving open peer review culture for chemical information science.

    PubMed

    Walters, W Patrick; Bajorath, Jürgen

    2015-01-01

    Compared to the traditional anonymous peer review process, open post-publication peer review provides additional opportunities -and challenges- for reviewers to judge scientific studies. In this editorial, we comment on the open peer review culture and provide some guidance for reviewers of manuscripts submitted to the Chemical Information Science channel of F1000Research.

  5. Insert Concepts for the Material Science Research Rack (MSRR-1) of the Material Science Research Facility (MSRF) on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Crouch, Myscha; Carswell, Bill; Farmer, Jeff; Rose, Fred; Tidwell, Paul

    2000-01-01

    The Material Science Research Rack I (MSRR-1) of the Material Science Research Facility (MSRF) contains an Experiment Module (EM) being developed collaboratively by NASA and the European Space Agency (ESA). This NASA/ESA EM will accommodate several different removable and replaceable Module Inserts (MIs) which are installed on orbit NASA's planned inserts include the Quench Module Insert (QMI) and the Diffusion Module Insert (DMI). The QMI is a high-gradient Bridgman-type vacuum furnace with quench capabilities used for experiments on directional solidification of metal alloys. The DMI is a vacuum Bridgman-Stockbarger-type furnace for experiments on Fickian and Soret diffusion in liquids. This paper discusses specific design features and performance capabilities of each insert. The paper also presents current prototype QMI hardware analysis and testing activities and selected results.

  6. Chemical Emissions of Residential Materials and Products: Review of Available Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willem, Henry; Singer, Brett

    2010-09-15

    This report is prepared in the context of a larger program whose mission is to advance understanding of ventilation and indoor air quality in U.S. homes. A specific objective of this program is to develop the scientific basis ? through controlled experiments, monitoring and analysis ? for health risk-based ventilation standards. Appropriate and adequate ventilation is a basic element of a healthy home. Ventilation provides outdoor air and in the process removes indoor odors and contaminants including potentially unhealthful chemicals emitted by indoor materials, products and activities. Ventilation traditionally was assured to occur via infiltration of outdoor air through cracksmore » and other leakage pathways in the residential building envelope. As building air tightness is improved for energy efficiency, infiltration can be reduced to inadequate levels. This has lead to the development of standards requiring mechanical ventilation. Though nominally intended to ensure acceptable indoor air quality, the standards are not explicitly tied to health risk or pollutant exposure targets. LBNL is currently designing analyses to assess the impact of varying ventilation standards on pollutant concentrations, health risks and energy use. These analyses require information on sources of chemical pollutant emissions, ideally including emission rates and the impact of ventilation on emissions. Some information can be obtained from recent studies that report measurements of various air contaminants and their concentrations in U.S. residences. Another way to obtain this information is the bottom-up approach of collecting and evaluating emissions data from construction and interior materials and common household products. This review contributes to the latter approach by summarizing available information on chemical emissions from new residential products and materials. We review information from the scientific literature and public sources to identify and discuss the

  7. MRI of chemical reactions and processes.

    PubMed

    Britton, Melanie M

    2017-08-01

    As magnetic resonance imaging (MRI) can spatially resolve a wealth of molecular information available from nuclear magnetic resonance (NMR), it is able to non-invasively visualise the composition, properties and reactions of a broad range of spatially-heterogeneous molecular systems. Hence, MRI is increasingly finding applications in the study of chemical reactions and processes in a diverse range of environments and technologies. This article will explain the basic principles of MRI and how it can be used to visualise chemical composition and molecular properties, providing an overview of the variety of information available. Examples are drawn from the disciplines of chemistry, chemical engineering, environmental science, physics, electrochemistry and materials science. The review introduces a range of techniques used to produce image contrast, along with the chemical and molecular insight accessible through them. Methods for mapping the distribution of chemical species, using chemical shift imaging or spatially-resolved spectroscopy, are reviewed, as well as methods for visualising physical state, temperature, current density, flow velocities and molecular diffusion. Strategies for imaging materials with low signal intensity, such as those containing gases or low sensitivity nuclei, using compressed sensing, para-hydrogen or polarisation transfer, are discussed. Systems are presented which encapsulate the diversity of chemical and physical parameters observable by MRI, including one- and two-phase flow in porous media, chemical pattern formation, phase transformations and hydrodynamic (fingering) instabilities. Lastly, the emerging area of electrochemical MRI is discussed, with studies presented on the visualisation of electrochemical deposition and dissolution processes during corrosion and the operation of batteries, supercapacitors and fuel cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  8. Not Just Lumber—Using Wood in the Sustainable Future of Materials, Chemicals, and Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakes, Joseph E.; Arzola, Xavier; Bergman, Rick

    Forest-derived biomaterials can play an integral role in a sustainable and renewable future. Research across a range of disciplines is required to develop the knowledge necessary to overcome the challenges of incorporating more renewable forest resources in materials, chemicals, and fuels. We focus on wood specifically because in our view, better characterization of wood as a raw material and as a feedstock will lead to its increased utilization. We first give an overview of wood structure and chemical composition and then highlight current topics in forest products research, including (1) industrial chemicals, biofuels, and energy from woody materials; (2) wood-basedmore » activated carbon and carbon nanostructures; (3) development of improved wood protection treatments; (4) massive timber construction; (5) wood as a bioinspiring material; and (6) atomic simulations of wood polymers. We conclude with a discussion of the sustainability of wood as a renewable forest resource.« less

  9. Not Just Lumber—Using Wood in the Sustainable Future of Materials, Chemicals, and Fuels

    NASA Astrophysics Data System (ADS)

    Jakes, Joseph E.; Arzola, Xavier; Bergman, Rick; Ciesielski, Peter; Hunt, Christopher G.; Rahbar, Nima; Tshabalala, Mandla; Wiedenhoeft, Alex C.; Zelinka, Samuel L.

    2016-09-01

    Forest-derived biomaterials can play an integral role in a sustainable and renewable future. Research across a range of disciplines is required to develop the knowledge necessary to overcome the challenges of incorporating more renewable forest resources in materials, chemicals, and fuels. We focus on wood specifically because in our view, better characterization of wood as a raw material and as a feedstock will lead to its increased utilization. We first give an overview of wood structure and chemical composition and then highlight current topics in forest products research, including (1) industrial chemicals, biofuels, and energy from woody materials; (2) wood-based activated carbon and carbon nanostructures; (3) development of improved wood protection treatments; (4) massive timber construction; (5) wood as a bioinspiring material; and (6) atomic simulations of wood polymers. We conclude with a discussion of the sustainability of wood as a renewable forest resource.

  10. Inorganic-Organic Polymers and Their Role in Materials Science

    DTIC Science & Technology

    1994-05-18

    North Quincy Street AD-A279 715 Arlington, Virginia 22217-5000 H IM 11. SUPPLEMENTARY NOTES Prepared for publication in ADVAtICED MlATERIALS 12a...This document has been approved for public release; distribution is unlimited. 13. ABSTRACT (Maximum 200 words) The design and synthesis of new...Technical Report No. 19 INORGANIC-ORGANIC POLYMERS AND THEIR ROLE IN MATERIALS SCIENCE by Harry R. Allcock Prepared for Publication in Advanced Materials

  11. Mine, thine, and ours: collaboration and co-authorship in the material culture of the mid-twentieth century chemical laboratory.

    PubMed

    Nye, Mary Jo

    2014-08-01

    Patterns of collaboration and co-authorship in chemical science from the 1920s to the 1960s are examined with an eye to frequency of co-authorship and differences in allocation of credit during a period of increasing team research and specialization within chemical research groups. Three research leaders in the cross-disciplinary and cutting edge field of X-ray crystallography and molecular structure are the focus of this historical study within a framework of sociological literature on different collaborative patterns followed by eminent scientists. The examples of Michael Polanyi in Berlin and Manchester, Linus Pauling in Pasadena, and Dorothy Crowfoot Hodgkin in Oxford demonstrate the need to de-centre historical narrative from the heroic 'he' or 'she' to the collaborative 'they.' These cases demonstrate, too, the roles of disciplinary apprenticeships, local conditions, and individual personalities for historical explanation that transcends universal generalizations about scientific practice, material culture, and sociological trends.

  12. Materials Science Research Hardware for Application on the International Space Station: an Overview of Typical Hardware Requirements and Features

    NASA Technical Reports Server (NTRS)

    Schaefer, D. A.; Cobb, S.; Fiske, M. R.; Srinivas, R.

    2000-01-01

    NASA's Marshall Space Flight Center (MSFC) is the lead center for Materials Science Microgravity Research. The Materials Science Research Facility (MSRF) is a key development effort underway at MSFC. The MSRF will be the primary facility for microgravity materials science research on board the International Space Station (ISS) and will implement the NASA Materials Science Microgravity Research Program. It will operate in the U.S. Laboratory Module and support U. S. Microgravity Materials Science Investigations. This facility is being designed to maintain the momentum of the U.S. role in microgravity materials science and support NASA's Human Exploration and Development of Space (HEDS) Enterprise goals and objectives for Materials Science. The MSRF as currently envisioned will consist of three Materials Science Research Racks (MSRR), which will be deployed to the International Space Station (ISS) in phases, Each rack is being designed to accommodate various Experiment Modules, which comprise processing facilities for peer selected Materials Science experiments. Phased deployment will enable early opportunities for the U.S. and International Partners, and support the timely incorporation of technology updates to the Experiment Modules and sensor devices.

  13. Improvement of Students’ Environmental Literacy by Using Integrated Science Teaching Materials

    NASA Astrophysics Data System (ADS)

    Suryanti, D.; Sinaga, P.; Surakusumah, W.

    2018-02-01

    This study aims to determine the improvement of student environmental literacy through the use of integrated science teaching materials on pollution topics. The research is used weak experiment method with the one group pre-test post-test design. The sample of the study were junior high school students in Bandung amounted to 32 people of 7th grade. Data collection in the form of environmental literacy test instrument consist of four components of environmental literacy that is (1) Knowledge, (2) Competencies (Cognitive Skill), (3) Affective and (4) Environmentally Responsible Behavior. The results show that the student’s environmental literacy ability is improved after using integrated science teaching materials. An increase in the medium category is occurring in the knowledge (N-gain=46%) and cognitive skill (N-gain=31%), while the increase in the low category occurs in the affective component (N-gain=25%) and behaviour (N-gain=24%). The conclusions of this study as a whole the improvement of students’ environmental literacy by using integrated science teaching material is in the medium category (N-gain=34%).

  14. NASA/First Materials Science Research Rack (MSRR-1) Module Inserts Development for the International Space Station

    NASA Technical Reports Server (NTRS)

    Crouch, Myscha; Carswell, Bill; Farmer, Jeff; Rose, Fred; Tidwell, Paul

    1999-01-01

    The Material Science Research Rack 1 (MSRR-1) of the Material Science Research Facility (MSRF) contains an Experiment Module (EM) being developed collaboratively by NASA and the European Space Agency (ESA). This NASA/ESA EM will accommodate several different removable and replaceable Module Inserts (MIs) which are installed on orbit. Two of the NASA MIs being developed for specific material science investigations are described herein.

  15. Materials science approaches to solve problems with emerging mycotoxins in corn

    USDA-ARS?s Scientific Manuscript database

    Materials science technology is an attractive, cost effective, and robust alternative to address the limitations of highly selective natural receptors. These materials are especially well suited to address issues with emerging toxins for which a better understanding is needed to establish levels of ...

  16. Growing a Primary Science Specialism: Assembling People, Places, Materials and Ideas

    ERIC Educational Resources Information Center

    Lynch, Julianne; Frankel, Nadine; McCarthy, Kerry; Sharp, Lindy

    2015-01-01

    This paper derives from the authors' experiences of the development of a successful science specialism implemented in a large primary school in regional Victoria, Australia, since 2012. We discuss how diverse resources--people, spaces, equipment, materials and ideas--were brought together to support a science specialism that focuses on positioning…

  17. 78 FR 53144 - Request for Nominations of Experts To Augment the Science Advisory Board Chemical Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ... Science Advisory Board Chemical Assessment Advisory Committee for the Review of the EPA's Draft... Ethylene Oxide AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: The EPA Science... policies. The National Center for Environmental Assessment (NCEA) in the EPA's Office of Research and...

  18. Permeation Testing of Materials With Chemical Agents or Simulants (Swatch Testing)

    DTIC Science & Technology

    2013-08-05

    through a protective clothing material on a molecular level. Permeation involves the following: (1) sorption of molecules of the chemical into the...de Nemours and Company, Wilmington, Delaware), Teflon perfluoro- alkoxy ( PFA ), and Teflon polytetrafluoroethylene (PTFE). c. In all cases, only...pamphlet PCM positive control material PFA perfluoroalkoxy pH negative ion activity POL petroleum, oil, and lubricants PQL program quantification

  19. Uses of Computed Tomography in the NASA Materials Science Program

    NASA Technical Reports Server (NTRS)

    Engel, H. Peter; Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Computed Tomography (CT) has proved to be of inestimable use in providing a rapid evaluation of a variety of samples from Mechanics of Granular Materials (MGM) to electronic materials (Ge-Si alloys) to space grown materials such as meteorites. The system at Kennedy Space Center (KSC), because of its convenient geographical location, is ideal for examining samples immediately after returning to Earth. It also has the advantage of the choice of fluxes, and in particular the use of a radioactive cobalt source, which is basically monochromatic. This permits a reasonable measurement of density to be made from which chemical composition can be determined. Due to the current dearth of long duration space grown materials, the CT instrument has been used to characterize materials in preparation for flight, to determine thermal expansion values, and to examine long duration space grown materials, i.e. meteorites. The work will first describe the establishment of the protocol for obtaining the optimum density readings for any material. This will include both the effects of the hardware or instrumental parameters that can be controlled, and the techniques used to process the CT data. Examples will be given of the compositional variation along single crystals of germanium-silicon alloys. Density variation with temperature has been measured in preparation for future materials science experiments; this involved the fabrication and installation of a single zone furnace incorporating a heat pipe to ensure of high temperature uniformity. At the time of writing the thermal expansion of lead has been measured from room temperature to 900 C. Three methods are available. Digital radiography enable length changes to be determined. Prior to melting the sample is small than the container and the diameter change can be measured. Most critical, however, is the density change in solid, through the melting region, and in the liquid state. These data are needed for engineering purposes to aid

  20. Materials sciences programs: Fiscal Year 1987

    NASA Astrophysics Data System (ADS)

    1987-09-01

    Purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into seven sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Sections D and E have information on DOE collaborative research centers, gives distribution of funding, and Section G has various indexes.

  1. Getting First Graders Started in Science

    ERIC Educational Resources Information Center

    Hartman, Ann

    1975-01-01

    Instructions are given for a first graders' science and mathematical lesson entitled: "Stone Soup" (based on a popular story by Marcia Brown). Activities include reading, discussing, collecting materials, cooking, growing plants, and observing physical and chemical changes. (CR)

  2. Microanalytical Efforts in Support of NASA's Materials Science Programs

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    2004-01-01

    Following a brief overview of NASA s Microgravity Materials Science programs, specific examples will be given showing electron beam and optical microscopic applications to two-phase glass structures, dendrite tip radii, solid solution semiconductors, undercooled two-phase stainless steels and meteorites.

  3. Design Features and Capabilities of the First Materials Science Research Rack

    NASA Technical Reports Server (NTRS)

    Pettigrew, P. J.; Lehoczky, S. L.; Cobb, S. D.; Holloway, T.; Kitchens, L.

    2003-01-01

    The First Materials Science Research Rack (MSRR-1) aboard the International Space Station (ISS) will offer many unique capabilities and design features to facilitate a wide range of materials science investigations. The initial configuration of MSRR-1 will accommodate two independent Experiment Modules (EMS) and provide the capability for simultaneous on-orbit processing. The facility will provide the common subsystems and interfaces required for the operation of experiment hardware and accommodate telescience capabilities. MSRR1 will utilize an International Standard Payload Rack (ISPR) equipped with an Active Rack Isolation System (ARIS) for vibration isolation of the facility.

  4. Progress in the materials science of silicene.

    PubMed

    Yamada-Takamura, Yukiko; Friedlein, Rainer

    2014-12-01

    In its freestanding, yet hypothetical form, the Si counterpart of graphene called silicene is predicted to possess massless Dirac fermions and to exhibit an experimentally accessible quantum spin Hall effect. Such interesting electronic properties are not realized in two-dimensional (2D) Si honeycomb lattices prepared recently on metallic substrates where the crystal and hybrid electronic structures of these 'epitaxial silicene' phases are strongly influenced by the substrate, and thus different from those predicted for isolated 2D structures. While the realization of such low-dimensional Si π materials has hardly been imagined previously, it is evident that the materials science behind silicene remains challenging. In this contribution, we will review our recent results that lead to an enhanced understanding of epitaxial silicene formed on diboride thin films, and discuss the remaining challenges that must be addressed in order to turn Si 2D nanostructures into technologically interesting nanoelectronic materials.

  5. General Atomics Sciences Education Foundation Outreach Programs

    NASA Astrophysics Data System (ADS)

    Winter, Patricia S.

    1997-11-01

    Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].

  6. Visualizing Chemistry: The Progess and Promise of Advanced Chemical Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Committee on Revealing Chemistry Through Advanced Chemical Imaging

    2006-09-01

    The field of chemical imaging can provide detailed structural, functional, and applicable information about chemistry and chemical engineering phenomena that have enormous impacts on medicine, materials, and technology. In recognizing the potential for more research development in the field of chemical imaging, the National Academies was asked by the National Science Foundation, Department of Energy, U.S. Army, and National Cancer Institute to complete a study that would review the current state of molecular imaging technology, point to promising future developments and their applications, and suggest a research and educational agenda to enable breakthrough improvements in the ability to image molecularmore » processes simultaneously in multiple physical dimensions as well as time. The study resulted in a consensus report that provides guidance for a focused research and development program in chemical imaging and identifies research needs and possible applications of imaging technologies that can provide the breakthrough knowledge in chemistry, materials science, biology, and engineering for which we should strive. Public release of this report is expected in early October.« less

  7. [Authentication of Trace Material Evidence in Forensic Science Field with Infrared Microscopic Technique].

    PubMed

    Jiang, Zhi-quan; Hu, Ke-liang

    2016-03-01

    In the field of forensic science, conventional infrared spectral analysis technique is usually unable to meet the detection requirements, because only very a few trace material evidence with diverse shapes and complex compositions, can be extracted from the crime scene. Infrared microscopic technique is developed based on a combination of Fourier-transform infrared spectroscopic technique and microscopic technique. Infrared microscopic technique has a lot of advantages over conventional infrared spectroscopic technique, such as high detection sensitivity, micro-area analysisand nondestructive examination. It has effectively solved the problem of authentication of trace material evidence in the field of forensic science. Additionally, almost no external interference is introduced during measurements by infrared microscopic technique. It can satisfy the special need that the trace material evidence must be reserved for witness in court. It is illustrated in detail through real case analysis in this experimental center that, infrared microscopic technique has advantages in authentication of trace material evidence in forensic science field. In this paper, the vibration features in infrared spectra of material evidences, including paints, plastics, rubbers, fibers, drugs and toxicants, can be comparatively analyzed by means of infrared microscopic technique, in an attempt to provide powerful spectroscopic evidence for qualitative diagnosis of various criminal and traffic accident cases. The experimental results clearly suggest that infrared microscopic technique has an incomparable advantage and it has become an effective method for authentication of trace material evidence in the field of forensic science.

  8. [Advances of poly (ionic liquid) materials in separation science].

    PubMed

    Liu, Cuicui; Guo, Ting; Su, Rina; Gu, Yuchen; Deng, Qiliang

    2015-11-01

    Ionic liquids, as novel ionization reagents, possess beneficial characteristics including good solubility, conductivity, thermal stability, biocompatibility, low volatility and non-flammability. Ionic liquids are attracting a mass of attention of analytical chemists. Poly (ionic liquid) materials have common performances of ionic liquids and polymers, and have been successfully applied in separation science area. In this paper, we discuss the interaction mechanisms between the poly(ionic liquid) materials and analytes including hydrophobic/hydrophilic interactions, hydrogen bond, ion exchange, π-π stacking and electrostatic interactions, and summarize the application advances of the poly(ionic liquid) materials in solid phase extraction, chromatographic separation and capillary electrophoresis. At last, we describe the future prospect of poly(ionic liquid) materials.

  9. The journey from forensic to predictive materials science using density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Peter A.

    Approximate methods for electronic structure, implemented in sophisticated computer codes and married to ever-more powerful computing platforms, have become invaluable in chemistry and materials science. The maturing and consolidation of quantum chemistry codes since the 1980s, based upon explicitly correlated electronic wave functions, has made them a staple of modern molecular chemistry. Here, the impact of first principles electronic structure in physics and materials science had lagged owing to the extra formal and computational demands of bulk calculations.

  10. The journey from forensic to predictive materials science using density functional theory

    DOE PAGES

    Schultz, Peter A.

    2017-09-12

    Approximate methods for electronic structure, implemented in sophisticated computer codes and married to ever-more powerful computing platforms, have become invaluable in chemistry and materials science. The maturing and consolidation of quantum chemistry codes since the 1980s, based upon explicitly correlated electronic wave functions, has made them a staple of modern molecular chemistry. Here, the impact of first principles electronic structure in physics and materials science had lagged owing to the extra formal and computational demands of bulk calculations.

  11. Rheology of Soft Materials

    NASA Astrophysics Data System (ADS)

    Chen, Daniel T. N.; Wen, Qi; Janmey, Paul A.; Crocker, John C.; Yodh, Arjun G.

    2010-04-01

    Research on soft materials, including colloidal suspensions, glasses, pastes, emulsions, foams, polymer networks, liquid crystals, granular materials, and cells, has captured the interest of scientists and engineers in fields ranging from physics and chemical engineering to materials science and cell biology. Recent advances in rheological methods to probe mechanical responses of these complex media have been instrumental for producing new understanding of soft matter and for generating novel technological applications. This review surveys these technical developments and current work in the field, with partial aim to illustrate open questions for future research.

  12. Control of electro-chemical processes using energy harvesting materials and devices.

    PubMed

    Zhang, Yan; Xie, Mengying; Adamaki, Vana; Khanbareh, Hamideh; Bowen, Chris R

    2017-12-11

    Energy harvesting is a topic of intense interest that aims to convert ambient forms of energy such as mechanical motion, light and heat, which are otherwise wasted, into useful energy. In many cases the energy harvester or nanogenerator converts motion, heat or light into electrical energy, which is subsequently rectified and stored within capacitors for applications such as wireless and self-powered sensors or low-power electronics. This review covers the new and emerging area that aims to directly couple energy harvesting materials and devices with electro-chemical systems. The harvesting approaches to be covered include pyroelectric, piezoelectric, triboelectric, flexoelectric, thermoelectric and photovoltaic effects. These are used to influence a variety of electro-chemical systems such as applications related to water splitting, catalysis, corrosion protection, degradation of pollutants, disinfection of bacteria and material synthesis. Comparisons are made between the range harvesting approaches and the modes of operation are described. Future directions for the development of electro-chemical harvesting systems are highlighted and the potential for new applications and hybrid approaches are discussed.

  13. Shift in Chemical Potential of Superconducting Bi2212 Measured by Ultrafast Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Miller, Tristan; Smallwood, Chris; Zhang, Wentao; Eisaki, Hiroshi; Lee, Dung-Hai; Lanzara, Alessandra

    2015-03-01

    Time- and Angle-resolved photoemission spectroscopy (tr-ARPES) has been used to directly measure the dynamics of many different properties of high-temperature superconductors, including the quasiparticle relaxation, cooper pair recombination, and many-body interactions. There have also been several intriguing results on several materials showing how laser pulses can manipulate their chemical potential on ultrafast timescales, and it's been suggested that these effects could find applications in optoelectronic devices. Studies on GaAs have also found that laser pulses may induce a surface voltage effect. Here, we extend these studies for the first time to a Bi2212 sample in the superconducting state, and disentangle the shift in chemical potential from surface voltage effects. This work was supported by Berkeley Lab's program on Quantum Materials, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231.

  14. Colloid and materials science for the conservation of cultural heritage: cleaning, consolidation, and deacidification.

    PubMed

    Baglioni, Piero; Chelazzi, David; Giorgi, Rodorico; Poggi, Giovanna

    2013-04-30

    Serendipity and experiment have been a frequent approach for the development of materials and methodologies used for a long time for either cleaning or consolidation of works of art. Recently, new perspectives have been opened by the application of materials science, colloid science, and interface science frameworks to conservation, generating a breakthrough in the development of innovative tools for the conservation and preservation of cultural heritage. This Article is an overview of the most recent contributions of colloid and materials science to the art conservation field, mainly focusing on the use of amphiphile-based fluids, gels, and alkaline earth metal hydroxide nanoparticles dispersions for the cleaning of pictorial surfaces, the consolidation of artistic substrates, and the deacidification of paper, canvas, and wood. Future possible directions for solving several conservation issues that still need to be faced are also highlighted.

  15. Discovery of optimal zeolites for challenging separations and chemical transformations using predictive materials modeling

    NASA Astrophysics Data System (ADS)

    Bai, Peng; Jeon, Mi Young; Ren, Limin; Knight, Chris; Deem, Michael W.; Tsapatsis, Michael; Siepmann, J. Ilja

    2015-01-01

    Zeolites play numerous important roles in modern petroleum refineries and have the potential to advance the production of fuels and chemical feedstocks from renewable resources. The performance of a zeolite as separation medium and catalyst depends on its framework structure. To date, 213 framework types have been synthesized and >330,000 thermodynamically accessible zeolite structures have been predicted. Hence, identification of optimal zeolites for a given application from the large pool of candidate structures is attractive for accelerating the pace of materials discovery. Here we identify, through a large-scale, multi-step computational screening process, promising zeolite structures for two energy-related applications: the purification of ethanol from fermentation broths and the hydroisomerization of alkanes with 18-30 carbon atoms encountered in petroleum refining. These results demonstrate that predictive modelling and data-driven science can now be applied to solve some of the most challenging separation problems involving highly non-ideal mixtures and highly articulated compounds.

  16. Evaluation of Online Teacher and Student Materials for the Framework for K-12 Science Education Science and Engineering Crosscutting Concepts

    ERIC Educational Resources Information Center

    Schwab, Patrick

    2013-01-01

    The National Research Council developed and published the "Framework for K-12 Science Education," a new set of concepts that many states were planning on adopting. Part of this new endeavor included a set of science and engineering crosscutting concepts to be incorporated into science materials and activities, a first in science…

  17. Phase-change materials for non-volatile memory devices: from technological challenges to materials science issues

    NASA Astrophysics Data System (ADS)

    Noé, Pierre; Vallée, Christophe; Hippert, Françoise; Fillot, Frédéric; Raty, Jean-Yves

    2018-01-01

    Chalcogenide phase-change materials (PCMs), such as Ge-Sb-Te alloys, have shown outstanding properties, which has led to their successful use for a long time in optical memories (DVDs) and, recently, in non-volatile resistive memories. The latter, known as PCM memories or phase-change random access memories (PCRAMs), are the most promising candidates among emerging non-volatile memory (NVM) technologies to replace the current FLASH memories at CMOS technology nodes under 28 nm. Chalcogenide PCMs exhibit fast and reversible phase transformations between crystalline and amorphous states with very different transport and optical properties leading to a unique set of features for PCRAMs, such as fast programming, good cyclability, high scalability, multi-level storage capability, and good data retention. Nevertheless, PCM memory technology has to overcome several challenges to definitively invade the NVM market. In this review paper, we examine the main technological challenges that PCM memory technology must face and we illustrate how new memory architecture, innovative deposition methods, and PCM composition optimization can contribute to further improvements of this technology. In particular, we examine how to lower the programming currents and increase data retention. Scaling down PCM memories for large-scale integration means the incorporation of the PCM into more and more confined structures and raises materials science issues in order to understand interface and size effects on crystallization. Other materials science issues are related to the stability and ageing of the amorphous state of PCMs. The stability of the amorphous phase, which determines data retention in memory devices, can be increased by doping the PCM. Ageing of the amorphous phase leads to a large increase of the resistivity with time (resistance drift), which has up to now hindered the development of ultra-high multi-level storage devices. A review of the current understanding of all these

  18. PREFACE: Advanced Science Research Symposium 2009 Positron, Muon and other exotic particle beams for materials and atomic/molecular sciences (ASR2009)

    NASA Astrophysics Data System (ADS)

    Higemoto, Wataru; Kawasuso, Atsuo

    2010-05-01

    It is our great pleasure to deliver the proceedings of ASR2009, the Advanced Science Research International Symposium 2009. ASR2009 is part of a series of symposia which is hosted by the Japan Atomic Energy Agency, Advanced Science Research Center (JAEA-ASRC), and held every year with different scientific topics. ASR2009 was held at Tokai in Japan from 10-12 November 2009. In total, 102 participants, including 29 overseas scientists, made 44 oral presentations and 64 poster presentations. In ASR2009 we have focused on material and atomic/molecular science research using positrons, muons and other exotic particle beams. The symposium covered all the fields of materials science which use such exotic particle beams. Positrons, muons and other beams have similar and different features. For example, although positrons and muons are both leptons having charge and spin, they give quite different information about materials. A muon mainly detects the local magnetic state of the solid, while a positron detects crystal imperfections and electron momenta in solids. Other exotic particle beams also provide useful information about materials which is not able to be obtained with muons or positrons. Therefore, the complementary use of particle beams, coupled with an understanding of their relative advantages, leads to greater excellence in materials research. This symposium crossed the fields of muon science, positron science, unstable-nuclei science, and other exotic particle-beam science. We therefore believe that ASR2009 became an especially important meeting for finding new science with exotic particle beams. Finally, we would like to extend our appreciation to all the participants, committee members, and support staff for their great efforts to make ASR2009 a fruitful symposium. ASR2009 Chairs Wataru Higemoto and Atsuo Kawasuso Advanced Science Research Center, Japan Atomic Energy Agency Organizing committee Y Hatano, JAEA (Director of ASRC) M Fujinami, Chiba Univ. R H

  19. The Mars Science Laboratory Organic Check Material

    NASA Technical Reports Server (NTRS)

    Conrad, Pamela G.; Eigenbrode, J. E.; Mogensen, C. T.; VonderHeydt, M. O.; Glavin, D. P.; Mahaffy, P. M.; Johnson, J. A.

    2011-01-01

    The Organic Check Material (OCM) has been developed for use on the Mars Science Laboratory mission to serve as a sample standard for verification of organic cleanliness and characterization of potential sample alteration as a function of the sample acquisition and portioning process on the Curiosity rover. OCM samples will be acquired using the same procedures for drilling, portioning and delivery as are used to study martian samples with The Sample Analysis at Mars (SAM) instrument suite during MSL surface operations. Because the SAM suite is highly sensitive to organic molecules, the mission can better verify the cleanliness of Curiosity's sample acquisition hardware if a known material can be processed through SAM and compared with the results obtained from martian samples.

  20. Chemical and Structural Stability of Lithium-Ion Battery Electrode Materials under Electron Beam

    DOE PAGES

    Lin, Feng; Markus, Isaac M.; Doeff, Marca M.; ...

    2014-07-16

    Our investigation of chemical and structural dynamics in battery materials is essential to elucidation of structure-property relationships for rational design of advanced battery materials. Spatially resolved techniques, such as scanning/transmission electron microscopy (S/TEM), are widely applied to address this challenge. But, battery materials are susceptible to electron beam damage, complicating the data interpretation. In this study, we demonstrate that, under electron beam irradiation, the surface and bulk of battery materials undergo chemical and structural evolution equivalent to that observed during charge-discharge cycling. In a lithiated NiO nanosheet, a Li2CO3-containing surface reaction layer (SRL) was gradually decomposed during electron energy loss spectroscopy (EELS) acquisition. For cycled LiNi 0.4Mn 0.4Co 0.18Ti 0.02O 2 particles, repeated electron beam irradiation induced a phase transition from an Rmore » $$\\bar{3}$$m layered structure to an rock-salt structure, which is attributed to the stoichiometric lithium and oxygen removal from R$$\\bar{3}$$m 3a and 6c sites, respectively. Nevertheless, it is still feasible to preserve pristine chemical environments by minimizing electron beam damage, for example, in using fast electron imaging and spectroscopy. Finally, the present study provides examples of electron beam damage on lithium-ion battery materials and suggests that special attention is necessary to prevent misinterpretation of experimental results.« less

  1. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science.

    PubMed

    Guerette, Paul A; Hoon, Shawn; Seow, Yiqi; Raida, Manfred; Masic, Admir; Wong, Fong T; Ho, Vincent H B; Kong, Kiat Whye; Demirel, Melik C; Pena-Francesch, Abdon; Amini, Shahrouz; Tay, Gavin Z; Ding, Dawei; Miserez, Ali

    2013-10-01

    Efforts to engineer new materials inspired by biological structures are hampered by the lack of genomic data from many model organisms studied in biomimetic research. Here we show that biomimetic engineering can be accelerated by integrating high-throughput RNA-seq with proteomics and advanced materials characterization. This approach can be applied to a broad range of systems, as we illustrate by investigating diverse high-performance biological materials involved in embryo protection, adhesion and predation. In one example, we rapidly engineer recombinant squid sucker ring teeth proteins into a range of structural and functional materials, including nanopatterned surfaces and photo-cross-linked films that exceed the mechanical properties of most natural and synthetic polymers. Integrating RNA-seq with proteomics and materials science facilitates the molecular characterization of natural materials and the effective translation of their molecular designs into a wide range of bio-inspired materials.

  2. Chemically Deposited Thin-Film Solar Cell Materials

    NASA Technical Reports Server (NTRS)

    Raffaelle, R.; Junek, W.; Gorse, J.; Thompson, T.; Harris, J.; Hehemann, D.; Hepp, A.; Rybicki, G.

    2005-01-01

    We have been working on the development of thin film photovoltaic solar cell materials that can be produced entirely by wet chemical methods on low-cost flexible substrates. P-type copper indium diselenide (CIS) absorber layers have been deposited via electrochemical deposition. Similar techniques have also allowed us to incorporate both Ga and S into the CIS structure, in order to increase its optical bandgap. The ability to deposit similar absorber layers with a variety of bandgaps is essential to our efforts to develop a multi-junction thin-film solar cell. Chemical bath deposition methods were used to deposit a cadmium sulfide (CdS) buffer layers on our CIS-based absorber layers. Window contacts were made to these CdS/CIS junctions by the electrodeposition of zinc oxide (ZnO). Structural and elemental determinations of the individual ZnO, CdS and CIS-based films via transmission spectroscopy, x-ray diffraction, x-ray photoelectron spectroscopy and energy dispersive spectroscopy will be presented. The electrical characterization of the resulting devices will be discussed.

  3. Neutralization of Aerosolized Bio-Agents by Filled Nanocomposite Materials through Thermal and Chemical Inactivation Mechanisms

    DTIC Science & Technology

    2016-06-01

    Bio -agents by Filled Nanocomposite Materials through Thermal and Chemical Inactivation Mechanisms Distribution Statement A. Approved for public...of Cincinnati Project Title: Neutralization of Aerosolized Bio -agents by Filled Nanocomposite Materials through Thermal and Chemical Inactivation...fire ball, where they will not effectively interact with any viable bio -aerosol. 1.1.4. Conclusions Cryo-milling is necessary to achieve a

  4. Curriculum-Dependent and Curriculum-Independent Factors in Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Science

    ERIC Educational Resources Information Center

    Forbes, Cory T.

    2013-01-01

    In this nested mixed methods study I investigate factors influencing preservice elementary teachers' adaptation of science curriculum materials to better support students' engagement in science as inquiry. Analyses focus on two "reflective teaching assignments" completed by 46 preservice elementary teachers in an undergraduate elementary science…

  5. Translating Current Science into Materials for High School via a Scientist-Teacher Partnership

    NASA Astrophysics Data System (ADS)

    Brown, Julie C.; Bokor, Julie R.; Crippen, Kent J.; Koroly, Mary Jo

    2014-04-01

    Scientist-teacher partnerships are a unique form of professional development that can assist teachers in translating current science into classroom instruction by involving them in meaningful collaborations with university researchers. However, few reported models aim to directly alter science teachers' practices by supporting them in the development of curriculum materials. This article reports on a multiple case study of seven high school science teachers who attended an ongoing scientist-teacher partnership professional development program at a major Southeastern research university. Our interest was to understand the capacity of this professional development program for supporting teachers in the transfer of personal learning experiences with advanced science content and skills into curriculum materials for high school students. Findings indicate that, regardless of their ultimate success constructing curriculum materials, all cases considered the research grounded professional development supports beneficial to their professional growth with the exception of collective participation. Additionally, the cases also described how supports such as professional recognition and transferability served as affordances to the process of constructing these materials. However, teachers identified multiple constraints, including personal learning barriers, their classroom context, and the cost associated with implementing some of their curriculum ideas. Results have direct implications for future research and the purposeful design of professional development experiences through scientist-teacher partnerships.

  6. Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control

    NASA Astrophysics Data System (ADS)

    Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi; Knight, Kim; Cassata, William S.; Hutcheon, Ian D.

    2016-06-01

    Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. This review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. The development of chronometric methods for age dating nuclear materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.

  7. Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control

    DOE PAGES

    Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi; ...

    2016-05-11

    Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. Our review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. Furthermore, the development of chronometric methods for age dating nuclearmore » materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.« less

  8. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-01

    This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

  9. Florence Bascom and the Exclusion of Women From Earth Science Curriculum Materials

    ERIC Educational Resources Information Center

    Arnold, Lois

    1975-01-01

    Numerous excerpts from present day earth science curriculum materials reveal sexual discrimination. In addition, studies of photographs included in the materials reveal a high male dominance. The significant contributions of one earth scientist, Florence Bascom, are remembered. (CP)

  10. From Witnessing to Recording--Material Objects and the Epistemic Configuration of Science Classes

    ERIC Educational Resources Information Center

    Roehl, Tobias

    2012-01-01

    Drawing on concepts developed in actor-network theory and postphenomenology this article shows how material objects in the science classroom become part of epistemic configurations and thus co-shape science education. An ethnographic study on epistemic objects in science education is the basis for the analysis of two of these objects: experimental…

  11. First Materials Processing Test in the Science Operation Area (SOA) During STS-47 Spacelab-J Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in the Science Operation Area (SOA) are payload specialists' first Materials Processing Test during NASA/NASDA joint ground activities at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Fight Center (MSFC).

  12. First Materials Processing Test in the Science Operation Area (SOA) During STS-47 Spacelab-J Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in the Science Operation Area (SOA) are payload specialists' first Materials Processing Test during NASA/NASDA joint ground activities at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC).

  13. Recent Advances in Photoelectrochemical Applications of Silicon Materials for Solar-to-Chemicals Conversion.

    PubMed

    Zhang, Doudou; Shi, Jingying; Zi, Wei; Wang, Pengpeng; Liu, Shengzhong Frank

    2017-11-23

    Photoelectrochemical (PEC) technology for the conversion of solar energy into chemicals requires cost-effective photoelectrodes to efficiently and stably drive anodic and/or cathodic half-reactions to complete the overall reactions for storing solar energy in chemical bonds. The shared properties among semiconducting photoelectrodes and photovoltaic (PV) materials are light absorption, charge separation, and charge transfer. Earth-abundant silicon materials have been widely applied in the PV industry, and have demonstrated their efficiency as alternative photoabsorbers for photoelectrodes. Many efforts have been made to fabricate silicon photoelectrodes with enhanced performance, and significant progress has been achieved in recent years. Herein, recent developments in crystalline and thin-film silicon-based photoelectrodes (including amorphous, microcrystalline, and nanocrystalline silicon) immersed in aqueous solution for PEC hydrogen production from water splitting are summarized, as well as applications in PEC CO 2 reduction and PEC regeneration of discharged species in redox flow batteries. Silicon is an ideal material for the cost-effective production of solar chemicals through PEC methods. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Dispositions Supporting Elementary Interns in the Teaching of Reform-Based Science Materials

    ERIC Educational Resources Information Center

    Eick, Charles J.; Stewart, Bethany

    2010-01-01

    Dispositions supporting the teaching of science as structured inquiry by four elementary candidates are presented. Candidates were studied during student teaching based on their positive attitudes toward teaching science with reform-based materials in their methods course. Personal learning histories informed their attitudes, values, and beliefs…

  15. Structural flexibility in magnetocaloric RE 5T 4 (RE=rare-earth; T=Si,Ge,Ga) materials: Effect of chemical substitution on structure, bonding and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misra, Sumohan

    The binary, ternary and multicomponent intermetallic compounds of rare-earth metals (RE) with group 14 elements (Tt) at the RE 5Tt 4 stoichiometry have been known for over 30 years, but only in the past decade have these materials become a gold mine for solid-state chemistry, materials science and condensed matter physics. It all started with the discovery of a giant magnetocaloric effect in Gd 5Si 2Ge 2, along with other extraordinary magnetic properties, such as a colossal magnetostriction and giant magnetoresistance. The distinctiveness of this series is in the remarkable flexibility of the chemical bonding between well-defined, subnanometer-thick slabs andmore » the resultant magnetic, transport, and thermodynamic properties of these materials. This can be controlled by varying either or both RE and Tt elements, including mixed rare-earth elements on the RE sites and different group 14 (or T = group 13 or 15) elements occupying the Tt sites. In addition to chemical means, the interslab interactions are also tunable by temperature, pressure, and magnetic field. Thus, this system provides a splendid 'playground' to investigate the interrelationships among composition, structure, physical properties, and chemical bonding. The work presented in this dissertation involving RE 5T 4 materials has resulted in the successful synthesis, characterization, property measurements, and theoretical analyses of various new intermetallic compounds. The results provide significant insight into the fundamental magnetic and structural behavior of these materials and help us better understand the complex link between a compound's composition, its observed structure, and its properties.« less

  16. Surface roughness of polyvinyl siloxane impression materials following chemical disinfection, autoclave and microwave sterilization.

    PubMed

    Al Kheraif, Abdulaziz Abdullah

    2013-05-01

    Autoclave sterilization and microwave sterilization has been suggested as the effective methods for the disinfection of elastomeric impressions, but subjecting elastomeric impressions to extreme temperature may have adverse effects on critical properties of the elastomers. To evaluate the effect of chemical disinfection as well as autoclave and microwave sterilization on the surface roughness of elastomeric impression materials. The surface roughness of five commercially available polyvinyl siloxane impression materials (Coltene President, Affinis Perfect impression, Aquasil, 3M ESPE Express and GC Exafast) were evaluated after subjecting them to chemical disinfection, autoclaving and microwave sterilization using a Talysurf Intra 50 instrument. Twenty specimens from each material were fabricated and divided into four equal groups, three experimental and one control (n=25). The differences in the mean surface roughness between the treatment groups were recorded and statistically analyzed. No statistically significant increase in the surface roughness was observed when the specimens were subjected to chemical disinfection and autoclave sterilization, increase in roughness and discoloration was observed in all the materials when specimens were subjected to microwave sterilization. Chemical disinfection did not have a significant effect but, since it is less effective, autoclave sterilization can be considered effective and autoclaving did not show any specimen discoloration as in microwave sterilization. Microwave sterilization may be considered when impressions are used to make diagnostic casts. A significant increase in surface roughness may produce rougher casts, resulting in rougher tissue surfaces for denture and cast restorations. Autoclave sterilization of vinyl polysiloxane elastomeric impressions for 5 minutes at 134°C at 20 psi may be considered an effective method over chemical disinfection and microwave sterilization, because chemical disinfection does

  17. Materials science on parabolic aircraft: The FY 1987-1989 KC-135 microgravity test program

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A. (Editor)

    1993-01-01

    This document covers research results from the KC-135 Materials Science Program managed by MSFC for the period FY87 through FY89. It follows the previous NASA Technical Memorandum for FY84-86 published in August 1988. This volume contains over 30 reports grouped into eight subject areas covering acceleration levels, space flight hardware, transport and interfacial studies, thermodynamics, containerless processing, welding, melt/crucible interactions, and directional solidification. The KC-135 materials science experiments during FY87-89 accomplished direct science, preparation for space flight experiments, and justification for new experiments in orbit.

  18. A Robust Damage Reporting Strategy for Polymeric Materials Enabled by Aggregation Induced Emission

    DTIC Science & Technology

    2016-08-17

    and Technology, ‡Department of Chemistry, ∥Department of Materials Science and Engineering, ⊥Department of Mechanical Science and Engineering, and...enabled by aggregation-induced emission (AIE). This simple, yet powerful system relies on a single active component, and the general mechanism ...delivers outstanding performance in a wide variety of materials with diverse chemical and mechanical properties. Small (micrometer) scale damage in

  19. Examining the Types, Features, and Use of Instructional Materials in Afterschool Science

    ERIC Educational Resources Information Center

    D'Angelo, Cynthia M.; Harris, Christopher J.; Lundh, Patrik; House, Ann; Leones, Tiffany; Llorente, Carlin

    2017-01-01

    Afterschool programs have garnered much attention as promising environments for learning where children can engage in rich science activities. Yet, little is known about the kinds of instructional materials used in typical, large-scale afterschool programs that implement science with diverse populations of children. In this study, we investigated…

  20. Teaching of Chemical Literature: A List of Audiovisual Materials. Part 2.

    ERIC Educational Resources Information Center

    Douville, Judith A.

    1983-01-01

    Provides an annotated list of 36 items for teaching the use of the chemical literature including price, address of suppliers, description and/or published evaluations whenever available. Materials include slides, audiocassettes, films, filmstrips, graphs, photographs, and videocassettes. (JM)

  1. Evaluation of Student Outcomes in Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Piippo, Steven

    1996-01-01

    This paper specifies 14 benchmarks and exit standards for the introduction of Materials Science and Technology in a secondary school education. Included is the standard that students should be able to name an example of each category of technological materials including metals, glass/ceramics, polymers (plastics) and composites. Students should know that each type of solid material has specific properties that can be measured. Students will learn that all solid materials have either a long range crystalline structure or a short range amorphous structure (i.e., glassy). They should learn the choice of materials for a particular application depends on the properties of the material, and the properties of the material depends on its crystal structure and microstructure. The microstructure may be modified by the methods by which the material is processed; students should explain this by the example of sintering a ceramic body to reduce its porosity and increase its densification and strength. Students will receive exposure to the world of work, post secondary educational opportunities, and in general a learning that will lead to a technologically literate intelligent citizen.

  2. Chlorination of humic materials: Byproduct formation and chemical interpretations

    USGS Publications Warehouse

    Reckhow, D.A.; Singer, P.C.; Malcolm, R.L.

    1990-01-01

    Ten aquatic humic and fulvic acids were isolated and studied with respect to their reaction with chlorine. Yields of TOX, chloroform, trichloroacetic acid, dichloroacetic acid, dichloroacetonitrile, and 1,1,1-trichloropropanone were measured at pH 7 and 12. Humic acids produced higher concentrations than their corresponding fulvic acids of all byproducts except 1,1,1-trichloropropanone. Chlorine consumption and byproduct formation were related to fundamental chemical characteristics of the humic materials. A statistical model was proposed for activated aromatic content based on 13C NMR and base titration data. The values estimated from this model were found to be well correlated with chlorine consumption. Specific byproduct formation was related to UV absorbance, nitrogen content, or the activated aromatic content. ?? 1990 American Chemical Society.

  3. Basic Energy Sciences Program Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2016-01-04

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, andmore » operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.« less

  4. Chemical analysis and biological testing of materials from the EDS coal liquefaction process: a status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Later, D.W.; Pelroy, R.A.; Wilson, B.W.

    1984-05-01

    Representative process materials were obtained from the EDS pilot plant for chemical and biological analyses. These materials were characterized for biological activity and chemical composition using a microbial mutagenicity assay and chromatographic and mass spectrometric analytical techniques. The two highest boiling distillation cuts, as well as process solvent (PS) obtained from the bottoms recycle mode operation, were tested for initiation of mouse skin tumorigenicity. All three materials were active; the crude 800/sup 0 +/F cut was substantially more potent than the crude bottoms recycle PS or 750 to 800/sup 0/F distillate cut. Results from chemical analyses showed the EDS materials,more » in general, to be more highly alkylated and have higher hydroaromatic content than analogous SRC II process materials (no in-line process hydrogenation) used for comparison. In the microbial mutagenicity assays the N-PAC fractions showed greater activity than did the aliphatic hydrocarbon, hydroxy-PAH, or PAH fractions, although mutagenicity was detected in certain PAH fractions by a modified version of the standard microbial mutagenicity assay. Mutagenic activities for the EDS materials were lower, overall, than those for the corresponding materials from the SRC II process. The EDS materials produced under different operational modes had distinguishable differences in both their chemical constituency and biological activity. The primary differences between the EDS materials studied here and their SRC II counterparts used for comparison are most likely attributable to the incorporation of catalytic hydrogenation in the EDS process. 27 references, 28 figures, 27 tables.« less

  5. Development of new materials and structures based on managed physical-chemical factors of local interaction

    NASA Astrophysics Data System (ADS)

    Urakov, A. L.

    2016-04-01

    The paper states that assigning certain physical and chemical characteristics to pills and medical drugs solutions can substitute for the development of new drugs (which is essentially equivalent to the creation of new medicines). It is established that the purposeful change of physical and chemical characteristics of the standard ("old") materials (in other words, the known substances) is fundamental for the production of solid and liquid medicines, which allows us to get "new" structures and materials. The paper shows that assigning new physical and chemical properties to "old" materials and their further usage for the production of tablets and solutions from the "old" and well-known medicines can turn even very "old" medicine into very "novel" (moreover, even very fashionable) one with unprecedented (fantastic) pharmacological activity and new mechanisms of action.

  6. Preservice elementary teachers learning to use curriculum materials to plan and teach science

    NASA Astrophysics Data System (ADS)

    Gunckel, Kristin Lee

    New elementary teachers rely heavily on curriculum materials, but available science curriculum materials do not often support teachers in meeting specified learning goals, engaging students in the inquiry and application practices of science, or leveraging students' intellectual and cultural resources for learning. One approach to supporting new elementary teachers in using available science curriculum materials is to provide frameworks to scaffold preservice teachers' developing lesson planning and teaching practices. The Inquiry-Application Instructional Model (I-AIM) and the Critical Analysis and Planning (CA&P) tool were designed to scaffold preservice teachers' developing practice to use curriculum materials effectively to plan and teach science. The I-AIM identifies functions for each activity in an instructional sequence. The CA&P provides guides preservice teachers in modifying curriculum materials to better fit I-AIM and leverage students' resources for learning. This study followed three elementary preservice teachers in an intern-level science method course as they learned to use the I-AIM and CA&P to plan and teach a science unit in their field placement classrooms. Using a sociocultural perspective, this study focused on the ways that the interns used the tools and the mediators that influenced how they used the tools. A color-coding analysis procedure was developed to identify the teaching patterns in the interns' planned instructional approaches and enacted activity sequences and compare those to the patterns implied by the I-AIM and CA&P tools. Interviews with the interns were also conducted and analyzed, along with the assignments they completed for their science methods course, to gain insight into the meanings the interns made of the tools and their experiences planning and teaching science. The results show that all three interns had some successes using the I-AIM and CA&P to analyze their curriculum materials and to plan and teach science

  7. Content Structure in Science Instructional Materials and Knowledge Structure in Students' Memories.

    ERIC Educational Resources Information Center

    Champagne, Audrey B.; And Others

    The research reported in this paper concerns the design of instructional materials that represent the content structure of a science discipline and the development of methods of probing and representing the knowledge structure in a student's memory. The science discipline selected for the study was geology. Specifically, the conceptual structures…

  8. Polymerization Simulator for Introductory Polymer and Material Science Courses

    ERIC Educational Resources Information Center

    Chirdon, William M.

    2010-01-01

    This work describes how molecular simulation of polymerization reactions can be used to enrich introductory polymer or material science courses to give students a deeper understanding of free-radical chain and stepwise growth polymerization reactions. These simulations have proven to be effective media for instruction that do not require material…

  9. Fast Atomic-Scale Chemical Imaging of Crystalline Materials and Dynamic Phase Transformations

    DOE PAGES

    Lu, Ping; Yuan, Ren Liang; Ihlefeld, Jon F.; ...

    2016-03-04

    Chemical imaging at the atomic-scale provides a useful real-space approach to chemically investigate solid crystal structures, and has been recently demonstrated in aberration corrected scanning transmission electron microscopy (STEM). Atomic-scale chemical imaging by STEM using energy-dispersive X-ray spectroscopy (EDS) offers easy data interpretation with a one-to-one correspondence between image and structure but has a severe shortcoming due to the poor efficiency of X-ray generation and collection. As a result, it requires a long acquisition time of typical > few 100 seconds, limiting its potential applications. Here we describe the development of an atomic-scale STEM EDS chemical imaging technique that cutsmore » the acquisition time to one or a few seconds, efficiently reducing the acquisition time by more than 100 times. This method was demonstrated using LaAlO 3 (LAO) as a model crystal. Applying this method to the study of phase transformation induced by electron-beam radiation in a layered lithium transition-metal (TM) oxide, i.e., Li[Li 0.2Ni 0.2Mn 0.6]O 2 (LNMO), a cathode materials for lithium-ion batteries, we obtained a time-series of the atomic-scale chemical imaging, showing the transformation progressing by preferably jumping of Ni atoms from the TM layers into the Li-layers. The new capability offers an opportunity for temporal, atomic-scale chemical mapping of crystal structures for the investigation of materials susceptible to electron irradiation as well as phase transformation and dynamics at the atomic-scale.« less

  10. Development of experimental systems for material sciences under microgravity

    NASA Technical Reports Server (NTRS)

    Tanii, Jun; Obi, Shinzo; Kamimiyata, Yotsuo; Ajimine, Akio

    1988-01-01

    As part of the Space Experiment Program of the Society of Japanese Aerospace Companies, three experimental systems (G452, G453, G454) have been developed for materials science studies under microgravity by the NEC Corporation. These systems are to be flown as Get Away Special payloads for studying the feasibility of producing new materials. Together with the experimental modules carrying the hardware specific to the experiment, the three systems all comprise standard subsystems consisting of a power supply, sequence controller, temperature controller, data recorder, and video recorder.

  11. Physical, Chemical, Bibological, and Biotechnological sciences are incomplete without each other

    USDA-ARS?s Scientific Manuscript database

    By coupling of mechanics, optics, and mathematics, Theodor Svedberg invented the ultracentrifuge, which allowed separation of important biological materials by high centrifugal force, resulting in physical chemical separation and characterization of atherogenic low density lipoproteins and other bio...

  12. Materials and processing science: Limits for microelectronics

    NASA Astrophysics Data System (ADS)

    Rosenberg, R.

    1988-09-01

    The theme of this talk will be to illustrate examples of technologies that will drive materials and processing sciences to the limit and to describe some of the research being pursued to understand materials interactions which are pervasive to projected structure fabrication. It is to be expected that the future will see a progression to nanostructures where scaling laws will be tested and quantum transport will become more in evidence, to low temperature operation for tighter control and improved performance, to complex vertical profiles where 3D stacking and superlattices will produce denser packing and device flexibility, to faster communication links with optoelectronics, and to compatible packaging technologies. New low temperature processing techniques, such as epitaxy of silicon, PECVD of dielectrics, low temperature high pressure oxidation, silicon-germanium heterostructures, etc., must be combined with shallow metallurgies, new lithographic technologies, maskless patterning, rapid thermal processing (RTP) to produce needed profile control, reduce process incompatibilities and develop new device geometries. Materials interactions are of special consequence for chip substrates and illustrations of work in metal-ceramic and metal-polymer adhesion will be offered.

  13. Polyoxometalates: from inorganic chemistry to materials science.

    PubMed

    Casañ-Pastor, Nieves; Gómez-Romero, Pedro

    2004-05-01

    Polyoxometalates have been traditionally the subject of study of molecular inorganic chemistry. Yet, these polynuclear molecules, reminiscent of oxide clusters, present a wide range of structures and with them ideal frameworks for the deployment of a plethora of useful magnetic, electroionic, catalytic, bioactive and photochemical properties. With this in mind, a new trend towards the application of these remarkable species in materials science is beginning to develop. In this review we analyze this trend and discuss two main lines of thought for the application of polyoxometalates as materials. On the one hand, there is their use as clusters with inherently useful properties on themselves, a line which has produced fundamental studies of their magnetic, electronic or photoelectrochemical properties and has shown these clusters as models for quantum-sized oxides. On the other hand, the encapsulation or integration of polyoxometalates into organic, polymeric or inorganic matrices or substrates opens a whole new field within the area of hybrid materials for harnessing the multifunctional properties of these versatile species in a wide variety of applications, ranging from catalysis to energy storage to biomedicine.

  14. Developing, Implementing and Evaluating Case Studies in Materials Science

    ERIC Educational Resources Information Center

    Davis, Claire; Wilcock, Elizabeth

    2005-01-01

    The use of case studies to teach materials science undergraduates is an exciting and interesting educational approach. As well as helping learners to connect theory and practice, the case method is also useful for creating an active learning environment, developing key skills and catering for a range of different learning styles. This paper…

  15. Relationships between chemical structure, mechanical properties and materials processing in nanopatterned organosilicate fins.

    PubMed

    Stan, Gheorghe; Gates, Richard S; Hu, Qichi; Kjoller, Kevin; Prater, Craig; Jit Singh, Kanwal; Mays, Ebony; King, Sean W

    2017-01-01

    The exploitation of nanoscale size effects to create new nanostructured materials necessitates the development of an understanding of relationships between molecular structure, physical properties and material processing at the nanoscale. Numerous metrologies capable of thermal, mechanical, and electrical characterization at the nanoscale have been demonstrated over the past two decades. However, the ability to perform nanoscale molecular/chemical structure characterization has only been recently demonstrated with the advent of atomic-force-microscopy-based infrared spectroscopy (AFM-IR) and related techniques. Therefore, we have combined measurements of chemical structures with AFM-IR and of mechanical properties with contact resonance AFM (CR-AFM) to investigate the fabrication of 20-500 nm wide fin structures in a nanoporous organosilicate material. We show that by combining these two techniques, one can clearly observe variations of chemical structure and mechanical properties that correlate with the fabrication process and the feature size of the organosilicate fins. Specifically, we have observed an inverse correlation between the concentration of terminal organic groups and the stiffness of nanopatterned organosilicate fins. The selective removal of the organic component during etching results in a stiffness increase and reinsertion via chemical silylation results in a stiffness decrease. Examination of this effect as a function of fin width indicates that the loss of terminal organic groups and stiffness increase occur primarily at the exposed surfaces of the fins over a length scale of 10-20 nm. While the observed structure-property relationships are specific to organosilicates, we believe the combined demonstration of AFM-IR with CR-AFM should pave the way for a similar nanoscale characterization of other materials where the understanding of such relationships is essential.

  16. FOREWORD: Focus on Magneto-Science

    NASA Astrophysics Data System (ADS)

    Tanimoto, Yoshifumi; Beaugnon, Eric; Kimura, Tsunehisa; Ozeki, Sumio

    2008-06-01

    , diamagnetic materials such as water and wood can be levitated by applying vertical magnetic fields: magnetic levitation. These phenomena are interpreted in terms of magnetic force. Although the effect of a magnetic force has been well investigated both theoretically and experimentally, before these reports it was difficult to imagine that water could be separated or levitated using magnetic fields, simply because the magnetic force generated by a tabletop electromagnet is not strong enough to demonstrate these phenomena clearly. The magnetic phenomena occurring under a 10 T field markedly differ from those under a 1 T field: strong magnetic fields of approximately 10 T present researchers with a new interdisciplinary field of science, encompassing physics, chemistry and biology, which will also be useful for technological development. Taking these benefits into account, we adopted the term 'magneto-science' (basic and applied), to refer to the investigation of magnetic field effects (MFEs) on physical, chemical and biological phenomena in order to differentiate this new interdisciplinary field from traditional ones. In consideration of the important role of magneto-science in the 21st century, this focus issue contains 16 articles selected from the International Conference on Magneto-Science (ICMS2007), which was held in Hiroshima, Japan in November 2007. The selected papers describe various studies of MFEs (≤ 16 T) in hard, soft and biological materials. Topics such as the magnetic processing of alloys or hard materials, spin chemistry and spin dynamics, magneto-electrochemistry, the magnetic processing of soft materials, the applications of magnetic fields to analysis, and magneto-biology are addressed to delineate the frontiers of magneto-science. We hope that this focus issue will help readers to understand several aspects of the frontiers of magneto-science.

  17. Materials Science Experiments Under Microgravity - A Review of History, Facilities, and Future Opportunities

    NASA Technical Reports Server (NTRS)

    Stenzel, Ch.

    2012-01-01

    Materials science experiments have been a key issue already since the early days of research under microgravity conditions. A microgravity environment facilitates processing of metallic and semiconductor melts without buoyancy driven convection and sedimentation. Hence, crystal growth of semiconductors, solidification of metallic alloys, and the measurement of thermo-physical parameters are the major applications in the field of materials science making use of these dedicated conditions in space. In the last three decades a large number of successful experiments have been performed, mainly in international collaborations. In parallel, the development of high-performance research facilities and the technological upgrade of diagnostic and stimuli elements have also contributed to providing optimum conditions to perform such experiments. A review of the history of materials science experiments in space focussing on the development of research facilities is given. Furthermore, current opportunities to perform such experiments onboard ISS are described and potential future options are outlined.

  18. Robust chemical and chemical-resistant material detection using hyper-spectral imager and a new bend interpolation and local scaling HSI sharpening method

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; McGurr, Michael; Brickhouse, Mark

    2015-05-01

    We present new results from our ongoing research activity for chemical threat detection using hyper-spectral imager (HSI) detection techniques by detecting nontraditional threat spectral signatures of agent usage, such as protective equipment, coatings, paints, spills, and stains that are worn by human or on trucks or other objects. We have applied several current state-of-the-art HSI target detection methods such as Matched Filter (MF), Adaptive Coherence Estimator (ACE), Constrained Energy Minimization (CEM), and Spectral Angle Mapper (SAM). We are interested in detecting several chemical related materials: (a) Tyvek clothing is chemical resistance and Tyvek coveralls are one-piece garments for protecting human body from harmful chemicals, and (b) ammonium salts from background could be representative of spills from scrubbers or related to other chemical activities. The HSI dataset that we used for detection covers a chemical test field with more than 50 different kinds of chemicals, protective materials, coatings, and paints. Among them, there are four different kinds of Tyvek material, three types of ammonium salts, and one yellow jugs. The imagery cube data were collected by a HSI sensor with a spectral range of 400-2,500nm. Preliminary testing results are promising, and very high probability of detection (Pd) and low probability of false detection are achieved with the usage of full spectral range (400- 2,500nm). In the second part of this paper, we present our newly developed HSI sharpening technique. A new Band Interpolation and Local Scaling (BILS) method has been developed to improve HSI spatial resolution by 4-16 times with a low-cost high-resolution pen-chromatic camera and a RGB camera. Preliminary results indicate that this new technique is promising.

  19. Sodium hydrazinidoborane: a chemical hydrogen-storage material.

    PubMed

    Moury, Romain; Demirci, Umit B; Ichikawa, Takayuki; Filinchuk, Yaroslav; Chiriac, Rodica; van der Lee, Arie; Miele, Philippe

    2013-04-01

    Herein, we present the successful synthesis and full characterization (by (11) B magic-angle-spinning nuclear magnetic resonance spectroscopy, infrared spectroscopy, powder X-ray diffraction) of sodium hydrazinidoborane (NaN2 H3 BH3 , with a hydrogen content of 8.85 wt %), a new material for chemical hydrogen storage. Using lab-prepared pure hydrazine borane (N2 H4 BH3 ) and commercial sodium hydride as precursors, sodium hydrazinidoborane was synthesized by ball-milling at low temperature (-30 °C) under an argon atmosphere. Its thermal stability was assessed by thermogravimetric analysis and differential scanning calorimetry. It was found that under heating sodium hydrazinidoborane starts to liberate hydrogen below 60 °C. Within the range of 60-150 °C, the overall mass loss is as high as 7.6 wt %. Relative to the parent N2 H4 BH3 , sodium hydrazinidoborane shows improved dehydrogenation properties, further confirmed by dehydrogenation experiments under prolonged heating at constant temperatures of 80, 90, 95, 100, and 110 °C. Hence, sodium hydrazinidoborane appears to be more suitable for chemical hydrogen storage than N2 H4 BH3 . Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Chemical Frustration. A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredrickson, Daniel C

    2015-06-23

    Final technical report for "Chemical Frustration: A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases" funded by the Office of Science through the Materials Chemistry Program of the Office of Basic Energy Sciences.

  1. Modern data science for analytical chemical data - A comprehensive review.

    PubMed

    Szymańska, Ewa

    2018-10-22

    Efficient and reliable analysis of chemical analytical data is a great challenge due to the increase in data size, variety and velocity. New methodologies, approaches and methods are being proposed not only by chemometrics but also by other data scientific communities to extract relevant information from big datasets and provide their value to different applications. Besides common goal of big data analysis, different perspectives and terms on big data are being discussed in scientific literature and public media. The aim of this comprehensive review is to present common trends in the analysis of chemical analytical data across different data scientific fields together with their data type-specific and generic challenges. Firstly, common data science terms used in different data scientific fields are summarized and discussed. Secondly, systematic methodologies to plan and run big data analysis projects are presented together with their steps. Moreover, different analysis aspects like assessing data quality, selecting data pre-processing strategies, data visualization and model validation are considered in more detail. Finally, an overview of standard and new data analysis methods is provided and their suitability for big analytical chemical datasets shortly discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Content, format, gender and grade level differences in elementary students' ability to read science materials as measured by the cloze procedure

    NASA Astrophysics Data System (ADS)

    Williams, Richard L.; Yore, Larry D.

    Present instructional trends in science indicate a need to reexamine a traditional concern in science education: the readability of science textbooks. An area of reading research not well documented is the effect of color, visuals, and page layout on readability of science materials. Using the cloze readability method, the present study explored the relationships between page format, grade level, sex, content, and elementary school students ability to read science material. Significant relationships were found between cloze scores and both grade level and content, and there was a significant interaction effect between grade and sex in favor of older males. No significant relationships could be attributed to page format and sex. In the area of science content, biological materials were most difficult in terms of readability followed by earth science and physical science. Grade level data indicated that grade five materials were more difficult for that level than either grade four or grade six materials were for students at each respective level. In eight of nine cases, the science text materials would be classified at or near the frustration level of readability. The implications for textbook writers and publishers are that science reading materials need to be produced with greater attention to readability and known design principles regarding visual supplements. The implication for teachers is that students need direct instruction in using visual materials to increase their learning from text material. Present visual materials appear to neither help nor hinder the student to gain information from text material.

  3. The new materials science diffractometer STRESS-SPEC at FRM-II

    NASA Astrophysics Data System (ADS)

    Hofmann, M.; Schneider, R.; Seidl, G. A.; Rebelo-Kornmeier, J.; Wimpory, R. C.; Garbe, U.; Brokmeier, H.-G.

    2006-11-01

    In response to the development of new materials and the application of materials and components in new technologies the direct measurement, calculation and evaluation of textures and residual stresses has gained worldwide significance in recent years. In order to cater for the development of these analytical techniques the Materials Science Diffractometer STRESS-SPEC at FRM-II is designed to be equally applied to texture or residual stress analysis by virtue of its flexible configuration and the high neutron flux at the sample position. The instrument is now available for routine operation and here we present details of first experiments and instrument performance.

  4. The Mars Science Laboratory Organic Check Material

    NASA Astrophysics Data System (ADS)

    Conrad, Pamela G.; Eigenbrode, Jennifer L.; Von der Heydt, Max O.; Mogensen, Claus T.; Canham, John; Harpold, Dan N.; Johnson, Joel; Errigo, Therese; Glavin, Daniel P.; Mahaffy, Paul R.

    2012-09-01

    Mars Science Laboratory's Curiosity rover carries a set of five external verification standards in hermetically sealed containers that can be sampled as would be a Martian rock, by drilling and then portioning into the solid sample inlet of the Sample Analysis at Mars (SAM) suite. Each organic check material (OCM) canister contains a porous ceramic solid, which has been doped with a fluorinated hydrocarbon marker that can be detected by SAM. The purpose of the OCM is to serve as a verification tool for the organic cleanliness of those parts of the sample chain that cannot be cleaned other than by dilution, i.e., repeated sampling of Martian rock. SAM possesses internal calibrants for verification of both its performance and its internal cleanliness, and the OCM is not used for that purpose. Each OCM unit is designed for one use only, and the choice to do so will be made by the project science group (PSG).

  5. Dual stimuli responsive self-reporting material for chemical reservoir coating

    NASA Astrophysics Data System (ADS)

    Lee, Tae Hee; Song, Young Kyu; Park, Sun Hee; Park, Young Il; Noh, Seung Man; Kim, Jin Chul

    2018-03-01

    In this study, we introduce a novel dual stimuli responsive self-reporting thiol-epoxy thermoset (DSRTET) coatings which can detect both crack occurrence and pH variation. For crack detection, microcapsule containing tetraphenylethylene (TPE) which exhibits aggregation induced emission (AIE) effect was prepared via multi-step emulsion polymerization and dispersed in DSRTET coatings. For pH variation detection, commercial thymol blue as a pH indicator was added into the polymer matrix. The effect of microcapsule contents in DSRTET on their curing behavior, material properties, and crack sensitivity was characterized using an oscillatory rheology, rigid body pendulum test (RPT), nano-indentation test (NST), universal test machine (UTM) and scratch tester. It was revealed that crack sensitivity of DSRTET coatings was greatly influenced by material properties as well as microcapsule content. The color transition of DSRTET coatings in response to acid or base solution were quantitatively investigated using a multi-angle spectrophotometer after simple acid and base solution drop tests. The color of DSRTET coatings changed from a pale green to red for acidic solution and to blue for basic solution. Finally, The DSRTET used in this study was applied to laboratory scale chemical reservoirs in order to verify the potential as a dual stimuli response self-reporting coating which can detect both crack in coating material and chemical spill caused by the leakage or breakage of the reservoir part.

  6. System for chemically digesting low level radioactive, solid waste material

    DOEpatents

    Cowan, Richard G.; Blasewitz, Albert G.

    1982-01-01

    An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

  7. Understanding Chemical Equilibrium: The Role of Gas Phases and Mixing Contributions in the Minimum of Free Energy Plots

    ERIC Educational Resources Information Center

    Tomba, J. Pablo

    2017-01-01

    The use of free energy plots to understand the concept of thermodynamic equilibrium has been shown to be of great pedagogical value in materials science. Although chemical equilibrium is also amenable to this kind of analysis, it is not part of the agenda of materials science textbooks. Something similar is found in chemistry branches, where free…

  8. On the Materials Science of Nature's Arms Race.

    PubMed

    Liu, Zengqian; Zhang, Zhefeng; Ritchie, Robert O

    2018-06-05

    Biological material systems have evolved unique combinations of mechanical properties to fulfill their specific function through a series of ingenious designs. Seeking lessons from Nature by replicating the underlying principles of such biological materials offers new promise for creating unique combinations of properties in man-made systems. One case in point is Nature's means of attack and defense. During the long-term evolutionary "arms race," naturally evolved weapons have achieved exceptional mechanical efficiency with a synergy of effective offense and persistence-two characteristics that often tend to be mutually exclusive in many synthetic systems-which may present a notable source of new materials science knowledge and inspiration. This review categorizes Nature's weapons into ten distinct groups, and discusses the unique structural and mechanical designs of each group by taking representative systems as examples. The approach described is to extract the common principles underlying such designs that could be translated into man-made materials. Further, recent advances in replicating the design principles of natural weapons at differing lengthscales in artificial materials, devices and tools to tackle practical problems are revisited, and the challenges associated with biological and bioinspired materials research in terms of both processing and properties are discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Filter-based chemical sensors for hazardous materials

    NASA Astrophysics Data System (ADS)

    Major, Kevin J.; Ewing, Kenneth J.; Poutous, Menelaos K.; Sanghera, Jasbinder S.; Aggarwal, Ishwar D.

    2014-05-01

    The development of new techniques for the detection of homemade explosive devices is an area of intense research for the defense community. Such sensors must exhibit high selectivity to detect explosives and/or explosives related materials in a complex environment. Spectroscopic techniques such as FTIR are capable of discriminating between the volatile components of explosives; however, there is a need for less expensive systems for wide-range use in the field. To tackle this challenge we are investigating the use of multiple, overlapping, broad-band infrared (IR) filters to enable discrimination of volatile chemicals associated with an explosive device from potential background interferants with similar chemical signatures. We present an optical approach for the detection of fuel oil (the volatile component in ammonium nitrate-fuel oil explosives) that relies on IR absorption spectroscopy in a laboratory environment. Our proposed system utilizes a three filter set to separate the IR signals from fuel oil and various background interferants in the sample headspace. Filter responses for the chemical spectra are calculated using a Gaussian filter set. We demonstrate that using a specifically chosen filter set enables discrimination of pure fuel oil, hexanes, and acetone, as well as various mixtures of these components. We examine the effects of varying carrier gasses and humidity on the collected spectra and corresponding filter response. We study the filter response on these mixtures over time as well as present a variety of methods for observing the filter response functions to determine the response of this approach to detecting fuel oil in various environments.

  10. Developing a Material-Dialogic Approach to Pedagogy to Guide Science Teacher Education

    ERIC Educational Resources Information Center

    Hetherington, Lindsay; Wegerif, Rupert

    2018-01-01

    Dialogic pedagogy is being promoted in science teacher education but the literature on dialogic pedagogy tends to focus on explicit voices, and so runs the risk of overlooking the important role that material objects often play in science education. In this paper we use the findings of a teacher survey and classroom case study to argue that there…

  11. The Efficacy of Educative Curriculum Materials to Support Geospatial Science Pedagogical Content Knowledge

    ERIC Educational Resources Information Center

    Bodzin, Alec; Peffer, Tamara; Kulo, Violet

    2012-01-01

    Teaching and learning about geospatial aspects of energy resource issues requires that science teachers apply effective science pedagogical approaches to implement geospatial technologies into classroom instruction. To address this need, we designed educative curriculum materials as an integral part of a comprehensive middle school energy…

  12. Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures.

    PubMed

    Cai, Zhengyang; Liu, Bilu; Zou, Xiaolong; Cheng, Hui-Ming

    2018-01-31

    Two-dimensional (2D) materials have attracted increasing research interest because of the abundant choice of materials with diverse and tunable electronic, optical, and chemical properties. Moreover, 2D material based heterostructures combining several individual 2D materials provide unique platforms to create an almost infinite number of materials and show exotic physical phenomena as well as new properties and applications. To achieve these high expectations, methods for the scalable preparation of 2D materials and 2D heterostructures of high quality and low cost must be developed. Chemical vapor deposition (CVD) is a powerful method which may meet the above requirements, and has been extensively used to grow 2D materials and their heterostructures in recent years, despite several challenges remaining. In this review of the challenges in the CVD growth of 2D materials, we highlight recent advances in the controlled growth of single crystal 2D materials, with an emphasis on semiconducting transition metal dichalcogenides. We provide insight into the growth mechanisms of single crystal 2D domains and the key technologies used to realize wafer-scale growth of continuous and homogeneous 2D films which are important for practical applications. Meanwhile, strategies to design and grow various kinds of 2D material based heterostructures are thoroughly discussed. The applications of CVD-grown 2D materials and their heterostructures in electronics, optoelectronics, sensors, flexible devices, and electrocatalysis are also discussed. Finally, we suggest solutions to these challenges and ideas concerning future developments in this emerging field.

  13. Research Opportunities Supporting the Vision for Space Exploration from the Transformation of the Former Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Szofran, Frank; Bassler, Julie A.; Schlagheck, Ronald A.; Cook, Mary Beth

    2005-01-01

    The Microgravity Materials Science Program established a strong research capability through partnerships between NASA and the scientific research community. With the announcement of the vision for space exploration, additional emphasis in strategic materials science areas was necessary. The President's Commission recognized that achieving its exploration objectives would require significant technical innovation, research, and development in focal areas defined as "enabling technologies." Among the 17 enabling technologies identified for initial focus were: advanced structures, advanced power and propulsion; closed-loop life support and habitability; extravehicular activity systems; autonomous systems and robotics; scientific data collection and analysis, biomedical risk mitigation; and planetary in situ resource utilization. Mission success may depend upon use of local resources to fabricate a replacement part to repair a critical system. Future propulsion systems will require materials with a wide range of mechanical, thermophysical, and thermochemical properties, many of them well beyond capabilities of today's materials systems. Materials challenges have also been identified by experts working to develop advanced life support systems. In responding to the vision for space exploration, the Microgravity Materials Science Program aggressively transformed its research portfolio and focused materials science areas of emphasis to include space radiation shielding; in situ fabrication and repair for life support systems; in situ resource utilization for life support consumables; and advanced materials for exploration, including materials science for space propulsion systems and for life support systems. The purpose of this paper is to inform the scientific community of these new research directions and opportunities to utilize their materials science expertise and capabilities to support the vision for space exploration.

  14. Entering new publication territory in chemoinformatics and chemical information science.

    PubMed

    Bajorath, Jürgen

    2015-01-01

    The F1000Research publishing platform offers the opportunity to launch themed article collections as a part of its dynamic publication environment. The idea of article collections is further expanded through the generation of publication channels that focus on specific scientific areas or disciplines. This editorial introduces the Chemical Information Science channel of F1000Research designed to collate high-quality publications and foster a culture of open peer review. Articles will be selected by guest editor(s) and a group of experts, the channel Editorial Board, and subjected to open peer review.

  15. Enhanced Removal of Lead by Chemically and Biologically Treated Carbonaceous Materials

    PubMed Central

    Mahmoud, Mohamed E.; Osman, Maher M.; Ahmed, Somia B.; Abdel-Fattah, Tarek M.

    2012-01-01

    Hybrid sorbents and biosorbents were synthesized via chemical and biological treatment of active carbon by simple and direct redox reaction followed by surface loading of baker's yeast. Surface functionality and morphology of chemically and biologically modified sorbents and biosorbents were studied by Fourier Transform Infrared analysis and scanning electron microscope imaging. Hybrid carbonaceous sorbents and biosorbents were characterized by excellent efficiency and superiority toward lead(II) sorption compared to blank active carbon providing a maximum sorption capacity of lead(II) ion as 500 μmol g−1. Sorption processes of lead(II) by these hybrid materials were investigated under the influence of several controlling parameters such as pH, contact time, mass of sorbent and biosorbent, lead(II) concentration, and foreign ions. Lead(II) sorption mechanisms were found to obey the Langmuir and BET isotherm models. The potential applications of chemically and biologically modified-active carbonaceous materials for removal and extraction of lead from real water matrices were also studied via a double-stage microcolumn technique. The results of this study were found to denote to superior recovery values of lead (95.0–99.0 ± 3.0–5.0%) by various carbonaceous-modified-bakers yeast biosorbents. PMID:22629157

  16. Recent advances in material science for developing enzyme electrodes.

    PubMed

    Sarma, Anil Kumar; Vatsyayan, Preety; Goswami, Pranab; Minteer, Shelley D

    2009-04-15

    The enzyme-modified electrode is the fundamental component of amperometric biosensors and biofuel cells. The selection of appropriate combinations of materials, such as: enzyme, electron transport mediator, binding and encapsulation materials, conductive support matrix and solid support, for construction of enzyme-modified electrodes governs the efficiency of the electrodes in terms of electron transfer kinetics, mass transport, stability, and reproducibility. This review investigates the varieties of materials that can be used for these purposes. Recent innovation in conductive electro-active polymers, functionalized polymers, biocompatible composite materials, composites of transition metal-based complexes and organometallic compounds, sol-gel and hydro-gel materials, nanomaterials, other nano-metal composites, and nano-metal oxides are reviewed and discussed here. In addition, the critical issues related to the construction of enzyme electrodes and their application for biosensor and biofuel cell applications are also highlighted in this article. Effort has been made to cover the recent literature on the advancement of materials sciences to develop enzyme electrodes and their potential applications for the construction of biosensors and biofuel cells.

  17. Materials Science News | Materials Science | NREL

    Science.gov Websites

    News Release: NREL Opens Large Database of Inorganic Thin-Film Materials An extensive experimental developing a rechargeable non-aqueous magnesium-metal battery. January 30, 2018 Dave Moore: Taking Roundabout

  18. Study of Horseradish Peroxidase Fixed on Mesoporous Materials as a Chemical Reaction Catalyst

    NASA Astrophysics Data System (ADS)

    Gao, Mengdan; Dai, Rongji

    2017-12-01

    Nanostructured mesoporous materials is a new type of porous materials, which has been widely used. It has excellent capability in enzymes immobilization, but modification on the chemical bonds of the enzyme reduce the enzymatic activity and rarely used in chemical reactions. The horseradish peroxidase was immobilized on the mesoporous materials with appropriate aperture and its activity and stability was evaluated when catalyzing the nitration reaction of amines and oxidation reaction of thiourea. The optimum mesoporous material to fix the horseradish peroxidase can be obtained by mixing polyoxyethylene - polyoxypropylene-pol, yoxyethylene(P123), 1,3,5-trimethylbenzene(TMB), and tetramethoxysilane (TMOS) at a ratio of 10:1:1, whose surface area and pore volume and pore diameter calculated by BET and BJH model were 402.903m2/g, 1.084cm2/g, 1.084cm2/g respectively. The horseradish peroxidase, immobilized on the mesoporous materials, was applied for catalyzing the nitration reaction of anilines and oxidation reaction of thiourea, produced a high product yield and can be recycled. Thus, it is a strong candidate as a catalysts for oxidation reactions, to be produced at industral scale, due to its high efficiency and low cost.

  19. Advanced Ultrafast Spectroscopy for Chemical Detection of Nuclear Fuel Cycle Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa-Aleman, E.; Houk, A.; Spencer, W.

    The development of new signatures and observables from processes related to proliferation activities are often related to the development of technologies. In our physical world, the intensity of observables is linearly related to the input drivers (light, current, voltage, etc.). Ultrafast lasers with high peak energies, opens the door to a new regime where the intensity of the observables is not necessarily linear with the laser energy. Potential nonlinear spectroscopic applications include chemical detection via remote sensing through filament generation, material characterization and processing, chemical reaction specificity, surface phenomena modifications, X-ray production, nuclear fusion, etc. The National Security Directorate lasermore » laboratory is currently working to develop new tools for nonproliferation research with femtosecond and picosecond lasers. Prior to this project, we could only achieve laser energies in the 5 nano-Joule range, preventing the study of nonlinear phenomena. To advance our nonproliferation research into the nonlinear regime we require laser pulses in the milli-Joule (mJ) energy range. We have procured and installed a 35 fs-7 mJ laser, operating at one-kilohertz repetition rate, to investigate elemental and molecular detection of materials in the laboratory with potential applications in remote sensing. Advanced, nonlinear Raman techniques will be used to study materials of interest that are in a matrix of many materials and currently with these nonlinear techniques we can achieve greater than three orders of magnitude signal enhancement. This work studying nuclear fuel cycle materials with nonlinear spectroscopies will advance SRNL research capabilities and grow a core capability within the DOE complex.« less

  20. The use of Banyumas traditional art as analog sources of elementary school science materials

    NASA Astrophysics Data System (ADS)

    Handayani, L.; Nugroho, S. E.; Rohidi, T. R.; Wiyanto

    2018-03-01

    All various traditional arts of Banyumas area support this area to be one famous region located in the periphery of West and Central Java with its unique cultural identity. In science learning, these traditional arts are very important aspect which can be implemented as a source of analog by students thinking a science concept analogically. This paper discusses a kind of Banyumas traditional art: the ebeg, and its cultural characteristics which can play a significant role in supporting elementary school students’ analogical thinking of a science material. The method used were literature and documentary studies. It is concluded that the ebeg provides many cultural characteristics which can be used as analog of elementary school science material, in terms of its music player’s motion, kinds of musical instruments played and its dancer motion.

  1. Chemical reactivity of the Martian soil

    NASA Technical Reports Server (NTRS)

    Zent, A. P.; Mckay, C. P.

    1992-01-01

    The Viking life sciences experimental packages detected extraordinary chemical activity in the martian soil, probably the result of soil-surface chemistry. At least one very strong oxidant may exist in the martian soil. The electrochemical nature of the martian soil has figured prominently in discussions of future life sciences research on Mars. Putative oxidants in the martian soil may be responsible for the destruction of organic material to considerable depth, precluding the recovery of reducing material that may be relic of early biological forms. Also, there have been serious expressions of concern regarding the effect that soil oxidants may have on human health and safety. The concern here has centered on the possible irritation of the respiratory system due to dust carried into the martian habitat through the air locks.

  2. Feasibility of Integration of Selected Aspects of (CBA) Chemistry, (CHEMS) Chemistry and (PSSC) Physics into a Two Year Physical Science Sequence.

    ERIC Educational Resources Information Center

    Fiasca, Michael Aldo

    Compared, for selected outcomes, were integrated chemistry-physics courses with chemistry and physics courses taught separately. Three classes studying integrated Physical Science Study Committee (PSSC)-Chemical Bond Approach (CBA), and three classes studying integrated Physical Science Study Committee-Chemical Education Materials Study (CHEMS)…

  3. Science of Materials: A Case Study of Intentional Teaching in the Early Years

    ERIC Educational Resources Information Center

    Hackling, Mark; Barratt-Pugh, Caroline

    2012-01-01

    Australia's Early Years Learning Framework and leading international researchers argue for more intentional and purposeful teaching of science in the early years. This case study of exemplary practice illustrates intentional teaching of science materials which opened-up learning opportunities in literacy and number. Student-led hands-on…

  4. An FTIR point sensor for identifying chemical WMD and hazardous materials

    NASA Astrophysics Data System (ADS)

    Norman, Mark L.; Gagnon, Aaron M.; Reffner, John A.; Schiering, David W.; Allen, Jeffrey D.

    2004-03-01

    A new point sensor for identifying chemical weapons of mass destruction and other hazardous materials based on Fourier transform infrared (FT-IR) spectroscopy is presented. The sensor is a portable, fully functional FT-IR system that features a miniaturized Michelson interferometer, an integrated diamond attenuated total reflection (ATR) sample interface, and an embedded on-board computer. Samples are identified by an automated search algorithm that compares their infrared spectra to digitized databases that include reference spectra of nerve and blister agents, toxic industrial chemicals, and other hazardous materials. The hardware and software are designed for use by technicians with no background in infrared spectroscopy. The unit, which is fully self-contained, can be hand-carried and used in a hot zone by personnel in Level A protective gear, and subsequently decontaminated by spraying or immersion. Wireless control by a remote computer is also possible. Details of the system design and performance, including results of field validation tests, are discussed.

  5. Teacher-Made Tactile Science Materials with Critical and Creative Thinking Activities for Learners Including Those with Visual Impairments

    ERIC Educational Resources Information Center

    Teske, Jolene K.; Gray, Phyllis; Kuhn, Mason A.; Clausen, Courtney K.; Smith, Latisha L.; Alsubia, Sukainah A.; Ghayoorad, Maryam; Rule, Audrey C.; Schneider, Jean Suchsland

    2014-01-01

    Gifted students with visual impairments are twice exceptional learners and may not evidence their advanced science aptitudes without appropriate accommodations for learning science. However, effective tactile science teaching materials may be easily made. Recent research has shown that when tactile materials are used with "all" students…

  6. Computed Tomography Support for Microgravity Materials Science Experiments

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Engel, H. Peter; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The accurate measurement of density in both liquid and solid samples is of considerable interest to Principal Investigators with materials science experiments slated for the ISS. The work to be described is an innovative application of a conventional industrial nondestructive evaluation instrument. Traditional applications of industrial computed tomography (CT) rely on reconstructing cross sections of large structures to provide two-dimensional planar views which can identify defects such as porosity, or other material anomalies. This has been done on microgravity materials science experiments to check the integrity of ampoule-cartridge assemblies for safety purposes. With a substantially monoenergetic flux, as can be obtained with a radioactive cobalt source, there will be a direct correlation between absorption and density. Under such conditions it then becomes possible to make accurate measurements of density throughout a sample, and even when the sample itself is enclosed within a furnace and a safety required cartridge. Such a system has been installed at Kennedy Space Center (KSC) and is available to PIs to examine samples before and after flight. The CT system is being used to provide density information for two purposes. Firstly, the determination of density changes from liquid to solid is vital information to the PI for purposes of modeling the solidification behavior of his sample, and to engineers who have to design containment ampoules and must allow for shrinkage and other volume changes that may occur during processing. While such information can be obtained by pycnometric measurements, the possibility of using a furnace installed on the CT system enables one to examine potentially dangerous materials having high vapor pressures, while not needing visible access to the material. In addition, uniform temperature can readily be obtained, and the system can be controlled to ramp up, hold, and ramp down while collecting data over a wide range of

  7. Coupled thermal/chemical/mechanical modeling of energetic materials in ALE3D

    NASA Technical Reports Server (NTRS)

    Nichols, A. L.; Couch, R.; Maltby, J. D.; McCallen, R. C.; Otero, I.

    1996-01-01

    We must improve our ability to model the response of energetic materials to thermal stimuli and the processes involved in the energetic response. We have developed and used a time step option to efficiently and accurately compute the hours that the energetic material can take to react. Since on these longer film scales, materials can be expected to have significant motion, it is even more important to provide high-order advection for all components, including the chemical species. We show an example cook-off problem to illustrate these capabilities.

  8. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    PubMed Central

    Isik, Mehmet; Sardon, Haritz; Mecerreyes, David

    2014-01-01

    Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels. PMID:25000264

  9. Framework for Reducing Teaching Challenges Relating to Improvisation of Science Education Equipment and Materials in Schools

    ERIC Educational Resources Information Center

    Akuma, Fru Vitalis; Callaghan, Ronel

    2016-01-01

    The science education budget of many secondary schools has decreased, while shortages and environmental concerns linked to conventional Science Education Equipment and Materials (SEEMs) have emerged. Thus, in some schools, resourceful educators produce low-cost equipment from basic materials and use these so-called improvised SEEMs in practical…

  10. Materials Science of Electrodes and Interfaces for High-Performance Organic Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, Tobin

    The science of organic photovoltaic (OPV) cells has made dramatic advances over the past three years with power conversion efficiencies (PCEs) now reaching ~12%. The upper PCE limit of light-to-electrical power conversion for single-junction OPVs as predicted by theory is ~23%. With further basic research, the vision of such devices, composed of non-toxic, earth-abundant, readily easily processed materials replacing/supplementing current-generation inorganic solar cells may become a reality. Organic cells offer potentially low-cost, roll-to-roll manufacturable, and durable solar power for diverse in-door and out-door applications. Importantly, further gains in efficiency and durability, to that competitive with inorganic PVs, will require fundamental,more » understanding-based advances in transparent electrode and interfacial materials science and engineering. This team-science research effort brought together an experienced and highly collaborative interdisciplinary group with expertise in hard and soft matter materials chemistry, materials electronic structure theory, solar cell fabrication and characterization, microstructure characterization, and low temperature materials processing. We addressed in unconventional ways critical electrode-interfacial issues underlying OPV performance -- controlling band offsets between transparent electrodes and organic active-materials, addressing current loss/leakage phenomena at interfaces, and new techniques in cost-effective low temperature and large area cell fabrication. The research foci were: 1) Theory-guided design and synthesis of advanced crystalline and amorphous transparent conducting oxide (TCO) layers which test our basic understanding of TCO structure-transport property relationships, and have high conductivity, transparency, and tunable work functions but without (or minimizing) the dependence on indium. 2) Development of theory-based understanding of optimum configurations for the interfaces between oxide

  11. Fusion materials semiannual progress report for the period ending June 30, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burn, G.

    1998-09-01

    This is the twenty-fourth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  12. Electrochemistry of Silicon: Instrumentation, Science, Materials and Applications

    NASA Astrophysics Data System (ADS)

    Lehmann, Volker

    2002-04-01

    Silicon has been and will most probably continue to be the dominant material in semiconductor technology. Although the defect-free silicon single crystal is one of the best understood systems in materails science, its electrochemistry to many people is still a kind of "alchemy". This view is partly due to the interdisciplinary aspects of the topic: Physics meets chemistry at the silicon-electrolyte interface. This book gives a comprehensive overview of this important aspect of silicon technology as well as examples of applications ranging from photonic crystals to biochips. It will serve materials scientists as well as engineers involved in silicon technology as a quick reference with its more than 150 technical tables and diagrams and ca. 1000 references cited for easy access of the original literature.

  13. FUSION ENERGY SCIENCES WORKSHOP ON PLASMA MATERIALS INTERACTIONS: Report on Science Challenges and Research Opportunities in Plasma Materials Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maingi, Rajesh; Zinkle, Steven J.; Foster, Mark S.

    2015-05-01

    The realization of controlled thermonuclear fusion as an energy source would transform society, providing a nearly limitless energy source with renewable fuel. Under the auspices of the U.S. Department of Energy, the Fusion Energy Sciences (FES) program management recently launched a series of technical workshops to “seek community engagement and input for future program planning activities” in the targeted areas of (1) Integrated Simulation for Magnetic Fusion Energy Sciences, (2) Control of Transients, (3) Plasma Science Frontiers, and (4) Plasma-Materials Interactions aka Plasma-Materials Interface (PMI). Over the past decade, a number of strategic planning activities1-6 have highlighted PMI and plasmamore » facing components as a major knowledge gap, which should be a priority for fusion research towards ITER and future demonstration fusion energy systems. There is a strong international consensus that new PMI solutions are required in order for fusion to advance beyond ITER. The goal of the 2015 PMI community workshop was to review recent innovations and improvements in understanding the challenging PMI issues, identify high-priority scientific challenges in PMI, and to discuss potential options to address those challenges. The community response to the PMI research assessment was enthusiastic, with over 80 participants involved in the open workshop held at Princeton Plasma Physics Laboratory on May 4-7, 2015. The workshop provided a useful forum for the scientific community to review progress in scientific understanding achieved during the past decade, and to openly discuss high-priority unresolved research questions. One of the key outcomes of the workshop was a focused set of community-initiated Priority Research Directions (PRDs) for PMI. Five PRDs were identified, labeled A-E, which represent community consensus on the most urgent near-term PMI scientific issues. For each PRD, an assessment was made of the scientific challenges, as well as a set of

  14. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science

    PubMed Central

    Mayo, Sheridan C.; Stevenson, Andrew W.; Wilkins, Stephen W.

    2012-01-01

    X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies. PMID:28817018

  15. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science.

    PubMed

    Mayo, Sheridan C; Stevenson, Andrew W; Wilkins, Stephen W

    2012-05-24

    X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies.

  16. Exploring the role of curriculum materials to support teachers in science education reform

    NASA Astrophysics Data System (ADS)

    Schneider, Rebecca M.

    2001-07-01

    For curriculum materials to succeed in promoting large-scale science education reform, teacher learning must be supported. Materials were designed to reflect desired reforms and to be educative by including detailed lesson descriptions that addressed necessary content, pedagogy, and pedagogical content knowledge for teachers. The goal of this research was to describe how such materials contributed to classroom practices. As part of an urban systemic reform effort, four middle school teachers' initial enactment of an inquiry-based science unit on force and motion were videotaped. Enactments focused on five lesson sequences containing experiences with phenomena, investigation, technology use, or artifact development. Each sequence spanned three to five days across the 10-week unit. For each lesson sequence, intended and actual enactment were compared using ratings of (1) accuracy and completeness of science ideas presented, (2) amount student learning opportunities, similarity of learning opportunities with those intended, and quality of adaptations , and (3) amount of instructional supports offered, appropriateness of instructional supports and source of ideas for instructional supports. Ratings indicated two teachers' enactments were consistent with intentions and two teachers' enactments were not. The first two were in school contexts supportive of the reform. They purposefully used the materials to guide enactment, which tended to be consistent with standards-based reform. They provided students opportunities to use technology tools, design investigations, and discuss ideas. However, enactment ratings were less reflective of curriculum intent when challenges were greatest, such as when teachers attempted to present challenging science ideas, respond to students' ideas, structure investigations, guide small-group discussions, or make adaptations. Moreover, enactment ratings were less consistent in parts of lessons where materials did not include lesson specific

  17. The Materials Science of Superheroes

    NASA Astrophysics Data System (ADS)

    Kakalios, James

    2008-03-01

    While materials scientists don't typically consult comic books when selecting research topics, innovations first introduced in superhero adventures as fiction can sometimes find their way off the comic book page and into reality. As amazing as the Fantastic Four's powers is the fact that their costumes are undamaged when the Human Torch flames on or Mr. Fantastic stretches his elastic body. In shape memory materials, an external force or torque induces a structural change that is reversed upon warming. Smart fabrics used in hiking clothing expand at low temperatures, while other materials increase their porosity at higher temperatures, allowing body heat and water vapor to escape. Some polymers can be stretched to over twice their normal dimensions and return to their original state when annealed, a feature appreciated by Mr. Fantastic. In order to keep track of the Invisible Woman, the Fantastic Four's arch nemesis Dr. Doom employed sensors in the eye-slits of his armored face-plate, using the same physics underlying night vision goggles. Certain forms of blindness may be treated using an artificial retina consisting of silicon microelectrode arrays, surgically attached to the back of the eye, that transmit a voltage to the optic nerve proportional to the incident visible light intensity (one of the few positive applications of Dr. Doom's scheming). Spider-Man's wall crawling ability has been ascribed to the same van der Waals attractive force that gecko lizards employ through the millions of microscopic hairs on their toes. Scientists have recently developed ``gecko tape,'' consisting of arrays of fibers that provide a strong enough attraction to support a modest weight. Before this tape is able to support a person, however, major materials constraints must be overcome (if this product ever becomes commercially available, I for one will never wait for the elevator again!) All this, and the chemical composition of Captain America's shield, will be discussed.

  18. The Chemical Modeling of Electronic Materials and Interconnections

    NASA Astrophysics Data System (ADS)

    Kivilahti, J. K.

    2002-12-01

    Thermodynamic and kinetic modeling, together with careful experimental work, is of great help for developing new electronic materials such as lead-free solders, their compatible metallizations and diffusion-barrier layers, as well as joining and bonding processes for advanced electronics manufacturing. When combined, these modeling techniques lead to a rationalization of the trial-and-error methods employed in the electronics industry, limiting experimentation and, thus, reducing significantly time-to-market of new products. This modeling provides useful information on the stabilities of phases (microstructures), driving forces for chemical reactions, and growth rates of reaction products occurring in interconnections or thin-film structures during processing, testing, and in longterm use of electronic devices. This is especially important when manufacturing advanced lead-free electronics where solder joint volumes are decreasing while the number of dissimilar reactive materials is increasing markedly. Therefore, a new concept of local nominal composition was introduced and applied together with the relevant ternary and multicomponent phase diagrams to some solder/conductor systems.

  19. Journal article overlap among Index Medicus, Science Citation Index, Biological Abstracts, and Chemical Abstracts.

    PubMed Central

    Poyer, R K

    1984-01-01

    Journal article overlap is defined as the same journal article being indexed by two or more services. Using journal references from seventy dissertations written in the preclinical sciences, the extent of journal article overlap among Index Medicus, Science Citation Index, Biological Abstracts, and Chemical Abstracts was examined. Of the 7,969 journal references cited, 92% were indexed by at least two of these services; 591 articles were covered by only one of the services, and 55 articles were not indexed. A discussion of the advantages and costs of journal article overlap is presented. PMID:6388693

  20. Highly sensitive ethanol chemical sensor based on Ni-doped SnO₂ nanostructure materials.

    PubMed

    Rahman, Mohammed M; Jamal, Aslam; Khan, Sher Bahadar; Faisal, M

    2011-10-15

    Due to potential applications of semiconductor transition doped nanostructure materials and the important advantages of synthesis in cost-effective and environmental concerns, a significant effort has been consummated for improvement of Ni-doped SnO(2) nanomaterials using hydrothermal technique at room conditions. The structural and optical properties of the low-dimensional (average diameter, 52.4 nm) Ni-doped SnO(2) nanostructures were demonstrated using various conventional techniques such as UV/visible spectroscopy, FT-IR spectroscopy, X-ray powder diffraction (XRD), and Field-emission scanning electron microscopy (FE-SEM). The calcined doped material is an attractive semiconductor nanoparticle for accomplishment in chemical sensing by simple I-V technique, where toxic chemical (ethanol) is used as a target chemical. Thin-film of Ni-doped SnO(2) nanostructure materials with conducting coating agents on silver electrodes (AgE, surface area, 0.0216 cm(2)) revealed higher sensitivity and repeatability. The calibration plot is linear (R, 0.8440) over the large dynamic range (1.0 nM-1.0 mM), where the sensitivity is approximately 2.3148 μA cm(-2) mM(-1) with a detection limit of 0.6 nM, based on signal/noise ratio in short response time. Consequently on the basis of the sensitive communication among structures, morphologies, and properties, it is exemplified that the morphologies and the optical characteristics can be extended to a large scale in doping nanomaterials and proficient chemical sensors applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Green materials for sustainable development

    NASA Astrophysics Data System (ADS)

    Purwasasmita, B. S.

    2017-03-01

    Sustainable development is an integrity of multidiscipline concept combining ecological, social and economic aspects to construct a liveable human living system. The sustainable development can be support through the development of green materials. Green materials offers a unique characteristic and properties including abundant in nature, less toxic, economically affordable and versatility in term of physical and chemical properties. Green materials can be applied for a numerous field in science and technology applications including for energy, building, construction and infrastructures, materials science and engineering applications and pollution management and technology. For instance, green materials can be developed as a source for energy production. Green materials including biomass-based source can be developed as a source for biodiesel and bioethanol production. Biomass-based materials also can be transformed into advanced functionalized materials for advanced bio-applications such as the transformation of chitin into chitosan which further used for biomedicine, biomaterials and tissue engineering applications. Recently, cellulose-based material and lignocellulose-based materials as a source for the developing functional materials attracted the potential prospect for biomaterials, reinforcing materials and nanotechnology. Furthermore, the development of pigment materials has gaining interest by using the green materials as a source due to their unique properties. Eventually, Indonesia as a large country with a large biodiversity can enhance the development of green material to strengthen our nation competitiveness and develop the materials technology for the future.

  2. Electrochemical research in chemical hydrogen storage materials: Sodium borohydride and organotin hydrides

    NASA Astrophysics Data System (ADS)

    McLafferty, Jason

    Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from "spent fuel," i.e., the material remaining after discharge of hydrogen. In this thesis, some research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this thesis, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described.

  3. The implementation of integrated science teaching materials based socio-scientific issues to improve students scientific literacy for environmental pollution theme

    NASA Astrophysics Data System (ADS)

    Yenni, Rita; Hernani, Widodo, Ari

    2017-05-01

    The study aims to determine the increasing of students' science literacy skills on content aspects and competency of science by using Integrated Science teaching materials based Socio-scientific Issues (SSI) for environmental pollution theme. The method used in the study is quasi-experiment with nonequivalent pretest and posttest control group design. The students of experimental class used teaching materials based SSI, whereas the students of control class were still using the usual textbooks. The result of this study showed a significant difference between the value of N-gain of experimental class and control class, whichalso occurred in every indicator of content aspects and competency of science. This result indicates that using of Integrated Science teaching materials based SSI can improve content aspect and competency of science and can be used as teaching materials alternative in teaching of Integrated Science.

  4. Forging the Solution to the Energy Challenge: The Role of Materials Science and Materials Scientists

    NASA Astrophysics Data System (ADS)

    Wadsworth, Jeffrey

    2010-04-01

    The energy challenge is central to the most important strategic problems facing the United States and the world. It is increasingly clear that even large-scale deployments of the best technologies available today cannot meet the rising energy demands of a growing world population. Achieving a secure and sustainable energy future will require full utilization of, and substantial improvements in, a comprehensive portfolio of energy systems and technologies. This goal is complicated by several factors. First, energy strategies are inextricably linked to national security and health issues. Second, in developing and deploying energy technologies, it is vital to consider not only environmental issues, such as global climate change, but also economic considerations, which strongly influence both public and political views on energy policy. Third, a significant and sustained effort in basic and applied research and development (R&D) will be required to deliver the innovations needed to ensure a desirable energy future. Innovations in materials science and engineering are especially needed to overcome the limits of essentially all energy technologies. A wealth of historical evidence demonstrates that such innovations are also the key to economic prosperity. From the development of the earliest cities around flint-trading centers, to the Industrial Revolution, to today’s silicon-based global economy, the advantage goes to those who lead in exploiting materials. I view our challenge by considering the rate of innovation and the transition of discovery to the marketplace as the relationship among R&D investment, a skilled and talented workforce, business innovations, and the activities of competitors. Most disturbing in analyzing this relationship is the need for trained workers in science, technology, engineering, and mathematics (STEM). To develop the STEM workforce needed for innovation, we need sustainable, positive change in STEM education at all levels from preschool

  5. Forging the Solution to the Energy Challenge: The Role of Materials Science and Materials Scientists

    NASA Astrophysics Data System (ADS)

    Wadsworth, Jeffrey

    2010-05-01

    The energy challenge is central to the most important strategic problems facing the United States and the world. It is increasingly clear that even large-scale deployments of the best technologies available today cannot meet the rising energy demands of a growing world population. Achieving a secure and sustainable energy future will require full utilization of, and substantial improvements in, a comprehensive portfolio of energy systems and technologies. This goal is complicated by several factors. First, energy strategies are inextricably linked to national security and health issues. Second, in developing and deploying energy technologies, it is vital to consider not only environmental issues, such as global climate change, but also economic considerations, which strongly influence both public and political views on energy policy. Third, a significant and sustained effort in basic and applied research and development (R&D) will be required to deliver the innovations needed to ensure a desirable energy future. Innovations in materials science and engineering are especially needed to overcome the limits of essentially all energy technologies. A wealth of historical evidence demonstrates that such innovations are also the key to economic prosperity. From the development of the earliest cities around flint-trading centers, to the Industrial Revolution, to today’s silicon-based global economy, the advantage goes to those who lead in exploiting materials. I view our challenge by considering the rate of innovation and the transition of discovery to the marketplace as the relationship among R&D investment, a skilled and talented workforce, business innovations, and the activities of competitors. Most disturbing in analyzing this relationship is the need for trained workers in science, technology, engineering, and mathematics (STEM). To develop the STEM workforce needed for innovation, we need sustainable, positive change in STEM education at all levels from preschool

  6. Statistical analysis and interpolation of compositional data in materials science.

    PubMed

    Pesenson, Misha Z; Suram, Santosh K; Gregoire, John M

    2015-02-09

    Compositional data are ubiquitous in chemistry and materials science: analysis of elements in multicomponent systems, combinatorial problems, etc., lead to data that are non-negative and sum to a constant (for example, atomic concentrations). The constant sum constraint restricts the sampling space to a simplex instead of the usual Euclidean space. Since statistical measures such as mean and standard deviation are defined for the Euclidean space, traditional correlation studies, multivariate analysis, and hypothesis testing may lead to erroneous dependencies and incorrect inferences when applied to compositional data. Furthermore, composition measurements that are used for data analytics may not include all of the elements contained in the material; that is, the measurements may be subcompositions of a higher-dimensional parent composition. Physically meaningful statistical analysis must yield results that are invariant under the number of composition elements, requiring the application of specialized statistical tools. We present specifics and subtleties of compositional data processing through discussion of illustrative examples. We introduce basic concepts, terminology, and methods required for the analysis of compositional data and utilize them for the spatial interpolation of composition in a sputtered thin film. The results demonstrate the importance of this mathematical framework for compositional data analysis (CDA) in the fields of materials science and chemistry.

  7. Exploring preservice elementary teachers' critique and adaptation of science curriculum materials in respect to socioscientific issues

    NASA Astrophysics Data System (ADS)

    Forbes, Cory T.; Davis, Elizabeth A.

    2008-09-01

    The work presented here represents a preliminary effort undertaken to address the role of teachers in supporting students’ learning and decision-making about socioscientific issues (SSI) by characterizing preservice elementary teachers’ critique and adaptation of SSI-based science curriculum materials and identifying factors that serve to mediate this process. Four undergraduate preservice elementary teachers were studied over the course of one semester. Results indicate that the teachers navigated multiple learning goals, as well as their own subject-matter knowledge, informal reasoning about SSI, and role identity, in their critique and adaptation of SSI-oriented science instructional materials. Implications for science teacher education and the design of curriculum materials in respect to SSI are discussed.

  8. Physico-chemical characterisation of material fractions in residual and source-segregated household waste in Denmark.

    PubMed

    Götze, R; Pivnenko, K; Boldrin, A; Scheutz, C; Astrup, T Fruergaard

    2016-08-01

    Physico-chemical waste composition data are paramount for the assessment and planning of waste management systems. However, the applicability of data is limited by the regional, temporal and technical scope of waste characterisation studies. As Danish and European legislation aims for higher recycling rates evaluation of source-segregation and recycling chains gain importance. This paper provides a consistent up-to-date dataset for 74 physico-chemical parameters in 49 material fractions from residual and 24 material fractions from source-segregated Danish household waste. Significant differences in the physico-chemical properties of residual and source-segregated waste fractions were found for many parameters related to organic matter, but also for elements of environmental concern. Considerable differences in potentially toxic metal concentrations between the individual recyclable fractions within one material type were observed. This indicates that careful planning and performance evaluation of recycling schemes are important to ensure a high quality of collected recyclables. Rare earth elements (REE) were quantified in all waste fractions analysed, with the highest concentrations of REE found in fractions with high content of mineral raw materials, soil materials and dust. The observed REE concentrations represent the background concentration level in non-hazardous waste materials that may serve as a reference point for future investigations related to hazardous waste management. The detailed dataset provided here can be used for assessments of waste management solutions in Denmark and for the evaluation of the quality of recyclable materials in waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The International Microgravity Laboratory, a Spacelab for materials and life sciences

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.

    1992-01-01

    The material science experiments performed on the International Microgravity Laboratory (IML-1), which is used to perform investigations which require the low gravity environment of space, are discussed. These experiments, the principal investigator, and associated organization are listed. Whether the experiment was a new development or was carried on an earlier space mission, such as the third Spacelab (SL-3) or the Shuttle Middeck, is also noted. The two major disciplines of materials science represented on IML-1 were the growth of crystals from the melt, solution, or vapor and the study of fluids (liquids and gases) in a reduced gravity environment. The various facilities on board IML-1 and their related experiments are described. The facilities include the Fluids Experiment System (FES) Vapor Crystal Growth System (VCGS) Organic Crystal Growth Facility (OCGF), Cryostat (CRY), and the Critical Point Facility (CPF).

  10. MPA-11: Materials Synthesis and Integrated Devices; Overview of an Applied Energy Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dattelbaum, Andrew Martin

    Our mission is to provide innovative and creative chemical synthesis and materials science solutions to solve materials problems across the LANL missions. Our group conducts basic and applied research in areas related to energy security as well as problems relevant to the Weapons Program.

  11. Strategic Research Directions in Microgravity Materials Science

    NASA Technical Reports Server (NTRS)

    Clinton, Raymond G.; Semmes, Ed; Cook, Beth; Wargo, Michael J.; Marzwell, Neville

    2003-01-01

    The next challenge of space exploration is the development of the capabilities for long-term missions beyond low earth orbit. NASA s scientific advisory groups and internal mission studies have identified several fundamental issues which require substantial advancements in new technology if these goals are to be accomplished. Crews must be protected from the severe radiation environment beyond the earth s magnetic field. Chemical propulsion must be replaced by systems that require less mass and are more efficient. The overall launch complement must be reduced by developing repair and fabrication techniques which utilize or recycle available materials.

  12. Development of Contextual Mathematics teaching Material integrated related sciences and realistic for students grade xi senior high school

    NASA Astrophysics Data System (ADS)

    Helma, H.; Mirna, M.; Edizon, E.

    2018-04-01

    Mathematics is often applied in physics, chemistry, economics, engineering, and others. Besides that, mathematics is also used in everyday life. Learning mathematics in school should be associated with other sciences and everyday life. In this way, the learning of mathematics is more realstic, interesting, and meaningful. Needs analysis shows that required contextual mathematics teaching materials integrated related sciences and realistic on learning mathematics. The purpose of research is to produce a valid and practical contextual mathematics teaching material integrated related sciences and realistic. This research is development research. The result of this research is a valid and practical contextual mathematics teaching material integrated related sciences and realistic produced

  13. Electromagnetic Spectrum. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This curriculum guide, the second in a set of six, contains teacher and student materials for a unit on the electromagnetic spectrum prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for…

  14. Chemical Engineering Curricula for the Future: Synopsis of Proceedings of a U.S.-India Conference, January, 1988.

    ERIC Educational Resources Information Center

    Ramkrishna, D.; And Others

    1989-01-01

    This is a summary of a seminar for changing the undergraduate chemical engineering curriculum in India. Identifies and describes biotechnology, materials for structural and microelectronic catalysis, and new separation processes as emerging areas. Evaluates the current curriculum, including basic science, engineering lore, chemical engineering,…

  15. Coarsening in Solid-Liquid Mixtures-2: A Materials Science Experiment for the ISS

    NASA Technical Reports Server (NTRS)

    Hickman, J. Mark; Voorhees, Peter W.; Kwon, Yongwoo; Lorik, Tibor

    2004-01-01

    A materials science experiment has been developed and readied for operation aboard the International Space Station (ISS). Components of this experiment are onboard ISS and area awaiting the flight of science samples. The goal of the experiment is to understand the dynamics of Ostwald ripening, also known as coarsening, a process that occurs in nearly any two-phase mixture found in nature. Attempts to obtain experimental data in ground-based laboratories are hindered due to the presence of gravity, which introduces material transport modes other than that of the coarsening phenomenon. This introduces adjustable parameters in the formulation of theory. The original Coarsening in Solid-Liquid Mixtures (CSLM) mission, which flew on the Space Shuttle in 1997, produced data from a coarsened eutectic alloy. Unfortunately, both the science matrix and the hardware, while nominally functional, did not account adequately for operations in microgravity. A significantly redesigned follow-on experiment, CSLM-2 has been developed to redress the inadequacies of the original experiment. This paper reviews the CSLM-2 project: its history, science goals, flight hardware implementation, and planned operations and analysis

  16. International Conference on Materials Science and Technology (ICMST 2012)

    NASA Astrophysics Data System (ADS)

    Joseph, Ginson P.

    2015-02-01

    FROM THE CONVENOR'S DESK The Department of Physics, St. Thomas College Pala, is highly privileged to organize an International Conference on Materials Science and Technology (ICMST 2012) during 10-14 June 2012, and as Convenor of the conference it is with legitimate pride and immense gratitude to God that I remember the most enthusiastic responses received for this from scientists all over the world. In a time of tremendous revolutionary changes in Materials Science and Technology, it is quite in keeping with the tradition of a pioneering institute that St. Thomas College is, to have risen to the occasion to make this conference a reality. We have no doubt that this proved to be a historic event, a real breakthrough, not only for us the organizers but also for all the participants. A conference of this kind provides a nonpareil, a distinctly outstanding platform for the scholars, researchers and the scientists to discuss and share ideas with delegates from all over the world. This had been most fruitful to the participants in identifying new collaborations and strengthening existing relations. That experts of diverse disciplines from across the world were sitting under one roof for five days, exchanging views and sharing findings, was a speciality of this conference. The event has evoked excellent responses from all segments of the Materials Science community worldwide. 600 renowned scholars from 28 countries participated in this. We were uniquely honoured to have Prof. C.N.R. Rao, Chairman, Scientific Advisory Council to the Prime Minister of India, to inaugurate this conference. May I take this opportunity to thank all those who have contributed their valuable share, diverse in tone and nature, in the making of this conference. My whole hearted gratitude is due to the international and national members of the advisory committee for their valuable guidance and involvement. I place on record my heartfelt gratitude to our sponsors. I am sure that this conference has

  17. Chemical Features of Soil: Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the fifth of six modules in advanced crop and soil science and introduces the agriculture student to chemical features of the soil. Upon completing the four day lesson, the student will be able to: (1) list macro- and micro-nutrients, (2) define pH and its effect on plants, (3) outline Cation Exchange of the soil,…

  18. Physico-Chemical Alternatives in Lignocellulosic Materials in Relation to the Kind of Component for Fermenting Purposes

    PubMed Central

    Coz, Alberto; Llano, Tamara; Cifrián, Eva; Viguri, Javier; Maican, Edmond; Sixta, Herbert

    2016-01-01

    The complete bioconversion of the carbohydrate fraction is of great importance for a lignocellulosic-based biorefinery. However, due to the structure of the lignocellulosic materials, and depending basically on the main parameters within the pretreatment steps, numerous byproducts are generated and they act as inhibitors in the fermentation operations. In this sense, the impact of inhibitory compounds derived from lignocellulosic materials is one of the major challenges for a sustainable biomass-to-biofuel and -bioproduct industry. In order to minimise the negative effects of these compounds, numerous methodologies have been tested including physical, chemical, and biological processes. The main physical and chemical treatments have been studied in this work in relation to the lignocellulosic material and the inhibitor in order to point out the best mechanisms for fermenting purposes. In addition, special attention has been made in the case of lignocellulosic hydrolysates obtained by chemical processes with SO2, due to the complex matrix of these materials and the increase in these methodologies in future biorefinery markets. Recommendations of different detoxification methods have been given. PMID:28773700

  19. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted inmore » liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.« less

  20. The Matthew effect in environmental science publication: A bibliometric analysis of chemical substances in journal articles

    PubMed Central

    2011-01-01

    Background While environmental research addresses scientific questions of possible societal relevance, it is unclear to what degree research focuses on environmental chemicals in need of documentation for risk assessment purposes. Methods In a bibliometric analysis, we used SciFinder to extract Chemical Abstract Service (CAS) numbers for chemicals addressed by publications in the 78 major environmental science journals during 2000-2009. The Web of Science was used to conduct title searches to determine long-term trends for prominent substances and substances considered in need of research attention. Results The 119,636 journal articles found had 760,056 CAS number links during 2000-2009. The top-20 environmental chemicals consisted of metals, (chlorinated) biphenyls, polyaromatic hydrocarbons, benzene, and ethanol and contributed 12% toward the total number of links- Each of the top-20 substances was covered by 2,000-10,000 articles during the decade. The numbers for the 10-year period were similar to the total numbers of pre-2000 articles on the same chemicals. However, substances considered a high priority from a regulatory viewpoint, due to lack of documentation, showed very low publication rates. The persistence in the scientific literature of the top-20 chemicals was only weakly related to their publication in journals with a high impact factor, but some substances achieved high citation rates. Conclusions The persistence of some environmental chemicals in the scientific literature may be due to a 'Matthew' principle of maintaining prominence for the very reason of having been well researched. Such bias detracts from the societal needs for documentation on less well known environmental hazards, and it may also impact negatively on the potentials for innovation and discovery in research. PMID:22074398

  1. The Matthew effect in environmental science publication: a bibliometric analysis of chemical substances in journal articles.

    PubMed

    Grandjean, Philippe; Eriksen, Mette L; Ellegaard, Ole; Wallin, Johan A

    2011-11-10

    While environmental research addresses scientific questions of possible societal relevance, it is unclear to what degree research focuses on environmental chemicals in need of documentation for risk assessment purposes. In a bibliometric analysis, we used SciFinder to extract Chemical Abstract Service (CAS) numbers for chemicals addressed by publications in the 78 major environmental science journals during 2000-2009. The Web of Science was used to conduct title searches to determine long-term trends for prominent substances and substances considered in need of research attention. The 119,636 journal articles found had 760,056 CAS number links during 2000-2009. The top-20 environmental chemicals consisted of metals, (chlorinated) biphenyls, polyaromatic hydrocarbons, benzene, and ethanol and contributed 12% toward the total number of links- Each of the top-20 substances was covered by 2,000-10,000 articles during the decade. The numbers for the 10-year period were similar to the total numbers of pre-2000 articles on the same chemicals. However, substances considered a high priority from a regulatory viewpoint, due to lack of documentation, showed very low publication rates. The persistence in the scientific literature of the top-20 chemicals was only weakly related to their publication in journals with a high impact factor, but some substances achieved high citation rates. The persistence of some environmental chemicals in the scientific literature may be due to a 'Matthew' principle of maintaining prominence for the very reason of having been well researched. Such bias detracts from the societal needs for documentation on less well known environmental hazards, and it may also impact negatively on the potentials for innovation and discovery in research.

  2. Chemical precursors to non-oxide ceramics: Macro to nanoscale materials

    NASA Astrophysics Data System (ADS)

    Forsthoefel, Kersten M.

    Non-oxide ceramics exhibit a number of important properties that make them ideal for technologically important applications (thermal and chemical stability, high strength and hardness, wear-resistance, light weight, and a range of electronic and optical properties). Unfortunately, traditional methodologies to these types of materials are limited to fairly simple shapes and complex processed forms cannot be attained through these methods. The establishment of the polymeric precursor approach has allowed for the generation of advanced materials, such as refractory non-oxide ceramics, with controlled compositions, under moderate conditions, and in processed forms. The goal of the work described in this dissertation was both to develop new processible precursors to technologically important ceramics and to achieve the formation of advanced materials in processed forms. One aspect of this research exploited previously developed preceramic precursors to boron carbide, boron nitride and silicon carbide for the generation of a wide variety of advanced materials: (1) ultra-high temperature ceramic (UHTC) structural materials composed of hafnium boride and related composite materials, (2) the quaternary borocarbide superconductors, and (3) on the nanoscale, non-oxide ceramic nanotubules. The generation of the UHTC and the quaternary borocarbide materials was achieved through a method that employs a processible polymer/metal(s) dispersion followed by subsequent pyrolyses. In the case of the UHTC, hafnium oxide, hafnium, or hafnium boride powders were dispersed in a suitable precursor to afford hafnium borides or related composite materials (HfB2/HfC, HfB2/HfN, HfB2/SiC) in high yields and purities. The quaternary borocarbide superconducting materials were produced from pyrolyses of dispersions containing appropriate stoichiometric amounts of transition metal, lanthanide metal, and the polyhexenyldecaborane polymer. Both chemical vapor deposition (CVD) based routes employing a

  3. Chemical exposures in recently renovated low-income housing: Influence of building materials and occupant activities.

    PubMed

    Dodson, Robin E; Udesky, Julia O; Colton, Meryl D; McCauley, Martha; Camann, David E; Yau, Alice Y; Adamkiewicz, Gary; Rudel, Ruthann A

    2017-12-01

    Health disparities in low-income communities may be linked to residential exposures to chemicals infiltrating from the outdoors and characteristics of and sources in the home. Indoor sources comprise those introduced by the occupant as well as releases from building materials. To examine the impact of renovation on indoor pollutants levels and to classify chemicals by predominant indoor sources, we collected indoor air and surface wipes from newly renovated "green" low-income housing units in Boston before and after occupancy. We targeted nearly 100 semivolatile organic compounds (SVOCs) and volatile organic compounds (VOCs), including phthalates, flame retardants, fragrance chemicals, pesticides, antimicrobials, petroleum chemicals, chlorinated solvents, and formaldehyde, as well as particulate matter. All homes had indoor air concentrations that exceeded available risk-based screening levels for at least one chemical. We categorized chemicals as primarily influenced by the occupant or as having building-related sources. While building-related chemicals observed in this study may be specific to the particular housing development, occupant-related findings might be generalizable to similar communities. Among 58 detected chemicals, we distinguished 25 as primarily occupant-related, including fragrance chemicals 6-acetyl-1,1,2,4,4,7-hexamethyltetralin (AHTN) and 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[g]-2-benzopyran (HHCB). The pre- to post-occupancy patterns of the remaining chemicals suggested important contributions from building materials for some, including dibutyl phthalate and xylene, whereas others, such as diethyl phthalate and formaldehyde, appeared to have both building and occupant sources. Chemical classification by source informs multi-level exposure reduction strategies in low-income housing. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Explicit-Reflective Teaching Nature of Science as Embedded within the Science Topic: Interactive Historical Vignettes Technique

    ERIC Educational Resources Information Center

    Nur, Erdogan Melek; Fitnat, Koseoglu

    2015-01-01

    It is obvious that more extensive work is needed in developing historical materials that address nature of science (NOS) concepts that will be implemented by teachers. Owing to the importance of meeting this need, research problem of this study is to design historical vignettes focused on the concept of chemical equilibrium which lies at the heart…

  5. Electrical Energy. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This curriculum guide, the fifth in a set of six, contains teacher and student materials for a unit on electrical energy prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for students in grades…

  6. Solar Energy. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This curriculum guide, the third in a set of six, contains teacher and student materials for a unit on solar energy prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for students in grades 8-10…

  7. Magnetorheological finishing with chemically modified fluids for studying material removal of single-crystal ZnS

    NASA Astrophysics Data System (ADS)

    Salzman, S.; Romanofsky, H. J.; Clara, Y. I.; Giannechini, L. J.; West, Garrett J.; Lambropoulos, J. C.; Jacobs, S. D.

    2013-09-01

    Magnetorheological finishing (MRF) of polycrystalline, chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and zinc selenide (ZnSe) can leave millimeter-size artifacts on the part surface. These pebble-like features come from the anisotropic mechanical and chemical properties of the ceramic material and from the CVD growth process itself. The resulting surface texture limits the use of MRF for polishing aspheric and other complex shapes using these important infrared (IR) ceramics. An investigation of the individual contributions of chemistry and mechanics to polishing of other polycrystalline ceramics has been employed in the past to overcome similar material anisotropy problems. The approach taken was to study the removal process for the different single-crystal orientations that comprise the ceramic, making adjustments to mechanics (polishing abrasive type and concentration) and polishing slurry chemistry (primarily pH) to equalize the removal rate for all crystal orientations. Polishing with the modified slurry was shown to prevent the development of surface texture. Here we present mechanical (microhardness testing) and chemical (acid etching) studies performed on the four single-crystal orientations of ZnS: 100, 110, 111, and 311. We found that the (111) plane is 35% to 55% harder and 30% to 40% more resistant to chemical etching than the other three planes. This relatively high degree of variation in these properties can help to explain the surface texture developed from MRF of the polycrystalline material. Theoretical calculations of microhardness, planar, and bond densities are presented and compared with the experimental data. Here surface characterization of these single-crystal orientations of ZnS for material removal and roughness with chemically modified MR fluids at various pH levels between pH 4 and pH 6 are presented for the first time.

  8. Tunisia-Japan Symposium: R&D of Energy and Material Sciences for Sustainable Society

    NASA Astrophysics Data System (ADS)

    Akimoto, Katsuhiro; Suzuki, Yoshikazu; Monirul Islam, Muhammad

    2015-04-01

    This volume of the Journal of Physics: Conference Series contains papers presented at the Tunisia-Japan Symposium: R&D of Energy and Material Sciences for Sustainable Society (TJS 2014) held at Gammarth, Republic of Tunisia on November 28-30, 2014. The TJS 2014 is based on the network of the Tunisia-Japan Symposium on Science, Society and Technology (TJASSST) which has been regularly organized since 2000. The symposium was focused on the technological developments of energy and materials for the realization of sustainable society. To generate technological breakthrough and innovation, it seems to be effective to discuss with various fields of researchers such as solid-state physicists, chemists, surface scientists, process engineers and so on. In this symposium, there were as many as 109 attendees from a wide variety of research fields. The technical session consisted of 106 contributed presentations including 3 plenary talks and 7 key-note talks. We hope the Conference Series and publications like this volume will contribute to the progress in research and development in the field of energy and material sciences for sustainable society and in its turn contribute to the creation of cultural life and peaceful society.

  9. Materials science education: ion beam modification and analysis of materials

    NASA Astrophysics Data System (ADS)

    Zimmerman, Robert; Muntele, Claudiu; Ila, Daryush

    2012-08-01

    The Center for Irradiation of Materials (CIM) at Alabama A&M University (http://cim.aamu.edu) was established in 1990 to serve the University in its research, education and services to the need of the local community and industry. CIM irradiation capabilities are oriented around two tandem-type ion accelerators with seven beam lines providing high-resolution Rutherford backscattering spectrometry, MeV focus ion beam, high-energy ion implantation and irradiation damage studies, particle-induced X-ray emission, particle-induced gamma emission and ion-induced nuclear reaction analysis in addition to fully automated ion channeling. One of the two tandem ion accelerators is designed to produce high-flux ion beam for MeV ion implantation and ion irradiation damage studies. The facility is well equipped with a variety of surface analysis systems, such as SEM, ESCA, as well as scanning micro-Raman analysis, UV-VIS Spectrometry, luminescence spectroscopy, thermal conductivity, electrical conductivity, IV/CV systems, mechanical test systems, AFM, FTIR, voltammetry analysis as well as low-energy implanters, ion beam-assisted deposition and MBE systems. In this presentation, we will demonstrate how the facility is used in material science education, as well as providing services to university, government and industry researches.

  10. Iron aluminides and nickel aluminides as materials for chemical air separation

    DOEpatents

    Kang, Doohee

    1991-01-01

    The present invention is directed to a chemical air separation process using a molten salt solution of alkali metal nitrate and nitrite wherein the materials of construction of the containment for the process are chosen from intermetallic alloys of nickel and/or iron aluminide wherein the aluminum content is 28 atomic percent or greater to impart enhanced corrosion resistance.

  11. Iron aluminides and nickel aluminides as materials for chemical air separation

    DOEpatents

    Kang, D.

    1991-01-29

    The present invention is directed to a chemical air separation process using a molten salt solution of alkali metal nitrate and nitrite wherein the materials of construction of the containment for the process are chosen from intermetallic alloys of nickel and/or iron aluminide wherein the aluminum content is 28 atomic percent or greater to impart enhanced corrosion resistance.

  12. A Study on Developing a Guide Material for Science Classes Supported by Out-of-School Learningi

    ERIC Educational Resources Information Center

    Bakioglu, Büsra; Karamustafaoglu, Orhan

    2017-01-01

    The main purpose of this research was to develop a guide material in line with learning outcomes of the unit for the 5th Graders titled Solving the Puzzle: Our Body in order to be utilized during out-of-school learning activities by science teachers. There is no guide material developed in our country for science teachers to be used in out-of…

  13. PREFACE: 1st International Conference in Applied Physics and Materials Science

    NASA Astrophysics Data System (ADS)

    2015-06-01

    We are delighted to come up with thirty two (32) contributed research papers in these proceedings, focusing on Materials Science and Applied Physics as an output of the 2013 International Conference in Applied Physics and Materials Science (ICAMS2013) held on October 22-24, 2013 at the Ateneo de Davao University, Davao City, Philippines. The conference was set to provide a high level of international forum and had brought together leading academic scientists, industry professionals, researchers and scholars from universities, industries and government agencies who have shared their experiences, research results and discussed the practical challenges encountered and the solutions adopted as well as the advances in the fields of Applied Physics and Materials Science. This conference has provided a wide opportunity to establish multidisciplinary collaborations with local and foreign experts. ICAMS2013, held concurrently with 15th Samahang Pisika ng Visayas at Mindanao (SPVM) National Physics Conference and 2013 International Meeting for Complex Systems, was organized by the Samahang Pisika ng Visayas at Mindanao (Physics Society of Visayas and Mindanao) based in MSU-Iligan Institute of Technology, Iligan City, Philippines. The international flavor of converging budding researchers and experts on Materials Science and Applied Physics was the first to be organized in the 19 years of SPVM operation in the Philippines. We highlighted ICAMS2013 gathering by the motivating presence of Dr. Stuart Parkin, a British Physicist, as one of our conference's plenary speakers. Equal measures of gratitude were also due to all other plenary speakers, Dr. Elizabeth Taylor of Institute of Physics (IOP) in London, Dr. Surya Raghu of Advanced Fluidics in Maryland, USA and Prof. Hitoshi Miyata of Niigata University, Japan, Prof. Djulia Onggo of Institut Teknologi Bandung, Indonesia, and Dr. Hironori Katagiri of Nagaoka National College of Technology, Japan. The warm hospitality of the host

  14. Sampling for Air Chemical Emissions from the Life Sciences Laboratory II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballinger, Marcel Y.; Lindberg, Michael J.

    Sampling for air chemical emissions from the Life Science Laboratory II (LSL-II) ventilation stack was performed in an effort to determine potential exposure of maintenance staff to laboratory exhaust on the building roof. The concern about worker exposure was raised in December 2015 and several activities were performed to assist in estimating exposure concentrations. Data quality objectives were developed to determine the need for and scope and parameters of a sampling campaign to measure chemical emissions from research and development activities to the outside air. The activities provided data on temporal variation of air chemical concentrations and a basis formore » evaluating calculated emissions. Sampling for air chemical emissions was performed in the LSL-II ventilation stack over the 6-week period from July 26 to September 1, 2016. A total of 12 sampling events were carried out using 16 sample media. Resulting analysis provided concentration data on 49 analytes. All results were below occupational exposure limits and most results were below detection limits. When compared to calculated emissions, only 5 of the 49 chemicals had measured concentrations greater than predicted. This sampling effort will inform other study components to develop a more complete picture of a worker’s potential exposure from LSL-II rooftop activities. Mixing studies were conducted to inform spatial variation in concentrations at other rooftop locations and can be used in conjunction with these results to provide temporal variations in concentrations for estimating the potential exposure to workers working in and around the LSL-II stack.« less

  15. Review on the EFDA programme on tungsten materials technology and science

    NASA Astrophysics Data System (ADS)

    Rieth, M.; Boutard, J. L.; Dudarev, S. L.; Ahlgren, T.; Antusch, S.; Baluc, N.; Barthe, M.-F.; Becquart, C. S.; Ciupinski, L.; Correia, J. B.; Domain, C.; Fikar, J.; Fortuna, E.; Fu, C.-C.; Gaganidze, E.; Galán, T. L.; García-Rosales, C.; Gludovatz, B.; Greuner, H.; Heinola, K.; Holstein, N.; Juslin, N.; Koch, F.; Krauss, W.; Kurzydlowski, K. J.; Linke, J.; Linsmeier, Ch.; Luzginova, N.; Maier, H.; Martínez, M. S.; Missiaen, J. M.; Muhammed, M.; Muñoz, A.; Muzyk, M.; Nordlund, K.; Nguyen-Manh, D.; Norajitra, P.; Opschoor, J.; Pintsuk, G.; Pippan, R.; Ritz, G.; Romaner, L.; Rupp, D.; Schäublin, R.; Schlosser, J.; Uytdenhouwen, I.; van der Laan, J. G.; Veleva, L.; Ventelon, L.; Wahlberg, S.; Willaime, F.; Wurster, S.; Yar, M. A.

    2011-10-01

    All the recent DEMO design studies for helium cooled divertors utilize tungsten materials and alloys, mainly due to their high temperature strength, good thermal conductivity, low erosion, and comparably low activation under neutron irradiation. The long-term objective of the EFDA fusion materials programme is to develop structural as well as armor materials in combination with the necessary production and fabrication technologies for future divertor concepts. The programmatic roadmap is structured into four engineering research lines which comprise fabrication process development, structural material development, armor material optimization, and irradiation performance testing, which are complemented by a fundamental research programme on "Materials Science and Modeling". This paper presents the current research status of the EFDA experimental and testing investigations, and gives a detailed overview of the latest results on fabrication, joining, high heat flux testing, plasticity, modeling, and validation experiments.

  16. Blending Education and Polymer Science: Semiautomated Creation of a Thermodynamic Property Database

    ERIC Educational Resources Information Center

    Tchoua, Roselyne B.; Qin, Jian; Audus, Debra J.; Chard, Kyle; Foster, Ian T.; de Pablo, Juan

    2016-01-01

    Structured databases of chemical and physical properties play a central role in the everyday research activities of scientists and engineers. In materials science, researchers and engineers turn to these databases to quickly query, compare, and aggregate various properties, thereby allowing for the development or application of new materials. The…

  17. Recent Advances in Analytical Pyrolysis to Investigate Organic Materials in Heritage Science.

    PubMed

    Degano, Ilaria; Modugno, Francesca; Bonaduce, Ilaria; Ribechini, Erika; Colombini, Maria Perla

    2018-06-18

    The molecular characterization of organic materials in samples from artworks and historical objects traditionally entailed qualitative and quantitative analyses by HPLC and GC. Today innovative approaches based on analytical pyrolysis enable samples to be analysed without any chemical pre-treatment. Pyrolysis, which is often considered as a screening technique, shows previously unexplored potential thanks to recent instrumental developments. Organic materials that are macromolecular in nature, or undergo polymerization upon curing and ageing can now be better investigated. Most constituents of paint layers and archaeological organic substances contain major insoluble and chemically non-hydrolysable fractions that are inaccessible to GC or HPLC. To date, molecular scientific investigations of the organic constituents of artworks and historical objects have mostly focused on the minor constituents of the sample. This review presents recent advances in the qualitative and semi-quantitative analyses of organic materials in heritage objects based on analytical pyrolysis coupled with mass spectrometry. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. International Collaboration Program in Innovative Chemical Processing of Superior Electronic and Optical Materials

    DTIC Science & Technology

    1993-06-01

    Peyghambarian for X(3) measurements. 3. Research on Nonlinear Optical Materials based on Ultrafine Metal Clusters in ORMOSILS Another family of ultrafine ... particles which, when dispersed in a glassy matrix, has been show to have high X(3) involves metal clusters. Because of the importance of obtaining...NSG Workshop on: Science and Application of Photonic Materials II, Osaka, Japan, November (1992). Haixing, Z., and Mackenzie, J.D., " Ultrafine

  19. Global Systems Science and Hands-On Universe Course Materials for High School

    NASA Astrophysics Data System (ADS)

    Gould, A.

    2011-09-01

    The University of California Berkeley's Lawrence Hall of Science has a project called Global Systems Science (GSS). GSS produced a set of course materials for high school science education that includes reading materials, investigations, and software for analyzing satellite images of Earth focusing on Earth systems as well as societal issues that require interdisciplinary science for full understanding. The software has general application in analysis of any digital images for a variety of purposes. NSF and NASA funding have contributed to the development of GSS. The current NASA-funded project of GSS is Lifelines for High School Climate Change Education (LHSCCE), which aims to establish professional learning communities (PLCs) to share curriculum resources and best practices for teaching about climate change in grades 9-12. The project explores ideal ways for teachers to meet either in-person or using simple yet effective distance-communication techniques (tele-meetings), depending on local preferences. Skills promoted include: how to set up a website to share resources; initiating tele-meetings with any available mechanism (webinars, Skype, telecons, moodles, social network tools, etc.); and easy ways of documenting and archiving presentations made at meetings. Twenty teacher leaders are forming the PLCs in their regions or districts. This is a national effort in which teachers share ideas, strategies, and resources aimed at making science education relevant to societal issues, improve students' understanding of climate change issues, and contribute to possible solutions. Although the binding theme is climate change, the application is to a wide variety of courses: Earth science, environmental science, biology, physics, and chemistry. Moreover, the PLCs formed can last as long as the members find it useful and can deal with any topics of interest, even if they are only distantly related to climate change.

  20. Surface science and model catalysis with ionic liquid-modified materials.

    PubMed

    Steinrück, H-P; Libuda, J; Wasserscheid, P; Cremer, T; Kolbeck, C; Laurin, M; Maier, F; Sobota, M; Schulz, P S; Stark, M

    2011-06-17

    Materials making use of thin ionic liquid (IL) films as support-modifying functional layer open up a variety of new possibilities in heterogeneous catalysis, which range from the tailoring of gas-surface interactions to the immobilization of molecularly defined reactive sites. The present report reviews recent progress towards an understanding of "supported ionic liquid phase (SILP)" and "solid catalysts with ionic liquid layer (SCILL)" materials at the microscopic level, using a surface science and model catalysis type of approach. Thin film IL systems can be prepared not only ex-situ, but also in-situ under ultrahigh vacuum (UHV) conditions using atomically well-defined surfaces as substrates, for example by physical vapor deposition (PVD). Due to their low vapor pressure, these systems can be studied in UHV using the full spectrum of surface science techniques. We discuss general strategies and considerations of this approach and exemplify the information available from complementary methods, specifically photoelectron spectroscopy and surface vibrational spectroscopy. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Development of a Support Environment for First Year Students Taking Materials Science/Engineering

    ERIC Educational Resources Information Center

    Laoui, Tahar; O'Donoghue, John

    2008-01-01

    This paper is based on the experience acquired in teaching materials science/engineering to first year university students. It has been observed that students struggle with some of the fundamental materials concepts addressed in the module/course. This applies to delivered lectures but extends to the incorporation of tutorial sessions provided…

  2. Multiple Routes to Smart Nanostructured Materials from Diatom Microalgae: A Chemical Perspective.

    PubMed

    Ragni, Roberta; Cicco, Stefania R; Vona, Danilo; Farinola, Gianluca M

    2018-05-01

    Diatoms are unicellular photosynthetic microalgae, ubiquitously diffused in both marine and freshwater environments, which exist worldwide with more than 100 000 species, each with different morphologies and dimensions, but typically ranging from 10 to 200 µm. A special feature of diatoms is their production of siliceous micro- to nanoporous cell walls, the frustules, whose hierarchical organization of silica layers produces extraordinarily intricate pore patterns. Due to the high surface area, mechanical resistance, unique optical features, and biocompatibility, a number of applications of diatom frustules have been investigated in photonics, sensing, optoelectronics, biomedicine, and energy conversion and storage. Current progress in diatom-based nanotechnology relies primarily on the availability of various strategies to isolate frustules, retaining their morphological features, and modify their chemical composition for applications that are not restricted to those of the bare biosilica produced by diatoms. Chemical or biological methods that decorate, integrate, convert, or mimic diatoms' biosilica shells while preserving their structural features represent powerful tools in developing scalable, low-cost routes to a wide variety of nanostructured smart materials. Here, the different approaches to chemical modification as the basis for the description of applications relating to the different materials thus obtained are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Increasing the Impact of Materials in and beyond Bio-Nano Science.

    PubMed

    Björnmalm, Mattias; Faria, Matthew; Caruso, Frank

    2016-10-19

    This is an exciting time for the field of bio-nano science: enormous progress has been made in recent years, especially in academic research, and materials developed and studied in this area are poised to make a substantial impact in real-world applications. Herein, we discuss ways to leverage the strengths of the field, current limitations, and valuable lessons learned from neighboring fields that can be adopted to accelerate scientific discovery and translational research in bio-nano science. We identify and discuss five interconnected topics: (i) the advantages of cumulative research; (ii) the necessity of aligning projects with research priorities; (iii) the value of transparent science; (iv) the opportunities presented by "dark data"; and (v) the importance of establishing bio-nano standards.

  4. Teacher Implementation and the Impact of Game-Based Science Curriculum Materials

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher D.; Reichsman, Frieda; Mutch-Jones, Karen; Gardner, April; Marchi, Lisa; Kowalski, Susan; Lord, Trudi; Dorsey, Chad

    2018-01-01

    Research-based digital games hold great potential to be effective tools in supporting next-generation science learning. However, as with all instructional materials, teachers significantly influence their implementation and contribute to their effectiveness. To more fully understand the contributions and challenges of teacher implementation of digital games, we studied the replacement of existing high school biology genetics lessons over a 3- to 6-week period with Geniverse, an immersive, game-like learning environment designed to be used in classrooms. The Geniverse materials infuse virtual experimentation in genetics with a narrative of a quest to heal a genetic disease; incorporate the topics of meiosis and protein synthesis with inheritance; and include the science practices of explanation and argumentation. The research design involved a quasi-experiment with 48 high school teachers and about 2000 students, student science content knowledge and argumentation outcome measures, and analysis using hierarchical linear modeling. Results indicate that when Geniverse was implemented as the designers intended, student learning of genetics content was significantly greater than in the comparison, business-as-usual group. However, a wide range of levels of Geniverse implementation resulted in no significant difference between the groups as a whole. Students' abilities to engage in scientific explanation and argumentation were greater in the Geniverse group, but these differences were not statistically significant. Observation, survey, and interview data indicate a range of barriers to implementation and teacher instructional decisions that may have influenced student outcomes. Implications for the role of the teacher in the implementation of game-based instructional materials are discussed.

  5. Material Science

    NASA Image and Video Library

    2003-02-09

    Materials with a smaller mean atomic mass, such as lithium (Li) hydride and polyethylene, make the best radiation shields for astronauts. The materials have a higher density of nuclei and are better able to block incoming radiation. Also, they tend to produce fewer and less dangerous secondary particles after impact with incoming radiation.

  6. Academic Entrepreneurship and Exchange of Scientific Resources: Material Transfer in Life and Materials Sciences in Japanese Universities

    ERIC Educational Resources Information Center

    Shibayama, Sotaro; Walsh, John P.; Baba, Yasunori

    2012-01-01

    This study uses a sample of Japanese university scientists in life and materials sciences to examine how academic entrepreneurship has affected the norms and behaviors of academic scientists regarding sharing scientific resources. Results indicate that high levels of academic entrepreneurship in a scientific field are associated with less reliance…

  7. Infrared spectroscopy and spectroscopic imaging in forensic science.

    PubMed

    Ewing, Andrew V; Kazarian, Sergei G

    2017-01-16

    Infrared spectroscopy and spectroscopic imaging, are robust, label free and inherently non-destructive methods with a high chemical specificity and sensitivity that are frequently employed in forensic science research and practices. This review aims to discuss the applications and recent developments of these methodologies in this field. Furthermore, the use of recently emerged Fourier transform infrared (FT-IR) spectroscopic imaging in transmission, external reflection and Attenuated Total Reflection (ATR) modes are summarised with relevance and potential for forensic science applications. This spectroscopic imaging approach provides the opportunity to obtain the chemical composition of fingermarks and information about possible contaminants deposited at a crime scene. Research that demonstrates the great potential of these techniques for analysis of fingerprint residues, explosive materials and counterfeit drugs will be reviewed. The implications of this research for the examination of different materials are considered, along with an outlook of possible future research avenues for the application of vibrational spectroscopic methods to the analysis of forensic samples.

  8. Teacher Implementation and the Impact of Game-Based Science Curriculum Materials

    ERIC Educational Resources Information Center

    Wilson, Christopher D.; Reichsman, Frieda; Mutch-Jones, Karen; Gardner, April; Marchi, Lisa; Kowalski, Susan; Lord, Trudi; Dorsey, Chad

    2018-01-01

    Research-based digital games hold great potential to be effective tools in supporting next-generation science learning. However, as with all instructional materials, teachers significantly influence their implementation and contribute to their effectiveness. To more fully understand the contributions and challenges of teacher implementation of…

  9. Biological Science: An Ecological Approach. BSCS Green Version. Teacher's Edition. Sixth Edition.

    ERIC Educational Resources Information Center

    Biological Sciences Curriculum Study, Colorado Springs.

    This book is the teacher's edition to the 1987 edition of the Biological Sciences Curriculum Study Green Version textbook. It contains directions for teaching with this version, a description of the accompanying materials, teaching strategies by chapters, lists of useful software, safety guidelines, a materials list, chemical safety information,…

  10. Physico-chemical characterisation of material fractions in household waste: Overview of data in literature.

    PubMed

    Götze, Ramona; Boldrin, Alessio; Scheutz, Charlotte; Astrup, Thomas Fruergaard

    2016-03-01

    State-of-the-art environmental assessment of waste management systems rely on data for the physico-chemical composition of individual material fractions comprising the waste in question. To derive the necessary inventory data for different scopes and systems, literature data from different sources and backgrounds are consulted and combined. This study provides an overview of physico-chemical waste characterisation data for individual waste material fractions available in literature and thereby aims to support the selection of data fitting to a specific scope and the selection of uncertainty ranges related to the data selection from literature. Overall, 97 publications were reviewed with respect to employed characterisation method, regional origin of the waste, number of investigated parameters and material fractions and other qualitative aspects. Descriptive statistical analysis of the reported physico-chemical waste composition data was performed to derive value ranges and data distributions for element concentrations (e.g. Cd content) and physical parameters (e.g. heating value). Based on 11,886 individual data entries, median values and percentiles for 47 parameters in 11 individual waste fractions are presented. Exceptional values and publications are identified and discussed. Detailed datasets are attached to this study, allowing further analysis and new applications of the data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Quasi-appropriation of dialectical materialism: a critical reading of Marxism in Vygotskian approaches to cultural studies in science education

    NASA Astrophysics Data System (ADS)

    Rodrigues, André; Camillo, Juliano; Mattos, Cristiano

    2014-09-01

    In this review essay we examine five categories of dialectical materialism proposed by Paulo Lima Junior, Fernanda Ostermann, and Flavia Rezende in their study of the extent to which the articles published in Cultural Studies of Science Education, that use a Vygotskian approach, are committed to Marxism/dialectical materialism. By closely examining these categories ("thesis, antithesis and synthesis," "unity of analysis," "History," "revolution," "materialism") we expect to enrich the general discussion about the possible contributions of Marxism to science education. We perceive part of science education practice as orientating toward positivism, which reduces human beings—teachers, learners and researchers—to isolated individuals who construct knowledge by themselves. The very same approach aggravates the inner contradiction of the capitalist society demanding commitments from researchers to continually build innovative science education from human praxis. Nevertheless, it is necessary to situate ourselves beyond a formal commitment with dialectical materialism and hence reach the heart of this method. Besides understanding the researchers' commitments, we question the extent to which the respective research helps to radically refresh the current view on science, science education practice, and research in science education.

  12. New frontiers in materials science opened by ionic liquids.

    PubMed

    Torimoto, Tsukasa; Tsuda, Tetsuya; Okazaki, Ken-ichi; Kuwabata, Susumu

    2010-03-19

    Ionic liquids (ILs) including ambient-temperature molten salts, which exist in the liquid state even at room temperature, have a long research history. However, their applications were once limited because ILs were considered as highly moisture-sensitive solvents that should be handled in a glove box. After the first synthesis of moisture-stable ILs in 1992, their unique physicochemical properties became known in all scientific fields. ILs are composed solely of ions and exhibit several specific liquid-like properties, e.g., some ILs enable dissolution of insoluble bio-related materials and the use as tailor-made lubricants in industrial applications under extreme physicochemical conditions. Hybridization of ILs and other materials provides quasi-solid materials, which can be used to fabricate highly functional devices. ILs are also used as reaction media for electrochemical and chemical synthesis of nanomaterials. In addition, the negligible vapor pressure of ILs allows the fabrication of electrochemical devices that are operated under ambient conditions, and many liquid-vacuum technologies, such as X-ray photoelectron spectroscopy (XPS) analysis of liquids, electron microscopy of liquids, and sputtering and physical vapor deposition onto liquids. In this article, we review recent studies on ILs that are employed as functional advanced materials, advanced mediums for materials production, and components for preparing highly functional materials.

  13. [Effect of ozonated water on physical and chemical properties of vacuum sealing drainage material].

    PubMed

    Jiang, Nan; Ma, Yunfei; Lin, Qingrong; Chen, Anfu; Zhao, Peiran; Ni, Guoxin; Yu, Bin

    2013-02-01

    To investigate the influence of ozonated water on physical and chemical properties of vacuum sealing drainage (VSD) materials. VSD materials (foam and sealing membrane) were immersed in 10 µg/ml ozonated water for 1 h twice daily for 8 days. The foam appearance and microscopic structure of the materials were observed, and tensile tests and Raman spectrum scan were performed assess the effect of ozonated water. Simulated VSD devices were prepared and tested for leakproofness under negative pressure after ozonated water treatment. zonated water treatment for 8 days caused no obvious abnormal changes in the foam appearance or microscopic structure of the materials. The maximum tensile load of foam before and after ozonated water treatment was 4.25∓0.73 kgf and 2.44∓0.19 kgf (P=0.000), the momentary distance when the foam torn before and after intervention was 92.54∓12.83 mm and 64.44∓4.60 mm, respectively (P=0.000). The corresponding results for VSD sealing membrane were 0.70∓0.58 kgf and 0.71∓0.08 kgf (P=0.698), and 99.30∓10.27 mm and 100.95∓18.22 mm (P=0.966), respectively. Raman spectroscopy revealed changes in only several wave intensities and no new chemical groups appeared within the scan range of 400-4000 cm(-1). The VSD device was well hermetic after treatment with ozonated water. Except for a decreased stretch resistance property of the foam, VSD materials display no obvious changes in physical and chemical characteristics after treatment with ozonated water for 8 days.

  14. Effects of chemical and biological warfare remediation agents on the materials of museum objects

    NASA Astrophysics Data System (ADS)

    Solazzo, C.; Erhardt, D.; Marte, F.; von Endt, D.; Tumosa, C.

    In the fall of 2001, anthrax-contaminated letters were sent to public figures in the United States. Chemical and radiation treatments were employed to decontaminate exposed buildings, objects, and materials. These treatments are effective, but potentially damaging to exposed objects and materials. The recommended surface chemical treatments include solutions, gels, and foams of oxidizing agents such as peroxides or chlorine bleaching agents. Such oxidizing agents are effective against a wide range of hazardous chemical and biological agents. Knowing how these reagents affect various substrates would help to anticipate and to minimize any potential damage. We are examining the effects on typical museum materials of reagents likely to be used, including hydrogen peroxide, sodium hypochlorite, and potassium peroxymonosulfate. Results so far show significant changes in a number of materials. Surface corrosion was observed on metals such as copper, silver, iron, and brass. Color changes occurred with at least one reagent in about one-fourth of the dyed fabric swatches tested, and about half of the inks. Samples of aged yellowed paper are bleached. Effects varied with both the substrate and the tested reagent. The observed changes were generally less drastic than might have been expected. Enough materials were affected, though, to preclude the use of these reagents on museum objects unless no less drastic alternative is available. It appears that many objects of lesser intrinsic value can be treated without severe loss of properties or usefulness. For example, most documents should remain legible if the appropriate reagent is used. This work will provide a basis for determining which treatment is most appropriate for a specific situation and what consequences are to be expected from other treatments.

  15. Emergency material allocation and scheduling for the application to chemical contingency spills under multiple scenarios.

    PubMed

    Liu, Jie; Guo, Liang; Jiang, Jiping; Jiang, Dexun; Wang, Peng

    2017-01-01

    In the emergency management relevant to chemical contingency spills, efficiency emergency rescue can be deeply influenced by a reasonable assignment of the available emergency materials to the related risk sources. In this study, an emergency material scheduling model (EMSM) with time-effective and cost-effective objectives is developed to coordinate both allocation and scheduling of the emergency materials. Meanwhile, an improved genetic algorithm (IGA) which includes a revision operation for EMSM is proposed to identify the emergency material scheduling schemes. Then, scenario analysis is used to evaluate optimal emergency rescue scheme under different emergency pollution conditions associated with different threat degrees based on analytic hierarchy process (AHP) method. The whole framework is then applied to a computational experiment based on south-to-north water transfer project in China. The results demonstrate that the developed method not only could guarantee the implementation of the emergency rescue to satisfy the requirements of chemical contingency spills but also help decision makers identify appropriate emergency material scheduling schemes in a balance between time-effective and cost-effective objectives.

  16. PREFACE: Focus on Materials Nanoarchitectonics Focus on Materials Nanoarchitectonics

    NASA Astrophysics Data System (ADS)

    Aono, Masakazu

    2011-08-01

    On behalf of the International Center for Materials Nanoarchitectonics (MANA), I wish to express our gratitude for the publication of this special issue of Science and Technology of Advanced Materials (STAM), which highlights our recent research activities at MANA. In this preface, I would like to briefly describe the history and then outline the direction of research at MANA. In 2007, Japan's Ministry of Education, Culture, Sports, Science and Technology (MEXT) launched the World Premier International Research Center Initiative (WPI Program) to create several frontier research centers in Japan. The aim was to facilitate cutting-edge research by promoting the participation of leading scientists from around the world and by providing an attractive research environment. One of the six centers of the WPI Program is MANA, established at the National Institute for Materials Science (NIMS) in October 2007. The direction of research at MANA is symbolized by the term 'nanoarchitectonics', which is part of the name MANA. What is nanoarchitectonics? In the past quarter century, nanotechnology has made impressive advances and has become an important pillar in the development of new materials. However, to explore its full potential, nanotechnology needs to stay on the path of innovation. In particular, the conventional analytic view of nanotechnology must yield to a certain synthetic approach. This is conducive to creating new functions that can be exhibited by nanoscale structural units through mutual interactions, even though these functions are not present in the isolated units. We coined the term nanoarchitectonics (first used in the name of the 1st International Symposium on Nanoarchitectonics Using Suprainteractions (NASI-1), organized by the author and his colleagues at Tsukuba, Japan, in November 2000) to express this innovation of nanotechnology. More specifically, nanoarchitectonics is a technology system where the aim is arranging nanoscale structural units, which

  17. Shape Memory Polymers: A Joint Chemical and Materials Engineering Hands-On Experience

    ERIC Educational Resources Information Center

    Seif, Mujan; Beck, Matthew

    2018-01-01

    Hands-on experiences are excellent tools for increasing retention of first year engineering students. They also encourage interdisciplinary collaboration, a critical skill for modern engineers. In this paper, we describe and evaluate a joint Chemical and Materials Engineering hands-on lab that explores cross-linking and glass transition in…

  18. An Analysis of Teaching Competence in Science Teachers Involved in the Design of Context-Based Curriculum Materials

    ERIC Educational Resources Information Center

    De Putter-Smits, Lesley G. A.; Taconis, Ruurd; Jochems, Wim; Van Driel, Jan

    2012-01-01

    The committees for the current Dutch context-based innovation in secondary science education employed teachers to design context-based curriculum materials. A study on the learning of science teachers in design teams for context-based curriculum materials is presented in this paper. In a correlation study, teachers with (n = 5 and 840 students)…

  19. Research Update: Mechanical properties of metal-organic frameworks - Influence of structure and chemical bonding

    NASA Astrophysics Data System (ADS)

    Li, Wei; Henke, Sebastian; Cheetham, Anthony K.

    2014-12-01

    Metal-organic frameworks (MOFs), a young family of functional materials, have been attracting considerable attention from the chemistry, materials science, and physics communities. In the light of their potential applications in industry and technology, the fundamental mechanical properties of MOFs, which are of critical importance for manufacturing, processing, and performance, need to be addressed and understood. It has been widely accepted that the framework topology, which describes the overall connectivity pattern of the MOF building units, is of vital importance for the mechanical properties. However, recent advances in the area of MOF mechanics reveal that chemistry plays a major role as well. From the viewpoint of materials science, a deep understanding of the influence of chemical effects on MOF mechanics is not only highly desirable for the development of novel functional materials with targeted mechanical response, but also for a better understanding of important properties such as structural flexibility and framework breathing. The present work discusses the intrinsic connection between chemical effects and the mechanical behavior of MOFs through a number of prototypical examples.

  20. The AFLOW Standard for High-throughput Materials Science Calculations

    DTIC Science & Technology

    2015-01-01

    84602, USA fDepartment of Physics and Department of Chemistry, University of North Texas, Denton, TX 76203, USA gMaterials Science, Electrical ...inversion in the iterative subspace (RMM– DIIS ) [10]. Of the two, DBS is known to be the slower and more stable option. Additionally, the subspace...RMM– DIIS steps as needed to fulfill the dEelec condition. Later determinations of system forces are performed by a similar sequence, but only a single

  1. Chemical modeling of acid-base properties of soluble biopolymers derived from municipal waste treatment materials.

    PubMed

    Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Marinos, Janeth Alicia Tafur; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo

    2015-02-04

    This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials.

  2. Chemical Modeling of Acid-Base Properties of Soluble Biopolymers Derived from Municipal Waste Treatment Materials

    PubMed Central

    Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Tafur Marinos, Janeth Alicia; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo

    2015-01-01

    This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials. PMID:25658795

  3. An open experimental database for exploring inorganic materials.

    PubMed

    Zakutayev, Andriy; Wunder, Nick; Schwarting, Marcus; Perkins, John D; White, Robert; Munch, Kristin; Tumas, William; Phillips, Caleb

    2018-04-03

    The use of advanced machine learning algorithms in experimental materials science is limited by the lack of sufficiently large and diverse datasets amenable to data mining. If publicly open, such data resources would also enable materials research by scientists without access to expensive experimental equipment. Here, we report on our progress towards a publicly open High Throughput Experimental Materials (HTEM) Database (htem.nrel.gov). This database currently contains 140,000 sample entries, characterized by structural (100,000), synthetic (80,000), chemical (70,000), and optoelectronic (50,000) properties of inorganic thin film materials, grouped in >4,000 sample entries across >100 materials systems; more than a half of these data are publicly available. This article shows how the HTEM database may enable scientists to explore materials by browsing web-based user interface and an application programming interface. This paper also describes a HTE approach to generating materials data, and discusses the laboratory information management system (LIMS), that underpin HTEM database. Finally, this manuscript illustrates how advanced machine learning algorithms can be adopted to materials science problems using this open data resource.

  4. An open experimental database for exploring inorganic materials

    PubMed Central

    Zakutayev, Andriy; Wunder, Nick; Schwarting, Marcus; Perkins, John D.; White, Robert; Munch, Kristin; Tumas, William; Phillips, Caleb

    2018-01-01

    The use of advanced machine learning algorithms in experimental materials science is limited by the lack of sufficiently large and diverse datasets amenable to data mining. If publicly open, such data resources would also enable materials research by scientists without access to expensive experimental equipment. Here, we report on our progress towards a publicly open High Throughput Experimental Materials (HTEM) Database (htem.nrel.gov). This database currently contains 140,000 sample entries, characterized by structural (100,000), synthetic (80,000), chemical (70,000), and optoelectronic (50,000) properties of inorganic thin film materials, grouped in >4,000 sample entries across >100 materials systems; more than a half of these data are publicly available. This article shows how the HTEM database may enable scientists to explore materials by browsing web-based user interface and an application programming interface. This paper also describes a HTE approach to generating materials data, and discusses the laboratory information management system (LIMS), that underpin HTEM database. Finally, this manuscript illustrates how advanced machine learning algorithms can be adopted to materials science problems using this open data resource. PMID:29611842

  5. PREFACE: 11th Asia-Pacific Conference on Plasma Science and Technology (APCPST-11) and 25th Symposium on Plasma Science for Materials (SPSM-25)

    NASA Astrophysics Data System (ADS)

    Watanabe, Takayuki; Kaneko, Toshio; Sekine, Makoto; Tanaka, Yasunori

    2013-06-01

    The 11th Asia-Pacific Conference on Plasma Science and Technology (APCPST-11) was held in Kyoto, Japan on 2-5 October 2012 with the 25th Symposium on Plasma Science for Materials (SPSM-25). SPSM has been held annually since 1988 under the sponsorship of The 153rd Committee on Plasma Materials Science, Japan Society for the Promotion of Science (JSPS). This symposium is one of the major activities of the Committee, which is organized by researchers in academia and industry for the purpose of advancing intersectional scientific information exchange and discussion of science and technology of plasma materials processing. APCPST and SPSM are jointly held biennially to survey the current status of low temperature and thermal plasma physics and chemistry for industrial applications. The whole area of plasma processing was covered from fundamentals to applications. Previous meetings were held in China, Japan, Korea, and Australia, attended by scientists from the Asia-Pacific and other countries. The joint conference was organized in plenary lectures, invited, contributed oral presentations and poster sessions. At this meeting, we had 386 participants from 10 countries and 398 presentations, including 26 invited presentations. This year, we arranged special topical sessions that covered green innovation, life innovation, and technical reports from industry. This conference seeks to bring the plasma community together and to create a forum for discussing the latest developments and issues, the challenges ahead in the field of plasma research and applications among engineers and scientists in Asia, the Pacific Rim, as well as Europe. This volume presents 44 papers that were selected via a strict peer-review process from full papers submitted for the proceedings of the conference. The topics range from the basic physics and chemistry of plasma processing to a broad variety of materials processing and environmental applications. This volume offers an overview of recent

  6. New Curricular Material for Science Classes: How Do Students Evaluate It?

    NASA Astrophysics Data System (ADS)

    Freire, Sofia; Faria, Cláudia; Galvão, Cecília; Reis, Pedro

    2013-02-01

    Living in an unpredictable and ever changing society demands from its' citizens the development of complex competencies that challenges school, education and curriculum. PARSEL, a pan-European Project related to science education, emerges as a contribution to curricular development as it proposes a set of teaching-learning materials (modules) in order to make science classes more popular and relevant in the eyes of the students and as such to increase their interest with school science. The goal of this study was to understand how students evaluate those innovative modules. This paper presents data concerning 134 secondary students, collected through interviews, questionnaires and written documents. A quantitative analysis of the data collected through questionnaires was complemented by a qualitative analysis of the data collected by interviews and written documents. Results show that understanding the relationship between science and daily life, participating in practical activities based on problem solving and developing critical thinking and reasoning were the issues most valued by students.

  7. Public Laws Authorization and Appropriations Acts 1969-2007 for the U.S. Army Chemical Materials Agency

    DTIC Science & Technology

    2006-11-06

    agents, chemical herbicides , smoke and other obscuration materials. (2) The term "lethal chemical agent and munition" means a chemical agent or...military purposes and harmless to human beings under normal circumstances. (k) EFFECTIVE DATE -- The provisions of this section shall take effect on...the ecological and physiological dangers inherent in the use of herbicides , and (B) the 117 ecological and Physiological effects of the defoliation

  8. Sources of Information about Promising and Exemplary Programs and Materials for Secondary School Science. ERIC/SMEAC Science Education Digest No. 2, 1989.

    ERIC Educational Resources Information Center

    Helgeson, Stanley L.; Howe, Robert W.

    Many school staff and their client communities are concerned about student achievement, skills, and attitudes related to science. To respond to these concerns, staff need to determine how they can improve their science programs by modifying the content and skills emphasized in the curriculum, changing and supplementing instructional materials,…

  9. Sources of Information about Promising and Exemplary Programs and Materials for Elementary School Science. ERIC/SMEAC Science Education Digest No. 1, 1989.

    ERIC Educational Resources Information Center

    Helgeson, Stanley L.; Howe, Robert W.

    Many school staff and their client communities are concerned about pupil achievement, skills, and attitudes related to science. To respond to these concerns, staff need to determine how they can improve their science programs by modifying the content and skills emphasized in the curriculum, changing and supplementing instructional materials,…

  10. Lab Manual & Resources for Materials Science, Engineering and Technology on CD-Rom

    NASA Technical Reports Server (NTRS)

    Jacobs, James A.; McKenney, Alfred E.

    2001-01-01

    The National Educators' Workshop (NEW:Update) series of workshops has been in existence since 1986. These annual workshops focus on technical updates and laboratory experiments for materials science, engineering and technology, involving new and traditional content in the field. Scores of educators and industrial and national laboratory personnel have contributed many useful experiments and demonstrations which were then published as NASA Conference Proceedings. This "out poring of riches" creates an ever-expanding shelf of valuable teaching tools for college, university, community college and advanced high school instruction. Now, more than 400 experiments and demonstrations, representing the first thirteen years of NEW:Updates have been selected and published on a CD-ROM, through the collaboration of this national network of materials educators, engineers, and scientists. The CD-ROM examined in this document utilizes the popular Adobe Acrobat Reader format and operates on most popular computer platforms. This presentation provides an overview of the second edition of Experiments in Materials Science, Engineering and Technology (EMSET2) CD-ROM, ISBN 0-13-030534-0.

  11. Characterizing Materials Sources and Sinks; Current Approaches: Part II. Chemical and Physical Characterization

    EPA Science Inventory

    The paper discusses methods for characterizing chemical emissions from material sources, including laboratory, dynamic chamber, and full-scale studies. Indoor sources and their interaction with sinks play a major role in determining indoor air quality (IAQ). Techniques for evalua...

  12. Possibility of using sources of vacuum ultraviolet irradiation to solve problems of space material science

    NASA Technical Reports Server (NTRS)

    Verkhoutseva, E. T.; Yaremenko, E. I.

    1974-01-01

    An urgent problem in space materials science is simulating the interaction of vacuum ultraviolet (VUV) of solar emission with solids in space conditions, that is, producing a light source with a distribution that approximates the distribution of solar energy. Information is presented on the distribution of the energy flux of VUV of solar radiation. Requirements that must be satisfied by the VUV source used for space materials science are formulated, and a critical evaluation is given of the possibilities of using existing sources for space materials science. From this evaluation it was established that none of the sources of VUV satisfies the specific requirements imposed on the simulator of solar radiation. A solution to the problem was found to be in the development of a new type of source based on exciting a supersonic gas jet flowing into vacuum with a sense electron beam. A description of this gas-jet source, along with its spectral and operation characteristics, is presented.

  13. Mathematical Research in Materials Science: Opportunities and Perspectives. Part 2

    DTIC Science & Technology

    1993-01-01

    spheres and Lennard - Jones potentials , but have not been extended to a general framework that will allow input from more complicated interatomic...focuses on directions for potentially promising collaboration between materials scientists and mathematical scientists, and encourages both communities...interface between the mathematical sciences and other fields. The purpose of this report is not only to focus on directions for potentially promising

  14. Using Video Materials in English for Technical Sciences: A Case Study

    ERIC Educational Resources Information Center

    Milosevic, Danica

    2017-01-01

    In the digital era, university instructors working in English for Technical Sciences (ETS) have opportunities, some might say obligations, to use audio-visual resources to motivate students. Such materials also call on cognitive and constructivist mechanisms thought to improve uptake of the target language (Tarnopolsky, 2012). This chapter reports…

  15. The Physical Sciences. Report of the National Science Board Submitted to the Congress.

    ERIC Educational Resources Information Center

    Handler, Philip

    Recent advances in the physical sciences, including astronomy, chemical synthesis, chemical dynamics, solid-state sciences, atomic and nuclear science, and elementary particles and high-energy physics are summarized in this report to Congress. The nature of physical science, including its increasing unity, the relationship between science and…

  16. Modelling of chemical degradation of blended cement-based materials by leaching cycles with Callovo-Oxfordian porewater

    NASA Astrophysics Data System (ADS)

    Olmeda, Javier; Henocq, Pierre; Giffaut, Eric; Grivé, Mireia

    2017-06-01

    The present work describes a thermodynamic model based on pore water replacement cycles to simulate the chemical evolution of blended cement (BFS + FA) by interaction with external Callovo-Oxfordian (COx) pore water. In the framework of the radioactive waste management, the characterization of the radionuclide behaviour (solubility/speciation, adsorption) in cementitious materials needs to be done for several chemical degradation states (I to IV). In particular, in the context of the deep geological radioactive waste disposal project (Cigéo), cement-based materials will be chemically evolved with time in contact with the host-rock (COx formation). The objective of this study is to provide an equilibrium solution composition for each degradation state for a CEM-V cement-based material to support the adsorption and diffusion experiments reproducing any state of degradation. Calculations have been performed at 25 °C using the geochemical code PhreeqC and an up-to-date thermodynamic database (ThermoChimie v.9.0.b) coupled to SIT approach for ionic strength correction. The model replicates experimental data with accuracy. The approach followed in this study eases the analysis of the chemical evolution in both aqueous and solid phase to obtain a fast assessment of the geochemical effects associated to an external water intrusion of variable composition on concrete structures.

  17. The effects of space radiation on a chemically modified graphite-epoxy composite material

    NASA Technical Reports Server (NTRS)

    Reed, S. M.; Herakovich, C. T.; Sykes, G. F.

    1986-01-01

    The effects of the space environment on the engineering properties and chemistry of a chemically modified T300/934 graphite-epoxy composite system are characterized. The material was subjected to 1.0 x 10 to the 10th power rads of 1.0 MeV electron irradiation under vacuum to simulate 30 years in geosynchronous earth orbit. Monotonic tension tests were performed at room temperature (75 F/24 C) and elevated temperature (250 F/121 C) on 4-ply unidirectional laminates. From these tests, inplane engineering and strength properties (E sub 1, E sub 2, Nu sub 12, G sub 12, X sub T, Y sub T) were determined. Cyclic tests were also performed to characterize energy dissipation changes due to irradiation and elevated temperature. Large diameter graphite fibers were tested to determine the effects of radiation on their stiffness and strength. No significant changes were observed. Dynamic-mechanical analysis demonstrated that the glass transition temperature was reduced by 50 F(28 C) after irradiation. Thermomechanical analysis showed the occurrence of volatile products generated upon heating of the irradiated material. The chemical modification of the epoxy did not aid in producing a material which was more radiation resistant than the standard T300/934 graphite-epoxy system. Irradiation was found to cause crosslinking and chain scission in the polymer. The latter produced low molecular weight products which plasticize the material at elevated temperatures and cause apparent material stiffening at low stresses at room temperature.

  18. Screening-level models to estimate partition ratios of organic chemicals between polymeric materials, air and water.

    PubMed

    Reppas-Chrysovitsinos, Efstathios; Sobek, Anna; MacLeod, Matthew

    2016-06-15

    Polymeric materials flowing through the technosphere are repositories of organic chemicals throughout their life cycle. Equilibrium partition ratios of organic chemicals between these materials and air (KMA) or water (KMW) are required for models of fate and transport, high-throughput exposure assessment and passive sampling. KMA and KMW have been measured for a growing number of chemical/material combinations, but significant data gaps still exist. We assembled a database of 363 KMA and 910 KMW measurements for 446 individual compounds and nearly 40 individual polymers and biopolymers, collected from 29 studies. We used the EPI Suite and ABSOLV software packages to estimate physicochemical properties of the compounds and we employed an empirical correlation based on Trouton's rule to adjust the measured KMA and KMW values to a standard reference temperature of 298 K. Then, we used a thermodynamic triangle with Henry's law constant to calculate a complete set of 1273 KMA and KMW values. Using simple linear regression, we developed a suite of single parameter linear free energy relationship (spLFER) models to estimate KMA from the EPI Suite-estimated octanol-air partition ratio (KOA) and KMW from the EPI Suite-estimated octanol-water (KOW) partition ratio. Similarly, using multiple linear regression, we developed a set of polyparameter linear free energy relationship (ppLFER) models to estimate KMA and KMW from ABSOLV-estimated Abraham solvation parameters. We explored the two LFER approaches to investigate (1) their performance in estimating partition ratios, and (2) uncertainties associated with treating all different polymers as a single "bulk" polymeric material compartment. The models we have developed are suitable for screening assessments of the tendency for organic chemicals to be emitted from materials, and for use in multimedia models of the fate of organic chemicals in the indoor environment. In screening applications we recommend that KMA and KMW be

  19. The Extent to Which Pupils Manipulate Materials and Attainment of Process Skills in Elementary School Science.

    ERIC Educational Resources Information Center

    Macbeth, Douglas Russell

    Reported is a study of the importance of the direct manipulative experience in the attainment of science process skills for kindergarten and grade three pupils. Typical self-contained classes were selected to learn exercises from Science - A Process Approach. Some pupils were allowed to manipulate science materials in learning, while others were…

  20. The Effectiveness of Substituting Locally Available Materials in Teaching Chemistry in Nigeria: A Case for Science Education in Developing Countries

    ERIC Educational Resources Information Center

    DomNwachukwu, Nkechi S.; DomNwachukwu, Chinaka S.

    2006-01-01

    This article investigates the effectiveness of improvising locally available materials for teaching chemistry in Nigeria, as a case for a culture of improvisation for teaching the sciences in developing countries. The scarcity and cost of imported materials for teaching science has remained a major challenge to teaching sciences in developing…