Sample records for materials science engineering

  1. Materials Science & Engineering | Classification | College of Engineering &

    Science.gov Websites

    ChairMaterials Science and Engineering(414) 229-2668nidal@uwm.eduEng & Math Sciences E351 profile photo (414) 229-2615jhchen@uwm.eduEng & Math Sciences 1225 profile photo Benjamin Church, Ph.D.Associate ProfessorMaterials Science & Engineering(414) 229-2825church@uwm.eduEng & Math Sciences EMS 1175 profile

  2. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  3. Sandia National Laboratories: Exceptional Service in the National Interest

    Science.gov Websites

    Electromagnetics Engineering Science Geoscience Materials Science Nanodevices & Microsystems Radiation Effects Electromagnetics Engineering Science Geoscience Materials Science Nanodevices & Microsystems Radiation Effects Geoscience Materials Science Nanodevices & Microsystems Radiation Effects & High Energy Density

  4. Biological issues in materials science and engineering: Interdisciplinarity and the bio-materials paradigm

    NASA Astrophysics Data System (ADS)

    Murr, L. E.

    2006-07-01

    Biological systems and processes have had, and continue to have, important implications and applications in materials extraction, processing, and performance. This paper illustrates some interdisciplinary, biological issues in materials science and engineering. These include metal extraction involving bacterial catalysis, galvanic couples, bacterial-assisted corrosion and degradation of materials, biosorption and bioremediation of toxic and other heavy metals, metal and material implants and prostheses and related dental and medical biomaterials developments and applications, nanomaterials health benefits and toxicity issue, and biomimetics and biologically inspired materials developments. These and other examples provide compelling evidence and arguments for emphasizing biological sicences in materials science and engineering curricula and the implementation of a bio-materials paradigm to facilitate the emergence of innovative interdisciplinarity involving the biological sciences and materials sciences and engineering.

  5. The Institute of Biological Engineering 2013 Annual Conference

    DTIC Science & Technology

    2014-10-30

    of Bioengineering University of Washington Presentation: Peptide-Based materials for Drug Delivery Dr. Ya-Ping Sun (Supported by the Grant) Frank...Professor of Biomedical Engineering and Mechanical Engineering and Materials Science Duke University Presentation: Acoustic Microfluidics and New...Triangle Materials Research Science and Engineering Center, Department of Biomedical Engineering, Duke University, Department of Mechanical Engineering

  6. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-01

    This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

  7. University of Maryland MRSEC - Education: Resources

    Science.gov Websites

    . University of Maryland Materials Research Science and Engineering Center Home About Us Leadership Moments in MSE The Materials Science and Engineering Career Resources Center Materials Research Society Central Super Science Fair Projects: Ideas, Topics, & Experiments All Science Fair Projects Science

  8. Composition-spread Growth and the Robust Topological Surface State of Kondo Insulator SmB6 Thin Films

    DTIC Science & Technology

    2014-01-01

    1,2 1 Center for Nanophysics & Advanced Materials , University of Maryland, College Park, Maryland 20742, USA 2 Department of physics, University of...Maryland, College Park, Maryland 20742, USA 3 Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 4...Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA 5 Department of Materials Science & Engineering

  9. Special Quasirandom Structures to Study the (K0.5Na0.5)NbO3 Random Alloy

    DTIC Science & Technology

    2014-07-31

    first-principles discovery of novel materials with properties such as ferroelectricity, piezoelectricity, ferromagnetism , and thermoelectricity. For...Tan,1 Valentino R. Cooper,4,* and Scott P. Beckman1,† 1Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, USA...2Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 36211, USA 3Department of Materials Science and Engineering

  10. Engineering design skills coverage in K-12 engineering program curriculum materials in the USA

    NASA Astrophysics Data System (ADS)

    Chabalengula, Vivien M.; Mumba, Frackson

    2017-11-01

    The current K-12 Science Education framework and Next Generation Science Standards (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed curriculum materials that are being used in K-12 settings. However, little is known about the nature and extent to which engineering design skills outlined in NGSS are addressed in these K-12 engineering education programme curriculum materials. We analysed nine K-12 engineering education programmes for the nature and extent of engineering design skills coverage. Results show that developing possible solutions and actual designing of prototypes were the highly covered engineering design skills; specification of clear goals, criteria, and constraints received medium coverage; defining and identifying an engineering problem; optimising the design solution; and demonstrating how a prototype works, and making iterations to improve designs were lowly covered. These trends were similar across grade levels and across discipline-specific curriculum materials. These results have implications on engineering design-integrated science teaching and learning in K-12 settings.

  11. Solid State Cooling with Advanced Oxide Materials

    DTIC Science & Technology

    2014-06-03

    Department of Materials Science and Engineering , Department of Mechanical Science and Engineering , and Department of Electrical and Computer... Engineering University of Illinois, Urbana-Champaign Program Overview The focus of this program was to probe electro-(magneto-)caloric materials for... engineering systems by developing theoretical and experimental approaches to study thermodynamic properties and effects in thin film systems. Despite

  12. PREFACE: International Conference on Applied Sciences 2015 (ICAS2015)

    NASA Astrophysics Data System (ADS)

    Lemle, Ludovic Dan; Jiang, Yiwen

    2016-02-01

    The International Conference on Applied Sciences ICAS2015 took place in Wuhan, China on June 3-5, 2015 at the Military Economics Academy of Wuhan. The conference is regularly organized, alternatively in Romania and in P.R. China, by Politehnica University of Timişoara, Romania, and Military Economics Academy of Wuhan, P.R. China, with the joint aims to serve as a platform for exchange of information between various areas of applied sciences, and to promote the communication between the scientists of different nations, countries and continents. The topics of the conference cover a comprehensive spectrum of issues from: >Economical Sciences and Defense: Management Sciences, Business Management, Financial Management, Logistics, Human Resources, Crisis Management, Risk Management, Quality Control, Analysis and Prediction, Government Expenditure, Computational Methods in Economics, Military Sciences, National Security, and others... >Fundamental Sciences and Engineering: Interdisciplinary applications of physics, Numerical approximation and analysis, Computational Methods in Engineering, Metallic Materials, Composite Materials, Metal Alloys, Metallurgy, Heat Transfer, Mechanical Engineering, Mechatronics, Reliability, Electrical Engineering, Circuits and Systems, Signal Processing, Software Engineering, Data Bases, Modeling and Simulation, and others... The conference gathered qualified researchers whose expertise can be used to develop new engineering knowledge that has applicability potential in Engineering, Economics, Defense, etc. The number of participants was 120 from 11 countries (China, Romania, Taiwan, Korea, Denmark, France, Italy, Spain, USA, Jamaica, and Bosnia and Herzegovina). During the three days of the conference four invited and 67 oral talks were delivered. Based on the work presented at the conference, 38 selected papers have been included in this volume of IOP Conference Series: Materials Science and Engineering. These papers present new research in the various fields of Materials Engineering, Mechanical Engineering, Computers Engineering, and Electrical Engineering. It's our great pleasure to present this volume of IOP Conference Series: Materials Science and Engineering to the scientific community to promote further research in these areas. We sincerely hope that the papers published in this volume will contribute to the advancement of knowledge in the respective fields.

  13. The Teaching of Crystallography to Materials Scientists and Engineers.

    ERIC Educational Resources Information Center

    Wuensch, Bernhardt J.

    1988-01-01

    Provides a framework of the disciplines of materials science and engineering as they have developed. Discusses the philosophy, content, and approach to teaching these courses. Indicates the range of crystallographic topics contained in the materials science and engineering curriculum at the Massachussetts Institute of Technology. (CW)

  14. [Applications of synthetic biology in materials science].

    PubMed

    Zhao, Tianxin; Zhong, Chao

    2017-03-25

    Materials are the basis for human being survival and social development. To keep abreast with the increasing needs from all aspects of human society, there are huge needs in the development of advanced materials as well as high-efficiency but low-cost manufacturing strategies that are both sustainable and tunable. Synthetic biology, a new engineering principle taking gene regulation and engineering design as the core, greatly promotes the development of life sciences. This discipline has also contributed to the development of material sciences and will continuously bring new ideas to future new material design. In this paper, we review recent advances in applications of synthetic biology in material sciences, with the focus on how synthetic biology could enable synthesis of new polymeric biomaterials and inorganic materials, phage display and directed evolution of proteins relevant to materials development, living functional materials, engineered bacteria-regulated artificial photosynthesis system as well as applications of gene circuits for material sciences.

  15. Elementary Students' Learning of Materials Science Practices through Instruction Based on Engineering Design Tasks

    ERIC Educational Resources Information Center

    Wendell, Kristen Bethke; Lee, Hee-Sun

    2010-01-01

    Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine…

  16. Preface - BraMat 2017

    NASA Astrophysics Data System (ADS)

    Munteanu, Daniel

    2018-04-01

    The main goal of the BraMat 2017 Conference was, as for the previous editions, to stimulate an international exchange of information in the field of materials science and engineering and to establish future research directions. The main topics of this edition included: ​Metallic materials (Section I), Biomaterials (Section II), Ceramics, polymers and composite materials (Section III), Surface engineering (Section IV), Nanomaterials (Section V), Welding engineering (Section VI), Safety engineering (Section VII), and Magnesium science and engineering (Section VIII).

  17. Elementary Students' Learning of Materials Science Practices Through Instruction Based on Engineering Design Tasks

    NASA Astrophysics Data System (ADS)

    Wendell, Kristen Bethke; Lee, Hee-Sun

    2010-12-01

    Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine students who participated in engineering design-based science instruction with the goal of constructing a stable, quiet, thermally comfortable model house. The learning outcome of materials science practices was assessed by clinical interviews conducted before and after the instruction, and the learning process was assessed by students' workbooks completed during the instruction. The interviews included two materials selection tasks for designing a sturdy stepstool and an insulated pet habitat. Results indicate that: (1) students significantly improved on both materials selection tasks, (2) their gains were significantly positively associated with the degree of completion of their workbooks, and (3) students who were highly engaged with the workbook's reflective record-keeping tasks showed the greatest improvement on the interviews. These findings suggest the important role workbooks can play in facilitating elementary students' learning of science through authentic activity such as engineering design.

  18. PREFACE: International Conference on Applied Sciences (ICAS2014)

    NASA Astrophysics Data System (ADS)

    Lemle, Ludovic Dan; Jiang, Yiwen

    2015-06-01

    The International Conference on Applied Sciences (ICAS2014) took place in Hunedoara, Romania from 2-4 October 2014 at the Engineering Faculty of Hunedoara. The conference takes place alternately in Romania and in P.R. China and is organized by "Politehnica" University of Timisoara, Romania, and Military Economics Academy of Wuhan, P.R. China, with the aim to serve as a platform for exchange of information between various areas of applied sciences and to promote the communication between scientists of different nations, countries and continents. The topics of the conference covered a comprehensive spectrum of issues: 1. Economical Sciences 2. Engineering Sciences 3. Fundamental Sciences 4. Medical Sciences The conference gathered qualified researchers whose expertise can be used to develop new engineering knowledge that has the potential for application in economics, defense, medicine, etc. There were nearly 100 registered participants from six countries, and four invited and 56 oral talks were delivered during the two days of the conference. Based on the work presented at the conference, selected papers are included in this volume of IOP Conference Series: Materials Science and Engineering. These papers present new research in the various fields of Materials Engineering, Mechanical Engineering, Computer Engineering, and Mathematical Engineering. It is our great pleasure to present this volume of IOP Conference Series: Materials Science and Engineering to the scientific community to promote further research in these areas. We sincerely hope that the papers published in this volume will contribute to the advancement of knowledge in their respective fields.

  19. Engineering Design Skills Coverage in K-12 Engineering Program Curriculum Materials in the USA

    ERIC Educational Resources Information Center

    Chabalengula, Vivien M.; Mumba, Frackson

    2017-01-01

    The current "K-12 Science Education framework" and "Next Generation Science Standards" (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed…

  20. Optimizing Chemical-Vapor-Deposition Diamond for Nitrogen-Vacancy Center Ensemble Magnetrometry

    DTIC Science & Technology

    2017-06-01

    Ju Li Battelle Energy Alliance Professor of Nuclear Science and Engineering Professor of Materials Science and Engineering...Sciences, U. S. Air Force Academy (2015) Submitted to the Department of Nuclear Science and Engineering in partial fulfillment of the requirements for the...degree of Master of Science in Nuclear Science and Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2017 c○ Massachusetts Institute of

  1. Evaluation of Online Teacher and Student Materials for the Framework for K-12 Science Education Science and Engineering Crosscutting Concepts

    ERIC Educational Resources Information Center

    Schwab, Patrick

    2013-01-01

    The National Research Council developed and published the "Framework for K-12 Science Education," a new set of concepts that many states were planning on adopting. Part of this new endeavor included a set of science and engineering crosscutting concepts to be incorporated into science materials and activities, a first in science…

  2. Gender and engineering aptitude: Is the color of science, technology, engineering, and math materials related to children's performance?

    PubMed

    Mulvey, Kelly Lynn; Miller, Bridget; Rizzardi, Victoria

    2017-08-01

    To investigate gender stereotypes, demonstrated engineering aptitude, and attitudes, children (N=105) solved an engineering problem using either pastel-colored or primary-colored materials. Participants also evaluated the acceptability of denial of access to engineering materials based on gender and counter-stereotypic preferences (i.e., a boy who prefers pastel-colored materials). Whereas material color was not related to differences in female participants' performance, younger boys assigned to pastel materials demonstrated lower engineering aptitude than did other participants. In addition, results documented age- and gender-related differences; younger participants, and sometimes boys, exhibited less flexibility regarding gender stereotypes than did older and female participants. The findings suggest that attempts to enhance STEM (science, technology, engineering, and math) engagement or performance through the color of STEM materials may have unintended consequences. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. PREFACE: 6th EEIGM International Conference on Advanced Materials Research

    NASA Astrophysics Data System (ADS)

    Horwat, David; Ayadi, Zoubir; Jamart, Brigitte

    2012-02-01

    The 6th EEIGM Conference on Advanced Materials Research (AMR 2011) was held at the European School of Materials Engineering (EEIGM) on the 7-8 November 2011 in Nancy, France. This biennial conference organized by the EEIGM is a wonderful opportunity for all scientists involved in the EEIGM programme, in the 'Erasmus Mundus' Advanced Materials Science and Engineering Master programme (AMASE) and the 'Erasmus Mundus' Doctoral Programme in Materials Science and Engineering (DocMASE), to present their research in the various fields of Materials Science and Engineering. This conference is also open to other universities who have strong links with the EEIGM and provides a forum for the exchange of ideas, co-operation and future orientations by means of regular presentations, posters and a round-table discussion. This edition of the conference included a round-table discussion on composite materials within the Interreg IVA project '+Composite'. Following the publication of the proceedings of AMR 2009 in Volume 5 of this journal, it is with great pleasure that we present this selection of articles to the readers of IOP Conference Series: Materials Science and Engineering. Once again it represents the interdisciplinary nature of Materials Science and Engineering, covering basic and applicative research on organic and composite materials, metallic materials and ceramics, and characterization methods. The editors are indebted to all the reviewers for reviewing the papers at very short notice. Special thanks are offered to the sponsors of the conference including EEIGM-Université de Lorraine, AMASE, DocMASE, Grand Nancy, Ville de Nancy, Region Lorraine, Fédération Jacques Villermaux, Conseil Général de Meurthe et Moselle, Casden and '+Composite'. Zoubir Ayadi, David Horwat and Brigitte Jamart

  4. PREFACE: 7th EEIGM International Conference on Advanced Materials Research

    NASA Astrophysics Data System (ADS)

    Joffe, Roberts

    2013-12-01

    The 7th EEIGM Conference on Advanced Materials Research (AMR 2013) was held at Luleå University of Technology on the 21-22 March 2013 in Luleå, SWEDEN. This conference is intended as a meeting place for researchers involved in the EEIGM programme, in the 'Erasmus Mundus' Advanced Materials Science and Engineering Master programme (AMASE) and the 'Erasmus Mundus' Doctoral Programme in Materials Science and Engineering (DocMASE). This is great opportunity to present their on-going research in the various fields of Materials Science and Engineering, exchange ideas, strengthen co-operation as well as establish new contacts. More than 60 participants representing six countries attended the meeting, in total 26 oral talks and 19 posters were presented during two days. This issue of IOP Conference Series: Materials Science and Engineering presents a selection of articles from EEIGM-7 conference. Following tradition from previous EEIGM conferences, it represents the interdisciplinary nature of Materials Science and Engineering. The papers presented in this issue deal not only with basic research but also with applied problems of materials science. The presented topics include theoretical and experimental investigations on polymer composite materials (synthetic and bio-based), metallic materials and ceramics, as well as nano-materials of different kind. Special thanks should be directed to the senior staff of Division of Materials Science at LTU who agreed to review submitted papers and thus ensured high scientific level of content of this collection of papers. The following colleagues participated in the review process: Professor Lennart Walström, Professor Roberts Joffe, Professor Janis Varna, Associate Professor Marta-Lena Antti, Dr Esa Vuorinen, Professor Aji Mathew, Professor Alexander Soldatov, Dr Andrejs Purpurs, Dr Yvonne Aitomäki, Dr Robert Pederson. Roberts Joffe October 2013, Luleå Conference photograph EEIGM7 conference participants, 22 March 2013 The PDF contains the book of abstracts.

  5. 75 FR 9001 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and... Science and Engineering Centers Program, Division of Materials Research, Room 1065, National Science...

  6. 75 FR 4876 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and... Science and Engineering Centers Program, Division of Materials Research, Room 1065, National Science...

  7. Understanding the Role of Academic Language on Conceptual Understanding in an Introductory Materials Science and Engineering Course

    NASA Astrophysics Data System (ADS)

    Kelly, Jacquelyn

    Students may use the technical engineering terms without knowing what these words mean. This creates a language barrier in engineering that influences student learning. Previous research has been conducted to characterize the difference between colloquial and scientific language. Since this research had not yet been applied explicitly to engineering, conclusions from the area of science education were used instead. Various researchers outlined strategies for helping students acquire scientific language. However, few examined and quantified the relationship it had on student learning. A systemic functional linguistics framework was adopted for this dissertation which is a framework that has not previously been used in engineering education research. This study investigated how engineering language proficiency influenced conceptual understanding of introductory materials science and engineering concepts. To answer the research questions about engineering language proficiency, a convenience sample of forty-one undergraduate students in an introductory materials science and engineering course was used. All data collected was integrated with the course. Measures included the Materials Concept Inventory, a written engineering design task, and group observations. Both systemic functional linguistics and mental models frameworks were utilized to interpret data and guide analysis. A series of regression analyses were conducted to determine if engineering language proficiency predicts group engineering term use, if conceptual understanding predicts group engineering term use, and if conceptual understanding predicts engineering language proficiency. Engineering academic language proficiency was found to be strongly linked to conceptual understanding in the context of introductory materials engineering courses. As the semester progressed, this relationship became even stronger. The more engineering concepts students are expected to learn, the more important it is that they are proficient in engineering language. However, exposure to engineering terms did not influence engineering language proficiency. These results stress the importance of engineering language proficiency for learning, but warn that simply exposing students to engineering terms does not promote engineering language proficiency.

  8. Materials Science Laboratory

    NASA Technical Reports Server (NTRS)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  9. 77 FR 61432 - Proposal Review for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... NATIONAL SCIENCE FOUNDATION Proposal Review for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and... Director, Materials Research Science and Engineering Centers Program, Division of Materials Research, Room...

  10. Effect of nickel silicide gettering on metal-induced crystallized polycrystalline-silicon thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Yoon; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Lee, Yong Hee; Joo, Seung Ki

    2017-06-01

    Low-temperature polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) fabricated via metal-induced crystallization (MIC) are attractive candidates for use in active-matrix flat-panel displays. However, these exhibit a large leakage current due to the nickel silicide being trapped at the grain boundaries of the poly-Si. We reduced the leakage current of the MIC poly-Si TFTs by developing a gettering method to remove the Ni impurities using a Si getter layer and natively-formed SiO2 as the etch stop interlayer. The Ni trap state density (Nt) in the MIC poly-Si film decreased after the Ni silicide gettering, and as a result, the leakage current of the MIC poly-Si TFTs decreased. Furthermore, the leakage current of MIC poly-Si TFTs gradually decreased with additional gettering. To explain the gettering effect on MIC poly-Si TFTs, we suggest an appropriate model. He received the B.S. degree in School of Advanced Materials Engineering from Kookmin University, Seoul, South Korea in 2012, and the M.S. degree in Department of Materials Science and Engineering from Seoul National University, Seoul, South Korea in 2014. He is currently pursuing the Ph.D. degree with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and top-gate polycrystalline-silicon thin-film transistors. He received the M.S. degree in innovation technology from Ecol Polytechnique, Palaiseau, France in 2013. He is currently pursuing the Ph.D. degree with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and copper-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He received the B.S. degree in metallurgical engineering from Seoul National University, Seoul, South Korea, in 1974, and the M.S. and Ph.D. degrees in material science and engineering from Stanford University, Stanford, CA, USA, in 1980 and 1983, respectively. He is currently a Professor with the Department of Materials Science and Engineering, Seoul National University, Seoul.

  11. FY 1999 Laboratory Directed Research and Development annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PJ Hughes

    2000-06-13

    A short synopsis of each project is given covering the following main areas of research and development: Atmospheric sciences; Biotechnology; Chemical and instrumentation analysis; Computer and information science; Design and manufacture engineering; Ecological science; Electronics and sensors; Experimental technology; Health protection and dosimetry; Hydrologic and geologic science; Marine sciences; Materials science; Nuclear science and engineering; Process science and engineering; Sociotechnical systems analysis; Statistics and applied mathematics; and Thermal and energy systems.

  12. In Brief: Suresh slated to head U.S. National Science Foundation

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-06-01

    U.S. president Barack Obama announced on 3 June his intent to nominate Subra Suresh as the next director of the U.S. National Science Foundation (NSF). Arden Bement, who served as NSF director since 2004, resigned earlier this year to lead Purdue University's Global Policy Research Institute, in West Lafayette, Indiana. Suresh is dean of the School of Engineering and the Vannevar Bush Professor of Engineering at Massachusetts Institute of Technology (MIT), Cambridge. Suresh joined MIT in 1993 as the R. P. Simmons Professor of Materials Science and Engineering. Since then, he has held joint faculty appointments in the departments of Mechanical Engineering and Biological Engineering, as well as the Division of Health Sciences and Technology. He previously was head of the university's Department of Materials Science and Engineering. Suresh has a B.S. from the Indian Institute of Technology, Madras, India; an M.S. from Iowa State University of Science and Technology, Ames; and a Sc.D. from MIT.

  13. 77 FR 61433 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and..., Program Director, Materials Research Science and Engineering Centers Program, Division of Materials...

  14. 77 FR 56236 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and... Director, Materials Research Science and Engineering Centers Program, Division of Materials Research, Room...

  15. 77 FR 6826 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and..., Program Director, Materials Research Science and Engineering Centers Program, Division of Materials...

  16. 77 FR 57162 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and... Director, Materials Research Science and Engineering Centers Program, Division of Materials Research, Room...

  17. 77 FR 14441 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and..., Materials Research Science and Engineering Centers Program, Division of Materials Research, Room 1065...

  18. Development of a Support Environment for First Year Students Taking Materials Science/Engineering

    ERIC Educational Resources Information Center

    Laoui, Tahar; O'Donoghue, John

    2008-01-01

    This paper is based on the experience acquired in teaching materials science/engineering to first year university students. It has been observed that students struggle with some of the fundamental materials concepts addressed in the module/course. This applies to delivered lectures but extends to the incorporation of tutorial sessions provided…

  19. 78 FR 11903 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site Visit review of the Materials Research Science and... Structures Materials Research Science and Engineering Center, by NSF Division of Materials Research (DMR...

  20. 75 FR 18241 - Proposal Review Panel for Materials Research Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research Notice of Meeting In... Rieker, Program Director, Materials Research Science and Engineering Centers Program, Division of Materials Research, Room 1065, National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230...

  1. 77 FR 20852 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In.... Thomas Rieker, Program Director, Materials Research Science and Engineering Centers Program, Division of Materials Research, Room 1065, National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230...

  2. Graduate Student Program in Materials and Engineering Research and Development for Future Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, Linda

    The objective of the proposal was to develop graduate student training in materials and engineering research relevant to the development of particle accelerators. Many components used in today's accelerators or storage rings are at the limit of performance. The path forward in many cases requires the development of new materials or fabrication techniques, or a novel engineering approach. Often, accelerator-based laboratories find it difficult to get top-level engineers or materials experts with the motivation to work on these problems. The three years of funding provided by this grant was used to support development of accelerator components through a multidisciplinary approachmore » that cut across the disciplinary boundaries of accelerator physics, materials science, and surface chemistry. The following results were achieved: (1) significant scientific results on fabrication of novel photocathodes, (2) application of surface science and superconducting materials expertise to accelerator problems through faculty involvement, (3) development of instrumentation for fabrication and characterization of materials for accelerator components, (4) student involvement with problems at the interface of material science and accelerator physics.« less

  3. 78 FR 11903 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site Visit review of the Materials Research Science and... Research Science and Engineering Centers Program, Division of Materials Research, Room 1065, National...

  4. 77 FR 2095 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-13

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and... Person: Dr. Thomas Rieker, Program Director, Materials Research Science and Engineering Centers Program...

  5. 77 FR 25503 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-30

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and...: Dr. Sean L. Jones, Program Director, Materials Research Science and Engineering Centers Program...

  6. 77 FR 57161 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and... Research Science and Engineering Centers Program, Division of Materials Research, Room 1065, National...

  7. 78 FR 5505 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site Visit review of the Materials Research Science and.... Charles Bouldin, Program Director, Materials Research Science and Engineering Centers Program, Division of...

  8. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Ramamoorthy Ramesh The Metals Society Bardeen Prize in Electronic Materials Rob Ritchie Elected as a Foreign into the earth Rob Ritchie Elected Foreign Member of the Royal Swedish Academy of Engineering Sciences PECASE (Presidential Early Career Award for Scientists and Engineers) Eli Yablonovitch Elected as Foreign

  9. Preparing technicians for engineering materials technology

    NASA Technical Reports Server (NTRS)

    Jacobs, James A.; Metzloff, Carlton H.

    1990-01-01

    A long held principle is that for every engineer and scientist there is a need for ten technicians to maximize the efficiency of the technology team for meeting needs of industry and government. Developing an adequate supply of technicians to meet the requirements of the materials related industry will be a challenge and difficult to accomplish. A variety of agencies feel the need and wish to support development of engineering materials technology programs. In a joint effort among Battelle Laboratories, the Department of Energy (DOE) and Northwest College and University Association for Science (NORCUS), the development of an engineering materials technology program for vocational programs and community colleges for the Pacific Northwest Region was recently completed. This effort has implications for a national model. The model Associate of Applied Science degree in Engineering Materials Technology shown provides a general structure. It purposely has course titles which need delimiting while also including a core of courses necessary to develop cognitive, affective and psychomotor skills with the underlining principles of math, science and technology so students have job entry skills, and so that students can learn about and adapt to evolving technology.

  10. Sandia National Laboratories: Research: Research Foundations: Radiation

    Science.gov Websites

    Effects and High Energy Density Science Sandia National Laboratories Exceptional service in the Engineering Science Geoscience Materials Science Nanodevices & Microsystems Radiation Effects & High Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy

  11. 78 FR 4464 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463 as amended), the National Science..., Materials Research Science and Engineering Centers Program, Division of Materials Research, Room 1065...

  12. NASA-HBCU Space Science and Engineering Research Forum Proceedings

    NASA Technical Reports Server (NTRS)

    Sanders, Yvonne D. (Editor); Freeman, Yvonne B. (Editor); George, M. C. (Editor)

    1989-01-01

    The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements).

  13. Biomedical Engineering and Cognitive Science Secondary Science Curriculum Development: A Three Year Study

    ERIC Educational Resources Information Center

    Klein, Stacy S.; Sherwood, Robert D.

    2005-01-01

    This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…

  14. Measurement System for Energetic Materials Decomposition

    DTIC Science & Technology

    2015-01-05

    scholarships or fellowships for further studies in science, mathematics, engineering or technology fields: Student Metrics This section only applies to...science, mathematics, engineering, or technology fields: The number of undergraduates funded by your agreement who graduated during this period and...will continue to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields

  15. Research and education on fiber-based materials for nanofluidics at Clemson University

    NASA Astrophysics Data System (ADS)

    Kornev, Konstantin G.

    2007-11-01

    Advanced materials and the science and engineering related to their design, process, test and manufacture represents one of the fast growing sectors of the Materials Science and Engineering field. Awareness of existing process, performance, manufacturing or recycle-ability issues and limitations, often dictates the next generation of advances needed to improve existing or create new materials. To compete in this growing science and technology area, trained experts must possess strong academic skills in their discipline as well as advanced communication, networking and cultural teamwork experience. Clemson's School of Materials Science and Engineering (MSE), is continuing to expand our program to focus on unique capabilities which support local, regional and national needs in advanced materials. Specifically, MSE at Clemson is evolving to highlight intrinsic strengths in research and education areas related to optical materials, advanced fibers and composites (based on inorganic, organic and natural fibers), biomaterials and devices, and architectural and restoration material science (including the conservation and preservation of maritime structures). Additionally, we continue to invest in our expertise in materials design and fabrication, which has historically supported our well known programs in ceramics and textiles. In addition to a brief review of the School's forward-looking challenges to remain competitive among strong southeast regional materials science programs, this presentation will also highlight recent technical advances in fiber-based materials for nanofluidic applications. Specifically we will present recent results on design of fiber-based nanofluidics for sensor applications and we will discuss some physical phenomena associated with liquid transport at nanoscale.

  16. A Robust Damage Reporting Strategy for Polymeric Materials Enabled by Aggregation Induced Emission

    DTIC Science & Technology

    2016-08-17

    and Technology, ‡Department of Chemistry, ∥Department of Materials Science and Engineering, ⊥Department of Mechanical Science and Engineering, and...enabled by aggregation-induced emission (AIE). This simple, yet powerful system relies on a single active component, and the general mechanism ...delivers outstanding performance in a wide variety of materials with diverse chemical and mechanical properties. Small (micrometer) scale damage in

  17. Metallized Coatings for Corrosion Control of Naval Ship Structures and Components.

    DTIC Science & Technology

    1983-02-01

    163A. N0A 1 NA LCIIO4 NATIONAL RESEARCH COUNCIL COMMISSION ON ENGINEERING AND TECHNICAL SYSTEMS 1 NATIONAL MATERIALS ADVISORY BOARD I he purpose of...the National Materials Ad’ isor5’ Board is the advart,itmnt Of niateriais science dnd engineering in the national interest. CHAIRMAN PAST C HA IRMA N DT...Materials Science and Engineering D~i\\isioti 2ix (lieto Street D~r. Ramntd F. Mlikesell Bell L-aboratories Johnt Hatncoc k losser. 43rd Fl. ’or W I

  18. Blending Education and Polymer Science: Semiautomated Creation of a Thermodynamic Property Database

    ERIC Educational Resources Information Center

    Tchoua, Roselyne B.; Qin, Jian; Audus, Debra J.; Chard, Kyle; Foster, Ian T.; de Pablo, Juan

    2016-01-01

    Structured databases of chemical and physical properties play a central role in the everyday research activities of scientists and engineers. In materials science, researchers and engineers turn to these databases to quickly query, compare, and aggregate various properties, thereby allowing for the development or application of new materials. The…

  19. Academic Commitment and Self-Efficacy as Predictors of Academic Achievement in Additional Materials Science

    ERIC Educational Resources Information Center

    Vogel, F. Ruric; Human-Vogel, Salomé

    2016-01-01

    A great deal of research within science and engineering education revolves around academic success and retention of science and engineering students. It is well known that South Africa is experiencing, for various reasons, an acute shortage of engineers. Therefore, we think it is important to understand the factors that contribute to attrition…

  20. Advances in engineering science, volume 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Proceedings from a conference on engineering advances are presented, including materials science, fracture mechanics, and impact and vibration testing. The tensile strength and moisture transport of laminates are also discussed.

  1. Sandia National Laboratories: Research: Research Foundations: Geoscience

    Science.gov Websites

    Materials Science Nanodevices & Microsystems Radiation Effects & High Energy Density Science Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High variety of scales, including mechanical, thermal, and chemical effects Improve the understanding of

  2. Introducing High School Students and Science Teachers to Chemical Engineering.

    ERIC Educational Resources Information Center

    Bayles, Taryn Melkus; Aguirre, Fernando J.

    1992-01-01

    Describes a summer institute for science teachers and their students in which the main goal was to increase enrollment in engineering and to encourage women and minority groups to increase their representation in the engineering workforce. Includes a description of typical chemical engineering jobs and general instruction in material balances,…

  3. Pre-Service Science Teachers Views on STEM Materials and STEM Competition in Instructional Technologies and Material Development Course

    ERIC Educational Resources Information Center

    Cetin, Ali; Balta, Nuri

    2017-01-01

    This qualitative study was designed to introduce STEM (Science, Technology, Engineering, Mathematics) activities to preservice science teachers and identify their views about STEM materials. In this context, a competition was organized with 42 preservice science teachers (13 male- 29 female) who took Instructional Technologies and Material…

  4. Lab Manual & Resources for Materials Science, Engineering and Technology on CD-Rom

    NASA Technical Reports Server (NTRS)

    Jacobs, James A.; McKenney, Alfred E.

    2001-01-01

    The National Educators' Workshop (NEW:Update) series of workshops has been in existence since 1986. These annual workshops focus on technical updates and laboratory experiments for materials science, engineering and technology, involving new and traditional content in the field. Scores of educators and industrial and national laboratory personnel have contributed many useful experiments and demonstrations which were then published as NASA Conference Proceedings. This "out poring of riches" creates an ever-expanding shelf of valuable teaching tools for college, university, community college and advanced high school instruction. Now, more than 400 experiments and demonstrations, representing the first thirteen years of NEW:Updates have been selected and published on a CD-ROM, through the collaboration of this national network of materials educators, engineers, and scientists. The CD-ROM examined in this document utilizes the popular Adobe Acrobat Reader format and operates on most popular computer platforms. This presentation provides an overview of the second edition of Experiments in Materials Science, Engineering and Technology (EMSET2) CD-ROM, ISBN 0-13-030534-0.

  5. NASA/DoD Aerospace Knowledge Diffusion Research Project. Report Number 19. The U. S. Government Technical Report and the Transfer of Federally Funded Aerospace R&D: An Analysis of Five Studies

    DTIC Science & Technology

    1994-01-01

    defined etymologically , according to report content and method (U.S. Department of Defense, 1964); behaviorally, according to the influence on the reader...SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3 ENGINEERING 8 PHYSICS 4 GEOSCIENCES 9 SPACE SCIENCES 5 LIFE SCIENCES 10 OTHER (specify) 63. IsANYof...YOUR work? (Circle ONLY one number) I AERONAUTICS 6 MATHEMATICAL & COMPUTER SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3 ENGINEERING 8 PHYSICS 4

  6. Engineering Education's Contribution to the Space Program.

    ERIC Educational Resources Information Center

    Stever, H. Guyford

    1988-01-01

    States that an expanding future in space requires new technology. Stresses that from engineering education, space requires people with a fundamental knowledge of modern science instruments, all engineering sciences, an appreciation and capability for detail and systems design, and an understanding of costs and competitiveness, machines, materials,…

  7. Permeation Tests on Polypropylene Fiber Materials

    DTIC Science & Technology

    2018-03-16

    Engineering at the Naval Research Laboratory (NRL) evaluated polypropylene nanofiber materials for their potential in air filtration to remove toxic......The Center for Bio/Molecular Science and Engineering at the Naval Research Laboratory (NRL) evaluated polypropylene nanofiber materials provided by

  8. Laboratory Directed Research and Development Annual Report for 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Pamela J.

    2012-04-09

    This report documents progress made on all LDRD-funded projects during fiscal year 2011. The following topics are discussed: (1) Advanced sensors and instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and space sciences; (5) Energy supply and use; (6) Engineering and manufacturing processes; (7) Materials science and technology; (8) Mathematics and computing sciences; (9) Nuclear science and engineering; and (10) Physics.

  9. 1996 Laboratory directed research and development annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.

  10. Classroom Demonstrations in Materials Science/Engineering.

    ERIC Educational Resources Information Center

    Hirschhorn, J. S.; And Others

    Examples are given of demonstrations used at the University of Wisconsin in a materials science course for nontechnical students. Topics include crystal models, thermal properties, light, and corrosion. (MLH)

  11. Virtual laboratory learning media development to improve science literacy skills of mechanical engineering students on basic physics concept of material measurement

    NASA Astrophysics Data System (ADS)

    Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.

    2018-05-01

    This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.

  12. Explore the Human-Based Teaching for the Professional Course of Materials Science and Engineering

    ERIC Educational Resources Information Center

    Zhao, Yiping; Chen, Li; Zhang, Yufeng

    2008-01-01

    As viewed from two sides such as teacher and student, in this article, we explore the human-based teaching reform for the college professional course of materials Science and Engineering, point out the qualities and conditions that professional teacher should possess in the process of human-based teaching reform of professional course and the…

  13. 3D-Printing Crystallographic Unit Cells for Learning Materials Science and Engineering

    ERIC Educational Resources Information Center

    Rodenbough, Philip P.; Vanti, William B.; Chan, Siu-Wai

    2015-01-01

    Introductory materials science and engineering courses universally include the study of crystal structure and unit cells, which are by their nature highly visual 3D concepts. Traditionally, such topics are explored with 2D drawings or perhaps a limited set of difficult-to-construct 3D models. The rise of 3D printing, coupled with the wealth of…

  14. Engineering Encounters: Can a Student Really Do What Engineers Do?

    ERIC Educational Resources Information Center

    Brown, Sherri; Newman, Channa; Dearing-Smith, Kelley; Smith, Stephanie

    2014-01-01

    "Framework for K-12 Science Education" states that "children are natural engineers … they spontaneously build sand castles, dollhouses, and hamster enclosures and use a variety of tools and materials for their own playful purposes" (NRC 2012, p. 70). The "Next Generation Science Standards" ("NGSS") also…

  15. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science.

    PubMed

    Guerette, Paul A; Hoon, Shawn; Seow, Yiqi; Raida, Manfred; Masic, Admir; Wong, Fong T; Ho, Vincent H B; Kong, Kiat Whye; Demirel, Melik C; Pena-Francesch, Abdon; Amini, Shahrouz; Tay, Gavin Z; Ding, Dawei; Miserez, Ali

    2013-10-01

    Efforts to engineer new materials inspired by biological structures are hampered by the lack of genomic data from many model organisms studied in biomimetic research. Here we show that biomimetic engineering can be accelerated by integrating high-throughput RNA-seq with proteomics and advanced materials characterization. This approach can be applied to a broad range of systems, as we illustrate by investigating diverse high-performance biological materials involved in embryo protection, adhesion and predation. In one example, we rapidly engineer recombinant squid sucker ring teeth proteins into a range of structural and functional materials, including nanopatterned surfaces and photo-cross-linked films that exceed the mechanical properties of most natural and synthetic polymers. Integrating RNA-seq with proteomics and materials science facilitates the molecular characterization of natural materials and the effective translation of their molecular designs into a wide range of bio-inspired materials.

  16. Integrated computational materials engineering: Tools, simulations and new applications

    DOE PAGES

    Madison, Jonathan D.

    2016-03-30

    Here, Integrated Computational Materials Engineering (ICME) is a relatively new methodology full of tremendous potential to revolutionize how science, engineering and manufacturing work together. ICME was motivated by the desire to derive greater understanding throughout each portion of the development life cycle of materials, while simultaneously reducing the time between discovery to implementation [1,2].

  17. Activities report of the Department of Engineering

    NASA Astrophysics Data System (ADS)

    Acoustics, aerodynamics, fluid mechanics, design, electrical, materials science, mechanical, control, robotics, soil mechanics, structural engineering, thermodynamics, and turbomachine engineering research are described.

  18. 77 FR 55863 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463 as amended), the National Science Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and Engineering Center (MRSEC) at Princeton...

  19. 78 FR 30342 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463 as amended), the National Science Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and Engineering Center (MRSEC) at Duke Universit...

  20. NASA/DoD Aerospace Knowledge Diffusion Research Project. Report Number 20. The Use of Selected Information Products and Services by U.S. Aerospace Engineers and Scientists: Results of Two Surveys.

    DTIC Science & Technology

    1994-02-01

    within and between organizations. The technical report has been defined etymologically , according to report content and method (U.S. Department of...number) I AERONAUTICS 6 MATHEMATICAL & COMPUTER SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3 ENGINEERING 8 PHYSICS 4 GEOSCIENCES 9 SPACE SCIENCES 5...the application of your work? (Circle ONLY one number) 1 AERONAUTICS 6 MATHEMATICAL & COMPUTER SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3

  1. Materials science and engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesuer, D.R.

    1997-02-01

    During FY-96, work within the Materials Science and Engineering Thrust Area was focused on material modeling. Our motivation for this work is to develop the capability to study the structural response of materials as well as material processing. These capabilities have been applied to a broad range of problems, in support of many programs at Lawrence Livermore National Laboratory. These studies are described in (1) Strength and Fracture Toughness of Material Interfaces; (2) Damage Evolution in Fiber Composite Materials; (3) Flashlamp Envelope Optical Properties and Failure Analysis; (4) Synthesis and Processing of Nanocrystalline Hydroxyapatite; and (5) Room Temperature Creep Compliancemore » of Bulk Kel-E.« less

  2. Intriguing Freshmen with Materials Science.

    ERIC Educational Resources Information Center

    Pond, Robert B., Sr.

    Described is a course designed for engineering science and natural science freshmen and open to upperclass nonscience majors entitled "Science of Modern Materials" and which has been successfully presented for several years. This paper presents the philosophy behind the course, the teaching methods employed, and the content of the course. The…

  3. [Research Conducted at the Institute for Computer Applications in Science and Engineering for the Period October 1, 1999 through March 31, 2000

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, computer science, fluid mechanics, and structures and materials during the period October 1, 1999 through March 31, 2000.

  4. International Conference of Applied Science and Technology for Infrastructure Engineering

    NASA Astrophysics Data System (ADS)

    Elvina Santoso, Shelvy; Hardianto, Ekky

    2017-11-01

    Preface: International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017. The International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017 has been scheduled and successfully taken place at Swiss-Bell Inn Hotel, Surabaya, Indonesia, on August 5th 2017 organized by Department of Civil Infrastructure Engineering, Faculty of Vocation, Institut Teknologi Sepuluh Nopember (ITS). This annual event aims to create synergies between government, private sectors; employers; practitioners; and academics. This conference has different theme each year and “MATERIAL FOR INFRASTUCTURE ENGINEERING” will be taken for this year’s main theme. In addition, we also provide a platform for various other sub-theme topic including but not limited to Geopolymer Concrete and Materials Technology, Structural Dynamics, Engineering, and Sustainability, Seismic Design and Control of Structural Vibrations, Innovative and Green Buildings, Project Management, Transportation and Highway Engineering, Geotechnical Engineering, Water Engineering and Resources Management, Surveying and Geospatial Engineering, Coastal Engineering, Geophysics, Energy, Electronic and Mechatronic, Industrial Process, and Data Mining. List of Organizers, Journal Editors, Steering Committee, International Scientific Committee, Chairman, Keynote Speakers are available in this pdf.

  5. ELECTRICAL SCIENCE COURSE FOR ENGINEERING COLLEGE SOPHOMORES, DEVELOPMENT OF AN INTEGRATED PROGRAM UTILIZING A BROAD RANGE OF MATERIALS. FINAL REPORT.

    ERIC Educational Resources Information Center

    BALABANIAN, NORMAN; LEPAGE, WILBUR R.

    THIS INSTRUCTIONAL PROGRAM, A ONE-YEAR COURSE IN ELECTRICAL ENGINEERING SEEKS TO REMEDY LONG-STANDING INADEQUACIES IN AMERICAN ENGINEERING EDUCATION, WHICH HAVE EXISTED BECAUSE ENGINEERING TEACHERS' HAVE LACKED AWARENESS OF (1) INTRICACIES OF THE LEARNING PROCESS, AND (2) ADVANCES IN BEHAVIORAL SCIENCE RELATED TO THE EDUCATIONAL PROCESS. IN THE…

  6. National Educators' Workshop. Update 92: Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler); Craig, Douglas F. (Compiler)

    1993-01-01

    This document contains a collection of experiments presented and demonstrated at the workshop. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  7. Research and technology at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Cryogenic engineering, hypergolic engineering, hazardous warning, structures and mechanics, computer sciences, communications, meteorology, technology applications, safety engineering, materials analysis, biomedicine, and engineering management and training aids research are reviewed.

  8. How Much Is Enough? Examining Computer Science and Civil Engineering Citation Data to Inform Collection Development and Retention Decisions in Three Large Canadian University Libraries

    ERIC Educational Resources Information Center

    Spence, Michelle; Mawhinney, Tara; Barsky, Eugene

    2012-01-01

    Science and engineering libraries have an important role to play in preserving the intellectual content in research areas of the departments they serve. This study employs bibliographic data from the Web of Science database to examine how much research material is required to cover 90% of faculty citations in civil engineering and computer…

  9. Collaborations in a Community of Practice Working to Integrate Engineering Design in Elementary Science Education

    ERIC Educational Resources Information Center

    Lehman, James D.; Kim, WooRi; Harris, Constance

    2014-01-01

    The new standards for K-12 science education in the United States call for science teachers to integrate engineering concepts and practices within their science teaching in order to improve student learning. To accomplish this, teachers need appropriate instructional materials as well as the knowledge and skills to effectively use them. This mixed…

  10. International Conference on Applied Sciences (ICAS2013)

    NASA Astrophysics Data System (ADS)

    Lemle, Ludovic Dan; Jiang, Yiwen

    2014-03-01

    The International Conference on Applied Sciences (ICAS2013) took place in Wuhan, P R China from 26-27 October 2013 at the Military Economics Academy. The conference is regularly organized, alternately in Romania and in P R China, by ''Politehnica'' University of Timişoara, Romania, and Military Economics Academy of Wuhan, P R China, with the aim to serve as a platform for the exchange of information between various areas of applied sciences, and to promote the communication between the scientists of different nations, countries and continents. The conference has been organized for the first time in 15-16 June 2012 at the Engineering Faculty of Hunedoara, Romania. The topics of the conference covered a comprehensive spectrum of issues: Economical sciences Engineering sciences Fundamental sciences Medical sciences The conference gathered qualified researchers whose expertise can be used to develop new engineering knowledge that has applicability potential in economics, defense, medicine, etc. The number of registered participants was nearly 90 from 5 countries. During the two days of the conference 4 invited and 36 oral talks were delivered. A few of the speakers deserve a special mention: Mircea Octavian Popoviciu, Academy of Romanian Scientist — Timişoara Branch, Correlations between mechanical properties and cavitation erosion resistance for stainless steels with 12% chromium and variable contents of nickel; Carmen Eleonora Hărău, ''Politehnica'' University of Timişoara, SWOT analysis of Romania's integration in EU; Ding Hui, Military Economics Academy of Wuhan, Design and engineering analysis of material procurement mobile operation platform; Serban Rosu, University of Medicine and Pharmacy ''Victor Babeş'' Timişoara, Cervical and facial infections — a real life threat, among others. Based on the work presented at the conference, 14 selected papers are included in this volume of IOP Conference Series: Materials Science and Engineering. These papers present new researches in the various fields of materials engineering, mechanical engineering, computers engineering, mathematical engineering and clinical engineering. It's our great pleasure to present this volume of IOP Conference Series: Materials Science and Engineering to the scientific community to promote further researches in these areas. We sincerely hope that the papers published in this volume will contribute to the advancement of knowledge in the respective fields. All papers published in this volume of IOP Conference Series: Materials Science and Engineering (MSE) have been peer reviewed through processes administered by the editors of the ICAS2013 proceedings, Ludovic Dan Lemle and Yiwen Jiang. Special thanks should be directed to the organizing committee for their tremendous efforts in organizing the conference: General Chair Zhou Laixin, Military Economics Academy of Wuhan Co-chairs Du Qifa, Military Economics Academy of Wuhan Serban Viorel-Aurel, ''Politehnica'' University of Timişoara Fen Youmei, Wuhan University Lin Pinghua, Huazhong University of Science and Technology Members Lin Darong, Military Economics Academy of Wuhan Guo Zhonghou, Military Economics Academy of Wuhan Sun Honghong, Military Economics Academy of Wuhan Liu Dong, Military Economics Academy of Wuhan We thank the authors for their contributions and we would also like to express our gratitude everyone who contributed to this conference, especially for the generous support of the sponsor: micromega S C Micro-Mega HD S A Ludovic Dan Lemle and Yiwen Jiang Coordinators of the Scientific Committee of ICAS2013 Deatails of organizers and members of the scientific commmittee are available in the PDF

  11. Materials science and architecture

    NASA Astrophysics Data System (ADS)

    Bechthold, Martin; Weaver, James C.

    2017-12-01

    Materiality — the use of various materials in architecture — has been fundamental to the design and construction of buildings, and materials science has traditionally responded to needs formulated by design, engineering and construction professionals. Material properties and processes are shaping buildings and influencing how they perform. The advent of technologies such as digital fabrication, robotics and 3D printing have not only accelerated the development of new construction solutions, but have also led to a renewed interest in materials as a catalyst for novel architectural design. In parallel, materials science has transformed from a field that explains materials to one that designs materials from the bottom up. The conflation of these two trends is giving rise to materials-based design research in which architects, engineers and materials scientists work as partners in the conception of new materials systems and their applications. This Review surveys this development for different material classes (wood, ceramics, metals, concrete, glass, synthetic composites and polymers), with an emphasis on recent trends and innovations.

  12. Nuclear Materials Science

    NASA Astrophysics Data System (ADS)

    Whittle, Karl

    2016-06-01

    Concerns around global warming have led to a nuclear renaissance in many countries, meanwhile the nuclear industry is warning already of a need to train more nuclear engineers and scientists, who are needed in a range of areas from healthcare and radiation detection to space exploration and advanced materials as well as for the nuclear power industry. Here Karl Whittle provides a solid overview of the intersection of nuclear engineering and materials science at a level approachable by advanced students from materials, engineering and physics. The text explains the unique aspects needed in the design and implementation of materials for use in demanding nuclear settings. In addition to material properties and their interaction with radiation the book covers a range of topics including reactor design, fuels, fusion, future technologies and lessons learned from past incidents. Accompanied by problems, videos and teaching aids the book is suitable for a course text in nuclear materials and a reference for those already working in the field.

  13. 2004 research briefs :Materials and Process Sciences Center.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-sciencemore » base has on the ultimate success of the NW program and the overall DOE technology portfolio.« less

  14. Corrosion science, corrosion engineering, and advanced technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latanision, R.M.

    1995-04-01

    Professor R.M. Latanision was the 1994 recipient of the Willis Rodney Whitney Award sponsored by NACE International. The present work is taken from his award lecture at CORROSION/94 held in March 1994 in Baltimore, MD. Latanision discussed the interplay between corrosion science and corrosion engineering in advancing technology. His lecture focused on supercritical water oxidation and other technologies that have been under study in the H.H. Uhlig Corrosion Laboratory and in which the chemical properties of new materials and traditional materials have proven integral to the development of contemporary or advanced engineering systems.

  15. Biomaterials for Bone Regenerative Engineering.

    PubMed

    Yu, Xiaohua; Tang, Xiaoyan; Gohil, Shalini V; Laurencin, Cato T

    2015-06-24

    Strategies for bone tissue regeneration have been continuously evolving for the last 25 years since the introduction of the "tissue engineering" concept. The convergence of the life, physical, and engineering sciences has brought in several advanced technologies available to tissue engineers and scientists. This resulted in the creation of a new multidisciplinary field termed as "regenerative engineering". In this article, the role of biomaterials in bone regenerative engineering is systematically reviewed to elucidate the new design criteria for the next generation of biomaterials for bone regenerative engineering. The exemplary design of biomaterials harnessing various materials characteristics towards successful bone defect repair and regeneration is highlighted. Particular attention is given to the attempts of incorporating advanced materials science, stem cell technologies, and developmental biology into biomaterials design to engineer and develop the next generation bone grafts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. National Educators' Workshop: Update 95. Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A.; Karnitz, Michael A.

    1996-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 95. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  17. National Educators' Workshop: Update 1994. Standard experiments in engineering materials science and technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler); Fraker, Anna C. (Compiler)

    1995-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 94. The experiments relate to the nature and properties of engineering materials and provide information to assist in teaching about materials in the education community.

  18. Machine learning and data science in soft materials engineering

    NASA Astrophysics Data System (ADS)

    Ferguson, Andrew L.

    2018-01-01

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by ‘de-jargonizing’ data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  19. Machine learning and data science in soft materials engineering.

    PubMed

    Ferguson, Andrew L

    2018-01-31

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by 'de-jargonizing' data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  20. Advanced Industrial Materials (AIM) fellowship program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCleary, D.D.

    1997-04-01

    The Advanced Industrial Materials (AIM) Program administers a Graduate Fellowship Program focused toward helping students who are currently under represented in the nation`s pool of scientists and engineers, enter and complete advanced degree programs. The objectives of the program are to: (1) establish and maintain cooperative linkages between DOE and professors at universities with graduate programs leading toward degrees or with degree options in Materials Science, Materials Engineering, Metallurgical Engineering, and Ceramic Engineering, the disciplines most closely related to the AIM Program at Oak Ridge National Laboratory (ORNL); (2) strengthen the capabilities and increase the level of participation of currentlymore » under represented groups in master`s degree programs, and (3) offer graduate students an opportunity for practical research experience related to their thesis topic through the three-month research assignment or practicum at ORNL. The program is administered by the Oak Ridge Institute for Science and Education (ORISE).« less

  1. Integrating Engineering into Delaware's K-5 Classrooms: A Study of Pedagogical and Curricular Resources

    ERIC Educational Resources Information Center

    Grusenmeyer, Linda Huey

    2017-01-01

    This study examines the personal and curricular resources available to Delaware's elementary teachers during a time of innovative curriculum change, i.e., their knowledge, goals and beliefs regarding elementary engineering curriculum and the pedagogical support to teach two Science and Engineering Practices provided by science teaching materials.…

  2. Biodegradable Microfluidic Scaffolds for Vascular Tissue Engineering

    DTIC Science & Technology

    2005-01-01

    Engineering DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Materials Research...Society Symposium Proceedings. Volume 845, 2005. Nanoscale Materials Science in Biology and Medicine, Held in Boston, MA on 28 November-2 December 2004...Symp. Proc. Vol. 845 © 2005 Materials Research Society AA1.6 Biodegradable Microfluidic Scaffolds for Vascular Tissue Engineering C. J. Bettinger" 3

  3. Materials engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramley, A.N.

    1985-01-01

    This book presents the Proceedings of the Second Materials Engineering Conference. This valuable collection of papers deal with the awareness, creative use, economics, reliability, selection, design, testing and warranty of materials. The papers address topics of both immediate and lasting industrial importance at a readily assimilated level and contain information which will lead speedily to improvements in industrial practice. Topics considered include recent developments in the science and technology of high modulus polymers; computer aided design of advanced composites; a systematic approach to materials testing in metal forming; new cold working tool steels; friction surfacing and its applications; fatigue lifemore » assessment and materials engineering; alternative materials for internal combustion engines; adhesives and the engineer; thermoplastic bearings; engineering applications of ZA alloys; and utility and complexity in the selection of polymeric materials.« less

  4. NAS Decadal Review Town Hall

    NASA Astrophysics Data System (ADS)

    The National Academies of Sciences, Engineering and Medicine is seeking community input for a study on the future of materials research (MR). Frontiers of Materials Research: A Decadal Survey will look at defining the frontiers of materials research ranging from traditional materials science and engineering to condensed matter physics. Please join members of the study committee for a town hall to discuss future directions for materials research in the United States in the context of worldwide efforts. In particular, input on the following topics will be of great value: progress, achievements, and principal changes in the R&D landscape over the past decade; identification of key MR areas that have major scientific gaps or offer promising investment opportunities from 2020-2030; and the challenges that MR may face over the next decade and how those challenges might be addressed. This study was requested by the Department of Energy and the National Science Foundation. The National Academies will issue a report in 2018 that will offer guidance to federal agencies that support materials research, science policymakers, and researchers in materials research and other adjoining fields. Learn more about the study at http://nas.edu/materials.

  5. A Tutorial Design Process Applied to an Introductory Materials Engineering Course

    ERIC Educational Resources Information Center

    Rosenblatt, Rebecca; Heckler, Andrew F.; Flores, Katharine

    2013-01-01

    We apply a "tutorial design process", which has proven to be successful for a number of physics topics, to design curricular materials or "tutorials" aimed at improving student understanding of important concepts in a university-level introductory materials science and engineering course. The process involves the identification…

  6. Activities in Support of Two-Year College Science, Engineering, Technology, and Mathematics Education, Fiscal Year 1993. Highlights.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Directorate for Education and Human Resources.

    This report describes the efforts of the National Science Foundation (NSF) and its Division of Undergraduate Education (DUE) to provide educational support to two-year colleges to strengthen science, technology, engineering, and mathematics programs through grants, collaborative efforts, and support for curriculum materials and teacher activities.…

  7. A Course for Engineering and Science Students

    ERIC Educational Resources Information Center

    Companion, A.; Schug, K.

    1973-01-01

    Discusses the features of a course which emphasizes training of scientists and engineers with broad interdisciplinary knowledge in addition to those with a highly specialized professional preparation. Included is a list of books relating to applications of materials science concepts in general chemistry. (CC)

  8. Diode-pumped laser performance of Tm:Sc2SiO5 crystal at 1971 nm

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Zheng, Li-He; Wang, Qing-Guo; Liu, Jun-Fang; Su, Liang-Bi; Tang, Hui-Li; Liu, Jie; Fan, Xiu-Wei; Wu, Feng; Luo, Ping; Zhao, Heng-Yu; Shi, Jiao-Jiao; He, Nuo-Tian; Li, Na; Li, Qiu; Guo, Chao; Xu, Xiao-Dong; Wang, Zhan-Shan; Xu, Jun

    2017-08-01

    Not Available Project supported by the Shanghai Municipal Engineering Research Center for Sapphire Crystals, China (Grant No. 14DZ2252500), the Fund of Key Laboratory of Optoelectronic Materials Chemistry and Physics, Chinese Academy of Sciences (Grant No. 2008DP17301), the Fundamental Research Funds for the Central Universities, the National Natural Science Foundation of China and the China Academy of Engineering Physics Joint Fund (Grant No. U1530152), the National Natural Science Foundation of China (Grant Nos. 61475177 and 61621001), the Shanghai Municipal Natural Science Foundation, China (Grant No. 13ZR1446100), and the MDE Key Laboratory of Advanced Micro-Structured Materials.

  9. Integrating Engineering into Delaware's K-5 Classrooms: A Study of Pedagogical and Curricular Resources

    NASA Astrophysics Data System (ADS)

    Grusenmeyer, Linda Huey

    This study examines the personal and curricular resources available to Delaware's elementary teachers during a time of innovative curriculum change, i.e., their knowledge, goals and beliefs regarding elementary engineering curriculum and the pedagogical support to teach two Science and Engineering Practices provided by science teaching materials. Delaware was at the forefront of K-12 STEM movement, first to adopt statewide elementary curriculum materials to complement existing science units, and one of the first to adopt the new science standards--Next Generation Science Standards. What supports were available to teachers as they adapted and adopted this new curriculum? To investigate this question, I examined (1) teachers' beliefs about engineering and the engineering curriculum, and (2) the pedagogical supports available to teachers in selected science and engineering curriculum. Teachers' knowledge, goals, and beliefs regarding Delaware's adoption of new elementary engineering curriculum were surveyed using an adapted version of the Design, Engineering, and Technology Survey (Hong, Purser, & Gardella, 2011; Yaser, Baker, Carpius, Krauss, & Roberts, 2006). Also, three open ended questions sought to reveal deeper understanding of teacher knowledge and understanding of engineering; their concerns about personal and systemic resources related to the new curriculum, its logistics, and feasibility; and their beliefs about the potential positive impact presented by the engineering education initiative. Teacher concerns were analyzed using the Concerns-Based Adoption Model (Hall & Hord, 2010). Lay understandings of engineering were analyzed by contrasting naive representations of engineering with three key characteristics of engineering adapted from an earlier study (Capobianco Diefes-Dux, Mena, & Weller, 2011). Survey findings for teachers who had attended training and those who have not yet attended professional development in the new curriculum were compared with few notable differences. Almost all elementary teacher respondents were familiar with engineering and able to define it using one or more key characteristics. They valued the inclusion of engineering in the elementary curriculum; however trained and untrained teachers reported they were not confident about teaching it and were unaware of the new standards related to engineering. Teachers saw potential advantages or benefits of the new curriculum as helping improve science and math understanding, an opportunity to increase vocational awareness, and engaging students and motivating them to learn. Most teachers saw similar barriers to implementation- lack of teacher knowledge, lack of time to learn about engineering and how to teach engineering, and lack of administrative support. Almost all were open to additional in-service training to learn more about this new curriculum. Three fifth grade science units were examined for evidence of teacher pedagogical support in teaching two Science and Engineering Practices (SEP) advocated by the Next Generation Science Standards. An analytic framework was developed based upon two NGSS SEPs: Asking questions, defining problems and Engaging in argument from evidence. Findings revealed that the kits varied greatly in their pedagogical approaches to the two SEPs and differences might be explained by each kit's underlying orientations to the teaching-learning process. Findings from these investigations have implications for the design of professional development and for engineering curricula. They highlight the importance of considering teacher beliefs about curriculum implementation and subject matter, as well as the importance of creating curriculum materials that focus teacher attention toward student thinking and the language rich science and engineering practices. Recommendations also include ongoing professional development to allow teachers time to try out and revise pedagogical routines that support the SEPs studied here.

  10. Stationary Engineering, Environmental Control, Refrigeration. Science Manual I.

    ERIC Educational Resources Information Center

    Steingress, Frederick M.; And Others

    The student materials present lessons about occupations related to environmental control, stationary engineering, and refrigeration. Included are 18 units organized by objective, information, reference, procedure, and assignment. Each lesson involves concrete trade experience where science is applied. Unit titles are: safety and housekeeping,…

  11. Fifth Graders' Learning about Simple Machines through Engineering Design-Based Instruction Using LEGO™ Materials

    ERIC Educational Resources Information Center

    Marulcu, Ismail; Barnett, Mike

    2013-01-01

    This study is part of a 5-year National Science Foundation-funded project, Transforming Elementary Science Learning Through LEGO™ Engineering Design. In this study, we report on the successes and challenges of implementing an engineering design-based and LEGO™-oriented unit in an urban classroom setting and we focus on the impact of the unit on…

  12. Colour and Optical Properties of Materials: An Exploration of the Relationship Between Light, the Optical Properties of Materials and Colour

    NASA Astrophysics Data System (ADS)

    Tilley, Richard J. D.

    2003-05-01

    Colour is an important and integral part of everyday life, and an understanding and knowledge of the scientific principles behind colour, with its many applications and uses, is becoming increasingly important to a wide range of academic disciplines, from physical, medical and biological sciences through to the arts. Colour and the Optical Properties of Materials carefully introduces the science behind the subject, along with many modern and cutting-edge applications, chose to appeal to today's students. For science students, it provides a broad introduction to the subject and the many applications of colour. To more applied students, such as engineering and arts students, it provides the essential scientific background to colour and the many applications. Features: * Introduces the science behind the subject whilst closely connecting it to modern applications, such as colour displays, optical amplifiers and colour centre lasers * Richly illustrated with full-colour plates * Includes many worked examples, along with problems and exercises at the end of each chapter and selected answers at the back of the book * A Web site, including additional problems and full solutions to all the problems, which may be accessed at: www.cardiff.ac.uk/uwcc/engin/staff/rdjt/colour Written for students taking an introductory course in colour in a wide range of disciplines such as physics, chemistry, engineering, materials science, computer science, design, photography, architecture and textiles.

  13. Physics Education in a Multidisciplinary Materials Research Environment

    NASA Astrophysics Data System (ADS)

    Doyle, W. D.

    1997-03-01

    The MINT Center, an NSF Materials Research Science and Engineering Center, is a multidisciplinary research program focusing on materials information storage. It involves 17 faculty, 10 post-doctoral fellows and 25 graduate students from six academic programs including Physics, Chemistry, Materials Science, Metallurgical and Materials Engineering, Electric al Engineering and Chemical Engineering, whose research is supported by university, federal and industrial funds. The research facilities (15,000 ft^2) which include faculty and student offices are located in one building and are maintained by the university and the Center at no cost to participating faculty. The academic requirements for the students are determined by the individual departments along relatively rigid, traditional grounds although several materials and device courses are offered for students from all departments. Within the Center, participants work in teams assigning responsibilities and sharing results at regularly scheduled meetings. Bi-weekly research seminars for all participants provide excellent opportunities for students to improve their communication skills and to receive critical input from a large, diverse audience. Strong collaboration with industrial partners in the storage industry supported by workshops, research reviews, internships, industrial visitors and participation in industry consortia give students a broader criteria for self-evaluation, higher motivation and excellent career opportunities. Physics students, because of their rigorous basic training, are an important element in a strong materials sciences program, but they often are deficient in the behavior and characterization of real materials. The curriculum for physics students should be broadened to prepare them fully for a rewarding career in this emerging discipline.

  14. Flexible 2D RF Nanoelectronics based on Layered Semiconductor Transistor (NBIT III)

    DTIC Science & Technology

    2016-11-11

    Experimental and computational studies in multidisciplinary fields of electrical, mechanical engineering , and materials science were conducted to achieve...plan for this project. Experimental and computational studies in multidisciplinary fields of electrical, mechanical engineering , and materials...electrostatic or physisorption gating, defect engineering , and substitutional doping during the growth. These methods result in uniform doping or composition

  15. US Army Research Office research in progress, July 1, 1991--June 30, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-31

    The US Army Research Office, under the US Army Materiel Command (AMC), is responsible for coordinating and supporting research in the physical and engineering sciences, in materials science, geosciences, biology, and mathematics. This report describes research directly supported by the Army Research Projects Agency, and several AMC and other Army commands. A separate section is devoted to the research program at the US Army Research, Development and Standardization Group - United Kingdom. The present volume includes the research program in physics, chemistry, biological sciences, mathematics, engineering sciences, metallurgy and materials science, geosciences, electronics, and the European Research Program. It coversmore » the 12-month period from 1 July 1991 through 30 June 1992.« less

  16. 75 FR 34769 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463 as amended), the National Science Foundation announces the following meeting: Name: Site Visit review of the Nanoscale Science and Engineering Center (NSEC) at the University of...

  17. Ethnic Diversity in Materials Science and Engineering. A report on the workshop on ethnic diversity in materials science and engineering.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Justin

    The immediate goal of the workshop was to elevate and identify issues and challenges that have impeded participation of diverse individuals in MSE. The longerterm goals are to continue forward by gathering and disseminating data, launching and tracking initiatives to mitigate the impediments, and increase the number of diverse individuals pursuing degrees and careers in MSE. The larger goal, however, is to create over time an ever-increasing number of role models in science fields who will, in turn, draw others in to contribute to the workforce of the future.

  18. NASA Tech Briefs, March 1993. Volume 17, No. 3

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Topics include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;

  19. In Brief: Suresh confirmed as new head of U.S. National Science Foundation

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-10-01

    On 29 September, the U.S. Senate unanimously confirmed Subra Suresh to be the new director of the U.S. National Science Foundation (NSF) for a 6-year term. Suresh, nominated for the position by U.S. president Barack Obama on 8 June, could be sworn in by mid-October. Suresh has been dean of the School of Engineering and the Vannevar Bush Professor of Engineering at Massachusetts Institute of Technology, Cambridge. His work as a researcher, educator, and academic administrator has spanned a number of disciplines including mechanical engineering, materials science, and biomedical engineering.

  20. 76 FR 74040 - Emerging Technology and Research Advisory Committee (ETRAC): Notice of Recruitment of Private...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-30

    ...-manufacturing activity in biological sciences (particularly bio electronics and synthetic biology), chemical engineering, directed energy, materials, space technologies (including satellite systems). The purpose of this... science and engineering to conduct a ``zero- based'' annual review of the list of technologies on the CCL...

  1. Material Stream Strategy for Lithium and Inorganics (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safarik, Douglas Joseph; Dunn, Paul Stanton; Korzekwa, Deniece Rochelle

    Design Agency Responsibilities: Manufacturing Support to meet Stockpile Stewardship goals for maintaining the nuclear stockpile through experimental and predictive modeling capability. Development and maintenance of Manufacturing Science expertise to assess material specifications and performance boundaries, and their relationship to processing parameters. Production Engineering Evaluations with competence in design requirements, material specifications, and manufacturing controls. Maintenance and enhancement of Aging Science expertise to support Stockpile Stewardship predictive science capability.

  2. General Atomics Sciences Education Foundation Outreach Programs

    NASA Astrophysics Data System (ADS)

    Winter, Patricia S.

    1997-11-01

    Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].

  3. The Potential of Genetic Engineering in Agriculture to Affect Global Stability

    DTIC Science & Technology

    2013-04-17

    manipulation in agriculture is thousands of years old, dating back to man’s first efforts of plant domestication. Over the last 200 years, and especially the...engineering.” In agriculture, genetic engineering describes the science of manipulating the genetic material (DNA) of plants by adding or taking...nature run its course. This paper does not delve into the science or even the raging safety debate over the use of genetic engineering in plants that

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornreich, Drew E; Vaidya, Rajendra U; Ammerman, Curtt N

    Integrated Computational Materials Engineering (ICME) is a novel overarching approach to bridge length and time scales in computational materials science and engineering. This approach integrates all elements of multi-scale modeling (including various empirical and science-based models) with materials informatics to provide users the opportunity to tailor material selections based on stringent application needs. Typically, materials engineering has focused on structural requirements (stress, strain, modulus, fracture toughness etc.) while multi-scale modeling has been science focused (mechanical threshold strength model, grain-size models, solid-solution strengthening models etc.). Materials informatics (mechanical property inventories) on the other hand, is extensively data focused. All of thesemore » elements are combined within the framework of ICME to create architecture for the development, selection and design new composite materials for challenging environments. We propose development of the foundations for applying ICME to composite materials development for nuclear and high-radiation environments (including nuclear-fusion energy reactors, nuclear-fission reactors, and accelerators). We expect to combine all elements of current material models (including thermo-mechanical and finite-element models) into the ICME framework. This will be accomplished through the use of a various mathematical modeling constructs. These constructs will allow the integration of constituent models, which in tum would allow us to use the adaptive strengths of using a combinatorial scheme (fabrication and computational) for creating new composite materials. A sample problem where these concepts are used is provided in this summary.« less

  5. Five experiments in materials science for less than $10.00

    NASA Technical Reports Server (NTRS)

    Spiegel, F. Xavier

    1992-01-01

    Diffusion, twinning, fatigue, acoustic emission, and aging can be studied using readily available materials and the household oven. Each experiment can be expanded to a more extensive investigation of the properties of the material investigated, as well as other materials, and offers an opportunity for the student to learn about the relationship between engineering, science, society, and politics.

  6. EPA at the National Science Teachers Association STEM Forum

    EPA Pesticide Factsheets

    EPA staff will be sharing educational resources, materials, information and STEM (Science, Technology, Engineering, and Mathematics) hands-on activities at the National Science Teachers Association's STEM Forum in Philadelphia, PA

  7. NASA Tech Briefs, October 1993. Volume 17, No. 10

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Topics include: Sensors; esign and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.

  8. National Educators' Workshop: Update 1991. Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler); Stiegler, James O. (Compiler)

    1992-01-01

    Given here is a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 91, held at the Oak Ridge National Laboratory on November 12-14, 1991. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  9. National Educators' Workshop: Update 1997. Standard Experiments in Engineering Materials, Science, and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Freeman, Ginger L. (Compiler); Jacobs, James A. (Compiler); Miller, Alan G. (Compiler); Smith, Brian W. (Compiler)

    1998-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 97, held at Boeing Commercial Airplane Group, Seattle, Washington, on November 2-5, 1997. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  10. Involving scientists in public and pre-college education at Princeton University

    NASA Astrophysics Data System (ADS)

    Steinberg, D. J.

    2011-12-01

    The Princeton Center for Complex Materials (PCCM) is a National Science Foundation (NSF) funded Materials Research Science and Engineering Center (MRSEC). As a MRSEC, it is part of the PCCM's mission to inspire and educate school children, teachers and the public about STEM and materials science. Research shows that it is critical to excite students at a young age and maintain that excitement, and without that these students are two to three times less likely to have any interest in science and engineering and pursue science careers as adults. We conduct over a dozen different education programs at Princeton University, in which scientists and engineers are directly involved with students, teachers and the public. As an ongoing MRSEC education and outreach program, we have developed many successful educational partnerships to increase our impact. The scientists and engineers who participate in our programs are leading experts in their research field and excellent communicators to their peers. They are not experts in precollege pedagogy or in communication to the public. Scientists often require some preparation in order to have the greatest chance of success. The amount and type of professional development required for these scientists to succeed in education programs depends on many factors. These include the age of the audience, the type of interaction, and the time involved. Also different researchers require different amount of help, advice, and training. Multiple education programs that involve Princeton University researchers will be discussed here. We will focus on what has worked best when preparing scientists and engineers for involvement in education programs. The Princeton University Materials Academy (PUMA) is a three week total immersion in science for minority high school students involving many faculty and their research groups. Our Making Stuff day reaches 100's of middle school students in which faculty interact directly with students and teachers at activity tables give auditorium presentations. Teacher development programs and holiday lectures will be highlighted as well.

  11. An atom is known by the company it keeps: Content, representation and pedagogy within the epistemic revolution of the complexity sciences

    NASA Astrophysics Data System (ADS)

    Blikstein, Paulo

    The goal of this dissertation is to explore relations between content, representation, and pedagogy, so as to understand the impact of the nascent field of complexity sciences on science, technology, engineering and mathematics (STEM) learning. Wilensky & Papert coined the term "structurations" to express the relationship between knowledge and its representational infrastructure. A change from one representational infrastructure to another they call a "restructuration." The complexity sciences have introduced a novel and powerful structuration: agent-based modeling. In contradistinction to traditional mathematical modeling, which relies on equational descriptions of macroscopic properties of systems, agent-based modeling focuses on a few archetypical micro-behaviors of "agents" to explain emergent macro-behaviors of the agent collective. Specifically, this dissertation is about a series of studies of undergraduate students' learning of materials science, in which two structurations are compared (equational and agent-based), consisting of both design research and empirical evaluation. I have designed MaterialSim, a constructionist suite of computer models, supporting materials and learning activities designed within the approach of agent-based modeling, and over four years conducted an empirical inves3 tigation of an undergraduate materials science course. The dissertation is comprised of three studies: Study 1 - diagnosis . I investigate current representational and pedagogical practices in engineering classrooms. Study 2 - laboratory studies. I investigate the cognition of students engaging in scientific inquiry through programming their own scientific models. Study 3 - classroom implementation. I investigate the characteristics, advantages, and trajectories of scientific content knowledge that is articulated in epistemic forms and representational infrastructures unique to complexity sciences, as well as the feasibility of the integration of constructionist, agent-based learning environments in engineering classrooms. Data sources include classroom observations, interviews, videotaped sessions of model-building, questionnaires, analysis of computer-generated logfiles, and quantitative and qualitative analysis of artifacts. Results shows that (1) current representational and pedagogical practices in engineering classrooms were not up to the challenge of the complex content being taught, (2) by building their own scientific models, students developed a deeper understanding of core scientific concepts, and learned how to better identify unifying principles and behaviors in materials science, and (3) programming computer models was feasible within a regular engineering classroom.

  12. R and T report: Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald A. (Editor)

    1993-01-01

    The 1993 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) flight projects; (2) space sciences including cosmology, high energy, stars and galaxies, and the solar system; (3) earth sciences including process modeling, hydrology/cryology, atmospheres, biosphere, and solid earth; (4) networks, planning, and information systems including support for mission operations, data distribution, advanced software and systems engineering, and planning/scheduling; and (5) engineering and materials including spacecraft systems, material and testing, optics and photonics and robotics.

  13. University of Maryland MRSEC - Research: Seed 1

    Science.gov Websites

    . University of Maryland Materials Research Science and Engineering Center Home About Us Leadership & Biochemistry Wolfgang Losert, Physics, IPST, IREAP Ben Shapiro, Bio-Engineering, Aerospace Engineering Edo Waks, Electrical & Computer Engineering, IREAP, JQI Creating specific functional patterns

  14. Engineering for Liberal Arts and Engineering Students.

    ERIC Educational Resources Information Center

    The Weaver, 1986

    1986-01-01

    Describes courses designed to develop approaches for teaching engineering concepts, applied mathematics and computing skills to liberal arts undergraduates, and to teach the history of scientific and technological innovation and application to engineering and science majors. Discusses courses, course materials, enrichment activities, and…

  15. Solid State Sciences Committee Forum

    DTIC Science & Technology

    1993-08-01

    Forum was provided by the Air Force Office of Scientific Research (AFOSR), the Department of Energy (DOE), and the National Science Foundation (NSF...Program in Materials Engineering Laboratory, NIST, and Science and Technology Chair, COMAT 1000 National Science Foundation William Harris, Asst

  16. First Look--The Aerospace Database.

    ERIC Educational Resources Information Center

    Kavanagh, Stephen K.; Miller, Jay G.

    1986-01-01

    Presents overview prepared by producer of database newly available in 1985 that covers 10 subject categories: engineering, geosciences, chemistry and materials, space sciences, aeronautics, astronautics, mathematical and computer sciences, physics, social sciences, and life sciences. Database development, unique features, document delivery, sample…

  17. [Activities of Institute for Computer Applications in Science and Engineering (ICASE)

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    This report summarizes research conducted at ICASE in applied mathematics, fluid mechanics, computer science, and structures and material sciences during the period April 1, 2000 through September 30, 2000.

  18. NASA Tech Briefs, March 1994. Volume 18, No. 3

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Topics include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports

  19. NASA Tech Briefs, March 2000. Volume 24, No. 3

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Topics include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.

  20. NASA Tech Briefs, March 1997. Volume 21, No. 3

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Topics: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.

  1. Determining the Scope of Collection Development and Research Assistance for Cross-Disciplinary Areas: A Case Study of Two Contrasting Areas, Nanotechnology and Transportation Engineering

    ERIC Educational Resources Information Center

    Williamson, Jeanine M.; Han, Lee D.; Colon-Aguirre, Monica

    2009-01-01

    The study examined the extent of cross-disciplinarity in nanotechnology and transportation engineering research. Researchers in these two fields were determined from the web sites of the U.S. News and World Report top 100 schools in civil engineering and materials science. Web of Science searches for 2006 and 2007 articles were obtained and the…

  2. Library Research Handbook for Faculty and Graduate Students at the College of Engineering. A Selective Guide to Engineering Reference Materials at the Library of Science & Medicine.

    ERIC Educational Resources Information Center

    Wu, Connie

    This handbook identifies the major reference sources for various engineering fields at the Library of Science and Medicine (LSM) at Rutgers University. The resources are divided into 15 categories and provide full call numbers and locations for every title. These categories include: (1) Card Catalog and Online Catalog; (2) Guide to the Literature…

  3. Research and technology, 1984 report

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Research and technology projects in the following areas are described: cryogenic engineering, hypergolic engineering, hazardous warning instrumentation, structures and mechanics, sensors and controls, computer sciences, communications, material analysis, biomedicine, meteorology, engineering management, logistics, training and maintenance aids, and technology applications.

  4. Enhancing Student Learning in Food Engineering Using Computational Fluid Dynamics Simulations

    ERIC Educational Resources Information Center

    Wong, Shin Y.; Connelly, Robin K.; Hartel, Richard W.

    2010-01-01

    The current generation of students coming into food science and engineering programs is very visually oriented from their early experiences. To increase their interest in learning, new and visually appealing teaching materials need to be developed. Two diverse groups of students may be identified based on their math skills. Food science students…

  5. Materials and Fabrication Methods II. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Lindberg, Andrew; Bay, Robert

    This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology with the objective of training technicians in the use of electronic instruments and their…

  6. Materials and Fabrication Methods I. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Lindberg, Andrew; And Others

    This study guide is part of a curriculum entitled Science and Engineering Technician (SET) Curriculum, a program of studies which integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology. The purpose of this national curriculum development project was to provide a framework for…

  7. Technical Education in 2-Year Colleges. HES Survey Number 17.

    ERIC Educational Resources Information Center

    Burton, Lawrence; Celebuski, Carin A.

    Based on a January 1993 survey of 347 two-year colleges nationwide, this report describes aspects of engineering technology and science technology education and training in the nation's two-year colleges. Following introductory materials, the first chapter estimates the number of colleges offering engineering and science programs, reviews types of…

  8. Computational materials science and engineering education: A survey of trends and needs

    NASA Astrophysics Data System (ADS)

    Thornton, K.; Nola, Samanthule; Edwin Garcia, R.; Asta, Mark; Olson, G. B.

    2009-10-01

    Results from a recent reassessment of the state of computational materials science and engineering (CMSE) education are reported. Surveys were distributed to the chairs and heads of materials programs, faculty members engaged in computational research, and employers of materials scientists and engineers, mainly in the United States. The data was compiled to assess current course offerings related to CMSE, the general climate for introducing computational methods in MSE curricula, and the requirements from the employers’ viewpoint. Furthermore, the available educational resources and their utilization by the community are examined. The surveys show a general support for integrating computational content into MSE education. However, they also reflect remaining issues with implementation, as well as a gap between the tools being taught in courses and those that are used by employers. Overall, the results suggest the necessity for a comprehensively developed vision and plans to further the integration of computational methods into MSE curricula.

  9. NASA Tech Briefs, July 1994. Volume 18, No. 7

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Topics covered include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports

  10. NASA Tech Briefs, October 1994. Volume 18, No. 10

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Topics: Data Acquisition and Analysis; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports

  11. National Educators' Workshop: Update 1989 Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler)

    1990-01-01

    Presented here is a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 89, held October 17 to 19, 1989 at the National Aeronautics and Space Administration, Hampton, Virginia. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  12. National Educators' Workshop: Update 1993. Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler)

    1994-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 93 held at the NASA Langley Research Center in Hampton, Virginia, on November 3-5, 1993. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  13. National Educators' Workshop: Update 1988. Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler)

    1990-01-01

    Presented here is a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 88, held May 10 to 12, 1988 at the National Institute of Standards and Technology (NIST), Gaithersberg, Maryland. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  14. Resource Materials for Nanoscale Science and Technology Education

    NASA Astrophysics Data System (ADS)

    Lisensky, George

    2006-12-01

    Nanotechnology and advanced materials examples can be used to explore science and engineering concepts, exhibiting the "wow" and potential of nanotechnology, introducing prospective scientists to key ideas, and educating a citizenry capable of making well-informed technology-driven decisions. For example, material syntheses an atomic layer at a time have already revolutionized lighting and display technologies and dramatically expanded hard drive storage capacities. Resource materials include kits, models, and demonstrations that explain scanning probe microscopy, x-ray diffraction, information storage, energy and light, carbon nanotubes, and solid-state structures. An online Video Lab Manual, where movies show each step of the experiment, illustrates more than a dozen laboratory experiments involving nanoscale science and technology. Examples that are useful at a variety of levels when instructors provide the context include preparation of self-assembled monolayers, liquid crystals, colloidal gold, ferrofluid nanoparticles, nickel nanowires, solar cells, electrochromic thin films, organic light emitting diodes, and quantum dots. These resources have been developed, refined and class tested at institutions working with the Materials Research Science and Engineering Center on Nanostructured Interfaces at the University of Wisconsin-Madison (http://mrsec.wisc.edu/nano).

  15. Poetry for physicists

    NASA Astrophysics Data System (ADS)

    Tobias, Sheila; Abel, Lynne S.

    1990-09-01

    In an effort to discover what makes the humanities difficult and unpopular with some science and engineering students, 14 Cornell faculty from the disciplines of chemistry, physics, applied mathematics, geology, materials science, and engineering were invited to become ``surrogate learners'' in a junior/senior level poetry seminar designed expressly for them. Their encounter with humanistic pedagogy and scholarship was meant to be an extension of ``Peer Perspectives on Science'' [see S. Tobias and R. R. Hake, ``Professors as physics students: What can they teach us?'' Am. J. Phys. 56, 786 (1988)]. The results challenge certain assumptions about differences between scholarship and pedagogy in the humanities and science (as regards ``certainty'' and models). But the experiment uncovered other problems that affect ``marketing'' the humanities to science and engineering students. Results are some additional insights into what makes science ``hard'' for humanities students and why physical science and engineering students have difficulty with and tend to avoid courses in literature, as well as into what can make humanities courses valuable for science students.

  16. Materials Data Science: Current Status and Future Outlook

    NASA Astrophysics Data System (ADS)

    Kalidindi, Surya R.; De Graef, Marc

    2015-07-01

    The field of materials science and engineering is on the cusp of a digital data revolution. After reviewing the nature of data science and Big Data, we discuss the features of materials data that distinguish them from data in other fields. We introduce the concept of process-structure-property (PSP) linkages and illustrate how the determination of PSPs is one of the main objectives of materials data science. Then we review a selection of materials databases, as well as important aspects of materials data management, such as storage hardware, archiving strategies, and data access strategies. We introduce the emerging field of materials data analytics, which focuses on data-driven approaches to extract and curate materials knowledge from available data sets. The critical need for materials e-collaboration platforms is highlighted, and we conclude the article with a number of suggestions regarding the near-term future of the materials data science field.

  17. Integrating ethics into technical courses: micro-insertion.

    PubMed

    Davis, Michael

    2006-10-01

    Perhaps the most common reason science and engineering faculty give for not including 'ethics' (that is, research ethics, engineering ethics, or some discussion of professional responsibility) in their technical classes is that 'there is no room'. This article 1) describes a technique ('micro-insertion') that introduces ethics (and related topics) into technical courses in small enough units not to push out technical material, 2) explains where this technique might fit into the larger undertaking of integrating ethics into the technical (scientific or engineering) curriculum, and 3) concludes with some quantified evidence (collected over more than a decade) suggesting success. Integrating ethics into science and engineering courses is largely a matter of providing context for what is already being taught, context that also makes the material already being taught seem 'more relevant'.

  18. Material experiments: Environment and engineering institutions in the early American republic.

    PubMed

    Johnson, Ann

    2009-01-01

    In nineteenth-century America, strength of materials, an engineering science, focused on empirical research that yielded practical tools about how to predict the behavior of a wide variety of materials engineers might encounter as they built the nation's infrastructure. This orientation toward "cookbook formulae" that could accommodate many different kinds of timber, stone, mortar, metals, and so on was specifically tailored for the American context, where engineers were peripatetic, materials diverse, and labor in short supply. But these methods also reflected deeper beliefs about the specialness of the landscape and the providential site of the American political experiment. As such, engineers' appreciation of natural bounty both emerged from and contributed to larger values about exceptionalism and the practical character of Americans.

  19. Institutional profile: the London Centre for Nanotechnology.

    PubMed

    Weston, David; Bontoux, Thierry

    2009-12-01

    Located in the London neighborhoods of Bloomsbury and South Kensington, the London Centre for Nanotechnology is a UK-based multidisciplinary research center that operates at the forefront of science and technology. It is a joint venture between two of the world's leading institutions, UCL and Imperial College London, uniting their strong capabilities in the disciplines that underpin nanotechnology: engineering, the physical sciences and biomedicine. The London Centre for Nanotechnology has a unique operating model that accesses and focuses the combined skills of the Departments of Chemistry, Physics, Materials, Medicine, Electrical and Electronic Engineering, Mechanical Engineering, Chemical Engineering, Biochemical Engineering and Earth Sciences across the two universities. It aims to provide the nanoscience and nanotechnology required to solve major problems in healthcare, information processing, energy and the environment.

  20. Carbon Nanotubes: Miracle of Materials Science?

    NASA Technical Reports Server (NTRS)

    Files, Bradley S.; Mayeaux, Brian M.

    1999-01-01

    Article to be sent to Advanced Materials and Processes, journal of ASM International, as attached. This is a news-type technical journal for a large organization of scientists, engineers, salesmen, and managers. The article is quite general, meant to be an introduction to the properties of nanotubes. This is a materials science organization, therefore the article is geared toward using nanotubes for materials uses. Pictures have not been included in this version.

  1. Aeronautical engineering: A continuing bibliography with indexes (supplement 280)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 647 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1991. Subject coverage includes: aerodynamics, air transportation safety, aircraft communication and navigation, aircraft design and performance, aircraft instrumentation, aircraft propulsion, aircraft stability and control, research facilities, astronautics, chemistry and materials, engineering, geosciences, computer sciences, physics, and social sciences.

  2. Applications of synchrotron radiation to materials science: Diffraction imaging (topography) and microradiography

    NASA Technical Reports Server (NTRS)

    Kuriyama, Masao

    1988-01-01

    Synchrotron radiation sources are now available throughout the world. The use of hard X-ray radiation from these sources for materials science is described with emphasis on diffraction imaging for material characterization. With the availability of synchrotron radiation, real-time in situ measurements of dynamic microstructural phenomena have been started. This is a new area where traditional application of X-rays has been superseded. Examples are chosen from limited areas and are by no means exhaustive. The new emerging information will, no doubt, have great impact on materials science and engineering.

  3. Material Science

    NASA Image and Video Library

    2003-01-22

    Dr. Richard Grugel, a materials scientist at NASA's Marshall Space Flight in Huntsville, Ala., examines the furnace used to conduct his Pore Formation and Mobility Investigation -- one of the first two materials science experiments to be conducted on the International Space Station. This experiment studies materials processes similar to those used to make components used in jet engines. Grugel's furnace was installed in the Microgravity Science Glovebox through the circular port on the side. In space, crewmembers are able to change out samples using the gloves on the front of the facility's work area.

  4. Development of Contextual Mathematics teaching Material integrated related sciences and realistic for students grade xi senior high school

    NASA Astrophysics Data System (ADS)

    Helma, H.; Mirna, M.; Edizon, E.

    2018-04-01

    Mathematics is often applied in physics, chemistry, economics, engineering, and others. Besides that, mathematics is also used in everyday life. Learning mathematics in school should be associated with other sciences and everyday life. In this way, the learning of mathematics is more realstic, interesting, and meaningful. Needs analysis shows that required contextual mathematics teaching materials integrated related sciences and realistic on learning mathematics. The purpose of research is to produce a valid and practical contextual mathematics teaching material integrated related sciences and realistic. This research is development research. The result of this research is a valid and practical contextual mathematics teaching material integrated related sciences and realistic produced

  5. NASA Tech Briefs, July 2000. Volume 24, No. 7

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Topics covered include: Data Acquisition; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Test and Measurement; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.

  6. Creating biological nanomaterials using synthetic biology.

    PubMed

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  7. Who Would Have Thought? The Story of a Food Engineer.

    PubMed

    Lund, Daryl B

    2017-02-28

    Food engineering is a hybrid of food science and an engineering science, like chemical engineering in my particular case, resulting in the application of chemical engineering principles to food systems and their constituents. With the complexity of food and food processing, one generally narrows his or her interests, and my primary interests were in the kinetics of reactions important in foods, thermal processing, deposition of unwanted materials from food onto heated surfaces (fouling), and microwave heat transfer in baking. This review describes how I developed an interest in these topics and the contributions I have hopefully made to understanding food and to the application of engineering.

  8. Tutorial: Magnetic resonance with nitrogen-vacancy centers in diamond—microwave engineering, materials science, and magnetometry

    NASA Astrophysics Data System (ADS)

    Abe, Eisuke; Sasaki, Kento

    2018-04-01

    This tutorial article provides a concise and pedagogical overview on negatively charged nitrogen-vacancy (NV) centers in diamond. The research on the NV centers has attracted enormous attention for its application to quantum sensing, encompassing the areas of not only physics and applied physics but also chemistry, biology, and life sciences. Nonetheless, its key technical aspects can be understood from the viewpoint of magnetic resonance. We focus on three facets of this ever-expanding research field, to which our viewpoint is especially relevant: microwave engineering, materials science, and magnetometry. In explaining these aspects, we provide a technical basis and up-to-date technologies for research on the NV centers.

  9. Advances in engineering science, volume 2

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Papers are presented dealing with structural dynamics; structural synthesis; and the nonlinear analysis of structures, structural members, and composite structures and materials. Applications of mathematics and computer science are included.

  10. Intensities and spectral features of the {}^{4}{\\rm{I}}_{13/2}-{}^{4}{\\rm{I}}_{15/2} potential laser transition of Er3+ centers in CaF2-CeF3 disordered crystal

    NASA Astrophysics Data System (ADS)

    Wang, Qing-Guo; Su, Liangbi; Liu, Jun-Fang; Liu, Bin; Wu, Feng; Luo, Ping; Zhao, Heng-Yu; Shi, Jiao-Jiao; Xue, Yan-Yan; Xu, Xiao-Dong; Ryba-Romanowski, Witold; Solarz, Piotr; Lisiecki, Radoslaw; Wang, Zhan-Shan; Tang, Hui-Li; Xu, Jun

    2017-10-01

    Not Available Project supported by Shanghai Engineering Research Center for Sapphire Crystals, China (Grant No. 14DZ2252500), the Fund of Key Laboratory of Optoelectronic Materials Chemistry and Physics Chinese Academy of Sciences (Grant No. 2008DP17301), the Fundamental Research Funds for the Central Universities of China, the National Natural Science Foundation of China and China Academy of Engineering Physics Joint Fund (Grant No. U1530152), the National Natural Science Foundation of China (Grant Nos. 61475177 and 61621001), the Natural Science Foundation of Shanghai Municiple, China (Grant No. 13ZR1446100), and the MOE Key Laboratory of Advanced Micro-Structured Materials of China.

  11. Acquire an Bruker Dimension FastScan (trademark) Atomic Force Microscope (AFM) for Materials, Physical and Biological Science Research and Education

    DTIC Science & Technology

    2016-04-14

    two super users, Drs. Biswajit Sannigrahi and Guangchang Zhou were trained by the Senior Engineer for Product Service, Dr. Teddy Huang from the... Engineering : The number of undergraduates funded by your agreement who graduated during this period and intend to work for the Department of Defense The...science, mathematics, engineering or technology fields: Student Metrics This section only applies to graduating undergraduates supported by this

  12. Tribology. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Havas, George D., Comp.

    Tribology is the science and technology of interacting surfaces in relative motion. It incorporates a number of scientific fields, including friction, wear, lubrication, materials science, and various branches of surface physics and surface chemistry. Tribology forms a vital part of engineering science. The interacting surfaces may be on machinery…

  13. NASA Tech Briefs, September 1999. Volume 23, No. 9

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Topics discussed include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences;

  14. Development and Application of a Methodology for Evaluating Type II expired Shelf Life Hazardous Material Generation in the United States Air Force

    DTIC Science & Technology

    1992-09-01

    Air Force Institute of Technology. EPA Perspective, Handout for ENV 022 - Pollution Prevention, 1992. 2. Chiras , Daniel D. Environmental Science : Action...Technology Air University In Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering and Environmental Management...4 August 1993. 19. Masters, Gilbert M. Introduction to Environmental Engineering and Science . Englewood Cliffs, NJ: Prentice Hall, 1991 20. Messenger

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview ofmore » the research and development program, program management, program funding, and Fiscal Year 1997 projects.« less

  16. An Introduction to Dynamic Systems and Feedback.

    ERIC Educational Resources Information Center

    Rabins, Michael J.

    This introduction to dynamic systems is intended for freshman and sophomore students in engineering, physical science, or social science. Material has been class tested and has led to increased student interest in further work in systems analysis and operations research. Notes are written for the student and are self-contained. Material can be…

  17. Hazards in the Solar System: Out-of-School Time Student Activities Focused on Engineering Protective Space Gloves

    NASA Astrophysics Data System (ADS)

    Vaughan, R. G.; Meyer, N.; Anderson, R. B.; Sokol, K.; Nolan, B.; Edgar, L. A.; Gaither, T. A.; Milazzo, M. P.; Clark, J.

    2017-12-01

    "In Good Hands: Engineering Space Gloves" is a new Engineering Adventures® curriculum unit created for students in grades 3-5 in out-of-school time programs. It was designed and created by the Engineering is Elementary® team at the Museum of Science in Boston, MA, in collaboration with subject matter experts at the USGS Astrogeology Science Center and teacher professional development experts at Northern Arizona University's Center for Science Teaching and Learning. As part of the NASA-funded PLANETS (Planetary Learning that Advances the Nexus of Engineering, Technology, and Science) project, the goals for this unit are to introduce students to some of the potential hazards that would be faced by astronauts exploring planetary bodies in the solar system, and to engage students in thinking about how to engineer solutions to these challenges. Potential human health hazards in planetary exploration include: little to no breathable oxygen, exposure to extreme temperatures and pressures, radiation, dusty or toxic environments, and/or high velocity debris. First, students experiment with gloves made of different materials to accomplish tasks like picking up paper clips, entering numbers on a calculator, and using simple tools, while also testing for insulating properties, protection from crushing forces, and resistance to dust contamination. Students explore the trade-offs between form and multiple desired functions, and gain an introduction to materials engineering. Students are then presented with three different missions. Mission 1 is to collect and return a sample from Saturn's moon, Titan; Mission 2 is mining asteroids for useful minerals; and Mission 3 is to build a radio tower on the far side of Earth's moon. Each of these missions exhibits different potential hazards. Based on their previous experiments with different types of glove materials, students develop and test glove designs that will protect astronauts from mission-specific hazards, while still retaining basic dexterity and functionality. Educators are given background information and links to in-depth descriptions of the science content, and students are guided through the engineering design process as well as given scientific background on hazards in the solar system in a fun and engaging series of activities.

  18. Aeronautical engineering: A continuing bibliography with indexes (supplement 316)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 413 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1995. Subject coverage includes: aeronautics; mathematical and computer sciences; chemistry and material sciences; geosciences; design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  19. Idaho Science, Technology, Engineering and Mathematics Overview

    ScienceCinema

    None

    2017-12-09

    Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  20. NASA Tech Briefs, March 1998. Volume 22, No. 3

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Topics include: special coverage of computer aided design and engineering, electronic components and circuits, electronic systems, physical sciences, materials, computer software, special coverage on mechanical technology, machinery/automation, manufacturing/fabrication, mathematics and information sciences, book and reports, and a special section of Electronics Tech Briefs. Profiles of the exhibitors at the National Design Engineering show are also included in this issue.

  1. Idaho Science, Technology, Engineering and Mathematics Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampton, Brandon; Shoushtarian, Joannah; Ledoux, P

    2011-02-11

    Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  2. Chemical Engineering Curricula for the Future: Synopsis of Proceedings of a U.S.-India Conference, January, 1988.

    ERIC Educational Resources Information Center

    Ramkrishna, D.; And Others

    1989-01-01

    This is a summary of a seminar for changing the undergraduate chemical engineering curriculum in India. Identifies and describes biotechnology, materials for structural and microelectronic catalysis, and new separation processes as emerging areas. Evaluates the current curriculum, including basic science, engineering lore, chemical engineering,…

  3. Development of teaching material to integrate GT-POWER into combustion courses for IC engine simulations.

    DOT National Transportation Integrated Search

    2009-02-01

    The main objective of this project was to develop instructional engineering projects that utilize the newly-offered PACE software GT-POWER for engine simulations in combustion-related courses at the Missouri University of Science and Technology. Stud...

  4. NASA Tech Briefs, November 1999. Volume 23, No. 11

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Topics covered include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Materials; Computer Programs; Mechanics; Machinery/Automation; Physical Sciences; Mathematics and Information Sciences; Books and Reports.

  5. Bioinspired engineering of thermal materials.

    PubMed

    Tao, Peng; Shang, Wen; Song, Chengyi; Shen, Qingchen; Zhang, Fangyu; Luo, Zhen; Yi, Nan; Zhang, Di; Deng, Tao

    2015-01-21

    In the development of next-generation materials with enhanced thermal properties, biological systems in nature provide many examples that have exceptional structural designs and unparalleled performance in their thermal or nonthermal functions. Bioinspired engineering thus offers great promise in the synthesis and fabrication of thermal materials that are difficult to engineer through conventional approaches. In this review, recent progress in the emerging area of bioinspired advanced materials for thermal science and technology is summarized. State-of-the-art developments of bioinspired thermal-management materials, including materials for efficient thermal insulation and heat transfer, and bioinspired materials for thermal/infrared detection, are highlighted. The dynamic balance of bioinspiration and practical engineering, the correlation of inspiration approaches with the targeted applications, and the coexistence of molecule-based inspiration and structure-based inspiration are discussed in the overview of the development. The long-term outlook and short-term focus of this critical area of advanced materials engineering are also presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Journal of Undergraduate Research, Volume VIII, 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiner, K. S.; Graham, S.; Khan, M.

    Th e Journal of Undergraduate Research (JUR) provides undergraduate interns the opportunity to publish their scientific innovation and to share their passion for education and research with fellow students and scientists. Fields in which these students worked include: Biology; Chemistry; Computer Science; Engineering; Environmental Science; General Sciences; Materials Sciences; Medical and Health Sciences; Nuclear Sciences; Physics; Science Policy; and Waste Management.

  7. PREFACE: Selected papers from the Fourth Topical Conference on Nanoscale Science and Engineering of the American Institute of Chemical Engineers

    NASA Astrophysics Data System (ADS)

    Wong, Michael S.; Lee, Gil U.

    2005-07-01

    This special issue of Nanotechnology contains research papers contributed by the participants of the Fourth Topical Conference on Nanoscale Science and Engineering at the Annual Meeting of the American Institute of Chemical Engineers (AIChE), which was held in Austin, Texas, USA, 7-12 November, 2004. This conference saw 284 oral presentations from institutions around the world, which is the highest number for this topical conference series to date. These presentations were organized into 64 sessions, covering the range of nanotechnology subject areas in which chemical engineers are currently engaged. These sessions included the following areas. • Fundamentals: thermodynamics at the nanoscale; applications of nanostructured fluids; transport properties in nanophase and nanoscale systems; molecular modelling methods; self and directed assembly at the nanoscale; nanofabrication and nanoscale processing; manipulation of nanophases by external fields; nanoscale systems; adsorption and transport in carbon nanotubes; nanotribology; making the transition from materials and phenomena to new technologies; operation of micro-and nano-systems. • Materials: nanoparticle synthesis and stabilization; nanoscale structure in polymers; nanotemplating of polymers; synthesis of carbon nanotubes and nanotube-based materials; nanowires; nanoparticle assemblies and superlattices; nanoelectronic materials; self-assembly of templated inorganic materials; nanostructured hybrid organic/inorganic materials; gas phase synthesis of nanoparticles; multicomponent structured particles; nano energetic materials; liquid-phase synthesis of nanoparticles. • Energy: synthesis and characterization of nanostructured catalytic materials; nanomaterials and devices for energy applications. • Biotechnology: nanobiotechnology; nanotechnology for the biotechnology and pharmaceuticals industries; nanotechnology and nanobiotechnology for sensors; advances in biomaterials, bionanotechnology, biomimetic systems and tissue engineering; nanotechnology for drug delivery and imaging; bionanotechnology in cancer and cardiovascular disease; nanostructured biomaterials; nanotechnology in bioengineering; nanofabrication of biosensing devices. We are pleased to present a selection of research papers in this special issue of Nanotechnology on behalf of the Nanoscale Science and Engineering Forum (NSEF). NSEF was established in 2001 as a new division of AIChE to promote nanotechnology efforts in chemical engineering. The chemical engineering discipline deals with the production and processing of chemicals and materials, and does so through a fundamental understanding of the core issues of transport, thermodynamics, and kinetics that exist at multiple length scales. Thus, it should come as no surprise that chemical engineers have been pursuing nanotechnology research for the last fifty years. For example, fuel production has benefited immensely from improved catalysts in which their pore structure is controlled with nanoscale precision, and polymer properties have been improved by controlling the polymer supramolecular structure at the nanometre scale. Chemical engineering will continue to make important contributions to nanotechnology, and will play a critical role in the transition from basic science and engineering research to commercial applications. We would like to thank all of the authors who contributed to this special issue; the three NSEF poster presentation award winners for their papers (Sureshkumar, Sunkara, and Rinaldi groups); Dr Nina Couzin, Publisher of Nanotechnology, for her support and enthusiasm for this project; Drs Sharon Glotzer and Dan Coy who chaired the topical conference; and Drs Meyya Meyyappan and Brett Cruden (NASA Ames Research Center) for their assistance in the initial planning stages. We also take this opportunity to thank the many people and organizations who have supported the 2004 topical conference along the way, which include all the session chairs, Hyperion Catalysis International, Inc., Nanophase Technologies, Inc., and the executive board of the NSEF.

  8. NASA Tech Briefs, January 2000. Volume 24, No. 1

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Topics include: Data Acquisition; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Bio-Medical; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Information Sciences; Books and reports.

  9. Large-Scale 3D Printing: The Way Forward

    NASA Astrophysics Data System (ADS)

    Jassmi, Hamad Al; Najjar, Fady Al; Ismail Mourad, Abdel-Hamid

    2018-03-01

    Research on small-scale 3D printing has rapidly evolved, where numerous industrial products have been tested and successfully applied. Nonetheless, research on large-scale 3D printing, directed to large-scale applications such as construction and automotive manufacturing, yet demands a great a great deal of efforts. Large-scale 3D printing is considered an interdisciplinary topic and requires establishing a blended knowledge base from numerous research fields including structural engineering, materials science, mechatronics, software engineering, artificial intelligence and architectural engineering. This review article summarizes key topics of relevance to new research trends on large-scale 3D printing, particularly pertaining (1) technological solutions of additive construction (i.e. the 3D printers themselves), (2) materials science challenges, and (3) new design opportunities.

  10. Redesigning the Student Learning Approach through Personality Types and Pedagogies, A Case Study in an Undergraduate Engineering Course

    ERIC Educational Resources Information Center

    Fleischmann, Corinna; Nakagawa, Elizabeth; Kelley, Tyler

    2016-01-01

    As the National Science Foundation and engineers throughout the world seek to strengthen the future of the engineering profession, the Civil Engineering (CE) program at the United States Coast Guard Academy embodies this initiative with a student focused approach. One course in particular, Materials for Civil and Construction Engineers (CE…

  11. Wavelength Independent Optical Lithography and Microscopy

    DTIC Science & Technology

    1990-10-30

    Engineering Physics H. Barshatzky (1985 - present) Cornell, School of Applied & Engineering Physics I. Walton (1987 - 1988) National Semiconductor...Santa Clara, California R. Chen (1989 - 1990) Digital Equipment Corporation S. Boedecker (1990 - present) Cornell, School of Applied & Engineering Physics...H. Chen (1990 - present) Cornell, Department of Materials Science and Engineering M. Park (1987) Cornell, School of Applied & Engineering Physics M. Tornai (1988) UCLA, Dept. Medical Physics,

  12. An Improved Forensic Science Information Search.

    PubMed

    Teitelbaum, J

    2015-01-01

    Although thousands of search engines and databases are available online, finding answers to specific forensic science questions can be a challenge even to experienced Internet users. Because there is no central repository for forensic science information, and because of the sheer number of disciplines under the forensic science umbrella, forensic scientists are often unable to locate material that is relevant to their needs. The author contends that using six publicly accessible search engines and databases can produce high-quality search results. The six resources are Google, PubMed, Google Scholar, Google Books, WorldCat, and the National Criminal Justice Reference Service. Carefully selected keywords and keyword combinations, designating a keyword phrase so that the search engine will search on the phrase and not individual keywords, and prompting search engines to retrieve PDF files are among the techniques discussed. Copyright © 2015 Central Police University.

  13. Development of hydrogels for regenerative engineering.

    PubMed

    Guan, Xiaofei; Avci-Adali, Meltem; Alarçin, Emine; Cheng, Hao; Kashaf, Sara Saheb; Li, Yuxiao; Chawla, Aditya; Jang, Hae Lin; Khademhosseini, Ali

    2017-05-01

    The aim of regenerative engineering is to restore complex tissues and biological systems through convergence in the fields of advanced biomaterials, stem cell science, and developmental biology. Hydrogels are one of the most attractive biomaterials for regenerative engineering, since they can be engineered into tissue mimetic 3D scaffolds to support cell growth due to their similarity to native extracellular matrix. Advanced nano- and micro-technologies have dramatically increased the ability to control properties and functionalities of hydrogel materials by facilitating biomimetic fabrication of more sophisticated compositions and architectures, thus extending our understanding of cell-matrix interactions at the nanoscale. With this perspective, this review discusses the most commonly used hydrogel materials and their fabrication strategies for regenerative engineering. We highlight the physical, chemical, and functional modulation of hydrogels to design and engineer biomimetic tissues based on recent achievements in nano- and micro-technologies. In addition, current hydrogel-based regenerative engineering strategies for treating multiple tissues, such as musculoskeletal, nervous and cardiac tissue, are also covered in this review. The interaction of multiple disciplines including materials science, cell biology, and chemistry, will further play an important role in the design of functional hydrogels for the regeneration of complex tissues. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. PREFACE: 4th Global Conference on Materials Science and Engineering (CMSE 2015)

    NASA Astrophysics Data System (ADS)

    Ruda, H. E.; Khotsianovsky, A.

    2015-12-01

    IOP Conference Series: Materials Science and Engineering is publishing a volume of conference proceedings that contains a selection of papers presented at the 4th Global Conference on Materials Science and Engineering (CMSE 2015), which is an annual event that started in 2012. CMSE 2015, technically supported by the Institute of Applied Physics and Materials Engineering of University of Macau, organized by Wuhan Advance Materials Society, was successfully held at the University of Macau-new campus located on Hengqin Island from August 3rd-6th, 2015. It aims to bring together leading academic scientists, researchers and scholars to exchange and share their experience and research results on all aspects of Materials Science and Engineering, and to discuss the practical challenges encountered and the solutions adopted. Macau, one of the two special administrative regions of the People's Republic of China, where East meets West, turned out to be an ideal meeting place for domestic and overseas participants of this annual international conference. The conference program included keynote presentations, special sessions, oral and poster contributions. From several hundred submissions, 52 of the most promising and mainstream, IOP-relevant, contributions were included in this volume. The submissions present original ideas or results of general significance, supported by clear reasoning, compelling evidence and methods, theories and practices relevant to the research. The authors state clearly the problems and the significance of their research to theory and practice. Being a successful conference, this event gathered more than 200 qualified and high-level researchers and experts from over 40 countries, including 10 keynote speakers from 6 countries, which created a good platform for worldwide researchers and engineers to enjoy the academic communication. Taking advantage of this opportunity, we would like to thank all participants of this conference, and particularly the authors of all accepted papers for their high quality and fruitful contributions. Special thanks are due to all reviewers for their careful critical reading of the manuscripts and useful comments and suggestions. We do hope that this volume will be beneficial for readers to their future research endeavours and careers. We also gratefully acknowledge tremendous efforts and dedication of many individuals, especially CMSE Conference Secretary Ms. Liu Qin, Editor Anete Ashton and all the Editorial Board members in IOP Publishing for their support in producing the proceedings of this event. Guest Editors: Prof. Harry E. Ruda University of Toronto, Canada Dr. Alexander Khotsianovsky Pisarenko Institute of Problems of Strength of the National Academy of Sciences of Ukraine, Ukraine

  15. NASA Tech Briefs, February 2000. Volume 24, No. 2

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Topics covered include: Test and Measurement; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Bio-Medical; Mathematics and Information Sciences; Computers and Peripherals.

  16. NASA Tech Briefs, May 2002. Volume 26, No. 5

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Topics include: a technology focus on engineering materials, electronic components and circuits, software, mechanics, machinery/automation, manufacturing, physical sciences, information sciences, book and reports, and a special section of Photonics Tech Briefs.

  17. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances.

    PubMed

    Shadjou, Nasrin; Hasanzadeh, Mohammad

    2016-05-01

    Tissue engineering and regenerative medicine represent areas of increasing interest because of the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Graphene and its derivatives have attracted much interest for applications in bone tissue engineering. For this purpose, this review focuses on more recent advances in tissue engineering based on graphene-biomaterials from 2013 to May 2015. The purpose of this article was to give a general description of studies of nanostructured graphene derivatives for bone tissue engineering. In this review, we highlight how graphene family nanomaterials are being exploited for bone tissue engineering. Firstly, the main requirements for bone tissue engineering were discussed. Then, the mechanism by which graphene based materials promote new bone formation was explained, following which the current research status of main types of nanostructured scaffolds for bone tissue engineering was reviewed and discussed. In addition, graphene-based bioactive glass, as a potential drug/growth factor carrier, was reviewed which includes the composition-structure-drug delivery relationship and the functional effect on the tissue-stimulation properties. Also, the effect of structural and textural properties of graphene based materials on development of new biomaterials for production of bone implants and bone cements were discussed. Finally, the present review intends to provide the reader an overview of the current state of the graphene based biomaterials in bone tissue engineering, its limitations and hopes as well as the future research trends for this exciting field of science. © 2016 Wiley Periodicals, Inc.

  18. Gender Differences in Science Interests: An Analysis of Science Fair Projects.

    ERIC Educational Resources Information Center

    Lawton, Carol A.; Bordens, Kenneth S.

    Gender differences in science interests were examined in two studies of projects entered in a regional science fair in kindergarten through grade 12. A content analysis of 1,319 project topics and materials submitted to the Northeastern Indiana Regional Science and Engineering Fair from 1991 through 1993 showed that girls were more likely than…

  19. Evolution of a Materials Data Infrastructure

    NASA Astrophysics Data System (ADS)

    Warren, James A.; Ward, Charles H.

    2018-06-01

    The field of materials science and engineering is writing a new chapter in its evolution, one of digitally empowered materials discovery, development, and deployment. The 2008 Integrated Computational Materials Engineering (ICME) study report helped usher in this paradigm shift, making a compelling case and strong recommendations for an infrastructure supporting ICME that would enable access to precompetitive materials data for both scientific and engineering applications. With the launch of the Materials Genome Initiative in 2011, which drew substantial inspiration from the ICME study, digital data was highlighted as a core component of a Materials Innovation Infrastructure, along with experimental and computational tools. Over the past 10 years, our understanding of what it takes to provide accessible materials data has matured and rapid progress has been made in establishing a Materials Data Infrastructure (MDI). We are learning that the MDI is essential to eliminating the seams between experiment and computation by providing a means for them to connect effortlessly. Additionally, the MDI is becoming an enabler, allowing materials engineering to tie into a much broader model-based engineering enterprise for product design.

  20. The Influence of Materials Science and Engineering Undergraduate Research Experiences on Public Communication Skills

    ERIC Educational Resources Information Center

    Ing, Marsha; Fung, Wenson W.; Kisailus, David

    2013-01-01

    Communicating research findings with others is a skill essential to the success of future STEM professionals. However, little is known about how this skill can be nurtured through participating in undergraduate research. The purpose of this study is to quantify undergraduate participation in research in a materials science and engineering…

  1. Identifying and Addressing Student Difficulties and Misconceptions: Examples from Physics and from Materials Science and Engineering

    ERIC Educational Resources Information Center

    Rosenblatt, Rebecca

    2012-01-01

    Here I present my work identifying and addressing student difficulties with several materials science and physics topics. In the first part of this thesis, I present my work identifying student difficulties and misconceptions about the directional relationships between net force, velocity, and acceleration in one dimension. This is accomplished…

  2. Journal of Undergraduate Research, Volume VI, 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faletra, P.; Schuetz, A.; Cherkerzian, D.

    Students who conducted research at DOE National Laboratories during 2005 were invited to include their research abstracts, and for a select few, their completed research papers in this Journal. This Journal is direct evidence of students collaborating with their mentors. Fields in which these students worked include: Biology; Chemistry; Computer Science; Engineering; Environmental Science; General Sciences; Materials Sciences; Medical and Health Sciences; Nuclear Sciences; Physics; and Science Policy.

  3. Teaching Process Engineering Principles Using an Ice Cream Maker

    ERIC Educational Resources Information Center

    Kaletunc, Gonul; Duemmel, Kevin; Gecik, Christopher

    2007-01-01

    The ice cream laboratory experiment is designed to illustrate and promote discussion of several engineering and science topics including material and energy balances, heat transfer, freezing, mass transfer, mixing, viscosity, and freezing point depression in a sophomore level engineering class. A pre-lab assignment requires the students to develop…

  4. 78 FR 59916 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... Minnesota, Dept. of Chemical Engineering & Material Science, 421 Washington Avenue SE, Minneapolis, MN 55455... microelectronics, micro-electromechanical systems (MEMS) as well as nanotechnology materials and devices...

  5. The importance of pedagogical content knowledge in curriculum development for illumination engineering

    NASA Astrophysics Data System (ADS)

    Pompea, Stephen M.; Walker, Constance E.

    2017-08-01

    An understanding of pedagogical content knowledge (PCK) and educative materials has been critical to our teaching programs in illumination engineering. We will discuss the PCK basis of a number of innovative curriculum efforts at the National Optical Astronomy and how we develop "educative materials" that improve educator content knowledge, pedagogical knowledge, and contextual knowledge. We also describe the process and team approach required to create these "educative materials." The foundation of our work at NOAO were two previous projects at the NASA Classroom of the Future. These projects created educative curricular materials with sophisticated science content integrated with a deep, authentic understanding of science process. Additional curricula with these attributes were developed at NOAO for the NSF-sponsored Hands-On Optics project (SPIE, OSA, and NOAO), for the citizen science project Globe at Night (NOAO), and for the Quality Lighting Teaching Kits (NOAO, International Astronomical Union, OSA Foundation, SPIE, CIE, and the International Dark Sky Association). These projects all strove to create educative instructional materials that can enhance the pedagogical content knowledge of educators.

  6. Thermochemistry of CaO-MgO-Al2O3-SiO2 (CMAS) and Advanced Thermal and Environmental Barrier Coating Systems

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo C. C.; Zhu, Dongming

    2016-01-01

    CaO-MgO-Al2O3-SiO2 (CMAS) oxides are constituents in a broad number of materials and minerals which have recently inferred to discussions in materials science, planetary science, geochemistry and cosmochemistry communities. In materials science, there is increasing interest in the degradation studies of thermal (TBC) and environmental (EBC) barrier coatings of gas turbines by molten CMAS. These coatings have been explored to be applied on silicon-based ceramics and composites which are lighter and more temperature capable hot-section materials of gas turbines than the current Ni-based superalloys. The degradation of the coatings occurs when CMAS minerals carried by the intake air into gas turbines, e.g. in aircraft engines, reacts at high temperatures (1000C) with the coating materials. This causes premature failure of the static and rotating components of the turbine engines. We discuss some preliminary results of the reactions between CMAS and Rare-Earth (RE Y, Yb and Gd) oxide stabilized ZrO2 systems, and stability of the resulting oxides and silicates.

  7. NASA Tech Briefs, November 2002. Volume 26, No. 11

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Topics include: a technology focus on engineering materials, electronic components and systems, software, mechanics, machinery/automation, manufacturing, bio-medical, physical sciences, information sciences book and reports, and a special section of Photonics Tech Briefs.

  8. NASA Tech Briefs, November 2000. Volume 24, No. 11

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Topics covered include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Test and Measurement; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Data Acquisition.

  9. NASA Thesaurus Data File

    NASA Technical Reports Server (NTRS)

    2012-01-01

    The NASA Thesaurus contains the authorized NASA subject terms used to index and retrieve materials in the NASA Aeronautics and Space Database (NA&SD) and NASA Technical Reports Server (NTRS). The scope of this controlled vocabulary includes not only aerospace engineering, but all supporting areas of engineering and physics, the natural space sciences (astronomy, astrophysics, planetary science), Earth sciences, and the biological sciences. The NASA Thesaurus Data File contains all valid terms and hierarchical relationships, USE references, and related terms in machine-readable form. The Data File is available in the following formats: RDF/SKOS, RDF/OWL, ZThes-1.0, and CSV/TXT.

  10. Future Tense: Science Fiction Confronts the New Science.

    ERIC Educational Resources Information Center

    Antczak, Janice

    1990-01-01

    Describes 10 science fiction stories for young readers whose contents address recent developments on the frontiers of scientific research, including genetic engineering, artificial intelligence, and robotics. The use of these materials to inform young readers about the issues and dangers involved in scientific developments is discussed. (CLB)

  11. Effect of processing on Polymer/Composite structure and properties

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Advances in the vitality and economic health of the field of polymer forecasting are discussed. A consistent and rational point of view which considers processing as a participant in the underlying triad of relationships which comprise materials science and engineering is outlined. This triad includes processing as it influences material structure, and ultimately properties. Methods in processing structure properties, polymer science and engineering, polymer chemistry and synthesis, structure and modification and optimization through processing, and methods of melt flow modeling in processing structure property relations of polymer were developed. Mechanical properties of composites are considered, and biomedical materials research to include polymer processing effects are studied. An analysis of the design technology of advances graphite/epoxy composites is also reported.

  12. Materials Knowledge Systems in Python - A Data Science Framework for Accelerated Development of Hierarchical Materials.

    PubMed

    Brough, David B; Wheeler, Daniel; Kalidindi, Surya R

    2017-03-01

    There is a critical need for customized analytics that take into account the stochastic nature of the internal structure of materials at multiple length scales in order to extract relevant and transferable knowledge. Data driven Process-Structure-Property (PSP) linkages provide systemic, modular and hierarchical framework for community driven curation of materials knowledge, and its transference to design and manufacturing experts. The Materials Knowledge Systems in Python project (PyMKS) is the first open source materials data science framework that can be used to create high value PSP linkages for hierarchical materials that can be leveraged by experts in materials science and engineering, manufacturing, machine learning and data science communities. This paper describes the main functions available from this repository, along with illustrations of how these can be accessed, utilized, and potentially further refined by the broader community of researchers.

  13. Materials Knowledge Systems in Python - A Data Science Framework for Accelerated Development of Hierarchical Materials

    PubMed Central

    Brough, David B; Wheeler, Daniel; Kalidindi, Surya R.

    2017-01-01

    There is a critical need for customized analytics that take into account the stochastic nature of the internal structure of materials at multiple length scales in order to extract relevant and transferable knowledge. Data driven Process-Structure-Property (PSP) linkages provide systemic, modular and hierarchical framework for community driven curation of materials knowledge, and its transference to design and manufacturing experts. The Materials Knowledge Systems in Python project (PyMKS) is the first open source materials data science framework that can be used to create high value PSP linkages for hierarchical materials that can be leveraged by experts in materials science and engineering, manufacturing, machine learning and data science communities. This paper describes the main functions available from this repository, along with illustrations of how these can be accessed, utilized, and potentially further refined by the broader community of researchers. PMID:28690971

  14. Interdisciplinary cantilever physics: Elasticity of carrot, celery, and plasticware

    NASA Astrophysics Data System (ADS)

    Pestka, Kenneth A.

    2014-05-01

    This article presents several simple cantilever-based experiments using common household items (celery, carrot, and a plastic spoon) that are appropriate for introductory undergraduate laboratories or independent student projects. By applying Hooke's law and Euler beam theory, students are able to determine Young's modulus, fracture stress, yield stress, strain energy, and sound speed of these apparently disparate materials. In addition, a cellular foam elastic model is introduced—applicable to biologic materials as well as an essential component in the development of advanced engineering composites—that provides a mechanism to determine Young's modulus of the cell wall material found in celery and carrot. These experiments are designed to promote exploration of the similarities and differences between common inorganic and organic materials, fill a void in the typical undergraduate curriculum, and provide a foundation for more advanced material science pursuits within biology, botany, and food science as well as physics and engineering.

  15. Computational Materials Science and Chemistry: Accelerating Discovery and Innovation through Simulation-Based Engineering and Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crabtree, George; Glotzer, Sharon; McCurdy, Bill

    This report is based on a SC Workshop on Computational Materials Science and Chemistry for Innovation on July 26-27, 2010, to assess the potential of state-of-the-art computer simulations to accelerate understanding and discovery in materials science and chemistry, with a focus on potential impacts in energy technologies and innovation. The urgent demand for new energy technologies has greatly exceeded the capabilities of today's materials and chemical processes. To convert sunlight to fuel, efficiently store energy, or enable a new generation of energy production and utilization technologies requires the development of new materials and processes of unprecedented functionality and performance. Newmore » materials and processes are critical pacing elements for progress in advanced energy systems and virtually all industrial technologies. Over the past two decades, the United States has developed and deployed the world's most powerful collection of tools for the synthesis, processing, characterization, and simulation and modeling of materials and chemical systems at the nanoscale, dimensions of a few atoms to a few hundred atoms across. These tools, which include world-leading x-ray and neutron sources, nanoscale science facilities, and high-performance computers, provide an unprecedented view of the atomic-scale structure and dynamics of materials and the molecular-scale basis of chemical processes. For the first time in history, we are able to synthesize, characterize, and model materials and chemical behavior at the length scale where this behavior is controlled. This ability is transformational for the discovery process and, as a result, confers a significant competitive advantage. Perhaps the most spectacular increase in capability has been demonstrated in high performance computing. Over the past decade, computational power has increased by a factor of a million due to advances in hardware and software. This rate of improvement, which shows no sign of abating, has enabled the development of computer simulations and models of unprecedented fidelity. We are at the threshold of a new era where the integrated synthesis, characterization, and modeling of complex materials and chemical processes will transform our ability to understand and design new materials and chemistries with predictive power. In turn, this predictive capability will transform technological innovation by accelerating the development and deployment of new materials and processes in products and manufacturing. Harnessing the potential of computational science and engineering for the discovery and development of materials and chemical processes is essential to maintaining leadership in these foundational fields that underpin energy technologies and industrial competitiveness. Capitalizing on the opportunities presented by simulation-based engineering and science in materials and chemistry will require an integration of experimental capabilities with theoretical and computational modeling; the development of a robust and sustainable infrastructure to support the development and deployment of advanced computational models; and the assembly of a community of scientists and engineers to implement this integration and infrastructure. This community must extend to industry, where incorporating predictive materials science and chemistry into design tools can accelerate the product development cycle and drive economic competitiveness. The confluence of new theories, new materials synthesis capabilities, and new computer platforms has created an unprecedented opportunity to implement a "materials-by-design" paradigm with wide-ranging benefits in technological innovation and scientific discovery. The Workshop on Computational Materials Science and Chemistry for Innovation was convened in Bethesda, Maryland, on July 26-27, 2010. Sponsored by the Department of Energy (DOE) Offices of Advanced Scientific Computing Research and Basic Energy Sciences, the workshop brought together 160 experts in materials science, chemistry, and computational science representing more than 65 universities, laboratories, and industries, and four agencies. The workshop examined seven foundational challenge areas in materials science and chemistry: materials for extreme conditions, self-assembly, light harvesting, chemical reactions, designer fluids, thin films and interfaces, and electronic structure. Each of these challenge areas is critical to the development of advanced energy systems, and each can be accelerated by the integrated application of predictive capability with theory and experiment. The workshop concluded that emerging capabilities in predictive modeling and simulation have the potential to revolutionize the development of new materials and chemical processes. Coupled with world-leading materials characterization and nanoscale science facilities, this predictive capability provides the foundation for an innovation ecosystem that can accelerate the discovery, development, and deployment of new technologies, including advanced energy systems. Delivering on the promise of this innovation ecosystem requires the following: Integration of synthesis, processing, characterization, theory, and simulation and modeling. Many of the newly established Energy Frontier Research Centers and Energy Hubs are exploiting this integration. Achieving/strengthening predictive capability in foundational challenge areas. Predictive capability in the seven foundational challenge areas described in this report is critical to the development of advanced energy technologies. Developing validated computational approaches that span vast differences in time and length scales. This fundamental computational challenge crosscuts all of the foundational challenge areas. Similarly challenging is coupling of analytical data from multiple instruments and techniques that are required to link these length and time scales. Experimental validation and quantification of uncertainty in simulation and modeling. Uncertainty quantification becomes increasingly challenging as simulations become more complex. Robust and sustainable computational infrastructure, including software and applications. For modeling and simulation, software equals infrastructure. To validate the computational tools, software is critical infrastructure that effectively translates huge arrays of experimental data into useful scientific understanding. An integrated approach for managing this infrastructure is essential. Efficient transfer and incorporation of simulation-based engineering and science in industry. Strategies for bridging the gap between research and industrial applications and for widespread industry adoption of integrated computational materials engineering are needed.« less

  16. Artificially Engineered Protein Polymers.

    PubMed

    Yang, Yun Jung; Holmberg, Angela L; Olsen, Bradley D

    2017-06-07

    Modern polymer science increasingly requires precise control over macromolecular structure and properties for engineering advanced materials and biomedical systems. The application of biological processes to design and synthesize artificial protein polymers offers a means for furthering macromolecular tunability, enabling polymers with dispersities of ∼1.0 and monomer-level sequence control. Taking inspiration from materials evolved in nature, scientists have created modular building blocks with simplified monomer sequences that replicate the function of natural systems. The corresponding protein engineering toolbox has enabled the systematic development of complex functional polymeric materials across areas as diverse as adhesives, responsive polymers, and medical materials. This review discusses the natural proteins that have inspired the development of key building blocks for protein polymer engineering and the function of these elements in material design. The prospects and progress for scalable commercialization of protein polymers are reviewed, discussing both technology needs and opportunities.

  17. Commonwealth of Independent States aerospace science and technology, 1992: A bibliography with indexes

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography contains 1237 annotated references to reports and journal articles of Commonwealth of Independent States (CIS) intellectual origin entered into the NASA Scientific and Technical Information System during 1992. Representative subject areas include the following: aeronautics, astronautics, chemistry and materials, engineering, geosciences, life sciences, mathematical and computer sciences, physics, social sciences, and space sciences.

  18. Potential Nano-Enabled Environmental Applications for Radionuclides

    EPA Pesticide Factsheets

    This document provides information about nanotechnology materials and processes that may be applicable when cleaning up radioactively contaminated sites or materials, and presents a snapshot of lessons learned in nano-science and engineering.

  19. Recent advances in engineering science; Proceedings of the A. Cemal Eringen Symposium, University of California, Berkeley, June 20-22, 1988

    NASA Technical Reports Server (NTRS)

    Koh, Severino L. (Editor); Speziale, Charles G. (Editor)

    1989-01-01

    Various papers on recent advances in engineering science are presented. Some individual topics addressed include: advances in adaptive methods in computational fluid mechanics, mixtures of two medicomorphic materials, computer tests of rubber elasticity, shear bands in isotropic micropolar elastic materials, nonlinear surface wave and resonator effects in magnetostrictive crystals, simulation of electrically enhanced fibrous filtration, plasticity theory of granular materials, dynamics of viscoelastic media with internal oscillators, postcritical behavior of a cantilever bar, boundary value problems in nonlocal elasticity, stability of flexible structures with random parameters, electromagnetic tornadoes in earth's ionosphere and magnetosphere, helicity fluctuations and the energy cascade in turbulence, mechanics of interfacial zones in bonded materials, propagation of a normal shock in a varying area duct, analytical mechanics of fracture and fatigue.

  20. 24 CFR 3280.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... facilities for living, sleeping, cooking and eating. Equipment includes materials, appliances, devices... Engineering and Architecture Examiners and who is engaged in the professional practice of rendering service or... special knowledge of the mathematical, physical and engineering sciences in such professional or creative...

  1. Engineering and physical sciences in oncology: challenges and opportunities.

    PubMed

    Mitchell, Michael J; Jain, Rakesh K; Langer, Robert

    2017-11-01

    The principles of engineering and physics have been applied to oncology for nearly 50 years. Engineers and physical scientists have made contributions to all aspects of cancer biology, from quantitative understanding of tumour growth and progression to improved detection and treatment of cancer. Many early efforts focused on experimental and computational modelling of drug distribution, cell cycle kinetics and tumour growth dynamics. In the past decade, we have witnessed exponential growth at the interface of engineering, physics and oncology that has been fuelled by advances in fields including materials science, microfabrication, nanomedicine, microfluidics, imaging, and catalysed by new programmes at the National Institutes of Health (NIH), including the National Institute of Biomedical Imaging and Bioengineering (NIBIB), Physical Sciences in Oncology, and the National Cancer Institute (NCI) Alliance for Nanotechnology. Here, we review the advances made at the interface of engineering and physical sciences and oncology in four important areas: the physical microenvironment of the tumour and technological advances in drug delivery; cellular and molecular imaging; and microfluidics and microfabrication. We discussthe research advances, opportunities and challenges for integrating engineering and physical sciences with oncology to develop new methods to study, detect and treat cancer, and we also describe the future outlook for these emerging areas.

  2. US Frontiers of Engineering Symposia

    DTIC Science & Technology

    2015-02-01

    Dr . Kristi Anseth, Distinguished Professor of Chemical and Biological Engineering and HHMI Assistant Investigator at the University of Colorado...speech was given by Dr . Alan I. Taub, professor of materials science and engineering at the University of Michigan, Report Documentation Page Form...at the Hotel du Pont in Wilmington, Delaware. Dr . Kristi Anseth, Distinguished Professor of Chemical and Biological Engineering and HHMI Assistant

  3. NASA Tech Briefs, August 2000. Volume 24, No. 8

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Topics include: Simulation/Virtual Reality; Test and Measurement; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Medical Design.

  4. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering.

    PubMed

    Narayanan, Ganesh; Vernekar, Varadraj N; Kuyinu, Emmanuel L; Laurencin, Cato T

    2016-12-15

    Regenerative engineering converges tissue engineering, advanced materials science, stem cell science, and developmental biology to regenerate complex tissues such as whole limbs. Regenerative engineering scaffolds provide mechanical support and nanoscale control over architecture, topography, and biochemical cues to influence cellular outcome. In this regard, poly (lactic acid) (PLA)-based biomaterials may be considered as a gold standard for many orthopaedic regenerative engineering applications because of their versatility in fabrication, biodegradability, and compatibility with biomolecules and cells. Here we discuss recent developments in PLA-based biomaterials with respect to processability and current applications in the clinical and research settings for bone, ligament, meniscus, and cartilage regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Sample environment for neutron scattering measurements of internal stresses in engineering materials in the temperature range of 6 K to 300 K.

    PubMed

    Kirichek, O; Timms, J D; Kelleher, J F; Down, R B E; Offer, C D; Kabra, S; Zhang, S Y

    2017-02-01

    Internal stresses in materials have a considerable effect on material properties including strength, fracture toughness, and fatigue resistance. The ENGIN-X beamline is an engineering science facility at ISIS optimized for the measurement of strain and stress using the atomic lattice planes as a strain gauge. Nowadays, the rapidly rising interest in the mechanical properties of engineering materials at low temperatures has been stimulated by the dynamic development of the cryogenic industry and the advanced applications of the superconductor technology. Here we present the design and discuss the test results of a new cryogenic sample environment system for neutron scattering measurements of internal stresses in engineering materials under a load of up to 100 kN and in the temperature range of 6 K to 300 K. Complete cooling of the system starting from the room temperature down to the base temperature takes around 90 min. Understanding of internal stresses in engineering materials at cryogenic temperatures is vital for the modelling and designing of cutting-edge superconducting magnets and other superconductor based applications.

  6. Sample environment for neutron scattering measurements of internal stresses in engineering materials in the temperature range of 6 K to 300 K

    NASA Astrophysics Data System (ADS)

    Kirichek, O.; Timms, J. D.; Kelleher, J. F.; Down, R. B. E.; Offer, C. D.; Kabra, S.; Zhang, S. Y.

    2017-02-01

    Internal stresses in materials have a considerable effect on material properties including strength, fracture toughness, and fatigue resistance. The ENGIN-X beamline is an engineering science facility at ISIS optimized for the measurement of strain and stress using the atomic lattice planes as a strain gauge. Nowadays, the rapidly rising interest in the mechanical properties of engineering materials at low temperatures has been stimulated by the dynamic development of the cryogenic industry and the advanced applications of the superconductor technology. Here we present the design and discuss the test results of a new cryogenic sample environment system for neutron scattering measurements of internal stresses in engineering materials under a load of up to 100 kN and in the temperature range of 6 K to 300 K. Complete cooling of the system starting from the room temperature down to the base temperature takes around 90 min. Understanding of internal stresses in engineering materials at cryogenic temperatures is vital for the modelling and designing of cutting-edge superconducting magnets and other superconductor based applications.

  7. [Projects to accelerate the practical use of innovative medical devices to collaborate with TWIns, Center for Advanced Biomedical Sciences, Waseda University and School of Engineering, The University of Tokyo].

    PubMed

    Niimi, Shingo; Umezu, Mitsuo; Iseki, Hiroshi; Harada, Hiroshi Kasanuki Noboru; Mitsuishi, Mamoru; Kitamori, Takehiko; Tei, Yuichi; Nakaoka, Ryusuke; Haishima, Yuji

    2014-01-01

    Division of Medical Devices has been conducting the projects to accelerate the practical use of innovative medical devices to collaborate with TWIns, Center for Advanced Biomedical Sciences, Waseda University and School of Engineering, The University of Tokyo. The TWIns has been studying to aim at establishment of preclinical evaluation methods by "Engineering Based Medicine", and established Regulatory Science Institute for Medical Devices. School of Engineering, The University of Tokyo has been studying to aim at establishment of assessment methodology for innovative minimally invasive therapeutic devices, materials, and nanobio diagnostic devices. This report reviews the exchanges of personnel, the implement systems and the research progress of these projects.

  8. National Science Foundation - Annual Report 1985. Thirty-Fifth Annual Report for Fiscal Year 1985.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    The 35th Annual Report of the National Science Foundation (NSF) describes recent achievements of NSF sponsored research in viral structure, semiconductors, genetic engineering, Mayan culture, astronomy, physiology, paleontology, robotics, physics, material science and pollution. Major 1985 initiatives included: (1) establishing six university…

  9. NASA Tech Briefs, March 1995

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This issue contains articles with a special focus on Computer-Aided design and engineering amd a research report on the Ames Research Center. Other subjects in this issue are: Electronic Components and Circuits, Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Manufacturing/Fabrication, Mathematics and Information Sciences and Life Sciences

  10. The International Congress of Mechanical Engineering and Agricultural Sciences - CIIMCA 2013

    NASA Astrophysics Data System (ADS)

    Remolina-Millán, Aduljay; Hernández-Arroyo, Emil

    2014-06-01

    The organizing committee of The International Congress of Mechanical Engineering and Agricultural Sciences - CIIMCA 2013 - are pleased to present CIIMCA-2013: the first international conference focused on subjects of materials science, mechanical engineering and renewable energy organized by Mechanical Engineering Faculty of the ''Universidad Pontificia Bolivariana'' in Bucaramanga, Colombia. This conference aims to be a place to produce discussions on whole topics of the congress, between the scientists of Colombia and the world. We strongly believe that knowledge is fundamental to the development of our countries. For that reason this multidisciplinary conference is looking forward to integrate engineering, agricultural science and nanoscience and nanotechnology to produce a synergy of this area of knowledge and to achieve scientific and technological developments. Agriculture is a very important topic for our conference; in Colombia, agricultural science needs more attention from the scientific community and the government. In the Faculty of Mechanical Engineering we are beginning to work on these issues to produce knowledge and improve the conditions in our country. The CIIMCA conference is a great opportunity to create interpersonal relationships and networks between scientists around the world. The interaction between scientists is very important in the process of the construction of knowledge. The general chairman encourages and invites you to make friends, relationships and participate strongly in the symposia and all program activities. PhD Aduljay Remolina-Millán Principal Chairman, International Mechanical Engineering and Agricultural Sciences Congress - CIIMCA Msc Emil Hernández-Arroyo Principal Chairman, International Mechanical Engineering and Agricultural Sciences Congress - CIIMCA Conference photograph Conference photograph 'Universidad Pontificia Bolivariana seccional Bucaramanga' host of the first International Mechanical Engineering and Agricultural Sciences Congress - CIIMCA 2013 - Floridablanaca, Colombia. Conference photograph Closure of CIIMCA 2013. Details of the editorial committee and acknowledgements are available in the PDF.

  11. Women in Science Fellowships

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-04-01

    The L'Oréal For Women in Science program is calling for women postdoctoral scientists to submit applications for the L'Oréal USA Women in Science Fellowship. Five women scientists in a variety of fields, including life and physical/material sciences, technology, engineering, and mathematics, will receive grants of up to $60,000 each. Since the program began in 1998, more than 2000 women scientists worldwide have been awarded fellowships. Application materials are available at https://lorealfwis.aaas.org/login/indexA.cfm; the deadline to apply is 19 May 2014.

  12. SpeedyTime-4_Microgravity_Science_Glovebox

    NASA Image and Video Library

    2017-08-03

    Doing groundbreaking science can mean working with dangerous materials; how do the astronauts on the International Space Station protect themselves and their ship in those cases? They use the Microgravity Science Glovebox: in this “SpeedyTime” segment Expedition 52 flight engineer Peggy Whitson pulls a rack out of the wall of the Destiny Laboratory to show us how astronauts access a sealed environment for science and technology experiments that involve potentially hazardous materials. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  13. Basic Energy Sciences FY 2011 Research Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  14. Basic Energy Sciences FY 2012 Research Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  15. Basic Energy Sciences FY 2014 Research Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  16. Box 11: Tissue Engineering and Bioscience Methods Using Proton Beam Writing

    NASA Astrophysics Data System (ADS)

    van Kan, J. A.

    Tissue engineering is a rapidly developing and highly interdisciplinary field that applies the principles of cell biology, engineering, and materials science to the culture of biological tissue. The artificially grown tissue then can be implanted directly into the body, or it can form part of a device that replaces organ functionality.

  17. Teaching Engineering at the K-12 Level: Two Perspectives

    ERIC Educational Resources Information Center

    Smith, Kenneth L.; Burghardt, David

    2007-01-01

    In this article, the authors share their own perspectives regarding engineering education at the K-12 level. Smith believes that there must be a more direct infusion of appropriate mathematics and science with the unique technological content (tools, machines, materials, processes) for an effective engineering education program to exist. He thinks…

  18. Growth of Solid Solutions of Aluminum Nitride and Silicon Carbide by Metalorganic Chemical Vapor Deposition

    DTIC Science & Technology

    1992-08-27

    Materials Science Center of Excellence REPORT NUMBER Howard University School of Engineering MSRCE ONR 1 2300 6th St., N.W. Washington, D.C. 20059 9...Research Center of Excellence, Department of Electrical Engineering, School of Engineering, Howard University , Washington, D.C., USA Abstract We report

  19. Challenge-based instruction in biomedical engineering: a scalable method to increase the efficiency and effectiveness of teaching and learning in biomedical engineering.

    PubMed

    Harris, Thomas R; Brophy, Sean P

    2005-09-01

    Vanderbilt University, Northwestern University, the University of Texas and the Harvard/MIT Health Sciences Technology Program have collaborated since 1999 to develop means to improve bioengineering education. This effort, funded by the National Science Foundation as the VaNTH Engineering Research Center in Bioengineering Educational Technologies, has sought a synthesis of learning science, learning technology, assessment and the domains of bioengineering in order to improve learning by bioengineering students. Research has shown that bioengineering educational materials may be designed to emphasize challenges that engage the student and, when coupled with a learning cycle and appropriate technologies, can lead to improvements in instruction.

  20. Important Role of the Hall Effect Measurement System in a Modified Course of Materials in Electrical Engineering

    ERIC Educational Resources Information Center

    Stojanovic, G.; Savic, S.; Zivanov, L.

    2009-01-01

    The course "Materials in Electrical Engineering" is a core course in the Mechatronics curriculum at the Faculty of Technical Sciences, University of Novi Sad, Serbia. In the past, this course was comprehensive and mainly theory-based. Teaching methods used in this course had not been changed for many years, and were mainly based on a…

  1. LC21-Hopes and Cautions for the Library of Congress; The NSF National Science, Mathematics, Engineering, and Technology Education Digital Library (NSDL) Program: A Progress Report; A Grammar of Dublin Core; Measuring the Impact of an Electronic Journal Collection on Library Costs: A Framework and Preliminary Observations; Emulation As a Digital Preservation Strategy.

    ERIC Educational Resources Information Center

    O'Donnell, James J.; Zia, Lee L.; Baker, Thomas; Montgomery, Carol Hansen; Granger, Stewart

    2000-01-01

    Includes five articles: (1) discusses Library of Congress efforts to include digital materials; (2) describes the National Science Foundation (NSF) digital library program to improve science, math, engineering, and technology education; (3) explains Dublin Core grammar; (4) measures the impact of electronic journals on library costs; and (5)…

  2. Proceedings of the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering - M and C 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2013-07-01

    The Mathematics and Computation Division of the American Nuclear (ANS) and the Idaho Section of the ANS hosted the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M and C 2013). This proceedings contains over 250 full papers with topics ranging from reactor physics; radiation transport; materials science; nuclear fuels; core performance and optimization; reactor systems and safety; fluid dynamics; medical applications; analytical and numerical methods; algorithms for advanced architectures; and validation verification, and uncertainty quantification.

  3. Program of Research in Aeronautics

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A prospectus of the educational and research opportunities available at the Joint Institute for Advancement of Flight Sciences, operated at NASA Langley Research Center in conjunction with George Washington University's School of Engineering and Applied Sciences is presented. Requirements of admission to various degree programs are given as well as the course offerings in the areas of acoustics, aeronautics, environmental modelling, materials science, and structures and dynamics. Research facilities for each field of study are described. Presentations and publications (including dissertations and theses) generated by each program are listed as well as faculty members visting scientists and engineers.

  4. Rheology of Soft Materials

    NASA Astrophysics Data System (ADS)

    Chen, Daniel T. N.; Wen, Qi; Janmey, Paul A.; Crocker, John C.; Yodh, Arjun G.

    2010-04-01

    Research on soft materials, including colloidal suspensions, glasses, pastes, emulsions, foams, polymer networks, liquid crystals, granular materials, and cells, has captured the interest of scientists and engineers in fields ranging from physics and chemical engineering to materials science and cell biology. Recent advances in rheological methods to probe mechanical responses of these complex media have been instrumental for producing new understanding of soft matter and for generating novel technological applications. This review surveys these technical developments and current work in the field, with partial aim to illustrate open questions for future research.

  5. Material recognition based on thermal cues: Mechanisms and applications.

    PubMed

    Ho, Hsin-Ni

    2018-01-01

    Some materials feel colder to the touch than others, and we can use this difference in perceived coldness for material recognition. This review focuses on the mechanisms underlying material recognition based on thermal cues. It provides an overview of the physical, perceptual, and cognitive processes involved in material recognition. It also describes engineering domains in which material recognition based on thermal cues have been applied. This includes haptic interfaces that seek to reproduce the sensations associated with contact in virtual environments and tactile sensors aim for automatic material recognition. The review concludes by considering the contributions of this line of research in both science and engineering.

  6. Material recognition based on thermal cues: Mechanisms and applications

    PubMed Central

    Ho, Hsin-Ni

    2018-01-01

    ABSTRACT Some materials feel colder to the touch than others, and we can use this difference in perceived coldness for material recognition. This review focuses on the mechanisms underlying material recognition based on thermal cues. It provides an overview of the physical, perceptual, and cognitive processes involved in material recognition. It also describes engineering domains in which material recognition based on thermal cues have been applied. This includes haptic interfaces that seek to reproduce the sensations associated with contact in virtual environments and tactile sensors aim for automatic material recognition. The review concludes by considering the contributions of this line of research in both science and engineering. PMID:29687043

  7. Engineered Plants Make Potential Precursor to Raw Material for Plastics

    ScienceCinema

    Shanklin, John

    2018-06-12

    In a first step toward achieving industrial-scale green production, scientists from BNL and collaborators at Dow AgroSciences report engineering a plant that produces industrially relevant levels of chemicals that could potentially be used to make plastics.

  8. 78 FR 66074 - Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978 (Pub. L. 95-541)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... photographs for (Science, Technology, Engineering, and Mathematics) STEM educational purposes. The gathered materials would be used to create lesson plans about Antarctic Exploration that focus on science, technology...

  9. The role of gender on academic performance in STEM-related disciplines: Data from a tertiary institution.

    PubMed

    John, Temitope M; Badejo, Joke A; Popoola, Segun I; Omole, David O; Odukoya, Jonathan A; Ajayi, Priscilla O; Aboyade, Mary; Atayero, Aderemi A

    2018-06-01

    This data article presents data of academic performances of undergraduate students in Science, Technology, Engineering and Mathematics (STEM) disciplines in Covenant University, Nigeria. The data shows academic performances of Male and Female students who graduated from 2010 to 2014. The total population of samples in the observation is 3046 undergraduates mined from Biochemistry (BCH), Building technology (BLD), Computer Engineering (CEN), Chemical Engineering (CHE), Industrial Chemistry (CHM), Computer Science (CIS), Civil Engineering (CVE), Electrical and Electronics Engineering (EEE), Information and Communication Engineering (ICE), Mathematics (MAT), Microbiology (MCB), Mechanical Engineering (MCE), Management and Information System (MIS), Petroleum Engineering (PET), Industrial Physics-Electronics and IT Applications (PHYE), Industrial Physics-Applied Geophysics (PHYG) and Industrial Physics-Renewable Energy (PHYR). The detailed dataset is made available in form of a Microsoft Excel spreadsheet in the supplementary material of this article.

  10. Development of Science and Mathematics Education System Including Teaching Experience of Students in Local Area

    NASA Astrophysics Data System (ADS)

    Kage, Hiroyuki

    New reformation project on engineering education, which is supported from 2005 to 2008FY by Support Program for Contemporary Educational Needs of Ministry of Education, Culture, Sports, Science and Technology, started in Kyushu Institute of Technology. In this project, teaching experience of students is introduced into the curriculum of Faculty of Engineering. In the curriculum students try to prepare teaching materials and to teach local school pupils with them by themselves. Teaching experience is remarkably effective for them to strengthen their self-dependence and learning motivation. Science Education Center, Science Laboratory and Super Teachers College were also organized to promote the area cooperation on the education of science and mathematics.

  11. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain

    PubMed Central

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Micklem, Chris N.; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S.; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-01-01

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae. Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology. PMID:27247386

  12. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain.

    PubMed

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Abbott, James; Micklem, Chris N; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-06-14

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology.

  13. David Kirkaldy (1820-1897) and his museum of destruction: the visual dilemmas of an engineer as man of science.

    PubMed

    Robertson, Frances

    2013-09-01

    This paper examines codes of representation in nineteenth century engineering in Britain in relation to broader visual culture. While engineering was promoted as a rational public enterprise through techniques of spectacular display, engineers who aimed to be taken seriously in the intellectual hierarchies of science had to negotiate suitable techniques for making and using images. These difficulties can be examined in the visual practices that mark the career of engineer David Kirkaldy. Beginning as a bravura naval draughtsman, Kirkaldy later negotiated his status as a serious experimenter in material testing science, changing his style of representation that at first sight seems to be in line with the 'objective' strategy in science of getting nature to represent herself. And although Kirkaldy maintained a range of visual styles to communicate with different audiences, making rhetorical use of several technologies of inscription, from hand drawing to photography, nevertheless, his work does in fact demonstrate new uses of the concept of objectivity in representation when up against the practices of engineering. While these might seem merely pragmatic in comparison to the ethical weight given to the discourse of objective representation in science, in the messy world of collapsing bridges and law suits, virtuous engineers had to develop various forms of visual knowledge as practical science. This was not 'applied science' but a differentiated form of enquiry whose complexities hold as much interest as the better known visual cultures of late nineteenth century science or art. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Density functional theory in materials science.

    PubMed

    Neugebauer, Jörg; Hickel, Tilmann

    2013-09-01

    Materials science is a highly interdisciplinary field. It is devoted to the understanding of the relationship between (a) fundamental physical and chemical properties governing processes at the atomistic scale with (b) typically macroscopic properties required of materials in engineering applications. For many materials, this relationship is not only determined by chemical composition, but strongly governed by microstructure. The latter is a consequence of carefully selected process conditions (e.g., mechanical forming and annealing in metallurgy or epitaxial growth in semiconductor technology). A key task of computational materials science is to unravel the often hidden composition-structure-property relationships using computational techniques. The present paper does not aim to give a complete review of all aspects of materials science. Rather, we will present the key concepts underlying the computation of selected material properties and discuss the major classes of materials to which they are applied. Specifically, our focus will be on methods used to describe single or polycrystalline bulk materials of semiconductor, metal or ceramic form.

  15. 75 FR 62763 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ... Technology, 771 Ferst Drive, NW., School of Materials Science and Engineering, Atlanta, GA 30332-0245...: The instrument will be used to study materials in the nanometer range such as catalyzer, tissues, and...

  16. Biological materials: a materials science approach.

    PubMed

    Meyers, Marc A; Chen, Po-Yu; Lopez, Maria I; Seki, Yasuaki; Lin, Albert Y M

    2011-07-01

    The approach used by Materials Science and Engineering is revealing new aspects in the structure and properties of biological materials. The integration of advanced characterization, mechanical testing, and modeling methods can rationalize heretofore unexplained aspects of these structures. As an illustration of the power of this methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3-PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Interim Report on the Investigation of the Fresh Properties of Synthetic Fiber-Reinforced Concrete for the Richardson Landing Casting Field

    DTIC Science & Technology

    2017-04-01

    nation’s toughest engineering and environmental challenges. ERDC develops innovative solutions in civil and military engineering , geospatial sciences... civil engineer , Concrete and Materials Branch CEERD-GM-C Kirk Walker 601.634.3237 Kirk.E.Walker@usace.army.mil Engineering technician, Concrete...2017 Approved for public release; distribution is unlimited. The U.S. Army Engineer Research and Development Center (ERDC) solves the

  18. Fundamentals of tribology at the atomic level

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Pepper, Stephen V.

    1989-01-01

    Tribology, the science and engineering of solid surfaces in moving contact, is a field that encompasses many disciplines: solid state physics, chemistry, materials science, and mechanical engineering. In spite of the practical importance and maturity of the field, the fundamental understanding of basic phenomena has only recently been attacked. An attempt to define some of these problems and indicate some profitable directions for future research is presented. There are three broad classifications: (1) fluid properties (compression, rheology, additives and particulates); (2) material properties of the solids (deformation, defect formation and energy loss mechanisms); and (3) interfacial properties (adhesion, friction chemical reactions, and boundary films). Research in the categories has traditionally been approached by considering macroscopic material properties. Recent activity has shown that some issues can be approached at the atomic level: the atoms in the materials can be manipulated both experimentally and theoretically, and can produce results related to macroscopic phenomena.

  19. Understanding the Role of Academic Language on Conceptual Understanding in an Introductory Materials Science and Engineering Course

    ERIC Educational Resources Information Center

    Kelly, Jacquelyn

    2012-01-01

    Students may use the technical engineering terms without knowing what these words mean. This creates a language barrier in engineering that influences student learning. Previous research has been conducted to characterize the difference between colloquial and scientific language. Since this research had not yet been applied explicitly to…

  20. Quantum engineering of transistors based on 2D materials heterostructures

    NASA Astrophysics Data System (ADS)

    Iannaccone, Giuseppe; Bonaccorso, Francesco; Colombo, Luigi; Fiori, Gianluca

    2018-03-01

    Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.

  1. Quantum engineering of transistors based on 2D materials heterostructures.

    PubMed

    Iannaccone, Giuseppe; Bonaccorso, Francesco; Colombo, Luigi; Fiori, Gianluca

    2018-03-01

    Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.

  2. Engineering, Life Sciences, and Health/Medicine Synergy in Aerospace Human Systems Integration: The Rosetta Stone Project

    NASA Technical Reports Server (NTRS)

    Williams, Richard S. (Editor); Doarn, Charles R. (Editor); Shepanek, Marc A.

    2017-01-01

    In the realm of aerospace engineering and the physical sciences, we have developed laws of physics based on empirical and research evidence that reliably guide design, research, and development efforts. For instance, an engineer designs a system based on data and experience that can be consistently and repeatedly verified. This reproducibility depends on the consistency and dependability of the materials on which the engineer works and is subject to physics, geometry and convention. In life sciences and medicine, these apply as well, but individuality introduces a host of variables into the mix, resulting in characteristics and outcomes that can be quite broad within a population of individuals. This individuality ranges from differences at the genetic and cellular level to differences in an individuals personality and abilities due to sex and gender, environment, education, etc.

  3. 75 FR 34095 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ...: University of Minnesota (Dept. of Chemical Engineering and Materials Science), 151 Amundson Hall, 421... Scientific Instruments Pursuant to Section 6(c) of the Educational, Scientific and Cultural Materials... coatings, of very high crystalline quality materials known as complex oxides. A pertinent characteristic of...

  4. Protein-based materials, toward a new level of structural control.

    PubMed

    van Hest, J C; Tirrell, D A

    2001-10-07

    Through billions of years of evolution nature has created and refined structural proteins for a wide variety of specific purposes. Amino acid sequences and their associated folding patterns combine to create elastic, rigid or tough materials. In many respects, nature's intricately designed products provide challenging examples for materials scientists, but translation of natural structural concepts into bio-inspired materials requires a level of control of macromolecular architecture far higher than that afforded by conventional polymerization processes. An increasingly important approach to this problem has been to use biological systems for production of materials. Through protein engineering, artificial genes can be developed that encode protein-based materials with desired features. Structural elements found in nature, such as beta-sheets and alpha-helices, can be combined with great flexibility, and can be outfitted with functional elements such as cell binding sites or enzymatic domains. The possibility of incorporating non-natural amino acids increases the versatility of protein engineering still further. It is expected that such methods will have large impact in the field of materials science, and especially in biomedical materials science, in the future.

  5. Applications of Electrical Impedance Tomography (EIT): A Short Review

    NASA Astrophysics Data System (ADS)

    Kanti Bera, Tushar

    2018-03-01

    Electrical Impedance Tomography (EIT) is a tomographic imaging method which solves an ill posed inverse problem using the boundary voltage-current data collected from the surface of the object under test. Though the spatial resolution is comparatively low compared to conventional tomographic imaging modalities, due to several advantages EIT has been studied for a number of applications such as medical imaging, material engineering, civil engineering, biotechnology, chemical engineering, MEMS and other fields of engineering and applied sciences. In this paper, the applications of EIT have been reviewed and presented as a short summary. The working principal, instrumentation and advantages are briefly discussed followed by a detail discussion on the applications of EIT technology in different areas of engineering, technology and applied sciences.

  6. Education Program for Ph.D. Course to Cultivate Literacy and Competency

    NASA Astrophysics Data System (ADS)

    Yokono, Yasuyuki; Mitsuishi, Mamoru

    The program aims to cultivate internationally competitive young researchers equipped with Fundamental attainment (mathematics, physics, chemistry and biology, and fundamental social sciences) , Specialized knowledge (mechanical dynamics, mechanics of materials, hydrodynamics, thermodynamics, design engineering, manufacturing engineering and material engineering, and bird‧s-eye view knowledge on technology, society and the environment) , Literacy (Language, information literacy, technological literacy and knowledge of the law) and Competency (Creativity, problem identification and solution, planning and execution, self-management, teamwork, leadership, sense of responsibility and sense of duty) to become future leaders in industry and academia.

  7. A research project to develop and evaluate a technical education component on materials technology for orientation to space-age technology

    NASA Technical Reports Server (NTRS)

    Jacobs, J. A.

    1976-01-01

    A project was initiated to develop, implement, and evaluate a prototype component for self-pacing, individualized instruction on basic materials science. Results of this project indicate that systematically developed, self-paced instruction provides an effective means for orienting nontraditional college students and secondary students, especially minorities, to both engineering technology and basic materials science. In addition, students using such a system gain greater chances for mastering subject matter than with conventional modes of instruction.

  8. A Biotic Game Design Project for Integrated Life Science and Engineering Education

    PubMed Central

    Denisin, Aleksandra K.; Rensi, Stefano; Sanchez, Gabriel N.; Quake, Stephen R.; Riedel-Kruse, Ingmar H.

    2015-01-01

    Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM) education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course). We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games. PMID:25807212

  9. A biotic game design project for integrated life science and engineering education.

    PubMed

    Cira, Nate J; Chung, Alice M; Denisin, Aleksandra K; Rensi, Stefano; Sanchez, Gabriel N; Quake, Stephen R; Riedel-Kruse, Ingmar H

    2015-03-01

    Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM) education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course). We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.

  10. Laboratory directed research and development annual report 2004.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2004. In addition to a programmatic and financial overview, the report includes progress reports from 352 individual R and D projects in 15 categories. The 15 categories are: (1) Advanced Concepts; (2) Advanced Manufacturing; (3) Biotechnology; (4) Chemical and Earth Sciences; (5) Computational and Information Sciences; (6) Differentiating Technologies; (7) Electronics and Photonics; (8) Emerging Threats; (9) Energy and Critical Infrastructures; (10) Engineering Sciences; (11) Grand Challenges; (12) Materials Science and Technology; (13) Nonproliferation and Materials Control; (14) Pulsed Power and High Energy Densitymore » Sciences; and (15) Corporate Objectives.« less

  11. Preparing the entry-level materials professional in the 1990s

    NASA Astrophysics Data System (ADS)

    Geiger, Gordon H.

    1989-05-01

    It is time that universities stop using the excuse that industry does not want a five-year-engineering-degree graduate. Industry does not have any choice since it can only select from the available talent pool. At present, materials graduates with four-year degrees often lack the critical tools necessary to perform the non-engineering jobs that are frequently offered. Courses such as statistics, process control and management will help remedy this situation. Today, the individual with a master of science degree, having spent over five years in school, still lacks many essential non-engineering skills. Worse, many students in master's degree programs graduate with a primarily science background and have not taken the full basic engineering curriculum. For this reason, there is no comparison between the current, research-oriented M.S. degree and the proposed master of engineering degree. The outlined curriculum allows for a continuation of many current programs in materials while providing a transition to a five-year, first professional degree. The program allows the student to choose, after four years of education, whether he or she really wants to obtain a professional degree. Further, the four-year degree recipient enters the field with a better education than is available at present, and industry is supplied with a better-educated mix of degree recipients.

  12. The Science of and Advanced Technology for Cost-Effective Manufacture of High Precision Engineering Products. Volume 5. Automatic Generation of Process Outlines of Forming and Machining Processes.

    DTIC Science & Technology

    1986-08-01

    THE SCIENCE OF AND ADVANCED TECHNOLOGY FOR COST-EFFECTIVE MANUFACTURE Lfl OF HIGH PRECISION ENGINEERING PRODUCTS N iA6/*N ONR Contract No. 83K0385...ADVANCED TECHNOLOGY FOR1 COST-EFFECTIVE MANUFACTURE OF1’ HIGH PRECISION ENGINEERING PRODUCTS ONR Contract No. 83K0385 Final Report Vol. 5 AUTOMATIC...Ck 53N Drawing #: 03116-6233 Raw Material: Iiz’ 500mm diameter and 3000mm length Ma, rial Alloy steel. high carbon content, quenched to Min 45Rc

  13. The Quest toward limb regeneration: a regenerative engineering approach

    PubMed Central

    Laurencin, Cato T.; Nair, Lakshmi S.

    2016-01-01

    The Holy Grail to address the clinical grand challenge of human limb loss is to develop innovative strategies to regrow the amputated limb. The remarkable advances in the scientific understanding of regeneration, stem cell science, material science and engineering, physics and novel surgical approaches in the past few decades have provided a regenerative tool box to face this grand challenge and address the limitations of human wound healing. Here we discuss the convergence approach put forward by the field of Regenerative Engineering to use the regenerative tool box to design and develop novel translational strategies to limb regeneration. PMID:27047679

  14. Opportunities for Funding at NSF

    NASA Astrophysics Data System (ADS)

    Kafafi, Zakya H.

    2009-03-01

    Materials science, inter- and multi-disciplinary in nature, provides the bridge to many areas of fundamental and applied sciences such as biology, chemistry, physics, mathematics, computer sciences, and engineering. Strong links that may exist between materials science and other disciplines, such as biology or chemistry or physics, very often lead to novel applications and enable technologies of great benefit to our society. The Division of Materials Research (DMR) invested 274.0 M in FY 2008 and is estimated to invest 324.6 M in FY 2009 funding research and education as well as enabling tools & instrumentation for individual investigators, groups, centers, and national facilities. DMR programs cover a wide spectrum of materials research and education ranging from condensed matter and materials physics, solid-state and materials chemistry, multifunctional, hybrid, electronic, photonic, metallic, ceramic, polymeric, bio-materials, composites and nanostructures to list a few. New modes of funding, research opportunities and directions, such as the recent SOLAR solicitation, will be described. This Solar Energy Initiative launched jointly by three divisions, namely Chemistry, Materials Research and Mathematical Science is aimed at supporting truly interdisciplinary efforts that address the scientific challenges of highly efficient harvesting, conversion, and storage of solar energy. The goal of this new program is to create a new modality of linking the mathematical with the chemical and materials sciences to develop transformative paradigms based on the integrated expertise and synergy from three disciplinary communities. DMR is also seeking new ways to transform materials science and education, and make it more attractive as a career for bright, young women & men. A description will be given of several workshops held this year and planned for next year with this purpose in mind. Outreach programs that emphasize how the innovations resulting from materials research lead to a better quality of life and improved economic development for people all over the world will also be given. As science is becoming increasingly global, DMR is particularly interested in preparing students to be agile thinkers in this universal environment and in forging collaborations and cooperation among scientists and engineers around the world. Free movement of knowledge without any obstacles can only be achieved through a more coordinated approach for international collaboration. Following the presentation there will be a question-and-answer period. For additional information, visit the DMR Web page at www.nsf.gov/materials

  15. Engineering and physical sciences in oncology: challenges and opportunities

    PubMed Central

    Mitchell, Michael J.; Jain, Rakesh K.; Langer, Robert

    2017-01-01

    The principles of engineering and physics have been applied to oncology for nearly 50 years. Engineers and physical scientists have made contributions to all aspects of cancer biology, from quantitative understanding of tumour growth and progression to improved detection and treatment of cancer. Many early efforts focused on experimental and computational modelling of drug distribution, cell cycle kinetics and tumour growth dynamics. In the past decade, we have witnessed exponential growth at the interface of engineering, physics and oncology that has been fuelled by advances in fields including materials science, microfabrication, nanomedicine, microfluidics, imaging, and catalysed by new programmes at the National Institutes of Health (NIH), including the National Institute of Biomedical Imaging and Bioengineering (NIBIB), Physical Sciences in Oncology, and the National Cancer Institute (NCI) Alliance for Nanotechnology. Here, we review the advances made at the interface of engineering and physical sciences and oncology in four important areas: the physical microenvironment of the tumour and technological advances in drug delivery; cellular and molecular imaging; and microfluidics and microfabrication. We discussthe research advances, opportunities and challenges for integrating engineering and physical sciences with oncology to develop new methods to study, detect and treat cancer, and we also describe the future outlook for these emerging areas. PMID:29026204

  16. Get Students Excited--3D Printing Brings Designs to Life

    ERIC Educational Resources Information Center

    Lacey, Gary

    2010-01-01

    Students in technology education programs from middle school through high school around the nation are benefiting from--and enjoying--hands-on experience in mechanical engineering, applied mathematics, materials processing, basic electronics, robotics, industrial manufacturing, and other STEM (science, technology, engineering, and math)-focused…

  17. Just Right

    ERIC Educational Resources Information Center

    Wendell, Kristen B.

    2012-01-01

    Structural engineering can be a rich and exciting context for exploring and learning about the properties of materials. Even a structure as commonplace as a house requires careful consideration of important properties such as strength, stability, and insulation. As a former engineer and current elementary science teacher educator, the author has…

  18. Applications of aerospace technology in the electric power industry

    NASA Technical Reports Server (NTRS)

    Johnson, F. D.; Heins, C. F.

    1974-01-01

    Existing applications of NASA contributions to disciplines such as combustion engineering, mechanical engineering, materials science, quality assurance and computer control are outlined to illustrate how space technology is used in the electric power industry. Corporate strategies to acquire relevant space technology are described.

  19. Enhanced and Tunable Optical Quantum Efficiencies from Plasmon Bandwidth Engineering in Bimetallic CoAg Nanoparticles (Open Access Publisher’s Version)

    DTIC Science & Technology

    2016-08-01

    Engineering Engineering -- Faculty Publications and Other Works 8-2016 Enhanced and tunable optical quantum efficiencies from plasmon bandwidth engineering ...this and additional works at: http://trace.tennessee.edu/utk_matepubs Part of the Materials Science and Engineering Commons This Article is brought to...you for free and open access by the Engineering -- Faculty Publications and Other Works at Trace: Tennessee Research and Creative Exchange. It has been

  20. 10 CFR 1045.15 - Classification and declassification presumptions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... criteria in § 1045.16 indicates otherwise: (1) Basic science: mathematics, chemistry, theoretical and experimental physics, engineering, materials science, biology and medicine; (2) Magnetic confinement fusion...); (5) Fact of use of safety features (e.g., insensitive high explosives, fire resistant pits) to lower...

  1. 10 CFR 1045.15 - Classification and declassification presumptions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... criteria in § 1045.16 indicates otherwise: (1) Basic science: mathematics, chemistry, theoretical and experimental physics, engineering, materials science, biology and medicine; (2) Magnetic confinement fusion...); (5) Fact of use of safety features (e.g., insensitive high explosives, fire resistant pits) to lower...

  2. Twenty Years of Symbiosis Between Art and Science

    ERIC Educational Resources Information Center

    Reichardt, Jasia

    1974-01-01

    During the past two decades advances in biology, nuclear physics, computer and material sciences, and audiovisual engineering have brought a radically new dimension to most art forms and have stimulated the artist and his innovations to breath-taking levels of achievement. (Editor/JR)

  3. COURSE AND CURRICULUM IMPROVEMENT PROFECTS--MATHEMATICS, SCIENCE, ENGINEERING.

    ERIC Educational Resources Information Center

    FONTAINE, THOMAS D.

    ELEMENTARY, SECONDARY, AND COLLEGE LEVEL SCIENCE COURSE IMPROVEMENT PROJECTS ARE DESCRIBED. INDIVIDUAL PROJECTS ARE CLASSIFIED ACCORDING TO INSTITUTIONAL LEVEL AND ACADEMIC DISCIPLINE. MANY OF THE PROJECTS REPRESENT COMPLETE EDUCATIONAL PROGRAMS AND INCLUDE SUCH MATERIALS AS STUDENT TEXTBOOKS, LABORATORY MANUALS, SUPPLEMENTARY READINGS, TEACHER…

  4. Contributions from research on irradiated ferritic/martensitic steels to materials science and engineering

    NASA Astrophysics Data System (ADS)

    Gelles, D. S.

    1990-05-01

    Ferritic and martensitic steels are finding increased application for structural components in several reactor systems. Low-alloy steels have long been used for pressure vessels in light water fission reactors. Martensitic stainless steels are finding increasing usage in liquid metal fast breeder reactors and are being considered for fusion reactor applications when such systems become commercially viable. Recent efforts have evaluated the applicability of oxide dispersion-strengthened ferritic steels. Experiments on the effect of irradiation on these steels provide several examples where contributions are being made to materials science and engineering. Examples are given demonstrating improvements in basic understanding, small specimen test procedure development, and alloy development.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekkebus, Allen E

    Oak Ridge National Laboratory hosted two workshops in April 2007 relevant to nuclear engineering education. In the Neutron Stress, Texture, and Phase Transformation for Industry workshop [http://neutrons.ornl.gov/workshops/nst2/], several invited speakers gave examples of neutron stress mapping for nuclear engineering applications. These included John Root of National Research Council of Canada, Mike Fitzpatrick of the UK's Open University, and Yan Gao of GE Global Research on their experiences with industrial and academic uses of neutron diffraction. Xun-Li Wang and Camden Hubbard described the new instruments at ORNL that can be used for such studies. This was preceded by the Neutrons formore » Materials Science and Engineering educational symposium [http://neutrons.ornl.gov/workshops/edsym2007]. It was directed to the broad materials science and engineering community based in universities, industry and laboratories who wish to learn what the neutron sources in the US can provide for enhancing the understanding of materials behavior, processing and joining. Of particular interest was the presentation of Donald Brown of Los Alamos about using 'Neutron diffraction measurements of strain and texture to study mechanical behavior of structural materials.' At both workshops, the ORNL neutron scattering instruments relevant to nuclear engineering studies were described. The Neutron Residual Stress Mapping Facility (NRSF2) is currently in operation at the High Flux Isotope Reactor; the VULCAN Engineering Materials Diffractometer will begin commissioning in 2008 at the Spallation Neutron Source. For characteristics of these instruments, as well as details of other workshops, meetings, capabilities, and research proposal submissions, please visit http://neutrons.ornl.gov. To submit user proposals for time on NRSF2 contact Hubbard at hubbardcr@ornl.gov.« less

  6. Design of Molecular Materials: Supramolecular Engineering

    NASA Astrophysics Data System (ADS)

    Simon, Jacques; Bassoul, Pierre

    2001-02-01

    This timely and fascinating book is destined to be recognised as THE book on supramolecular engineering protocols. It covers this sometimes difficult subject in an approachable form, gathering together information from many sources. Supramolecular chemistry, which links organic chemistry to materials science, is one of the fastest growth areas of chemistry research. This book creates a correlation between the structure of single molecules and the physical and chemical properties of the resulting materials. By making systematic changes to the component molecules, the resulting solid can be engineered for optimum performance. There is a clearly written development from synthesis of designer molecules to properties of solids and further on to devices and complex materials systems, providing guidelines for mastering the organisation of these systems. Topics covered include: Systemic chemistry Molecular assemblies Notions of symmetry Supramolecular engineering Principe de Curie Organisation in molecular media Molecular semiconductors Industrial applications of molecular materials This superb book will be invaluable to researchers in the field of supramolecular materials and also to students and teachers of the subject.

  7. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 4 - Tribological materials and NDE

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L. (Editor); Achenbach, J. D. (Editor)

    1993-01-01

    The present volume on tribological materials and NDE discusses liquid lubricants for advanced aircraft engines, a liquid lubricant for space applications, solid lubricants for aeronautics, and thin solid-lubricant films in space. Attention is given to the science and technology of NDE, tools for an NDE engineering base, experimental techniques in ultrasonics for NDE and material characterization, and laser ultrasonics. Topics addressed include thermal methods of NDE and quality control, digital radiography in the aerospace industry, materials characterization by ultrasonic methods, and NDE of ceramics and ceramic composites. Also discussed are smart materials and structures, intelligent processing of materials, implementation of NDE technology on flight structures, and solid-state weld evaluation.

  8. A Description and Source Listing of Curriculum Materials in Agricultural Education. 1972-73.

    ERIC Educational Resources Information Center

    American Vocational Association, Washington, DC. Agricultural Education Div.

    Listed are 246 curriculum material items in ten categories: field crops, horticulture, forestry, animal science, soils, diseases and pests, agricultural engineering, agricultural economics, agricultural occupations, and professional. Most materials are annotated and all are classified according to the AGPEX filing system. Bibliographic and…

  9. Better Broader Impacts through National Science Foundation Centers

    NASA Astrophysics Data System (ADS)

    Campbell, K. M.

    2010-12-01

    National Science Foundation Science and Technology Centers (STCs) play a leading role in developing and evaluating “Better Broader Impacts”; best practices for recruiting a broad spectrum of American students into STEM fields and for educating these future professionals, as well as their families, teachers and the general public. With staff devoted full time to Broader Impacts activities, over the ten year life of a Center, STCs are able to address both a broad range of audiences and a broad range of topics. Along with other NSF funded centers, such as Centers for Ocean Sciences Education Excellence, Engineering Research Centers and Materials Research Science and Engineering Centers, STCs develop both models and materials that individual researchers can adopt, as well as, in some cases, direct opportunities for individual researchers to offer their disciplinary research expertise to existing center Broader Impacts Programs. The National Center for Earth-surface Dynamics is an STC headquartered at the University of Minnesota. NCED’s disciplinary research spans the physical, biological and engineering issues associated with developing an integrative, quantitative and predictive understanding of rivers and river basins. Funded in 2002, we have had the opportunity to partner with individuals and institutions ranging from formal to informal education and from science museums to Tribal and women’s colleges. We have developed simple table top physical models, complete museum exhibitions, 3D paper maps and interactive computer based visualizations, all of which have helped us communicate with this wide variety of learners. Many of these materials themselves or plans to construct them are available online; in many cases they have also been formally evaluated. We have also listened to the formal and informal educators with whom we partner, from whom we have learned a great deal about how to design Broader Impacts activities and programs. Using NCED as a case study, this session showcases NCED’s materials, approaches and lessons learned. We will also introduce the work of our sister STCs, whose disciplines span the STEM fields.

  10. Graphene/Mo2C heterostructure directly grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Deng, Rongxuan; Zhang, Haoran; Zhang, Yanhui; Chen, Zhiying; Sui, Yanping; Ge, Xiaoming; Liang, Yijian; Hu, Shike; Yu, Guanghui; Jiang, Da

    2017-06-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 1402342, 11574338, and 11274333), the Hundred Talents Program of Chinese Academy of Sciences, the International Collaboration and Innovation Program on High Mobility Materials Engineering, Chinese Academy of Sciences (Grant No. KGZD-EW-303), and the "Strategic Priority Research Program (B)" of the Chinese Academy of Sciences (Grant No. XDB04040300).

  11. European aerospace science and technology, 1992: A bibliography with indexes

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography contains 1916 annotated references to reports and journal articles of European intellectual origin entered into the NASA Scientific and Technical Information System during 1992. Representative subject areas include: spacecraft and aircraft design, propulsion technology, chemistry and materials, engineering and mechanics, earth and life sciences, communications, computers and mathematics, and the natural space sciences.

  12. Feasibility Study: Library Instruction in Specific Science Disciplines Using the Self-Paced Workbook Adapted to Departmental Needs, Mitchell Memorial Library, Fall 1981.

    ERIC Educational Resources Information Center

    Ellsbury, Susan H.; And Others

    Student library assistants and undergraduate and graduate students from agricultural and biological engineering, biological sciences, and entomology participated in a study to determine the effectiveness of instructional materials adapted to specific science disciplines for developing practical skills in the use of library resources. All students…

  13. Princeton University Materials Academy for underrepresented students

    NASA Astrophysics Data System (ADS)

    Steinberg, Daniel; Rodriguez Martinez, Sara; Cody, Linda

    Summer 2016 gave underrepresented high school students from Trenton New Jersey the opportunity to learn materials science, sustainability and the physics and chemistry of energy storage from Princeton University professors. New efforts to place this curriculum online so that teachers across the United States can teach materials science as a tool to teach ``real'' interdisciplinary science and meet the new Next Generation Science Standards (NGSS). The Princeton University Materials Academy (PUMA) is an education outreach program for underrepresented high school students. It is part of the Princeton Center for Complex Materials (PCCM), a National Science Foundation (NSF) funded Materials Research Engineering and Science Center (MRSEC). PUMA has been serving the community of Trenton New Jersey which is only eight miles from the Princeton University campus. We reached over 250 students from 2003-2016 with many students repeating for multiple years. 100% of our PUMA students have graduated high school and 98% have gone on for college. This is compared with overall Trenton district graduation rate of 48% and a free and reduced lunch of 83%. We discuss initiatives to share the curriculum online to enhance the reach of PCCM' PUMA and to help teachers use materials science to meet NGSS and give their students opportunities to learn interdisciplinary science. MRSEC, NSF (DMR-1420541).

  14. German for Engineers and Scientists: Initiatives in International Education.

    ERIC Educational Resources Information Center

    Weinmann, Sigrid

    The Michigan Technological University program in German area studies is described. The program is designed for science and engineering students at both undergraduate and graduate levels. Its components include: a 1-year scientific German sequence, stressing specialized vocabulary, reading skills, use of reference materials, translation into…

  15. Metastable Polymers for On Demand Transient Electronic Packaging

    DTIC Science & Technology

    2018-01-17

    a triggerable polymer for engineering applications. 25 Approved for public release; distribution is unlimited. 6 REFERENCES (1) Aso, C.; Tagami, S...R. Advanced Materials 2014, 26, 7637. (4) Ito, H.; Willson, C. G. Polymer Engineering & Science 1983, 23, 1012. (5) Ito, H.; England, W. P.; Ueda, M

  16. Cross-Discipline Bio-Nanostructured Enhanced Photonic Multimode-Sensor Science

    DTIC Science & Technology

    2017-05-23

    experimental study aimed to combine soft material science with nanotechnology and multi-physics modeling to produce adaptable bio-nanostructure based on...degradation through optical analysis and tracking programs Protein and DNA engineering . - The properties of proteins to be used in sensors were studies

  17. Energy and technology review, July--August, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnham, A.K.

    1990-01-01

    This report highlights various research programs conducted at the Lab to include: defense systems, laser research, fusion energy, biomedical and environmental sciences, engineering, physics, chemistry, materials science, and computational analysis. It also contains a statement on the state of the Lab and Laboratory Administration. (JEF)

  18. Modeling Electrostatic Fields Generated by Internal Charging of Materials in Space Radiation Environments

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.

    2011-01-01

    Internal charging is a risk to spacecraft in energetic electron environments. DICTAT, NU MIT computational codes are the most widely used engineering tools for evaluating internal charging of insulator materials exposed to these environments. Engineering tools are designed for rapid evaluation of ESD threats, but there is a need for more physics based models for investigating the science of materials interactions with energetic electron environments. Current tools are limited by the physics included in the models and ease of user implementation .... additional development work is needed to improve models.

  19. Langley Aerospace Research Summer Scholars. Part 2

    NASA Technical Reports Server (NTRS)

    Schwan, Rafaela (Compiler)

    1995-01-01

    The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.

  20. Technical Reports: Langley Aerospace Research Summer Scholars. Part 1

    NASA Technical Reports Server (NTRS)

    Schwan, Rafaela (Compiler)

    1995-01-01

    The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.

  1. Proceedings of the 25th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    Phillips, M.

    1985-01-01

    Topics addressed include: silicon sheet growth and characterization, silicon material, process development, high-efficiency cells, environmental isolation, engineering sciences, and reliability physics.

  2. Bioresponsive materials

    NASA Astrophysics Data System (ADS)

    Lu, Yue; Aimetti, Alex A.; Langer, Robert; Gu, Zhen

    2017-01-01

    'Smart' bioresponsive materials that are sensitive to biological signals or to pathological abnormalities, and interact with or are actuated by them, are appealing therapeutic platforms for the development of next-generation precision medications. Armed with a better understanding of various biologically responsive mechanisms, researchers have made innovations in the areas of materials chemistry, biomolecular engineering, pharmaceutical science, and micro- and nanofabrication to develop bioresponsive materials for a range of applications, including controlled drug delivery, diagnostics, tissue engineering and biomedical devices. This Review highlights recent advances in the design of smart materials capable of responding to the physiological environment, to biomarkers and to biological particulates. Key design principles, challenges and future directions, including clinical translation, of bioresponsive materials are also discussed.

  3. Technology 2000, volume 2

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Technology 2000 was the first major industrial conference and exposition spotlighting NASA technology and technology transfer. It's purpose was, and continues to be, to increase awareness of existing NASA-developed technologies that are available for immediate use in the development of new products and processes, and to lay the groundwork for the effective utilization of emerging technologies. Included are sessions on: computer technology and software engineering; human factors engineering and life sciences; materials science; sensors and measurement technology; artificial intelligence; environmental technology; optics and communications; and superconductivity.

  4. Technology 2000, volume 1

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The purpose of the conference was to increase awareness of existing NASA developed technologies that are available for immediate use in the development of new products and processes, and to lay the groundwork for the effective utilization of emerging technologies. There were sessions on the following: Computer technology and software engineering; Human factors engineering and life sciences; Information and data management; Material sciences; Manufacturing and fabrication technology; Power, energy, and control systems; Robotics; Sensors and measurement technology; Artificial intelligence; Environmental technology; Optics and communications; and Superconductivity.

  5. Hadfield poses with MSL FLSS in the Node 2

    NASA Image and Video Library

    2012-12-23

    ISS034-E-010603 (28 Dec. 2012) --- Canadian Space Agency astronaut Chris Hadfield, Expedition 34 flight engineer, poses with a Materials Science Laboratory (MSL) Furnace Launch Support Structure (FLSS) in the Destiny laboratory of the International Space Station. NASA astronaut Tom Marshburn, flight engineer, uses a computer in the background.

  6. The deep space network, Volume 11

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Deep Space Network progress in flight project support, Tracking and Data Acquisition research and technology, network engineering, hardware and software implementation, and operations are presented. Material is presented in each of the following categories: description of DSN; mission support; radio science; support research and technology; network engineering and implementation; and operations and facilities.

  7. A. Paul Alivisatos

    Science.gov Websites

    Chancellor for Research Professor & Samsung Distinguished Chair in Nanoscience and Nanotechnology Research Department of Chemistry and Materials Science and Engineering University of California, Berkeley

  8. Multiscale Modeling and Process Optimization for Engineered Microstructural Complexity

    DTIC Science & Technology

    2007-10-26

    R. C. Rogan, E. Üstündag, M. R. Daymond and V. Knoblauch Ferroelastic Behavior of PZT -Based Ferroelectric Ceramics , Materials Science Forum, 404...Bhattacharya, Materials Science Seminar, University of Southern California, 2003. 42. R.C. Rogan, Texture and Strain Analysis of PZT by In-Situ...Annual Meeting of the American Ceramic Society, St. Louis, MO; May 2002. 44. R. Rogan, Ferroelastic Behavior of PZT -Based Ferroelectric Ceramics , 6th

  9. Q&A: The sci-fi optimist

    NASA Astrophysics Data System (ADS)

    Merali, Zeeya

    2014-09-01

    Best-selling science-fiction writer Neal Stephenson's works cover everything from cryptography to Sumerian mythology. Ahead of next year's novel Seveneves, he talks about his influences, the stagnation in material technologies, and Hieroglyph, the forthcoming science-fiction anthology that he kick-started to stimulate the next generation of engineers.

  10. Models, Databases, and Simulation Tools Needed for the Realization of Integrated Computational Materials Engineering. Proceedings of the Symposium Held at Materials Science and Technology 2010

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M. (Editor); Wong, Terry T. (Editor)

    2011-01-01

    Topics covered include: An Annotative Review of Multiscale Modeling and its Application to Scales Inherent in the Field of ICME; and A Multiscale, Nonlinear, Modeling Framework Enabling the Design and Analysis of Composite Materials and Structures.

  11. INSTRUCTIONAL MATERIALS CATALOG.

    ERIC Educational Resources Information Center

    Ohio Vocational Agriculture Instructional Materials Service, Columbus.

    THE TITLE, IDENTIFICATION NUMBER, DATE OF PUBLICATION, PAGINATION, A BRIEF DESCRIPTION, AND PRICE ARE GIVEN FOR EACH OF THE INSTRUCTIONAL MATERIALS AND AUDIOVISUAL AIDS INCLUDED IN THIS CATALOG. TOPICS COVERED ARE FIELD CORPS, HORTICULTURE, ANIMAL SCIENCE, SOILS, AGRICULTURAL ENGINEERING, AND FARMING PROGRAMS. AN ORDER FORM IS INCLUDED. (JM)

  12. PREFACE: MRS International Materials Research Conference (IMRC-2008)

    NASA Astrophysics Data System (ADS)

    Wang, Zhanguo; Qiu, Yong; Li, Yongxiang

    2009-03-01

    This volume contains selected papers presented at the MRS International Materials Research Conference (IMRC-2008) held in Chongqing, China, 9-12 June 2008. IMRC-2008 included 9 symposia of A. Eco/Environmental Materials, B. Sustainable Energy Materials, C. Electronic Packaging Materials, D. Electronic Materials, E. Materials and Processes for Flat-panel Displays, F. Functional Ceramics, G. Transportation Materials, H. Magnesium and I. Biomaterials for Medical Applications. Nearly 1200 participants from 33 countries attended the conference, and the conference organizers received more than 700 papers. After the peer review processes, 555 papers were selected to be published in 9 Journals or proceedings, including J. of Materials Research (JMR), Rare Metal Materials and Engineering, J. of Univ. Science and Technology Beijing, Biomedical Materials: Materials for Tissue Engineering and Regenerative Medicine, Chinese Journal of Aeronautics, Materials Science Forum, and Journal of Physics: Conference Series. Among the 555 selected papers, 91 papers are published in this volume, and the topics mainly cover electronic matrials, processes for flat-panel displays and functional ceramics. The editors would like to give special thanks to the graduate students Liwu Jiang, Ming Li and Di He from Beihang University for their hard work compiling and typesetting each paper in this volume. Zhanguo Wang, Yong Qiu and Yongxiang Li Editors

  13. Pore Formation and Mobility Furnace within the MSG

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Dr. Richard Grugel, a materials scientist at NASA's Marshall Space Flight in Huntsville, Ala., examines the furnace used to conduct his Pore Formation and Mobility Investigation -- one of the first two materials science experiments to be conducted on the International Space Station. This experiment studies materials processes similar to those used to make components used in jet engines. Grugel's furnace was installed in the Microgravity Science Glovebox through the circular port on the side. In space, crewmembers are able to change out samples using the gloves on the front of the facility's work area.

  14. Cooperative Project To Develop a Database of Discipline-Specific Workbook Exercises for Agricultural and Biological Engineering, Entomology, and Biological Sciences Courses.

    ERIC Educational Resources Information Center

    Ellsbury, Susan H.; And Others

    A two-part text, "Science Resources: A Self-Paced Instructional Workbook," was designed to provide science students at Mississippi State University with: (1) instruction on basic library usage and reference tools common to most scientific disciplines; (2) materials adapted to specific disciplines; and (3) services available to them from the…

  15. Materials at 200 mph: Making NASCAR Faster and Safer

    NASA Astrophysics Data System (ADS)

    Leslie-Pelecky, Diandra

    2008-03-01

    You cannot win a NASCAR race without understanding science.ootnotetextDiandra Leslie-Pelecky, The Physics of NASCAR (Dutton, New York City, 2008). Materials play important roles in improving performance, as well as ensuring safety. On the performance side, NASCAR limits the materials race car scientists and engineers can use to limit ownership costs. `Exotic metals' are not allowed, so controlling microstructure and nanostructure are important tools. Compacted Graphite Iron, a cast iron in which magnesium additions produce interlocking microscale graphite reinforcements, makes engine blocks stronger and lighter. NASCAR's new car design employs a composite called Tegris^TM that has 70 percent of the strength of carbon fiber composites at about 10 percent of the cost. The most important role of materials in racing is safety. Drivers wear firesuits made of polymers that carbonize (providing thermal protection) and expand (reducing oxygen access) when heated. Catalytic materials originally developed for space-based CO2 lasers filter air for drivers during races. Although materials help cars go fast, they also help cars slow down safely---important because the kinetic energy of a race car going 180 mph is nine times greater than that of a passenger car going 60 mph. Energy-absorbing foams in the cars and on the tracks control energy dissipation during accidents. To say that most NASCAR fans (and there are estimated to be 75 million of them) are passionate about their sport is an understatement. NASCAR fans understand that science and engineering are integral to keeping their drivers safe and helping their teams win. Their passion for racing gives us a great opportunity to share our passion for science with them. NASCAR^ is a registered trademark of the National Association for Stock Car Auto Racing, Inc. Tegris^TM is a trademark of Milliken & Company.

  16. Research and technology 1995 annual report

    NASA Technical Reports Server (NTRS)

    1995-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1995 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as technology transfer activities. Major areas of research include environmental engineering, automation, robotics, advanced software, materials science, life sciences, mechanical engineering, nondestructive evaluation, and industrial engineering.

  17. A Subject Matter Expert View of Curriculum Development.

    NASA Astrophysics Data System (ADS)

    Milazzo, M. P.; Anderson, R. B.; Edgar, L. A.; Gaither, T. A.; Vaughan, R. G.

    2017-12-01

    In 2015, NASA selected for funding the PLANETS project: Planetary Learning that Advances the Nexus of Engineering, Technology, and Science. The PLANETS partnership develops planetary science and engineering curricula for out of classroom time (OST) education settings. This partnership is between planetary science Subject Matter Experts (SMEs) at the US Geological Survey (USGS), curriculum developers at the Boston Museum of Science (MOS) Engineering is Everywhere (EiE), science and engineering teacher professional development experts at Northern Arizona University (NAU) Center for Science Teaching and Learning (CSTL), and OST teacher networks across the world. For the 2016 and 2017 Fiscal Years, our focus was on creating science material for two OST modules designed for middle school students. We have begun development of a third module for elementary school students. The first model teaches about the science and engineering of the availability of water in the Solar System, finding accessible water, evaluating it for quality, treating it for impurities, initial use, a cycle of greywater treatment and re-use, and final treatment of blackwater. This module is described in more detail in the abstract by L. Edgar et al., Water in the Solar System: The Development of Science Education Curriculum Focused on Planetary Exploration (233008) The second module involves the science and engineering of remote sensing in planetary exploration. This includes discussion and activities related to the electromagnetic spectrum, spectroscopy and various remote sensing systems and techniques. In these activities and discussions, we include observation and measurement techniques and tools as well as collection and use of specific data of interest to scientists. This module is described in more detail in the abstract by R. Anderson et al., Remote Sensing Mars Landing Sites: An Out-of-School Time Planetary Science Education Activity for Middle School Students (232683) The third module, described by R.G. Vaughan, Hazards in the Solar System: Out-of-School Time Student Activities Focused on Engineering Protective Space Gloves (262143), focuses on hazards in the Solar System and the engineering approach to designing space gloves to protect against those hazards.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Ames Laboratory conducts fundamental research in the physical, chemical, materials, and mathematical sciences and engineering which underlie energy generating, conversion, transmission and storage technologies, environmental improvement, and other technical areas essential to national needs. These efforts will be maintained so as to contribute to the achievement of the vision of DOE and, more specifically, to increase the general levels of knowledge and technical capabilities, to prepare engineering and physical sciences students for the future, both academia and industry, and to develop new technologies and practical applications from our basic scientific programs that will contribute to a strengthening of themore » US economy. The Laboratory approaches all its operations with the safety and health of all workers as a constant objective and with genuine concern for the environment. The Laboratory relies upon its strengths in materials synthesis and processing, materials reliability, chemical analysis, chemical sciences, photosynthesis, materials sciences, metallurgy, high-temperature superconductivity, and applied mathematical sciences to conduct the long term basic and intermediate range applied research needed to solve the complex problems encountered in energy production, and utilization as well as environmental restoration and waste management. Ames Laboratory will continue to maintain a very significant and highly beneficial pre-college math and science education program which currently serves both teachers and students at the middle school and high school levels. Our technology transfer program is aided by joint efforts with ISU`s technology development and commercialization enterprise and will sustain concerted efforts to implement Cooperative Research and Development Agreements, industrially sponsored Work for Others projects. and scientific personnel exchanges with our various customers.« less

  19. International Materials Research Meeting in the Greater Region: “Current Trends in the Characterisation of Materials and Surface Modification”

    NASA Astrophysics Data System (ADS)

    2017-10-01

    Preface Dear ladies and gentlemen, On 6th and 7th of April 2017 took place the “International Materials Research Meeting in the Greater Region” at the Saarland University, Saarbrücken, Germany. This meeting corresponded to the 9th EEIGM International Conference on Advanced Materials Research and it was intended as a meeting place for researchers of the Greater Region as well as their partners of the different cooperation activities, like the EEIGM program, the ‘Erasmus Mundus’ Advanced Materials Science and Engineering Master program (AMASE), the ‘Erasmus Mundus’ Doctoral Program in Materials Science and Engineering (DocMASE) and the CREATe-Network. On this meeting, 72 participants from 15 countries and 24 institutions discussed and exchanged ideas on the latest trends in the characterization of materials and surface modifications. Different aspects of the material research of metals, ceramics, polymers and biomaterials were presented. As a conclusion of the meeting, the new astronaut of the European Space Agency Dr. Matthias Maurer, who is an alumni of the Saarland University and the EEIGM, held an exciting presentation about his activities. Following the publication of selected papers of the 2009 meeting in Volume 5 and 2012 meeting in Volume 31 of this journal, it is a great pleasure to present this selection of 9 articles to the readers of the IOP Conference Series: Materials Science and Engineering. The editors are thankful to all of the reviewers for reviewing the papers. Special praise is also given to the sponsors of the conference: European Commission within the program Erasmus Mundus (AMASE and DocMASE), Erasmus+ (AMASE), and Horizon2020 (CREATe-Network, Grant agreement No 644013): the DAAD (Alumni Program), and the German-French University (PhD-Track). List of Author signatures, Conference topics, Organization, Conference impressions and list of the participants are available in this PDF.

  20. In Brief: Science teaching certificate

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-11-01

    More than 200 educators will receive fellowships over the next 5 years to participate in NASA's Endeavor Science Teaching Certificate Project, the agency announced on 14 November. Through workshops, online and on-site graduate courses, and NASA educational materials, the project will expose educators to NASA science and engineering and support them in translating the information for use in classrooms. ``Through the program, educators will learn to deliver cutting-edge science into the classroom, promoting science, technology, engineering, and mathematics education,'' according to Joyce Winterton, assistant administrator for education at NASA Headquarters, in Washington, D. C. Project fellows will earn a certificate from Teachers College Innovations at Teachers College, Columbia University, New York, and graduate credit from other institutional partners. For more information, visit http://education.nasa.gov/home/index.html.

  1. Curriculum optimization of College of Optical Science and Engineering

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Zheng, Zhenrong; Wang, Kaiwei; Zheng, Xiaodong; Ye, Song; Zhu, Yuhui

    2017-08-01

    The optimized curriculum of College of Optical Science and Engineering is accomplished at Zhejiang University, based on new trends from both research and industry. The curriculum includes general courses, foundation courses such as mathematics and physics, major core courses, laboratory courses and several module courses. Module courses include optical system designing, optical telecommunication, imaging and vision, electronics and computer science, optoelectronic sensing and metrology, optical mechanics and materials, basics and extension. These curricula reflect the direction of latest researches and relates closely with optoelectronics. Therefore, students may combine flexibly compulsory courses with elective courses, and establish the personalized curriculum of "optoelectronics + X", according to their individual strengths and preferences.

  2. Energy and technology review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quirk, W.J.; Canada, J.; de Vore, L.

    1994-04-01

    This issue highlights the Lawrence Livermore National Laboratory`s 1993 accomplishments in our mission areas and core programs: economic competitiveness, national security, energy, the environment, lasers, biology and biotechnology, engineering, physics, chemistry, materials science, computers and computing, and science and math education. Secondary topics include: nonproliferation, arms control, international security, environmental remediation, and waste management.

  3. Research and Teaching: Project-Based Instruction with Future STEM Educators--An Interdisciplinary Approach

    ERIC Educational Resources Information Center

    Wilhelm, Jennifer

    2014-01-01

    This study documented the means by which STEM (science, technology, engineering, and mathematics) educators experienced the mathematics and science associated with understanding lunar phenomena. The article reports how well STEM education graduate students interacted with projectbased materials as they engaged in interdisciplinary teaching and…

  4. National Educators' Workshop: Update 2002 - Standard Experiments in Engineering, Materials Science, and Technology

    NASA Technical Reports Server (NTRS)

    Prior, Edwin J. (Compiler); Jacobs, James A. (Compiler); Chung, W. Richard (Compiler)

    2003-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 2002 held in San Jose, California, October 13-16,2002. This publication provides experiments and demonstrations that can serve as a valuable guide to faculty who are interested in useful activities for their students. The material was the result of years of research aimed at better methods of teaching technical subjects. The experiments developed by faculty, scientists, and engineers throughout the United States and abroad add to the collection from past workshops. They include a blend of experiments on new materials and traditional materials.

  5. NASA Tech Briefs, June 2000. Volume 24, No. 6

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Topics include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Test and Measurement; Physical Sciences; Materials; Computer Programs; Computers and Peripherals;

  6. An Overview of contributions of NASA Space Shuttle to Space Science and Engineering education

    NASA Astrophysics Data System (ADS)

    Lulla, Kamlesh

    2012-07-01

    This paper provides an indepth overview of the enormous contrbutions made by the NASA Space Shuttle Program to Space science and engineering education over the past thirty years. The author has served as one of the major contributors and editors of NASA book "Wings In Orbit: Scientific and Engineering Legacies of the Space Shuttle program" (NASA SP-2010-3409). Every Space Shuttle mission was an education mission: student involvement programs such as Get Away Specials housed in Shuttle payload allowed students to propose research and thus enrich their university education experience. School students were able to operate "EarthKAM" to learn the intricacies of orbital mechanics, earth viewing opportunities and were able to master the science and art of proposal writing and scientific collaboration. The purpose of this presentation is to introduce the global student and teaching community in space sciences and engineering to the plethora of educational resources available to them for engaging a wide variety of students (from early school to the undergraduate and graduate level and to inspire them towards careers in Space sciences and technologies. The volume "Wings In Orbit" book is one example of these ready to use in classroom materials. This paper will highlight the educational payloads, experiments and on-orbit classroom activities conducted for space science and engineering students, teachers and non-traditional educators. The presentation will include discussions on the science content and its educational relevance in all major disiciplines in which the research was conducted on-board the Space Shuttle.

  7. Green materials for sustainable development

    NASA Astrophysics Data System (ADS)

    Purwasasmita, B. S.

    2017-03-01

    Sustainable development is an integrity of multidiscipline concept combining ecological, social and economic aspects to construct a liveable human living system. The sustainable development can be support through the development of green materials. Green materials offers a unique characteristic and properties including abundant in nature, less toxic, economically affordable and versatility in term of physical and chemical properties. Green materials can be applied for a numerous field in science and technology applications including for energy, building, construction and infrastructures, materials science and engineering applications and pollution management and technology. For instance, green materials can be developed as a source for energy production. Green materials including biomass-based source can be developed as a source for biodiesel and bioethanol production. Biomass-based materials also can be transformed into advanced functionalized materials for advanced bio-applications such as the transformation of chitin into chitosan which further used for biomedicine, biomaterials and tissue engineering applications. Recently, cellulose-based material and lignocellulose-based materials as a source for the developing functional materials attracted the potential prospect for biomaterials, reinforcing materials and nanotechnology. Furthermore, the development of pigment materials has gaining interest by using the green materials as a source due to their unique properties. Eventually, Indonesia as a large country with a large biodiversity can enhance the development of green material to strengthen our nation competitiveness and develop the materials technology for the future.

  8. Picosecond Laser Pulse Interactions with Metallic and Semiconducting Surfaces

    DTIC Science & Technology

    1990-01-31

    Few Picoseconds," Nonlinear Opics and Ultrafast Phenomena, eds. R.R. Alfano and L.J. Rothberg, (Nova Publishers, NY 1990). J.K. Wang, P. Saeta, M...Etching," Materials Science and Engineering 97:325-328 (1988). Nonlinear Opics & Ultrafast Phenomena Eds. R.R. Alfano and L.J. Rothberg Publ. Nova, NY...Progress in Materials Science, ed. by J.W. Christian , P. Haasen and T.B. Massalski, Chalmers Anniversay Volume, 269, Pergamon (1981). 13. F. Spaepen

  9. Receptor control in mesenchymal stem cell engineering

    NASA Astrophysics Data System (ADS)

    Dalby, Matthew J.; García, Andrés J.; Salmeron-Sanchez, Manuel

    2018-03-01

    Materials science offers a powerful tool to control mesenchymal stem cell (MSC) growth and differentiation into functional phenotypes. A complex interplay between the extracellular matrix and growth factors guides MSC phenotypes in vivo. In this Review, we discuss materials-based bioengineering approaches to direct MSC fate in vitro and in vivo, mimicking cell-matrix-growth factor crosstalk. We first scrutinize MSC-matrix interactions and how the properties of a material can be tailored to support MSC growth and differentiation in vitro, with an emphasis on MSC self-renewal mechanisms. We then highlight important growth factor signalling pathways and investigate various materials-based strategies for growth factor presentation and delivery. Integrin-growth factor crosstalk in the context of MSC engineering is introduced, and bioinspired material designs with the potential to control the MSC niche phenotype are considered. Finally, we summarize important milestones on the road to MSC engineering for regenerative medicine.

  10. Naval research fellowships

    NASA Astrophysics Data System (ADS)

    The American Society for Engineering Education (ASEE) is seeking applicants for 40 fellowships that will be awarded by the Office of Naval Research (ONR) in 1984. This program is designed to increase the number of U.S. citizens doing graduate work in such fields as ocean engineering, applied physics, electrical engineering, computer science, naval architecture, materials science) and aerospace a n d mechanical engineering. The fellowships are awarded on the recommendation of a panel of scientists and engineers convened by the ASEE. The deadline for applications is February 15, 1984.The program is open to graduating seniors who already have or will shortly have baccalaureates in disciplines vital to the research aims of the Navy and critical to national defense. As a reflection of the quality of the program, 1983 fellows had an average cummulative grade point average of 3.88; nine had a perfect 4.0.

  11. Materials Science Experiments on the International Space Station

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1999-01-01

    The Performance Goal for NASA's Microgravity Materials Science Program reads "Use microgravity to establish and improve quantitative and predictive relationships between the structure, processing and properties of materials." The advent of the International Space Station will open up a new era in Materials Science Research including the ability to perform long term and frequent experiments in microgravity. As indicated the objective is to gain a greater understanding of issues of materials science in an environment in which the force of gravity can be effectively switched off. Thus gravity related issues of convection, buoyancy and hydrostatic forces can be reduced and the science behind the structure/processing/properties relationship can more easily be understood. The specific areas of research covered within the program are (1) the study of Nucleation and Metastable States, (2) Prediction and Control of Microstructure (including pattern formation and morphological stability), (3) Phase Separation and Interfacial Stability, (4) Transport Phenomena (including process modeling and thermophysical properties measurement), and (5) Crystal Growth, and Defect Generation and Control. All classes of materials, including metals and alloys, glasses and ceramics, polymers, electronic materials (including organic and inorganic single crystals), aerogels and nanostructures, are included in these areas. The principal experimental equipment available to the materials scientist on the International Space Station (ISS) will be the Materials Science Research Facility (MSRF). Each of these systems will be accommodated in a single ISS rack, which can operate autonomously, will accommodate telescience operations, and will provide real time data to the ground. Eventual plans call for three MSRF racks, the first of which will be shared with the European Space Agency (ESA). Under international agreements, ESA and other partners will provide some of the equipment, while NASA covers launch and integration costs. The MSRF facilities will include modular components, which can be exchanged to provide inserts specifically matched to the engineering requirements of the particular Principal Investigator. To defray costs and avoid duplication of engineering effort NASA is also pursuing the possibility of using facilities provided by international partners. By this means it is anticipated that all of the types of research outlined in the previous paragraph can be done on the ISS.

  12. Earth observations and global change decision making: A special bibliography, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The first section of the bibliography contains 294 bibliographic citations and abstracts of relevant reports, articles, and documents announced in 'Scientific and Technical Aerospace Reports (STAR)' and 'International Aerospace Abstracts (IAA)'. These abstracts are categorized by the following major subject divisions: aeronautics, astronautics, chemistry and materials, engineering, geosciences, life sciences, mathematical and computer sciences, physics, social sciences, space sciences and general. Following the abstract section, seven indexes are provided for further assistance.

  13. University of Maryland MRSEC - Collaborations

    Science.gov Websites

    . University of Maryland Materials Research Science and Engineering Center Home About Us Leadership , National Nanotechnology Lab, Neocera, NIST, Rowan University, Rutgers University, Seagate, Tokyo Tech

  14. 26 CFR 1.469-5T - Material participation (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... of health, law, engineering, architecture, accounting, actuarial science, performing arts, or... may be established by any reasonable means. Contemporaneous daily time reports, logs, or similar...

  15. 26 CFR 1.469-5T - Material participation (temporary).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... of health, law, engineering, architecture, accounting, actuarial science, performing arts, or... may be established by any reasonable means. Contemporaneous daily time reports, logs, or similar...

  16. Bourdieu and Academic Capitalism: Faculty "Habitus" in Materials Science and Engineering

    ERIC Educational Resources Information Center

    Mendoza, Pilar; Kuntz, Aaron M.; Berger, Joseph B.

    2012-01-01

    We present Bourdieu's notions of field, capital, "habitus," and strategy and how these concepts apply today in light of academic capitalism using an empirical study of faculty work in one specific field in engineering that exemplifies current tendencies brought by academic capitalism. We conclude with a discussion of practical implications.…

  17. Current Scenario of Ceramic Engineering Education in India

    ERIC Educational Resources Information Center

    Srivastava, Aaditya Ranjan; Bajpai, Shrish; Khare, Sushant

    2018-01-01

    Historical overview of ceramic development has been provided in the paper. It has been stated that the trail of ceramics has been rooted in Indus valley civilization. Advancement of materials leads to afflux of development in the fields of science and technology. Present paper deals with the realm of Ceramic Engineering, mainly focuses on…

  18. Dissemination of Continuing Education Materials Via Television Delivery Systems. Final Technical Report and Final Report.

    ERIC Educational Resources Information Center

    Munushian, Jack

    In 1972, the University of Southern California School of Engineering established a 4-channel interactive instructional television network. It was designed to allow employees of participating industries to take regular university science and engineering courses and special continuing education courses at or near their work locations. Final progress…

  19. Engineering noble metal nanomaterials for environmental applications

    NASA Astrophysics Data System (ADS)

    Li, Jingguo; Zhao, Tingting; Chen, Tiankai; Liu, Yanbiao; Ong, Choon Nam; Xie, Jianping

    2015-04-01

    Besides being valuable assets in our daily lives, noble metals (namely, gold, silver, and platinum) also feature many intriguing physical and chemical properties when their sizes are reduced to the nano- or even subnano-scale; such assets may significantly increase the values of the noble metals as functional materials for tackling important societal issues related to human health and the environment. Among which, designing/engineering of noble metal nanomaterials (NMNs) to address challenging issues in the environment has attracted recent interest in the community. In general, the use of NMNs for environmental applications is highly dependent on the physical and chemical properties of NMNs. Such properties can be readily controlled by tailoring the attributes of NMNs, including their size, shape, composition, and surface. In this feature article, we discuss recent progress in the rational design and engineering of NMNs with particular focus on their applications in the field of environmental sensing and catalysis. The development of functional NMNs for environmental applications is highly interdisciplinary, which requires concerted efforts from the communities of materials science, chemistry, engineering, and environmental science.

  20. I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source.

    PubMed

    Drakopoulos, Michael; Connolley, Thomas; Reinhard, Christina; Atwood, Robert; Magdysyuk, Oxana; Vo, Nghia; Hart, Michael; Connor, Leigh; Humphreys, Bob; Howell, George; Davies, Steve; Hill, Tim; Wilkin, Guy; Pedersen, Ulrik; Foster, Andrew; De Maio, Nicoletta; Basham, Mark; Yuan, Fajin; Wanelik, Kaz

    2015-05-01

    I12 is the Joint Engineering, Environmental and Processing (JEEP) beamline, constructed during Phase II of the Diamond Light Source. I12 is located on a short (5 m) straight section of the Diamond storage ring and uses a 4.2 T superconducting wiggler to provide polychromatic and monochromatic X-rays in the energy range 50-150 keV. The beam energy enables good penetration through large or dense samples, combined with a large beam size (1 mrad horizontally × 0.3 mrad vertically). The beam characteristics permit the study of materials and processes inside environmental chambers without unacceptable attenuation of the beam and without the need to use sample sizes which are atypically small for the process under study. X-ray techniques available to users are radiography, tomography, energy-dispersive diffraction, monochromatic and white-beam two-dimensional diffraction/scattering and small-angle X-ray scattering. Since commencing operations in November 2009, I12 has established a broad user community in materials science and processing, chemical processing, biomedical engineering, civil engineering, environmental science, palaeontology and physics.

  1. Engineering noble metal nanomaterials for environmental applications.

    PubMed

    Li, Jingguo; Zhao, Tingting; Chen, Tiankai; Liu, Yanbiao; Ong, Choon Nam; Xie, Jianping

    2015-05-07

    Besides being valuable assets in our daily lives, noble metals (namely, gold, silver, and platinum) also feature many intriguing physical and chemical properties when their sizes are reduced to the nano- or even subnano-scale; such assets may significantly increase the values of the noble metals as functional materials for tackling important societal issues related to human health and the environment. Among which, designing/engineering of noble metal nanomaterials (NMNs) to address challenging issues in the environment has attracted recent interest in the community. In general, the use of NMNs for environmental applications is highly dependent on the physical and chemical properties of NMNs. Such properties can be readily controlled by tailoring the attributes of NMNs, including their size, shape, composition, and surface. In this feature article, we discuss recent progress in the rational design and engineering of NMNs with particular focus on their applications in the field of environmental sensing and catalysis. The development of functional NMNs for environmental applications is highly interdisciplinary, which requires concerted efforts from the communities of materials science, chemistry, engineering, and environmental science.

  2. I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source

    PubMed Central

    Drakopoulos, Michael; Connolley, Thomas; Reinhard, Christina; Atwood, Robert; Magdysyuk, Oxana; Vo, Nghia; Hart, Michael; Connor, Leigh; Humphreys, Bob; Howell, George; Davies, Steve; Hill, Tim; Wilkin, Guy; Pedersen, Ulrik; Foster, Andrew; De Maio, Nicoletta; Basham, Mark; Yuan, Fajin; Wanelik, Kaz

    2015-01-01

    I12 is the Joint Engineering, Environmental and Processing (JEEP) beamline, constructed during Phase II of the Diamond Light Source. I12 is located on a short (5 m) straight section of the Diamond storage ring and uses a 4.2 T superconducting wiggler to provide polychromatic and monochromatic X-rays in the energy range 50–150 keV. The beam energy enables good penetration through large or dense samples, combined with a large beam size (1 mrad horizontally × 0.3 mrad vertically). The beam characteristics permit the study of materials and processes inside environmental chambers without unacceptable attenuation of the beam and without the need to use sample sizes which are atypically small for the process under study. X-ray techniques available to users are radiography, tomography, energy-dispersive diffraction, monochromatic and white-beam two-dimensional diffraction/scattering and small-angle X-ray scattering. Since commencing operations in November 2009, I12 has established a broad user community in materials science and processing, chemical processing, biomedical engineering, civil engineering, environmental science, palaeontology and physics. PMID:25931103

  3. Forensic engineering: applying materials and mechanics principles to the investigation of product failures.

    PubMed

    Hainsworth, S V; Fitzpatrick, M E

    2007-06-01

    Forensic engineering is the application of engineering principles or techniques to the investigation of materials, products, structures or components that fail or do not perform as intended. In particular, forensic engineering can involve providing solutions to forensic problems by the application of engineering science. A criminal aspect may be involved in the investigation but often the problems are related to negligence, breach of contract, or providing information needed in the redesign of a product to eliminate future failures. Forensic engineering may include the investigation of the physical causes of accidents or other sources of claims and litigation (for example, patent disputes). It involves the preparation of technical engineering reports, and may require giving testimony and providing advice to assist in the resolution of disputes affecting life or property.This paper reviews the principal methods available for the analysis of failed components and then gives examples of different component failure modes through selected case studies.

  4. Antiferromagnetism in Bulk Rutile RuO2

    NASA Astrophysics Data System (ADS)

    Berlijn, T.; Snijders, P. C.; Kent, P. R. C.; Maier, T. A.; Zhou, H.-D.; Cao, H.-B.; Delaire, O.; Wang, Y.; Koehler, M.; Weitering, H. H.

    While bulk rutile RuO2 has long been considered to be a Pauli paramagnet, we conclude it to host antiferromagnetism based on our combined theoretical and experimental study. This constitutes an important finding given the large amount of applications of RuO2 in the electrochemical and electronics industry. Furthermore the high onset temperature of the antiferromagnetism around 1000K together with the high electrical conductivity makes RuO2 unique among the ruthenates and among oxide materials in general. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  5. The Physics of Life and Quantum Complex Matter: A Case of Cross-Fertilization

    PubMed Central

    Poccia, Nicola; Bianconi, Antonio

    2011-01-01

    Progress in the science of complexity, from the Big Bang to the coming of humankind, from chemistry and biology to geosciences and medicine, and from materials engineering to energy sciences, is leading to a shift of paradigm in the physical sciences. The focus is on the understanding of the non-equilibrium process in fine tuned systems. Quantum complex materials such as high temperature superconductors and living matter are both non-equilibrium and fine tuned systems. These topics have been subbjects of scientific discussion in the Rome Symposium on the “Quantum Physics of Living Matter”. PMID:26791661

  6. KSC-02pd1513

    NASA Image and Video Library

    2002-10-11

    KENNEDY SPACE CENTER, FLA. -- Pete Engel, an engineering specialist in Wyle Laboratory's Nondestructive Testing Laboratory at KSC, explains the testing being performed on a 100-pound Mundrabilla meteorite sample. The one-of-a-kind meteorite was found 36 years ago in Australia and is on loan to Marshall Space Flight Center (MSFC) from the Smithsonian Institution's National Museum of Natural History. Dr. Donald Gillies, discipline scientist for materials science at MSFC's Microgravity Science and Applications Department, is the Principal Investigator. The studies may help provide the science community and industry with fundamental knowledge for use in the design of advanced materials.

  7. KSC-02pd1510

    NASA Image and Video Library

    2002-10-11

    KENNEDY SPACE CENTER, FLA. -- Pete Engel, an engineering specialist in Wyle Laboratory's Nondestructive Testing Laboratory at KSC, explains the testing being performed on a 100-pound Mundrabilla meteorite sample. The one-of-a-kind meteorite was found 36 years ago in Australia and is on loan to Marshall Space Flight Center (MSFC) from the Smithsonian Institution's National Museum of Natural History. Dr. Donald Gillies, discipline scientist for materials science at MSFC's Microgravity Science and Applications Department, is the Principal Investigator. The studies may help provide the science community and industry with fundamental knowledge for use in the design of advanced materials.

  8. Making the Transition to Three-Dimensional Teaching: An NGSS@NSTA Curator and Elementary Science Specialist Shares How to Evaluate Teaching Materials Using the EQuIP Rubric

    ERIC Educational Resources Information Center

    O'Day, Betsy

    2016-01-01

    Curriculum and lesson planning require the consideration of many things. With a shift to the "Next Generation Science Standards" ("NGSS"), integrating the dimensions of science and engineering practices, disciplinary core ideas, and crosscutting concepts becomes a focus of that planning. The author, Betsy O'Day, an elementary…

  9. Students' Understanding of the Special Theory of Relativity and Design for a Guided Visit to a Science Museum

    ERIC Educational Resources Information Center

    Guisasola, Jenaro; Solbes, Jordi; Barragues, Jose-Ignacio; Morentin, Maite; Moreno, Antonio

    2009-01-01

    The present paper describes the design of teaching materials that are used as learning tools in school visits to a science museum. An exhibition on "A century of the Special Theory of Relativity", in the Kutxaespacio Science Museum, in San Sebastian, Spain, was used to design a visit for first-year engineering students at the university…

  10. Sandia and General Motors: Advancing Clean Combustion Engines with

    Science.gov Websites

    Quantitative Risk Assessment Technical Reference for Hydrogen Compatibility of Materials Hydrogen Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs ARPA-E Basic Energy Sciences Materials

  11. Artificial Muscles Based on Electroactive Polymers as an Enabling Tool in Biomimetics

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    2007-01-01

    Evolution has resolved many of nature's challenges leading to working and lasting solutions that employ principles of physics, chemistry, mechanical engineering, materials science, and many other fields of science and engineering. Nature's inventions have always inspired human achievements leading to effective materials, structures, tools, mechanisms, processes, algorithms, methods, systems, and many other benefits. Some of the technologies that have emerged include artificial intelligence, artificial vision, and artificial muscles, where the latter is the moniker for electroactive polymers (EAPs). To take advantage of these materials and make them practical actuators, efforts are made worldwide to develop capabilities that are critical to the field infrastructure. Researchers are developing analytical model and comprehensive understanding of EAP materials response mechanism as well as effective processing and characterization techniques. The field is still in its emerging state and robust materials are still not readily available; however, in recent years, significant progress has been made and commercial products have already started to appear. In the current paper, the state-of-the-art and challenges to artificial muscles as well as their potential application to biomimetic mechanisms and devices are described and discussed.

  12. First principles calculations of thermal conductivity with out of equilibrium molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Puligheddu, Marcello; Gygi, Francois; Galli, Giulia

    The prediction of the thermal properties of solids and liquids is central to numerous problems in condensed matter physics and materials science, including the study of thermal management of opto-electronic and energy conversion devices. We present a method to compute the thermal conductivity of solids by performing ab initio molecular dynamics at non equilibrium conditions. Our formulation is based on a generalization of the approach to equilibrium technique, using sinusoidal temperature gradients, and it only requires calculations of first principles trajectories and atomic forces. We discuss results and computational requirements for a representative, simple oxide, MgO, and compare with experiments and data obtained with classical potentials. This work was supported by MICCoM as part of the Computational Materials Science Program funded by the U.S. Department of Energy (DOE), Office of Science , Basic Energy Sciences (BES), Materials Sciences and Engineering Division under Grant DOE/BES 5J-30.

  13. Dave Simms | NREL

    Science.gov Websites

    coming to NREL, Dave was an Air Force officer and led a variety of defense science and engineering efforts in fluid dynamics, combustion, structures, materials, nanotechnology, multidisciplinary design

  14. The status, recent progress and promise of superconducting materials for practical applications

    NASA Astrophysics Data System (ADS)

    Rowell, J. M.

    1989-03-01

    The author summarizes the progress in materials science and engineering that created today's superconducting technology. He reviews the state of the technology with conventional materials by looking at two particular applications: large-scale applications involving conductors, for example, magnets; and electronics and instrumentation applications. The state-of-the art is contrasted with the present understanding of the high-Tc oxide materials.

  15. A New Direction for the NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for the flight research environment. A summary will explain the concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program.

  16. Citrate-Based Biomaterials and Their Applications in Regenerative Engineering

    PubMed Central

    Tran, Richard T.; Yang, Jian; Ameer, Guillermo A.

    2015-01-01

    Advances in biomaterials science and engineering are crucial to translating regenerative engineering, an emerging field that aims to recreate complex tissues, into clinical practice. In this regard, citrate-based biomaterials have become an important tool owing to their versatile material and biological characteristics including unique antioxidant, antimicrobial, adhesive, and fluorescent properties. This review discusses fundamental design considerations, strategies to incorporate unique functionality, and examples of how citrate-based biomaterials can be an enabling technology for regenerative engineering. PMID:27004046

  17. Phase diagrams in materials science

    NASA Astrophysics Data System (ADS)

    Massalski, T. B.

    1989-08-01

    The Edward DeMille Campbell Memorial Lecture was established in 1926 as an annual lecture in memory of and in recognition of the outstanding scientific contributions to the metallurgical profession by a distinguished educator who was blind for all but two years of his professional life. It recognizes demonstrated ability in metallurgical science and engineering.

  18. Exploring Links between Pedagogical Knowledge Practices and Student Outcomes in STEM Education for Primary Schools

    ERIC Educational Resources Information Center

    Hudson, Peter; English, Lyn; Dawes, Les; King, Donna; Baker, Steve

    2015-01-01

    Science, technology, engineering, and mathematics (STEM) education is an emerging initiative in Australia, particularly in primary schools. This qualitative research aimed to understand Year 4 students' involvement in an integrated STEM education unit that focused on science concepts (e.g., states of matter, testing properties of materials) and…

  19. Alliance for NanoHealth (ANH) Training Program for the development of future generations of interdisciplinary scientists and collaborative research focused upon the advancement of nanomedicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorenstein, David

    The objectives of this program are to promote the mission of the Department of Energy (DOE) Science, Technology, Engineering, Math (STEM) Program by recruiting students to science and engineering disciplines with the intent of mentoring and supporting the next generation of scientists; to foster interdisciplinary and collaborative research under the sponsorship of ANH for the discovery and design of nano-based materials and devices with novel structures, functions, and properties; and to prepare a diverse work force of scientists, engineers, and clinicians by utilizing the unique intellectual and physical resources to develop novel nanotechnology paradigms for clinical application.

  20. Engines of alternative objectivity: Re-articulating the nature and value of participatory mental health organisations with the Hearing Voices Movement and Stepping Out Theatre Company.

    PubMed

    Blencowe, Claire; Brigstocke, Julian; Noorani, Tehseen

    2018-05-01

    Through two case studies, the Hearing Voices Movement and Stepping Out Theatre Company, we demonstrate how successful participatory organisations can be seen as 'engines of alternative objectivity' rather than as the subjective other to objective, biomedical science. With the term 'alternative objectivity', we point to collectivisations of experience that are different to biomedical science but are nonetheless forms of objectivity. Taking inspiration from feminist theory, science studies and sociology of culture, we argue that participatory mental health organisations generate their own forms of objectivity through novel modes of collectivising experience. The Hearing Voices Movement cultivates an 'activist science' that generates an alternative objective knowledge through a commitment to experimentation, controlling, testing, recording and sharing experience. Stepping Out distinguishes itself from drama therapy by cultivating an alternative objective culture through its embrace of high production values, material culture, aesthetic standards. A crucial aspect of participatory practice is overcoming alienation, enabling people to get outside of themselves, encounter material worlds and join forces with others.

  1. Nanotechnology Concepts at MSFC: Engineering Directorate

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar; Kaul, Raj; Shah, Sandeep; Smithers, Gweneth; Watson, Michael D.

    2000-01-01

    Nanotechnology is the art and science of building materials and devices at the ultimate level of finesse: atom by atom. Our nation's space program has needs for miniaturization of components, minimization of weight and maximization of performance, and nanotechnology will help us get there. MSFC - Engineering Directorate (ED) is committed to developing nanotechnology that will enable MSFC missions in space transportation, space science and space optics manufacturing. MSFC-ED has a dedicated group of technologists who are currently developing high pay-off nanotechnology concepts. This poster presentation will outline some of the concepts being developed at this time including, nanophase structural materials, carbon nanotube reinforced metal and polymer matrix composites, nanotube temperature sensors and aerogels. The poster will outline these concepts and discuss associated technical challenges in turning these concepts into real components and systems.

  2. Nanotechnology Concepts at Marshall Space Flight Center: Engineering Directorate

    NASA Technical Reports Server (NTRS)

    Bhat, B.; Kaul, R.; Shah, S.; Smithers, G.; Watson, M. D.

    2001-01-01

    Nanotechnology is the art and science of building materials and devices at the ultimate level of finesse: atom by atom. Our nation's space program has need for miniaturization of components, minimization of weight, and maximization of performance, and nanotechnology will help us get there. Marshall Space Flight Center's (MSFC's) Engineering Directorate is committed to developing nanotechnology that will enable MSFC missions in space transportation, space science, and space optics manufacturing. MSFC has a dedicated group of technologists who are currently developing high-payoff nanotechnology concepts. This poster presentation will outline some of the concepts being developed including, nanophase structural materials, carbon nanotube reinforced metal and polymer matrix composites, nanotube temperature sensors, and aerogels. The poster will outline these concepts and discuss associated technical challenges in turning these concepts into real components and systems.

  3. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1992-01-01

    The NASA-UVa Light Aerospace Alloy and Structure Technology (LAST) Program continues to maintain a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1992. The objectives of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of the next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with Langley researchers. Technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report cover topics including: (1) Mechanical and Environmental Degradation Mechanisms in Advance Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.

  4. Chemical Oxidative Polymerization of Polyaniline: A Practical Approach for Preparation of Smart Conductive Textiles

    ERIC Educational Resources Information Center

    Abu-Thabit, Nedal Y.

    2016-01-01

    Electrically conducting polymers are one of the promising alternative materials for technological applications in many interdisciplinary areas, including chemistry, material sciences, and engineering. This experiment was designed for providing undergraduate students with a quick and practical approach for preparation of a polyaniline-conducting…

  5. Computing Aspects of Interactive Video.

    ERIC Educational Resources Information Center

    Butcher, P. G.

    1986-01-01

    Describes design and production of the award-winning software used to control Great Britain's Open University Materials Science videodisc, the Teddy Bear Disc, which is used to teach undergraduate students about materials engineering. The disc is designed for use in one-week sessions, which students attend in July or August. (MBR)

  6. Self-Paced Physics, Course Materials.

    ERIC Educational Resources Information Center

    New York Inst. of Tech., Old Westbury.

    Samples of the Self-Paced Physics Course materials are presented in this collection for dissemination purposes. Descriptions are included of course objectives, characteristics, structures, and content. As a two-semester course of study for science and engineering sophomores, most topics are on a level comparable to that of classical physics by…

  7. Greener Biomimetic Approach to the Synthesis of Nanomaterials and Sustainable Applications of Nano-Catalysts

    EPA Science Inventory

    The generation of engineered nanomaterials represents a major breakthrough in material science and nanotechnology-based materials. These products have moved beyond the laboratory setting to the ‘real world’. More than 1000 of such products are currently on the market (www.nanote...

  8. Understanding and Controlling Living/Inorganic Interfaces to Enable Reconfigurable Switchable Materials

    DTIC Science & Technology

    2018-03-01

    of environmental conditions and surface treatment on binding affinity. 15. SUBJECT TERMS bacterial adhesion, genetically engineered proteins for...mannose binding both experimentally and in molecular dynamics simulation ............................................................ 6 Fig. 3 COMSOL...Research Laboratory (ARL) strengths (e.g., molecular biology/synthetic biology, biomolecular recognition, materials characterization and polymer science

  9. Making Materials Science and Engineering Data More Valuable Research Products (Postprint)

    DTIC Science & Technology

    2014-09-12

    uncertainties in the publishing market - place.b Also, there is a possibility that some for-profit publishers could try to restrict access to digital...Kaufman JG, Glatzman JS (eds) Computerization and networking of materials databases: Second Volume, ASTM STP 1106. American Society for Testing and

  10. Mechanoelectrically Activated Synthesis of Dense, Bulk Nanostructured, Complex Crystalline and Glassy Hard Materials

    DTIC Science & Technology

    2005-04-01

    Facultad de Quimica , Universidad Autonoma de Queretaro, Queretaro, Mexico, May 7, 2002. (Invited Seminar) "* Recent Advances in the Synthesis and...A. Munir, 14o Congresso Brasileiro de Engenharia e Ciencias dos Materiais (14th Brazilian Congress on Materials Science and Engineering), Sao Pedro

  11. Greener Biomimetic Approach to the Synthesis of Nanomaterials and Sustainable Applications of Nano-Catalysts (journal)

    EPA Science Inventory

    The generation of engineered nanomaterials represents a major breakthrough in material science and nanotechnology-based materials. These products have moved beyond the laboratory setting to the ‘real world’. More than 1000 of such products are currently on the market (www.nanote...

  12. Human resources in science and engineering: Policy implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggon, C.B.

    1995-12-31

    Recently, there has been much debate concerning the adequacy of the United States` (U.S.) human resources base to meet its future needs for science and engineering (S/E) talent. Science policy analysts - and scientists and engineers themselves - disagree about whether there will be any shortages of scientists and engineers, and if so, what they will mean for the U.S. Whether or not these shortages materialize, it is necessary for the U.S. to expand the pool from which it recruits its S/E talent. This paper addresses the question of how to increases the diversity of the S/E talent pool tomore » include those who are projected by the year 2000 to be the majority of entry-level workers in the U.S. workforce: women and racial/ethnic minorities. Market forces alone cannot increase the size and diversity of the U.S. S/E workforce. Policy intervention will continue to be required to increase the diversity of the S/E workforce.« less

  13. Noyce SWARMS Scholars and Two Professional Development Models (LASSI and RAMPED): Summer 2015, 2016, and 2017

    NASA Astrophysics Data System (ADS)

    Burrows, Andrea C.; Myers, Adam D.; Borowczak, Mike

    2018-06-01

    This poster showcases an astronomy professional development (PD) for 41 K-12 teachers. The project was entitled Launching Astronomy Standards and STEM Integration (LASSI). A project description (activities in the 18 months - Summer 2015 and 2016) for the astronomy, authentic science, and pre-service teacher opportunities is included. The PD team utilized real-world problems, participant-generated questions, science instruments, technology, evidence, communication, dissemination, and collaboration in the LASSI PD model. Computer science was a feature of the PD and the K-12 teacher participants showcased various methods of its use. Embracing an engineering process with an authentic astronomy PD allowed participants to make connections to current topics and create shareable projects. The PD team highlights teacher work from LASSI entitled - A Model for Determining Size of Objects in an Artificial Solar System. The Sustaining Wyoming's Advancing Reach in Mathematics and Science (SWARMS) Scholars (NSF Noyce funded) interacted with and used the materials from the LASSI PD. The poster highlights PD use from the LASSI participants and SWARMS Scholars as well as explains lessons learned to date as a follow-up PD Robotics, Applied Mathematics, Physics, and Engineering Design (RAMPED) was implemented in Summer 2017 and carried methods from LASSI. The LASSI and RAMPED PD teams included faculty from the College of Education, College of Engineering and Applied Science, College of Arts and Sciences, graduate students, and the teachers themselves. The PD teams created a website with these and other PD materials - UWpd.org - for others to view and change to meet their needs.

  14. ["TECHNIKA I NAUKA" ["SCIENCE AND TECHNOLOGY"] (1958-)--MAGAZINE OF THE ASSOCIATION OF POLISH ENGINEERS IN GREAT BRITAIN].

    PubMed

    Chwastyk-Kowalczyk, Jolanta

    2015-01-01

    This article presents the history of establishment, functioning and the role of "Science and Technology"--quarterly of the Association of Polish Engineers in Great Britain--in shaping Polish technical thought in the environment of Polish engineers and technicians living in exile. The analysis of the content of the journal published in London in the years 1958-2008 made it evident that this official scientific organ of Polish technical intelligentsia edited in 500 copies reaches members of engineering, technical and scientific milieu across many continents. Despite the fact that Polish language dominates in the articles and thanks to the interdisciplinary character of their content - science and technology, biology, the humanities, sociology and others--the journal makes it possible for the reader to participate in an intellectual adventure. "Science and Technology" was created in 1958 on the initiative of Eng. Prof. Roman Wajda in Great Britain, with support of other Polish technical associations abroad, and embraced the achievements and organisational life of the Polish technical milieu dispersed around the world. On the basis of the London Society's archive materials and old annual volumes of the journal, the author listed editors-in-chief, composition of editorial committees, collaborators, determined editing costs, changeable periodicity, successive print shops, seats of editorial office that always followed the Association in Great Britain. She also showed the effort of a handful of members of editorial committees, working on a voluntary basis to obtain materials for the journal; the role of the journal linking Polish engineers and technicians in exile and its function as a link with the Country, as well as its role in the sphere of information and propaganda. Finally, the author made an analysis of the journal's content, focusing on categories of articles published in "Science and Technology" in the years 1958-2008. Methods used by the author in the article: archival, analysis of the press content: qualitative and quantitative.

  15. Silk fibroin in tissue engineering.

    PubMed

    Kasoju, Naresh; Bora, Utpal

    2012-07-01

    Tissue engineering (TE) is a multidisciplinary field that aims at the in vitro engineering of tissues and organs by integrating science and technology of cells, materials and biochemical factors. Mimicking the natural extracellular matrix is one of the critical and challenging technological barriers, for which scaffold engineering has become a prime focus of research within the field of TE. Amongst the variety of materials tested, silk fibroin (SF) is increasingly being recognized as a promising material for scaffold fabrication. Ease of processing, excellent biocompatibility, remarkable mechanical properties and tailorable degradability of SF has been explored for fabrication of various articles such as films, porous matrices, hydrogels, nonwoven mats, etc., and has been investigated for use in various TE applications, including bone, tendon, ligament, cartilage, skin, liver, trachea, nerve, cornea, eardrum, dental, bladder, etc. The current review extensively covers the progress made in the SF-based in vitro engineering and regeneration of various human tissues and identifies opportunities for further development of this field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. NASA Tech Briefs, March 1996. Volume 20, No. 3

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Topics: Computer-Aided Design and Engineering; Electronic Components and Cicuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information; Books and Reports.

  17. Nicole Stott during MSRR Commissioning Activities

    NASA Image and Video Library

    2009-10-14

    ISS021-E-006184 (14 Oct. 2009) --- NASA astronaut Nicole Stott, Expedition 21 flight engineer, works with Materials Science Laboratory (MSL) hardware in the Destiny laboratory of the International Space Station.

  18. Material science and Condensed matter Physics. 8th International Conference. Abstracts.

    NASA Astrophysics Data System (ADS)

    Kulyuk, L. L.; Paladi, Florentin; Canter, Valeriu; Nikorich, Valentina; Filippova, Irina

    2016-08-01

    The book includes the abstracts of the communications presented at the 8th International Conference on Materials Science and Condensed Matter Physics (MSCMP 2016), a traditional biennial meeting organized by the Institute of Applied Physics of the Academy of Sciences of Moldova (IAP).A total of 346 abstracts has been included in the book. The Conference programm included plenary lectures, topical keynote lectures, contributed oral and poster presentations distributed into 7 sections: * Condensed Matter Theory; * Advanced Bulk Materials; * Design and Structural Characterization of Materials; * Solid State Nanophysics and Nanotechnology; * Energy Conversion and Storage. Solid State Devices; * Surface Engineering and Applied Electrochemistry; * Digital and Optical holography: Materials and Methods. The abstracts are arranged according to the sections mentioned above. The Abstracts book includes a table of matters at the beginning of the book and an index of authors at the finish of the book.

  19. SemMat: Federated Semantic Services Platform for Open materials Science and Engineering

    DTIC Science & Technology

    2017-01-01

    identified the following two important tasks to remedy the data heterogeneity challenge to promote data integration: (1) creating the semantic...sourced from the structural and bio -materials domains. For structural materials data, we reviewed and used MIL-HDBK-5J [11] and MIL-HDBK-17. Furthermore...documents about composite materials provided by our domain expert. Based on the suggestions given by domain experts in bio -materials, the following

  20. Piezoelectric and Electrostrictive Materials for Transducer Applications.

    DTIC Science & Technology

    1985-05-01

    Engineering, May 1984. "Characteristics of Japanese Multilayer Ceramic Capacitors" Kevin Dietz B.S. Ceramic Science and Engineering, May 1984. "Leucite...Proer es." Waer Res Bull. I 8) 1007-19 � ,’ Kimura. K Dot. S Nanam . and T Kawamura. ’A New Pietoeiectntc ’k E. Newntuam. 0 P Skinner. and L. E

  1. Children Designing & Engineering: Contextual Learning Units in Primary Design and Technology

    ERIC Educational Resources Information Center

    Hutchinson, Patricia

    2002-01-01

    The Children Designing & Engineering (CD&E) Project at the College of New Jersey is a collaborative effort of the College's Center for Design and Technology and the New Jersey Chamber of Commerce. The Project, funded by the National Science Foundation (NSF), has been charged to develop instructional materials for grades K-5. The twelve…

  2. Building up STEM: An Analysis of Teacher-Developed Engineering Design-Based STEM Integration Curricular Materials

    ERIC Educational Resources Information Center

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael

    2016-01-01

    Improving K-12 Science, Technology, Engineering, and Mathematics (STEM) education has a priority on numerous education reforms in the United States. To that end, developing and sustaining quality programs that focus on integrated STEM education is critical for educators. Successful implementation of any STEM program is related to the curriculum…

  3. European Science Notes. Volume 40, Number 3.

    DTIC Science & Technology

    1986-03-01

    to protein structures analysis and the UK Institute in Protein Engineering are discussed. Material 9ciences 9cole des Mine de Paris--France’s Premier...ellipsometry and for network analysis tation a.v.); (4) development of a meth- based on a microcomputer. A current R&D od for the rapid production of monoclon...Engineering, Cornell University, Ithaca, New York. Structure Analysis in Protein Engineering, K.M. Ulmer, University of Maryland, Adelphi, Maryland

  4. Metallic Scaffolds for Bone Regeneration

    PubMed Central

    Alvarez, Kelly; Nakajima, Hideo

    2009-01-01

    Bone tissue engineering is an emerging interdisciplinary field in Science, combining expertise in medicine, material science and biomechanics. Hard tissue engineering research is focused mainly in two areas, osteo and dental clinical applications. There is a lot of exciting research being performed worldwide in developing novel scaffolds for tissue engineering. Although, nowadays the majority of the research effort is in the development of scaffolds for non-load bearing applications, primarily using soft natural or synthetic polymers or natural scaffolds for soft tissue engineering; metallic scaffolds aimed for hard tissue engineering have been also the subject of in vitro and in vivo research and industrial development. In this article, descriptions of the different manufacturing technologies available to fabricate metallic scaffolds and a compilation of the reported biocompatibility of the currently developed metallic scaffolds have been performed. Finally, we highlight the positive aspects and the remaining problems that will drive future research in metallic constructs aimed for the reconstruction and repair of bone.

  5. Abstracts and research accomplishments of university coal research projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-06-01

    The Principal Investigators of the grants supported by the University Coal Research Program were requested to submit abstracts and highlight accomplishments of their projects in time for distribution at a grantees conference. This book is a compilation of the material received in response to the request. Abstracts discuss the following area: coal science, coal surface science, reaction chemistry, advanced process concepts, engineering fundamentals and thermodynamics, environmental science.

  6. Thermochemistry of CaO-MgO-Al2O3-SiO2 (CMAS) and Advanced Thermal and Environmental Barrier Coating Systems

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo; Zhu, Dongming

    2017-01-01

    CaO-MgO-Al2O3-SiO2 (CMAS) oxides are constituents in a broad number of materials and minerals which have recently inferred to discussions in materials science, planetary science, geochemistry and cosmochemistry communities. In materials science, there is increasing interest in the degradation studies of thermal (TBC) and environmental (EBC) barrier coatings of gas turbines by molten CMAS. CMAS minerals usually are carried by the intake air into gas turbines, e.g. in aircraft engines, and their deposits react at high temperatures (1000C) with the coating materials. This causes degradation and accelerated failure of the static and rotating components of the turbine engines. We discuss some preliminary results of the reactions between CMAS and Rare-Earth (RE Y, Yb, Dy, Gd, Nd and Sm) oxide stabilized ZrO2 or HfO2 systems, and the stability of the resulting oxides and silicates. Plasma sprayed hollow tube samples ( 2.2 mm and 26 mm height) were half filled with CMAS powder, wrapped and sealed with platinum foil, and heat treated at 1310 C for 5h. Samples were characterized by differential scanning calorimetry, X-ray diffraction and cross section electron microscopy analysis.

  7. Wind Energy Workforce Development: Engineering, Science, & Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Mastersmore » degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.« less

  8. Non-reciprocal geometric wave diode by engineering asymmetric shapes of nonlinear materials.

    PubMed

    Li, Nianbei; Ren, Jie

    2014-08-29

    Unidirectional nonreciprocal transport is at the heart of many fundamental problems and applications in both science and technology. Here we study the novel design of wave diode devices by engineering asymmetric shapes of nonlinear materials to realize the function of non-reciprocal wave propagations. We first show analytical results revealing that both nonlinearity and asymmetry are necessary to induce such non-reciprocal (asymmetric) wave propagations. Detailed numerical simulations are further performed for a more realistic geometric wave diode model with typical asymmetric shape, where good non-reciprocal wave diode effect is demonstrated. Finally, we discuss the scalability of geometric wave diodes. The results open a flexible way for designing wave diodes efficiently simply through shape engineering of nonlinear materials, which may find broad implications in controlling energy, mass and information transports.

  9. Above the weathering front: contrasting approaches to the study and classification of weathered mantle

    NASA Astrophysics Data System (ADS)

    Ehlen, Judy

    2005-04-01

    Weathered mantle comprises the materials above bedrock and below the soil. It can vary in thickness from millimeters to hundreds of meters, depending primarily on climate and parent material. Study of the weathered mantle comes within the realms of four disciplines: geology, geomorphology, soil science, and civil engineering, each of which uses a different approach to describe and classify the material. The approaches of engineers, geomorphologists, and geologists are contrasted and compared using example papers from the published literature. Soil scientists rarely study the weathering profile as such, and instead concentrate upon soil-forming processes and spatial distribution primarily in the solum. Engineers, including engineering geologists, study the stability and durability of the weathered mantle and the strength of the materials using sophisticated procedures to classify weathered materials, but their approach tends to be one-dimensional. Furthermore, they believe that the study of mineralogy and chemistry is not useful. Geomorphologists deal with weathering in terms of process—how the weathered mantle is formed—and with respect to landform evolution using a spatial approach. Geologists tend to ignore the weathered mantle because it is not bedrock, or to study its mineralogy and/or chemistry in the laboratory. I recommend that the approaches of the various disciplines be integrated—geomorphologists and geologists should consider using engineering weathering classifications, and geologists should adopt a spatial perspective to weathering, as should engineers and engineering geologists.

  10. Town Meeting on Plasma Physics at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    2015-11-01

    We invite you to the Town Meeting on the role of the National Science Foundation (NSF) in supporting basic and applied research in Plasma Physics in the U.S. The overarching goal of NSF is to promote the progress of science and to enable training of the next generation of scientists and engineers at US colleges and universities. In this context, the role of the NSF Physics Division in leading the nearly 20 year old NSF/DOE Partnership in Basic Plasma Science and Engineering serves as an example of the long history of NSF support for basic plasma physics research. Yet, the NSF interest in maintaining a healthy university research base in plasma sciences extends across the Foundation. A total of five NSF Divisions are participating in the most recent Partnership solicitation, and a host of other multi-disciplinary and core programs provide opportunities for scientists to perform research on applications of plasma physics to Space & Solar Physics, Astrophysics, Accelerator Science, Material Science, Plasma Medicine, and many sub-disciplines within Engineering. This Town Meeting will provide a chance to discuss the full range of relevant NSF funding opportunities, and to begin a conversation on the present and future role of NSF in stewarding basic plasma science and engineering research at US colleges and universities. We would like to particularly encourage early career scientists and graduate students to participate in this Town Meeting, though everyone is invited to join what we hope to be a lively discussion.

  11. Emerging Science and Research Opportunities for Metals and Metallic Nanostructures: A Report on the NSF MMN Workshop

    NASA Astrophysics Data System (ADS)

    Pollock, Tresa; Handwerker, Carol

    In the next decade, fundamental research in metals and metallic nanostructures (MMN) has the potential to continue to transform science into innovative materials, devices, and systems. This talk summarizes the findings of a workshop to identify emerging and potentially transformative research areas in MMN. The metals and metallic nanostructures (MMNs) workshop aimed to identify significant research trends, scientific fundamentals, and recent breakthroughs that can enable new or enhanced MMN performance, either alone or in a more complex materials system, for a wide range of applications. Additionally, the role that MMN research can play in high-priority research and development (R&D) areas such as the U.S. Materials Genome Initiative, the National Nanotechnology Initiative, the Advanced Manufacturing Initiative, and other similar initiatives that exist internationally was assessed. The workshop also addressed critical issues related to materials research instrumentation and the cyberinfrastructure for materials science research and education, as well as science, technology, engineering, and mathematics (STEM) workforce development, with emphasis on the United States but with an appreciation that similar challenges and opportunities for the materials community exist internationally.

  12. Students' explanations in complex learning of disciplinary programming

    NASA Astrophysics Data System (ADS)

    Vieira, Camilo

    Computational Science and Engineering (CSE) has been denominated as the third pillar of science and as a set of important skills to solve the problems of a global society. Along with the theoretical and the experimental approaches, computation offers a third alternative to solve complex problems that require processing large amounts of data, or representing complex phenomena that are not easy to experiment with. Despite the relevance of CSE, current professionals and scientists are not well prepared to take advantage of this set of tools and methods. Computation is usually taught in an isolated way from engineering disciplines, and therefore, engineers do not know how to exploit CSE affordances. This dissertation intends to introduce computational tools and methods contextualized within the Materials Science and Engineering curriculum. Considering that learning how to program is a complex task, the dissertation explores effective pedagogical practices that can support student disciplinary and computational learning. Two case studies will be evaluated to identify the characteristics of effective worked examples in the context of CSE. Specifically, this dissertation explores students explanations of these worked examples in two engineering courses with different levels of transparency: a programming course in materials science and engineering glass box and a thermodynamics course involving computational representations black box. Results from this study suggest that students benefit in different ways from writing in-code comments. These benefits include but are not limited to: connecting xv individual lines of code to the overall problem, getting familiar with the syntax, learning effective algorithm design strategies, and connecting computation with their discipline. Students in the glass box context generate higher quality explanations than students in the black box context. These explanations are related to students prior experiences. Specifically, students with low ability to do programming engage in a more thorough explanation process than students with high ability. This dissertation concludes proposing an adaptation to the instructional principles of worked-examples for the context of CSE education.

  13. Engineers' professional learning: a practice-theory perspective

    NASA Astrophysics Data System (ADS)

    Reich, Ann; Rooney, Donna; Gardner, Anne; Willey, Keith; Boud, David; Fitzgerald, Terry

    2015-07-01

    With the increasing challenges facing professional engineers working in more complex, global and interdisciplinary contexts, different approaches to understanding how engineers practice and learn are necessary. This paper draws on recent research in the social sciences from the field of workplace learning, to suggest that a practice-theory perspective on engineers' professional learning is fruitful. It shifts the focus from the attributes of the individual learner (knowledge, skills and attitudes) to the attributes of the practice (interactions, materiality, opportunities and challenges). Learning is thus more than the technical acquisition and transfer of knowledge, but a complex bundle of activities, that is, social, material, embodied and emerging. The paper is illustrated with examples from a research study of the learning of experienced engineers in the construction industry to demonstrate common practices - site walks and design review meetings - in which learning takes place.

  14. Laboratory Directed Research and Development FY2010 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, K J

    2011-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has at its core a primary national security mission - to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile without nuclear testing, and to prevent and counter the spread and use of weapons of mass destruction: nuclear, chemical, and biological. The Laboratory uses the scientific and engineering expertise and facilities developed for its primary mission to pursue advanced technologies to meet other important national security needs - homeland defense, military operations, and missile defense, for example - that evolve in response to emerging threats. For broader nationalmore » needs, LLNL executes programs in energy security, climate change and long-term energy needs, environmental assessment and management, bioscience and technology to improve human health, and for breakthroughs in fundamental science and technology. With this multidisciplinary expertise, the Laboratory serves as a science and technology resource to the U.S. government and as a partner with industry and academia. This annual report discusses the following topics: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; (6) Engineering and Manufacturing Processes; (7) Materials Science and Technology; Mathematics and Computing Science; (8) Nuclear Science and Engineering; and (9) Physics.« less

  15. Social Significance of Fundamental Science Common to all Mankind

    NASA Astrophysics Data System (ADS)

    Zel'Dovich, Ya. B.

    It is a challenge of science to play a great role in solution of the problem of meeting material and spiritual human demands. The argument is known that science has become a productive force. When characterizing economy of one or another country or region, it is a practice to speak about science-intensive works, i.e., those where production and competitiveness are directly related to a science level. The science-intensive works include, for example, production of microelectronic circuits and their application in computer and information science or production of pharmaceutical preparations using gene engineering. This list could be continued indefinitely…

  16. Biomaterials and scaffolds in reparative medicine

    NASA Technical Reports Server (NTRS)

    Chaikof, Elliot L.; Matthew, Howard; Kohn, Joachim; Mikos, Antonios G.; Prestwich, Glenn D.; Yip, Christopher M.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Most approaches currently pursued or contemplated within the framework of reparative medicine, including cell-based therapies, artificial organs, and engineered living tissues, are dependent on our ability to synthesize or otherwise generate novel materials, fabricate or assemble materials into appropriate 2-D and 3-D forms, and precisely tailor material-related physical and biological properties so as to achieve a desired clinical response. This paper summarizes the scientific and technological opportunities within the fields of biomaterials science and molecular engineering that will likely establish new enabling technologies for cellular and molecular therapies directed at the repair, replacement, or reconstruction of diseased or damaged organs and tissues.

  17. Large Scale GW Calculations on the Cori System

    NASA Astrophysics Data System (ADS)

    Deslippe, Jack; Del Ben, Mauro; da Jornada, Felipe; Canning, Andrew; Louie, Steven

    The NERSC Cori system, powered by 9000+ Intel Xeon-Phi processors, represents one of the largest HPC systems for open-science in the United States and the world. We discuss the optimization of the GW methodology for this system, including both node level and system-scale optimizations. We highlight multiple large scale (thousands of atoms) case studies and discuss both absolute application performance and comparison to calculations on more traditional HPC architectures. We find that the GW method is particularly well suited for many-core architectures due to the ability to exploit a large amount of parallelism across many layers of the system. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, as part of the Computational Materials Sciences Program.

  18. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    NASA Astrophysics Data System (ADS)

    Budney, C. J.; Lowes, L. L.; Sohus, A.; Wheeler, T.; Wessen, A.; Scalice, D.

    2010-12-01

    Sponsored by NASA’s Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor’s recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions, during which their mentors aid them in finalizing their mission design and instrument suite, and in making the necessary trade-offs to stay within the cost cap. Tours of JPL facilities highlight the end-to-end life cycle of a mission. At week’s end, students present their Concept Study to a “proposal review board” of JPL scientists and engineers and NASA Headquarters executives, who feed back the strengths and weaknesses of their proposal and mission design. The majority of students come from top US universities with planetary science or engineering programs, such as Brown University, MIT, Georgia Tech, University of Colorado, Caltech, Stanford, University of Arizona, UCLA, and University of Michigan. Almost a third of Planetary Science Summer School alumni from the last 10 years of the program are currently employed by NASA or JPL. The Planetary Science Summer School is implemented by the JPL Education Office in partnership with JPL’s Team X Project Design Center.

  19. Heritage Science: A Future-Oriented Cross-Disciplinary Field.

    PubMed

    Strlič, Matija

    2018-06-18

    "Heritage science is the study of interpretation and management of the material evidence of the humankind. It enables both society and individuals to exercise their right to cultural heritage and contributes to our understanding of who we are and our sense of place. Heritage science demonstrates its relevance to, as well as its deep roots in chemistry, and in other physical and engineering sciences …" Read more in the Guest Editorial by Matija Strlič. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Wirth Chair Honors NREL's Dan Arvizu | News | NREL

    Science.gov Websites

    National Laboratories in Albuquerque, New Mexico, leading organizations in energy technologies, material Telephone Laboratories. Arvizu earned a bachelor of science degree in mechanical engineering from New Mexico

  1. Research | Photovoltaic Research | NREL

    Science.gov Websites

    -V cells Hybrid tandems Polycrystalline Thin-Film PV CdTe solar cells CIGS solar cells Perovskites and Organic PV Perovskite solar cells Organic PV solar cells Advanced Materials, Devices, and Science Interfacial and Surface Science Reliability and Engineering Real-Time PV and Solar Resource

  2. News Release: NREL Names Four Scientists Senior Research Fellows | News |

    Science.gov Websites

    , initially as a postdoctoral researcher. Now a group manager in the Materials Science Center, Al-Jassim is a . A principal engineer and platform leader in the Fuels Performance and Combustion Science Group-a group he created, McCormick leads the research team for advanced biofuels R&D. His research has

  3. Technology 2001: The Second National Technology Transfer Conference and Exposition, volume 1

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Papers from the technical sessions of the Technology 2001 Conference and Exposition are presented. The technical sessions featured discussions of advanced manufacturing, artificial intelligence, biotechnology, computer graphics and simulation, communications, data and information management, electronics, electro-optics, environmental technology, life sciences, materials science, medical advances, robotics, software engineering, and test and measurement.

  4. Nuclear science abstracts (NSA) database 1948--1974 (on the Internet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Nuclear Science Abstracts (NSA) is a comprehensive abstract and index collection of the International Nuclear Science and Technology literature for the period 1948 through 1976. Included are scientific and technical reports of the US Atomic Energy Commission, US Energy Research and Development Administration and its contractors, other agencies, universities, and industrial and research organizations. Coverage of the literature since 1976 is provided by Energy Science and Technology Database. Approximately 25% of the records in the file contain abstracts. These are from the following volumes of the print Nuclear Science Abstracts: Volumes 12--18, Volume 29, and Volume 33. The database containsmore » over 900,000 bibliographic records. All aspects of nuclear science and technology are covered, including: Biomedical Sciences; Metals, Ceramics, and Other Materials; Chemistry; Nuclear Materials and Waste Management; Environmental and Earth Sciences; Particle Accelerators; Engineering; Physics; Fusion Energy; Radiation Effects; Instrumentation; Reactor Technology; Isotope and Radiation Source Technology. The database includes all records contained in Volume 1 (1948) through Volume 33 (1976) of the printed version of Nuclear Science Abstracts (NSA). This worldwide coverage includes books, conference proceedings, papers, patents, dissertations, engineering drawings, and journal literature. This database is now available for searching through the GOV. Research Center (GRC) service. GRC is a single online web-based search service to well known Government databases. Featuring powerful search and retrieval software, GRC is an important research tool. The GRC web site is at http://grc.ntis.gov.« less

  5. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  6. The Number of Scholarly Documents on the Public Web

    PubMed Central

    Khabsa, Madian; Giles, C. Lee

    2014-01-01

    The number of scholarly documents available on the web is estimated using capture/recapture methods by studying the coverage of two major academic search engines: Google Scholar and Microsoft Academic Search. Our estimates show that at least 114 million English-language scholarly documents are accessible on the web, of which Google Scholar has nearly 100 million. Of these, we estimate that at least 27 million (24%) are freely available since they do not require a subscription or payment of any kind. In addition, at a finer scale, we also estimate the number of scholarly documents on the web for fifteen fields: Agricultural Science, Arts and Humanities, Biology, Chemistry, Computer Science, Economics and Business, Engineering, Environmental Sciences, Geosciences, Material Science, Mathematics, Medicine, Physics, Social Sciences, and Multidisciplinary, as defined by Microsoft Academic Search. In addition, we show that among these fields the percentage of documents defined as freely available varies significantly, i.e., from 12 to 50%. PMID:24817403

  7. The number of scholarly documents on the public web.

    PubMed

    Khabsa, Madian; Giles, C Lee

    2014-01-01

    The number of scholarly documents available on the web is estimated using capture/recapture methods by studying the coverage of two major academic search engines: Google Scholar and Microsoft Academic Search. Our estimates show that at least 114 million English-language scholarly documents are accessible on the web, of which Google Scholar has nearly 100 million. Of these, we estimate that at least 27 million (24%) are freely available since they do not require a subscription or payment of any kind. In addition, at a finer scale, we also estimate the number of scholarly documents on the web for fifteen fields: Agricultural Science, Arts and Humanities, Biology, Chemistry, Computer Science, Economics and Business, Engineering, Environmental Sciences, Geosciences, Material Science, Mathematics, Medicine, Physics, Social Sciences, and Multidisciplinary, as defined by Microsoft Academic Search. In addition, we show that among these fields the percentage of documents defined as freely available varies significantly, i.e., from 12 to 50%.

  8. Tested Tools and Techniques for Promoting STEM Programming in Libraries: Fifteen Years of the Lunar and Planetary Institute's Explore Program

    NASA Astrophysics Data System (ADS)

    LaConte, K.; Shipp, S.; Shupla, C.; Shaner, A.; Buxner, S.; Canipe, M.; Jaksha, A.

    2015-11-01

    Libraries are evolving to serve the changing needs of their communities—and many now encompass science, technology, engineering, and mathematics (STEM) programming. For 15 years, the Lunar and Planetary Institute (LPI) has partnered with library staff to create over 100 hands-on Earth and space science and engineering activities. In-person and online librarian training has prepared a vibrant network of over 1000 informal educators. Program evaluation has shown that Explore! training increases participants' knowledge, and that participants actively use Explore! materials and feel more prepared to offer science and engineering experiences and more comfortable using related resources. Through training, participants become more committed to providing and advocating for science and engineering programming. Explore! serves as a model for effective product development and training practices for serving library staff, increasingly our partners in the advancement of STEM education. Specific approaches and tools that contributed to the success of Explore! are outlined here for adoption by community STEM experts—including professionals and hobbyists in STEM fields and STEM educators who are seeking to share their passion and experience with others through partnerships with libraries.

  9. A New Direction for NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)

    2001-01-01

    NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be included to explain the changing concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program. Finally, the paper will address the initial utilization schedule and strategy for the various materials science payloads including their corresponding hardware.

  10. The Electronic Encyclopedia of Earthquakes

    NASA Astrophysics Data System (ADS)

    Benthien, M.; Marquis, J.; Jordan, T.

    2003-12-01

    The Electronic Encyclopedia of Earthquakes is a collaborative project of the Southern California Earthquake Center (SCEC), the Consortia of Universities for Research in Earthquake Engineering (CUREE) and the Incorporated Research Institutions for Seismology (IRIS). This digital library organizes earthquake information online as a partner with the NSF-funded National Science, Technology, Engineering and Mathematics (STEM) Digital Library (NSDL) and the Digital Library for Earth System Education (DLESE). When complete, information and resources for over 500 Earth science and engineering topics will be included, with connections to curricular materials useful for teaching Earth Science, engineering, physics and mathematics. Although conceived primarily as an educational resource, the Encyclopedia is also a valuable portal to anyone seeking up-to-date earthquake information and authoritative technical sources. "E3" is a unique collaboration among earthquake scientists and engineers to articulate and document a common knowledge base with a shared terminology and conceptual framework. It is a platform for cross-training scientists and engineers in these complementary fields and will provide a basis for sustained communication and resource-building between major education and outreach activities. For example, the E3 collaborating organizations have leadership roles in the two largest earthquake engineering and earth science projects ever sponsored by NSF: the George E. Brown Network for Earthquake Engineering Simulation (CUREE) and the EarthScope Project (IRIS and SCEC). The E3 vocabulary and definitions are also being connected to a formal ontology under development by the SCEC/ITR project for knowledge management within the SCEC Collaboratory. The E3 development system is now fully operational, 165 entries are in the pipeline, and the development teams are capable of producing 20 new, fully reviewed encyclopedia entries each month. Over the next two years teams will complete 450 entries, which will populate the E3 collection to a level that fully spans earthquake science and engineering. Scientists, engineers, and educators who have suggestions for content to be included in the Encyclopedia can visit www.earthquake.info now to complete the "Suggest a Web Page" form.

  11. Analysis of Lightweight Materials for the AM2 System

    DTIC Science & Technology

    2014-06-01

    and fatigue behavior in magnesium alloys . Materials Science & Engineering A (Structural Materials: Properties , Microstructure and Processing ), v 434...Table 7. Tensile properties of the alloys AA2024 or the T3 and T81 temper designations (Kuo et al . 2005...using a powder metallurgy technique, such as a standard cold compacting press and sintering process . However, the fatigue life of the liquid-based

  12. Semiconductor Diamond Technology

    DTIC Science & Technology

    1991-12-31

    temperature technologically permits diamond applica- tion to materials which heretofore could not survive the temperature extremes. Scien- tifically, tle...Institute, Research Triangle Park. NC 27709 [3D. Huang, and KM.ekl I Department of Materials Science and Engineering, Pennsylvania State University...34, edited by g. Messier, J.T. Glass, J.E. Butler, and R. Roy ( Materials Research Society, Pittsburgh, PA, 1991). and Conf. Proc. 179th meeting of’ The

  13. Tu(r)ning weakness to strength: Mechanomutable bioinspired materials

    DTIC Science & Technology

    2017-04-03

    into Strength,” Bio-inspired Materials, Potsdam, Germany March 2012 - “Nonlinear behaviour of silk minimizes damage and begets spider web robustness...atoms to structures – how spiders turn weakness into strength,” Society of Engineering Science Meeting, Atlanta, GA Keynote Lecture October 2012...Georgia Tech, October 19, 2015, Atlanta, GA October 2015 DISTRIBUTION A: Distribution approved for public release. 8 - "Multiscale materials by

  14. Materials Advance Chemical Propulsion Technology

    NASA Technical Reports Server (NTRS)

    2012-01-01

    In the future, the Planetary Science Division of NASA's Science Mission Directorate hopes to use better-performing and lower-cost propulsion systems to send rovers, probes, and observers to places like Mars, Jupiter, and Saturn. For such purposes, a new propulsion technology called the Advanced Materials Bipropellant Rocket (AMBR) was developed under NASA's In-Space Propulsion Technology (ISPT) project, located at Glenn Research Center. As an advanced chemical propulsion system, AMBR uses nitrogen tetroxide oxidizer and hydrazine fuel to propel a spacecraft. Based on current research and development efforts, the technology shows great promise for increasing engine operation and engine lifespan, as well as lowering manufacturing costs. In developing AMBR, ISPT has several goals: to decrease the time it takes for a spacecraft to travel to its destination, reduce the cost of making the propulsion system, and lessen the weight of the propulsion system. If goals like these are met, it could result in greater capabilities for in-space science investigations. For example, if the amount (and weight) of propellant required on a spacecraft is reduced, more scientific instruments (and weight) could be added to the spacecraft. To achieve AMBR s maximum potential performance, the engine needed to be capable of operating at extremely high temperatures and pressure. To this end, ISPT required engine chambers made of iridium-coated rhenium (strong, high-temperature metallic elements) that allowed operation at temperatures close to 4,000 F. In addition, ISPT needed an advanced manufacturing technique for better coating methods to increase the strength of the engine chamber without increasing the costs of fabricating the chamber.

  15. Teaching Habitat and Animal Classification to Fourth Graders Using an Engineering-Design Model

    ERIC Educational Resources Information Center

    Marulcu, Ismail

    2014-01-01

    Background: The motivation for this work is built upon the premise that there is a need for research-based materials for design-based science instruction. In this paper, a small portion of our work investigating the impact of a LEGO[TM] engineering unit on fourth grade students' preconceptions and understanding of animals is presented. Purpose:…

  16. Proceedings ICASS 2017

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Schaaf, Peter

    2018-07-01

    This special issue of the high impact international peer reviewed journal Applied Surface Science represents the proceedings of the 2nd International Conference on Applied Surface Science ICASS held 12-16 June 2017 in Dalian China. The conference provided a forum for researchers in all areas of applied surface science to present their work. The main topics of the conference are in line with the most popular areas of research reported in Applied Surface Science. Thus, this issue includes current research on the role and use of surfaces in chemical and physical processes, related to catalysis, electrochemistry, surface engineering and functionalization, biointerfaces, semiconductors, 2D-layered materials, surface nanotechnology, energy, new/functional materials and nanotechnology. Also the various techniques and characterization methods will be discussed. Hence, scientific research on the atomic and molecular level of material properties investigated with specific surface analytical techniques and/or computational methods is essential for any further progress in these fields.

  17. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    NASA Astrophysics Data System (ADS)

    Lowes, L. L.; Budney, C. J.; Sohus, A.; Wheeler, T.; Urban, A.; NASA Planetary Science Summer School Team

    2011-12-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor's recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions, during which their mentors aid them in finalizing their mission design and instrument suite, and in making the necessary trade-offs to stay within the cost cap. Tours of JPL facilities highlight the end-to-end life cycle of a mission. At week's end, students present their Concept Study to a "proposal review board" of JPL scientists and engineers and NASA Headquarters executives, who feed back the strengths and weaknesses of their proposal and mission design. A survey of Planetary Science Summer School alumni administered in summer of 2011 provides information on the program's impact on students' career choices and leadership roles as they pursue their employment in planetary science and related fields. Preliminary results will be discussed during the session. Almost a third of the approximately 450 Planetary Science Summer School alumni from the last 10 years of the program are currently employed by NASA or JPL. The Planetary Science Summer School is implemented by the JPL Education Office in partnership with JPL's Team X Project Design Center.

  18. Integration of Research Into Grade Nine-Graduate Level Curricula

    NASA Astrophysics Data System (ADS)

    Bonner, J.; Callicott, K.; Page, C.

    2004-05-01

    Research on the Kolb Learning Cycle, engineering education, and recent cognitive learning research indicates that learning occurs through knowledge application. Moreover, experts in a given discipline will differ from novices with regard to their ability to transfer their knowledge by application to new contexts. We have developed a suite of educational opportunities to bridge the gap between research and the classroom, with activities spanning the educational spectrum from high school through graduate school. One mechanism for transferring of research into undergraduate/graduate curricula is through our National Science Foundation (NSF) funded Combined Research-Curriculum Development (CRCD) project ("Environmental Informatics in Coastal Margins"). This project modifies engineering curricula to provide the nation with the next generation of engineers who can utilize the latest environmental modeling tools. The project revises/creates three undergraduate courses forming the environmental informatics (EI) track of the civil engineering curriculum and two graduate courses integrating GIS and environmental measurements. Curriculum development efforts are guided by an expert team drawn from nearby campuses and both regional and national industry, and includes an expert in assessing the pedagogical value of the curriculum and developing suitable metrics to evaluate student learning experiences. Another NSF-funded project integrating research into an undergraduate educational setting is our Research Experience for Undergraduates (REU) project ("Undergraduate Research in Biodiversity and Ecological Processes in Fluctuating Environments"). Research includes overlapping topics in environmental engineering and life sciences. The summer research experience provides students an opportunity to integrate engineering and life science technologies and to the study of ecological processes associated with biodiversity and environmental quality. Students orally present their project and submit in-depth papers. Over twenty publications/proceedings papers have been generated thus far. A third project involves our collaborations with the ITS Center ("Information Technology in Science Center for Teaching and Learning") on the A&M campus. As an investment in "project team growing", the Center is collaborating with us to collect data on implementation of an engineering science and math enhancement module in Hearne Independent School District. The specific activity involves a CRCD engineering class and an educational psychology undergraduate class. The engineering students give group presentations, where each presentation addresses a scenario that focuses on an environmental topic presented in the class. The students present the technical material to the education students who serve as a non-technical lay audience, emulating a city council, for example. The education students adapt the material for presentation to high school students, working with mentor teachers to enhance content, relevance and hands on experience while learning to apply teaching pedagogy.

  19. Advances in bionanomaterials for bone tissue engineering.

    PubMed

    Scott, Timothy G; Blackburn, Gary; Ashley, Michael; Bayer, Ilker S; Ghosh, Anindya; Biris, Alexandru S; Biswas, Abhijit

    2013-01-01

    Bone is a specialized form of connective tissue that forms the skeleton of the body and is built at the nano and microscale levels as a multi-component composite material consisting of a hard inorganic phase (minerals) in an elastic, dense organic network. Mimicking bone structure and its properties present an important frontier in the fields of nanotechnology, materials science and bone tissue engineering, given the complex morphology of this tissue. There has been a growing interest in developing artificial bone-mimetic nanomaterials with controllable mineral content, nanostructure, chemistry for bone, cartilage tissue engineering and substitutes. This review describes recent advances in bionanomaterials for bone tissue engineering including developments in soft tissue engineering. The significance and basic process of bone tissue engineering along with different bionanomaterial bone scaffolds made of nanocomposites and nanostructured biopolymers/bioceramics and the prerequisite biomechanical functions are described. It also covers latest developments in soft-tissue reconstruction and replacement. Finally, perspectives on the future direction in nanotechnology-enabled bone tissue engineering are presented.

  20. Here and now: the intersection of computational science, quantum-mechanical simulations, and materials science

    NASA Astrophysics Data System (ADS)

    Marzari, Nicola

    The last 30 years have seen the steady and exhilarating development of powerful quantum-simulation engines for extended systems, dedicated to the solution of the Kohn-Sham equations of density-functional theory, often augmented by density-functional perturbation theory, many-body perturbation theory, time-dependent density-functional theory, dynamical mean-field theory, and quantum Monte Carlo. Their implementation on massively parallel architectures, now leveraging also GPUs and accelerators, has started a massive effort in the prediction from first principles of many or of complex materials properties, leading the way to the exascale through the combination of HPC (high-performance computing) and HTC (high-throughput computing). Challenges and opportunities abound: complementing hardware and software investments and design; developing the materials' informatics infrastructure needed to encode knowledge into complex protocols and workflows of calculations; managing and curating data; resisting the complacency that we have already reached the predictive accuracy needed for materials design, or a robust level of verification of the different quantum engines. In this talk I will provide an overview of these challenges, with the ultimate prize being the computational understanding, prediction, and design of properties and performance for novel or complex materials and devices.

  1. Non-Reciprocal Geometric Wave Diode by Engineering Asymmetric Shapes of Nonlinear Materials

    PubMed Central

    Li, Nianbei; Ren, Jie

    2014-01-01

    Unidirectional nonreciprocal transport is at the heart of many fundamental problems and applications in both science and technology. Here we study the novel design of wave diode devices by engineering asymmetric shapes of nonlinear materials to realize the function of non-reciprocal wave propagations. We first show analytical results revealing that both nonlinearity and asymmetry are necessary to induce such non-reciprocal (asymmetric) wave propagations. Detailed numerical simulations are further performed for a more realistic geometric wave diode model with typical asymmetric shape, where good non-reciprocal wave diode effect is demonstrated. Finally, we discuss the scalability of geometric wave diodes. The results open a flexible way for designing wave diodes efficiently simply through shape engineering of nonlinear materials, which may find broad implications in controlling energy, mass and information transports. PMID:25169668

  2. Using experimental design modules for process characterization in manufacturing/materials processes laboratories

    NASA Technical Reports Server (NTRS)

    Ankenman, Bruce; Ermer, Donald; Clum, James A.

    1994-01-01

    Modules dealing with statistical experimental design (SED), process modeling and improvement, and response surface methods have been developed and tested in two laboratory courses. One course was a manufacturing processes course in Mechanical Engineering and the other course was a materials processing course in Materials Science and Engineering. Each module is used as an 'experiment' in the course with the intent that subsequent course experiments will use SED methods for analysis and interpretation of data. Evaluation of the modules' effectiveness has been done by both survey questionnaires and inclusion of the module methodology in course examination questions. Results of the evaluation have been very positive. Those evaluation results and details of the modules' content and implementation are presented. The modules represent an important component for updating laboratory instruction and to provide training in quality for improved engineering practice.

  3. Review on the EFDA programme on tungsten materials technology and science

    NASA Astrophysics Data System (ADS)

    Rieth, M.; Boutard, J. L.; Dudarev, S. L.; Ahlgren, T.; Antusch, S.; Baluc, N.; Barthe, M.-F.; Becquart, C. S.; Ciupinski, L.; Correia, J. B.; Domain, C.; Fikar, J.; Fortuna, E.; Fu, C.-C.; Gaganidze, E.; Galán, T. L.; García-Rosales, C.; Gludovatz, B.; Greuner, H.; Heinola, K.; Holstein, N.; Juslin, N.; Koch, F.; Krauss, W.; Kurzydlowski, K. J.; Linke, J.; Linsmeier, Ch.; Luzginova, N.; Maier, H.; Martínez, M. S.; Missiaen, J. M.; Muhammed, M.; Muñoz, A.; Muzyk, M.; Nordlund, K.; Nguyen-Manh, D.; Norajitra, P.; Opschoor, J.; Pintsuk, G.; Pippan, R.; Ritz, G.; Romaner, L.; Rupp, D.; Schäublin, R.; Schlosser, J.; Uytdenhouwen, I.; van der Laan, J. G.; Veleva, L.; Ventelon, L.; Wahlberg, S.; Willaime, F.; Wurster, S.; Yar, M. A.

    2011-10-01

    All the recent DEMO design studies for helium cooled divertors utilize tungsten materials and alloys, mainly due to their high temperature strength, good thermal conductivity, low erosion, and comparably low activation under neutron irradiation. The long-term objective of the EFDA fusion materials programme is to develop structural as well as armor materials in combination with the necessary production and fabrication technologies for future divertor concepts. The programmatic roadmap is structured into four engineering research lines which comprise fabrication process development, structural material development, armor material optimization, and irradiation performance testing, which are complemented by a fundamental research programme on "Materials Science and Modeling". This paper presents the current research status of the EFDA experimental and testing investigations, and gives a detailed overview of the latest results on fabrication, joining, high heat flux testing, plasticity, modeling, and validation experiments.

  4. Micropipet manipulation of lipid membranes: Direct measurement of the material properties of a cohesive structure that is only two molecules thick

    NASA Technical Reports Server (NTRS)

    Needham, David

    1993-01-01

    The objectives are to demonstrate how we can make direct measurements of the mechanical properties of a special structure in biology, namely the lipid bilayer membrane, using a micromanipulation technique, and how these properties compare and contrast with 'more traditional' technological/engineering materials. Given that the investment in equipment and expertise to carry out these experiments is probably beyond the scope of most teaching labs, the described experiment is not intended as one that can actually be demonstrated in a student laboratory class. The intention behind presenting this work is to begin to raise awareness in the Material Science community about the material properties of biological material that form a new (to us) category of soft engineering materials that have dimensions on the nanoscale.

  5. Blending Education and Polymer Science: Semi Automated Creation of a Thermodynamic Property Database.

    PubMed

    Tchoua, Roselyne B; Qin, Jian; Audus, Debra J; Chard, Kyle; Foster, Ian T; de Pablo, Juan

    2016-09-13

    Structured databases of chemical and physical properties play a central role in the everyday research activities of scientists and engineers. In materials science, researchers and engineers turn to these databases to quickly query, compare, and aggregate various properties, thereby allowing for the development or application of new materials. The vast majority of these databases have been generated manually, through decades of labor-intensive harvesting of information from the literature; yet, while there are many examples of commonly used databases, a significant number of important properties remain locked within the tables, figures, and text of publications. The question addressed in our work is whether, and to what extent, the process of data collection can be automated. Students of the physical sciences and engineering are often confronted with the challenge of finding and applying property data from the literature, and a central aspect of their education is to develop the critical skills needed to identify such data and discern their meaning or validity. To address shortcomings associated with automated information extraction, while simultaneously preparing the next generation of scientists for their future endeavors, we developed a novel course-based approach in which students develop skills in polymer chemistry and physics and apply their knowledge by assisting with the semi-automated creation of a thermodynamic property database.

  6. Blending Education and Polymer Science: Semiautomated Creation of a Thermodynamic Property Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tchoua, Roselyne B.; Qin, Jian; Audus, Debra J.

    Structured databases of chemical and physical properties play a central role in the everyday research activities of scientists and engineers. In materials science, researchers and engineers turn to these databases to quickly query, compare, and aggregate various properties, thereby allowing for the development or application of new materials. The vast majority of these databases have been generated manually, through decades of labor-intensive harvesting of information from the literature, yet while there are many examples of commonly used databases, a significant number of important properties remain locked within the tables, figures, and text of publications. The question addressed in our workmore » is whether and to what extent the process of data collection can be automated. Students of the physical sciences and engineering are often confronted with the challenge of finding and applying property data from the literature, and a central aspect of their education is to develop the critical skills needed to identify such data and discern their meaning or validity. To address shortcomings associated with automated information extraction while simultaneously preparing the next generation of scientists for their future endeavors, we developed a novel course-based approach in which students develop skills in polymer chemistry and physics and apply their knowledge by assisting with the semiautomated creation of a thermodynamic property database.« less

  7. [Strategies to choose scaffold materials for tissue engineering].

    PubMed

    Gao, Qingdong; Zhu, Xulong; Xiang, Junxi; Lü, Yi; Li, Jianhui

    2016-02-01

    Current therapies of organ failure or a wide range of tissue defect are often not ideal. Transplantation is the only effective way for long time survival. But it is hard to meet huge patients demands because of donor shortage, immune rejection and other problems. Tissue engineering could be a potential option. Choosing a suitable scaffold material is an essential part of it. According to different sources, tissue engineering scaffold materials could be divided into three types which are natural and its modified materials, artificial and composite ones. The purpose of tissue engineering scaffold is to repair the tissues or organs damage, so could reach the ideal recovery in its function and structure aspect. Therefore, tissue engineering scaffold should even be as close as much to the original tissue or organs in function and structure. We call it "organic scaffold" and this strategy might be the drastic perfect substitute for the tissues or organs in concern. Optimized organization with each kind scaffold materials could make up for biomimetic structure and function of the tissue or organs. Scaffold material surface modification, optimized preparation procedure and cytosine sustained-release microsphere addition should be considered together. This strategy is expected to open new perspectives for tissue engineering. Multidisciplinary approach including material science, molecular biology, and engineering might find the most ideal tissue engineering scaffold. Using the strategy of drawing on each other strength and optimized organization with each kind scaffold material to prepare a multifunctional biomimetic tissue engineering scaffold might be a good method for choosing tissue engineering scaffold materials. Our research group had differentiated bone marrow mesenchymal stem cells into bile canaliculi like cells. We prepared poly(L-lactic acid)/poly(ε-caprolactone) biliary stent. The scaffold's internal played a part in the long-term release of cytokines which mixed with sustained-release nano-microsphere containing growth factors. What's more, the stent internal surface coated with glue/collagen matrix mixing layer containing bFGF and EGF so could supplying the early release of the two cytokines. Finally, combining the poly(L-lactic acid)/poly(ε-caprolactone) biliary stent with the induced cells was the last step for preparing tissue-engineered bile duct. This literature reviewed a variety of the existing tissue engineering scaffold materials and briefly introduced the impact factors on the characteristics of tissue engineering scaffold materials such as preparation procedure, surface modification of scaffold, and so on. We explored the choosing strategy of desired tissue engineering scaffold materials.

  8. 75 FR 66743 - U.S. Air Force Academy Board of Visitors Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ...'' initiative to renovate aging infrastructure; an overview of Academy science, technology, engineering... public, rosters that list the names of BoV members and any releasable materials presented during open...

  9. 49 CFR 107.402 - Application for designation as a certification agency.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... representation, or the knowing and willful concealment of a material fact, may subject the applicant to... fireworks or explosives and a degree in the physical sciences or engineering from an accredited university...

  10. National Educators' Workshop: Update 1998. Standard Experiments in Engineering, Materials Science, and Technology

    NASA Technical Reports Server (NTRS)

    Arrington, Ginger L. F. (Compiler); Gardner, James E. (Compiler); Jacobs, James A. (Compiler); Swyler, Karl J. (Compiler); Fine, Leonard W. (Compiler)

    1999-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 98. held at Brookhaven National Laboratory, Upton, New York on November 1-4, 1998.

  11. National Educators' Workshop. Update 1999: Standard Experiments in Engineering, Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Arrington, Ginger L. F. (Compiler); Gardner, James E. (Compiler); Jacobs, James A. (Compiler); Fillion, John E. (Compiler); Mallick, P. K. (Compiler)

    2000-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 99, held at DaimlerChrysler, Auburn Hills, Michigan, from October 31 - November 3, 1999.

  12. NASA Tech Briefs, April 1996. Volume 20, No. 4

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Topics covered include: Advanced Composites and Plastics; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information; Books and Reports.

  13. Introduction

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Wong, Terry T.

    2011-01-01

    It would be hard to argue against the fact that Integrated Computational Materials Engineering (ICME) is a fast growing discipline within material science and engineering. A quick scan of the proceedings from conferences such as Aeromat, Material Science and Technology, and the TMS Annual Meeting clearly shows it. What began a few years ago as one symposium has grown into multiple ICME related symposia at each of these conferences. As encouraging as the number of symposia being offered is the attendance at the symposia. For example, one of the ICME symposia at MS&T 10, the symposium in which this book is based, had five sessions which culminated in a panel discussion that was standing room only. In addition to the large, annual materials science and engineering conferences, smaller 1 to 2-day conferences/workshops sponsored by government agencies (e.g. AFRL and NIST) on specific aspects of ICME and by universities promoting their ICME work are regularly offered. And arguably the most significant news with regards to ICME and conferences is the July 2011 First World Congress on ICME. This five day TMS sponsored conference, specifically focused on ICME with an international advisory board of ICME leaders, shows how far ICME has spread across the globe. Evidence for the growth of ICME can also be found in Academia. The University Materials Council (UMC) is composed of department heads for material science and engineering from major U.S. and Canadian universities. Meeting twice a year to share best practices in order to strengthen both the engineering content [1] and the educational process, the UMC s agenda for their Spring 2010 meeting was dedicated to ICME [2]. This meeting was held in response to the growing awareness that the universities play a major role in the success of ICME and therefore need to develop ICME curriculum in order to meet that need. To aid educators in the development of ICME courses, NSF is funding a "Summer School" on ICME to be held at the University of Michigan in 2011 [3]. Northwestern University recently announced a MS Certificate Program in ICME [4]. Course work for this certificate begins in the Fall of 2011. Other signs that ICME is growing comes from the formation of ICME initiatives from work that did not start off with ICME in mind. One of the committees in ASM International is the Materials Properties Database Committee (MPDC). In the 2010 meeting of the MPDC, based on a study by ASM, the committee decided that it would create an ICME sub-committee in order to determine how ASM can meet the growing needs of the ICME community [5]. In 1999, the Air Force Research Laboratory (AFRL) created a consortium, the Metals Affordability Initiative (MAI), with members from both industry and government with a goal of reducing the cost and time to market of producing metal parts for aerospace applications [6].

  14. Nanomaterials and nanofabrication for biomedical applications

    NASA Astrophysics Data System (ADS)

    Cheng, Chao-Min; Chia-Wen Wu, Kevin

    2013-08-01

    Traditional boundaries between materials science and engineering and life sciences are rapidly disintegrating as interdisciplinary research teams develop new materials-science-based tools for exploring fundamental issues in both medicine and biology. With recent technological advances in multiple research fields such as materials science, cell and molecular biology and micro-/nano-technology, much attention is shifting toward evaluating the functional advantages of nanomaterials and nanofabrication, at the cellular and molecular levels, for specific, biomedically relevant applications. The pursuit of this direction enhances the understanding of the mechanisms of, and therapeutic potentials for, some of the most lethal diseases, including cardiovascular diseases, organ fibrosis and cancers. This interdisciplinary approach has generated great interest among researchers working in a wide variety of communities including industry, universities and research laboratories. The purpose of this focus issue in Science and Technology of Advanced Materials is to bridge nanotechnology and biology with medicine, focusing more on the applications of nanomaterials and nanofabrication in biomedically relevant issues. This focus issue, we believe, will provide a more comprehensive understanding of (i) the preparation of nanomaterials and the underlying mechanisms of nanofabrication, and (ii) the linkage of nanomaterials and nanofabrication with biomedical applications. The multidisciplinary focus issue that we have attempted to organize is of interest to various research fields including biomaterials and tissue engineering, bioengineering, nanotechnology and nanomaterials, i.e. chemistry, physics and engineering. Nanomaterials and nanofabrication topics addressed in this focus issue include sensing and diagnosis (e.g. immunosensing and diagnostic devices for diseases), cellular and molecular biology (e.g. probing cellular behaviors and stem cell differentiation) and drug delivery carriers (e.g. polymers, gold nanoparticles, Prussian blue nanoparticles, mesoporous silica nanoparticles and carbon-based nanomaterials). Here, we would like to show our deep appreciation to all authors and reviewers. Without their great help and contributions, this focus issue, including the review and original papers, would not have been published on schedule. This focus issue may not cover all issues in this emerging scientific field; however, we believe that our efforts have great potential 'to hurl a boulder to draw a jade' and ignite innovation and challenging discussion in the relevant scientific communities.

  15. Molecular biomimetics: utilizing nature's molecular ways in practical engineering.

    PubMed

    Tamerler, Candan; Sarikaya, Mehmet

    2007-05-01

    In nature, proteins are the machinery that accomplish many functions through their specific recognition and interactions in biological systems from single-celled to multicellular organisms. Biomolecule-material interaction is accomplished via molecular specificity, leading to the formation of controlled structures and functions at all scales of dimensional hierarchy. Through evolution, molecular recognition and, consequently, functions developed through successive cycles of mutation and selection. Using biology as a guide, we can now understand, engineer and control peptide-material interactions and exploit these to tailor novel materials and systems for practical applications. We adapted combinatorial biology protocols to display peptide libraries, either on the cell surface or on phages, to select short peptides specific to a variety of practical materials systems. Following the selection step, we determined the kinetics and stability of peptide binding experimentally to understand the bound peptide structure via modeling and its assembly via atomic force microscopy. The peptides were further engineered to have multiple repeats or their amino acid sequences varied to tailor their function. Both nanoparticles and flat inorganic substrates containing multimaterials patterned at the nano- and microscales were used for self-directed immobilization of molecular constructs. The molecular biomimetic approach opens up new avenues for the design and utilization of multifunctional molecular systems with wide ranging applications, from tissue engineering, drug delivery and biosensors, to nanotechnology and bioremediation. Here we give examples of protein-mediated functional materials in biology, peptide selection and engineering with affinity to inorganics, demonstrate potential utilizations in materials science, engineering and medicine, and describe future prospects.

  16. Research and Technology Report. Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)

    1996-01-01

    This issue of Goddard Space Flight Center's annual report highlights the importance of mission operations and data systems covering mission planning and operations; TDRSS, positioning systems, and orbit determination; ground system and networks, hardware and software; data processing and analysis; and World Wide Web use. The report also includes flight projects, space sciences, Earth system science, and engineering and materials.

  17. JPRS Report, Science & Technology, USSR: Materials Science

    DTIC Science & Technology

    1988-03-15

    another. It has developed and transferred to design institutes technological schemes of transportation systems for working deep levels at the Sarbay...manuscript received 1 Oct 84, in final version 19 May 86) pp 45-50 [Article by V.V. Shefel, engineer, Energomontazhproyekt Design -Technological...Institute, Moscow] [Abstract] Three variants of automatic argon-arc welding have been developed at the Energomontazh Design -Technological Institute

  18. European Science Notes Information Bulletin Reports on Current European and Middle Eastern Science

    DTIC Science & Technology

    1992-01-01

    Overcash MATERIALS Research and Development in the Abbey-Polymer Processing and Properties ................... 574 J. Magill Corrosion and Protection Centre...gressi• ely pursuing the development of powerful "* Software Engineering and microprocessors and communication chips. The Information Processing ...differential equations, processing , Europe has a number of fascinating weather forecasting) that are to be developed by a projects in distributed

  19. Development and validation of science, technology, engineering and mathematics (STEM) based instructional material

    NASA Astrophysics Data System (ADS)

    Gustiani, Ineu; Widodo, Ari; Suwarma, Irma Rahma

    2017-05-01

    This study is intended to examine the development and validation of simple machines instructional material that developed based on Science, Technology, Engineering and Mathematics (STEM) framework that provides guidance to help students learn and practice for real life and enable individuals to use knowledge and skills they need to be an informed citizen. Sample of this study consist of one class of 8th grader at a junior secondary school in Bandung, Indonesia. To measure student learning, a pre-test and post-test were given before and after implementation of the STEM based instructional material. In addition, a questionnaire of readability was given to examine the clarity and difficulty level of each page of instructional material. A questionnaire of students' response towards instructional material given to students and teachers at the end of instructional material reading session to measure layout aspects, content aspects and utility aspects of instructional material for being used in the junior secondary school classroom setting. The results show that readability aspect and students' response towards STEM based instructional material of STEM based instructional material is categorized as very high. Pretest and posttest responses revealed that students retained significant amounts information upon completion of the STEM instructional material. Student overall learning gain is 0.67 which is categorized as moderate. In summary, STEM based instructional material that was developed is valid enough to be used as educational materials necessary for conducting effective STEM education.

  20. Metals and Ceramics Division progress report for period ending December 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, D.F.; Weir, J.R. Jr.

    1993-04-01

    This report provides a brief overview of the activities and accomplishments of the division, whose purpose is to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by US DOE. Activities range from basic research to industrial research and technology transfer. The division (and the report) is divided into the following: Engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials, program activities, collaborative research facilities and technology transfer, and educational programs.

  1. Higher-Order Theory for Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Aboudi, J.; Pindera, M. J.; Arnold, Steven M.

    2001-01-01

    Functionally graded materials (FGM's) are a new generation of engineered materials wherein the microstructural details are spatially varied through nonuniform distribution of the reinforcement phase(s). Engineers accomplish this by using reinforcements with different properties, sizes, and shapes, as well as by interchanging the roles of the reinforcement and matrix phases in a continuous manner (ref. 1). The result is a microstructure that produces continuously or discretely changing thermal and mechanical properties at the macroscopic or continuum scale. This new concept of engineering the material's microstructure marks the beginning of a revolution both in the materials science and mechanics of materials areas since it allows one, for the first time, to fully integrate the material and structural considerations into the final design of structural components. Functionally graded materials are ideal candidates for applications involving severe thermal gradients, ranging from thermal structures in advanced aircraft and aerospace engines to computer circuit boards. Owing to the many variables that control the design of functionally graded microstructures, full exploitation of the FGM's potential requires the development of appropriate modeling strategies for their response to combined thermomechanical loads. Previously, most computational strategies for the response of FGM's did not explicitly couple the material's heterogeneous microstructure with the structural global analysis. Rather, local effective or macroscopic properties at a given point within the FGM were first obtained through homogenization based on a chosen micromechanics scheme and then subsequently used in a global thermomechanical analysis.

  2. Tissue engineering and regenerative medicine in applied research: a year in review of 2014.

    PubMed

    Lin, Xunxun; Huang, Jia; Shi, Yuan; Liu, Wei

    2015-04-01

    Tissue engineering and regenerative medicine (TERM) remains to be one of the fastest growing fields, which covers a wide scope of topics of both basic and applied biological researches. This overview article summarized the advancements in applied researches of TERM area, including stem cell-mediated tissue regeneration, material science, and TERM clinical trial. These achievements demonstrated the great potential of clinical regenerative therapy of tissue/organ disease or defect through stem cells and tissue engineering approaches.

  3. Mathematics and statistics research department. Progress report, period ending June 30, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lever, W.E.; Kane, V.E.; Scott, D.S.

    1981-09-01

    This report is the twenty-fourth in the series of progress reports of the Mathematics and Statistics Research Department of the Computer Sciences Division, Union Carbide Corporation - Nuclear Division (UCC-ND). Part A records research progress in biometrics research, materials science applications, model evaluation, moving boundary problems, multivariate analysis, numerical linear algebra, risk analysis, and complementary areas. Collaboration and consulting with others throughout the UCC-ND complex are recorded in Part B. Included are sections on biology and health sciences, chemistry, energy, engineering, environmental sciences, health and safety research, materials sciences, safeguards, surveys, and uranium resource evaluation. Part C summarizes the variousmore » educational activities in which the staff was engaged. Part D lists the presentations of research results, and Part E records the staff's other professional activities during the report period.« less

  4. The College Science Learning Cycle: An Instructional Model for Reformed Teaching

    PubMed Central

    Withers, Michelle

    2016-01-01

    Finding the time for developing or locating new class materials is one of the biggest barriers for instructors reforming their teaching approaches. Even instructors who have taken part in training workshops may feel overwhelmed by the task of transforming passive lecture content to engaging learning activities. Learning cycles have been instrumental in helping K–12 science teachers design effective instruction for decades. This paper introduces the College Science Learning Cycle adapted from the popular Biological Sciences Curriculum Study 5E to help science, technology, engineering, and mathematics faculty develop course materials to support active, student-centered teaching approaches in their classrooms. The learning cycle is embedded in backward design, a learning outcomes–oriented instructional design approach, and is accompanied by resources and examples to help faculty transform their teaching in a time-efficient manner. PMID:27909030

  5. Characterization of Nanophase Materials

    NASA Astrophysics Data System (ADS)

    Wang, Zhong Lin

    2000-01-01

    Engineering of nanophase materials and devices is of vital interest in electronics, semiconductors and optics, catalysis, ceramics and magnetism. Research associated with nanoparticles has widely spread and diffused into every field of scientific research, forming a trend of nanocrystal engineered materials. The unique properties of nanophase materials are entirely determined by their atomic scale structures, particularly the structures of interfaces and surfaces. Development of nanotechnology involves several steps, of which characterization of nanoparticles is indespensable to understand the behavior and properties of nanoparticles, aiming at implementing nanotechnolgy, controlling their behavior and designing new nanomaterials systems with super performance. The book will focus on structural and property characterization of nanocrystals and their assemblies, with an emphasis on basic physical approach, detailed techniques, data interpretation and applications. Intended readers of this comprehensive reference work are advanced graduate students and researchers in the field, who are specialized in materials chemistry, materials physics and materials science.

  6. Challenges and Opportunities in Interdisciplinary Materials Research Experiences for Undergraduates

    NASA Astrophysics Data System (ADS)

    Vohra, Yogesh; Nordlund, Thomas

    2009-03-01

    The University of Alabama at Birmingham (UAB) offer a broad range of interdisciplinary materials research experiences to undergraduate students with diverse backgrounds in physics, chemistry, applied mathematics, and engineering. The research projects offered cover a broad range of topics including high pressure physics, microelectronic materials, nano-materials, laser materials, bioceramics and biopolymers, cell-biomaterials interactions, planetary materials, and computer simulation of materials. The students welcome the opportunity to work with an interdisciplinary team of basic science, engineering, and biomedical faculty but the challenge is in learning the key vocabulary for interdisciplinary collaborations, experimental tools, and working in an independent capacity. The career development workshops dealing with the graduate school application process and the entrepreneurial business activities were found to be most effective. The interdisciplinary university wide poster session helped student broaden their horizons in research careers. The synergy of the REU program with other concurrently running high school summer programs on UAB campus will also be discussed.

  7. Gender Equity in Materials Science and Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angus Rockett

    At the request of the University Materials Council, a national workshop was convened to examine 'Gender Equity Issues in Materials Science and Engineering.' The workshop considered causes of the historic underrepresentation of women in materials science and engineering (MSE), with a goal of developing strategies to increase the gender diversity of the discipline in universities and national laboratories. Specific workshop objectives were to examine efforts to level the playing field, understand implicit biases, develop methods to minimize bias in all aspects of training and employment, and create the means to implement a broadly inclusive, family-friendly work environment in MSE departments.more » Held May 18-20, 2008, at the Conference Center at the University of Maryland, the workshop included heads and chairs of university MSE departments and representatives of the National Science Foundation (NSF), the Office of Basic Energy Sciences of the Department of Energy (DOE-BES), and the national laboratories. The following recommendations are made based on the outcomes of the discussions at the workshop. Many or all of these apply equally well to universities and national laboratories and should be considered in context of industrial environments as well. First, there should be a follow-up process by which the University Materials Council (UMC) reviews the status of women in the field of MSE on a periodic basis and determines what additional changes should be made to accelerate progress in gender equity. Second, all departments should strengthen documentation and enforcement of departmental procedures such that hiring, promotion, compensation, and tenure decisions are more transparent, that the reasons why a candidate was not selected or promoted are clear, and that faculty are less able to apply their biases to personnel decisions. Third, all departments should strengthen mentoring of junior faculty. Fourth, all departments must raise awareness of gender biases and work to eliminate hostile attitudes and environments that can make academic and national laboratory careers unattractive to women. Fifth, with respect to raising awareness among faculty, staff and students, a new type of training session should be developed that would be more effective in conveying the facts and consequences of gender bias than the conventional presentations typically available, which seem not to be highly effective in changing attitudes or behaviors. Sixth, it is proposed that the UMC establish a certification of 'family-friendly' or 'gender equivalent' institutions that would encourage organizations to meet standards for minimizing gender bias and promoting supportive work environments. Seventh, novel approaches to adjusting job responsibilities of faculty, staff, and students to permit them to deal with family/life issues are needed that do not carry stigmas. Finally, faculty and national laboratory staff need to promote the benefits of their careers to women so that a more positive image of the job of materials scientist or materials engineer is presented.« less

  8. West Europe Report, Science and Technology.

    DTIC Science & Technology

    1986-02-12

    developing new materials and energy sources, additional discoveries in the fields of aerodynamics and thermal engineering, in building " artificial ...matter of perfecting a reliable and simple diagnostic material to permit diabetics to monitor their own sugar balance at regular intervals. They also...fine chemicals 11. Fine chemicals and active substances 12. Pharmaceutical specialties. Bulk products: antibiotics, active substances, sweeteners

  9. Preface

    NASA Astrophysics Data System (ADS)

    De Hosson, Jeff Th. M.; Ali, Nasar; Fierro, Giuseppe; Aliofkhazraei, Mahmood; Chipara, Mircea

    2016-09-01

    The ;International Conference on Surfaces, Coatings and Nano-Structured Materials; (NANOSMAT) has rapidly emerged as the premier conference in the field of materials science, engineering, technology and all aspects of ;nano;. Since 2005, it has been very successfully organised in several European countries, including Portugal, Spain, Italy, France, Poland, Czech Republic, Ireland and also in USA, and in Asia, including Turkey and China.

  10. 415th Brookhaven Lecture

    ScienceCinema

    Ivan Bozovic

    2017-12-09

    "Atomic-Layer Engineering of Cuprate Superconductors." Copper-oxide compounds, called cuprates, show superconducting properties at 163 degrees Kelvin, the highest temperature of any known superconducting material. Cuprates are therefore among the "high-temperature superconductors" of extreme interest both to scientists and to industry. Research to learn their secrets is one of the hottest topics in the field of materials science.

  11. Preface

    NASA Astrophysics Data System (ADS)

    De Hosson, Jeff Th. M.; Ali, Nasar; Fierro, Giuseppe; Aliofkhazraei, Mahmood; Chipara, Mircea

    2017-11-01

    The ;International Conference on Surfaces, Coatings and Nano-Structured Materials; (NANOSMAT) has rapidly emerged as the premier conference in the field of materials science, engineering, technology and all aspects of ;nano;. Since 2005, it has been very successfully organised in several European countries, including Portugal, Spain, Italy, France, Poland, Czech Republic, Ireland, United Kingdom and also in USA, and in Asia, including Turkey and China.

  12. The Fact of the Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kippen, Karen Elizabeth; Montoya, Donald Raymond

    For more than 20 years the science and engineering capabilities of the nation’s Stockpile Stewardship Program have allowed the United States to sustain a safe, secure, and effective nuclear deterrent. Most of the problems identifi ed within the nuclear stockpile are related to its aging materials. MaRIE will advance this record of excellence in addressing such materials problems.

  13. The Role of Hydroxide and Metal Concentration on the Viscoelastic Properties of Metal Coordinated Gels

    NASA Astrophysics Data System (ADS)

    Cazzell, Seth; Holten-Andersen, Niels

    Nature uses metal binding amino acids to engineer mechanical properties. An example of this engineering can be found in the mussel byssal thread. This acellular thread contains reversible intermolecular protein-metal bonds, which allows the mussel to robustly anchor to rocks, while withstanding the mechanically demanding intertidal environment. Inspired by this metal-binding material, we present a synthetic hydrogel designed to mimic this bonding behavior. The mechanical properties of this hydrogel can be controlled independently by manipulating the amount of metal relative to the metal binding ligand, and the gel's pH. Here we report how high metal to ligand ratios and low pH can be used to induce the formation of a strong, slow relaxing gels. This gel has potential applications as an energy dissipating material, and furthers our understanding of the bio-inspired engineering techniques that are used to design viscoelastic soft materials. I was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  14. Laboratory experiments from the toy store

    NASA Technical Reports Server (NTRS)

    Mcclelland, H. T.

    1992-01-01

    The following is a laboratory experiment designed to further understanding of materials science. This material could be taught to a typical student of materials science or manufacturing at the high school level or above. The objectives of this experiment are as follows: (1) to qualitatively demonstrate the concepts of elasticity, plasticity, and the strain rate and temperature dependence of the mechanical properties of engineering materials; (2) to qualitatively demonstrate the basics of extrusion including material flow, strain rate dependence of defects, lubrication effects, and the making of hollow shapes by extrusion (the two parts may be two separate experiments done at different times when the respective subjects are covered); and (3) to demonstrate the importance of qualitative observations and the amount of information which can be gathered without quantitative measurements.

  15. Crystal Growth and Other Materials Physical Researches in Space Environment

    NASA Astrophysics Data System (ADS)

    Pan, Mingxiang

    Material science researches in space environment are based on reducing the effects of buoyancy driven transport, the effects of atomic oxygen, radiation, extremes of heat and cold and the ultrahigh vacuum, so as to unveil the underlying fundamental phenomena, lead maybe to new potential materials or new industrial processes and develop space techniques. Currently, research program on materials sciences in Chinese Manned Space Engineering (CMSE) is going on. More than ten projects related to crystal growth and materials processes are selected as candidates to be executed in Shenzhou spacecraft, Tiangong Space Laboratory and Chinese Space Station. In this talk, we will present some examples of the projects, which are being prepared and executed in the near future flight tasks. They are both basic and applied research, from discovery to technology.

  16. High Strength Steel Welding Research

    DTIC Science & Technology

    2005-05-27

    E.S.K. Menon, and M.G. Hall, "Sympathetic Nucleation: An Overview," Materials Science and Engineering B, Solid State Materials for Advanced Technology ...GTAW of Titanium Using Flux-cored Wire with Magnesium Fluoride Kook-soo Bang’, Greg Chirieleison 2, and Stephen Liu 2 1 Division of Advanced Materials...O CHAPTER I O INTRODUCTION * The application of advanced high strength low alloy (HSLA) steels has been * limited by the availability of suitable

  17. Materials Science and Technology Teachers Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry,more » physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.« less

  18. Applying ``intelligent`` materials for materials education: The Labless Lab{trademark}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrade, J.D.; Scheer, R.

    1994-12-31

    A very large number of science and engineering courses taught in colleges and universities today do not involve laboratories. Although good instructors incorporate class demonstrations, hands on homework, and various teaching aids, including computer simulations, the fact is that students in such courses often accept key concepts and experimental results without discovering them for themselves. The only partial solution to this problem has been increasing use of class demonstrations and computer simulations. The authors feel strongly that many complex concepts can be observed and assimilated through experimentation with properly designed materials. They propose the development of materials and specimens designedmore » specifically for education purposes. Intelligent and communicative materials are ideal for this purpose. Specimens which respond in an observable fashion to new environments and situations provided by the students/experimenter provide a far more effective materials science and engineering experience than readouts and data generated by complex and expensive machines, particularly in an introductory course. Modern materials can be designed to literally communicate with the observer. The authors embarked on a project to develop a series of Labless Labs{trademark} utilizing various degrees and levels of intelligence in materials. It is expected that such Labless Labs{trademark} would be complementary to textbooks and computer simulations and to be used to provide a reality for students in courses and other learning situations where access to a laboratory is non-existent or limited.« less

  19. PREFACE: 5th International EEIGM/AMASE/FORGEMAT Conference on Advanced Materials Research

    NASA Astrophysics Data System (ADS)

    Ayadi, Zoubir; Czerwiec, Thierry; Horwat, David; Jamart, Brigitte

    2009-07-01

    This issue of IOP Conference Series: Materials Science and Engineering, contains manuscripts of talks that will be presented at the 5th International EEIGM/AMASE/FORGEMAT Conference on Advanced Materials Research that will be held at the Ecole Européenne d'Ingénieurs en Génie des Matériaux - European School of Materials Science and Engineering (EEIGM) in Nancy on November 4-5 2009. The conference will be organized by the EEIGM. The aim of the conference is to bring together scientists from the six European universities involved in the EEIGM and in the ''Erasmus Mundus'' AMASE Master (Advanced Materials Science and Engineering) programmes and in the Tempus FORGEMAT European project: Nancy-Université - EEIGM/INPL (Nancy, France), Universität des Saarlandes (Saarbrücken, Germany), Universitat Politècnica de Catalunya - ETSEIB (Barcelona, Spain), Luleå Tekniska Universitet (Luleå, Sweden), Universidad Politecnica de Valencia - ETSII (Valencia, Spain) and AGH University of Science and Technology, (Kralow, Poland). This conference is also open to other universities who have strong links with the EEIGM and it will provide a forum for exchange of ideas, cooperation and future directions by means of regular presentations, posters and a round-table discussion. After careful refereeing of all manuscripts, equally shared between the four editors, 26 papers have been selected for publication in this issue. The papers are grouped together into different subject categories: polymers, metallurgy, ceramics, composites and nanocomposites, simulation and characterization. The editors would like to take this opportunity to thank all the participants who submitted their manuscripts during the conference and responded in time to the editors' request at every stage from reviewing to final acceptance. The editors are indebted to all the reviewers for painstakingly reviewing the papers at very short notice. Special thanks are called for the sponsors of the conference including EEIGM-INPL, Grand Nancy, Ville de Nancy, Region Lorraine, Université Franco-Allemande and Institut Jean Lamour. Proceedings Editors: Zoubir Ayadi, Thierry Czerwiec, David Horwat and Brigitte Jamart

  20. Development of 3D in Vitro Technology for Medical Applications

    PubMed Central

    Ou, Keng-Liang; Hosseinkhani, Hossein

    2014-01-01

    In the past few years, biomaterials technologies together with significant efforts on developing biology have revolutionized the process of engineered materials. Three dimensional (3D) in vitro technology aims to develop set of tools that are simple, inexpensive, portable and robust that could be commercialized and used in various fields of biomedical sciences such as drug discovery, diagnostic tools, and therapeutic approaches in regenerative medicine. The proliferation of cells in the 3D scaffold needs an oxygen and nutrition supply. 3D scaffold materials should provide such an environment for cells living in close proximity. 3D scaffolds that are able to regenerate or restore tissue and/or organs have begun to revolutionize medicine and biomedical science. Scaffolds have been used to support and promote the regeneration of tissues. Different processing techniques have been developed to design and fabricate three dimensional scaffolds for tissue engineering implants. Throughout the chapters we discuss in this review, we inform the reader about the potential applications of different 3D in vitro systems that can be applied for fabricating a wider range of novel biomaterials for use in tissue engineering. PMID:25299693

  1. NASA's New Science Education and Public Outreach Forums: Bringing Communities and Resources Together to Increase Effectiveness and Sustainability

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Mendez, B.; Shipp, S.; Schwerin, T.; Stockman, S.; Cooper, L. P.; Sharma, M.

    2010-01-01

    Scientists, engineers, educators, and public outreach professionals have a rich history of creatively using NASA's pioneering scientific discoveries and technology to engage and educate youth and adults nationwide in core science, technology, engineering, and mathematics topics. We introduce four new Science Education and Public Outreach Forums that will work in partnership with the community and NASA's Science Mission Directorate (SMD) to ensure that current and future SMD-funded education and public outreach (E/PO) activities form a seamless whole, with easy entry points for general public, students, K-12 formal and informal science educators, faculty, scientists, engineers, and E/PO professionals alike. The new Science Education and Public Outreach Forums support the astrophysics, heliophysics, planetary and Earth science divisions of NASA SMD in three core areas: 1) E/PO community engagement and development activities will provide clear paths of involvement for scientists and engineers interested - or potentially interested - in participating in SMD-funded E/PO activities. Collaborations with scientists and engineers are vital for infusing current, accurate SMD mission and research findings into educational products and activities. Forum activities will also yield readily accessible information on effective E/PO strategies, resources, and expertise; context for individual E/PO activities; and opportunities for collaboration. 2) A rigorous analysis of SMD-funded K-12 formal, informal, and higher education products and activities will help the community and SMD to understand how the existing collection supports education standards and audience needs, and to strategically identify areas of opportunity for new materials and activities. 3) Finally, a newly convened Coordinating Committee will work across the four SMD science divisions to address systemic issues and integrate related activities. By supporting the NASA E/PO community and facilitating coordination of E/PO activities, the NASA-SEPOF partnerships will lead to more effective, sustainable, and efficient utilization of NASA science discoveries and learning experiences.

  2. Current Research at the University of Chicago Enrico Fermi Institute and James Franck Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swordy, Simon

    2009-03-04

    These talks will give an overview of physics research at the University of Chicago centered in two research institutes. The Enrico Fermi Institute pursues research in some core areas of the physical sciences. These include cosmology, particle physics, theoretical physics, particle astrophysics, and cosmochemistry. The EFI talk will focus on some examples of these activities which together will provide a broad overview of EFI science. Research at the James Franck Institute centers on the intersection between physics, chemistry and materials science, with the aim to unravel the complex connections between structure and dynamics in condensed matter systems. The JFI ismore » also home to the Chicago Materials Research Science and Engineering Center. The JFI talk will provide highlights of current projects by JFI members.« less

  3. Current Research at the University of Chicago Enrico Fermi Institute and James Franck Institute

    ScienceCinema

    Swordy, Simon

    2017-12-22

    These talks will give an overview of physics research at the University of Chicago centered in two research institutes. The Enrico Fermi Institute pursues research in some core areas of the physical sciences. These include cosmology, particle physics, theoretical physics, particle astrophysics, and cosmochemistry. The EFI talk will focus on some examples of these activities which together will provide a broad overview of EFI science. Research at the James Franck Institute centers on the intersection between physics, chemistry and materials science, with the aim to unravel the complex connections between structure and dynamics in condensed matter systems. The JFI is also home to the Chicago Materials Research Science and Engineering Center. The JFI talk will provide highlights of current projects by JFI members.

  4. MIDWEST STRUCTURAL SCIENCES CENTER 2011 ANNUAL REPORT

    DTIC Science & Technology

    2011-10-01

    S. MICHAEL SPOTTSWOOD MICHAEL J. SHEPARD , Chief Senior Aerospace Engineer Analytical Mechanics Branch Analytical...49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Confe- rence, Chicago , IL, Apr. 7-10, 2008. AIAA 2008-2077. Efstathiou C

  5. Innovations in Nuclear Infrastructure and Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Bernard

    The decision to implement the Innovation in Nuclear Infrastructure and Engineering Program (INIE) was an important first step towards ensuring that the United States preserves its worldwide leadership role in the field of nuclear science and engineering. Prior to INIE, university nuclear science and engineering programs were waning, undergraduate student enrollment was down, university research reactors were being shut down, while others faced the real possibility of closure. For too long, cutting edge research in the areas of nuclear medicine, neutron scattering, radiochemistry, and advanced materials was undervalued and therefore underfunded. The INIE program corrected this lapse in focus andmore » direction and started the process of drawing a new blueprint with positive goals and objectives that supports existing as well the next generation of educators, students and researchers.« less

  6. Interview: An interview with Chad Mirkin: nanomedicine expert

    PubMed Central

    Mirkin, Chad

    2015-01-01

    Chad Mirkin speaks to Hannah Stanwix, Assistant Commissioning Editor Professor Chad Mirkin received his Bachelor of Science Degree in Chemistry from Dickinson College (PA, USA) in 1986. He holds a PhD in Chemistry from Pennsylvania State University (PA, USA) and was a Postdoctoral Fellow at the Massachusetts Institute of Technology (MA, USA). He subsequently moved to Northwestern University (IL, USA) as a Professor of Chemistry in 1991. In 2004, Professor Mirkin became Director of the International Institute for Nanotechnology and holds that post currently. He is also the George B Rathmann Professor of Chemistry, Professor of Chemical and Biological Engineering, Professor of Biomedical Engineering, Professor of Materials Science and Engineering and Professor of Medicine at Northwestern University. Professor Mirkin is a member of the National Academy of Engineering, the National Academy of Sciences, the Institute of Medicine, and the American Academy of Arts and Sciences. He is also currently a member of President Obama’s Council of Advisors for Science and Technology. Professor Mirkin is best known for his work on spherical nucleic acid nanoparticle conjugates and the invention of Dip-Pen Nanolithography. He has received over 70 awards and accolades for his accomplishments. Currently, based on total citations, Professor Mirkin is one of the most cited chemists and nanomedicine researchers in the world. He has authored over 500 publications, as well as over 440 patents and applications worldwide. PMID:22630148

  7. The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA);Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. This photo shows the completed center with the additional arnex (right of building) that added an additional 80,000 square feet (7,432 square meters) to the already existent NSSTC, nearly doubling the size of the core facility. At full capacity, the NSSTC tops 200,000 square feet (18,580 square meters) and houses approximately 550 employees.

  8. The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA); Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. An arnex, scheduled for completion by summer 2002, will add an additional 80,000 square feet (7,432 square meters) to NSSTC nearly doubling the size of the core facility. At full capacity, the completed NSSTC will top 200,000 square feet (18,580 square meters) and house approximately 550 employees.

  9. Engines of alternative objectivity: Re-articulating the nature and value of participatory mental health organisations with the Hearing Voices Movement and Stepping Out Theatre Company

    PubMed Central

    Blencowe, Claire; Brigstocke, Julian; Noorani, Tehseen

    2015-01-01

    Through two case studies, the Hearing Voices Movement and Stepping Out Theatre Company, we demonstrate how successful participatory organisations can be seen as ‘engines of alternative objectivity’ rather than as the subjective other to objective, biomedical science. With the term ‘alternative objectivity’, we point to collectivisations of experience that are different to biomedical science but are nonetheless forms of objectivity. Taking inspiration from feminist theory, science studies and sociology of culture, we argue that participatory mental health organisations generate their own forms of objectivity through novel modes of collectivising experience. The Hearing Voices Movement cultivates an ‘activist science’ that generates an alternative objective knowledge through a commitment to experimentation, controlling, testing, recording and sharing experience. Stepping Out distinguishes itself from drama therapy by cultivating an alternative objective culture through its embrace of high production values, material culture, aesthetic standards. A crucial aspect of participatory practice is overcoming alienation, enabling people to get outside of themselves, encounter material worlds and join forces with others. PMID:26112801

  10. 'Beautiful' unconventional synthesis and processing technologies of superconductors and some other materials.

    PubMed

    Badica, Petre; Crisan, Adrian; Aldica, Gheorghe; Endo, Kazuhiro; Borodianska, Hanna; Togano, Kazumasa; Awaji, Satoshi; Watanabe, Kazuo; Sakka, Yoshio; Vasylkiv, Oleg

    2011-02-01

    Superconducting materials have contributed significantly to the development of modern materials science and engineering. Specific technological solutions for their synthesis and processing helped in understanding the principles and approaches to the design, fabrication and application of many other materials. In this review, we explore the bidirectional relationship between the general and particular synthesis concepts. The analysis is mostly based on our studies where some unconventional technologies were applied to different superconductors and some other materials. These technologies include spray-frozen freeze-drying, fast pyrolysis, field-assisted sintering (or spark plasma sintering), nanoblasting, processing in high magnetic fields, methods of control of supersaturation and migration during film growth, and mechanical treatments of composite wires. The analysis provides future research directions and some key elements to define the concept of 'beautiful' technology in materials science. It also reconfirms the key position and importance of superconductors in the development of new materials and unconventional synthesis approaches.

  11. Planetary Exploration Education: As Seen From the Point of View of Subject Matter Experts

    NASA Astrophysics Data System (ADS)

    Milazzo, M. P.; Anderson, R. B.; Gaither, T. A.; Vaughan, R. G.

    2016-12-01

    Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) was selected as one of 27 new projects to support the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice. Our goal is to develop and disseminate out-of-school time (OST) curricular and related educator professional development modules that integrate planetary science, technology, and engineering. We are a partnership between planetary science Subject Matter Experts (SMEs), curriculum developers, science and engineering teacher professional development experts and OST teacher networks. The PLANETS team includes the Center for Science Teaching and Learning (CSTL) at Northern Arizona University (NAU); the U.S. Geological Survey (USGS) Astrogeology Science Center (Astrogeology), and the Boston Museum of Science (MOS). Here, we present the work and approach by the SMEs at Astrogeology. As part of this overarching project, we will create a model for improved integration of SMEs, curriculum developers, professional development experts, and educators. For the 2016 and 2017 Fiscal Years, our focus is on creating science material for two OST modules designed for middle school students. We will begin development of a third module for elementary school students in the latter part of FY2017. The first module focuses on water conservation and treatment as applied on Earth, the International Space Station, and at a fictional Mars base. This unit involves the science and engineering of finding accessible water, evaluating it for quality, treating it for impurities (i.e., dissolved and suspended), initial use, a cycle of greywater treatment and re-use, and final treatment of blackwater. The second module involves the science and engineering of remote sensing as it is related to Earth and planetary exploration. This includes discussion and activities related to the electromagnetic spectrum, spectroscopy and various remote sensing systems and techniques. In these activities and discussions we include observation and measurement techniques and tools, as well as collection and use of specific data of interest to scientists. These two modules will be tested and refined based on educator and student feedback, with expected final release in late summer of 2017.

  12. Simulated Microstructure-Sensitive Extreme Value Probabilities for High Cycle Fatigue of Duplex Ti-6Al-4V

    DTIC Science & Technology

    2010-04-01

    of texture on  mechanical   properties  in an advanced  titanium  alloy,"  Materials Science and Engineering A, vol. 319‐321, pp. 409‐414, 2001.  Simulated... mechanisms  of fatigue facet nucleation in  titanium  alloys," Fatigue  and Fracture of Engineering Materials and  Structures , vol. 31, pp. 949‐958, 2008...crack initiation in Ti‐6Al‐4V  titanium   alloy," Fatigue and Fracture of Engineering Materials and  Structures , vol. 25, pp. 527‐545, 2002.  [20]  I

  13. New bioproduction systems: from molecular circuits to novel reactor concepts in cell-free biotechnology.

    PubMed

    Rupp, Steffen

    2013-01-01

    : The last decades witnessed a strong growth in several areas of biotechnology, especially in fields related to health, as well as in industrial biotechnology. Advances in molecular engineering now enable biotechnologists to design more efficient pathways in order to convert a larger spectrum of renewable resources into industrially used biofuels and chemicals as well as into new pharmaceuticals and therapeutic proteins. In addition material sciences advanced significantly making it more and more possible to integrate biology and engineering. One of the key questions currently is how to develop new ways of engineering biological systems to cope with the complexity and limitations given by the cell. The options to integrate biology with classical engineering advanced cell free technologies in the recent years significantly. Cell free protein production using cellular extracts is now a well-established universal technology for production of proteins derived from many organisms even at the milligram scale. Among other applications it has the potential to supply the demand for a multitude of enzymes and enzyme variants facilitating in vitro metabolic engineering. This review will briefly address the recent achievements and limitations of cell free conversions. Especially, the requirements for reactor systems in cell free biotechnology, a currently underdeveloped field, are reviewed and some perspectives are given on how material sciences and biotechnology might be able to advance these new developments in the future.

  14. An Introduction to the Mechanical Properties of Ceramics

    NASA Astrophysics Data System (ADS)

    Green, David J.

    1998-09-01

    Over the past twenty-five years ceramics have become key materials in the development of many new technologies as scientists have been able to design these materials with new structures and properties. An understanding of the factors that influence their mechanical behavior and reliability is essential. This book will introduce the reader to current concepts in the field. It contains problems and exercises to help readers develop their skills. This is a comprehensive introduction to the mechanical properties of ceramics, and is designed primarily as a textbook for advanced undergraduates in materials science and engineering. It will also be of value as a supplementary text for more general courses and to industrial scientists and engineers involved in the development of ceramic-based products, materials selection and mechanical design.

  15. Quantum Hall ferroelectrics and nematics in multivalley systems

    NASA Astrophysics Data System (ADS)

    Sodemann, I.; Zhu, Zheng; Fu, Liang

    We study broken symmetry states in multivalley quantum Hall systems whose low energy dispersions are anisotropic. Interactions tend to select states that are maximally valley polarized and have nematic character. Interestingly, in certain systems like the recently studied Bismuth (111) surfaces, the formation of these nematic states can be accompanied by appearance of an spontaneous dipole moment, leading to formation of a quantum Hall ferroelectric state. We study these states combining mean field calculations with state of the art DMRG numerical approach, and demonstrate that skyrmion-type charged excitations are extremely robust to the presence of nematic anisotropy. Supported by DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Award DE-SC0010526. IS. supported by Pappalardo Fellowship. We used Extreme Science and Engineering Discovery Environment (XSEDE) under NSF Grant ACI-1053575.

  16. Research and Technology at the John F. Kennedy Space Center 1993

    NASA Technical Reports Server (NTRS)

    1993-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1993 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities. Major areas of research include material science, advanced software, industrial engineering, nondestructive evaluation, life sciences, atmospheric sciences, environmental technology, robotics, and electronics and instrumentation.

  17. KSC-2012-2760

    NASA Image and Video Library

    2012-05-14

    CAPE CANAVERAL, Fla. – Dr. LaNetra C. Tate, center, materials engineer at Kennedy Space Center, is surrounded by students as she welcomes them for their tour of the Space Life Sciences Lab facilities. The 26 honor students in chemistry and biology and their teachers got a chance to visit a number of high-tech labs at Kennedy as part of an effort to encourage students in the areas of science, technology, engineering and math. The tenth and eleventh grade students from Terry Parker High School in Jacksonville, Fla., visited a number of vastly different labs during their one-day tour. The group's visit to Kennedy was hosted by the Education Office as part of a nationwide effort by the National Lab Network to help introduce the nation's students to science careers. Photo credit: NASA/Jim Grossmann

  18. Exploratory Research and Development Fund, FY 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-05-01

    The Lawrence Berkeley Laboratory Exploratory R D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicinemore » and radiation biophysics.« less

  19. Physical and virtual laboratories in science and engineering education.

    PubMed

    de Jong, Ton; Linn, Marcia C; Zacharia, Zacharias C

    2013-04-19

    The world needs young people who are skillful in and enthusiastic about science and who view science as their future career field. Ensuring that we will have such young people requires initiatives that engage students in interesting and motivating science experiences. Today, students can investigate scientific phenomena using the tools, data collection techniques, models, and theories of science in physical laboratories that support interactions with the material world or in virtual laboratories that take advantage of simulations. Here, we review a selection of the literature to contrast the value of physical and virtual investigations and to offer recommendations for combining the two to strengthen science learning.

  20. Master Plan: The Introduction of Computer Science and Computer Related Instructional Programs, 1982-1985. Office of Instruction Publication Report No. 82-07.

    ERIC Educational Resources Information Center

    Veley, Victor F.; And Others

    This report presents a master plan for the development of computer science and computer-related programs at Los Angeles Trade-Technical College for 1982 through 1985. Introductory material outlines the main elements of the plan: to analyze existing computer courses, to create new courses in Laser Technology, Genetic Engineering, and Robotics; and…

  1. Laboratory directed research and development. FY 1995 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  2. Army Science and Technology Master Plan, Fiscal Year 1997 - Volume 2.

    DTIC Science & Technology

    1996-12-01

    areas. Microbiology, physiology, and pharmacology are essential sciences in the production of fermented and processed foods (bread, yogurt , beer, wine...engineering) are of significant interest to the U.S. Army, and include production of the material (including cell culture and fermentation ), downstream...remains strong in targeted delivery (associated with MOD laboratories). Hungary has an established capability in production of fermenters . Remediation

  3. Planetary Science Educational Materials for Out-of-School Time Educators

    NASA Astrophysics Data System (ADS)

    Barlow, Nadine G.; Clark, Joelle G.

    2017-10-01

    Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is a five-year NASA-funded (NNX16AC53A) interdisciplinary and cross-institutional partnership to develop and disseminate STEM out-of-school time (OST) curricular and professional development units that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning (CSTL) and Department of Physics and Astronomy (P&A) at Northern Arizona University, the U.S. Geological Survey Astrogeology Science Center (USGS ASC), and the Museum of Science Boston (MoS) are partners in developing, piloting, and researching the impact of three out-of-school time units. Planetary scientists at USGS ASC and P&A have developed two units for middle grades youth and one for upper elementary aged youth. The two middle school units focus on greywater recycling and remote sensing of planetary surfaces while the elementary unit centers on exploring space hazards. All units are designed for small teams of ~4 youth to work together to investigate materials, engineer tools to assist in the explorations, and utilize what they have learned to solve a problem. Youth participate in a final share-out with adults and other youth of what they learned and their solution to the problem. Curriculum pilot testing of the two middle school units has begun with out-of-school time educators. A needs assessment has been conducted nationwide among educators and evaluation of the curriculum units is being conducted by CSTL during the pilot testing. Based on data analysis, the project is developing and testing four tiers of professional support for OST educators. Tier 1 meets the immediate needs of OST educators to teach curriculum and include how-to videos and other direct support materials. Tier 2 provides additional content and pedagogical knowledge and includes short content videos designed to specifically address the content of the curriculum. Tier 3 elaborates on best practices in education and gives guidance on methods, for example, to develop cultural relevancy for underrepresented students. Tier 4 helps make connections to other NASA or educational products that support STEM learning in out of school settings.

  4. The Development of Nanotechnologies and Advanced Materials Industry in Science and Entrepreneurship: Socioeconomic and Technical Indicators. A Case Study of Latvia (Part One)

    NASA Astrophysics Data System (ADS)

    Geipele, I.; Geipele, S.; Staube, T.; Ciemleja, G.; Zeltins, N.

    2016-08-01

    The present scientific paper is the first part of two publications, where the authors obtain results from the scientific research presented in a series of works on the development of the nanotechnologies and advanced materials industry in science and entrepreneurship in Latvia. The study has a focus on finding proper socioeconomic and technical indicators. It provides resume on a scope of the study. The paper contains the developed structure of engineering economic indicator system, determined groups of indicators for assessment of the development of nanotechnologies and advanced materials industry in Latvia and results of the evaluation of the obtained statistics on the economic indicators.

  5. Debating science policy in the physics classroom.

    NASA Astrophysics Data System (ADS)

    Mayer, Shannon

    2010-03-01

    It is critically important that national and international science policy be scientifically grounded. To this end, the next generation of scientists and engineers will need to be technically competent, effective communicators of science, and engaged advisors in the debate and formulation of science policy. We describe three science policy debates developed for the physics classroom aimed at encouraging students to draw connections between their developing technical expertise and important science policy issues. The first debate considers the proposal for a 450-megawatt wind farm on public lands in Nantucket Sound and fits naturally into the curriculum related to alternative forms of energy production. The second debate considers national fuel-economy standards for sport-utility vehicles and can be incorporated into the curriculum related to heat engines. The third debate, suitable for the curriculum in optics, considers solid state lighting and implications of recent United States legislation that places stringent new energy-efficiency and reliability requirements on conventional lighting. The technical foundation for each of these debates fits naturally into the undergraduate physics curriculum and the material is suitable for a wide range of physics courses, including general science courses for non-majors.

  6. Microgravity

    NASA Image and Video Library

    2001-05-02

    Students from DuPont Manual High School in Louisville, Kentucky participated in a video-teleconference during the Pan-Pacific Basin Workshop on Microgravity Sciences held in Pasadena, California. The event originated at the California Science Center in Los Angeles. The DuPont Manual students patched in to the event through the distance learning lab at the Louisville Science Center. Education coordinator Twila Schneider (left) of Infinity Technology and NASA materials engineer Chris Cochrane prepare students for the on-line workshop. This image is from a digital still camera; higher resolution is not available.

  7. Epitaxial Growth of Molecular Crystals on van der Waals Substrates for High-Performance Organic Electronics

    DTIC Science & Technology

    2014-01-01

    Taniguchi Advanced Materials Laboratory National Institute for Materials Science 1–1 Namiki, Tsukuba , 305–0044 , Japan Prof. J. Hone Department...of Mechanical Engineering Columbia University New York , NY , 10027 , USA DOI : 10.1002/adma.201304973 The growth of high-quality organic...vdW heterostructures, combined with recent progress on large-area growth of layered materials , [ 6,7 ] provides new opportunities for the scalable

  8. Multiscale Issues and Simulation-Based Science and Engineering for Materials-by-Design

    DTIC Science & Technology

    2010-05-15

    planning and execution of programs to achieve the vision of ? material -by-design?. A key part of this effort has been to examine modeling at the mesoscale...15. SUBJECT TERMS Modelling & Simulation, Materials Design 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18...planning and execution of programs to achieve the vision of “ material -by-design”. A key part of this effort has been to examine modeling at the mesoscale. A

  9. 77 FR 19179 - Emerging Technology and Research Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ...: 8:30 a.m.-3:30 p.m. 1. ETRAC Committee Business. 2. Nanotechnology--Nanocoated Materials. 3. Science and Engineering Indicators. 4. ETRAC Committee Discussion. 5. Planning for Next Meeting. The open...

  10. Midwest Structural Sciences Center 2010 Annual Report

    DTIC Science & Technology

    2011-06-01

    S. MICHAEL SPOTTSWOOD MICHAEL J. SHEPARD , Chief Senior Aerospace Engineer Analytical Mechanics Branch Analytical Mechanics Branch Structures...Structural Dynamics & Materials Confe- rence, Chicago , IL, Apr. 7-10, 2008. AIAA 2008-2077. Efstathiou C., Carroll J., Sehitoglu H., Lambros J

  11. Acquisition of a High Voltage/High resolution Transmission Electron Microscope.

    DTIC Science & Technology

    1988-08-21

    microstructural design starts at the nanometer level. One such method is colloidal processing of materials with ultrafine particles in which particle...applications in the colloidal processing of ceramics with ultrafine particles . Aftervards, nanometer-sized particles will be synthesized and...STRUCTURAL CONTROL WITH ULTRAFINE PARTICLES Jun Liu. Mehmet Sarikaya, and I. A. Aksay Department of Materials Science and Engineering. Advanced

  12. A Laboratory to Demonstrate the Effect of Thermal History on Semicrystalline Polymers Using Rapid Scanning Rate Differential Scanning Calorimetry

    ERIC Educational Resources Information Center

    Badrinarayanan, Prashanth; Kessler, Michael R.

    2010-01-01

    A detailed understanding of the effect of thermal history on the thermal properties of semicrystalline polymers is essential for materials scientists and engineers. In this article, we describe a materials science laboratory to demonstrate the effect of parameters such as heating rate and isothermal annealing conditions on the thermal behavior of…

  13. The Effects of Self-Explanation and Metacognitive Instruction on Undergraduate Students' Learning of Statistics Materials Containing Multiple External Representations in a Web-Based Environment

    ERIC Educational Resources Information Center

    Hsu, Yu-Chang

    2009-01-01

    Students in the Science, Technology, Engineering, and Mathematics (STEM) fields are confronted with multiple external representations (MERs) in their learning materials. The ability to learn from and communicate with these MERs requires not only that students comprehend each representation individually but also that students recognize how the…

  14. Using Recreational Drones to Promote STEM Learning

    NASA Astrophysics Data System (ADS)

    Olds, S. E.; Dahlman, L. E.; Mooney, M. E.; Russell, R. M.

    2017-12-01

    The popularity of unmanned aerial vehicles (UAVs or drones) as a fun, inexpensive (<$100), and easy to fly "toy" continues to grow yearly. Flying drones can also serve as a great entry point to stimulate curiosity and encourage students to engage in science, technology, engineering, and math (STEM) investigations. Leveraging the popularity of recreational drones, the Education Committee at the Earth System Information Partners (ESIP) has worked with educators, researchers, and data scientists to develop a Drones for STEM initiative to inspire learners to use drones as a platform to collect and analyze local-scale data using lightweight cameras and/or sensors. In 2016, the initiative developed learning activity outlines and piloted the materials at an ESIP-sponsored teacher workshop and National Science Teacher Association sessions. After incorporating feedback from those sessions, ESIP collaborated with the UCAR Center for Science Education to publish finalized activities. Available on the UCAR SciEd website (SciEd.ucar.edu/engineering-activities), the activities encompass skills to measure drone payload, flight height, and velocity. Investigations also encourage the use of repeat photography, comparing images from drones and satellites, and creating 3D structure from motion (SfM) models from overlapping photographs. The site also offers general guidance to develop science projects or science fair investigations using Next Generation Science Standards science and engineering practices. To encourage the use of drones in STEM, UNAVCO and NOAA staff, sponsored by ESIP, led two hands-on workshops this summer; a three half-day workshop at the Earth Educator Rendezvous (EER) and a half-day session during the ESIP Educator Workshop. Participants practiced UAV flying skills, experimented with lightweight sensors, and learned about current drone-enhanced research projects. In small groups, they tested existing activities and designed student-focused investigations. Examples of projects include measuring aeromagnetics, developing 3D topographic models, creating vertical profiles over various land-surfaces at different temporal intervals, and developing a multi-semester drone-focused curriculum. This presentation will elaborate upon the workshops, learning materials, and insights.

  15. Bibliography of ceramic extrusion and plasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janney, M.A.; Vance, M.C.; Jordan, A.C.

    A comprehensive bibliography of ceramic extrusion and plasticity has been compiled. Over 670 abstracts are included covering the period 1932 to 1984. Citations cover a wide range of interests from basic science investigations to engineering ''tips'' and include references to brick and tile, whitewares, technical ceramics, theoretical models, engineering analyses, forming, drying, and raw materials. In addition to the citations, there are numerous indices to make the bibliography easy to use.

  16. Interdisciplinary Student/Teacher Materials in Energy, the Environment, and the Economy: 3, Energy, Engines, and the Industrial Revolution, Grades 8, 9.

    ERIC Educational Resources Information Center

    Childs, Barbara; And Others

    This instructional unit for grades 8-9 combines science and social studies in a look at the broad social and economic upheavals that took place during the industrial revolution, giving special emphasis to the role of energy. The invention and development of the steam engine is highlighted in one lesson. Other lessons show how the industrial…

  17. Around Marshall

    NASA Image and Video Library

    2002-05-29

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA); Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. An arnex, scheduled for completion by summer 2002, will add an additional 80,000 square feet (7,432 square meters) to NSSTC nearly doubling the size of the core facility. At full capacity, the completed NSSTC will top 200,000 square feet (18,580 square meters) and house approximately 550 employees.

  18. Around Marshall

    NASA Image and Video Library

    2003-04-09

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA);Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. This photo shows the completed center with the additional arnex (right of building) that added an additional 80,000 square feet (7,432 square meters) to the already existent NSSTC, nearly doubling the size of the core facility. At full capacity, the NSSTC tops 200,000 square feet (18,580 square meters) and houses approximately 550 employees.

  19. Liquid Metals as Plasma-facing Materials for Fusion Energy Systems: From Atoms to Tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Howard A.; Koel, Bruce E.; Bernasek, Steven L.

    The objective of our studies was to advance our fundamental understanding of liquid metals as plasma-facing materials for fusion energy systems, with a broad scope: from atoms to tokamaks. The flow of liquid metals offers solutions to significant problems of the plasma-facing materials for fusion energy systems. Candidate metals include lithium, tin, gallium, and their eutectic combinations. However, such liquid metal solutions can only be designed efficiently if a range of scientific and engineering issues are resolved that require advances in fundamental fluid dynamics, materials science and surface science. In our research we investigated a range of significant and timelymore » problems relevant to current and proposed engineering designs for fusion reactors, including high-heat flux configurations that are being considered by leading fusion energy groups world-wide. Using experimental and theoretical tools spanning atomistic to continuum descriptions of liquid metals, and bridging surface chemistry, wetting/dewetting and flow, our research has advanced the science and engineering of fusion energy materials and systems. Specifically, we developed a combined experimental and theoretical program to investigate flows of liquid metals in fusion-relevant geometries, including equilibrium and stability of thin-film flows, e.g. wetting and dewetting, effects of electromagnetic and thermocapillary fields on liquid metal thin-film flows, and how chemical interactions and the properties of the surface are influenced by impurities and in turn affect the surface wetting characteristics, the surface tension, and its gradients. Because high-heat flux configurations produce evaporation and sputtering, which forces rearrangement of the liquid, and any dewetting exposes the substrate to damage from the plasma, our studies addressed such evaporatively driven liquid flows and measured and simulated properties of the different bulk phases and material interfaces. The range of our studies included (i) quantum mechanical calculations that allow inclusion of many thousands of atoms for the characterization of the interface of liquid metals exposed to continuous bombardment by deuterium and tritium as expected in fusion, (ii) molecular dynamics studies of the phase behavior of liquid metals, which (a) utilize thermodynamic properties computed using our quantum mechanical calculations and (b) establish material and wetting properties of the liquid metals, including relevant eutectics, (iii) experimental investigations of the surface science of liquid metals, interacting both with the solid substrate as well as gaseous species, and (iv) fluid dynamical studies that incorporate the material and surface science results of (ii) and (iii) in order to characterize flow in capillary porous materials and the thin-film flow along curved boundaries, both of which are potentially major components of plasma-facing materials. The outcome of these integrated studies was new understanding that enables developing design rules useful for future developments of the plasma-facing components critical to the success of fusion energy systems.« less

  20. Physical Science Informatics: Providing Open Science Access to Microheater Array Boiling Experiment Data

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Green, Robert D.; Henrie, Ben; Miller, Teresa; Chiaramonte, Fran

    2014-01-01

    The Physical Science Informatics (PSI) system is the next step in this an effort to make NASA sponsored flight data available to the scientific and engineering community, along with the general public. The experimental data, from six overall disciplines, Combustion Science, Fluid Physics, Complex Fluids, Fundamental Physics, and Materials Science, will present some unique challenges. Besides data in textual or numerical format, large portions of both the raw and analyzed data for many of these experiments are digital images and video, requiring large data storage requirements. In addition, the accessible data will include experiment design and engineering data (including applicable drawings), any analytical or numerical models, publications, reports, and patents, and any commercial products developed as a result of the research. This objective of paper includes the following: Present the preliminary layout (Figure 2) of MABE data within the PSI database. Obtain feedback on the layout. Present the procedure to obtain access to this database.

Top