Science.gov

Sample records for materials science experiments

  1. Materials science experiments in space

    NASA Technical Reports Server (NTRS)

    Gelles, S. H.; Giessen, B. C.; Glicksman, M. E.; Margrave, J. L.; Markovitz, H.; Nowick, A. S.; Verhoeven, J. D.; Witt, A. F.

    1978-01-01

    The criteria for the selection of the experimental areas and individual experiments were that the experiment or area must make a meaningful contribution to the field of material science and that the space environment was either an absolute requirement for the successful execution of the experiment or that the experiment can be more economically or more conveniently performed in space. A number of experimental areas and individual experiments were recommended for further consideration as space experiments. Areas not considered to be fruitful and others needing additional analysis in order to determine their suitability for conduct in space are also listed. Recommendations were made concerning the manner in which these materials science experiments are carried out and the related studies that should be pursued.

  2. Ground based materials science experiments

    NASA Technical Reports Server (NTRS)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  3. Ground based materials science experiments

    NASA Technical Reports Server (NTRS)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  4. Material Science Experiments on Mir

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L.

    1999-01-01

    This paper describes the microgravity materials experiments carried out on the Shuttle/Mir program. There were six experiments, all of which investigated some aspect of diffusivity in liquid melts. The Liquid Metal Diffusion (LMD) experiment investigated the diffusivity of molten Indium samples at 185 C using a radioactive tracer, In-114m. By monitoring two different gamma ray energies (190 keV and 24 keV) emitted by the samples it was possible to measure independently the diffusion rates in the bulk and at the surface of the samples. The Queens University Experiment in Liquid Diffusion (QUELD) was the furnace facility used to process 213 samples for the five other experiments. These experiments investigated the diffusion, ripening, crystal growth, and glass formation in metal, semiconductor, and glass samples. This facility had the capability to process samples in an isothermal or gradient configuration for varying periods of time at temperatures up to 900 C. Both the LMD and the QUELD furnaces were mounted on the Microgravity Isolation Mount (MIM) which provided isolation from g-jitter. All the microgravity experiments were supported by the Space Acceleration Measurement System (SAMS); a three head three axes acceleration monitoring system which measured and recorded the acceleration environment.

  5. Material Science Experiments on Mir

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L.

    1999-01-01

    This paper describes the microgravity materials experiments carried out on the Shuttle/Mir program. There were six experiments, all of which investigated some aspect of diffusivity in liquid melts. The Liquid Metal Diffusion (LMD) experiment investigated the diffusivity of molten Indium samples at 185 C using a radioactive tracer, In-114m. By monitoring two different gamma ray energies (190 keV and 24 keV) emitted by the samples it was possible to measure independently the diffusion rates in the bulk and at the surface of the samples. The Queens University Experiment in Liquid Diffusion (QUELD) was the furnace facility used to process 213 samples for the five other experiments. These experiments investigated the diffusion, ripening, crystal growth, and glass formation in metal, semiconductor, and glass samples. This facility had the capability to process samples in an isothermal or gradient configuration for varying periods of time at temperatures up to 900 C. Both the LMD and the QUELD furnaces were mounted on the Microgravity Isolation Mount (MIM) which provided isolation from g-jitter. All the microgravity experiments were supported by the Space Acceleration Measurement System (SAMS); a three head three axes acceleration monitoring system which measured and recorded the acceleration environment.

  6. Skylab Experiments, Volume 3, Materials Science.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Basic knowledge about Skylab experiments is presented in this book, one of a series, for the purpose of informing high school teachers about scientific research performed in orbit and enabling the teachers to broaden their basis for material selection. This third volume is concerned with the effect of a weightless environment on melting and…

  7. Experiments in materials science from household items

    NASA Technical Reports Server (NTRS)

    Spiegel, F. Xavier

    1993-01-01

    Everyday household items are used to demonstrate some unique properties of materials. A coat hanger, rubber band, balloon, and corn starch have typical properties which we often take for granted but can be truly amazing.

  8. Experiments in materials science from household items

    NASA Technical Reports Server (NTRS)

    Spiegel, F. Xavier

    1993-01-01

    Everyday household items are used to demonstrate some unique properties of materials. A coat hanger, rubber band, balloon, and corn starch have typical properties which we often take for granted but can be truly amazing.

  9. Experiments in ICF, materials science, and astrophysics

    NASA Astrophysics Data System (ADS)

    Remington, Bruce A.

    2016-10-01

    We have been developing RED experiments on high power TCF lasers over the past two decades that span (1) the radiative hydrodynamics of TCF capsule physics; (2) the high pressure, high strain rate, solid-state dynamics relevant to novel concepts for ICF and hypervelocity impacts in space and on Earth; and (3) the shock driven turbulence of exploding stars (supernovae). These different regimes are separated by many orders of magnitude in length, time, and temperature, yet there are common threads that run through all of these phenomena, such as the occurrence of hydrodynamic instabilities. Examples from each of these three seemingly very disparate regimes are given, and the common theme of hydrodynamic instability evolution is explored.

  10. Materials Science Experiments on the International Space Station

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1999-01-01

    The Performance Goal for NASA's Microgravity Materials Science Program reads "Use microgravity to establish and improve quantitative and predictive relationships between the structure, processing and properties of materials." The advent of the International Space Station will open up a new era in Materials Science Research including the ability to perform long term and frequent experiments in microgravity. As indicated the objective is to gain a greater understanding of issues of materials science in an environment in which the force of gravity can be effectively switched off. Thus gravity related issues of convection, buoyancy and hydrostatic forces can be reduced and the science behind the structure/processing/properties relationship can more easily be understood. The specific areas of research covered within the program are (1) the study of Nucleation and Metastable States, (2) Prediction and Control of Microstructure (including pattern formation and morphological stability), (3) Phase Separation and Interfacial Stability, (4) Transport Phenomena (including process modeling and thermophysical properties measurement), and (5) Crystal Growth, and Defect Generation and Control. All classes of materials, including metals and alloys, glasses and ceramics, polymers, electronic materials (including organic and inorganic single crystals), aerogels and nanostructures, are included in these areas. The principal experimental equipment available to the materials scientist on the International Space Station (ISS) will be the Materials Science Research Facility (MSRF). Each of these systems will be accommodated in a single ISS rack, which can operate autonomously, will accommodate telescience operations, and will provide real time data to the ground. Eventual plans call for three MSRF racks, the first of which will be shared with the European Space Agency (ESA). Under international agreements, ESA and other partners will provide some of the equipment, while NASA covers launch

  11. Materials Science Experiments on the International Space Station

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1999-01-01

    The Performance Goal for NASA's Microgravity Materials Science Program reads "Use microgravity to establish and improve quantitative and predictive relationships between the structure, processing and properties of materials." The advent of the International Space Station will open up a new era in Materials Science Research including the ability to perform long term and frequent experiments in microgravity. As indicated the objective is to gain a greater understanding of issues of materials science in an environment in which the force of gravity can be effectively switched off. Thus gravity related issues of convection, buoyancy and hydrostatic forces can be reduced and the science behind the structure/processing/properties relationship can more easily be understood. The specific areas of research covered within the program are (1) the study of Nucleation and Metastable States, (2) Prediction and Control of Microstructure (including pattern formation and morphological stability), (3) Phase Separation and Interfacial Stability, (4) Transport Phenomena (including process modeling and thermophysical properties measurement), and (5) Crystal Growth, and Defect Generation and Control. All classes of materials, including metals and alloys, glasses and ceramics, polymers, electronic materials (including organic and inorganic single crystals), aerogels and nanostructures, are included in these areas. The principal experimental equipment available to the materials scientist on the International Space Station (ISS) will be the Materials Science Research Facility (MSRF). Each of these systems will be accommodated in a single ISS rack, which can operate autonomously, will accommodate telescience operations, and will provide real time data to the ground. Eventual plans call for three MSRF racks, the first of which will be shared with the European Space Agency (ESA). Under international agreements, ESA and other partners will provide some of the equipment, while NASA covers launch

  12. Material Science

    NASA Image and Video Library

    2003-01-22

    Dr. Richard Grugel, a materials scientist at NASA's Marshall Space Flight in Huntsville, Ala., examines the furnace used to conduct his Pore Formation and Mobility Investigation -- one of the first two materials science experiments to be conducted on the International Space Station. This experiment studies materials processes similar to those used to make components used in jet engines. Grugel's furnace was installed in the Microgravity Science Glovebox through the circular port on the side. In space, crewmembers are able to change out samples using the gloves on the front of the facility's work area.

  13. Materials Science Experiment Module Accommodation within the Materials Science Research Rack (MSRR-1) on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Higgins, D. B.; Jayroe, R. R.; McCarley, K. S.

    2000-01-01

    The Materials Science Research Rack I (MSRR-1) of the Materials Science Research Facility (MSRF) is a modular facility designed to accommodate two Experiment Modules (EM) simultaneously on board the International Space Station (ISS). One of these EMs will be the NASA/ESA EM being, developed collaboratively by NASA and the European Space Agency. The other EM position will be occupied by various multi-user EMs that will be exchanged in-orbit to accommodate a variety of materials science investigations. This paper discusses the resources, services, and allocations available to the EMs and briefly describes performance capabilities of the EMs currently planned for flight.

  14. Computed Tomography Support for Microgravity Materials Science Experiments

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Engel, H. Peter; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The accurate measurement of density in both liquid and solid samples is of considerable interest to Principal Investigators with materials science experiments slated for the ISS. The work to be described is an innovative application of a conventional industrial nondestructive evaluation instrument. Traditional applications of industrial computed tomography (CT) rely on reconstructing cross sections of large structures to provide two-dimensional planar views which can identify defects such as porosity, or other material anomalies. This has been done on microgravity materials science experiments to check the integrity of ampoule-cartridge assemblies for safety purposes. With a substantially monoenergetic flux, as can be obtained with a radioactive cobalt source, there will be a direct correlation between absorption and density. Under such conditions it then becomes possible to make accurate measurements of density throughout a sample, and even when the sample itself is enclosed within a furnace and a safety required cartridge. Such a system has been installed at Kennedy Space Center (KSC) and is available to PIs to examine samples before and after flight. The CT system is being used to provide density information for two purposes. Firstly, the determination of density changes from liquid to solid is vital information to the PI for purposes of modeling the solidification behavior of his sample, and to engineers who have to design containment ampoules and must allow for shrinkage and other volume changes that may occur during processing. While such information can be obtained by pycnometric measurements, the possibility of using a furnace installed on the CT system enables one to examine potentially dangerous materials having high vapor pressures, while not needing visible access to the material. In addition, uniform temperature can readily be obtained, and the system can be controlled to ramp up, hold, and ramp down while collecting data over a wide range of

  15. Computed Tomography Support for Microgravity Materials Science Experiments

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Engel, H. Peter; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The accurate measurement of density in both liquid and solid samples is of considerable interest to Principal Investigators with materials science experiments slated for the ISS. The work to be described is an innovative application of a conventional industrial nondestructive evaluation instrument. Traditional applications of industrial computed tomography (CT) rely on reconstructing cross sections of large structures to provide two-dimensional planar views which can identify defects such as porosity, or other material anomalies. This has been done on microgravity materials science experiments to check the integrity of ampoule-cartridge assemblies for safety purposes. With a substantially monoenergetic flux, as can be obtained with a radioactive cobalt source, there will be a direct correlation between absorption and density. Under such conditions it then becomes possible to make accurate measurements of density throughout a sample, and even when the sample itself is enclosed within a furnace and a safety required cartridge. Such a system has been installed at Kennedy Space Center (KSC) and is available to PIs to examine samples before and after flight. The CT system is being used to provide density information for two purposes. Firstly, the determination of density changes from liquid to solid is vital information to the PI for purposes of modeling the solidification behavior of his sample, and to engineers who have to design containment ampoules and must allow for shrinkage and other volume changes that may occur during processing. While such information can be obtained by pycnometric measurements, the possibility of using a furnace installed on the CT system enables one to examine potentially dangerous materials having high vapor pressures, while not needing visible access to the material. In addition, uniform temperature can readily be obtained, and the system can be controlled to ramp up, hold, and ramp down while collecting data over a wide range of

  16. Material Science

    NASA Image and Video Library

    2003-01-22

    One of the first materials science experiments on the International Space Station -- the Solidification Using a Baffle in Sealed Ampoules (SUBSA) -- will be conducted during Expedition Five inside the Microgravity Science Glovebox. The glovebox is the first dedicated facility delivered to the Station for microgravity physical science research, and this experiment will be the first one operated inside the glovebox. The glovebox's sealed work environment makes it an ideal place for the furnace that will be used to melt semiconductor crystals. Astronauts can change out samples and manipulate the experiment by inserting their hands into a pair of gloves that reach inside the sealed box. Dr. Aleksandar Ostrogorsky, a materials scientist from the Rensselaer Polytechnic Institute, Troy, N.Y., and the principal investigator for the SUBSA experiment, uses the gloves to examine an ampoule like the ones used for his experiment inside the glovebox's work area. The Microgravity Science Glovebox and the SUBSA experiment are managed by NASA's Marshall Space Flight Center in Huntsville, Ala.

  17. Material Science

    NASA Image and Video Library

    2003-01-22

    Video images sent to the ground allow scientists to watch the behavior of the bubbles as they control the melting and freezing of the material during the Pore Formation and Mobility Investigation (PFMI) in the Microgravity Science Glovebox aboard the International Space Station. While the investigation studies the way that metals behave at the microscopic scale on Earth -- and how voids form -- the experiment uses a transparent material called succinonitrile that behaves like a metal to study this problem. The bubbles do not float to the top of the material in microgravity, so they can study their interactions.

  18. Materials Science

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Materials Science Program is structured so that NASA s headquarters is responsible for the program content and selection, through the Enterprise Scientist, and MSFC provides for implementation of ground and flight programs with a Discipline Scientist and Discipline Manager. The Discipline Working Group of eminent scientists from outside of NASA acts in an advisory capacity and writes the Discipline Document from which the NRA content is derived. The program is reviewed approximately every three years by groups such as the Committee on Microgravity Research, the National Materials Advisory Board, and the OBPR Maximization and Prioritization (ReMaP) Task Force. The flight program has had as many as twenty-six principal investigators (PIs) in flight or flight definition stage, with the numbers of PIs in the future dependent on the results of the ReMaP Task Force and internal reviews. Each project has a NASA-appointed Project Scientist, considered a half-time job, who assists the PI in understanding and preparing for internal reviews such as the Science Concept Review and Requirements Definition Review. The Project Scientist also insures that the PI gets the maximum science support from MSFC, represents the PI to the MSFC community, and collaborates with the Project Manager to insure the project is well-supported and remains vital. Currently available flight equipment includes the Materials Science Research Rack (MSRR-1) and Microgravity Science Glovebox. Ground based projects fall into one or more of several categories. Intellectual Underpinning of Flight Program projects include theoretical studies backed by modeling and computer simulations; bring to maturity new research, often by young researchers, and may include preliminary short duration low gravity experiments in the KC-135 aircraft or drop tube; enable characterization of data sets from previous flights; and provide thermophysical property determinations to aid PIs. Radiation Shielding and preliminary In

  19. Materials Science

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Materials Science Program is structured so that NASA s headquarters is responsible for the program content and selection, through the Enterprise Scientist, and MSFC provides for implementation of ground and flight programs with a Discipline Scientist and Discipline Manager. The Discipline Working Group of eminent scientists from outside of NASA acts in an advisory capacity and writes the Discipline Document from which the NRA content is derived. The program is reviewed approximately every three years by groups such as the Committee on Microgravity Research, the National Materials Advisory Board, and the OBPR Maximization and Prioritization (ReMaP) Task Force. The flight program has had as many as twenty-six principal investigators (PIs) in flight or flight definition stage, with the numbers of PIs in the future dependent on the results of the ReMaP Task Force and internal reviews. Each project has a NASA-appointed Project Scientist, considered a half-time job, who assists the PI in understanding and preparing for internal reviews such as the Science Concept Review and Requirements Definition Review. The Project Scientist also insures that the PI gets the maximum science support from MSFC, represents the PI to the MSFC community, and collaborates with the Project Manager to insure the project is well-supported and remains vital. Currently available flight equipment includes the Materials Science Research Rack (MSRR-1) and Microgravity Science Glovebox. Ground based projects fall into one or more of several categories. Intellectual Underpinning of Flight Program projects include theoretical studies backed by modeling and computer simulations; bring to maturity new research, often by young researchers, and may include preliminary short duration low gravity experiments in the KC-135 aircraft or drop tube; enable characterization of data sets from previous flights; and provide thermophysical property determinations to aid PIs. Radiation Shielding and preliminary In

  20. Five experiments in materials science for less than $10.00

    NASA Technical Reports Server (NTRS)

    Spiegel, F. Xavier

    1992-01-01

    Diffusion, twinning, fatigue, acoustic emission, and aging can be studied using readily available materials and the household oven. Each experiment can be expanded to a more extensive investigation of the properties of the material investigated, as well as other materials, and offers an opportunity for the student to learn about the relationship between engineering, science, society, and politics.

  1. Materials Science Experiments Under Microgravity - A Review of History, Facilities, and Future Opportunities

    NASA Technical Reports Server (NTRS)

    Stenzel, Ch.

    2012-01-01

    Materials science experiments have been a key issue already since the early days of research under microgravity conditions. A microgravity environment facilitates processing of metallic and semiconductor melts without buoyancy driven convection and sedimentation. Hence, crystal growth of semiconductors, solidification of metallic alloys, and the measurement of thermo-physical parameters are the major applications in the field of materials science making use of these dedicated conditions in space. In the last three decades a large number of successful experiments have been performed, mainly in international collaborations. In parallel, the development of high-performance research facilities and the technological upgrade of diagnostic and stimuli elements have also contributed to providing optimum conditions to perform such experiments. A review of the history of materials science experiments in space focussing on the development of research facilities is given. Furthermore, current opportunities to perform such experiments onboard ISS are described and potential future options are outlined.

  2. Material Science

    NASA Image and Video Library

    2003-01-22

    Pores and voids often form in metal castings on Earth (above) making them useless. A transparent material that behaves at a large scale in microgravity the way that metals behave at the microscopic scale on Earth, will help show how voids form and learn how to prevent them. Scientists are using the microgravity environment on the International Space Station to study how these bubbles form, move and interact. The Pore Formation and Mobility Investigation (PFMI) in the Microgravity Science Glovebox aboard the International Space Station uses a transparent material called succinonitrile that behaves like a metal to study this problem. Video images sent to the ground allow scientists to watch the behavior of the bubbles as they control the melting and freezing of the material. The bubbles do not float to the top of the material in microgravity, so they can study their interactions.

  3. Material Science

    NASA Image and Video Library

    2003-01-12

    The Center for Advanced Microgravity Materials Processing (CAMMP), a NASA-sponsored Research Partnership Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Shown here are zeolite crystals (top) grown in a ground control experiment and grown in microgravity on the USML-2 mission (bottom). Zeolite experiments have also been conducted aboard the International Space Station.

  4. Material Science

    NASA Image and Video Library

    2002-08-06

    Khalid Alshibli of Louisiana State University, project scientist for the Mechanics of Granular Materials (MGM-III) experiment, uses a jar of sand and a training model of the MGM apparatus to explain the experiment to two young Virginia students. The activity was part of the Space Research and You education event held by NASA's Office of Biological and Physical Research on June 25, 2002, in Arlington, VA, to highlight the research that will be conducted on STS-107.

  5. Material Science

    NASA Image and Video Library

    2003-01-22

    On Earth when scientists melt metals, bubbles that form in the molten material can rise to the surface, pop and disappear. In microgravity -- the near-weightless environment created as the International Space Station orbits Earth -- the lighter bubbles do not rise and disappear. Prior space experiments have shown that bubbles often become trapped in the final metal or crystal sample -similar to the bubbles trapped in this sample. In the solid, these bubbles, or porosity, are defects that diminish both the material's strength and usefulness. The Pore Formation and Mobility Investigation will melt samples of a transparent modeling material, succinonitrile and succinonitrile water mixtures, shown here in an ampoule being examined by Dr. Richard Grugel, the principal investigator for the experiment at NASA's Marshall Space Flight Center in Huntsville, Ala. As the samples are processed in space, Grugel will be able to observe how bubbles form in the samples and study their movements and interactions.

  6. Materials Science

    NASA Image and Video Library

    1998-09-30

    Dr. Jan Rogers, project scientist for the Electrostatic Levitator (ESL) at NASA's Marshall Space Flight Center(MSFC). The ESL uses static electricity to suspend an obejct (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials sciences program.

  7. Material Science

    NASA Image and Video Library

    2003-01-12

    The Center for Advanced Microgravity Materials Processing (CAMMP) in Cambridge, MA, a NASA-sponsored Commercial Space Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Depicted here is one of the many here complex geometric shapes which make them highly absorbent. Zeolite experiments have also been conducted aboard the International Space Station

  8. Material Science

    NASA Image and Video Library

    2004-07-03

    Astronaut Mike Fincke places droplets of honey onto the strings for the Fluid Merging Viscosity Measurement (FMVM) investigation onboard the International Space Station (ISS). The FMVM experiment measures the time it takes for two individual highly viscous fluid droplets to coalesce or merge into one droplet. Different fluids and droplet size combinations were tested in the series of experiments. By using the microgravity environment, researchers can measure the viscosity or "thickness" of fluids without the influence of containers and gravity using this new technique. Understanding viscosity could help scientists understand industrially important materials such as paints, emulsions, polymer melts and even foams used to produce pharmaceutical, food, and cosmetic products.

  9. Material Science

    NASA Image and Video Library

    2004-07-12

    Astronaut Mike Fincke places droplets of honey onto the strings for the Fluid Merging Viscosity Measurement (FMVM) investigation onboard the International Space Station (ISS). The FMVM experiment measures the time it takes for two individual highly viscous fluid droplets to coalesce or merge into one droplet. Different fluids and droplet size combinations were tested in the series of experiments. By using the microgravity environment, researchers can measure the viscosity or "thickness" of fluids without the influence of containers and gravity using this new technique. Understanding viscosity could help scientists understand industrially important materials such as paints, emulsions, polymer melts and even foams used to produce pharmaceutical, food, and cosmetic products.

  10. Material Science

    NASA Image and Video Library

    2002-08-06

    Khalid Alshibli of Louisiana State University, project scientist for the Mechanics of Granular Materials (MGM-III) experiment, explains the MGM experiment to Kristen Erickson, acting deputy associate administrator in NASA's Office of Biological and Physical Research. A training model of the test cell is at right. The activity was part of the Space Research and You education event held by NASA's Office of Biological and Physical Research on June 25, 2002, in Arlington, VA, to highlight the research that will be conducted on STS-107.

  11. Material Science

    NASA Image and Video Library

    2002-08-06

    Twila Schneider of Infinity Technology in Huntsville, AL, uses a small sand displacement box to explain the principles of the Mechanics of Granular Materials (MGM-III) experiment to two young Virginia students. The activity was part of the Space Research and You education event held by NASA's Office of Biological and Physical Research on June 25, 2002, in Arlington, VA, to highlight the research that will be conducted on STS-107.

  12. Coarsening in Solid-Liquid Mixtures-2: A Materials Science Experiment for the ISS

    NASA Technical Reports Server (NTRS)

    Hickman, J. Mark; Voorhees, Peter W.; Kwon, Yongwoo; Lorik, Tibor

    2004-01-01

    A materials science experiment has been developed and readied for operation aboard the International Space Station (ISS). Components of this experiment are onboard ISS and area awaiting the flight of science samples. The goal of the experiment is to understand the dynamics of Ostwald ripening, also known as coarsening, a process that occurs in nearly any two-phase mixture found in nature. Attempts to obtain experimental data in ground-based laboratories are hindered due to the presence of gravity, which introduces material transport modes other than that of the coarsening phenomenon. This introduces adjustable parameters in the formulation of theory. The original Coarsening in Solid-Liquid Mixtures (CSLM) mission, which flew on the Space Shuttle in 1997, produced data from a coarsened eutectic alloy. Unfortunately, both the science matrix and the hardware, while nominally functional, did not account adequately for operations in microgravity. A significantly redesigned follow-on experiment, CSLM-2 has been developed to redress the inadequacies of the original experiment. This paper reviews the CSLM-2 project: its history, science goals, flight hardware implementation, and planned operations and analysis

  13. Material Science

    NASA Image and Video Library

    1992-01-22

    This metal sample, which is approximately 1 cm in diameter, is typical of the metals that were studied using the German designed electromagnetic containerless processing facility. The series of experiments that use this device is known as TEMPUS which is the acronym that stands for the German Tiegelfreies Elektromanetisches Prozessieren Unter Schwerelosigkeit. Most of the TEMPUS experiments focused on various aspects of undercooling liquid metal and alloys. Undercooling is the process of melting a material and then cooling it to a temperature that is below its normal freezing or solidification point. The TEMPUS experiments that used the metal cages as shown in the photograph, often studied bulk metallic glass, a solid material with no crystalline structures. We study metals and alloys not only to build things in space, but to improve things that are made on Earth. Metals and alloys are everywhere around us; in our automobiles, in the engines of aircraft, in our power-plants, and elsewhere. Despite their presence in everyday life, there are many scientific aspects of metals that we do not understand.

  14. Material Science

    NASA Image and Video Library

    2002-08-06

    Khalid Alshibli of Louisiana State University, project scientist for the Mechanics of Granular Materials (MGM-III) experiment, uses a jar of sand as he explains MGM to NASA Administrator Sean O'Keefe. A training model of an MGM test cell is in the foreground. The activity was part of the Space Research and You education event held by NASA's Office of Biological and Physical Research on June 25, 2002, in Arlington, VA, to highlight the research that will be conducted on STS-107.

  15. Material Science

    NASA Image and Video Library

    2001-04-06

    This is a macro photograph of an etched surface of the Mundrabilla meteorite, a small piece of the approximately 3.9 billion-year-old meteorite that was first discovered in Western Australia in 1911. Two more giant chunks, together weighing about 17 tons, were found in 1966. Researchers can learn much from this natural crystal growth experiment since it has spent several hundred million years cooling, and would be impossible to emulate in a lab. This single slice, taken from a 6 ton piece recovered in 1966, measures only 2 square inches. The macro photograph shows a metallic iron-nickel alloy phase of kamcite (38% Ni) and taenite (6% Ni) at bottom right, bottom left, and top left. The darker material is an iron sulfide (FeS or troilite) with a parallel precipitates of duabreelite (iron chromium sulfide (FeCr2S4).

  16. Photorefractive polymers: Materials science, thin-film fabrication, and experiments in volume holography

    NASA Astrophysics Data System (ADS)

    McGee, David J.; Matlin, Mark D.

    2001-10-01

    When exposed to low power laser light, photorefractive materials can function as dynamic diffraction gratings, making them attractive for applications in holography and optical image processing. Conventional crystalline photorefractive materials are useful in demonstrations of basic nonlinear optical phenomena at the advanced undergraduate level, although the fabrication of such crystals is beyond the reach of most undergraduate facilities. Within the last five years, however, polymeric photorefractive materials have been developed that can be fabricated by collaborative teams of undergraduate physics and chemistry students. We have found that the study of photorefractive polymers provides an excellent framework to emphasize connections among optics, chemistry, and materials science at a level accessible to undergraduates. We provide an overview of photorefractive polymers, describe the fabrication of a typical photorefractive polymeric system, and discuss experiments in volume holography.

  17. The Concept Verification Testing of a materials science payload. [for Spacelab experiment design

    NASA Technical Reports Server (NTRS)

    Griner, C. S.; Johnston, M. H.; Whitaker, A. F.

    1975-01-01

    The Concept Verification Testing (CVT) project at the Marshall Space Flight Center, Alabama is a developmental activity that supports Shuttle Payload projects such as Spacelab. It provides an operational one-g environment for testing NASA and other agency experiment and support systems concepts that may be used in Shuttle. A dedicated Materials Science Payload was tested in the General Purpose Laboratory (GPL) in December 1974 in order to assess the requirements of a Space Processing payload on a Spacelab type facility. Physical and functional integration of the experiments into the facility was studied, and the impact of the experiments on the facility (and vice versa) was evaluated. The Principal Investigators (PI) who had proposed experiments were onboard and in a consulting status on the ground. The significant results of the week-long simulation will be discussed.

  18. The Concept Verification Testing of a materials science payload. [for Spacelab experiment design

    NASA Technical Reports Server (NTRS)

    Griner, C. S.; Johnston, M. H.; Whitaker, A. F.

    1975-01-01

    The Concept Verification Testing (CVT) project at the Marshall Space Flight Center, Alabama is a developmental activity that supports Shuttle Payload projects such as Spacelab. It provides an operational one-g environment for testing NASA and other agency experiment and support systems concepts that may be used in Shuttle. A dedicated Materials Science Payload was tested in the General Purpose Laboratory (GPL) in December 1974 in order to assess the requirements of a Space Processing payload on a Spacelab type facility. Physical and functional integration of the experiments into the facility was studied, and the impact of the experiments on the facility (and vice versa) was evaluated. The Principal Investigators (PI) who had proposed experiments were onboard and in a consulting status on the ground. The significant results of the week-long simulation will be discussed.

  19. Material Science

    NASA Image and Video Library

    2003-02-09

    Materials with a smaller mean atomic mass, such as lithium (Li) hydride and polyethylene, make the best radiation shields for astronauts. The materials have a higher density of nuclei and are better able to block incoming radiation. Also, they tend to produce fewer and less dangerous secondary particles after impact with incoming radiation.

  20. Materials science and engineering

    SciTech Connect

    Holden, T.M.

    1995-10-01

    The science-based stockpile stewardship program emphasizes a better understanding of how complex components function through advanced computer calculations. Many of the problem areas are in the behavior of materials making up the equipment. The Los Alamos Neutron Science Center (LANSCE) can contribute to solving these problems by providing diagnostic tools to examine parts noninvasively and by providing the experimental tools to understand material behavior in terms of both the atomic structure and the microstructure. Advanced computer codes need experimental information on material behavior in response to stress, temperature, and pressure as input, and they need benchmarking experiments to test the model predictions for the finished part.

  1. National Educators' Workshop. Update 92: Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler); Craig, Douglas F. (Compiler)

    1993-01-01

    This document contains a collection of experiments presented and demonstrated at the workshop. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  2. Developing the Science and Technology for the Material Plasma Exposure eXperiment (MPEX)

    NASA Astrophysics Data System (ADS)

    Rapp, Juergen; Biewer, Theodore; Bigelow, Timothy; Caughman, John; Goulding, Richard; Lumsdaine, Arnold; MPEX Team Team

    2016-10-01

    The Material Plasma Exposure eXperiment (MPEX) is a device planned to address scientific and technological gaps for the development of viable plasma facing components for fusion reactor conditions (FNSF, DEMO). MPEX is designed to deliver those plasma conditions with a novel Radio Frequency plasma source able to produce high density plasmas and heat electron and ions separately with Electron Bernstein Wave (EBW) heating and Ion Cyclotron Resonance Heating (ICRH) with a total installed power of 800 kW. The science and technology for this source system is currently being tested on Proto-MPEX. This is a linear device utilizing 12 water-cooled copper coils able to achieve peak magnetic fields of 1.6T. The currently total installed heating power (for helicon, EBW and ICRH) is 330kW. An overview of the status of this development program is given with an outlook to the next steps.

  3. Microgravity Materials Science Laboratory

    NASA Technical Reports Server (NTRS)

    Grisaffe, S. J.

    1985-01-01

    A Microgravity Materials Science Laboratory (MMSL) has been planned, designed, and is being developed. This laboratory will support related efforts to define the requirements for the Microgravity and Materials Processing Laboratory (MMPF) and the MMPF Test Bed for the Space Station. The MMSL will serve as a check out and training facility for science mission specialists for STS, Spacelab and Space Station prior to the full operation of the MMPF Test Bed. The focus of the MMSL will be on experiments related to the understanding of metal/ceramic/glass solidification, high perfection crystal growth and fluid physics. This ground-based laboratory will be used by university/industry/government researchers to examine and become familiar with the potential of new microgravity materials science concepts and to conduct longer term studies aimed at fully developing a l-g understanding of materials and processing phenomena. Such research will help create new high quality concepts for space experiments and will provide the basis for modeling, theories, and hypotheses upon which key space experiments can be defined and developed.

  4. Developing a 3-shock, low-adiabat drive for high pressure material science experiments on NIF

    NASA Astrophysics Data System (ADS)

    Wehrenberg, Christopher; Prisbrey, Shon; Graham, Peter; Park, Hye-Sook; Huntington, Channing; Maddox, Brian; Benedetti, Robin; Rudd, Robert; Arsenlis, Tom; Remington, Bruce

    2014-10-01

    We describe a series of experiments for basic materials science on NIF to develop a planar, 3-shock, low-adiabat drive to reach peak pressures of 5 Mbar, while keeping the physics samples well below their melt temperatures. The primary diagnostic is VISAR, which measures the compression waves as they travel through a Ta witness plate. X-ray ablation from an indirect drive launches a strong (>10 Mbar) shock through a precision fabricated ``reservoir,'' consisting of a CH ablator, followed by layers of Al, CH(18.75%I), 350 mg/cc CRF foam, and a final layer of 10-30 mg/cc foam. This reservoir releases as plasma across a 1.5 mm vacuum gap, then stagnates on the 15 micron thick Ta witness plate, which is backed by a LiF or quartz window. The lowest density reservoir layer sets the strength of the leading shock, which needs to be controlled to keep the physics samples solid, and to control the dislocation density created by this leading shock. We will describe an extensive series of experiments done on NIF to develop this drive. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  5. National Educators' Workshop: Update 95. Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A.; Karnitz, Michael A.

    1996-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 95. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  6. National Educators' Workshop: Update 1994. Standard experiments in engineering materials science and technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler); Fraker, Anna C. (Compiler)

    1995-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 94. The experiments relate to the nature and properties of engineering materials and provide information to assist in teaching about materials in the education community.

  7. National Educators' Workshop: Update 1993. Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler)

    1994-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 93 held at the NASA Langley Research Center in Hampton, Virginia, on November 3-5, 1993. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  8. National Educators' Workshop: Update 1988. Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler)

    1990-01-01

    Presented here is a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 88, held May 10 to 12, 1988 at the National Institute of Standards and Technology (NIST), Gaithersberg, Maryland. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  9. National Educators' Workshop: Update 1997. Standard Experiments in Engineering Materials, Science, and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Freeman, Ginger L. (Compiler); Jacobs, James A. (Compiler); Miller, Alan G. (Compiler); Smith, Brian W. (Compiler)

    1998-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 97, held at Boeing Commercial Airplane Group, Seattle, Washington, on November 2-5, 1997. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  10. National Educators' Workshop: Update 1991. Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler); Stiegler, James O. (Compiler)

    1992-01-01

    Given here is a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 91, held at the Oak Ridge National Laboratory on November 12-14, 1991. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  11. National Educators' Workshop: Update 1989 Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler)

    1990-01-01

    Presented here is a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 89, held October 17 to 19, 1989 at the National Aeronautics and Space Administration, Hampton, Virginia. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  12. Ground-based simulation of telepresence for materials science experiments. [remote viewing and control of processes aboard Space Station

    NASA Technical Reports Server (NTRS)

    Johnston, James C.; Rosenthal, Bruce N.; Bonner, Mary JO; Hahn, Richard C.; Herbach, Bruce

    1989-01-01

    A series of ground-based telepresence experiments have been performed to determine the minimum video frame rate and resolution required for the successive performance of materials science experiments in space. The approach used is to simulate transmission between earth and space station with transmission between laboratories on earth. The experiments include isothermal dendrite growth, physical vapor transport, and glass melting. Modifications of existing apparatus, software developed, and the establishment of an inhouse network are reviewed.

  13. Ground-based simulation of telepresence for materials science experiments. [remote viewing and control of processes aboard Space Station

    NASA Technical Reports Server (NTRS)

    Johnston, James C.; Rosenthal, Bruce N.; Bonner, Mary JO; Hahn, Richard C.; Herbach, Bruce

    1989-01-01

    A series of ground-based telepresence experiments have been performed to determine the minimum video frame rate and resolution required for the successive performance of materials science experiments in space. The approach used is to simulate transmission between earth and space station with transmission between laboratories on earth. The experiments include isothermal dendrite growth, physical vapor transport, and glass melting. Modifications of existing apparatus, software developed, and the establishment of an inhouse network are reviewed.

  14. National Educators' Workshop: Update 2002 - Standard Experiments in Engineering, Materials Science, and Technology

    NASA Technical Reports Server (NTRS)

    Prior, Edwin J. (Compiler); Jacobs, James A. (Compiler); Chung, W. Richard (Compiler)

    2003-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 2002 held in San Jose, California, October 13-16,2002. This publication provides experiments and demonstrations that can serve as a valuable guide to faculty who are interested in useful activities for their students. The material was the result of years of research aimed at better methods of teaching technical subjects. The experiments developed by faculty, scientists, and engineers throughout the United States and abroad add to the collection from past workshops. They include a blend of experiments on new materials and traditional materials.

  15. The Influence of Materials Science and Engineering Undergraduate Research Experiences on Public Communication Skills

    ERIC Educational Resources Information Center

    Ing, Marsha; Fung, Wenson W.; Kisailus, David

    2013-01-01

    Communicating research findings with others is a skill essential to the success of future STEM professionals. However, little is known about how this skill can be nurtured through participating in undergraduate research. The purpose of this study is to quantify undergraduate participation in research in a materials science and engineering…

  16. The Influence of Materials Science and Engineering Undergraduate Research Experiences on Public Communication Skills

    ERIC Educational Resources Information Center

    Ing, Marsha; Fung, Wenson W.; Kisailus, David

    2013-01-01

    Communicating research findings with others is a skill essential to the success of future STEM professionals. However, little is known about how this skill can be nurtured through participating in undergraduate research. The purpose of this study is to quantify undergraduate participation in research in a materials science and engineering…

  17. Development of the Materials Science Research Facility (MSRF) and Experiment Apparatus for the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Schaefer, D. A.; Cobb, S. D.; Szofran, F. R.

    2000-01-01

    The Materials Science Research Facility (MSRF) is a modular facility designed to accommodate the current and evolving cadre of peer-reviewed materials science investigations selected to conduct research in the microgravity environment of the International Space Station (ISS). The MSRF concept consists of three Materials Science Research Racks (MSRR-1, MSRR-2, and MSRR-3) which will be developed for phased deployment into the United States Laboratory Module beginning on the third Utilization Flight (UF-3). The facility will house the materials processing apparatus and common subsystems required for operating each device, and will use the ISS Active Rack Isolation System (ARIS). Each MSRR is an autonomous rack and will be comprised of on-orbit replaceable Experiment Modules, Module Inserts, investigation unique apparatus, and/or multi-user generic processing apparatus. The MSRF will be the primary apparatus for satisfying near-term and long-range materials science discipline goals and objectives with each MSRR supporting a wide range of materials science themes in the NASA research program.

  18. Development of the Materials Science Research Facility (MSRF) and Experiment Apparatus for the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Schaefer, D. A.; Cobb, S. D.; Szofran, F. R.

    2000-01-01

    The Materials Science Research Facility (MSRF) is a modular facility designed to accommodate the current and evolving cadre of peer-reviewed materials science investigations selected to conduct research in the microgravity environment of the International Space Station (ISS). The MSRF concept consists of three Materials Science Research Racks (MSRR-1, MSRR-2, and MSRR-3) which will be developed for phased deployment into the United States Laboratory Module beginning on the third Utilization Flight (UF-3). The facility will house the materials processing apparatus and common subsystems required for operating each device, and will use the ISS Active Rack Isolation System (ARIS). Each MSRR is an autonomous rack and will be comprised of on-orbit replaceable Experiment Modules, Module Inserts, investigation unique apparatus, and/or multi-user generic processing apparatus. The MSRF will be the primary apparatus for satisfying near-term and long-range materials science discipline goals and objectives with each MSRR supporting a wide range of materials science themes in the NASA research program.

  19. Research experiences on materials science in space aboard Salyut and Mir

    NASA Technical Reports Server (NTRS)

    Regel, Liya L.

    1992-01-01

    From 1980 through 1991 approximately 500 materials processing experiments were performed aboard the space stations Salyut 6, Salyut 7 and Mir. This includes work on catalysts, polymers, metals and alloys, optical materials, superconductors, electronic crystals, thin film semiconductors, super ionic crystals, ceramics, and protein crystals. Often the resulting materials were surprisingly superior to those prepared on earth. The Soviets were the first to fabricate a laser (CdS) from a crystal grown in space, the first to grow a heterostructure in space, the first super ionic crystal in space, the first crystals of CdTe and its alloys, the first zeolite crystals, the first protein crystals, the first chromium disilicide glass, etc. The results were used to optimize terrestrial materials processing operations in Soviet industry. The characteristics of these three space stations are reviewed, along with the advantages of a space station for materials research, and the problems encountered by the materials scientists who used them. For example, the stations and the materials processing equipment were designed without significant input from the scientific community that would be using them. It is pointed out that successful results have been achieved also by materials processing at high gravity in large centrifuges. This research is also continuing around the world, including at Clarkson University. It is recommended that experiments be conducted in centrifuges in space, in order to investigate the acceleration regime between earth's gravity and the microgravity achieved in orbiting space stations. One cannot expect to understand the influence of gravity on materials processing from only two data points, earth's gravity and microgravity. One must also understand the influence of fluctuations in acceleration on board space stations, the so-called 'g-jitter.' This paper is presented in outline and graphical form.

  20. Skylab experiments. Volume 3: Materials science. [Skylab experiments on metallurgy, crystal growth, semiconductors, and combustion physics in weightless environment for high school level education

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The materials science and technology investigation conducted on the Skylab vehicle are discussed. The thirteen experiments that support these investigations have been planned to evaluate the effect of a weightless environment on melting and resolidification of a variety of metals and semiconductor crystals, and on combustion of solid flammable materials. A glossary of terms which define the space activities and a bibliography of related data are presented.

  1. Material science experience gained from the space nuclear rocket program: Insulators

    SciTech Connect

    Wagner, P.

    1992-07-01

    Although Rover reactors are viewed as the ultimate in high-temperature operating systems, many of the materials used in these reactors (for example, support rods, control drums, and the reflector) have to be held at relatively low temperatures while the reactor operates, in order to maintain their structural integrity. Thus the insulators needed to separate these temperature domains are crucial to the reactor's ultimate operating times and temperatures. All of the reactors that were tested used pyrolytic graphite as the primary insulator. However, it had been long planned to replace the graphite with zirconium carbide and a lengthy and intensive effort to develop the zirconium carbide insulators had been made at the time Rover was terminated. This report details research and development and the experience we gained with both these insulator materials.

  2. Materials Science Laboratory

    NASA Technical Reports Server (NTRS)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  3. Materials science and engineering

    SciTech Connect

    Lesuer, D.R.

    1997-02-01

    During FY-96, work within the Materials Science and Engineering Thrust Area was focused on material modeling. Our motivation for this work is to develop the capability to study the structural response of materials as well as material processing. These capabilities have been applied to a broad range of problems, in support of many programs at Lawrence Livermore National Laboratory. These studies are described in (1) Strength and Fracture Toughness of Material Interfaces; (2) Damage Evolution in Fiber Composite Materials; (3) Flashlamp Envelope Optical Properties and Failure Analysis; (4) Synthesis and Processing of Nanocrystalline Hydroxyapatite; and (5) Room Temperature Creep Compliance of Bulk Kel-E.

  4. Materials Science and Technology.

    ERIC Educational Resources Information Center

    Piippo, Steven W.

    1989-01-01

    Describes a materials science and technology course for high school students, which combines chemistry, physics, engineering, math, technology education, and crafts to introduce students to the atomic make-up and physical properties of materials and to apply this knowledge in creative activities. (SK)

  5. National Educators' Workshop: Update 2003. Standard Experiments in Engineering, Materials Science, and Technology. Part 2

    NASA Technical Reports Server (NTRS)

    Prior, Edwin J. (Compiler); Jacobs, James A. (Compiler); Edmonson, William (Compiler); Wilkerson, Amy (Compiler)

    2004-01-01

    The 18th Annual National Educators Workshop [NEW:Update 2003] was a part of NASA Langley s celebration of the Centennial of Controlled, Powered Flight by Orville and Wilbur Wright on December 17, 1903. The conference proceedings from NEW:Update 2003 reflect the Flight 100 theme by first providing a historic perspective on the remarkable accomplishments of the Wright Brothers. The historical perspective set the stag for insights into aeronautics and aerospace structures and materials now and into the future. The NEW:Update 2003 proceedings provide valuable resources to educators and students in the form of visuals, experiments and demonstrations for classes/labs at levels ranging from precollege through college education.

  6. National Educators' Workshop: Update 2003. Standard Experiments in Engineering, Materials Science, and Technology. Part 1

    NASA Technical Reports Server (NTRS)

    Prior, Edwin J. (Compiler); Jacobs, James A. (Compiler); Edmonson, William (Compiler); Wilkerson, Amy (Compiler)

    2004-01-01

    The 18th Annual National Educators Workshop [NEW:Update 2003] was a part of NASA Langley s celebration of the Centennial of Controlled, Powered Flight by Orville and Wilbur Wright on December 17, 1903. The conference proceedings from NEW:Update 2003 reflect the Flight 100 theme by first providing a historic perspective on the remarkable accomplishments of the Wright Brothers. The historical perspective set the stag for insights into aeronautics and aerospace structures and materials now and into the future. The NEW:Update 2003 proceedings provide valuable resources to educators and students in the form of visuals, experiments and demonstrations for classes/labs at levels ranging from precollege through college education.

  7. Science and Human Experience

    NASA Astrophysics Data System (ADS)

    Cooper, Leon N.

    2015-01-01

    Part I. Science and Society: 1. Science and human experience; 2. Does science undermine our values?; 3. Can science serve mankind?; 4. Modern science and contemporary discomfort: metaphor and reality; 5. Faith and science; 6. Art and science; 7. Fraud in science; 8. Why study science? The keys to the cathedral; 9. Is evolution a theory? A modest proposal; 10. The silence of the second; 11. Introduction to Copenhagen; 12. The unpaid debt; Part II. Thought and Consciousness: 13. Source and limits of human intellect; 14. Neural networks; 15. Thought and mental experience: the Turing test; 16. Mind as machine: will we rubbish human experience?; 17. Memory and memories: a physicist's approach to the brain; 18. On the problem of consciousness; Part III. On the Nature and Limits of Science: 19. What is a good theory?; 20. Shall we deconstruct science?; 21. Visible and invisible in physical theory; 22. Experience and order; 23. The language of physics; 24. The structure of space; 25. Superconductivity and other insoluble problems; 26. From gravity to light and consciousness: does science have limits?

  8. Science and Human Experience

    NASA Astrophysics Data System (ADS)

    Cooper, Leon N.

    2014-12-01

    Part I. Science and Society: 1. Science and human experience; 2. Does science undermine our values?; 3. Can science serve mankind?; 4. Modern science and contemporary discomfort: metaphor and reality; 5. Faith and science; 6. Art and science; 7. Fraud in science; 8. Why study science? The keys to the cathedral; 9. Is evolution a theory? A modest proposal; 10. The silence of the second; 11. Introduction to Copenhagen; 12. The unpaid debt; Part II. Thought and Consciousness: 13. Source and limits of human intellect; 14. Neural networks; 15. Thought and mental experience: the Turing test; 16. Mind as machine: will we rubbish human experience?; 17. Memory and memories: a physicist's approach to the brain; 18. On the problem of consciousness; Part III. On the Nature and Limits of Science: 19. What is a good theory?; 20. Shall we deconstruct science?; 21. Visible and invisible in physical theory; 22. Experience and order; 23. The language of physics; 24. The structure of space; 25. Superconductivity and other insoluble problems; 26. From gravity to light and consciousness: does science have limits?

  9. The materials processing sciences glovebox

    NASA Technical Reports Server (NTRS)

    Traweek, Larry

    1990-01-01

    The Materials Processing Sciences Glovebox is a rack mounted workstation which allows on orbit sample preparation and characterization of specimens from various experiment facilities. It provides an isolated safe, clean, and sterile environment for the crew member to work with potentially hazardous materials. It has to handle a range of chemicals broader than even PMMS. The theme is that the Space Station Laboratory experiment preparation and characterization operations provide the fundamental glovebox design characteristics. Glovebox subsystem concepts and how internal material handling operations affect the design are discussed.

  10. Chemistry and materials science

    SciTech Connect

    1995-01-01

    Our work in chemistry and materials science exemplifies disciplinary research and programmatic support. The disciplinary research is intended to sharpen the skills of our scientists, advance the frontiers of scientific knowledge, and provide the seeds for programs of the future. The programmatic support provides the very best scientific and engineering talent for Laboratory programs and offers the potential for new program areas. We are convinced that chemistry and materials science will be key to the future success of the Laboratory whatever its mission, and we are firmly committed to supporting this mission with the very best in scientific talent.

  11. Materials science and engineering

    SciTech Connect

    Lesuer, D R

    1998-01-01

    During FY-97, work within the Materials Science and Engineering thrust area was focused on material modeling. Their motivation for this work is to develop the capability to study the structural response of materials as well as materials processing. These capabilities have been applied to a broad range of problems, which support many programs at Lawrence Livermore National Laboratory. Recent examples of structural response problems studied include material fracture (such as interface failure), damage in laser optics, the response of weapons components (such as high explosives) and the failure of composite materials. For materials processing, typical problems studied include metal forming, laser processing, casting, and heat treating. To improve our ability to model material behavior, much of the work involves developing new material models and failure models, as well as applying the codes to new problems. Most investigations involve experimental studies to gather basic information on material response and to validate codes or material models. Projects are inherently multi-disciplinary, involving several investigators with expertise in materials and mechanics. The thrust area studies for FY-97 are described in the following three articles: (1) Evolution of Anisotropic Yield Behavior; (2) Modeling of She Localization in Materials; and (3) Modeling of Casting Microstructures and Defects.

  12. Experiments in Science Teaching

    ERIC Educational Resources Information Center

    Hempstead, C. A.

    1973-01-01

    Analyzes the role of experiments in science teaching, and applies this analysis to the teaching of Millikan's experiment in physics. Critically examines an article written by T. J. Harvey entitled Millikan made easy'' which was previously published in The School Science Review. (JR)

  13. EDITORIAL: Computational materials science Computational materials science

    NASA Astrophysics Data System (ADS)

    Kahl, Gerhard; Kresse, Georg

    2011-10-01

    Special issue in honour of Jürgen Hafner On 30 September 2010, Jürgen Hafner, one of the most prominent and influential members within the solid state community, retired. His remarkably broad scientific oeuvre has made him one of the founding fathers of modern computational materials science: more than 600 scientific publications, numerous contributions to books, and a highly cited monograph, which has become a standard reference in the theory of metals, witness not only the remarkable productivity of Jürgen Hafner but also his impact in theoretical solid state physics. In an effort to duly acknowledge Jürgen Hafner's lasting impact in this field, a Festsymposium was held on 27-29 September 2010 at the Universität Wien. The organizers of this symposium (and authors of this editorial) are proud to say that a large number of highly renowned scientists in theoretical condensed matter theory—co-workers, friends and students—accepted the invitation to this celebration of Hafner's jubilee. Some of these speakers also followed our invitation to submit their contribution to this Festschrift, published in Journal of Physics: Condensed Matter, a journal which Jürgen Hafner served in 2000-2003 and 2003-2006 as a member of the Advisory Editorial Board and member of the Executive Board, respectively. In the subsequent article, Volker Heine, friend and co-worker of Jürgen Hafner over many decades, gives an account of Hafner's impact in the field of theoretical condensed matter physics. Computational materials science contents Theoretical study of structural, mechanical and spectroscopic properties of boehmite (γ-AlOOH) D Tunega, H Pašalić, M H Gerzabek and H Lischka Ethylene epoxidation catalyzed by chlorine-promoted silver oxide M O Ozbek, I Onal and R A Van Santen First-principles study of Cu2ZnSnS4 and the related band offsets for photovoltaic applicationsA Nagoya, R Asahi and G Kresse Renormalization group study of random quantum magnetsIstván A Kovács and

  14. Using materials science.

    PubMed

    Baker, W O

    1981-01-23

    The science of the solid state has joined nuclear science and molecular biology as a field of major importance in the latter half of the 20th century. It took particular shape during the genesis of solid-state electronics and the post-transistor era of integrated circuits for telecommunications, computers, and digital signal machines. However, these developments were soon joined by techniques from the ancient fields of metallurgy and ceramics and contributions from the more current fields of synthetic polymers, rubbers, plastics, and modified bioorganic substances. This vast realm was characterized by a National Academy of Sciences study of the 1970's as "materials science and engineering." The public, as well as the scientific and engineering community, are currently concerned about the uses of research and development and the applications of knowledge for national progress. Consideration is given here to how well we are using the science of materials for industrial strength and such governmental objectives as national security and energy economy.

  15. National Educators' Workshop. Update 1999: Standard Experiments in Engineering, Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Arrington, Ginger L. F. (Compiler); Gardner, James E. (Compiler); Jacobs, James A. (Compiler); Fillion, John E. (Compiler); Mallick, P. K. (Compiler)

    2000-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 99, held at DaimlerChrysler, Auburn Hills, Michigan, from October 31 - November 3, 1999.

  16. National Educators' Workshop: Update 1998. Standard Experiments in Engineering, Materials Science, and Technology

    NASA Technical Reports Server (NTRS)

    Arrington, Ginger L. F. (Compiler); Gardner, James E. (Compiler); Jacobs, James A. (Compiler); Swyler, Karl J. (Compiler); Fine, Leonard W. (Compiler)

    1999-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 98. held at Brookhaven National Laboratory, Upton, New York on November 1-4, 1998.

  17. Science, policy and the management of sewage materials. The New York City experience.

    PubMed

    Swanson, R Lawrence; Bortman, Marci L; O'Connor, Thomas P; Stanford, Harold M

    2004-11-01

    Development of national policy on sewage sludge management is a classic example of incremental policy formulation [Fiorino, D.J. 1995. Making Environmental Policy. University of California Press. Berkeley, CA. p. 269]. Consequently, policy has developed piecemeal, and results are, in some ways, different than intended. Land application of sewage sludge has not been a panacea. Many of the same types of policy are now being raised about it. We demonstrate this by examining the management of sewage materials by New York City from near the turn of the 20th century, when ocean dumping was viewed as a means to alleviate some of the gross pollution in New York Harbor, to when ocean dumping was banned, and thence to the present when sludge is applied to land as "biosolids." Lessons learned during this long, sometimes contentious history can be applied to present situations--specifically not understanding the long-term consequences of land-based reuse and disposal technologies.

  18. Weightless Materials Science

    ERIC Educational Resources Information Center

    Curtis, Jeremy

    2012-01-01

    Gravity affects everything we do. Only in very recent years have we been able to carry out experiments in orbit around the Earth and see for the first time how things behave in its absence. This has allowed us to understand fundamental processes better and to design new materials using this knowledge. (Contains 6 figures.)

  19. Weightless Materials Science

    ERIC Educational Resources Information Center

    Curtis, Jeremy

    2012-01-01

    Gravity affects everything we do. Only in very recent years have we been able to carry out experiments in orbit around the Earth and see for the first time how things behave in its absence. This has allowed us to understand fundamental processes better and to design new materials using this knowledge. (Contains 6 figures.)

  20. Panel 3 - material science

    SciTech Connect

    Sarrao, John L; Yip, Sidney

    2010-01-01

    In the last decades, NNSA's national security challenge has evolved, and the role of simulation and computation has grown dramatically. The process of certifying nuclear weapons performance has changed from one based on integrated tests to science-based certification in which underground nuclear tests have been replaced by large-scale simulations, appropriately validated with fundamental experimental data. Further, the breadth of national security challenges has expanded beyond stewardship of a nuclear deterrent to a broad range of global and asymmetric threats. Materials challenges are central to the full suite of these national security challenges. Mission requirements demand that materials perform predictably in extreme environments -- high pressure, high strain rate, and hostile irradiation and chemical conditions. Considerable advances have been made in incorporating fundamental materials physics into integrated codes used for component certification. On the other hand, significant uncertainties still remain, and materials properties, especially at the mesoscale, are key to understanding uncertainties that remain in integrated weapons performance codes and that at present are treated as empirical knobs. Further, additional national security mission challenges could be addressed more robustly with new and higher performing materials.

  1. Contextualized science? An Indian experience

    NASA Astrophysics Data System (ADS)

    Koul, Ravinder

    1997-11-01

    This study asserts that science is contextualized and should therefore be taught as contextualized. Works of major philosophers in 20th century history, philosophy and sociology of science and recent developments in cognition are discussed in developing a foundation and outlining three themes for contextualized science: (a) science curriculum should emphasize scientific methodology through the generation and testing of knowledge in a specific context, (b) it should validate and evaluate everyday contextual experiences, and (c) develop a context for action by engaging in science, technology and society issues. School science is a major instrument for diffusion and utilization of scientific knowledge. In India, textbooks are often the only classroom source of information for students other than the teacher. The most widely used standard curriculum materials in Indian schools are the National Council of Educational Research and Training (NCERT) textbooks. For schools in the Hoshingabad district of Madhya Pradesh, the state prescribes NCERT materials and materials developed for the Hoshingabad Science Teaching Program (HSTP), a grassroots science education initiative. In this study, the investigation of these curriculum materials and interviews with educators (curriculum developers/textbook authors/teachers at New Delhi and Hoshingabad) are used to establish criteria for both the need and the feasibility of contextualized science. Results of the investigation indicate that the centralized NCERT system of curriculum development has undermined context specific treatment of subject matter in their textbooks. While HSTP attempted to contextualize science in rural schools, the present status of the program may be interpreted as either development and legitimization of another standardized curriculum, or, as the culmination of a gradual erosion and dissipation of conceptually valid and concrete educational practices. There are major situational and institutional constraints

  2. 2002 Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Gillies, Donald (Editor); Ramachandran, Narayanan (Editor); Murphy, Karen (Editor); McCauley, Dannah (Editor); Bennett, Nancy (Editor)

    2003-01-01

    The 2002 Microgravity Materials Science Conference was held June 25-26, 2002, at the Von Braun Center, Huntsville, Alabama. Organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Physical Sciences Research Division, NASA Headquarters, and hosted by NASA Marshall Space Flight Center and member institutions under the Cooperative Research in Biology and Materials Science (CORBAMS) agreement, the conference provided a forum to review the current research and activities in materials science, discuss the envisioned long-term goals, highlight new crosscutting research areas of particular interest to the Physical Sciences Research Division, and inform the materials science community of research opportunities in reduced gravity. An abstracts book was published and distributed at the conference to the approximately 240 people attending, who represented industry, academia, and other NASA Centers. This CD-ROM proceedings is comprised of the research reports submitted by the Principal Investigators in the Microgravity Materials Science program.

  3. Materials Science Research

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Rathz, Tom

    1995-01-01

    Microgravity materials processing experiments provide an opportunity to perform scientific research in an environment which allows one to observe various phenomena without the masking effects of gravity-driven convective flows, buoyancy, or contaminating influences of walled containers. Even for the most experienced scientists, it is still difficult to predict beforehand, whether or not microgravity experimentation can be successfully performed in space and achieve solutions to problems which are not attainable in 1 g. Consequently, experimentation in ground based facilities which are capable of simulating, in somewhat lesser time frames and to a lesser degree of microgravity, provides a unique low-cost approach to determine the feasibility of continuing research in a particular experiment. The utilization of these facilities in developing the full requirements for a space experiment does present a very cost-effective approach to microgravity experimentation. The Drop Tube Facility at Marshall Space Flight Center (MSFC) provides an excellent test bed for containerless processing experiments such as described here. These facilities have demonstrated for a number of years the capability to develop insight into space experiments involving containerless processing, rapid solidification, and wetting phenomena through the use of lower-cost ground facilities. Once sufficient data has been obtained, then a space-based experiment can be better defined.

  4. Materials science through electron microscopy

    NASA Astrophysics Data System (ADS)

    Fujita, Hiroshi

    1992-03-01

    Electron microscopy has greatly contributed as a powerful tool in both the characterization and identification of materials in the atomic scale. In these contributions, the most important advantage is it's ability for dynamic study of phenomena, i.e., in situ experiments. This research has been carried out using high voltage electron microscopes, but some results have been obtained with high resolution electron microscopes under critical conditions. Electron microscopy has been improved further to become an indispensable ?Micro-Laboratory? in which formation of various advance materials can also be carried out precisely in the atomic scale. Electron beam science and engineering is a typical example in this research field, and detailed processes of crystalline-amorphous transition and electron irradiation induced foreign atom implantation have been clarified by this method. Recently, new applications to the research fields of non-linear material behavior, such as the behavior of atom clusters and the role of electric dipoles on diffusion, have been carried out.

  5. Microgravity Materials and Biotechnology Experiments

    NASA Technical Reports Server (NTRS)

    Vlasse, Marcus

    1998-01-01

    Presentation will deal with an overview of the Materials Science and Biotechnology/Crystal Growth flight experiments and their requirements for a successful execution. It will also deal with the hardware necessary to perform these experiments as well as the hardware requirements. This information will serve as a basis for the Abstract: workshop participants to review the poss7ibilifies for a low cost unmanned carrier and the simple automation to carry-out experiments in a microgravity environment with little intervention from the ground. The discussion will include what we have now and what will be needed to automate totally the hardware and experiment protocol at relatively low cost.

  6. Microgravity Materials and Biotechnology Experiments

    NASA Technical Reports Server (NTRS)

    Vlasse, Marcus

    1998-01-01

    Presentation will deal with an overview of the Materials Science and Biotechnology/Crystal Growth flight experiments and their requirements for a successful execution. It will also deal with the hardware necessary to perform these experiments as well as the hardware requirements. This information will serve as a basis for the Abstract: workshop participants to review the poss7ibilifies for a low cost unmanned carrier and the simple automation to carry-out experiments in a microgravity environment with little intervention from the ground. The discussion will include what we have now and what will be needed to automate totally the hardware and experiment protocol at relatively low cost.

  7. NASA Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Szofran, Frank R. (Compiler); McCauley, D. (Compiler); Walker, C. (Compiler)

    1996-01-01

    The Microgravity Materials Science Conference was held June 10-11, 1996 at the Von Braun Civic Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Science and Applications Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the second NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 80 investigations and 69 principal investigators in FY96, all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement (NRA) scheduled for release in late 1996 by the Microgravity Science and Applications Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the MSFC microgravity research facilities was held on June 12, 1996. This volume is comprised of the research reports submitted by the principal investigators after the conference and presentations made by various NASA microgravity science managers.

  8. Intriguing Freshmen with Materials Science.

    ERIC Educational Resources Information Center

    Pond, Robert B., Sr.

    Described is a course designed for engineering science and natural science freshmen and open to upperclass nonscience majors entitled "Science of Modern Materials" and which has been successfully presented for several years. This paper presents the philosophy behind the course, the teaching methods employed, and the content of the course. The…

  9. Information sciences experiment system

    NASA Technical Reports Server (NTRS)

    Katzberg, Stephen J.; Murray, Nicholas D.; Benz, Harry F.; Bowker, David E.; Hendricks, Herbert D.

    1990-01-01

    The rapid expansion of remote sensing capability over the last two decades will take another major leap forward with the advent of the Earth Observing System (Eos). An approach is presented that will permit experiments and demonstrations in onboard information extraction. The approach is a non-intrusive, eavesdropping mode in which a small amount of spacecraft real estate is allocated to an onboard computation resource. How such an approach allows the evaluation of advanced technology in the space environment, advanced techniques in information extraction for both Earth science and information science studies, direct to user data products, and real-time response to events, all without affecting other on-board instrumentation is discussed.

  10. Plastic Recycling Experiments in Materials Education

    NASA Technical Reports Server (NTRS)

    Liu, Ping; Waskom, Tommy L.

    1996-01-01

    The objective of this project was to introduce a series of plastic recycling experiments to students in materials-related courses such as materials science, material technology and materials testing. With the plastic recycling experiments, students not only can learn the fundamentals of plastic processing and properties as in conventional materials courses, but also can be exposed to the issue of materials life cycle and the impact on society and environment.

  11. Plastic Recycling Experiments in Materials Education

    NASA Technical Reports Server (NTRS)

    Liu, Ping; Waskom, Tommy L.

    1996-01-01

    The objective of this project was to introduce a series of plastic recycling experiments to students in materials-related courses such as materials science, material technology and materials testing. With the plastic recycling experiments, students not only can learn the fundamentals of plastic processing and properties as in conventional materials courses, but also can be exposed to the issue of materials life cycle and the impact on society and environment.

  12. JPRS Report, Science & Technology, USSR: Materials Science.

    DTIC Science & Technology

    2007-11-02

    SCIENCE & TECHNOLOGY USSR: MATERIALS SCIENCE CONTENTS ANALYSIS, TESTING Solubility of GaAs in Bi-Ga Melts (N. A. Yakusheva, S . I. Chikichev...Interaction of Vitreous P-Se Compounds and Silver (Z. U. Borisova, V. S . Vorobyev, et al.; IZVESTIYA AKADEMII NAUK SSSR: NEORGANICHESKIYE MATERIALY...10, Oct 87) IT Introducing Technology for Rolling Sleeve Blanks for Production of Nuclear Power Plant Equipment ( S . A. Yeletskiy, V. A. Reshetnikov

  13. Materials Informatics: Statistical Modeling in Material Science.

    PubMed

    Yosipof, Abraham; Shimanovich, Klimentiy; Senderowitz, Hanoch

    2016-12-01

    Material informatics is engaged with the application of informatic principles to materials science in order to assist in the discovery and development of new materials. Central to the field is the application of data mining techniques and in particular machine learning approaches, often referred to as Quantitative Structure Activity Relationship (QSAR) modeling, to derive predictive models for a variety of materials-related "activities". Such models can accelerate the development of new materials with favorable properties and provide insight into the factors governing these properties. Here we provide a comparison between medicinal chemistry/drug design and materials-related QSAR modeling and highlight the importance of developing new, materials-specific descriptors. We survey some of the most recent QSAR models developed in materials science with focus on energetic materials and on solar cells. Finally we present new examples of material-informatic analyses of solar cells libraries produced from metal oxides using combinatorial material synthesis. Different analyses lead to interesting physical insights as well as to the design of new cells with potentially improved photovoltaic parameters.

  14. NASA Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Gillies, D. C. (Compiler); McCauley, D. E. (Compiler)

    1999-01-01

    The Microgravity Materials Science Conference was held July 14-16, 1998 at the Von Braun Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications. It was the third NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 125 investigations and 100 principal investigators in FY98, almost all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement scheduled for release in late 1998 by the Microgravity Research Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the Marshall Space Flight Center microgravity research facilities was held on July 16, 1998. This volume is comprised of the research reports submitted by the principal investigators after the conference.

  15. Materials Science and Engineering

    SciTech Connect

    Lesuer, D.R.

    1993-03-01

    Five papers are included: processing/characterization of laminated metal composites, casting process modeling, characterizing the failure of composite materials, fiber-optic Raman spectroscopy for cure monitoring of advanced polymer composites, and modeling superplastic materials. The papers are processed separately for the data base.

  16. Computer simulation in materials science

    SciTech Connect

    Arsenault, R.J.; Beeler, J.R.; Esterling, D.M.

    1988-01-01

    This book contains papers on the subject of modeling in materials science. Topics include thermodynamics of metallic solids and fluids, grain-boundary modeling, fracture from an atomistic point of view, and computer simulation of dislocations on an atomistic level.

  17. Materials science with muon spin rotation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    During this reporting period, the focus of activity in the Materials Science with Muon Spin Rotation (MSMSR) program was muon spin rotation studies of superconducting materials, in particular the high critical temperature and heavy-fermion materials. Apart from these studies, work was continued on the analysis of muon motion in metal hydrides. Results of these experiments are described in six papers included as appendices.

  18. Telerobotic electronic materials processing experiment

    NASA Technical Reports Server (NTRS)

    Ollendorf, Stanford

    1991-01-01

    The Office of Commercial Programs (OCP), working in conjunction with NASA engineers at the Goddard Space Flight Center, is supporting research efforts in robot technology and microelectronics materials processing that will provide many spinoffs for science and industry. The Telerobotic Materials Processing Experiment (TRMPX) is a Shuttle-launched materials processing test payload using a Get Away Special can. The objectives of the project are to define, develop, and demonstrate an automated materials processing capability under realistic flight conditions. TRMPX will provide the capability to test the production processes that are dependent on microgravity. The processes proposed for testing include the annealing of amorphous silicon to increase grain size for more efficient solar cells, thin film deposition to demonstrate the potential of fabricating solar cells in orbit, and the annealing of radiation damaged solar cells.

  19. Material Science and Construction

    NASA Astrophysics Data System (ADS)

    Traugott, Alan

    2009-03-01

    We will review the new materials and technologies that are being applied in the construction of high performance (green) buildings to improve energy efficiency, Indoor Air and Environmental Quality, water conservation and reclamation, and resource conservation. We present an introduction to state-of-the-art building concepts, including ``Net-Zero'' buildings, which generate as much energy as they use, reclaim water, and minimize waste; and ``Waste as Resource,'' including waste to energy plants, biofuels, materials reclamation and recycling. The role of advanced materials and technologies, such as spectrally selective glazing, photocatalytic concrete, solar heating and cooling, and organic solar collectors will be discussed. We also give an overview of advanced analytic tools used in building design, including Computational Fluid Dynamics, energy, and lighting/daylighting computer-based simulation programs.

  20. Innovative Science Experiments Using Phoenix

    ERIC Educational Resources Information Center

    Kumar, B. P. Ajith; Satyanarayana, V. V. V.; Singh, Kundan; Singh, Parmanand

    2009-01-01

    A simple, flexible and very low cost hardware plus software framework for developing computer-interfaced science experiments is presented. It can be used for developing computer-interfaced science experiments without getting into the details of electronics or computer programming. For developing experiments this is a middle path between…

  1. Innovative Science Experiments Using Phoenix

    ERIC Educational Resources Information Center

    Kumar, B. P. Ajith; Satyanarayana, V. V. V.; Singh, Kundan; Singh, Parmanand

    2009-01-01

    A simple, flexible and very low cost hardware plus software framework for developing computer-interfaced science experiments is presented. It can be used for developing computer-interfaced science experiments without getting into the details of electronics or computer programming. For developing experiments this is a middle path between…

  2. Research in Materials Science

    DTIC Science & Technology

    1975-05-31

    236. (1966) 836. 11. Noah Hendelsohn, S.B. Thesis, MIT (Physics, 1974) unpublished; Myron Hale Frommer , Ph.D. Thesis, MIT (Metallurgy and Materials...iiiK±\\fju\\mki^m\\IUW<MfW.imK-VlWW I 1 ■77- 12. J. Bostock, Kofi Agyeman, M.ll. Frommer , and M.L.A. MacVicar, J. Appl. Phys. 44 (1973) 5567. 13. W. N

  3. Material Science Smart Coatings

    SciTech Connect

    Rubinstein, A. I.; Sabirianov, R. F.; Namavar, Fereydoon

    2014-07-01

    The contribution of electrostatic interactions to the free energy of binding between model protein and a ceramic implant surface in the aqueous solvent, considered in the framework of the nonlocal electrostatic model, is calculated as a function of the implant low-frequency dielectric constant. We show that the existence of a dynamically ordered (low-dielectric) interfacial solvent layer at the protein-solvent and ceramic-solvent interface markedly increases charging energy of the protein and ceramic implant, and consequently makes the electrostatic contribution to the protein-ceramic binding energy more favorable (attractive). Our analysis shows that the corresponding electrostatic energy between protein and oxide ceramics depends nonmonotonically on the dielectric constant of ceramic, εC. Obtained results indicate that protein can attract electrostatically to the surface if ceramic material has a moderate εC below or about 35 (in particularly ZrO2 or Ta2O5). This is in contrast to classical (local) consideration of the solvent, which demonstrates an unfavorable electrostatic interaction of protein with typical metal oxide ceramic materialsC>10). Thus, a solid implant coated by combining oxide ceramic with a reduced dielectric constant can be beneficial to strengthen the electrostatic binding of the protein-implant complex.

  4. Integrating Science with Local Experiences

    ERIC Educational Resources Information Center

    Black, Kathie

    2004-01-01

    Science exists in many forms, but an appreciation of science as an integral part of every day does not occur in the vacuum of laboratory experience or through classroom activities. Throughout the communities, a plethora of places exist to see science at work, from the usually recommended museums and parks to the less thought of factories and…

  5. Integrating Science with Local Experiences

    ERIC Educational Resources Information Center

    Black, Kathie

    2004-01-01

    Science exists in many forms, but an appreciation of science as an integral part of every day does not occur in the vacuum of laboratory experience or through classroom activities. Throughout the communities, a plethora of places exist to see science at work, from the usually recommended museums and parks to the less thought of factories and…

  6. Materials Science and Technology Teachers Handbook

    SciTech Connect

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

    2008-09-04

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

  7. Biological materials: a materials science approach.

    PubMed

    Meyers, Marc A; Chen, Po-Yu; Lopez, Maria I; Seki, Yasuaki; Lin, Albert Y M

    2011-07-01

    The approach used by Materials Science and Engineering is revealing new aspects in the structure and properties of biological materials. The integration of advanced characterization, mechanical testing, and modeling methods can rationalize heretofore unexplained aspects of these structures. As an illustration of the power of this methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3-PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. A Creative Science Experience

    ERIC Educational Resources Information Center

    Overton, Dave

    2004-01-01

    As a Teaching Awards Regional Winner in 2002, the author was recently awarded funding by Planet Science (NESTA) for projects to disseminate best practice. One of the things he had in mind was to organise a "creative science event." So last July year 4 children from Chiltern Primary School, Hull, joined a class of year 5 children from…

  9. A Creative Science Experience

    ERIC Educational Resources Information Center

    Overton, Dave

    2004-01-01

    As a Teaching Awards Regional Winner in 2002, the author was recently awarded funding by Planet Science (NESTA) for projects to disseminate best practice. One of the things he had in mind was to organise a "creative science event." So last July year 4 children from Chiltern Primary School, Hull, joined a class of year 5 children from…

  10. Theoretical Problems in Materials Science

    NASA Technical Reports Server (NTRS)

    Langer, J. S.; Glicksman, M. E.

    1985-01-01

    Interactions between theoretical physics and material sciences to identify problems of common interest in which some of the powerful theoretical approaches developed for other branches of physics may be applied to problems in materials science are presented. A unique structure was identified in rapidly quenched Al-14% Mn. The material has long-range directed bonds with icosahedral symmetry which does not form a regular structure but instead forms an amorphous-like quasiperiodic structure. Finite volume fractions of second phase material is advanced and is coupled with nucleation theory to describe the formation and structure of precipitating phases in alloys. Application of the theory of pattern formation to the problem of dendrite formation is studied.

  11. Overview of NASA's Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Downey, James Patton

    2012-01-01

    The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.

  12. Technical activities 1980: Center for Materials Science

    NASA Astrophysics Data System (ADS)

    Wachtman, J. B., Jr.; Hoffman, J. D.

    1980-10-01

    Part of the National Measurement Laboratory, one of the principal laboratories comprising the National Bureau of Standards, the Materials Science Center is organized in six divisions, each having responsibility in different areas of materials science appropriate to the major classes of materials metals, polymers, and ceramics and glass. These Divisions vary in their balance between theory and experiments, between direct standards work and research, and in their orientation toward industrial and Government needs and the needs of other components of the scientific and technical community. Achievements reported relate to signal processing and imaging; fracture theory; conformational changes in polymers; chemical stability and corrosion; fracture deformation; polymer science and standards; metallurgy and alloys; ceramics, glass, and solid state; and reactor radiation.

  13. Experimenting with Science Facility Design.

    ERIC Educational Resources Information Center

    Butterfield, Eric

    1999-01-01

    Discusses the modern school science facility and how computers and teaching methods are changing their design. Issues include power, lighting, and space requirements; funding for planning; architect assessment; materials requirements for work surfaces; and classroom flexibility. (GR)

  14. Experimenting with Science Facility Design.

    ERIC Educational Resources Information Center

    Butterfield, Eric

    1999-01-01

    Discusses the modern school science facility and how computers and teaching methods are changing their design. Issues include power, lighting, and space requirements; funding for planning; architect assessment; materials requirements for work surfaces; and classroom flexibility. (GR)

  15. Setting science free from materialism.

    PubMed

    Sheldrake, Rupert

    2013-01-01

    Contemporary science is based on the claim that all reality is material or physical. There is no reality but material reality. Consciousness is a by-product of the physical activity of the brain. Matter is unconscious. Evolution is purposeless. This view is now undergoing a credibility crunch. The biggest problem of all for materialism is the existence of consciousness. Panpsychism provides a way forward. So does the recognition that minds are not confined to brains. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Physical experience enhances science learning.

    PubMed

    Kontra, Carly; Lyons, Daniel J; Fischer, Susan M; Beilock, Sian L

    2015-06-01

    Three laboratory experiments involving students' behavior and brain imaging and one randomized field experiment in a college physics class explored the importance of physical experience in science learning. We reasoned that students' understanding of science concepts such as torque and angular momentum is aided by activation of sensorimotor brain systems that add kinetic detail and meaning to students' thinking. We tested whether physical experience with angular momentum increases involvement of sensorimotor brain systems during students' subsequent reasoning and whether this involvement aids their understanding. The physical experience, a brief exposure to forces associated with angular momentum, significantly improved quiz scores. Moreover, improved performance was explained by activation of sensorimotor brain regions when students later reasoned about angular momentum. This finding specifies a mechanism underlying the value of physical experience in science education and leads the way for classroom practices in which experience with the physical world is an integral part of learning. © The Author(s) 2015.

  17. Experiences in Space Science.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    This publication contains descriptions of space science activities that can be conducted with simple equipment. There are activities suitable for both elementary and secondary school children. Activities are placed under the headings: Astronomy, Atmosphere, Universal Gravitation, Aerodynamics, Guidance and Propulsion, Tracking and Communications,…

  18. Science Experience Unit: Conservation.

    ERIC Educational Resources Information Center

    Ferguson-Florissant School District, Ferguson, MO.

    GRADES OR AGES: Intermediate grades. SUBJECT MATTER: Conservation. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into 24 experiments. It is mimeographed and staple-bound with a paper cover. OBJECTIVES AND ACTIVITIES: A specific skill or knowledge objective is stated at the beginning of each experiment. Detailed procedures are listed…

  19. Materials science in the sunshine

    SciTech Connect

    Whitney, E.D.

    1985-11-01

    The University of Florida, offering degrees in more than 100 different fields and located at Gainesville, Florida, is in the heart of a rapidly growing population and industrial region. The scholarly environment of the community, coupled with the near-ideal climate of north central Florida, provides unusually pleasant surroundings as well as stimulating atmosphere for undergraduate and graduate study in materials science and engineering. A large faculty of international reputation, equipped with the most modern research facilities, offer instruction in a broad range of aspects of materials science and engineering. Research is strongly emphasized in the department and this is based on the philosophy that good research makes good teaching possible by placing the faculty at the forefront of their fields. Curriculum development in the courses offered is strongly influenced by both the strong research program in this department as well as Florida's rapidly developing high-technology industrial environment.

  20. NASA's Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1998-01-01

    Materials Science research programs are funded by NASA through the Microgravity Research Division. Such programs are normally designated as flight definition or ground based and can be awarded initially for up to four years. Selection is through a peer review process in response to a biennial NASA Research Announcement (NRA). The next announcement is due in November 1998 with proposals due in March 1999. Topics of special interest to NASA are described in the guidelines for proposal writing within the NRA. NASA's interest in materials is wide and covers a range which includes metals and alloys, ceramics, glasses, polymers, non-linear optics, aerogels and nanostructures. With increasing interest in the Human Exploration and Development of Space (HEDS) program, the materials research funded will not be exclusively devoted to processes dependent on microgravity, but will also support materials of strategic interest in meeting NASA's long range plans of interplanetary travel.

  1. NASA's Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1998-01-01

    Materials Science research programs are funded by NASA through the Microgravity Research Division. Such programs are normally designated as flight definition or ground based and can be awarded initially for up to four years. Selection is through a peer review process in response to a biennial NASA Research Announcement (NRA). The next announcement is due in November 1998 with proposals due in March 1999. Topics of special interest to NASA are described in the guidelines for proposal writing within the NRA. NASA's interest in materials is wide and covers a range which includes metals and alloys, ceramics, glasses, polymers, non-linear optics, aerogels and nanostructures. With increasing interest in the Human Exploration and Development of Space (HEDS) program, the materials research funded will not be exclusively devoted to processes dependent on microgravity, but will also support materials of strategic interest in meeting NASA's long range plans of interplanetary travel.

  2. Materials Sciences Division 1990 annual report

    SciTech Connect

    Not Available

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  3. Materials Sciences Division 1990 annual report

    SciTech Connect

    Not Available

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  4. First Materials Science Research Rack Capabilities and Design Features

    NASA Technical Reports Server (NTRS)

    Schaefer, D.; King, R.; Cobb, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The first Materials Science Research Rack (MSRR-1) will accommodate dual Experiment Modules (EM's) and provide simultaneous on-orbit processing operations capability. The first international Materials Science Experiment Module for the MSRR-1 is an international cooperative research activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center. (ESTEC). This International Standard Payload Rack (ISPR) will contain the Materials Science Laboratory (MSL) developed by ESA as an Experiment Module. The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts. Module Inserts currently planned are a Quench Module Insert, Low Gradient Furnace, Solidification with Quench Furnace, and Diffusion Module Insert. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Department (SPD). It includes capabilities for vapor transport processes and liquid metal sintering. This Experiment Module will be replaced on-orbit with other NASA Materials Science EMs.

  5. First Materials Science Research Rack Capabilities and Design Features

    NASA Technical Reports Server (NTRS)

    Schaefer, D.; King, R.; Cobb, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The first Materials Science Research Rack (MSRR-1) will accommodate dual Experiment Modules (EM's) and provide simultaneous on-orbit processing operations capability. The first international Materials Science Experiment Module for the MSRR-1 is an international cooperative research activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center. (ESTEC). This International Standard Payload Rack (ISPR) will contain the Materials Science Laboratory (MSL) developed by ESA as an Experiment Module. The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts. Module Inserts currently planned are a Quench Module Insert, Low Gradient Furnace, Solidification with Quench Furnace, and Diffusion Module Insert. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Department (SPD). It includes capabilities for vapor transport processes and liquid metal sintering. This Experiment Module will be replaced on-orbit with other NASA Materials Science EMs.

  6. Early space experiments in materials processing

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1979-01-01

    A comprehensive survey of the flight experiments conducted in conjunction with the United States Materials Processing in Space Program is presented. Also included are a brief description of the conditions prevailing in an orbiting spacecraft and the research implications provided by this unique environment. What was done and what was learned are summarized in order to serve as a background for future experiments. It is assumed that the reader has some knowledge of the physical sciences but no background in spaceflight experimentation or in the materials science per se.

  7. The Current Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    2000-01-01

    A description will be made of the current materials science program within the microgravity research division. This presentation will be made at a plenary session of the biennial materials Science Conference.

  8. Ukrainian Program for Material Science in Microgravity

    NASA Astrophysics Data System (ADS)

    Fedorov, Oleg

    Ukrainian Program for Material Sciences in Microgravity O.P. Fedorov, Space Research Insti-tute of NASU -NSAU, Kyiv, The aim of the report is to present previous and current approach of Ukrainian research society to the prospect of material sciences in microgravity. This approach is based on analysis of Ukrainian program of research in microgravity, preparation of Russian -Ukrainian experiments on Russian segment of ISS and development of new Ukrainian strategy of space activity for the years 2010-2030. Two parts of issues are discussed: (i) the evolution of our views on the priorities in microgravity research (ii) current experiments under preparation and important ground-based results. item1 The concept of "space industrialization" and relevant efforts in Soviet and post -Soviet Ukrainian research institutions are reviewed. The main topics are: melt supercooling, crystal growing, testing of materials, electric welding and study of near-Earth environment. The anticipated and current results are compared. item 2. The main experiments in the framework of Ukrainian-Russian Research Program for Russian Segment of ISS are reviewed. Flight installations under development and ground-based results of the experiments on directional solidification, heat pipes, tribological testing, biocorrosion study is presented. Ground-based experiments and theoretical study of directional solidification of transparent alloys are reviewed as well as preparation of MORPHOS installation for study of succinonitrile -acetone in microgravity.

  9. The Center for Nanophase Materials Sciences

    SciTech Connect

    Christen, Hans; Ovchinnikova, Olga; Jesse, Stephen; Mazumder, Baishakhi; Norred, Liz; Idrobo, Juan Carlos; Berlijn, Tom

    2016-03-11

    The Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory (ORNL) integrates nanoscale science with neutron science; synthesis science; and theory, modeling, and simulation. Operating as a national user facility, the CNMS supports a multidisciplinary environment for research to understand nanoscale materials and phenomena.

  10. The Center for Nanophase Materials Sciences

    ScienceCinema

    Christen, Hans; Ovchinnikova, Olga; Jesse, Stephen; Mazumder, Baishakhi; Norred, Liz; Idrobo, Juan Carlos; Berlijn, Tom

    2016-07-12

    The Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory (ORNL) integrates nanoscale science with neutron science; synthesis science; and theory, modeling, and simulation. Operating as a national user facility, the CNMS supports a multidisciplinary environment for research to understand nanoscale materials and phenomena.

  11. Element material experiment by EFFU

    NASA Technical Reports Server (NTRS)

    Hashimoto, Yoshihiro; Ichikawa, Masaaki; Takei, Mitsuru; Torii, Yoshihiro; Ota, Kazuo

    1995-01-01

    National Space Development Agency of JAPAN (NASDA) is planning to perform Element Material Exposure Experiment using Exposed Facility Flyer Unit (EFFU). Several materials which will be used on JEM (Japanese Experiment Module for the space station) will be exposed. Space environment monitoring is also planned in this experiment. Several ground based tests are now being performed and getting useful data.

  12. Phospholipid Vesicles in Materials Science

    SciTech Connect

    Granick, Steve

    2016-05-11

    The objective of this research was to develop the science basis needed to deploy phospholipid vesicles as functional materials in energy contexts. Specifically, we sought to: (1) Develop an integrated molecular-level understanding of what determines their dynamical shape, spatial organization, and responsiveness to complex, time-varying environments; and (2) Develop understanding of their active transportation in crowded environments, which our preliminary measurements in cells suggest may hold design principles for targeting improved energy efficiency in new materials systems. The methods to do this largely involved fluorescence imaging and other spectroscopy involving single particles, vesicles, particles, DNA, and endosomes. An unexpected importance outcome was a new method to image light-emitting diodes during actual operation using super-resolution spectroscopy.

  13. Challenge of Materials at the Science Museum: A Resource for GNVQ Science and Engineering.

    ERIC Educational Resources Information Center

    Bazley, Martin

    1997-01-01

    Describes "Challenge of Materials," a gallery where visitors can experience a wide variety of materials in different ways. Materials include familiar structural items such as steel and glass, and new materials that can change form and color. The gallery also provides opportunities for work with schools in materials science and…

  14. FWP executive summaries: Basic energy sciences materials sciences programs

    SciTech Connect

    Samara, G.A.

    1996-02-01

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  15. Cooperation between NASA and ESA for the first microgravity materials science glovebox

    NASA Technical Reports Server (NTRS)

    Chassay, Roger P.

    1992-01-01

    Two major space organizations have collaborated to develop the first microgravity materials science glovebox and 16 materials science experiments. The glovebox and its experiments will fly initially on USML-1, currently scheduled for launch in mid-1992.

  16. NASA Now: Materials Science: Thermal Protection Systems

    NASA Image and Video Library

    Metallurgical and materials engineers use science, technology and mathematics to study different types of materials. They analyze the materials to determine what they are made of and evaluate their...

  17. Science Experiments, Field and Classroom.

    ERIC Educational Resources Information Center

    Davido, Frank, Comp.

    Included is a compilation of 21 simple experiments for use by elementary teachers and aides. The experiments are grouped into these categories: plants, insects, and senses. The materials required are not specialized and would generally be available in the classroom or from a local store. A number of films are recommended and are available from the…

  18. Materials sciences programs, Fiscal year 1997

    SciTech Connect

    1998-10-01

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  19. Nuffield Secondary Science, Theme 7, Using Materials.

    ERIC Educational Resources Information Center

    Blackledge, J.; And Others

    Nuffield Secondary Science is a set of tested materials from which teachers can prepare courses for students in grades 9-11 (approximately) who do not intend to major in science. The materials are designed for British secondary schools but are adaptable for other countries. The Teachers' Guide to the entire set of materials is described in SE 015…

  20. Nuffield Secondary Science, Theme 7, Using Materials.

    ERIC Educational Resources Information Center

    Blackledge, J.; And Others

    Nuffield Secondary Science is a set of tested materials from which teachers can prepare courses for students in grades 9-11 (approximately) who do not intend to major in science. The materials are designed for British secondary schools but are adaptable for other countries. The Teachers' Guide to the entire set of materials is described in SE 015…

  1. Materials science research in microgravity

    NASA Technical Reports Server (NTRS)

    Perepezko, John H.

    1992-01-01

    There are several important attributes of an extended duration microgravity environment that offer a new dimension in the control of the microstructure, processing, and properties of materials. First, when gravitational effects are minimized, buoyancy driven convection flows are also minimized. The flows due to density differences, brought about either by composition or temperature gradients will then be reduced or eliminated to permit a more precise control of the temperature and the composition of a melt which is critical in achieving high quality crystal growth of electronic materials or alloy structures. Secondly, body force effects such as sedimentation, hydrostatic pressure, and deformation are similarly reduced. These effects may interfere with attempts to produce uniformly dispersed or aligned second phases during melt solidification. Thirdly, operating in a microgravity environment will facilitate the containerless processing of melts to eliminate the limitations of containment for reactive melts. The noncontacting forces such as those developed from electromagnet, electrostatic, or acoustic fields can be used to position samples. With this mode of operation, contamination can be minimized to enable the study of reactive melts and to eliminate extraneous crystal nucleation so that novel crystalline structures and new glass compositions may be produced. In order to take advantage of the microgravity environment for materials research, it has become clear that reliable processing models based on a sound ground based experimental experience and an established thermophysical property data base are essential.

  2. [Applications of synthetic biology in materials science].

    PubMed

    Zhao, Tianxin; Zhong, Chao

    2017-03-25

    Materials are the basis for human being survival and social development. To keep abreast with the increasing needs from all aspects of human society, there are huge needs in the development of advanced materials as well as high-efficiency but low-cost manufacturing strategies that are both sustainable and tunable. Synthetic biology, a new engineering principle taking gene regulation and engineering design as the core, greatly promotes the development of life sciences. This discipline has also contributed to the development of material sciences and will continuously bring new ideas to future new material design. In this paper, we review recent advances in applications of synthetic biology in material sciences, with the focus on how synthetic biology could enable synthesis of new polymeric biomaterials and inorganic materials, phage display and directed evolution of proteins relevant to materials development, living functional materials, engineered bacteria-regulated artificial photosynthesis system as well as applications of gene circuits for material sciences.

  3. Inertial Confinement Fusion Materials Science

    SciTech Connect

    Hamza, A V

    2004-06-01

    Demonstration of thermonuclear ignition and gain on a laboratory scale is one of science's grand challenges. The National Ignition Facility (NIF) is committed to achieving inertial confinement fusion (ICF) by 2010. Success in this endeavor depends on four elements: the laser driver performance, target design, experimental diagnostics performance, and target fabrication and target materials performance. This article discusses the current state of target fabrication and target materials performance. The first three elements will only be discussed insofar as they relate to target fabrication specifications and target materials performance. Excellent reviews of the physics of ICF are given by Lindl [Lindl 1998] and Lindl et al. [Lindl 2004]. To achieve conditions under which inertial confinement is sufficient to achieve thermonuclear burn, an imploded fuel capsule is compressed to conditions of high density and temperature. In the laboratory a driver is required to impart energy to the capsule to effect an implosion. There are three drivers currently being considered for ICF in the laboratory: high-powered lasers, accelerated heavy ions, and x rays resulting from pulsed power machines. Of these, high-powered lasers are the most developed, provide the most symmetric drive, and provide the most energy. Laser drive operates in two configurations. The first is direct drive where the laser energy impinges directly on the ICF capsule and drives the implosion. The second is indirect drive, where the energy from the laser is first absorbed in a high-Z enclosure or hohlraum surrounding the capsule, and the resulting x-rays emitted by the hohlraum material drives the implosion. Using direct drive the laser beam energy is absorbed by the electrons in the outer corona of the target. The electrons transport the energy to the denser shell region to provide the ablation and the resulting implosion. Laser direct drive is generally less efficient and more hydrodynamically unstable than

  4. Strategic Research Directions In Microgravity Materials Science

    NASA Technical Reports Server (NTRS)

    Clinton, Raymond G., Jr.; Wargo, Michael J.; Marzwell, Neville L.; Sanders, Gerald; Schlagheck, Ron; Semmes, Ed; Bassler, Julie; Cook, Beth

    2004-01-01

    The Office of Biological and Physical Research (OBPR) is moving aggressively to align programs, projects, and products with the vision for space exploration. Research in advanced materials is a critical element in meeting exploration goals. Research in low gravity materials science in OBPR is being focused on top priority needs in support of exploration: 1) Space Radiation Shielding; 2) In Situ Resource Utilization; 3) In Situ Fabrication and Repair; 4) Materials Science for Spacecraft and Propulsion Systems; 5) Materials Science for Advanced Life Support Systems. Roles and responsibilities in low gravity materials research for exploration between OBPR and the Office of Exploration Systems are evolving.

  5. JPRS Report, Science & Technology, USSR: Materials Science

    DTIC Science & Technology

    2007-11-02

    Porous Sheet Sintered Materials (V. K. Sorokin; POROSHKOVAYA METALLURGIYA, No 2, Feb 88) 4 Elastic Properties of YBa2Cu307 at 4.2-300K (Ya. N...METALLOVEDENIYE, No 2, Feb 88) . . 6 FERROUS METALS Structure and Properties of Molybdenum-Vanadium High-Speed ’Steel With Aluminum (A, N...Popandopulo, et al.; IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY: CHERNAYA METALLURGIYA, No 1, Jan 88) 7 Influence of Scandium on Properties of 35KhGSL

  6. JPRS Report, Science & Technology, USSR: Materials Science

    DTIC Science & Technology

    1988-12-28

    are performed in polyethylene vessels at 20-25 °C with copper present. Test times are 1 to 3 hours. Com- parison testing with the standard method ...well-founded method for high temperature testing of materials makes it difficult to gain more information. This article presents studies of such...degree of sinter- ing and microstructural peculiarities. The method of trans- mission is suitable for the manufacture of automatic testing

  7. Experiments showing dynamics of materials interfaces

    SciTech Connect

    Benjamin, R.F.

    1997-02-01

    The discipline of materials science and engineering often involves understanding and controlling properties of interfaces. The authors address the challenge of educating students about properties of interfaces, particularly dynamic properties and effects of unstable interfaces. A series of simple, inexpensive, hands-on activities about fluid interfaces provides students with a testbed to develop intuition about interface dynamics. The experiments highlight the essential role of initial interfacial perturbations in determining the dynamic response of the interface. The experiments produce dramatic, unexpected effects when initial perturbations are controlled and inhibited. These activities help students to develop insight about unstable interfaces that can be applied to analogous problems in materials science and engineering. The lessons examine ``Rayleigh-Taylor instability,`` an interfacial instability that occurs when a higher-density fluid is above a lower-density fluid.

  8. New Directions in NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Recently, NASA's Microgravity Research Division was re-aligned to match the Agency's increasing awareness of the importance of biological and nano-structural sciences. The Division has become the Physical Sciences Research section within the newly created Office of Biological and Physical Research. Within materials science and in the last few years, new programs aimed at biomaterials have been initiated. Results from these programs and also new research pertaining to materials for radiation protection will be discussed.

  9. New Directions in NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Recently, NASA's Microgravity Research Division was re-aligned to match the Agency's increasing awareness of the importance of biological and nano-structural sciences. The Division has become the Physical Sciences Research section within the newly created Office of Biological and Physical Research. Within materials science and in the last few years, new programs aimed at biomaterials have been initiated. Results from these programs and also new research pertaining to materials for radiation protection will be discussed.

  10. Materials sciences programs, fiscal year 1994

    SciTech Connect

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  11. Materials sciences programs: Fiscal year 1994

    NASA Astrophysics Data System (ADS)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  12. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn E.; Lehman, John R.; Frazier, Natalie C.

    2014-01-01

    The Materials Science Research Rack (MSRR) is a highly automated facility developed in a joint venture/partnership between NASA and ESA center dot Allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses onboard the International Space Station (ISS) center dot Multi-user facility for high temperature materials science research center dot Launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module ?Research goals center dot Provide means of studying materials processing in space to develop a better understanding of the chemical and physical mechanisms involved center dot Benefit materials science research via the microgravity environment of space where the researcher can better isolate the effects of gravity during solidification on the properties of materials center dot Use the knowledge gained from experiments to make reliable predictions about conditions required on Earth to achieve improved materials

  13. The Science of Smart Materials

    ERIC Educational Resources Information Center

    Boohan, Richard

    2011-01-01

    Over the last few decades, smart materials have become increasingly important in the design of products. Essentially, a smart material is one that has been designed to respond to a stimulus, such as a change in temperature or magnetic field, in a particular and useful way. This article looks at a range of smart materials that are relatively…

  14. The Science of Smart Materials

    ERIC Educational Resources Information Center

    Boohan, Richard

    2011-01-01

    Over the last few decades, smart materials have become increasingly important in the design of products. Essentially, a smart material is one that has been designed to respond to a stimulus, such as a change in temperature or magnetic field, in a particular and useful way. This article looks at a range of smart materials that are relatively…

  15. JPRS report: Science and technology. Central Eurasia: Materials science

    NASA Astrophysics Data System (ADS)

    1992-03-01

    A bibliography is given of Central Eurasian research in materials science. Topics covered include analysis and testing; corrosion resistance; ferrous metals; nonferrous alloys, brazes, and solders; heat treatment; welding, brazing, and soldering; and extractive metallurgy.

  16. NEPTUNE Canada Community Science Experiments

    NASA Astrophysics Data System (ADS)

    Juniper, S.; Bornhold, B.; Barnes, C.; Phibbs, P.; Pirenne, B.

    2006-05-01

    In 2007 NEPTUNE Canada will install the first stage of a regional cabled observatory (RCO) in the northeast Pacific Ocean. Stage 2 of the RCO is being developed by the US-based ORION Project Office, through the National Science Foundation's Ocean Observatory Initiative (OOI). For Stage 1, a 800km fiber-optic cable will loop out from a shore station on Vancouver Island to the Juan de Fuca volcanic spreading ridge. Two seafloor nodes are planned, one to support studies of tectonic and hydrothermal activity on the Endeavour Segment of the Juan de Fuca Ridge, and the other for investigation of a broad range of processes in Barkley Canyon, on the continental slope of Vancouver Island. Each node will provide power and Ethernet communications to instruments that comprise multi-disciplinary community science experiments. These experiments were developed through a 2-year series of workshops and a final competition. Data from all instruments will be available on-line, through the NEPTUNE data management and archive system. Investigations at the Endeavour node will focus on links between seismic activity and hydrothermal emissions and their resulting impact on hydrothermal vent organisms and regional oceanic circulation and geochemical fluxes. This area provides a number of technical challenges, including the laying of the backbone cable over a volcanic terrain, and the placement of instruments and extension cables in areas of abundant high-temperature venting. Planned instruments include broad-band seismometers, acoustic Doppler current meters, video and digital still cameras and chemical sensors. Experiments at the Barkley Canyon site will emphasis the effects of water currents passing through the canyon, and seismic activity. Combined biological and physical oceanographic instruments will monitor the interaction between sediment transport along the axis of the canyon and the bioturbation activity of the fauna. A combined physical/biological experiment in the water column

  17. Materials Science for Nuclear Detection

    SciTech Connect

    Peurrung, Anthony J.

    2008-03-01

    In response to the elevated importance of nuclear detection technology, a variety of research efforts have sought to accelerate the discovery and development of useful new radiation detection materials These efforts have goals such as improving our understanding of how these materials perform, supporting the development of formalized discovery tools, or enabling rapid and effective performance characterization. This article provides an overview of these efforts along with an introduction to the history, physics, and taxonomy of these materials.

  18. Innovative Video Diagnostic Equipment for Material Science

    NASA Technical Reports Server (NTRS)

    Capuano, G.; Titomanlio, D.; Soellner, W.; Seidel, A.

    2012-01-01

    Materials science experiments under microgravity increasingly rely on advanced optical systems to determine the physical properties of the samples under investigation. This includes video systems with high spatial and temporal resolution. The acquisition, handling, storage and transmission to ground of the resulting video data are very challenging. Since the available downlink data rate is limited, the capability to compress the video data significantly without compromising the data quality is essential. We report on the development of a Digital Video System (DVS) for EML (Electro Magnetic Levitator) which provides real-time video acquisition, high compression using advanced Wavelet algorithms, storage and transmission of a continuous flow of video with different characteristics in terms of image dimensions and frame rates. The DVS is able to operate with the latest generation of high-performance cameras acquiring high resolution video images up to 4Mpixels@60 fps or high frame rate video images up to about 1000 fps@512x512pixels.

  19. Aerospace, Chemical and Material Sciences

    DTIC Science & Technology

    2012-03-05

    Origami , ASDR&E COI Materials, Joint AFOSR/RX/RH Center of Excellence at Georgia Tech on Bio Materials Rice professor’s nanotube theory confirmed...Jason’s Study) • (Schmisseur invited expert and our newest AIAA Fellow!!!) • AFOSR-NSF collaborative agreement & Origami Initiative • (collaborative

  20. CVT/GPL phase 2 integrated testing. [in earth observations, space physics, and material sciences

    NASA Technical Reports Server (NTRS)

    Shurney, R. E.; Maybee, G.; Schmitt, S.

    1974-01-01

    Experiments representing earth observations, space physics, and material sciences disciplines were installed in the General Purpose Laboratory (GPL). The experiments and the GPL are described. The experiments interfaces the GPL and GPL support systems are assessed. The experiments were cloud physics, ionospheric disturbances, material sciences, high energy astronomy, and superfluid helium.

  1. Classroom Demonstrations in Materials Science/Engineering.

    ERIC Educational Resources Information Center

    Hirschhorn, J. S.; And Others

    Examples are given of demonstrations used at the University of Wisconsin in a materials science course for nontechnical students. Topics include crystal models, thermal properties, light, and corrosion. (MLH)

  2. Recent progress in hybrid materials science.

    PubMed

    Sanchez, Clément; Shea, Kenneth J; Kitagawa, Susumu

    2011-02-01

    This themed issue of Chemical Society Reviews reviews recent progress made in hybrid materials science. Guest editors Clément Sanchez, Susumu Kitagawa and Ken Shea introduce the issue and the academic and industrial importance of the field.

  3. History, Science and Culture: Curricular Experiences in Brazil.

    ERIC Educational Resources Information Center

    Reis, Jose Claudio; Guerra, Andreia; Braga, Marco; Freitas, Jairo

    2001-01-01

    Presents didactic material and discusses educational experiences developed by the Tekne Group in Brazil. Points out that science is presented in a broader context of culture and aims to improve instructional practices in science. Explains some of the principles that inform the Tekne Group's work. (Contains 28 references.) (Author/YDS)

  4. History, Science and Culture: Curricular Experiences in Brazil.

    ERIC Educational Resources Information Center

    Reis, Jose Claudio; Guerra, Andreia; Braga, Marco; Freitas, Jairo

    2001-01-01

    Presents didactic material and discusses educational experiences developed by the Tekne Group in Brazil. Points out that science is presented in a broader context of culture and aims to improve instructional practices in science. Explains some of the principles that inform the Tekne Group's work. (Contains 28 references.) (Author/YDS)

  5. Microgravity Materials Science Conference 2000. Volume 2

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan (Editor); Bennett, Nancy (Editor); McCauley, Dannah (Editor); Murphy, Karen (Editor); Poindexter, Samantha (Editor)

    2001-01-01

    This is Volume 2 of 3 of the 2000 Microgravity Materials Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the Microgravity materials science discipline. The microgravity science program sponsored approx. 200 investigators, all of whom made oral or poster presentations at this conference- In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference %%,its to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in material,, science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance

  6. Microgravity Materials Science Conference 2000. Volume 3

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Bennett, Nancy; McCauley, Dannah; Murphy, Karen; Poindexter, Samantha

    2001-01-01

    This is Volume 3 of 3 of the 2000 Microgravity Materials Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the Microgravity materials science discipline. The microgravity science program sponsored 200 investigators, all of whom made oral or poster presentations at this conference- In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference was to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in material,, science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance was close

  7. Microgravity Materials Science Conference 2000. Volume 1

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan (Editor); Bennett, Nancy (Editor); McCauley, Dannah (Editor); Murphy, Karen (Editor); Poindexter, Samantha (Editor)

    2001-01-01

    This is Volume 1 of 3 of the 2000 Microgravity Material Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approx. 200 investigators, all of whom made oral or poster presentations at this conference. In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference was to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in materials science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance was

  8. Becoming Science "Experi-mentors"

    ERIC Educational Resources Information Center

    Counsell, Shelly Lynn

    2011-01-01

    According to the National Research Council (NRC 2007), three critical components significantly influence students' science learning: teacher knowledge, teachers' opportunities to learn, and instructional systems. If students' science achievement is strongly correlated with teachers' science competence, and core competencies are central to…

  9. Becoming Science "Experi-mentors"

    ERIC Educational Resources Information Center

    Counsell, Shelly Lynn

    2011-01-01

    According to the National Research Council (NRC 2007), three critical components significantly influence students' science learning: teacher knowledge, teachers' opportunities to learn, and instructional systems. If students' science achievement is strongly correlated with teachers' science competence, and core competencies are central to…

  10. Informal Science: Family Education, Experiences, and Initial Interest in Science

    ERIC Educational Resources Information Center

    Dabney, Katherine P.; Tai, Robert H.; Scott, Michael R.

    2016-01-01

    Recent research and public policy have indicated the need for increasing the physical science workforce through development of interest and engagement with informal and formal science, technology, engineering, and mathematics experiences. This study examines the association of family education and physical scientists' informal experiences in…

  11. Informal Science: Family Education, Experiences, and Initial Interest in Science

    ERIC Educational Resources Information Center

    Dabney, Katherine P.; Tai, Robert H.; Scott, Michael R.

    2016-01-01

    Recent research and public policy have indicated the need for increasing the physical science workforce through development of interest and engagement with informal and formal science, technology, engineering, and mathematics experiences. This study examines the association of family education and physical scientists' informal experiences in…

  12. SMART-1 science experiments co-ordination

    NASA Astrophysics Data System (ADS)

    Almeida, M.; Foing, B.; Vilar, E.; Heather, D.; Koschny, D.; Marini, A.

    2002-10-01

    SMART-1 is the first European Space Agency mission to the Moon, due for launch in the first months of 2003. Its primary goal is to test new technologies for space navigation and science. In its science experiments, SMART-1 will include new, very compact experiments. This paper aims to demonstrate some of the science experiment operations foreseen for the mission. We describe the SMART-1 mission, its orbit and example scenarios for imaging specific targets (such as Tycho and Copernicus craters).

  13. The concept verification testing of materials science payloads

    NASA Technical Reports Server (NTRS)

    Griner, C. S.; Johnston, M. H.; Whitaker, A.

    1976-01-01

    The concept Verification Testing (CVT) project at the Marshall Space Flight Center, Alabama, is a developmental activity that supports Shuttle Payload Projects such as Spacelab. It provides an operational 1-g environment for testing NASA and other agency experiment and support systems concepts that may be used in shuttle. A dedicated Materials Science Payload was tested in the General Purpose Laboratory to assess the requirements of a space processing payload on a Spacelab type facility. Physical and functional integration of the experiments into the facility was studied, and the impact of the experiments on the facility (and vice versa) was evaluated. A follow-up test designated CVT Test IVA was also held. The purpose of this test was to repeat Test IV experiments with a crew composed of selected and trained scientists. These personnel were not required to have prior knowledge of the materials science disciplines, but were required to have a basic knowledge of science and the scientific method.

  14. Editorial: Defining materials science: A vision from APL Materials

    NASA Astrophysics Data System (ADS)

    MacManus-Driscoll, Judith

    2014-07-01

    These are exciting times for materials science—a field which is growing more rapidly than any other physical science discipline. More than ever, the field is providing the vital link between science and engineering, between pure and applied. But what is the subject's definition and why is the field ballooning? I address these questions in the context of how APL Materials intends to play a role in advancing this important field. My introspective focus arises as we approach the first year anniversary of APL Materials.

  15. The Materials Science of Superheroes

    NASA Astrophysics Data System (ADS)

    Kakalios, James

    2008-03-01

    While materials scientists don't typically consult comic books when selecting research topics, innovations first introduced in superhero adventures as fiction can sometimes find their way off the comic book page and into reality. As amazing as the Fantastic Four's powers is the fact that their costumes are undamaged when the Human Torch flames on or Mr. Fantastic stretches his elastic body. In shape memory materials, an external force or torque induces a structural change that is reversed upon warming. Smart fabrics used in hiking clothing expand at low temperatures, while other materials increase their porosity at higher temperatures, allowing body heat and water vapor to escape. Some polymers can be stretched to over twice their normal dimensions and return to their original state when annealed, a feature appreciated by Mr. Fantastic. In order to keep track of the Invisible Woman, the Fantastic Four's arch nemesis Dr. Doom employed sensors in the eye-slits of his armored face-plate, using the same physics underlying night vision goggles. Certain forms of blindness may be treated using an artificial retina consisting of silicon microelectrode arrays, surgically attached to the back of the eye, that transmit a voltage to the optic nerve proportional to the incident visible light intensity (one of the few positive applications of Dr. Doom's scheming). Spider-Man's wall crawling ability has been ascribed to the same van der Waals attractive force that gecko lizards employ through the millions of microscopic hairs on their toes. Scientists have recently developed ``gecko tape,'' consisting of arrays of fibers that provide a strong enough attraction to support a modest weight. Before this tape is able to support a person, however, major materials constraints must be overcome (if this product ever becomes commercially available, I for one will never wait for the elevator again!) All this, and the chemical composition of Captain America's shield, will be discussed.

  16. Materials science. Electronics without lead.

    PubMed

    Li, Yi; Moon, Kyoung-sik; Wong, C P

    2005-06-03

    In conventional consumer electronics such as cell phones, lead-containing interconnects provide the conductive path between different circuit elements. Environmental concerns have led to a search for lead-free alternatives. In their Perspective, Li et al. review these efforts, which have focused on lead-free alloys and electrically conductive adhesives. Both of these approaches are showing promise, but no one lead-free interconnect material can serve as a substitute for the conventional tin-lead solder in all devices.

  17. Melting curve of materials: theory versus experiments

    NASA Astrophysics Data System (ADS)

    Alfè, D.; Vocadlo, L.; Price, G. D.; Gillan, M. J.

    2004-04-01

    A number of melting curves of various materials have recently been measured experimentally and calculated theoretically, but the agreement between different groups is not always good. We discuss here some of the problems which may arise in both experiments and theory. We also report the melting curves of Fe and Al calculated recently using quantum mechanics techniques, based on density functional theory with generalized gradient approximations. For Al our results are in very good agreement with both low pressure diamond-anvil-cell experiments (Boehler and Ross 1997 Earth Planet. Sci. Lett. 153 223, Hänström and Lazor 2000 J. Alloys Compounds 305 209) and high pressure shock wave experiments (Shaner et al 1984 High Pressure in Science and Technology ed Homan et al (Amsterdam: North-Holland) p 137). For Fe our results agree with the shock wave experiments of Brown and McQueen (1986 J. Geophys. Res. 91 7485) and Nguyen and Holmes (2000 AIP Shock Compression of Condensed Matter 505 81) and the recent diamond-anvil-cell experiments of Shen et al (1998 Geophys. Res. Lett. 25 373). Our results are at variance with the recent calculations of Laio et al (2000 Science 287 1027) and, to a lesser extent, with the calculations of Belonoshko et al (2000 Phys. Rev. Lett. 84 3638). The reasons for these disagreements are discussed.

  18. Carbon Nanotubes: Miracle of Materials Science?

    NASA Technical Reports Server (NTRS)

    Files, Bradley S.; Mayeaux, Brian M.

    1999-01-01

    Article to be sent to Advanced Materials and Processes, journal of ASM International, as attached. This is a news-type technical journal for a large organization of scientists, engineers, salesmen, and managers. The article is quite general, meant to be an introduction to the properties of nanotubes. This is a materials science organization, therefore the article is geared toward using nanotubes for materials uses. Pictures have not been included in this version.

  19. Teacher learning from girls' informal science experiences

    NASA Astrophysics Data System (ADS)

    Birmingham, Daniel J.

    School science continues to fail to engage youth from non-dominant communities (Carlone, Huan-Frank & Webb, 2011). However, recent research demonstrates that informal science learning settings support both knowledge gains and increased participation in science among youth from non-dominant communities (Dierking, 2007; Falk et al., 2007; HFRP, 2010). Despite the success, little is known about how teachers can learn from informal science practices to support student engagement in science. In this study, I examine the impact informal science experiences has for the teaching and learning of science in school contexts. This study is focused on eliciting girls' stories of informal science learning experiences and sharing these stories with science teachers to examine what they notice and make meaning of in connection with their classroom practices (van Es & Sherin, 2002). I co-constructed cases of informal science experiences with middle school females who participate in an after school science program in an urban area. These cases consisted of the girls' written stories, their explicit messages to science teachers, examples of actions taken when investigating community based science issues and transcripts of conversations between the girls and researchers. These cases were shared with local science teachers in order to investigate what they "notice" (van Es & Sherin, 2002) regarding girls' participation in informal science learning, how they make meaning of youths' stories and whether the stories influence their classroom practices. I found that the girls' use their cases to share experiences of how, where and why science matters, to express hope for school science and to critique stereotypical views that young, female, students of color from lower SES backgrounds are not interested or capable of making contributions to scientific investigations. Additionally, I found that teachers noticed powerful messages within and across the girls' cases. The messages include; 1

  20. Experiences with a Science Hotline.

    ERIC Educational Resources Information Center

    Evans, Laura J.; Frazier, Donald T.

    1993-01-01

    Describes the orientation and management of a science hotline managed by the University of Kentucky for the benefit of teachers. Results include a more positive public image of science and the creation of links between academic scientists and precollege teachers. (DDR)

  1. The materials science of collagen.

    PubMed

    Sherman, Vincent R; Yang, Wen; Meyers, Marc A

    2015-12-01

    Collagen is the principal biopolymer in the extracellular matrix of both vertebrates and invertebrates. It is produced in specialized cells (fibroblasts) and extracted into the body by a series of intra and extracellular steps. It is prevalent in connective tissues, and the arrangement of collagen determines the mechanical response. In biomineralized materials, its fraction and spatial distribution provide the necessary toughness and anisotropy. We review the structure of collagen, with emphasis on its hierarchical arrangement, and present constitutive equations that describe its mechanical response, classified into three groups: hyperelastic macroscopic models based on strain energy in which strain energy functions are developed; macroscopic mathematical fits with a nonlinear constitutive response; structurally and physically based models where a constitutive equation of a linear elastic material is modified by geometric characteristics. Viscoelasticity is incorporated into the existing constitutive models and the effect of hydration is discussed. We illustrate the importance of collagen with descriptions of its organization and properties in skin, fish scales, and bone, focusing on the findings of our group.

  2. Physical Science Experiments for Scientific Glassblowing Technicians.

    ERIC Educational Resources Information Center

    Tillis, Samuel E.; Donaghay, Herbert C.

    The twenty experiments in this text have been designed to give the scientific glassblowing technician the opportunity to use scientific glass apparatus in the study of physical science. Primary emphasis of these experiments is on the practical application of the physical science program as a working tool for the scientific glassblowing technician.…

  3. Density functional theory in materials science

    PubMed Central

    Neugebauer, Jörg; Hickel, Tilmann

    2013-01-01

    Materials science is a highly interdisciplinary field. It is devoted to the understanding of the relationship between (a) fundamental physical and chemical properties governing processes at the atomistic scale with (b) typically macroscopic properties required of materials in engineering applications. For many materials, this relationship is not only determined by chemical composition, but strongly governed by microstructure. The latter is a consequence of carefully selected process conditions (e.g., mechanical forming and annealing in metallurgy or epitaxial growth in semiconductor technology). A key task of computational materials science is to unravel the often hidden composition–structure–property relationships using computational techniques. The present paper does not aim to give a complete review of all aspects of materials science. Rather, we will present the key concepts underlying the computation of selected material properties and discuss the major classes of materials to which they are applied. Specifically, our focus will be on methods used to describe single or polycrystalline bulk materials of semiconductor, metal or ceramic form. PMID:24563665

  4. Density functional theory in materials science.

    PubMed

    Neugebauer, Jörg; Hickel, Tilmann

    2013-09-01

    Materials science is a highly interdisciplinary field. It is devoted to the understanding of the relationship between (a) fundamental physical and chemical properties governing processes at the atomistic scale with (b) typically macroscopic properties required of materials in engineering applications. For many materials, this relationship is not only determined by chemical composition, but strongly governed by microstructure. The latter is a consequence of carefully selected process conditions (e.g., mechanical forming and annealing in metallurgy or epitaxial growth in semiconductor technology). A key task of computational materials science is to unravel the often hidden composition-structure-property relationships using computational techniques. The present paper does not aim to give a complete review of all aspects of materials science. Rather, we will present the key concepts underlying the computation of selected material properties and discuss the major classes of materials to which they are applied. Specifically, our focus will be on methods used to describe single or polycrystalline bulk materials of semiconductor, metal or ceramic form.

  5. Environmental Science: High-School Science Fair Experiments.

    ERIC Educational Resources Information Center

    Dashefsky, H. Steven

    This book contains 23 suggestions for experiments involving environmental science that can be used to create a science fair project. Aimed at grades 10-12, a wide range of environmental topics is covered. These topics include soil ecosystems, aquatic ecosystems, applied ecology, global warming and the greenhouse effect, deforestation and…

  6. Perspective: Codesign for materials science: An optimal learning approach

    NASA Astrophysics Data System (ADS)

    Lookman, Turab; Alexander, Francis J.; Bishop, Alan R.

    2016-05-01

    A key element of materials discovery and design is to learn from available data and prior knowledge to guide the next experiments or calculations in order to focus in on materials with targeted properties. We suggest that the tight coupling and feedback between experiments, theory and informatics demands a codesign approach, very reminiscent of computational codesign involving software and hardware in computer science. This requires dealing with a constrained optimization problem in which uncertainties are used to adaptively explore and exploit the predictions of a surrogate model to search the vast high dimensional space where the desired material may be found.

  7. Fusion power: a challenge for materials science.

    PubMed

    Duffy, D M

    2010-07-28

    The selection and design of materials that will withstand the extreme conditions of a fusion power plant has been described as one of the greatest materials science challenges in history. The high particle flux, high thermal load, thermal mechanical stress and the production of transmutation elements combine to produce a uniquely hostile environment. In this paper, the materials favoured for the diverse roles in a fusion power plant are discussed, along with the experimental and modelling techniques that are used to advance the understanding of radiation damage in materials. Areas where further research is necessary are highlighted.

  8. Putting Science FIRST: Memories of Family Science Experiences.

    ERIC Educational Resources Information Center

    Science and Children, 1996

    1996-01-01

    Presents anecdotes from prominent citizens including Bill Clinton, Alan Alda, Carl Sagan, Gerald Wheeler, JoAnne Vasquez, and Lynn Margulis in which they reminisce about interesting science experiences with their families. (JRH)

  9. Putting Science FIRST: Memories of Family Science Experiences.

    ERIC Educational Resources Information Center

    Science and Children, 1996

    1996-01-01

    Presents anecdotes from prominent citizens including Bill Clinton, Alan Alda, Carl Sagan, Gerald Wheeler, JoAnne Vasquez, and Lynn Margulis in which they reminisce about interesting science experiences with their families. (JRH)

  10. LANL MTI science team experience

    NASA Astrophysics Data System (ADS)

    Balick, Lee K.; Borel, Christopher C.; Chylek, Petr; Clodius, William B.; Davis, Anthony B.; Henderson, Bradley G.; Galbraith, Amy E.; Lawson, Stefanie L.; Pope, Paul A.; Rodger, Andrew P.; Theiler, James P.

    2003-12-01

    The Multispectral Thermal Imager (MTI) is a technology test and demonstration satellite whose primary mission involved a finite number of technical objectives. MTI was not designed, or supported, to become a general purpose operational satellite. The role of the MTI science team is to provide a core group of system-expert scientists who perform the scientific development and technical evaluations needed to meet programmatic objectives. Another mission for the team is to develop algorithms to provide atmospheric compensation and quantitative retrieval of surface parameters to a relatively small community of MTI users. Finally, the science team responds and adjusts to unanticipated events in the life of the satellite. Broad or general lessons learned include the value of working closely with the people who perform the calibration of the data as well as those providing archived image and retrieval products. Close interaction between the Los Alamos National Laboratory (LANL) teams was very beneficial to the overall effort as well as the science effort. Secondly, as time goes on we make increasing use of gridded global atmospheric data sets which are products of global weather model data assimilation schemes. The Global Data Assimilation System information is available globally every six hours and the Rapid Update Cycle products are available over much of the North America and its coastal regions every hour. Additionally, we did not anticipate the quantity of validation data or time needed for thorough algorithm validation. Original validation plans called for a small number of intensive validation campaigns soon after launch. One or two intense validation campaigns are needed but are not sufficient to define performance over a range of conditions or for diagnosis of deviations between ground and satellite products. It took more than a year to accumulate a good set of validation data. With regard to the specific programmatic objectives, we feel that we can do a

  11. LANL MTI science team experience

    NASA Astrophysics Data System (ADS)

    Balick, Lee K.; Borel, Christopher C.; Chylek, Petr; Clodius, William B.; Davis, Anthony B.; Henderson, Bradley G.; Galbraith, Amy E.; Lawson, Stefanie L.; Pope, Paul A.; Rodger, Andrew P.; Theiler, James P.

    2004-01-01

    The Multispectral Thermal Imager (MTI) is a technology test and demonstration satellite whose primary mission involved a finite number of technical objectives. MTI was not designed, or supported, to become a general purpose operational satellite. The role of the MTI science team is to provide a core group of system-expert scientists who perform the scientific development and technical evaluations needed to meet programmatic objectives. Another mission for the team is to develop algorithms to provide atmospheric compensation and quantitative retrieval of surface parameters to a relatively small community of MTI users. Finally, the science team responds and adjusts to unanticipated events in the life of the satellite. Broad or general lessons learned include the value of working closely with the people who perform the calibration of the data as well as those providing archived image and retrieval products. Close interaction between the Los Alamos National Laboratory (LANL) teams was very beneficial to the overall effort as well as the science effort. Secondly, as time goes on we make increasing use of gridded global atmospheric data sets which are products of global weather model data assimilation schemes. The Global Data Assimilation System information is available globally every six hours and the Rapid Update Cycle products are available over much of the North America and its coastal regions every hour. Additionally, we did not anticipate the quantity of validation data or time needed for thorough algorithm validation. Original validation plans called for a small number of intensive validation campaigns soon after launch. One or two intense validation campaigns are needed but are not sufficient to define performance over a range of conditions or for diagnosis of deviations between ground and satellite products. It took more than a year to accumulate a good set of validation data. With regard to the specific programmatic objectives, we feel that we can do a

  12. Materials and Chemical Sciences Division annual report, 1987

    SciTech Connect

    Not Available

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

  13. Investigating minority student participation in an authentic science research experience

    NASA Astrophysics Data System (ADS)

    Preston, Stephanie Danette

    following data sources were used in this study: SEEMS curriculum and documentation, interviews with program staff and participants, TRIO program documentation, Upward Bound Math Science (UBMS) promotional material, and audio/video recordings and field notes of students' daily interactions in the research setting. Findings revealed that students who participated in the research experience were able to successfully engage in some cultural practices of science, such as using inscriptions, constructing explanations, and collecting data. Analysis and observations of their engagement demonstrated a need for programs similar to SEEMS to focus on: (1) understanding how students make sense of science as they engage in the cultural practices, and (2) incorporating aspects of students' culture and social practices into the experience.

  14. Survey of Health Sciences CAI Materials.

    ERIC Educational Resources Information Center

    Kamp, Martin

    A project to develop an automated index of information about existing computerized instruction in the health sciences is reported and described. Methods of obtaining and indexing materials for the catalog are detailed. Entry and recovery techniques and selection of descriptors are described. Results to date show that the data base contains…

  15. Materials Sciences programs, Fiscal year 1993

    SciTech Connect

    1994-02-01

    This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

  16. Teaching General Chemistry: A Materials Science Companion.

    ERIC Educational Resources Information Center

    Ellis, Arthur B.; And Others

    Many teachers and other educators have expressed a concern regarding the lack of student interest in many of the traditional science courses. To help rectify this problem a collaborative effort among educators and others concerned has led to the development of instructional materials that are more relevant to the lives of students. This document…

  17. Teaching General Chemistry: A Materials Science Companion.

    ERIC Educational Resources Information Center

    Ellis, Arthur B.; And Others

    Many teachers and other educators have expressed a concern regarding the lack of student interest in many of the traditional science courses. To help rectify this problem a collaborative effort among educators and others concerned has led to the development of instructional materials that are more relevant to the lives of students. This document…

  18. Development Approach for the Accommodation of Materials Science Research for the Materials Science Research Facility on the International Space Station

    NASA Technical Reports Server (NTRS)

    Schaefer, D. A.; Cobb, S. D.; Szofran, F. R.

    2000-01-01

    The Materials Science Research Facility (MSRF) is a modular facility comprised of autonomous Materials Science Research Racks (MSRR's) for research in the microgravity environment afforded by the International Space Station (ISS). The initial MSRF concept consists of three Materials Science Research Racks (MSRR-1, MSRR-2, and MSRR-3) which will be developed for a phased deployment beginning on the third Utilization Flight (UF-3). The facility will house materials processing apparatus and common subsystems required for operating each device. Each MSRR is a stand alone autonomous rack and will be comprised of either on-orbit replaceable Experiment Modules, Module Inserts, investigation unique apparatus, and/or multiuser generic processing apparatus. Each MSRR will support a wide range of materials science themes in the NASA research program and will use the ISS Active Rack Isolation System (ARIS). MSRF is being developed for the United States Laboratory Module and will provide the apparatus for satisfying near-term and long-range Materials Science Discipline goals and objectives.

  19. Development Approach for the Accommodation of Materials Science Research for the Materials Science Research Facility on the International Space Station

    NASA Technical Reports Server (NTRS)

    Schaefer, D. A.; Cobb, S. D.; Szofran, F. R.

    2000-01-01

    The Materials Science Research Facility (MSRF) is a modular facility comprised of autonomous Materials Science Research Racks (MSRR's) for research in the microgravity environment afforded by the International Space Station (ISS). The initial MSRF concept consists of three Materials Science Research Racks (MSRR-1, MSRR-2, and MSRR-3) which will be developed for a phased deployment beginning on the third Utilization Flight (UF-3). The facility will house materials processing apparatus and common subsystems required for operating each device. Each MSRR is a stand alone autonomous rack and will be comprised of either on-orbit replaceable Experiment Modules, Module Inserts, investigation unique apparatus, and/or multiuser generic processing apparatus. Each MSRR will support a wide range of materials science themes in the NASA research program and will use the ISS Active Rack Isolation System (ARIS). MSRF is being developed for the United States Laboratory Module and will provide the apparatus for satisfying near-term and long-range Materials Science Discipline goals and objectives.

  20. First Materials Science Research Facility Rack Capabilities and Design Features

    NASA Technical Reports Server (NTRS)

    Cobb, S.; Higgins, D.; Kitchens, L.; Curreri, Peter (Technical Monitor)

    2002-01-01

    The first Materials Science Research Rack (MSRR-1) is the primary facility for U.S. sponsored materials science research on the International Space Station. MSRR-1 is contained in an International Standard Payload Rack (ISPR) equipped with the Active Rack Isolation System (ARIS) for the best possible microgravity environment. MSRR-1 will accommodate dual Experiment Modules and provide simultaneous on-orbit processing operations capability. The first Experiment Module for the MSRR-1, the Materials Science Laboratory (MSL), is an international cooperative activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center (ESTEC). The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts which provide distinct thermal processing capabilities. Module Inserts currently planned for the MSL are a Quench Module Insert, Low Gradient Furnace, and a Solidification with Quench Furnace. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Development (SPD) Group. Transparent furnace assemblies include capabilities for vapor transport processes and annealing of glass fiber preforms. This Experiment Module is replaceable on-orbit. This paper will describe facility capabilities, schedule to flight and research opportunities.

  1. First Materials Science Research Facility Rack Capabilities and Design Features

    NASA Technical Reports Server (NTRS)

    Cobb, S.; Higgins, D.; Kitchens, L.; Curreri, Peter (Technical Monitor)

    2002-01-01

    The first Materials Science Research Rack (MSRR-1) is the primary facility for U.S. sponsored materials science research on the International Space Station. MSRR-1 is contained in an International Standard Payload Rack (ISPR) equipped with the Active Rack Isolation System (ARIS) for the best possible microgravity environment. MSRR-1 will accommodate dual Experiment Modules and provide simultaneous on-orbit processing operations capability. The first Experiment Module for the MSRR-1, the Materials Science Laboratory (MSL), is an international cooperative activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center (ESTEC). The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts which provide distinct thermal processing capabilities. Module Inserts currently planned for the MSL are a Quench Module Insert, Low Gradient Furnace, and a Solidification with Quench Furnace. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Development (SPD) Group. Transparent furnace assemblies include capabilities for vapor transport processes and annealing of glass fiber preforms. This Experiment Module is replaceable on-orbit. This paper will describe facility capabilities, schedule to flight and research opportunities.

  2. Skylab experiments. Volume 4: Life sciences

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The life sciences experiments conducted during Skylab missions are discussed. The general categories of the experiments are as follows: (1) mineral and hormonal balance, (2) hematology and immunology, (3) cardiovascular status, (4) energy expenditure, (5) neurophysiology, and (7) biology. Each experiment within the general category is further identified with respect to the scientific objectives, equipment used, performance, and data to be obtained.

  3. Science Festivals: Grand Experiments in Public Outreach

    NASA Astrophysics Data System (ADS)

    Hari, K.

    2015-12-01

    Since the Cambridge Science Festival launched in 2007, communities across the United States have experimented with the science festival format, working out what it means to celebrate science and technology. What have we learned, and where might we go from here? The Science Festival Alliance has supported and tracked developments among U.S. festivals, and this presentation will present key findings from three years of independent evaluation. While science festivals have coalesced into a distinct category of outreach activity, the diversity of science festival initiatives reflects the unique character of the regions in which the festivals are organized. This symposium will consider how festivals generate innovative public programming by adapting to local conditions and spur further innovation by sharing insights into such adaptations with other festivals. With over 55 annual large scale science festivals in the US alone, we will discuss the implications of a dramatic increase in future festival activity.

  4. Botany: High-School Science Fair Experiments.

    ERIC Educational Resources Information Center

    Dashefsky, H. Steven

    This book for high school students presents 20 different science fair projects that provide an opportunity to learn how plants are affected by natural and man-made influences on their environments. Many experiments in the book were adapted from original International Science and Engineering Fair projects. Each project includes in-depth background…

  5. Experiments in the Thermal and Fluid Sciences

    NASA Technical Reports Server (NTRS)

    Cutler, Andrew D.

    2002-01-01

    The Principal Investigator (PI) & students of the George Washington University Joint Institute for the Advancement of Flight Sciences have designed, implemented, and evaluated experiments in the thermal and fluid sciences at the NASA Langley Research Center. This research was conducted cooperatively with NASA employees using, where necessary, equipment and facilities provided by the US. Government.

  6. More Life-Science Experiments For Spacelab

    NASA Technical Reports Server (NTRS)

    Savage, P. D., Jr.; Dalton, B.; Hogan, R.; Leon, H.

    1991-01-01

    Report describes experiments done as part of Spacelab Life Sciences 2 mission (SLS-2). Research planned on cardiovascular, vestibular, metabolic, and thermal responses of animals in weightlessness. Expected to shed light on effects of prolonged weightlessness on humans.

  7. More Life-Science Experiments For Spacelab

    NASA Technical Reports Server (NTRS)

    Savage, P. D., Jr.; Dalton, B.; Hogan, R.; Leon, H.

    1991-01-01

    Report describes experiments done as part of Spacelab Life Sciences 2 mission (SLS-2). Research planned on cardiovascular, vestibular, metabolic, and thermal responses of animals in weightlessness. Expected to shed light on effects of prolonged weightlessness on humans.

  8. Pulsed Neutron Powder Diffraction for Materials Science

    NASA Astrophysics Data System (ADS)

    Kamiyama, T.

    2008-03-01

    The accelerator-based neutron diffraction began in the end of 60's at Tohoku University which was succeeded by the four spallation neutron facilities with proton accelerators at the High Energy Accelerator Research Organization (Japan), Argonne National Laboratory and Los Alamos Laboratory (USA), and Rutherford Appleton Laboratory (UK). Since then, the next generation source has been pursued for 20 years, and 1MW-class spallation neutron sources will be appeared in about three years at the three parts of the world: Japan, UK and USA. The joint proton accelerator project (J-PARC), a collaborative project between KEK and JAEA, is one of them. The aim of the talk is to describe about J-PARC and the neutron diffractometers being installed at the materials and life science facility of J-PARC. The materials and life science facility of J-PARC has 23 neutron beam ports and will start delivering the first neutron beam of 25 Hz from 2008 May. Until now, more than 20 proposals have been reviewed by the review committee, and accepted proposal groups have started to get fund. Those proposals include five polycrystalline diffractometers: a super high resolution powder diffractometer (SHRPD), a 0.2%-resolution powder diffractometer of Ibaraki prefecture (IPD), an engineering diffractometers (Takumi), a high intensity S(Q) diffractometer (VSD), and a high-pressure dedicated diffractometer. SHRPD, Takumi and IPD are being designed and constructed by the joint team of KEK, JAEA and Ibaraki University, whose member are originally from the KEK powder group. These three instruments are expected to start in 2008. VSD is a super high intensity diffractometer with the highest resolution of Δd/d = 0.3%. VSD can measure rapid time-dependent phenomena of crystalline materials as well as glass, liquid and amorphous materials. The pair distribution function will be routinely obtained by the Fourier transiformation of S(Q) data. Q range of VSD will be as wide as 0.01 Å-1

  9. Pulsed Neutron Powder Diffraction for Materials Science

    SciTech Connect

    Kamiyama, T.

    2008-03-17

    The accelerator-based neutron diffraction began in the end of 60's at Tohoku University which was succeeded by the four spallation neutron facilities with proton accelerators at the High Energy Accelerator Research Organization (Japan), Argonne National Laboratory and Los Alamos Laboratory (USA), and Rutherford Appleton Laboratory (UK). Since then, the next generation source has been pursued for 20 years, and 1MW-class spallation neutron sources will be appeared in about three years at the three parts of the world: Japan, UK and USA. The joint proton accelerator project (J-PARC), a collaborative project between KEK and JAEA, is one of them. The aim of the talk is to describe about J-PARC and the neutron diffractometers being installed at the materials and life science facility of J-PARC. The materials and life science facility of J-PARC has 23 neutron beam ports and will start delivering the first neutron beam of 25 Hz from 2008 May. Until now, more than 20 proposals have been reviewed by the review committee, and accepted proposal groups have started to get fund. Those proposals include five polycrystalline diffractometers: a super high resolution powder diffractometer (SHRPD), a 0.2%-resolution powder diffractometer of Ibaraki prefecture (IPD), an engineering diffractometers (Takumi), a high intensity S(Q) diffractometer (VSD), and a high-pressure dedicated diffractometer. SHRPD, Takumi and IPD are being designed and constructed by the joint team of KEK, JAEA and Ibaraki University, whose member are originally from the KEK powder group. These three instruments are expected to start in 2008. VSD is a super high intensity diffractometer with the highest resolution of {delta}d/d = 0.3%. VSD can measure rapid time-dependent phenomena of crystalline materials as well as glass, liquid and amorphous materials. The pair distribution function will be routinely obtained by the Fourier transiformation of S(Q) data. Q range of VSD will be as wide as 0.01 A{sup -1}

  10. Engaging in Argument from Evidence and the Ocean Sciences Sequence for Grades 3-5: A case study in complementing professional learning experiences with instructional materials aligned to instructional goals

    NASA Astrophysics Data System (ADS)

    Schoedinger, S. E.; Weiss, E. L.

    2016-12-01

    K-5 science teachers, who often lack a science background, have been tasked with a huge challenge in implementing NGSS—to completely change their instructional approach from one that views science as a body of knowledge to be imparted to one that is epistemic in nature. We have found that providing high-quality professional learning (PL) experiences is often not enough and that teachers must have instructional materials that align with their instructional goals. We describe a case study in which the Lawrence Hall of Science (the Hall) used the Hall-developed Ocean Sciences Sequence for Grades 3-5 (OSS 3-5) to support a rigorous PL program for grade 3-5 teachers focused on the NGSS science and engineering practice, engaging in argument from evidence. Developed prior to the release of NGSS, the Ocean Literacy Framework and the NGSS precursor, A Framework for K-12 Science Education, informed the content and instructional approaches of OSS 3-5. OSS 3-5 provides a substantial focus on making evidence-based explanations (and other science practices), while building students' ocean sciences content knowledge. From 2013-2015, the Hall engaged cohorts of teachers in a rigorous PL experience focused on engaging in argument from evidence. During the summer, teachers attended a week-long institute, in which exemplar activities from OSS 3-5 were used to model instructional practices to support arguing from evidence and related practices, e.g., developing and using models and constructing explanations. Immediately afterward, teachers enacted what they'd learned during a two-week summer school practicum. Here, they team-taught the OSS 3-5 curriculum, participated in video reflection groups, and received coaching and just-in-time input from instructors. In the subsequent academic year, many teachers began by teaching OSS 3-5 so that they could practice engaging students in argumentation in curriculum they'd already used for that purpose. Throughout the year, teachers

  11. AFRL's Demonstration and Science Experiments (DSX) Mission

    NASA Astrophysics Data System (ADS)

    Scherbarth, M.; Adler, A.; Smith, D.; Loretti, V.; Stuart, J.

    The Air Force Research Laboratory (AFRL) Space Vehicles Directorate has developed the Demonstration and Science Experiments (DSX) mission to research technologies needed to significantly advance Department of Defense (DoD) capabilities to operate spacecraft in the harsh radiation environment of medium-earth orbits (MEO). The ability to operate effectively in the MEO environment significantly increases the DoDs capability to field space systems that provide persistent global targeting-grade space surveillance and reconnaissance, high-speed satellite-based communication, lower-cost GPS navigation, and protection from space weather and environmental effects on a responsive satellite platform. The three DSX physics-based research/experiment areas are: 1. Wave Particle Interaction Experiment (WPIx): Researching the physics of very-low-frequency (VLF) electro-magnetic wave transmissions through the ionosphere and in the magnetosphere and characterizing the feasibility of natural and man-made VLF waves to reduce and precipitate space radiation; 2. Space Weather Experiment (SWx): Characterizing, mapping, and modeling the space radiation environment in MEO, an orbital regime attractive for future DoD, Civil, and Commercial missions; 3. Space Environmental Effects (SFx): Researching and characterizing the MEO space weather effects on spacecraft electronics and materials. Collectively, thirteen individual payloads are synergized together from these three research areas and integrated onto a single platform (DSX) which provides a low-cost opportunity for AFRL due to their common requirements. All three groups of experiments require a 3-axis stabilized spacecraft bus (but no propulsion), a suite of radiation sensors, and extended duration in a low inclination, elliptical, MEO orbit. DSX will be launch ready in summer 2010 for a likely launch co-manifest with an operational DoD satellite on an EELV (evolved expendable launch vehicle).

  12. AFRL's Demonstration and Science Experiments (DSX) mission

    NASA Astrophysics Data System (ADS)

    Scherbarth, Mark; Smith, Durand; Adler, Aaron; Stuart, Janet; Ginet, Greg

    2009-08-01

    The Air Force Research Laboratory, Space Vehicles Directorate (AFRL/RV) has developed the Demonstration and Science Experiments (DSX) mission to research technologies needed to significantly advance Department of Defense (DoD) capabilities to operate spacecraft in the harsh radiation environment of Medium-Earth Orbits (MEO). The ability to operate effectively in the MEO environment significantly increases the DoD's capability to field space systems that provide persistent global space surveillance and reconnaissance, high-speed satellite-based communication, lower-cost GPS navigation, and protection from space weather and environmental effects on a responsive satellite platform. The three DSX physics-based research/experiment areas are: 1. Wave Particle Interaction Experiment (WPIx): Researching the physics of Very-Low-Frequency (VLF) electromagnetic wave transmissions through the ionosphere and in the magnetosphere and characterizing the feasibility of natural and man-made VLF waves to reduce and precipitate space radiation; 2. Space Weather Experiment (SWx): Characterizing, mapping, and modeling the space radiation environment in MEO, an orbital regime attractive for future DoD, Civil, and Commercial missions; and 3. Space Environmental Effects (SFx): Researching and characterizing the MEO space weather effects on spacecraft electronics and materials. Collectively, thirteen individual payloads are combined together from these three research areas and integrated onto a single platform (DSX) which provides a low-cost opportunity for AFRL due to their common requirements. All three experiments require a 3-axis stabilized spacecraft bus (but no propulsion), a suite of radiation sensors, and extended duration in a low inclination, elliptical, MEO orbit. DSX will be launch-ready in summer 2010 for a likely launch comanifest with an operational DoD satellite on an Evolved Expendable Launch Vehicle (EELV).

  13. Chemistry and Materials Science Strategic Plan

    SciTech Connect

    Rhodie, K B; Mailhiot, C; Eaglesham, D; Hartmann-Siantar, C L; Turpin, L S; Allen, P G

    2004-04-21

    Lawrence Livermore National Laboratory's mission is as clear today as it was in 1952 when the Laboratory was founded--to ensure our country's national security and the safety and reliability of its nuclear deterrent. As a laboratory pursuing applied science in the national interest, we strive to accomplish our mission through excellence in science and technology. We do this while developing and implementing sound and robust business practices in an environment that emphasizes security and ensures our safety and the safety of the community around us. Our mission as a directorate derives directly from the Laboratory's charter. When I accepted the assignment of Associate Director for Chemistry and Materials Science (CMS), I talked to you about the need for strategic balance and excellence in all our endeavors. We also discussed how to take the directorate to the next level. The long-range CMS strategic plan presented here was developed with this purpose in mind. It also aligns with the Lab's institutional long-range science and technology plan and its 10-year facilities and infrastructure site plan. The plan is aimed at ensuring that we fulfill our directorate's two governing principles: (1) delivering on our commitments to Laboratory programs and sponsors, and (2) anticipating change and capitalizing on opportunities through innovation in science and technology. This will require us to attain a new level of creativity, agility, and flexibility as we move forward. Moreover, a new level of engagement in partnerships with other directorates across the Laboratory as well as with universities and other national labs will also be required. The group of managers and staff that I chartered to build a strategic plan identified four organizing themes that define our directorate's work and unite our staff with a set of common goals. The plan presented here explains how we will proceed in each of these four theme areas: (1) Materials properties and performance under extreme

  14. Biotechnology Science Experiments on Mir

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L.

    1999-01-01

    This paper describes the microgravity biotechnology experiments carried out on the Shuttle/Mir program. Four experiments investigated the growth of protein crystals, and three investigated cellular growth. Many hundreds of protein samples were processed using four different techniques. The objective of these experiments was to determine optimum conditions for the growth of very high quality single crystals to be used for structure determination. The Biotechnology System (BTS) was used to process the three cell growth investigations. The samples processed by these experiments were: bovine chondrocytes, human renal epithelial cells, and human breast cancer cells and endothelial cells. The objective was to determine the unique properties of cell aggregates produced in the microgravity environment.

  15. Biotechnology Science Experiments on Mir

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L.

    1999-01-01

    This paper describes the microgravity biotechnology experiments carried out on the Shuttle/Mir program. Four experiments investigated the growth of protein crystals, and three investigated cellular growth. Many hundreds of protein samples were processed using four different techniques. The objective of these experiments was to determine optimum conditions for the growth of very high quality single crystals to be used for structure determination. The Biotechnology System (BTS) was used to process the three cell growth investigations. The samples processed by these experiments were: bovine chondrocytes, human renal epithelial cells, and human breast cancer cells and endothelial cells. The objective was to determine the unique properties of cell aggregates produced in the microgravity environment.

  16. Development of experimental systems for material sciences under microgravity

    NASA Technical Reports Server (NTRS)

    Tanii, Jun; Obi, Shinzo; Kamimiyata, Yotsuo; Ajimine, Akio

    1988-01-01

    As part of the Space Experiment Program of the Society of Japanese Aerospace Companies, three experimental systems (G452, G453, G454) have been developed for materials science studies under microgravity by the NEC Corporation. These systems are to be flown as Get Away Special payloads for studying the feasibility of producing new materials. Together with the experimental modules carrying the hardware specific to the experiment, the three systems all comprise standard subsystems consisting of a power supply, sequence controller, temperature controller, data recorder, and video recorder.

  17. Earth Sciences Requirements for the Information Sciences Experiment System

    NASA Technical Reports Server (NTRS)

    Bowker, David E. (Editor); Katzberg, Steve J. (Editor); Wilson, R. Gale (Editor)

    1990-01-01

    The purpose of the workshop was to further explore and define the earth sciences requirements for the Information Sciences Experiment System (ISES), a proposed onboard data processor with real-time communications capability intended to support the Earth Observing System (Eos). A review of representative Eos instrument types is given and a preliminary set of real-time data needs has been established. An executive summary is included.

  18. Life sciences flight experiments microcomputer

    NASA Technical Reports Server (NTRS)

    Bartram, Peter N.

    1987-01-01

    A promising microcomputer configuration for the Spacelab Life Sciences Lab. Equipment inventory consists of multiple processors. One processor's use is reserved, with additional processors dedicated to real time input and output operations. A simple form of such a configuration, with a processor board for analog to digital conversion and another processor board for digital to analog conversion, was studied. The system used digital parallel data lines between the boards, operating independently of the system bus. Good performance of individual components was demonstrated: the analog to digital converter was at over 10,000 samples per second. The combination of the data transfer between boards with the input or output functions on each board slowed performance, with a maximum throughput of 2800 to 2900 analog samples per second. Any of several techniques, such as use of the system bus for data transfer or the addition of direct memory access hardware to the processor boards, should give significantly improved performance.

  19. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. A larger image is available without labels (No. 0101755).

  20. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD). This image is from a digital still camera; higher resolution is not available.

  1. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830).

  2. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).

  3. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).

  4. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Here the transparent furnace is extracted for servicing. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).

  5. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101830, and TBD).

  6. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, and TBD). This composite is from a digital still camera; higher resolution is not available.

  7. Thermal Boundary Conductance: A Materials Science Perspective

    NASA Astrophysics Data System (ADS)

    Monachon, Christian; Weber, Ludger; Dames, Chris

    2016-07-01

    The thermal boundary conductance (TBC) of materials pairs in atomically intimate contact is reviewed as a practical guide for materials scientists. First, analytical and computational models of TBC are reviewed. Five measurement methods are then compared in terms of their sensitivity to TBC: the 3ω method, frequency- and time-domain thermoreflectance, the cut-bar method, and a composite effective thermal conductivity method. The heart of the review surveys 30 years of TBC measurements around room temperature, highlighting the materials science factors experimentally proven to influence TBC. These factors include the bulk dispersion relations, acoustic contrast, and interfacial chemistry and bonding. The measured TBCs are compared across a wide range of materials systems by using the maximum transmission limit, which with an attenuated transmission coefficient proves to be a good guideline for most clean, strongly bonded interfaces. Finally, opportunities for future research are discussed.

  8. Materials sciences programs fiscal year 1996

    SciTech Connect

    1997-06-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  9. Materials sciences programs: Fiscal year 1995

    SciTech Connect

    1996-05-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Science Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  10. An experience of science theatre: Earth Science for children

    NASA Astrophysics Data System (ADS)

    Musacchio, Gemma; Lanza, Tiziana; D'Addezio, Giuliana

    2015-04-01

    The present paper describes an experience of science theatre addressed to children of primary and secondary school, with the main purpose of explaining the Earth interior while raising awareness about natural hazard. We conducted the experience with the help of a theatrical company specialized in shows for children. Several performances have been reiterated in different context, giving us the opportunity of conducting a preliminary survey with public of different ages, even if the show was conceived for children. Results suggest that science theatre while relying on creativity and emotional learning in transmitting knowledge about the Earth and its hazard has the potential to induce in children a positive attitude towards the risks

  11. The Center for Nanophase Materials Sciences

    NASA Astrophysics Data System (ADS)

    Lowndes, Douglas

    2005-03-01

    The Center for Nanophase Materials Sciences (CNMS) located at Oak Ridge National Laboratory (ORNL) will be the first DOE Nanoscale Science Research Center to begin operation, with construction to be completed in April 2005 and initial operations in October 2005. The CNMS' scientific program has been developed through workshops with the national community, with the goal of creating a highly collaborative research environment to accelerate discovery and drive technological advances. Research at the CNMS is organized under seven Scientific Themes selected to address challenges to understanding and to exploit particular ORNL strengths (see http://cnms.ornl.govhttp://cnms.ornl.gov). These include extensive synthesis and characterization capabilities for soft, hard, nanostructured, magnetic and catalytic materials and their composites; neutron scattering at the Spallation Neutron Source and High Flux Isotope Reactor; computational nanoscience in the CNMS' Nanomaterials Theory Institute and utilizing facilities and expertise of the Center for Computational Sciences and the new Leadership Scientific Computing Facility at ORNL; a new CNMS Nanofabrication Research Laboratory; and a suite of unique and state-of-the-art instruments to be made reliably available to the national community for imaging, manipulation, and properties measurements on nanoscale materials in controlled environments. The new research facilities will be described together with the planned operation of the user research program, the latter illustrated by the current ``jump start'' user program that utilizes existing ORNL/CNMS facilities.

  12. Theory VI. Computational Materials Sciences Network (CMSN)

    SciTech Connect

    Zhang, Z Y

    2008-06-25

    The Computational Materials Sciences Network (CMSN) is a virtual center consisting of scientists interested in working together, across organizational and disciplinary boundaries, to formulate and pursue projects that reflect challenging and relevant computational research in the materials sciences. The projects appropriate for this center involve those problems best pursued through broad cooperative efforts, rather than those key problems best tackled by single investigator groups. CMSN operates similarly to the DOE Center of Excellence for the Synthesis and Processing of Advanced Materials, coordinated by George Samara at Sandia. As in the Synthesis and Processing Center, the intent of the modest funding for CMSN is to foster partnering and collective activities. All CMSN proposals undergo external peer review and are judged foremost on the quality and timeliness of the science and also on criteria relevant to the objective of the center, especially concerning a strategy for partnering. More details about CMSN can be found on the CMSN webpages at: http://cmpweb.ameslab.gov/ccms/CMSN-homepage.html.

  13. Molecular forensic science of nuclear materials

    SciTech Connect

    Wilkerson, Marianne Perry

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxides materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, process history, or transport of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science required to characterize actinide oxide molecular structures for forensics science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  14. Chemistry and materials science research report

    SciTech Connect

    Not Available

    1990-05-31

    The research reported here in summary form was conducted under the auspices of Weapons-Supporting Research (WSR) and Institutional Research and Development (IR D). The period covered is the first half of FY90. The results reported here are for work in progress; thus, they may be preliminary, fragmentary, or incomplete. Research in the following areas are briefly described: energetic materials, tritium, high-Tc superconductors, interfaces, adhesion, bonding, fundamental aspects of metal processing, plutonium, synchrotron-radiation-based materials science, photocatalysis on doped aerogels, laser-induced chemistry, laser-produced molecular plasmas, chemistry of defects, dta equipment development, electronic structure study of the thermodynamic and mechanical properties of Al-Li Alloys, and the structure-property link in sub-nanometer materials.

  15. Progress in the materials science of silicene

    PubMed Central

    Yamada-Takamura, Yukiko; Friedlein, Rainer

    2014-01-01

    In its freestanding, yet hypothetical form, the Si counterpart of graphene called silicene is predicted to possess massless Dirac fermions and to exhibit an experimentally accessible quantum spin Hall effect. Such interesting electronic properties are not realized in two-dimensional (2D) Si honeycomb lattices prepared recently on metallic substrates where the crystal and hybrid electronic structures of these ‘epitaxial silicene’ phases are strongly influenced by the substrate, and thus different from those predicted for isolated 2D structures. While the realization of such low-dimensional Si π materials has hardly been imagined previously, it is evident that the materials science behind silicene remains challenging. In this contribution, we will review our recent results that lead to an enhanced understanding of epitaxial silicene formed on diboride thin films, and discuss the remaining challenges that must be addressed in order to turn Si 2D nanostructures into technologically interesting nanoelectronic materials. PMID:27877727

  16. Material science lesson from the biological photosystem

    NASA Astrophysics Data System (ADS)

    Kim, Younghye; Lee, Jun Ho; Ha, Heonjin; Im, Sang Won; Nam, Ki Tae

    2016-08-01

    Inspired by photosynthesis, artificial systems for a sustainable energy supply are being designed. Each sequential energy conversion process from light to biomass in natural photosynthesis is a valuable model for an energy collection, transport and conversion system. Notwithstanding the numerous lessons of nature that provide inspiration for new developments, the features of natural photosynthesis need to be reengineered to meet man's demands. This review describes recent strategies toward adapting key lessons from natural photosynthesis to artificial systems. We focus on the underlying material science in photosynthesis that combines photosystems as pivotal functional materials and a range of materials into an integrated system. Finally, a perspective on the future development of photosynthesis mimetic energy systems is proposed.

  17. Progress in the materials science of silicene.

    PubMed

    Yamada-Takamura, Yukiko; Friedlein, Rainer

    2014-12-01

    In its freestanding, yet hypothetical form, the Si counterpart of graphene called silicene is predicted to possess massless Dirac fermions and to exhibit an experimentally accessible quantum spin Hall effect. Such interesting electronic properties are not realized in two-dimensional (2D) Si honeycomb lattices prepared recently on metallic substrates where the crystal and hybrid electronic structures of these 'epitaxial silicene' phases are strongly influenced by the substrate, and thus different from those predicted for isolated 2D structures. While the realization of such low-dimensional Si π materials has hardly been imagined previously, it is evident that the materials science behind silicene remains challenging. In this contribution, we will review our recent results that lead to an enhanced understanding of epitaxial silicene formed on diboride thin films, and discuss the remaining challenges that must be addressed in order to turn Si 2D nanostructures into technologically interesting nanoelectronic materials.

  18. Material science lesson from the biological photosystem.

    PubMed

    Kim, Younghye; Lee, Jun Ho; Ha, Heonjin; Im, Sang Won; Nam, Ki Tae

    2016-01-01

    Inspired by photosynthesis, artificial systems for a sustainable energy supply are being designed. Each sequential energy conversion process from light to biomass in natural photosynthesis is a valuable model for an energy collection, transport and conversion system. Notwithstanding the numerous lessons of nature that provide inspiration for new developments, the features of natural photosynthesis need to be reengineered to meet man's demands. This review describes recent strategies toward adapting key lessons from natural photosynthesis to artificial systems. We focus on the underlying material science in photosynthesis that combines photosystems as pivotal functional materials and a range of materials into an integrated system. Finally, a perspective on the future development of photosynthesis mimetic energy systems is proposed.

  19. Experiences of Material Hardships among TANF Leavers

    ERIC Educational Resources Information Center

    Hunter, Tamara; Santhiveeran, Janaki

    2005-01-01

    Experiences of food insufficiencies, inadequate access to health care, and housing-related hardships represent how financial strain negatively impacts the entire family. The purpose of this study was to examine experiences of material hardships by TANF leavers and to understand factors that are associated with experiences of material hardship.…

  20. Experiences of Material Hardships among TANF Leavers

    ERIC Educational Resources Information Center

    Hunter, Tamara; Santhiveeran, Janaki

    2005-01-01

    Experiences of food insufficiencies, inadequate access to health care, and housing-related hardships represent how financial strain negatively impacts the entire family. The purpose of this study was to examine experiences of material hardships by TANF leavers and to understand factors that are associated with experiences of material hardship.…

  1. Teleconferences and Audiovisual Materials in Earth Science Education

    NASA Astrophysics Data System (ADS)

    Cortina, L. M.

    2007-05-01

    Unidad de Educacion Continua y a Distancia, Universidad Nacional Autonoma de Mexico, Coyoaca 04510 Mexico, MEXICO As stated in the special session description, 21st century undergraduate education has access to resources/experiences that go beyond university classrooms. However in some cases, resources may go largely unused and a number of factors may be cited such as logistic problems, restricted internet and telecommunication service access, miss-information, etc. We present and comment on our efforts and experiences at the National University of Mexico in a new unit dedicated to teleconferences and audio-visual materials. The unit forms part of the geosciences institutes, located in the central UNAM campus and campuses in other States. The use of teleconference in formal graduate and undergraduate education allows teachers and lecturers to distribute course material as in classrooms. Course by teleconference requires learning and student and teacher effort without physical contact, but they have access to multimedia available to support their exhibition. Well selected multimedia material allows the students to identify and recognize digital information to aid understanding natural phenomena integral to Earth Sciences. Cooperation with international partnerships providing access to new materials and experiences and to field practices will greatly add to our efforts. We will present specific examples of the experiences that we have at the Earth Sciences Postgraduate Program of UNAM with the use of technology in the education in geosciences.

  2. The Information Science Experiment System - The computer for science experiments in space

    NASA Technical Reports Server (NTRS)

    Foudriat, Edwin C.; Husson, Charles

    1989-01-01

    The concept of the Information Science Experiment System (ISES), potential experiments, and system requirements are reviewed. The ISES is conceived as a computer resource in space whose aim is to assist computer, earth, and space science experiments, to develop and demonstrate new information processing concepts, and to provide an experiment base for developing new information technology for use in space systems. The discussion covers system hardware and architecture, operating system software, the user interface, and the ground communication link.

  3. The Information Science Experiment System - The computer for science experiments in space

    NASA Technical Reports Server (NTRS)

    Foudriat, Edwin C.; Husson, Charles

    1989-01-01

    The concept of the Information Science Experiment System (ISES), potential experiments, and system requirements are reviewed. The ISES is conceived as a computer resource in space whose aim is to assist computer, earth, and space science experiments, to develop and demonstrate new information processing concepts, and to provide an experiment base for developing new information technology for use in space systems. The discussion covers system hardware and architecture, operating system software, the user interface, and the ground communication link.

  4. School Teachers' Experiences of Science Curriculum Reform

    NASA Astrophysics Data System (ADS)

    Ryder, Jim; Banner, Indira

    2013-02-01

    We examine teachers' experiences of a major reform of the school science curriculum for 14-16-year olds in England. This statutory reform enhances the range of available science courses and emphasises the teaching of socio-scientific issues and the nature of science, alongside the teaching of canonical science knowledge. This paper examines teachers' experiences of the reform and the factors that condition these experiences. A designed sample of 22 teachers discussed their experiences of the reform within a semi-structured interview. Our analysis considers how the external and internal structures within which teachers work interact with the personal characteristics of teachers to condition their experiences of the curriculum reform. In many cases, personal/internal/external contexts of teachers' work align, resulting in an overall working context that is supportive of teacher change. However, in other cases, tensions within these contexts result in barriers to change. We also explore cases in which external curriculum reform has stimulated the development of new contexts for teachers' work. We argue that curriculum reformers need to recognise the inevitability of multiple teaching goals within a highly differentiated department and school workplace. We also show how experiences of curriculum reform can extend beyond the learning of new knowledge and associated pedagogies to involve challenges to teachers' professional identities. We argue for the extended use of teacher role models within local communities of practice to support such 'identity work'.

  5. Trends in Materials Science for Ligament Reconstruction.

    PubMed

    Sava, Oana Roxana; Sava, Daniel Florin; Radulescu, Marius; Albu, Madalina Georgiana; Ficai, Denisa; Veloz-Castillo, Maria Fernanda; Mendez-Rojas, Miguel Angel; Ficai, Anton

    2017-01-01

    The number of ligament injuries increases every year and concomitantly the need for materials or systems that can reconstruct the ligament. Limitations imposed by autografts and allografts in ligament reconstruction together with the advances in materials science and biology have attracted a lot of interest for developing systems and materials for ligament replacement or reconstruction. This review intends to synthesize the major steps taken in the development of polymer-based materials for anterior cruciate ligament, their advantages and drawbacks and the results of different in vitro and in vivo tests. Until present, there is no successful polymer system for ligament reconstruction implanted in humans. The developing field of synthetic polymers for ligament reconstruction still has a lot of potential. In addition, several nano-structured materials, made of nanofibers or in the form of ceramic/polymeric nanocomposites, are attracting the interest of several groups due to their potential use as engineered scaffolds that mimic the native environment of cells, increasing the chances for tissue regeneration. Here, we review the last 15 years of literature in order to obtain a better understanding on the state-of-the-art that includes the usage of nano- and poly-meric materials for ligament reconstruction, and to draw perspectives on the future development of the field.

  6. Computational Experiments for Science and Engineering Education

    NASA Technical Reports Server (NTRS)

    Xie, Charles

    2011-01-01

    How to integrate simulation-based engineering and science (SBES) into the science curriculum smoothly is a challenging question. For the importance of SBES to be appreciated, the core value of simulations-that they help people understand natural phenomena and solve engineering problems-must be taught. A strategy to achieve this goal is to introduce computational experiments to the science curriculum to replace or supplement textbook illustrations and exercises and to complement or frame hands-on or wet lab experiments. In this way, students will have an opportunity to learn about SBES without compromising other learning goals required by the standards and teachers will welcome these tools as they strengthen what they are already teaching. This paper demonstrates this idea using a number of examples in physics, chemistry, and engineering. These exemplary computational experiments show that it is possible to create a curriculum that is both deeper and wider.

  7. Nanobiotechnology: synthetic biology meets materials science.

    PubMed

    Jewett, Michael C; Patolsky, Fernando

    2013-08-01

    Nanotechnology, the area of science focused on the control of matter in the nanometer scale, allows ground-breaking changes of the fundamental properties of matter that are often radically different compared to those exhibited by the bulk counterparts. In view of the fact that dimensionality plays a key role in determining the qualities of matter, the realization of the great potential of nanotechnology has opened the door to other disciplines such as life sciences and medicine, where the merging between them offers exciting new applications, along with basic science research. The application of nanotechnology in life sciences, nanobiotechnology, is now having a profound impact on biological circuit design, bioproduction systems, synthetic biology, medical diagnostics, disease therapy and drug delivery. This special issue is dedicated to the overview of how we are learning to control biopolymers and biological machines at the molecular- and nanoscale. In addition, it covers far-reaching progress in the design and synthesis of nanoscale materials, thus enabling the construction of integrated systems in which the component blocks are comparable in size to the chemical and biological entities under investigation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Resource Materials for Nanoscale Science and Technology Education

    NASA Astrophysics Data System (ADS)

    Lisensky, George

    2006-12-01

    Nanotechnology and advanced materials examples can be used to explore science and engineering concepts, exhibiting the "wow" and potential of nanotechnology, introducing prospective scientists to key ideas, and educating a citizenry capable of making well-informed technology-driven decisions. For example, material syntheses an atomic layer at a time have already revolutionized lighting and display technologies and dramatically expanded hard drive storage capacities. Resource materials include kits, models, and demonstrations that explain scanning probe microscopy, x-ray diffraction, information storage, energy and light, carbon nanotubes, and solid-state structures. An online Video Lab Manual, where movies show each step of the experiment, illustrates more than a dozen laboratory experiments involving nanoscale science and technology. Examples that are useful at a variety of levels when instructors provide the context include preparation of self-assembled monolayers, liquid crystals, colloidal gold, ferrofluid nanoparticles, nickel nanowires, solar cells, electrochromic thin films, organic light emitting diodes, and quantum dots. These resources have been developed, refined and class tested at institutions working with the Materials Research Science and Engineering Center on Nanostructured Interfaces at the University of Wisconsin-Madison (http://mrsec.wisc.edu/nano).

  9. The Mars Science Laboratory Organic Check Material

    NASA Astrophysics Data System (ADS)

    Conrad, Pamela G.; Eigenbrode, Jennifer L.; Von der Heydt, Max O.; Mogensen, Claus T.; Canham, John; Harpold, Dan N.; Johnson, Joel; Errigo, Therese; Glavin, Daniel P.; Mahaffy, Paul R.

    2012-09-01

    Mars Science Laboratory's Curiosity rover carries a set of five external verification standards in hermetically sealed containers that can be sampled as would be a Martian rock, by drilling and then portioning into the solid sample inlet of the Sample Analysis at Mars (SAM) suite. Each organic check material (OCM) canister contains a porous ceramic solid, which has been doped with a fluorinated hydrocarbon marker that can be detected by SAM. The purpose of the OCM is to serve as a verification tool for the organic cleanliness of those parts of the sample chain that cannot be cleaned other than by dilution, i.e., repeated sampling of Martian rock. SAM possesses internal calibrants for verification of both its performance and its internal cleanliness, and the OCM is not used for that purpose. Each OCM unit is designed for one use only, and the choice to do so will be made by the project science group (PSG).

  10. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Frazier, Natalie C.; Johnson, Jimmie; Aicher, Winfried

    2011-01-01

    The Materials Science Research Rack (MSRR) allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses onboard the International Space Station (ISS). MSRR was launched on STS-128 in August 2009, and is currently installed in the U. S. Destiny Laboratory Module. Since that time, MSRR has performed virtually flawlessly logging more than 550 hours of operating time. Materials science is an integral part of development of new materials for everyday life here on Earth. The goal of studying materials processing in space is to develop a better understanding of the chemical and physical mechanisms involved. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility containing two furnace inserts in which Sample Cartridge Assemblies (SCAs), each containing one material sample, can be processed up to temperatures of 1400C. Once an SCA is installed by a Crew Member, the experiment can be run by automatic command or science conducted via telemetry commands from the ground. Initially, 12 SCAs were processed in the first furnace insert for a team of European and US investigators. The processed samples have been returned to Earth for evaluation and comparison of their properties to samples similarly processed on the ground. A preliminary examination of the samples indicates that the majority of the desired science objectives have been successfully met leading to significant improvements in the understanding of alloy solidification processes. The second furnace insert will be installed in the facility in January 2011 for processing the remaining SCA currently on orbit. Six SCAs are planned for launch summer 2011, and additional batches are

  11. Ultrafast electron microscopy in materials science, biology, and chemistry

    SciTech Connect

    King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan; Reed, Bryan; Schmerge, John F.; Siwick, Bradley J.; Stuart, Brent C.; Weber, Peter M.

    2005-06-01

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental

  12. Annual report, Materials Science Branch, FY 1992

    SciTech Connect

    Padilla, S.

    1993-10-01

    This report summarizes the progress of the Materials Science Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1991, through September 30, 1992. Six technical sections of the report cover these main areas of NREL`s in-house research: Crystal Growth, Amorphous Silicon, III-V High-Efficiency Photovoltaic Cells, Solid State Theory, Solid State Spectroscopy, and Program Management. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy`s National Photovoltaic Research Program plans.

  13. Research Experiences for Science Teachers: The Impact On Their Students

    NASA Astrophysics Data System (ADS)

    Dubner, J.

    2005-12-01

    Deficiencies in science preparedness of United States high school students were recognized more than two decades ago, as were some of their underlying causes. Among the primary causes are the remoteness of the language, tools, and concepts of science from the daily experiences of teachers and students, and the long-standing national shortage of appropriately prepared science teachers. Secondary school science teachers are challenged each school year by constantly changing content, new technologies, and increasing demands for standards-based instruction. A major deficiency in the education of science teachers was their lack of experience with the practice of science, and with practicing scientists. Providing teachers with opportunities to gain hands-on experience with the tools and materials of science under the guidance and mentorship of leading scientists in an environment attuned to professional development, would have many beneficial effects. They would improve teachers' understanding of science and their ability to develop and lead inquiry- and standards-based science classes and laboratories. They would enable them to communicate the vitality and dynamism of science to their students and to other teachers. They would enhance their ability to motivate and guide students. From its inception, Columbia University's Summer Research Program for Science Teacher's goal has been to enhance interest and improve performance in science of students in New York City area schools. The program seeks to achieve this goal by increasing the professional competence of teachers. Our ongoing program evaluation shows that following completion of the program, the teachers implement more inquiry-based classroom and laboratory exercises, increase utilization of Internet resources, motivate students to participate in after school science clubs and Intel-type science projects; and create opportunities for students to investigate an area of science in greater depth and for longer periods

  14. Neutron scattering for materials science. Materials Research Society proceedings

    SciTech Connect

    Shapiro, S.M. ); Moss, S.C. ); Jorgensen, J.D. )

    1990-01-01

    Neutron Scattering is by now a well-established technique which has been used by condensed matter scientists to probe both the structure and the dynamical interactions in solids and liquids. The use of neutron scattering methods in materials science research has in turn increased dramatically in recent years. The symposium presented in this book was assembled to bring together scientists with a wide range of interest, including high-T{sub c} superconducting materials, phase transformations, neutron depth profiling, structure and dynamics of glasses and liquids, surfaces and interfaces, porous media, intercalation compounds and lower dimensional systems, structure and dynamics of polymers, residual stress analysis, ordering and phase separation in alloys, and magnetism in alloys and multilayers. The symposium included talks covering the latest advances in broad areas of interest such as Rietveld structure refinement, triple axis spectrometry, quasi elastic scattering and diffusion, small angle scattering and surface scattering.

  15. Multicultural Science Education and Curriculum Materials

    ERIC Educational Resources Information Center

    Atwater, Mary M.

    2010-01-01

    This article describes multicultural science education and explains the purposes of multicultural science curricula. It also serves as an introductory article for the other multicultural science education activities in this special issue of "Science Activities".

  16. Multicultural Science Education and Curriculum Materials

    ERIC Educational Resources Information Center

    Atwater, Mary M.

    2010-01-01

    This article describes multicultural science education and explains the purposes of multicultural science curricula. It also serves as an introductory article for the other multicultural science education activities in this special issue of "Science Activities".

  17. The Mars Science Laboratory Organic Check Material

    NASA Technical Reports Server (NTRS)

    Conrad, Pamela G.; Eigenbrode, J. E.; Mogensen, C. T.; VonderHeydt, M. O.; Glavin, D. P.; Mahaffy, P. M.; Johnson, J. A.

    2011-01-01

    The Organic Check Material (OCM) has been developed for use on the Mars Science Laboratory mission to serve as a sample standard for verification of organic cleanliness and characterization of potential sample alteration as a function of the sample acquisition and portioning process on the Curiosity rover. OCM samples will be acquired using the same procedures for drilling, portioning and delivery as are used to study martian samples with The Sample Analysis at Mars (SAM) instrument suite during MSL surface operations. Because the SAM suite is highly sensitive to organic molecules, the mission can better verify the cleanliness of Curiosity's sample acquisition hardware if a known material can be processed through SAM and compared with the results obtained from martian samples.

  18. Application of positron annihilation in materials science

    SciTech Connect

    Siegel, R.W.; Fluss, M.J.; Smedskjaer, L.C.

    1984-05-01

    Owing to the ability of the positron to annihilate from a variety of defect-trapped states, positron annihilation spectroscopy (PAS) has been applied increasingly to the characterization and study of defects in materials in recent years. In metals particularly, it has been demonstrated that PAS can yield defect-specific information which, by itself or in conjunction with more traditional experimental techniques, has already made a significant impact upon the determination of atomic-defect properties and the monitoring and characterization of vacancy-like microstructure development, as occurs during post-irradiation annealing. The applications of PAS are now actively expanding to the study of more complex defect-related phenomena in irradiated or deformed metals and alloys, phase transformations and structural disorder, surfaces and near-surface defect characterization. A number of these applications in materials science are reviewed and discussed with respect to profitable future directions.

  19. Pavement-marking materials: New York's experience

    NASA Astrophysics Data System (ADS)

    Bryden, J. E.; Gurney, G. F.

    1984-04-01

    A wide range of stripping materials is available for pavement-marking programs. The four basic systems; traffic paint, thermoplastic, preformed tape, and field-reacted materials are described, as well as the various materials used in each system, including cost, durability, methods of installation and mantenance, visibility, and handling safety. New York State's pavement marking policies are described. Information on stripping costs, material usage, and results of durability studies is provided, based on New York's experience with most currently available marking materials.

  20. Teachers' Experiences of Science Curriculum Reform

    ERIC Educational Resources Information Center

    Ryder, Jim; Banner, Indira; Homer, Matt

    2014-01-01

    We report on a three-year study of teachers' experiences of a major reform of the science National Curriculum for 14- to 16-year-olds in England. Teachers' responses to this curriculum reform were guided by: "personal" aims and biography; "internal" features of their workplace such as departmental collegiality; and…

  1. Teachers' Experiences of Science Curriculum Reform

    ERIC Educational Resources Information Center

    Ryder, Jim; Banner, Indira; Homer, Matt

    2014-01-01

    We report on a three-year study of teachers' experiences of a major reform of the science National Curriculum for 14- to 16-year-olds in England. Teachers' responses to this curriculum reform were guided by: "personal" aims and biography; "internal" features of their workplace such as departmental collegiality; and…

  2. An Interdisciplinary Program in Materials Science at James Madison University.

    NASA Astrophysics Data System (ADS)

    Hughes, Chris

    2008-03-01

    Over the past decade a core group of faculty at James Madison University has created an interdisciplinary program in materials science that provides our students with unique courses and research experiences that augment the existing, high-quality majors in physics and astronomy, chemistry and biochemistry, geology and environmental science, mathematics and statistics, and integrated science and technology. The university started this program by creating a Center for Materials Science whose budget is directly allocated by the provost. This source of funds acts as seed money for research, support for students, and a motivating factor for each of the academic units to support the participation of their faculty in the program. Courses were created at the introductory and intermediate level that are cross-listed by the departments to encourage students to enroll in them as electives toward their majors. Furthermore, the students are encouraged to participate in undergraduate research in materials since this is the most fundamental unifying theme across the disciplines. This talk will cover some of the curricular innovations that went into the design of the program to make it successful, examples of faculty and student research and how that feeds back into the classroom, and success stories of the interactions that have developed between departments because of this program. Student outcomes and future plans to improve the program will also be discussed.

  3. Free Teaching Materials: Classroom and Curriculum Aids for Elementary School Science.

    ERIC Educational Resources Information Center

    Raimist, Roger J.; Mester, Rose A.

    Free teaching materials suitable for elementary school science available from 168 agencies and companies are listed. Materials include booklets, teacher's source books and guides, charts and posters, and concrete materials such as mineral samples. Suggestions and materials for student activities range from experiments to song sheets. Topics…

  4. Visualization for materials science and nanoscience

    SciTech Connect

    Graf, Matthias J; Balatsky, Alexander V

    2008-01-01

    The Center for Integrated Nanotechnology (CINT) is a Department of Energy funded center jointly operated by Sandia National Laboratory and Los Alamos National Laboratory. As part of the Los Alamos located CINT facilities, we have developed a visualization capability hosted in the VIZ lab at CINT that is focused on using established applications and developing new visualization tools for the use in materials science and more specifically for the nanosciences. The utility of the visualization process is captured by the motto 'To see is to know', which is so ingrained in the way we do science that often we forget that it is one of the pillars of the scientific methods, namely to record or demonstrate an effect and its causal connection in a reproducible way. Visualization is one of the tools that enables scientists to convincingly demonstrate and present their results. This idea underpins the logic of many visualization facilities in the United States and elsewhere. Where visualization at CINT is unique is its focus on the nanoscience and nanoscale effects that control materials properties. In this article, we will give specific examples on how visualization helps scientists and users at the Center.

  5. Skylab Experiments, Volume 4, Life Sciences.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Basic knowledge about Skylab experiments is presented in this book, one of a series, for the purpose of informing high school teachers about scientific research performed in orbit and enabling the teachers to broaden their basis for material selection. This fourth volume is concerned with experiments designed to improve man's understanding of…

  6. Gender Equity in Materials Science and Engineering

    SciTech Connect

    Angus Rockett

    2008-12-01

    At the request of the University Materials Council, a national workshop was convened to examine 'Gender Equity Issues in Materials Science and Engineering.' The workshop considered causes of the historic underrepresentation of women in materials science and engineering (MSE), with a goal of developing strategies to increase the gender diversity of the discipline in universities and national laboratories. Specific workshop objectives were to examine efforts to level the playing field, understand implicit biases, develop methods to minimize bias in all aspects of training and employment, and create the means to implement a broadly inclusive, family-friendly work environment in MSE departments. Held May 18-20, 2008, at the Conference Center at the University of Maryland, the workshop included heads and chairs of university MSE departments and representatives of the National Science Foundation (NSF), the Office of Basic Energy Sciences of the Department of Energy (DOE-BES), and the national laboratories. The following recommendations are made based on the outcomes of the discussions at the workshop. Many or all of these apply equally well to universities and national laboratories and should be considered in context of industrial environments as well. First, there should be a follow-up process by which the University Materials Council (UMC) reviews the status of women in the field of MSE on a periodic basis and determines what additional changes should be made to accelerate progress in gender equity. Second, all departments should strengthen documentation and enforcement of departmental procedures such that hiring, promotion, compensation, and tenure decisions are more transparent, that the reasons why a candidate was not selected or promoted are clear, and that faculty are less able to apply their biases to personnel decisions. Third, all departments should strengthen mentoring of junior faculty. Fourth, all departments must raise awareness of gender biases and work to

  7. To touch the science through the experiment!

    NASA Astrophysics Data System (ADS)

    Słowik, Grzegorz

    2016-04-01

    To touch the science through the experiment! Grzegorz P. Slowik, Gymnasium No. 2 in Zielona Gora, Poland Our School - Gymnasium No. 2 in Zielona Gora - where pupils' age is 13 -16, has for many years organized a lot of exciting events popularizing science among Zielona Gora children and young people, in particular experimental physics and astronomy. The best known in our town is the regular event on physics, - called the physical Festival of Zielona Gora, of which I am the main initiator and organizer. The Festival is directed to students of the last classes of Zielona Góra primary schools. During the Festivities their shows have also physicists and astronomers, from cooperating with us in popularization of science Zielona Gora University. At the festival the students from our Experimental School Group "Archimedes". Presented their own prepared themselves physical experience. With considerable help of students of Gymnasium No. 2 interested in astronomy, we organize the cyclical event, named "Cosmic Santa Claus," where I share with the students the knowledge gained through my active annual participation in the Space Workshop organized by the Science Centre in Warsaw. We all have fun and learn in a great way and with a smile, we touch real science that reveals its secrets!

  8. Understanding the Science Experiences of Successful Women of Color: Science Identity as an Analytic Lens

    ERIC Educational Resources Information Center

    Carlone, Heidi B.; Johnson, Angela

    2007-01-01

    In this study, we develop a model of science identity to make sense of the science experiences of 15 successful women of color over the course of their undergraduate and graduate studies in science and into science-related careers. In our view, science identity accounts both for how women make meaning of science experiences and how society…

  9. FOREWORD: Focus on Combinatorial Materials Science Focus on Combinatorial Materials Science

    NASA Astrophysics Data System (ADS)

    Chikyo, Toyohiro

    2011-10-01

    About 15 years have passed since the introduction of modern combinatorial synthesis and high-throughput techniques for the development of novel inorganic materials; however, similar methods existed before. The most famous was reported in 1970 by Hanak who prepared composition-spread films of metal alloys by sputtering mixed-material targets. Although this method was innovative, it was rarely used because of the large amount of data to be processed. This problem is solved in the modern combinatorial material research, which is strongly related to computer data analysis and robotics. This field is still at the developing stage and may be enriched by new methods. Nevertheless, given the progress in measurement equipment and procedures, we believe the combinatorial approach will become a major and standard tool of materials screening and development. The first article of this journal, published in 2000, was titled 'Combinatorial solid state materials science and technology', and this focus issue aims to reintroduce this topic to the Science and Technology of Advanced Materials audience. It covers recent progress in combinatorial materials research describing new results in catalysis, phosphors, polymers and metal alloys for shape memory materials. Sophisticated high-throughput characterization schemes and innovative synthesis tools are also presented, such as spray deposition using nanoparticles or ion plating. On a technical note, data handling systems are introduced to familiarize researchers with the combinatorial methodology. We hope that through this focus issue a wide audience of materials scientists can learn about recent and future trends in combinatorial materials science and high-throughput experimentation.

  10. MCNP simulations of material exposure experiments (u)

    SciTech Connect

    Temple, Brian A

    2010-12-08

    Simulations of proposed material exposure experiments were performed using MCNP6. The experiments will expose ampules containing different materials of interest with radiation to observe the chemical breakdown of the materials. Simulations were performed to map out dose in materials as a function of distance from the source, dose variation between materials, dose variation due to ampule orientation, and dose variation due to different source energy. This write up is an overview of the simulations and will provide guidance on how to use the data in the spreadsheet.

  11. EXPERIMENTS IN THE USE OF PROGRAMED MATERIALS IN TEACHING AN ELEMENTARY COLLEGE COURSE IN THE BIOLOGICAL SCIENCES. TEACHER EDUCATION RESEARCH SERIES, VOLUME 5, NUMBER 1.

    ERIC Educational Resources Information Center

    KANTASEWI, NIPHON; MCCLAY, DAVID R.

    THE PURPOSES OF THE STUDY WERE TO COMPARE (1) CONVENTIONAL LECTURE, PROGRAM-DISCUSSION, AND PROGRAM-PROBLEM METHODS OF INSTRUCTION, (2) STUDENT PERFORMANCE WITH AND WITHOUT CONFIDENCE IN PROGRAMED INSTRUCTION, AND (3) ACHIEVEMENT ON THE BASIS OF TEST SCORES ON THE FIRST ONE-THIRD OF THE CONVENTIONAL COURSE. TWO EXPERIMENTS WERE CONDUCTED IN…

  12. Materials and processing science: Limits for microelectronics

    NASA Astrophysics Data System (ADS)

    Rosenberg, R.

    1988-09-01

    The theme of this talk will be to illustrate examples of technologies that will drive materials and processing sciences to the limit and to describe some of the research being pursued to understand materials interactions which are pervasive to projected structure fabrication. It is to be expected that the future will see a progression to nanostructures where scaling laws will be tested and quantum transport will become more in evidence, to low temperature operation for tighter control and improved performance, to complex vertical profiles where 3D stacking and superlattices will produce denser packing and device flexibility, to faster communication links with optoelectronics, and to compatible packaging technologies. New low temperature processing techniques, such as epitaxy of silicon, PECVD of dielectrics, low temperature high pressure oxidation, silicon-germanium heterostructures, etc., must be combined with shallow metallurgies, new lithographic technologies, maskless patterning, rapid thermal processing (RTP) to produce needed profile control, reduce process incompatibilities and develop new device geometries. Materials interactions are of special consequence for chip substrates and illustrations of work in metal-ceramic and metal-polymer adhesion will be offered.

  13. Polyoxometalates: from inorganic chemistry to materials science.

    PubMed

    Casañ-Pastor, Nieves; Gómez-Romero, Pedro

    2004-05-01

    Polyoxometalates have been traditionally the subject of study of molecular inorganic chemistry. Yet, these polynuclear molecules, reminiscent of oxide clusters, present a wide range of structures and with them ideal frameworks for the deployment of a plethora of useful magnetic, electroionic, catalytic, bioactive and photochemical properties. With this in mind, a new trend towards the application of these remarkable species in materials science is beginning to develop. In this review we analyze this trend and discuss two main lines of thought for the application of polyoxometalates as materials. On the one hand, there is their use as clusters with inherently useful properties on themselves, a line which has produced fundamental studies of their magnetic, electronic or photoelectrochemical properties and has shown these clusters as models for quantum-sized oxides. On the other hand, the encapsulation or integration of polyoxometalates into organic, polymeric or inorganic matrices or substrates opens a whole new field within the area of hybrid materials for harnessing the multifunctional properties of these versatile species in a wide variety of applications, ranging from catalysis to energy storage to biomedicine.

  14. Molecular forensic science analysis of nuclear materials

    NASA Astrophysics Data System (ADS)

    Reilly, Dallas David

    Concerns over the proliferation and instances of nuclear material in the environment have increased interest in the expansion of nuclear forensics analysis and attribution programs. A new related field, molecular forensic science (MFS) has helped meet this expansion by applying common scientific analyses to nuclear forensics scenarios. In this work, MFS was applied to three scenarios related to nuclear forensics analysis. In the first, uranium dioxide was synthesized and aged at four sets of static environmental conditions and studied for changes in chemical speciation. The second highlighted the importance of bulk versus particle characterizations by analyzing a heterogeneous industrially prepared sample with similar techniques. In the third, mixed uranium/plutonium hot particles were collected from the McGuire Air Force Base BOMARC Site and analyzed for chemical speciation and elemental surface composition. This work has identified new signatures and has indicated unexpected chemical behavior under various conditions. These findings have lead to an expansion of basic actinide understanding, proof of MFS as a tool for nuclear forensic science, and new areas for expansion in these fields.

  15. Materials Experience as a Foundation for Materials and Design Education

    ERIC Educational Resources Information Center

    Pedgley, Owain; Rognoli, Valentina; Karana, Elvin

    2016-01-01

    An important body of research has developed in recent years, explaining ways in which product materials influence user experiences. A priority now is to ensure that the research findings are adopted within an educational context to deliver contemporary curricula for students studying the subject of materials and design. This paper reports on an…

  16. Materials Experience as a Foundation for Materials and Design Education

    ERIC Educational Resources Information Center

    Pedgley, Owain; Rognoli, Valentina; Karana, Elvin

    2016-01-01

    An important body of research has developed in recent years, explaining ways in which product materials influence user experiences. A priority now is to ensure that the research findings are adopted within an educational context to deliver contemporary curricula for students studying the subject of materials and design. This paper reports on an…

  17. Experiment Prevails Over Observation in Geophysical Science

    NASA Astrophysics Data System (ADS)

    Galvin, C.

    2006-05-01

    Thomson and Tait gave their name to a text (T and T') that sums up nineteenth century mechanics. T and T' says that scientists gain knowledge of the natural universe and the laws that regulate it through Experience. T and T' divides Experience into Observation and Experiment. The posthumous (1912) edition of T and T' appeared seven years before Eddington's expeditions to observe the eclipse of 29 May 1919 that demonstrated the bending of starlight predicted by Einstein's general theory of relativity. During the 2005 centenary of young Einstein's remarkably productive year, Eddington's (1919) result was frequently remembered, but the description in 2005 of what Eddington did in 1919 often differed from what Eddington said that he did. In his words then, Eddington observed; in words from scientists, historians of science, and philosophers of science during 2005, Eddington often experimented. In 1912, T and T' had distinguished Observation from Experiment with an apt contrast: ""When, as in astronomy, we endeavour to ascertain these causes by simply watching, we observe; when, as in our laboratories, we interfere arbitrarily with the causes or circumstances of a phenomenon, we are said to experiment"". (italics in T and T'). Eddington himself conformed to this distinction in his report (Physical Society of London, 1920). In its Preface, he states that observations were made at each of two stations, and concludes that ""I think it may now be stated that Einstein's law of gravitation is definitely established by observation..."". Chapter V of that report deals with The Crucial Phenomena. In this chapter, some form of the word observe (noun, verb, adjective, adverb) appears 13 times. In this chapter, experiment appears only as experimental, and then only twice. Einstein's prediction, with Eddington's observations, profoundly impressed contemporary philosophers of science. Karl Popper, then aged 17, considered Eddington's findings to effect a turning point in his career

  18. Medipix3 CT for material sciences

    NASA Astrophysics Data System (ADS)

    Procz, S.; Wartig, K.-A.; Fauler, A.; Zwerger, A.; Luebke, J.; Ballabriga, R.; Blaj, G.; Campbell, M.; Mix, M.; Fiederle, M.

    2013-01-01

    Innovative detector systems for non-destructive material analysis and for medical diagnosis are an important development to improve the performance and the quality of examination methods. For a number of years now photon-counting X-ray detectors are being developed to process incoming X-ray photons as single events. These detectors facilitate a higher signal-to-noise ratio (SNR) than conventional, non-photon-counting, scintillator based detector systems, which detect X-ray photons indirectly through conversion into visible light. The Medipix is a pixelated photon counting semiconductor detector which features adjustable energy thresholds allowing energy selective, multispectral X-ray imaging. The Medipix chip is under continued development by the ``Medipix2 Collaboration'' and ``Medipix3 Collaboration'' at CERN [1]. The Medipix electronic offers 256 × 256 pixels with a pixel pitch of 55 × 55 μm2 and can be hybridized with different sensor materials like Si, CdTe or GaAs. The newest member of the Medipix family is the Medipix3 (ASIC in 0.13 μm CMOS technology) providing up to eight separate 12-bit counters per pixel. It offers a couple of different working modes [2], which are useful for X-ray imaging applications. A Medipix3 CT X-ray measuring station was built up for small animal X-ray imaging and non-destructive material analysis [3]. The combination of the low energy threshold ( ~ 4 keV) of the Medipix3 with its multispectral capability enables tomographic investigations on objects with low absorption contrast. The advantage of photon counting, multispectral detectors like Medipix3 for material sciences will be presented here as well as a comparison with a scintillator based CT.

  19. Division of Materials Science (DMS) meeting presentation

    SciTech Connect

    Cline, C.F.; Weber, M.J.

    1982-11-08

    Materials preparation techniques are listed. Materials preparation capabilities are discussed for making BeF/sub 2/ glasses and other materials. Materials characterization techniques are listed. (DLC)

  20. Public Science with Real-Time Experiments

    NASA Astrophysics Data System (ADS)

    Lenardic, A.

    2013-12-01

    One of the best ways for professional scientists to engage in public outreach is to get outside of the university and/or lab walls and go out into the public. That is, go to public spaces to do some science experiments with the public - this includes students of all ages that constitute that public. Technological advance in portable measurement gear now allow one to do real, or near real, time experiments in outdoor, public spaces. We have been running a meta-experiment of this sort, aimed at the public display of science, for about a year now in Houston TX at the Lee and Joe Jamail Skatepark. The project goes under the title of Sk8Lab Houston and has introduced students of all ages to the power of scientific experimentation. We bring a portable science pack with us to the park. The pack has a range of wireless measurement gear that allow experiments to be done on the spot. Some of the experiments are designed by us but many are designed on by whoever suggests them to us that day. Over time the Sk8Lab scientists have built up a level of "trust" with the people who frequent the park (no one feels like we are gonna grade them at the park and they know that the learning is not on some regimented clock). This has broken down some learning walls and allowed for a more informal mode of exploration and a more genuine mode of experimentation (as compared to what often happens in class labs when students feel like they are just being forced to reproduce some known result). We will describe some of the test case experiments we have run and also discuss some of the trials, tribulations, and happy successes (many unplanned) along the way.

  1. Chemistry and Materials Science progress report, FY 1994. Revision 2

    SciTech Connect

    1996-01-01

    Thrust areas of the weapons-supporting research include surface science, fundamentals of the physics and processing of metals, energetic materials, etc. The laboratory directed R and D include director`s initiatives, individual projects, and transactinium science studies.

  2. New materials: Fountainhead for new technologies and new science

    NASA Technical Reports Server (NTRS)

    Rustum, Roy

    1993-01-01

    The role of materials as the benchmark technologies which give epochs of human history their names continues into the present. The discovery of new materials has nearly always been the source of new materials science, and frequently of new technologies. This paper analyzes the actual processes by which new materials are synthesized, i.e. whether driven by serendipitous observations, new knowledge is pulled by the market, or integrated into a technological thrust. This analysis focuses on modern ceramic materials discoveries, since World War 2 and uses 45 years experience in materials synthesis in the author's own laboratory as case studies. A dozen different families of materials or processes are involved: hydrothermal reactions; sol-gel processing; clays and zeolites; electroceramics; zero expansion ceramics; diamond films; and radioactive waste host phases. Nanocomposite concepts introduced by the author a decade ago offer an entire, large, new class of materials which will dominate synthesis for the next period. The future of materials research for the next 25 years cannot be extrapolated from the past 25 years. We are near the asymptote for materials utilization in most metals. Likewise we are approaching saturation in improvement of many useful properties. Justifying much further 'basic' R/D for incremental improvement in civilian-oriented industries will not be easy. In materials synthesis, the near-term future is sure to emphasize not new phases, but tailored micro- and nanocomposites for chemical, electrical, optical, and magnetic uses. Unexpected new discoveries such as the Lanxide process may offer rarer chances for step function advances. The new structure of knowledge management will rely less on local research than on integration of worldwide inputs. Better scientific and technological opportunities will lie in designing knowledge intensive materials to meet the new environmental and conservation goals, and the human needs of the very large numbers at

  3. New materials: Fountainhead for new technologies and new science

    NASA Technical Reports Server (NTRS)

    Rustum, Roy

    1993-01-01

    The role of materials as the benchmark technologies which give epochs of human history their names continues into the present. The discovery of new materials has nearly always been the source of new materials science, and frequently of new technologies. This paper analyzes the actual processes by which new materials are synthesized, i.e. whether driven by serendipitous observations, new knowledge is pulled by the market, or integrated into a technological thrust. This analysis focuses on modern ceramic materials discoveries, since World War 2 and uses 45 years experience in materials synthesis in the author's own laboratory as case studies. A dozen different families of materials or processes are involved: hydrothermal reactions; sol-gel processing; clays and zeolites; electroceramics; zero expansion ceramics; diamond films; and radioactive waste host phases. Nanocomposite concepts introduced by the author a decade ago offer an entire, large, new class of materials which will dominate synthesis for the next period. The future of materials research for the next 25 years cannot be extrapolated from the past 25 years. We are near the asymptote for materials utilization in most metals. Likewise we are approaching saturation in improvement of many useful properties. Justifying much further 'basic' R/D for incremental improvement in civilian-oriented industries will not be easy. In materials synthesis, the near-term future is sure to emphasize not new phases, but tailored micro- and nanocomposites for chemical, electrical, optical, and magnetic uses. Unexpected new discoveries such as the Lanxide process may offer rarer chances for step function advances. The new structure of knowledge management will rely less on local research than on integration of worldwide inputs. Better scientific and technological opportunities will lie in designing knowledge intensive materials to meet the new environmental and conservation goals, and the human needs of the very large numbers at

  4. An advanced material science payload for GAS

    NASA Technical Reports Server (NTRS)

    Joensson, R.; Wallin, S.; Loeth, K.

    1986-01-01

    The aim of the experiment is to study solidification of different compositions of lead-tin. The weight of the material is quite high: 8 kilograms. Nearly 10% of the payload is sample weight. The dendritic growth and the effect of the absence of natural convection are of particular interest. The results from the flight processed samples will be compared with results from Earth processed samples in order to investigate the influence of the natural convection on the solidification process. The power systems, heat storage and rejection, and mechanical support are discussed in relationship to the scientific requirements.

  5. Materials science tools for regenerative medicine

    NASA Astrophysics Data System (ADS)

    Richardson, Wade Nicholas

    Regenerative therapies originating from recent technological advances in biology could revolutionize medicine in the coming years. In particular, the advent of human pluripotent stem cells (hPSCs), with their ability to become any cell in the adult body, has opened the door to an entirely new way of treating disease. However, currently these medical breakthroughs remain only a promise. To make them a reality, new tools must be developed to surmount the new technical hurdles that have arisen from dramatic departure from convention that this field represents. The collected work presented in this dissertation covers several projects that seek to apply the skills and knowledge of materials science to this tool synthesizing effort. The work is divided into three chapters. The first deals with our work to apply Raman spectroscopy, a tool widely used for materials characterization, to degeneration in cartilage. We have shown that Raman can effectively distinguish the matrix material of healthy and diseased tissue. The second area of work covered is the development of a new confocal image analysis for studying hPSC colonies that are chemical confined to uniform growth regions. This tool has important application in understanding the heterogeneity that may slow the development of hPSC -based treatment, as well as the use of such confinement in the eventually large-scale manufacture of hPSCs for therapeutic use. Third, the use of structural templating in tissue engineering scaffolds is detailed. We have utilized templating to tailor scaffold structures for engineering of constructs mimicking two tissues: cartilage and lung. The work described here represents several important early steps towards large goals in regenerative medicine. These tools show a great deal of potential for accelerating progress in this field that seems on the cusp of helping a great many people with otherwise incurable disease.

  6. Materials science on parabolic aircraft: The FY 1987-1989 KC-135 microgravity test program

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A. (Editor)

    1993-01-01

    This document covers research results from the KC-135 Materials Science Program managed by MSFC for the period FY87 through FY89. It follows the previous NASA Technical Memorandum for FY84-86 published in August 1988. This volume contains over 30 reports grouped into eight subject areas covering acceleration levels, space flight hardware, transport and interfacial studies, thermodynamics, containerless processing, welding, melt/crucible interactions, and directional solidification. The KC-135 materials science experiments during FY87-89 accomplished direct science, preparation for space flight experiments, and justification for new experiments in orbit.

  7. Overview of Materials International Space Station Experiment 7B

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Siamidis, John

    2009-01-01

    Materials International Space Station Experiment 7B (MISSE 7B) is the most recent in a series of experiments flown on the exterior of International Space Station for the purpose of determining the durability of materials and components in the space environment. A collaborative effort among the Department of Defense, the National Aeronautics and Space Administration, industry, and academia, MISSE 7B will be flying a number of NASA experiments designed to gain knowledge in the area of space environmental effects to mitigate risk for exploration missions. Consisting of trays called Passive Experiment Containers, the suitcase sized payload opens on hinges and allows active and passive experiments contained within to be exposed to the ram and wake or zenith and nadir directions in low Earth orbit, in essence, providing a test bed for atomic oxygen exposure, ultraviolet radiation exposure, charged particle radiation exposure, and thermal cycling. New for MISSE 7B is the ability to monitor experiments actively, with data sent back to Earth via International Space Station communications. NASA?s active and passive experiments cover a range of interest for the Agency. Materials relevant to the Constellation Program include: solar array materials, seal materials, and thermal protection system materials. Materials relevant to the Exploration Technology Development Program include: fabrics for spacesuits, materials for lunar dust mitigation, and new thermal control coatings. Sensors and components on MISSE 7B include: atomic oxygen fluence monitors, ultraviolet radiation sensors, and electro-optical components. In addition, fundamental space environmental durability science experiments are being flown to gather atomic oxygen erosion data and thin film polymer mechanical and optical property data relevant to lunar lander insulation and the James Web Space Telescope. This paper will present an overview of the NASA experiments to be flown on MISSE 7B, along with a summary of the

  8. Apollo-Soyuz pamphlet no. 9: General science. [experimental design in Astronomy, Biology, Geophysics, Aeronomy and Materials science

    NASA Technical Reports Server (NTRS)

    Page, L. W.; From, T. P.

    1977-01-01

    The objectives and planning activities for the Apollo-Soyuz mission are summarized. Aspects of the space flight considered include the docking module and launch configurations, spacecraft orbits, and weightlessness. The 28 NASA experiments conducted onboard the spacecraft are summarized. The contributions of the mission to the fields of astronomy, geoscience, biology, and materials sciences resulting from the experiments are explored.

  9. The Future of Boundary Plasma and Material Science

    NASA Astrophysics Data System (ADS)

    Whyte, Dennis

    2012-03-01

    The boundary of magnetic confinement devices, from the pedestal through to the surrounding surfaces, encompasses an enormous range of plasma and material physics, and their integrated coupling. It is becoming clear that due to fundamental limits of plasma stability and material response the boundary will largely define the viability of an MFE reactor. However we face an enormous knowledge deficit in stepping from present devices and ITER towards a demonstration power plant. We outline the future of boundary research required to address this deficit. The boundary should be considered a multi-scale system of coupled plasma and material science regulated through the non-linear interface of the sheath. Measurement, theory and modeling across these scales are assessed. Dimensionless parameters, often used to organized core plasma transport on similarity arguments, can be extended to the boundary plasma, plasma-surface interactions and material response. This methodology suggests an intriguing way forward to prescribe and understand the boundary issues of an eventual reactor in intermediate devices. A particularly critical issue is that the physical chemistry of the material, which is mostly determined by the material temperature, has been too neglected; pointing to the requirement for boundary plasma experiments at appropriate material temperatures. Finally the boundary plasma requirements for quiescent heat exhaust and control of transient events, such as ELMs, will be examined.

  10. Computational Materials Science and Chemistry: Accelerating Discovery and Innovation through Simulation-Based Engineering and Science

    SciTech Connect

    Crabtree, George; Glotzer, Sharon; McCurdy, Bill; Roberto, Jim

    2010-07-26

    160 experts in materials science, chemistry, and computational science representing more than 65 universities, laboratories, and industries, and four agencies. The workshop examined seven foundational challenge areas in materials science and chemistry: materials for extreme conditions, self-assembly, light harvesting, chemical reactions, designer fluids, thin films and interfaces, and electronic structure. Each of these challenge areas is critical to the development of advanced energy systems, and each can be accelerated by the integrated application of predictive capability with theory and experiment. The workshop concluded that emerging capabilities in predictive modeling and simulation have the potential to revolutionize the development of new materials and chemical processes. Coupled with world-leading materials characterization and nanoscale science facilities, this predictive capability provides the foundation for an innovation ecosystem that can accelerate the discovery, development, and deployment of new technologies, including advanced energy systems. Delivering on the promise of this innovation ecosystem requires the following: Integration of synthesis, processing, characterization, theory, and simulation and modeling. Many of the newly established Energy Frontier Research Centers and Energy Hubs are exploiting this integration. Achieving/strengthening predictive capability in foundational challenge areas. Predictive capability in the seven foundational challenge areas described in this report is critical to the development of advanced energy technologies. Developing validated computational approaches that span vast differences in time and length scales. This fundamental computational challenge crosscuts all of the foundational challenge areas. Similarly challenging is coupling of analytical data from multiple instruments and techniques that are required to link these length and time scales. Experimental validation and quantification of uncertainty in

  11. The integration of microgravity science experiments into shared or previously existing experiment facilities

    NASA Technical Reports Server (NTRS)

    Baer-Peckham, M. S.; Mccarley, K. S.

    1991-01-01

    The overall flow for integrating a sample into an experiment facility, specifically materials science is discussed using the Crystal Growth Furnace as an example. A typical preflight timeline for an experiment is discussed, including identification of all documentation and hardware deliveries. Each of the items presented is discussed in detail including the experiment requirements document, the announcement opportunity response, the experiment specific equipment, safety reviews, mission plan, and hardware integration plan. These items are addressed both individualy and with respect to their relevance to the program as a whole.

  12. Physical Science Informatics: Providing Open Science Access to Microheater Array Boiling Experiment Data

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Green, Robert D.; Henrie, Ben; Miller, Teresa; Chiaramonte, Fran

    2014-01-01

    The Physical Science Informatics (PSI) system is the next step in this an effort to make NASA sponsored flight data available to the scientific and engineering community, along with the general public. The experimental data, from six overall disciplines, Combustion Science, Fluid Physics, Complex Fluids, Fundamental Physics, and Materials Science, will present some unique challenges. Besides data in textual or numerical format, large portions of both the raw and analyzed data for many of these experiments are digital images and video, requiring large data storage requirements. In addition, the accessible data will include experiment design and engineering data (including applicable drawings), any analytical or numerical models, publications, reports, and patents, and any commercial products developed as a result of the research. This objective of paper includes the following: Present the preliminary layout (Figure 2) of MABE data within the PSI database. Obtain feedback on the layout. Present the procedure to obtain access to this database.

  13. Materials and Manufacturing Technology Directorate Thermal Sciences and Materials Branch (Overview)

    DTIC Science & Technology

    2010-09-01

    Thermal Sciences & Materials Research for Aerospace Materials and Manufacturing Technology Directorate Thermal Sciences and Materials Branch...SUBTITLE An Overview of Thermal Sciences and Materials Branch Research (AFRL/RXBT) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER... Materials Branch Air Force Research Laboratory WPAFB, Dayton, Ohio, USA 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S

  14. Materials Data Science: Current Status and Future Outlook

    NASA Astrophysics Data System (ADS)

    Kalidindi, Surya R.; De Graef, Marc

    2015-07-01

    The field of materials science and engineering is on the cusp of a digital data revolution. After reviewing the nature of data science and Big Data, we discuss the features of materials data that distinguish them from data in other fields. We introduce the concept of process-structure-property (PSP) linkages and illustrate how the determination of PSPs is one of the main objectives of materials data science. Then we review a selection of materials databases, as well as important aspects of materials data management, such as storage hardware, archiving strategies, and data access strategies. We introduce the emerging field of materials data analytics, which focuses on data-driven approaches to extract and curate materials knowledge from available data sets. The critical need for materials e-collaboration platforms is highlighted, and we conclude the article with a number of suggestions regarding the near-term future of the materials data science field.

  15. Challenges and Opportunities in Interdisciplinary Materials Research Experiences for Undergraduates

    NASA Astrophysics Data System (ADS)

    Vohra, Yogesh; Nordlund, Thomas

    2009-03-01

    The University of Alabama at Birmingham (UAB) offer a broad range of interdisciplinary materials research experiences to undergraduate students with diverse backgrounds in physics, chemistry, applied mathematics, and engineering. The research projects offered cover a broad range of topics including high pressure physics, microelectronic materials, nano-materials, laser materials, bioceramics and biopolymers, cell-biomaterials interactions, planetary materials, and computer simulation of materials. The students welcome the opportunity to work with an interdisciplinary team of basic science, engineering, and biomedical faculty but the challenge is in learning the key vocabulary for interdisciplinary collaborations, experimental tools, and working in an independent capacity. The career development workshops dealing with the graduate school application process and the entrepreneurial business activities were found to be most effective. The interdisciplinary university wide poster session helped student broaden their horizons in research careers. The synergy of the REU program with other concurrently running high school summer programs on UAB campus will also be discussed.

  16. NASDA life science experiment facilities for ISS

    NASA Astrophysics Data System (ADS)

    Tanigaki, F.; Masuda, D.; Yano, S.; Fujimoto, N.; Kamigaichi, S.

    National Space Development Agency of Japan (NASDA) has been developing various experiment facilities to conduct space biology researches in KIBO (JEM). The Cell Biology Experiment Facility (CBEF) and the Clean Bench (CB) are installed into JEM Life Science Rack. The Biological Experiment Units (BEU) are operated in the CBEF and the CB for many kinds of experiments on cells, tissues, plants, microorganisms, or small animals. It is possible for all researchers to use these facilities under the system of the International Announcement of Opportunity. The CBEF is a CO2 incubator to provide a controlled environment (temperature, humidity, and CO2 concentration), in which a rotating table is equipped to make variable gravity (0-2g) for reference experiments. The containers called "Canisters" can be used to install the BEU in the CBEF. The CBEF supplies power, command, sensor, and video interfaces for the BEU through the utility connectors of Canisters. The BEU is a multiuser system consisting of chambers and control segments. It is operated by pre-set programs and by commands from the ground. NASDA is currently developing three types of the BEU: the Plant Experiment Unit (PEU) for plant life cycle observations and the Cell Experiment Unit (CEU1&2) for cell culture experiments. The PEU has an automated watering system with a water sensor, an LED matrix as a light source, and a CCD camera to observe the plant growth. The CEUs have culture chambers and an automated cultural medium exchange system. Engineering models of the PEU and CEU1 have been accomplished. The preliminary design of CEU2 is in progress. The design of the BEU will be modified to meet science requirements of each experiment. The CB provides a closed aseptic work-space (Operation Chamber) with gloves for experiment operations. Samples and the BEU can be manually handled in the CB. The CB has an air lock (Disinfection Chamber) to prevent contamination, and HEPA filters to make class-100-equivalent clean air

  17. Magellan: experiences from a Science Cloud

    SciTech Connect

    Ramakrishnan, Lavanya; Zbiegel, Piotr; Campbell, Scott; Bradshaw, Rick; Canon, Richard; Coghlan, Susan; Sakrejda, Iwona; Desai, Narayan; Declerck, Tina; Liu, Anping

    2011-02-02

    Cloud resources promise to be an avenue to address new categories of scientific applications including data-intensive science applications, on-demand/surge computing, and applications that require customized software environments. However, there is a limited understanding on how to operate and use clouds for scientific applications. Magellan, a project funded through the Department of Energy?s (DOE) Advanced Scientific Computing Research (ASCR) program, is investigating the use of cloud computing for science at the Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computing Facility (NERSC). In this paper, we detail the experiences to date at both sites and identify the gaps and open challenges from both a resource provider as well as application perspective.

  18. Clementine, Deep Space Program Science Experiment

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Clementine, also called the Deep Space Program Science Experiment, is a joint Department of Defense (DoD)/National Aeronautics and Space Administration (NASA) mission with the dual goal of testing small spacecraft, subsystems, and sensors in the deep space environment and also providing a nominal science return. The Clementine mission will provide technical demonstrations of innovative lightweight spacecraft components and sensors, will be launced on a spacecraft developed within 2 years of program start, and will point a way for new planetary mission options under consideration by NASA. This booklet gives the background of the Clementine mission (including the agencies involved), the mission objectives, the mission scenario, the instruments that the mission will carry, and how the data will be analyzed and made accessible.

  19. Materials performance experience at spallation neutron sources

    SciTech Connect

    Sommer, W.F.

    1995-10-01

    There is a growing, but not yet substantial, data base for materials performance at spallation neutron sources. Specially designed experiments using medium energy protons (650 MeV) have been conducted at the Proton Irradiation Experiment (PIREX) facility at the Swiss Nuclear Institute accelerator (SIN). Specially designed experiments using 760-800 MeV copper target have been completed at the Los Alamos Spallation Radiation Effects Facility (LASREF) at Los Alamos Meson Physics Facility (LAMPF). An extensive material testing program was initiated at LASREF in support of the German spallation neutron source (SNQ) project, before it terminated in 1985.

  20. Opportunities in Participatory Science and Citizen Science with MRO's High Resolution Imaging Science Experiment: A Virtual Science Team Experience

    NASA Astrophysics Data System (ADS)

    Gulick, Ginny

    2009-09-01

    We report on the accomplishments of the HiRISE EPO program over the last two and a half years of science operations. We have focused primarily on delivering high impact science opportunities through our various participatory science and citizen science websites. Uniquely, we have invited students from around the world to become virtual HiRISE team members by submitting target suggestions via our HiRISE Quest Image challenges using HiWeb the team's image suggestion facility web tools. When images are acquired, students analyze their returned images, write a report and work with a HiRISE team member to write a image caption for release on the HiRISE website (http://hirise.lpl.arizona.edu). Another E/PO highlight has been our citizen scientist effort, HiRISE Clickworkers (http://clickworkers.arc.nasa.gov/hirise). Clickworkers enlists volunteers to identify geologic features (e.g., dunes, craters, wind streaks, gullies, etc.) in the HiRISE images and help generate searchable image databases. In addition, the large image sizes and incredible spatial resolution of the HiRISE camera can tax the capabilities of the most capable computers, so we have also focused on enabling typical users to browse, pan and zoom the HiRISE images using our HiRISE online image viewer (http://marsoweb.nas.nasa.gov/HiRISE/hirise_images/). Our educational materials available on the HiRISE EPO web site (http://hirise.seti.org/epo) include an assortment of K through college level, standards-based activity books, a K through 3 coloring/story book, a middle school level comic book, and several interactive educational games, including Mars jigsaw puzzles, crosswords, word searches and flash cards.

  1. Science Data Report for the Optical Properties Monitor (OPM) Experiment

    NASA Technical Reports Server (NTRS)

    Wilkes, D. R.; Zwiener, J. M.; Carruth, Ralph (Technical Monitor)

    2001-01-01

    This science data report describes the Optical Properties Monitor (OPM) experiment and the data gathered during its 9-mo exposure on the Mir space station. Three independent optical instruments made up OPM: an integrating sphere spectral reflectometer, vacuum ultraviolet spectrometer, and a total integrated scatter instrument. Selected materials were exposed to the low-Earth orbit, and their performance monitored in situ by the OPM instruments. Coinvestigators from four NASA Centers, five International Space Station contractors, one university, two Department of Defense organizations, and the Russian space company, Energia, contributed samples to this experiment. These materials included a number of thermal control coatings, optical materials, polymeric films, nanocomposites, and other state-of-the-art materials. Degradation of some materials, including aluminum conversion coatings and Beta cloth, was greater than expected. The OPM experiment was launched aboard the Space Shuttle on mission STS-81 in January 1997 and transferred to the Mir space station. An extravehicular activity (EVA) was performed in April 1997 to attach the OPM experiment to the outside of the Mir/Shuttle Docking Module for space environment exposure. OPM was retrieved during an EVA in January 1998 and was returned to Earth on board the Space Shuttle on mission STS-89.

  2. A New Model for Climate Science Research Experiences for Teachers

    NASA Astrophysics Data System (ADS)

    Hatheway, B.

    2012-12-01

    After two years of running a climate science teacher professional development program for secondary teachers, science educators from UCAR and UNC-Greeley have learned the benefits of providing teachers with ample time to interact with scientists, informal educators, and their teaching peers. Many programs that expose teachers to scientific research do a great job of energizing those teachers and getting them excited about how research is done. We decided to try out a twist on this model - instead of matching teachers with scientists and having them do science in the lab, we introduced the teachers to scientists who agreed share their data and answer questions as the teachers developed their own activities, curricula, and classroom materials related to the research. Prior to their summer experience, the teachers took three online courses on climate science, which increased their background knowledge and gave them an opportunity to ask higher-level questions of the scientists. By spending time with a cohort of practicing teachers, each individual had much needed time to interact with their peers, share ideas, collaborate on curriculum, and learn from each other. And because the goal of the program was to create classroom modules that could be implemented in the coming school year, the teachers were able to both learn about climate science research by interacting with scientists and visiting many different labs, and then create materials using data from the scientists. Without dedicated time for creating these classroom materials, it would have been up to the teachers to carve out time during the school year in order to find ways to apply what they learned in the research experience. We feel this approach worked better for the teachers, had a bigger impact on their students than we originally thought, and gave us a new approach to teacher professional development.

  3. BMDO materials testing in the EOIM-3 experiment

    NASA Technical Reports Server (NTRS)

    Chung, Shirley Y.; Brinza, David E.; Minton, Timothy K.; Liang, Ranty H.

    1995-01-01

    The NASA Evaluation of Oxygen Interactions with Materials-3 (EOIM-3) experiment served as a testbed for a variety of materials that are candidates for Ballistic Missile Defense Organization (BMDO) space assets. The materials evaluated on this flight experiment were provided by BMDO contractors and technology laboratories. A parallel ground-based exposure evaluation was conducted using the Fast Atom Sample Tester (FAST) atomic-oxygen simulation facility at Physical Sciences, Inc. The EOIM-3 flight materials were exposed to an atomic oxygen fluence of approximately 2.3 x 10(exp 20) atoms/sq cm. The ground-based exposure fluence of 2.0 - 2.5 x 10(exp 20) atoms/sq cm permits direct comparison with that of the flight-exposed specimens. The results from the flight test conducted aboard STS-46 and the correlative ground-based exposure are summarized here. A more detailed correlation study is presented in the JPL Publication 93-31 entitled 'Flight-and Ground-Test Correlation Study of BMDO SDS Materials: Phase 1 Report'. In general, the majority of the materials survived the AO environment with their performance tolerances maintained for the duration of the exposure. Optical materials, baffles, and coatings performed extremely well as did most of the thermal coatings and tribological materials. A few of the candidate radiator, threat shielding, and structural materials showed significant degradation. Many of the coatings designed to protect against AO erosion of sensitive materials performed this function well.

  4. Chemistry and materials science progress report, FY 1994

    SciTech Connect

    1995-07-01

    Research is reported in the areas of surface science, fundamentals of the physics and processing of metals, energetic materials, transactinide materials and properties and other indirectly related areas of weapons research.

  5. JPRS Report, Science & Technology, Japan, Bio-Functional Materials.

    DTIC Science & Technology

    1990-01-17

    BIO -Functional Materials Selected abstracts on the design, structure, and functions of bio -functional materials; "priority areas of research" sponsored by the Ministry of Education, Science and Culture

  6. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    SciTech Connect

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  7. Implementing Professional Experiences to Prepare Preservice Science Teachers

    ERIC Educational Resources Information Center

    Nuangchalerm, Prasart

    2009-01-01

    In the correlation between professional experiences of preservice science teacher and classroom managerial skills, professional experiences were designed to prepare science teacher in the future. The effects of program were described the result of implementing professional experiences of 67 preservice science teachers. Data were collected by using…

  8. Accelerating Translational Research through Open Science: The Neuro Experiment.

    PubMed

    Gold, E Richard

    2016-12-01

    Translational research is often afflicted by a fundamental problem: a limited understanding of disease mechanisms prevents effective targeting of new treatments. Seeking to accelerate research advances and reimagine its role in the community, the Montreal Neurological Institute (Neuro) announced in the spring of 2016 that it is launching a five-year experiment during which it will adopt Open Science-open data, open materials, and no patenting-across the institution. The experiment seeks to examine two hypotheses. The first is whether the Neuro's Open Science initiative will attract new private partners. The second hypothesis is that the Neuro's institution-based approach will draw companies to the Montreal region, where the Neuro is based, leading to the creation of a local knowledge hub. This article explores why these hypotheses are likely to be true and describes the Neuro's approach to exploring them.

  9. Living in a Materials World: Materials Science Engineering Professional Development for K-12 Educators

    SciTech Connect

    Anne Seifert; Louis Nadelson

    2011-06-01

    Advances in materials science are fundamental to technological developments and have broad societal impacs. For example, a cellular phone is composed of a polymer case, liquid crystal displays, LEDs, silicon chips, Ni-Cd batteries, resistors, capacitors, speakers, microphones all of which have required advances in materials science to be compacted into a phone which is typically smaller than a deck of cards. Like many technological developments, cellular phones have become a ubiquitous part of society, and yet most people know little about the materials science associated with their manufacture. The probable condition of constrained knowledge of materials science was the motivation for developing and offering a 20 hour fourday course called 'Living in a Materials World.' In addition, materials science provides a connection between our every day experiences and the work of scientists and engineers. The course was offered as part of a larger K-12 teacher professional development project and was a component of a week-long summer institute designed specifically for upper elementary and middle school teachers which included 20 hour content strands, and 12 hours of plenary sessions, planning, and collaborative sharing. The focus of the institute was on enhancing teacher content knowledge in STEM, their capacity for teaching using inquiry, their comfort and positive attitudes toward teaching STEM, their knowledge of how people learn, and strategies for integrating STEM throughout the curriculum. In addition to the summer institute the participating teachers were provided with a kit of about $300 worth of materials and equipment to use to implement the content they learned in their classrooms. As part of this professional development project the participants were required to design and implement 5 lesson plans with their students this fall and report on the results, as part of the continuing education course associated with the project. 'Living in a Materials World' was

  10. 2011 Joint Science Education Project: Research Experience in Polar Science

    NASA Astrophysics Data System (ADS)

    Wilkening, J.; Ader, V.

    2011-12-01

    The Joint Science Education Project (JSEP), sponsored by the National Science Foundation, is a two-part program that brings together students and teachers from the United States, Greenland, and Denmark, for a unique cross-cultural, first-hand experience of the realities of polar science field research in Greenland. During JSEP, students experienced research being conducted on and near the Greenland ice sheet by attending researcher presentations, visiting NSF-funded field sites (including Summit and NEEM field stations, both located on the Greenland ice sheet), and designing and conducting research projects in international teams. The results of two of these projects will be highlighted. The atmospheric project investigated the differences in CO2, UVA, UVB, temperature, and albedo in different Arctic microenvironments, while also examining the interaction between the atmosphere and water present in the given environments. It was found that the carbon dioxide levels varied: glacial environments having the lowest levels, with an average concentration of 272.500 ppm, and non-vegetated, terrestrial environments having the highest, with an average concentration of 395.143 ppm. Following up on these results, it is planned to further investigate the interaction of the water and atmosphere, including water's role in the uptake of carbon dioxide. The ecology project investigated the occurrence of unusual large blooms of Nostoc cyanobacteria in Kangerlussuaq area lakes. The water chemistry of the lakes which contained the cyanobacteria and the lakes that did not were compared. The only noticeable difference was of the lakes' acidity, lakes containing the blooms had an average pH value of 8.58, whereas lakes without the blooms had an average pH value of 6.60. Further investigation of these results is needed to determine whether or not this was a cause or effect of the cyanobacteria blooms. As a next step, it is planned to attempt to grow the blooms to monitor their effects on

  11. Skylab materials processing facility experiment developer's report

    NASA Technical Reports Server (NTRS)

    Parks, P. G.

    1975-01-01

    The development of the Skylab M512 Materials Processing Facility is traced from the design of a portable, self-contained electron beam welding system for terrestrial applications to the highly complex experiment system ultimately developed for three Skylab missions. The M512 experiment facility was designed to support six in-space experiments intended to explore the advantages of manufacturing materials in the near-zero-gravity environment of Earth orbit. Detailed descriptions of the M512 facility and related experiment hardware are provided, with discussions of hardware verification and man-machine interfaces included. An analysis of the operation of the facility and experiments during the three Skylab missions is presented, including discussions of the hardware performance, anomalies, and data returned to earth.

  12. Science and technology of thermochromic materials

    SciTech Connect

    Day, J.H.; Willett, R.D.

    1990-12-31

    The color of a substance in general depends upon its state and upon the external forces it experiences, both past and present. One of the simplest methods of attempting to change the state of a material is to vary its temperature. Thermochromism is a noticeable dependence of the color of a substance on temperature. This is thus one of the easier chromogenic effects to detect. Since the changes triggered by temperature variation often are indicative of the effects that can be induced by other means, it is convenient to use the observation of thermochromism as an indication of the possible existence of other chromogenic behavior. Reversibility is an important factor to be considered for thermochromic materials. A compound which decomposes as it is heated may be totally irreversible or may be irreversible because a product of chemical change is removed and not replaced. For reversible systems, long term stability is important, although there are many uses in which stability over a few thermal cycles are adequate for the purpose. The possibility of an indefinitely large number of cycles is frequently limited by secondary and side reactions that may be present. There are a number of excellent reviews of the subject of thermochromism. The following sections of this chapter give an overview of the research done in polymeric, organic, and metal containing systems, as well as a summary of applications development, in the past two years. 165 refs., 9 figs., 1 tab.

  13. Materials Science under Extreme Conditions of Pressure and Strain Rate

    SciTech Connect

    Remington, B A; Bazan, G; Bringa, E; Caturla, M; Edwards, M J; Glendinning, S G; Kad, B; Kalantar, D H; Kumar, M; Lasinski, B F; Lorenz, K T; McNaney, J; Meyerhofer, D; Meyers, M A; Pollaine, S M; Reisman, D B; Rowley, D; Schneider, M; Stolken, J; Wark, J; Yaakobi, B

    2003-03-27

    Solid state dynamics experiments at very high pressures (P >> 10 GPa) and strain rates ({var_epsilon} >> 10{sup 5} s{sup -1}) have been demonstrated on high energy laser facilities, albeit over brief intervals of time and small spatial scales. We have developed two methods for driving samples to high pressures (10-100 GPa) at high strain rate (10{sup 6}-10{sup 8} s{sup -1}) in the solid state. One method uses a shockless compression technique, and the other uses multiple staged shocks. These drives are calibrated with VISAR measurements of the resulting compression wave. Deformation mechanisms are inferred under these conditions by characterizing recovered samples. Material strength at high pressures and strain rates is deduced by measuring the reduced growth of material perturbations at a hydrodynamically unstable interface. Microscopic lattice response is determined by time-resolved Bragg diffraction and x-ray absorption spectroscopy (EXAFS). Large-scale simulations, both at the continuum level using constitutive models and at the lattice level using molecular dynamics simulation, are used to interpret these integral experiments. We will review our progress in this new area of laser-based materials science research, then present a vision for carrying these solid-state experiments to much higher pressures, P > 1000 GPa, on the National Ignition Facility (NIF) laser facility.

  14. A New Direction for the NASA Materials Science Research using the International Space Station

    NASA Astrophysics Data System (ADS)

    Schlagheck, R.

    2002-01-01

    Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for the flight research environment. A summary will explain the concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program.

  15. A New Direction for the NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for the flight research environment. A summary will explain the concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program.

  16. A New Direction for the NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for the flight research environment. A summary will explain the concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program.

  17. Cardiac Tissue Structure, Properties, and Performance: A Materials Science Perspective

    PubMed Central

    Golob, Mark; Moss, Richard L.; Chesler, Naomi C.

    2014-01-01

    From an engineering perspective, many forms of heart disease can be thought of as a reduction in biomaterial performance, in which the biomaterial is the tissue comprising the ventricular wall. In materials science, the structure and properties of a material are recognized to be interconnected with performance. In addition, for most measurements of structure, properties, and performance, some processing is required. Here, we review the current state of knowledge regarding cardiac tissue structure, properties, and performance as well as the processing steps taken to acquire those measurements. Understanding the impact of these factors and their interactions may enhance our understanding of heart function and heart failure. We also review design considerations for cardiac tissue property and performance measurements because, to date, most data on cardiac tissue has been obtained under non-physiological loading conditions. Novel measurement systems that account for these design considerations may improve future experiments and lead to greater insight into cardiac tissue structure, properties, and ultimately performance. PMID:25081385

  18. Growing a Primary Science Specialism: Assembling People, Places, Materials and Ideas

    ERIC Educational Resources Information Center

    Lynch, Julianne; Frankel, Nadine; McCarthy, Kerry; Sharp, Lindy

    2015-01-01

    This paper derives from the authors' experiences of the development of a successful science specialism implemented in a large primary school in regional Victoria, Australia, since 2012. We discuss how diverse resources--people, spaces, equipment, materials and ideas--were brought together to support a science specialism that focuses on positioning…

  19. Growing a Primary Science Specialism: Assembling People, Places, Materials and Ideas

    ERIC Educational Resources Information Center

    Lynch, Julianne; Frankel, Nadine; McCarthy, Kerry; Sharp, Lindy

    2015-01-01

    This paper derives from the authors' experiences of the development of a successful science specialism implemented in a large primary school in regional Victoria, Australia, since 2012. We discuss how diverse resources--people, spaces, equipment, materials and ideas--were brought together to support a science specialism that focuses on positioning…

  20. Materials and Chemical Sciences Division annual report 1989

    SciTech Connect

    Not Available

    1990-07-01

    This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

  1. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  2. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  3. Materials Science at the Extremes of Pressure and Strain Rate

    SciTech Connect

    Remington, B A; Cavallo, R M; Edwards, M J; Lasinski, B F; Lorenz, K T; Lorenzana, H E; McNaney, J; Pollaine, S M; Rowley, D P; Yaakobi, B

    2003-08-20

    Solid state experiments at very high pressures and strain rates are possible on high power laser facilities, albeit over brief intervals of time and spatial small scales. A new shockless drive has been developed on the Omega laser. VISAR measurements establish the high strain rates, 10{sup 7}-10{sup 8} s{sup -1}. Solid-state strength is inferred using the Rayleigh-Taylor instability as a ''diagnostic''. Temperature and compression in polycrystalline samples can be deduced from EXAFS measurements. Lattice response can be inferred from time-resolved x-ray diffraction. Deformation mechanisms can be identified by examining recovered samples. We will briefly review this new area of laser-based materials science research, then present a path forward for carrying these solid-state experiments to much higher pressures, P >> 1 Mbar, on the NIF laser facility.

  4. The Giotto radio-science experiment

    NASA Technical Reports Server (NTRS)

    Edenhofer, P.; Bird, M. K.; Buschert, H.; Esposito, P. B.; Porsche, H.; Volland, H.

    1986-01-01

    The scientific objectives of the Giotto Radio Science Experiment (GRE) are to determine the columnar electron content of Comet Halley/s ionosphere and the cometary mass fluence from atmospheric drag by using the radio signals from Giotto during the Halley encounter. The radio science data (S and X-band Doppler and range measurements) will be collected at NASA/s deep-space 64 m tracking antenna at Tidbinbilla near Canberra, in Australia. In order to separate the effects of the terrestrial ionosphere and the interplanetary plasma, S-band Doppler measurements will also be taken at Tidbinbilla along the line-of-sight of Japan/s cometary probe Sakigake during the Giotto-Halley Encounter. The measurements of cometary electron content and mass fluence will be inverted to derive the spatial distribution of the electron and mass (dust and gas) density within Halley/s coma. The GRE is the only experiment on Giotto capable of measuring the low-energy (10 eV) electron bulk population of Halley/s ionosphere and the total cometary mass flow impacting upon the spacecraft.

  5. Plasma electron analysis: Voyager plasma science experiment

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.

    1983-01-01

    The Plasma Science Experiment (PLS) on the Voyager spacecraft provide data on the plasma ions and electrons in the interplanetary medium and the magnetospheres of the giant planets Jupiter and Saturn. A description of the analysis used to obtain electron parameters (density, temperature, etc.) from the plasma science experiment PLS electron measurements which cover the energy range from 10 eV to 5950 eV is presented. The electron sensor (D cup) and its transmission characteristics are described. A derivation of the fundamental analytical expression of the reduced distribution function F(e) is given. The electron distribution function F(e), used in the moment integrations, can be derived from F(e). Positive ions produce a correction current (ion feedthrough) to the measured electron current, which can be important to the measurements of the suprathermal electron component. In the case of Saturn, this correction current, which can either add to or subtract from the measured electron current, is less than 20% of the measured signal at all times. Comments about the corrections introduced by spacecraft charging to the Saturn encounter data, which can be important in regions of high density and shadow when the spacecraft can become negatively charged are introduced.

  6. The Giotto radio-science experiment

    NASA Technical Reports Server (NTRS)

    Edenhofer, P.; Bird, M. K.; Buschert, H.; Esposito, P. B.; Porsche, H.; Volland, H.

    1986-01-01

    The scientific objectives of the Giotto Radio Science Experiment (GRE) are to determine the columnar electron content of Comet Halley/s ionosphere and the cometary mass fluence from atmospheric drag by using the radio signals from Giotto during the Halley encounter. The radio science data (S and X-band Doppler and range measurements) will be collected at NASA/s deep-space 64 m tracking antenna at Tidbinbilla near Canberra, in Australia. In order to separate the effects of the terrestrial ionosphere and the interplanetary plasma, S-band Doppler measurements will also be taken at Tidbinbilla along the line-of-sight of Japan/s cometary probe Sakigake during the Giotto-Halley Encounter. The measurements of cometary electron content and mass fluence will be inverted to derive the spatial distribution of the electron and mass (dust and gas) density within Halley/s coma. The GRE is the only experiment on Giotto capable of measuring the low-energy (10 eV) electron bulk population of Halley/s ionosphere and the total cometary mass flow impacting upon the spacecraft.

  7. Research Experiences in Community College Science Programs

    NASA Astrophysics Data System (ADS)

    Beauregard, A.

    2011-12-01

    The benefits of student access to scientific research opportunities and the use of data in curriculum and student inquiry-driven approaches to teaching as effective tools in science instruction are compelling (i.e., Ledley, et al., 2008; Gawel & Greengrove, 2005; Macdonald, et al., 2005; Harnik & Ross. 2003). Unfortunately, these experiences are traditionally limited at community colleges due to heavy faculty teaching loads, a focus on teaching over research, and scarce departmental funds. Without such hands-on learning activities, instructors may find it difficult to stimulate excitement about science in their students, who are typically non-major and nontraditional. I present two different approaches for effectively incorporating research into the community college setting that each rely on partnerships with other institutions. The first of these is a more traditional approach for providing research experiences to undergraduate students, though such experiences are limited at community colleges, and involves student interns working on a research project under the supervision of a faculty member. Specifically, students participate in a water quality assessment study of two local bayous. Students work on different aspects of the project, including water sample collection, bio-assay incubation experiments, water quality sample analysis, and collection and identification of phytoplankton. Over the past four years, nine community college students, as well as two undergraduate students and four graduate students from the local four-year university have participated in this research project. Aligning student and faculty research provides community college students with the unique opportunity to participate in the process of active science and contribute to "real" scientific research. Because students are working in a local watershed, these field experiences provide a valuable "place-based" educational opportunity. The second approach links cutting-edge oceanographic

  8. The Usage of Recycle Materials for Science Practicum: Is There Any Effect on Science Process Skills?

    ERIC Educational Resources Information Center

    Prajoko, Setiyo; Amin, Mohamad; Rohman, Fatchur; Gipayana, Muhana

    2017-01-01

    This study aimed at determining the effect of recycle materials usage for science practicum on students' basic science process skills of the Open University, Surakarta. Recycle materials are the term used for the obtained materials and equipment from the students' environment by taking back the garbage or secondhand objects into goods or new…

  9. General Physics, Physics 12 [Science Curriculum Materials].

    ERIC Educational Resources Information Center

    Rochester City School District, NY.

    The Physics 12 curriculum guide represents one in a series of science guides especially designed to provide for the pupil whose primary interests are in non-science fields. The program provides study in physics in which fundamental concepts and understandings are developed, mathematical concepts are limited, and students are encouraged to relate…

  10. Optics & Materials Science & Technology (OMST) Organization at LLNL

    ScienceCinema

    Suratwala; Tayyab; Nguyen, Hoang; Bude, Jeff; Dylla-Spears, Rebecca

    2016-12-09

    The Optics and Materials Science & Technology (OMST) organization at Lawrence Livermore National Laboratory (LLNL) supplies optics, recycles optics, and performs the materials science and technology to advance optics and optical materials for high-power and high-energy lasers for a variety of missions. The organization is a core capability at LLNL. We have a strong partnership with many optical fabricators, universities and national laboratories to accomplish our goals. The organization has a long history of performing fundamental optical materials science, developing them into useful technologies, and transferring them into production both on-site and off-site. We are successfully continuing this same strategy today.

  11. Optics & Materials Science & Technology (OMST) Organization at LLNL

    SciTech Connect

    Suratwala; Tayyab; Nguyen, Hoang; Bude, Jeff; Dylla-Spears, Rebecca

    2016-11-30

    The Optics and Materials Science & Technology (OMST) organization at Lawrence Livermore National Laboratory (LLNL) supplies optics, recycles optics, and performs the materials science and technology to advance optics and optical materials for high-power and high-energy lasers for a variety of missions. The organization is a core capability at LLNL. We have a strong partnership with many optical fabricators, universities and national laboratories to accomplish our goals. The organization has a long history of performing fundamental optical materials science, developing them into useful technologies, and transferring them into production both on-site and off-site. We are successfully continuing this same strategy today.

  12. Township of Ocean School District Contemporary Science. Student Enrichment Materials.

    ERIC Educational Resources Information Center

    Truex, Ronald T.

    Contemporary Science is a program designed to provide non-academic disaffected students as well as college-bound high school students with a meaningful and positive educational experience in science in order to bridge the gap between science and the citizen in a technological world. The program, designed as a full year elective course, involves…

  13. Township of Ocean School District Contemporary Science. Student Enrichment Materials.

    ERIC Educational Resources Information Center

    Truex, Ronald T.

    Contemporary Science is a program designed to provide non-academic disaffected students as well as college-bound high school students with a meaningful and positive educational experience in science in order to bridge the gap between science and the citizen in a technological world. The program, designed as a full year elective course, involves…

  14. Materials Science and Technology, Volume 10B, Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Frost, Brian R. T.

    1996-12-01

    The second of two volumes in this series to deal with the information required for the use of materials in the nuclear power industry. The two volumes together contain the most comprehensive collection of information ever published in nuclear materials. Contents: Motta/Lemaignan: Zirconium Alloys. Dietz: Structural Materials. Ullmaier/Schilling: Physics of Radiation Damage in Solids. Smith/Mattas/Billone: First Wall and Blanket Materials. Boltax: Mixed Oxide Fuel Pin Performance. Oversby: Nuclear Wate Materials.

  15. PREFACE: Tsukuba International Conference on Materials Science 2013

    NASA Astrophysics Data System (ADS)

    Kijima, Masashi; Ohshima, Kenichi; Kojima, Seiji; Nagasaki, Yukio; Miyazaki, Shuichi; Kim, Hee Young; Kadowaki, Kazuo; Kashiwagi, Takanari; Nakamura, Junji; Yamamoto, Yohei; Goto, Hiromasa

    2014-03-01

    Tsukuba International Conference on Materials Science (TICMS) was held from 28th August to 6th September, 2013 for the celebration of 40th year anniversary of the University of Tsukuba. The conference was organized by the Division of Materials Science, in cooperation with the Graduate School of Pure and Applied Sciences, and Tsukuba Research Center for Interdisciplinary Materials Science. The purpose of the conference was to provide a unique forum for researchers and students working in various fields of materials science, which have been progressing so rapidly that no single society could cover. The conference consists of following seven workshops to cover various fields. The organizing committee believed that the conference gave all participants new insights into the widespread development of materials science and enhanced the circulation, among them, of information released at the conference. The organizers are grateful for the financial support from University of Tsukuba. This volume contains 25 selected papers from invited and contributed papers, all of which have been screened on the basis of the standard review process of the program committee. The editors express their thanks to those authors who contributed the papers published in this proceedings, which reflects the scientific value of the conference. Nov. 20, 2013 Seiji Kojima, Prof. Dr. Chair, Division of Materials Science Chair, Doctoral Program in Materials Science TICMS 2013 (http://www.ticonfms.tsukuba.ac.jp/) Workshop list The 13th Japan-Korea Joint Workshop on Materials Science Summer School of Biomaterials Science The Japan-Korea Joint Workshop on Shape Memory and Superelastic Technologies The 2nd Workshop on THz Radiation from Intrinsic Josephson Junctions The 3rd German-Japan Nanoworkshop TICMS and IWP Joint Workshop on Conjugated Polymers International Workshop on Science and Patents (IWP) 2013

  16. Organism support for life sciences spacelab experiments

    NASA Technical Reports Server (NTRS)

    Drake, G. L.; Heppner, D. B.

    1976-01-01

    This paper presents an overview of the U.S. life sciences laboratory concepts envisioned for the Shuttle/Spacelab era. The basic development approach is to provide a general laboratory facility supplemented by specific experiment hardware as required. The laboratory concepts range from small carry-on laboratories to fully dedicated laboratories in the Spacelab pressurized module. The laboratories will encompass a broad spectrum of research in biology and biomedicine requiring a variety of research organisms. The environmental control and life support of these organisms is a very important aspect of the success of the space research missions. Engineering prototype organism habitats have been designed and fabricated to be compatible with the Spacelab environment and the experiment requirements. These first-generation habitat designs and their subsystems have supported plants, cells/tissues, invertebrates, and small vertebrates in limited evaluation tests. Special handling and transport equipment required for the ground movement of the experiment organisms at the launch/landing site have been built and tested using these initial habitat prototypes.

  17. The Eagle Nebula Science on NIF experiment

    NASA Astrophysics Data System (ADS)

    Kane, Jave; Heeter, Robert; Martinez, David; Pound, Marc; Remington, Bruce; Ryutov, Dmitri; Smalyuk, Vladimir

    2012-10-01

    The Eagle Nebula NIF experiment was one of nine selected for laser time through the Science on NIF program. The goal of this scale laboratory experiment is to study the dynamic evolution of distinctive structures in star forming regions of astrophysical molecular clouds such as the Pillars of the Eagle Nebula. That evolution is driven by photoionizing radiation from nearby stars. A critical aspect of the radiation is its very directional nature at the photoionization front. The long duration of the drive and its directionality can generate new classes of instabilities and dynamic flows at the front that may be responsible for the shapes of Pillars and other structures. The experiment will leverage and modify the existing NIF Radiation Transport platform, replacing the target at the back end of the halfraum with a collimating aperture, and extending the existing 20 ns drive to longer times, using a combination of gas fill and other new design features. The apertured, quasi-collimated drive will be used to drive a target placed 2 mm away from the aperture. The astrophysical background and the status of the experimental design will be presented.

  18. Organism support for life sciences spacelab experiments

    NASA Technical Reports Server (NTRS)

    Drake, G. L.; Heppner, D. B.

    1976-01-01

    This paper presents an overview of the U.S. life sciences laboratory concepts envisioned for the Shuttle/Spacelab era. The basic development approach is to provide a general laboratory facility supplemented by specific experiment hardware as required. The laboratory concepts range from small carry-on laboratories to fully dedicated laboratories in the Spacelab pressurized module. The laboratories will encompass a broad spectrum of research in biology and biomedicine requiring a variety of research organisms. The environmental control and life support of these organisms is a very important aspect of the success of the space research missions. Engineering prototype organism habitats have been designed and fabricated to be compatible with the Spacelab environment and the experiment requirements. These first-generation habitat designs and their subsystems have supported plants, cells/tissues, invertebrates, and small vertebrates in limited evaluation tests. Special handling and transport equipment required for the ground movement of the experiment organisms at the launch/landing site have been built and tested using these initial habitat prototypes.

  19. DOE fundamentals handbook: Material science. Volume 1

    SciTech Connect

    Not Available

    1993-01-01

    The Mechanical Science Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mechanical components and mechanical science. The handbook includes information on diesel engines, heat exchangers, pumps, valves, and miscellaneous mechanical components. This information will provide personnel with a foundation for understanding the construction and operation of mechanical components that are associated with various DOE nuclear facility operations and maintenance.

  20. Scenes from a Science Classroom: An Enrichment Program Experience.

    ERIC Educational Resources Information Center

    Brownstein, Erica M.; Destino, Thomas

    To increase the representation of African Americans in science fields, potential candidates must have positive personal science experiences. Even with recent reforms, most students in the United States have a limited exposure to science experiences, especially African American students. One approach to addressing this problem has been to offer…

  1. Science in Orbit. The Shuttle & Spacelab Experience: 1981-1986.

    ERIC Educational Resources Information Center

    Marshall Space Flight Center, Huntsville, AL.

    Doing science in the Shuttle and Spacelab is a different experience than having an instrument on a satellite; science becomes more "personal." Interaction between scientists on the ground and the onboard crew in conducting experiments adds a new dimension to a science mission. It transforms the mission from a focus on machines,…

  2. Materials science: Chemistry and physics happily wed

    NASA Astrophysics Data System (ADS)

    Fiete, Gregory A.

    2017-07-01

    A major advance in the quantum theory of solids allows materials to be identified whose electronic states have a non-trivial topology. Such materials could have many computing and electronics applications. See Article p.298

  3. Materials science: Lessons from tooth enamel

    NASA Astrophysics Data System (ADS)

    Espinosa, Horacio D.; Soler-Crespo, Rafael

    2017-03-01

    A remarkable composite material has been made that mimics the structure of tooth enamel. This achievement opens up the exploration of new composite materials and of computational methods that reliably predict their properties. See Letter p.95

  4. Development of a Support Environment for First Year Students Taking Materials Science/Engineering

    ERIC Educational Resources Information Center

    Laoui, Tahar; O'Donoghue, John

    2008-01-01

    This paper is based on the experience acquired in teaching materials science/engineering to first year university students. It has been observed that students struggle with some of the fundamental materials concepts addressed in the module/course. This applies to delivered lectures but extends to the incorporation of tutorial sessions provided…

  5. Development of a Support Environment for First Year Students Taking Materials Science/Engineering

    ERIC Educational Resources Information Center

    Laoui, Tahar; O'Donoghue, John

    2008-01-01

    This paper is based on the experience acquired in teaching materials science/engineering to first year university students. It has been observed that students struggle with some of the fundamental materials concepts addressed in the module/course. This applies to delivered lectures but extends to the incorporation of tutorial sessions provided…

  6. The use of historical materials in elementary science classrooms

    NASA Astrophysics Data System (ADS)

    Kafai, Yasmin B.; Gilliland-Swetland, Anne J.

    2001-07-01

    Science educators have stressed in recent years the importance of providing students with an historical understanding of the development of scientific knowledge. Although many approaches have been suggested for building historical understanding of science, historical source materials have often been deemed too difficult to use with elementary school students. This article reports on a case study that used archival and contemporary source materials in project activities, such as photographs and field notes, to engage students in the processes of data generation, selection, annotation, and evaluation. The curricular science activities of one elementary classroom with 29 fourth and fifth grade students are decribed and analyzed as they build and use archives of historical and contemporary naturalist materials. The article concludes with a discussion of the feasibility and benefits of using historical source materials within elementary science education, as well as the implications for selecting and preparing historical source materials in digital format for use in elementary education.

  7. Mars Exploration Rover Science Operations and Physical Properties Experiments

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Athena Science Team

    2004-05-01

    The two Mars Exploration Rovers, Spirit and Opportunity, landed in January 2004 and have been operating on the surface on the floor of Gusev Crater and Meridiani Planum, respectively. In addition to acquiring multi-spectral imaging, emission spectra, elemental abundance, and iron mineralogy data from the Athena Payload, the rover engineering telemetry and camera data have been used to reconstruct topography and soil properties along rover traverses, and soil mechanical properties from wheel-trenching operations. During traverses two types of science sequences have been developed, one focused on detailed soil and rock characterization, and one focused on a reconnaissance measurements of surface materials and a campaign of atmospheric observations, including optical depth, sky brightness, sky temperature profiles, and thermal sky ``stares." Results from the traverse and trenching experiments will be discussed in detail, along with approaches for conducting remote science operations with planetary rovers.

  8. Spacelab 1 and the Life Sciences Flight Experiments Program

    NASA Technical Reports Server (NTRS)

    Bush, W. H.; Clark, R. S.

    1984-01-01

    The Life Sciences Flight Experiments Program (LSFEP) was established by NASA in 1978 to plan and direct efforts necessary to conduct a continuing program of in-flight life science investigations throughout the Space Shuttle era. The Spacelab 1 (SL-1) mission, conducted from November 28 to December 8, 1983, was to verify Spacelab performance through a variety of scientific experiments including life science. A description is given of the seven NASA life sciences experiments, which consisted of four human experiments, a fungus experiment, a plant experiment, and radiation experiments. Ten life sciences experiments from the European Space Agency were also flown. The experiments include studies of the circadian rhythms in Neurospora crassa, the nutation of Helianthus annus, the vestibular function during weightlessness, the influence of space flight on erythrokinetics in man, and the adaptation of vestibulo-spinal reflex mechanisms during space flight.

  9. Spacelab 1 and the Life Sciences Flight Experiments Program

    NASA Technical Reports Server (NTRS)

    Bush, W. H.; Clark, R. S.

    1984-01-01

    The Life Sciences Flight Experiments Program (LSFEP) was established by NASA in 1978 to plan and direct efforts necessary to conduct a continuing program of in-flight life science investigations throughout the Space Shuttle era. The Spacelab 1 (SL-1) mission, conducted from November 28 to December 8, 1983, was to verify Spacelab performance through a variety of scientific experiments including life science. A description is given of the seven NASA life sciences experiments, which consisted of four human experiments, a fungus experiment, a plant experiment, and radiation experiments. Ten life sciences experiments from the European Space Agency were also flown. The experiments include studies of the circadian rhythms in Neurospora crassa, the nutation of Helianthus annus, the vestibular function during weightlessness, the influence of space flight on erythrokinetics in man, and the adaptation of vestibulo-spinal reflex mechanisms during space flight.

  10. Space Weathering Experiments on Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Engelhart, D. P.; Cooper, R.; Cowardin, H.; Maxwell, J.; Plis, E.; Ferguson, D.; Barton, D.; Schiefer, S.; Hoffmann, R.

    2017-01-01

    A project to investigate space environment effects on specific materials with interest to remote sensing was initiated in 2016. The goal of the project is to better characterize changes in the optical properties of polymers found in multi-layered spacecraft insulation (MLI) induced by electron bombardment. Previous analysis shows that chemical bonds break and potentially reform when exposed to high energy electrons like those seen in orbit. These chemical changes have been shown to alter a material's optical reflectance, among other material properties. This paper presents the initial experimental results of MLI materials exposed to various fluences of high energy electrons, designed to simulate a portion of the geosynchronous Earth orbit (GEO) space environment. It is shown that the spectral reflectance of some of the tested materials changes as a function of electron dose. These results provide an experimental benchmark for analysis of aging effects on satellite systems which can be used to improve remote sensing and space situational awareness. They also provide preliminary analysis on those materials that are most likely to comprise the high area-to-mass ratio (HAMR) population of space debris in the geosynchronous orbit environment. Finally, the results presented in this paper serve as a proof of concept for simulated environmental aging of spacecraft polymers that should lead to more experiments using a larger subset of spacecraft materials.

  11. TEACHING OF SOCIAL SCIENCE MATERIAL IN THE ELEMENTARY SCHOOL.

    ERIC Educational Resources Information Center

    FOX, ROBERT S.; AND OTHERS

    OBJECTIVES WERE--(1) TO UTILIZE THE WORKING MATERIALS CREATED DURING THE PREVIOUS YEAR, (2) TO EXPLORE THE NEED FOR A SET OF RESOURCE MATERIALS DIRECTED TOWARD HELPING THE CLASSROOM TEACHER GAIN KNOWLEDGE AND SKILLS TO HELP IN THE TEACHING OF SOCIAL SCIENCE, (3) TO FIELD-TEST THE RESOURCE MATERIALS IN ELEMENTARY SCHOOLS, (4) TO DEVELOP AND TEST…

  12. Diamond detector - material science, design and application

    NASA Astrophysics Data System (ADS)

    Gaowei, Mengjia

    Modern synchrotrons, such as the NSLS-II, will enable unprecedented science by having extremely high brightness and flux with exceptional beam stability. These capabilities create a harsh and demanding environment for measuring the characteristics of the x-ray beam. In many cases, existing measurement techniques fail completely, requiring the development of new detectors which can meet the demands of the synchrotron. The combination of diamond properties ranked diamond an appealing candidate in the field of radiation detection in extreme conditions and it has been used as x-ray sensor material for decades. However, only until the development of chemical vapor deposition (CVD) process in the synthesis of diamond that has it been considered for wider applications in the state-of-art synchrotron light sources as part of beamline diagnostics, including the detection of x-ray beam flux and position. While defects and dislocations in CVD grown single crystal diamonds are inevitable, there are solutions in other aspects of a device fabrication to compensate this technological downside, including improving device performance in engineering diamond surface electrode materials and patterns and slicing and polishing diamond plates into thinner pieces. The content of this dissertation summarizes our effort in addressing several problems we encounter in the process of design and fabrication of single crystal CVD diamond based electronic devices. In order to study the generation of post-anneal photoconductive gain in our devices we have discussed in section 3 and 4 the two criteria for the observation of photoconductive current. In section 3 we reveal the correlation between structural defects in diamond and the post-anneal photoconductive regions. Section 4 introduces the measurements of hard x-ray photoelectron spectroscopy (HAXPES) we applied to investigate the diamond-metal Schottky barrier height for several metals and diamond surface terminations. The position of the

  13. Space Weathering Experiments on Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Cooper, R.; Cowardin, H.; Engelhar, D.; Plis, Elena; Hoffman, R.

    2017-01-01

    A project to investigate space environment effects on specific materials with interest to remote sensing was initiated in 2016. The goal of the project is to better characterize changes in the optical properties of polymers and Mylar, specifically those found in multi-layered spacecraft insulation, due to electron bombardment. Previous analysis shows that chemical bonds break and potentially reform when exposed to high energy electrons. Among other properties these chemical changes altered the optical reflectance as documented in laboratory analysis. This paper presents results of the initial experiment results focused on the exposure of materials to various fluences of high energy electrons, used to simulate a portion of the geosynchronous space environment. The paper illustrates how the spectral reflectance changes as a function of time on orbit with respect to GEO environmental factors and investigates the survivability of the material after multiple electron doses. These results provide a baseline for analysis of aging effects on satellite systems used for remote sensing. They also provide preliminary analysis on what materials are most likely to encompass the high area-to-mass population of space debris in the geosynchronous environment. Lastly, the paper provides the results of the initial experimentation as a proof of concept for space aging on polymers and Mylar for conducting more experiments with a larger subset of spacecraft materials.

  14. 2003 research briefs : Materials and Process Sciences Center.

    SciTech Connect

    Cieslak, Michael J.

    2003-08-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems and Materials Modeling and Computational Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  15. 2005 Research Briefs : Materials and Process Sciences Center.

    SciTech Connect

    Cieslak, Michael J.

    2005-05-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  16. 2004 research briefs :Materials and Process Sciences Center.

    SciTech Connect

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  17. Materials Science and Technology, Volume 5, Phase Transformations in Materials

    NASA Astrophysics Data System (ADS)

    Haasen, Peter

    1996-12-01

    This volume covers phase transformations, a general phenomenon central to understanding the behavior of materials and to creating high-performance materials. From the Contents: Pelton: Thermodynamics and Phase Diagrams of Materials. Murch: Diffusion in Crystalline Solids. Binder: Statistical Theories of Phase Transitions/Spinodal Decomposition. Wagner/Kampmann: Homogeneous Second Phase Precipitation. Purdy: Transformations Involving Interfacial Diffusion. Delaey: Diffusionless Transformations. Ruoff: High Pressure Phase Transformations. Pitsch/Inden: Atomic Ordering. Müller- Krumbhaar/Kurz: Solidification.

  18. Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Elementary Science

    ERIC Educational Resources Information Center

    Forbes, Cory T.

    2011-01-01

    Curriculum materials are important resources with which teachers make pedagogical decisions about the design of science learning environments. To become well-started beginning elementary teachers capable of engaging their students in inquiry-based science, preservice elementary teachers need to learn to use science curriculum materials…

  19. NASA/First Materials Science Research Rack (MSRR-1) Module Inserts Development for the International Space Station

    NASA Technical Reports Server (NTRS)

    Crouch, Myscha; Carswell, Bill; Farmer, Jeff; Rose, Fred; Tidwell, Paul

    1999-01-01

    The Material Science Research Rack 1 (MSRR-1) of the Material Science Research Facility (MSRF) contains an Experiment Module (EM) being developed collaboratively by NASA and the European Space Agency (ESA). This NASA/ESA EM will accommodate several different removable and replaceable Module Inserts (MIs) which are installed on orbit. Two of the NASA MIs being developed for specific material science investigations are described herein.

  20. The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stagg, Elizabeth

    2004-01-01

    In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned

  1. The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stagg, Elizabeth

    2004-01-01

    In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned

  2. Writing across the Curriculum: A Hermeneutic Study of Students' Experiences in Writing in Food Science Education

    ERIC Educational Resources Information Center

    Dzurec, David J.; Dzurec, Laura Cox

    2005-01-01

    Writing can enhance learning by helping students put words to their thinking about course material. The purposes of this study were to assess the influence of a structured academic journal writing exercise on student learning in a food science class and to examine student responses to the experience. Hermeneutics, a philosophy of science and…

  3. Writing across the Curriculum: A Hermeneutic Study of Students' Experiences in Writing in Food Science Education

    ERIC Educational Resources Information Center

    Dzurec, David J.; Dzurec, Laura Cox

    2005-01-01

    Writing can enhance learning by helping students put words to their thinking about course material. The purposes of this study were to assess the influence of a structured academic journal writing exercise on student learning in a food science class and to examine student responses to the experience. Hermeneutics, a philosophy of science and…

  4. A New Direction for NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)

    2001-01-01

    NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be

  5. A New Direction for NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)

    2001-01-01

    NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be

  6. Biological issues in materials science and engineering: Interdisciplinarity and the bio-materials paradigm

    NASA Astrophysics Data System (ADS)

    Murr, L. E.

    2006-07-01

    Biological systems and processes have had, and continue to have, important implications and applications in materials extraction, processing, and performance. This paper illustrates some interdisciplinary, biological issues in materials science and engineering. These include metal extraction involving bacterial catalysis, galvanic couples, bacterial-assisted corrosion and degradation of materials, biosorption and bioremediation of toxic and other heavy metals, metal and material implants and prostheses and related dental and medical biomaterials developments and applications, nanomaterials health benefits and toxicity issue, and biomimetics and biologically inspired materials developments. These and other examples provide compelling evidence and arguments for emphasizing biological sicences in materials science and engineering curricula and the implementation of a bio-materials paradigm to facilitate the emergence of innovative interdisciplinarity involving the biological sciences and materials sciences and engineering.

  7. Uses of Computed Tomography in the NASA Materials Science Program

    NASA Technical Reports Server (NTRS)

    Engel, H. Peter; Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Computed Tomography (CT) has proved to be of inestimable use in providing a rapid evaluation of a variety of samples from Mechanics of Granular Materials (MGM) to electronic materials (Ge-Si alloys) to space grown materials such as meteorites. The system at Kennedy Space Center (KSC), because of its convenient geographical location, is ideal for examining samples immediately after returning to Earth. It also has the advantage of the choice of fluxes, and in particular the use of a radioactive cobalt source, which is basically monochromatic. This permits a reasonable measurement of density to be made from which chemical composition can be determined. Due to the current dearth of long duration space grown materials, the CT instrument has been used to characterize materials in preparation for flight, to determine thermal expansion values, and to examine long duration space grown materials, i.e. meteorites. The work will first describe the establishment of the protocol for obtaining the optimum density readings for any material. This will include both the effects of the hardware or instrumental parameters that can be controlled, and the techniques used to process the CT data. Examples will be given of the compositional variation along single crystals of germanium-silicon alloys. Density variation with temperature has been measured in preparation for future materials science experiments; this involved the fabrication and installation of a single zone furnace incorporating a heat pipe to ensure of high temperature uniformity. At the time of writing the thermal expansion of lead has been measured from room temperature to 900 C. Three methods are available. Digital radiography enable length changes to be determined. Prior to melting the sample is small than the container and the diameter change can be measured. Most critical, however, is the density change in solid, through the melting region, and in the liquid state. These data are needed for engineering purposes to aid

  8. Uses of Computed Tomography in the NASA Materials Science Program

    NASA Technical Reports Server (NTRS)

    Engel, H. Peter; Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Computed Tomography (CT) has proved to be of inestimable use in providing a rapid evaluation of a variety of samples from Mechanics of Granular Materials (MGM) to electronic materials (Ge-Si alloys) to space grown materials such as meteorites. The system at Kennedy Space Center (KSC), because of its convenient geographical location, is ideal for examining samples immediately after returning to Earth. It also has the advantage of the choice of fluxes, and in particular the use of a radioactive cobalt source, which is basically monochromatic. This permits a reasonable measurement of density to be made from which chemical composition can be determined. Due to the current dearth of long duration space grown materials, the CT instrument has been used to characterize materials in preparation for flight, to determine thermal expansion values, and to examine long duration space grown materials, i.e. meteorites. The work will first describe the establishment of the protocol for obtaining the optimum density readings for any material. This will include both the effects of the hardware or instrumental parameters that can be controlled, and the techniques used to process the CT data. Examples will be given of the compositional variation along single crystals of germanium-silicon alloys. Density variation with temperature has been measured in preparation for future materials science experiments; this involved the fabrication and installation of a single zone furnace incorporating a heat pipe to ensure of high temperature uniformity. At the time of writing the thermal expansion of lead has been measured from room temperature to 900 C. Three methods are available. Digital radiography enable length changes to be determined. Prior to melting the sample is small than the container and the diameter change can be measured. Most critical, however, is the density change in solid, through the melting region, and in the liquid state. These data are needed for engineering purposes to aid

  9. Course and Curriculum Improvement Materials: Mathematics, Science, Social Sciences - Elementary, Intermediate, Secondary.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    This is a list of curriculum improvement materials produced by major course and curriculum projects supported by the National Science Foundation's Division of Pre-College Education in Science. The materials are grouped by educational level (elementary, intermediate, and secondary) and within each level by broad discipline groupings (mathematics,…

  10. Biology Grade 10, Science Curriculum Materials.

    ERIC Educational Resources Information Center

    Bloom, Samuel W.

    This teaching guide and syllabus outline is intended for use with pupils whose primary interests are in non-science fields, or who do not intend to enter college. The guide contains suggested activities, both laboratory and discussion, for a course containing the following sections: Introduction to Cells and Life; Animal Physiology; Plant…

  11. School-Based Experiences: Developing Primary Science Preservice Teachers' Practices

    ERIC Educational Resources Information Center

    Hudson, Peter

    2010-01-01

    Reviews into teacher education emphasise the need for preservice teachers to have more school-based experiences. In this study, a school- based experience was organised within a nine-week science curriculum university unit that allowed preservice teachers' repeated experiences in teaching primary science. This research uses a survey, questionnaire…

  12. School-Based Experiences: Developing Primary Science Preservice Teachers' Practices

    ERIC Educational Resources Information Center

    Hudson, Peter

    2010-01-01

    Reviews into teacher education emphasise the need for preservice teachers to have more school-based experiences. In this study, a school- based experience was organised within a nine-week science curriculum university unit that allowed preservice teachers' repeated experiences in teaching primary science. This research uses a survey, questionnaire…

  13. Diversifying Science: Underrepresented Student Experiences in Structured Research Programs

    PubMed Central

    Cabrera, Nolan L.; Lin, Monica H.; Arellano, Lucy; Espinosa, Lorelle L.

    2013-01-01

    Targeting four institutions with structured science research programs for undergraduates, this study focuses on how underrepresented students experience science. Several key themes emerged from focus group discussions: learning to become research scientists, experiences with the culture of science, and views on racial and social stigma. Participants spoke of essential factors for becoming a scientist, but their experiences also raised complex issues about the role of race and social stigma in scientific training. Students experienced the collaborative and empowering culture of science, exhibited strong science identities and high self-efficacy, while developing directed career goals as a result of “doing science” in these programs. PMID:23503690

  14. Materials science and engineering in space

    NASA Technical Reports Server (NTRS)

    Zoller, L. K.

    1980-01-01

    The influences of gravitational forces on processes used in the preparation of materials employed in earth-based applications are addressed and the benefits which may be derived from the microgravity environment of space in improving on such constraints are considered. Attention is given to the fact that Materials Processing in Space is directed toward the utilization of the unique space environment as a tool to establish a scientific characterization of materials processes for technological exploitation in the public benefit. In the context of enhancement to earth-based technology or implementation of space-based processes for specialized, low volume, high value materials, the thrust of the Materials Processing in Space program is surveyed.

  15. Materials Science Research Hardware for Application on the International Space Station: an Overview of Typical Hardware Requirements and Features

    NASA Technical Reports Server (NTRS)

    Schaefer, D. A.; Cobb, S.; Fiske, M. R.; Srinivas, R.

    2000-01-01

    NASA's Marshall Space Flight Center (MSFC) is the lead center for Materials Science Microgravity Research. The Materials Science Research Facility (MSRF) is a key development effort underway at MSFC. The MSRF will be the primary facility for microgravity materials science research on board the International Space Station (ISS) and will implement the NASA Materials Science Microgravity Research Program. It will operate in the U.S. Laboratory Module and support U. S. Microgravity Materials Science Investigations. This facility is being designed to maintain the momentum of the U.S. role in microgravity materials science and support NASA's Human Exploration and Development of Space (HEDS) Enterprise goals and objectives for Materials Science. The MSRF as currently envisioned will consist of three Materials Science Research Racks (MSRR), which will be deployed to the International Space Station (ISS) in phases, Each rack is being designed to accommodate various Experiment Modules, which comprise processing facilities for peer selected Materials Science experiments. Phased deployment will enable early opportunities for the U.S. and International Partners, and support the timely incorporation of technology updates to the Experiment Modules and sensor devices.

  16. Teacher Learning from Girls' Informal Science Experiences

    ERIC Educational Resources Information Center

    Birmingham, Daniel J.

    2013-01-01

    School science continues to fail to engage youth from non-dominant communities (Carlone, Huan-Frank & Webb, 2011). However, recent research demonstrates that informal science learning settings support both knowledge gains and increased participation in science among youth from non-dominant communities (Dierking, 2007; Falk et al., 2007; HFRP,…

  17. Teacher Learning from Girls' Informal Science Experiences

    ERIC Educational Resources Information Center

    Birmingham, Daniel J.

    2013-01-01

    School science continues to fail to engage youth from non-dominant communities (Carlone, Huan-Frank & Webb, 2011). However, recent research demonstrates that informal science learning settings support both knowledge gains and increased participation in science among youth from non-dominant communities (Dierking, 2007; Falk et al., 2007; HFRP,…

  18. Educational Materials Development in Primary Science: Dial Thermometer Instructional Unit

    ERIC Educational Resources Information Center

    Franks, Frank L.; Huff, Roger

    1976-01-01

    Described in the fourth of a series of articles dealing with primary science instructional materials for visually handicapped students, is a field test (with 61 Ss in grades 2 to 4) of a dial thermometer instructional unit. (IM)

  19. Educational Materials Development in Primary Science: Dial Thermometer Instructional Unit

    ERIC Educational Resources Information Center

    Franks, Frank L.; Huff, Roger

    1976-01-01

    Described in the fourth of a series of articles dealing with primary science instructional materials for visually handicapped students, is a field test (with 61 Ss in grades 2 to 4) of a dial thermometer instructional unit. (IM)

  20. Implementing New Science Curricula and Course Content Improvement Materials.

    ERIC Educational Resources Information Center

    Obradovic, Sylvia M.; And Others

    To identify factors affecting the implementation of new science curricula a questionnaire survey of principals and teachers in California and Nevada secondary schools was used to select a sample of schools using Chemical Education Materials Study (CHEM Study) or Introductory Physical Science (IPS). Interview data collected when these 67 schools…

  1. Educators Guide to Free Science Materials. Thirteenth Edition.

    ERIC Educational Resources Information Center

    Saterstrom, Mary H., Comp.

    The thirteenth edition of the guide lists a total of 1,729 selected free materials related to science instruction. Entries are listed under the subject categories of aerospace education, biology, chemistry, environmental education, general science, and physics. These categories are each listed under the different types of media indexed in the…

  2. Bridging a High School Science Fair Experience with First Year Undergraduate Research: Using the E-SPART Analyzer to Determine Electrostatic Charge Properties of Compositionally Varied Rock Dust Particles as Terrestrial Analogues to Mars Materials

    NASA Technical Reports Server (NTRS)

    Scott, A. G.; Williams, W. J. W.; Mazumder, M. K.; Biris, A.; Srirama, P. K.

    2005-01-01

    NASA missions to Mars confirm presence of surficial particles, as well as dramatic periods of aeolian reworking. Dust deposition on, or infiltration into, exploration equipment such as spacecraft, robotic explorers, solar panel power supplies, and even spacesuits, can pose significant problems such as diminished power collection, short circuits / discharges, and added weight. We report results conducted initially as a science fair project and a study now part of a first year University undergraduate research experience.

  3. Preliminary Concepts for the Materials Science Research Facility on the International Space Station

    NASA Technical Reports Server (NTRS)

    Cobb, S.D.; Szofran, F. R.; Schaefer, D. A.

    1999-01-01

    The Materials Science Research Facility (MSRF) is designed to accommodate the current and evolving cadre of peer-reviewed materials science investigations selected to conduct research in the microgravity environment of the International Space Station (ISS). The MSRF consists of modular autonomous Materials Science Research Racks (MSRR's). The initial MSRF concept consists of three Materials Science Research Racks (MSRR-1, MSRR-2, and MSRR-3) which will be developed for a phased deployment beginning on Utilization Flight 3. Each MSRR is a stand-alone autonomous rack and will be comprised of either on-orbit replaceable Experiment Modules, Module Inserts, investigation unique apparatus, or multi-user generic processing apparatus Each MSRR will support a wide variety of scientific investigations.

  4. Preliminary Concepts for the Materials Science Research Facility on the International Space Station

    NASA Technical Reports Server (NTRS)

    Cobb, S.D.; Szofran, F. R.; Schaefer, D. A.

    1999-01-01

    The Materials Science Research Facility (MSRF) is designed to accommodate the current and evolving cadre of peer-reviewed materials science investigations selected to conduct research in the microgravity environment of the International Space Station (ISS). The MSRF consists of modular autonomous Materials Science Research Racks (MSRR's). The initial MSRF concept consists of three Materials Science Research Racks (MSRR-1, MSRR-2, and MSRR-3) which will be developed for a phased deployment beginning on Utilization Flight 3. Each MSRR is a stand-alone autonomous rack and will be comprised of either on-orbit replaceable Experiment Modules, Module Inserts, investigation unique apparatus, or multi-user generic processing apparatus Each MSRR will support a wide variety of scientific investigations.

  5. Materials science. Materials that couple sensing, actuation, computation, and communication.

    PubMed

    McEvoy, M A; Correll, N

    2015-03-20

    Tightly integrating sensing, actuation, and computation into composites could enable a new generation of truly smart material systems that can change their appearance and shape autonomously. Applications for such materials include airfoils that change their aerodynamic profile, vehicles with camouflage abilities, bridges that detect and repair damage, or robotic skins and prosthetics with a realistic sense of touch. Although integrating sensors and actuators into composites is becoming increasingly common, the opportunities afforded by embedded computation have only been marginally explored. Here, the key challenge is the gap between the continuous physics of materials and the discrete mathematics of computation. Bridging this gap requires a fundamental understanding of the constituents of such robotic materials and the distributed algorithms and controls that make these structures smart.

  6. Tritium Plasma Experiment Upgrade for Fusion Tritium and Nuclear Sciences

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Taylor, Chase N.; Kolasinski, Robert D.; Buchenauer, Dean A.

    2015-11-01

    The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. Recently the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of tritium plasma-driven permeation and optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.

  7. Development of Science and Mathematics Education System Including Teaching Experience of Students in Local Area

    NASA Astrophysics Data System (ADS)

    Kage, Hiroyuki

    New reformation project on engineering education, which is supported from 2005 to 2008FY by Support Program for Contemporary Educational Needs of Ministry of Education, Culture, Sports, Science and Technology, started in Kyushu Institute of Technology. In this project, teaching experience of students is introduced into the curriculum of Faculty of Engineering. In the curriculum students try to prepare teaching materials and to teach local school pupils with them by themselves. Teaching experience is remarkably effective for them to strengthen their self-dependence and learning motivation. Science Education Center, Science Laboratory and Super Teachers College were also organized to promote the area cooperation on the education of science and mathematics.

  8. Material Science in Cervical Total Disc Replacement

    PubMed Central

    Pham, Martin H.; Mehta, Vivek A.; Tuchman, Alexander; Hsieh, Patrick C.

    2015-01-01

    Current cervical total disc replacement (TDR) designs incorporate a variety of different biomaterials including polyethylene, stainless steel, titanium (Ti), and cobalt-chrome (CoCr). These materials are most important in their utilization as bearing surfaces which allow for articular motion at the disc space. Long-term biological effects of implanted materials include wear debris, host inflammatory immune reactions, and osteolysis resulting in implant failure. We review here the most common materials used in cervical TDR prosthetic devices, examine their bearing surfaces, describe the construction of the seven current cervical TDR devices that are approved for use in the United States, and discuss known adverse biological effects associated with long-term implantation of these materials. It is important to appreciate and understand the variety of biomaterials available in the design and construction of these prosthetics and the considerations which guide their implementation. PMID:26523281

  9. Materials science: Nanomagnets boost thermoelectric output

    NASA Astrophysics Data System (ADS)

    Boona, Stephen R.

    2017-09-01

    The direct conversion of heat into electricity -- a reversible process known as the thermoelectric effect -- can be greatly enhanced in some materials by embedding them with a small number of magnetic nanoparticles. See Letter p.247

  10. Materials science: Organic analogues of graphene

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Maryam; Rosei, Federico

    2017-02-01

    Chemists have long aspired to synthesize two-dimensional polymers that are fully conjugated -- an attribute that imparts potentially useful properties. Just such a material has been prepared using a solid-state polymerization reaction.

  11. Material Science in Cervical Total Disc Replacement.

    PubMed

    Pham, Martin H; Mehta, Vivek A; Tuchman, Alexander; Hsieh, Patrick C

    2015-01-01

    Current cervical total disc replacement (TDR) designs incorporate a variety of different biomaterials including polyethylene, stainless steel, titanium (Ti), and cobalt-chrome (CoCr). These materials are most important in their utilization as bearing surfaces which allow for articular motion at the disc space. Long-term biological effects of implanted materials include wear debris, host inflammatory immune reactions, and osteolysis resulting in implant failure. We review here the most common materials used in cervical TDR prosthetic devices, examine their bearing surfaces, describe the construction of the seven current cervical TDR devices that are approved for use in the United States, and discuss known adverse biological effects associated with long-term implantation of these materials. It is important to appreciate and understand the variety of biomaterials available in the design and construction of these prosthetics and the considerations which guide their implementation.

  12. Critical materialism: science, technology, and environmental sustainability.

    PubMed

    York, Richard; Clark, Brett

    2010-01-01

    There are widely divergent views on how science and technology are connected to environmental problems. A view commonly held among natural scientists and policy makers is that environmental problems are primarily technical problems that can be solved via the development and implementation of technological innovations. This technologically optimistic view tends to ignore power relationships in society and the political-economic order that drives environmental degradation. An opposed view, common among postmodernist and poststructuralist scholars, is that the emergence of the scientific worldview is one of the fundamental causes of human oppression. This postmodernist view rejects scientific epistemology and often is associated with an anti-realist stance, which ultimately serves to deny the reality of environmental problems, thus (unintentionally) abetting right-wing efforts to scuttle environmental protection. We argue that both the technologically optimistic and the postmodernist views are misguided, and both undermine our ability to address environmental crises. We advocate the adoption of a critical materialist stance, which recognizes the importance of natural science for helping us to understand the world while also recognizing the social embeddedness of the scientific establishment and the need to challenge the manipulation of science by the elite.

  13. Peptide nucleic acids in materials science

    PubMed Central

    Bonifazi, Davide; Carloni, Laure-Elie; Corvaglia, Valentina; Delforge, Arnaud

    2012-01-01

    This review highlights the recent methods to prepare PNA-based materials through a combination of self-assembly and self-organization processes. The use of these methods allows easy and versatile preparation of structured hybrid materials showing specific recognition properties and unique physicochemical properties at the nano- and micro-scale levels displaying potential applications in several directions, ranging from sensors and microarrays to nanostructured devices for biochips. PMID:22925824

  14. Accelerating Translational Research through Open Science: The Neuro Experiment

    PubMed Central

    Gold, E. Richard

    2016-01-01

    Translational research is often afflicted by a fundamental problem: a limited understanding of disease mechanisms prevents effective targeting of new treatments. Seeking to accelerate research advances and reimagine its role in the community, the Montreal Neurological Institute (Neuro) announced in the spring of 2016 that it is launching a five-year experiment during which it will adopt Open Science—open data, open materials, and no patenting—across the institution. The experiment seeks to examine two hypotheses. The first is whether the Neuro’s Open Science initiative will attract new private partners. The second hypothesis is that the Neuro’s institution-based approach will draw companies to the Montreal region, where the Neuro is based, leading to the creation of a local knowledge hub. This article explores why these hypotheses are likely to be true and describes the Neuro’s approach to exploring them. PMID:27932848

  15. Lived experiences of self-reported science-anxious students taking an interdisciplinary undergraduate science course

    NASA Astrophysics Data System (ADS)

    Minger, Mark Austin

    Having fears and frustrations while studying science topics can lead to science anxiety for some individuals. For those who experience science learning anxiety, the reality is often poor performance, lowered self-esteem, anger, and avoidance of further science courses. Using an interpretive approach, this study captures the experiences of five self-reported science anxious students as they participate in an interdisciplinary science course at the University of Minnesota. A series of three in-depth interviews were conducted with five students who were enrolled in the "Our Changing Planet" course offered at the University of Minnesota. The interviews were transcribed verbatim, coded, and analyzed thematically. Four major themes emerged from the interviews. Two of the themes involve the realities of being a science anxious student. These focus on participants' experiences of feeling frustrated, anxious and incompetent when studying both math and science; and the experiences of trying to learn science content that does not seem relevant to them. The last two themes highlight the participants' perceptions of their experiences during the "Our Changing Planet" course, including how the course seemed different from previous science courses as well as their learning experiences in cooperative groups. After presenting the themes, with supporting quotations, each theme is linked to the related literature. The essence of the participants' science anxiety experiences is presented and practical implications regarding science anxious students are discussed. Finally, insights gained and suggestions for further research are provided.

  16. Experiences managing radioactive material at the National Ignition Facility.

    PubMed

    Thacker, Rick L

    2013-06-01

    The National Ignition Facility at Lawrence Livermore National Laboratory is the world's largest and most energetic laser system for inertial confinement fusion and experiments studying high energy density science. Many experiments performed at the National Ignition Facility involve radioactive materials; these may take the form of tritium and small quantities of depleted uranium used in targets, activation products created by neutron-producing fusion experiments, and fission products produced by the fast fissioning of the depleted uranium. While planning for the introduction of radioactive material, it was recognized that some of the standard institutional processes would need to be customized to accommodate aspects of NIF operations, such as surface contamination limits, radiological postings, airborne tritium monitoring protocols, and personnel protective equipment. These customizations were overlaid onto existing work practices to accommodate the new hazard of radioactive materials. This paper will discuss preparations that were made prior to the introduction of radioactive material, the types of radiological work activities performed, and the hazards and controls encountered. Updates to processes based on actual monitoring results are also discussed.

  17. Advanced Colloids Experiment (ACE) Science Overview

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Sicker, Ronald J.; Chiaramonte, Francis P.; Luna, Unique J.; Chaiken, Paul M.; Hollingsworth, Andrew; Secanna, Stefano; Weitz, David; Lu, Peter; Yodh, Arjun; Yunker, Peter; Lohr, Matthew; Gratale, Matthew; Lynch, Matthew; Kodger, Thomas; Piazza, Roberto; Buzzaccaro, Stefano; Cipelletti, Luca; Schall, Peter; Veen, Sandra; Wegdam, Gerhard; Lee, Chand-Soo; Choi, Chang-Hyung; Paul, Anna-Lisa; Ferl, Robert J.; Cohen, Jacob

    2013-01-01

    accessible with the availability of the Light Microscopy Module (LMM) on ISS. To meet these goals, the ACE experiment is being built-up in stages, with the availability of confocal microscopy being the ultimate objective. Supported by NASAs Physical Sciences Research Program, ESAESTEC, and the authors respective governments.

  18. Using Federally Funded Curricular Materials to meet Next Geneartion Science Standards in Earth System Science

    NASA Astrophysics Data System (ADS)

    McAuliffe, C.

    2015-12-01

    The Next Generation Science Standards (NGSS) describe teaching and learning goals for Earth system science at all levels of K-12, including elementary, middle school, and high school. Teachers must consider science and engineering practices, cross-cutting concepts, and disciplinary core ideas. The National Science Foundation and other federal organizations have supported the development of reformed curricular materials at the K-12 level for many years. Although developed before the adoption of NGSS, many of these Earth system science resources are, in fact, NGSS congruent. Such resources include those developed by TERC, SERC, EDC, NASA, NOAA, USGS, and others. This session features NGSS congruent materials, carefully examining and dissecting the performance expectations that embody these materials. It also shares a process of tagging these materials via NSTA's, NGSS portal guidelines.

  19. MateriApps — a Portal Site of Materials Science Simulation

    NASA Astrophysics Data System (ADS)

    Konishi, Yusuke; Igarashi, Ryo; Kasamatsu, Shusuke; Kato, Takeo; Kawashima, Naoki; Kawatsu, Tsutomu; Kouta, Hikaru; Noda, Masashi; Sasaki, Shoichi; Terada, Yayoi; Todo, Synge; Tsuchida, Shigehiro; Yoshimi, Kazuyoshi; Yoshizawa, Kanako

    "MateriApps" is a portal website of computational materials science simulation that has a database containing over 100 application software including density functional theory calculation, quantum chemistry, molecular dynamics, etc. On the MateriApps website, researchers can find applications suitable for their own research in materials science by browsing the website or searching by keywords. We also provide forums and tutorial courses of applications. In order to avoid troublesome installation procedures and provide users an environment in which they can try out various applications easily, we develop and freely distribute "MateriApps LIVE!," a live Linux system, in which several applications introduced in MateriApps are pre-installed.

  20. Design Features and Capabilities of the First Materials Science Research Rack

    NASA Technical Reports Server (NTRS)

    Pettigrew, P. J.; Lehoczky, S. L.; Cobb, S. D.; Holloway, T.; Kitchens, L.

    2003-01-01

    The First Materials Science Research Rack (MSRR-1) aboard the International Space Station (ISS) will offer many unique capabilities and design features to facilitate a wide range of materials science investigations. The initial configuration of MSRR-1 will accommodate two independent Experiment Modules (EMS) and provide the capability for simultaneous on-orbit processing. The facility will provide the common subsystems and interfaces required for the operation of experiment hardware and accommodate telescience capabilities. MSRR1 will utilize an International Standard Payload Rack (ISPR) equipped with an Active Rack Isolation System (ARIS) for vibration isolation of the facility.

  1. Design Features and Capabilities of the First Materials Science Research Rack

    NASA Technical Reports Server (NTRS)

    Pettigrew, P. J.; Lehoczky, S. L.; Cobb, S. D.; Holloway, T.; Kitchens, L.

    2003-01-01

    The First Materials Science Research Rack (MSRR-1) aboard the International Space Station (ISS) will offer many unique capabilities and design features to facilitate a wide range of materials science investigations. The initial configuration of MSRR-1 will accommodate two independent Experiment Modules (EMS) and provide the capability for simultaneous on-orbit processing. The facility will provide the common subsystems and interfaces required for the operation of experiment hardware and accommodate telescience capabilities. MSRR1 will utilize an International Standard Payload Rack (ISPR) equipped with an Active Rack Isolation System (ARIS) for vibration isolation of the facility.

  2. Aqueous processing in materials science and engineering

    NASA Astrophysics Data System (ADS)

    Mooiman, Michael B.; Sole, Kathryn C.

    1994-06-01

    Reviews of aqueous processing in JOM have traditionally focused on hydrometallurgical process routes. This article, however, addresses the application of aqueous processing in materials engineering and presents some promising developments that employ aqueous-based routes for the manufacture of high-tech components and specialty products. Such applications include producing metallic and ceramic powders; etching; surface modification by electroplating and electroless plating; manufacturing jewelry and intricate components by electroforming; and producing advanced ceramics, composites, and nanophase materials by sol-gel and biomimetic processing.

  3. Thermal Control Surfaces Experiment (TCSE) materials analysis

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Miller, Edgar R.; Zwiener, James M.; Mell, Richard J.

    1992-01-01

    Materials on the Thermal Control Surfaces Experiment (TCSE) underwent changes in their properties during the 5.8 years of exposure to the combined space environment. The analysis of these materials is continuing and current results are discussed. Some materials were significantly degraded such as silver Teflon, S13GLO, and Z302; while others such as Z93 and YB71 were stable. Time dependent flight data is provided, along with preflight and postflight measurements. Results are compared with other experiments, demonstrating the atomic oxygen (AO) ram effect. Atomic oxygen texturing of silver Teflon varies with incident angle. Even indirect exposure to atomic oxygen appears to be involved with surface texturing on the interior of the TCSE. Localized contamination occurred at discrete locations both inside and on exterior surfaces. Most of the visible deposits were the result of the classical photo-enhanced contamination deposition. The synergism of combined space environmental effects is demonstrated by the specific localization of contamination caused by photo-enhanced deposition versus AO removal. Optical degradation measurements of these contaminated areas, utilizing a new portable reflectometer, are presented.

  4. Making Connections: Science Experiments for Algebra Using TI Technology

    ERIC Educational Resources Information Center

    Lyublinskaya, Irina

    2006-01-01

    Using science experiments in life science, chemistry, and physics, helps ground students' understanding of abstract algebra concepts in real-world applications. Hands-on activities connect mathematics with science in a way that is accessible to teachers and students alike. Each activity explores a scientific phenomenon, connecting it to algebra…

  5. Making Connections: Science Experiments for Algebra Using TI Technology

    ERIC Educational Resources Information Center

    Lyublinskaya, Irina

    2006-01-01

    Using science experiments in life science, chemistry, and physics, helps ground students' understanding of abstract algebra concepts in real-world applications. Hands-on activities connect mathematics with science in a way that is accessible to teachers and students alike. Each activity explores a scientific phenomenon, connecting it to algebra…

  6. Science Student Teachers and Educational Technology: Experience, Intentions, and Value

    ERIC Educational Resources Information Center

    Efe, Rifat

    2011-01-01

    The primary purpose of this study is to examine science student teachers' experience with educational technology, their intentions for their own use, their intentions for their students' use, and their beliefs in the value of educational technology in science instruction. Four hundred-forty-eight science student teachers of different disciplines…

  7. NASA Experience with UAS Science Applications

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.; Jennison, Chris

    2007-01-01

    Viewgraphs of NASA's Unmanned Aerial Systems (UAS) as it applies to Earth science missions is presented. The topics include: 1) Agenda; 2) Background; 3) NASA Science Aircraft Endurance; 4) Science UAS Development Challenges; 5) USCG Alaskan Maritime Surveillance; 6) NOAA/NASA UAV Demonstration Project; 7) Western States Fire Mission; 8) Esperanza Fire Emergency Response; 9) Ikhana (Predator B); 10) UAV Synthetic Aperture Radar (UAVSAR); 11) Global Hawk; and 12) Related Technologies

  8. Materials science: Crystals aligned through graphene

    NASA Astrophysics Data System (ADS)

    Lee, Minjoo Larry

    2017-04-01

    Graphene has been used as a 'transparent' layer that allows single crystals of a material to be grown on a substrate, and then lifted off -- in much the same way that baking paper lets cakes be removed easily from tins. See Letter p.340

  9. Analytical transmission electron microscopy in materials science

    SciTech Connect

    Fraser, H.L.

    1980-01-01

    Microcharacterization of materials on a scale of less than 10 nm has been afforded by recent advances in analytical transmission electron microscopy. The factors limiting accurate analysis at the limit of spatial resolution for the case of a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy are examined in this paper.

  10. Reel wheels : an application of material science

    Treesearch

    Robert L. Geimer

    1979-01-01

    Circular plates of reconstituted wood were fabricated and destructively tested to appraise the potential of such material for cable reel flanges. The reconstituted wood consisted of flakeboard from quality-cut flakes and also from factory residue. The high quality flakeboard used 0.020- by 1/2-by 2-inch southern pine flakes cut on a disk flaker, whereas the flakeboard...

  11. Analysis of materials from MSFC LDEF experiments

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry

    1991-01-01

    In preparation for the arrival of the Long Duration Exposure Facility (LDEF) samples, a material testing and handling approach was developed for the evaluation of the materials. A configured lab was made ready for the de-integration of the LDEF experiments. The lab was prepared to clean room specifications and arranged with the appropriate clean benches, tables, lab benches, clean room tools, particulate counter, and calibrated and characterized analytical instrumentation. Clean room procedures were followed. Clean room attire and shoe cleaning equipment were selected and installed for those entering. Upon arrival of the shipping crates they were taken to the lab, logged in, and opened for examination. The sample trays were then opened for inspection and test measurements. The control sample measurements were made prior to placement into handling and transport containers for the flight sample measurements and analysis. Both LDEF flight samples and LDEF type materials were analyzed and tested for future flight candidate material evaluation. Both existing and newly purchased equipment was used for the testing and evaluation. Existing Space Simulation Systems had to be upgraded to incorporate revised test objectives and approaches. Fixtures such as special configured sample holders, water, power and LN2 feed-throughs, temperature measurement and control, front surface mirrors for reflectance and deposition, and UV grade windows had to be designed, fabricated, and installed into systems to achieve the revised requirements. New equipment purchased for LDEF analysis was incorporated into and/or used with existing components and systems. A partial list of this equipment includes a portable monochromator, enhanced UV System, portable helium leak detector for porosity and leak measurements, new turbo pumping system, vacuum coaster assembly, cryopumps, and analytical and data acquisition equipment. A list of materials tested, equipment designed, fabricated and installed

  12. NASA Now: Materials Science: International Space Station Testing

    NASA Image and Video Library

    The Materials International Space Station Experiment, or MISSE, provides NASA with a means to study the effects of long-term exposure to space on various materials, computer components and electron...

  13. Insert Concepts for the Material Science Research Rack (MSRR-1) of the Material Science Research Facility (MSRF) on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Crouch, Myscha; Carswell, Bill; Farmer, Jeff; Rose, Fred; Tidwell, Paul

    2000-01-01

    The Material Science Research Rack I (MSRR-1) of the Material Science Research Facility (MSRF) contains an Experiment Module (EM) being developed collaboratively by NASA and the European Space Agency (ESA). This NASA/ESA EM will accommodate several different removable and replaceable Module Inserts (MIs) which are installed on orbit NASA's planned inserts include the Quench Module Insert (QMI) and the Diffusion Module Insert (DMI). The QMI is a high-gradient Bridgman-type vacuum furnace with quench capabilities used for experiments on directional solidification of metal alloys. The DMI is a vacuum Bridgman-Stockbarger-type furnace for experiments on Fickian and Soret diffusion in liquids. This paper discusses specific design features and performance capabilities of each insert. The paper also presents current prototype QMI hardware analysis and testing activities and selected results.

  14. Insert Concepts for the Material Science Research Rack (MSRR-1) of the Material Science Research Facility (MSRF) on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Crouch, Myscha; Carswell, Bill; Farmer, Jeff; Rose, Fred; Tidwell, Paul

    2000-01-01

    The Material Science Research Rack I (MSRR-1) of the Material Science Research Facility (MSRF) contains an Experiment Module (EM) being developed collaboratively by NASA and the European Space Agency (ESA). This NASA/ESA EM will accommodate several different removable and replaceable Module Inserts (MIs) which are installed on orbit NASA's planned inserts include the Quench Module Insert (QMI) and the Diffusion Module Insert (DMI). The QMI is a high-gradient Bridgman-type vacuum furnace with quench capabilities used for experiments on directional solidification of metal alloys. The DMI is a vacuum Bridgman-Stockbarger-type furnace for experiments on Fickian and Soret diffusion in liquids. This paper discusses specific design features and performance capabilities of each insert. The paper also presents current prototype QMI hardware analysis and testing activities and selected results.

  15. Preservice Elementary Teachers' Critique of Instructional Materials for Science

    ERIC Educational Resources Information Center

    Davis, Elizabeth A.

    2006-01-01

    Science teachers must adapt curriculum materials, so preservice teachers must develop beginning proficiency with this authentic task of teaching. What criteria do they use when they critique these materials in preparation for adapting them, when they develop the criteria themselves and when they are given a set of criteria from which to choose?…

  16. [Science of Acupuncture Prescription: an innovation teaching material].

    PubMed

    Chen, Ze-lin

    2007-03-01

    The author introduces the background of writing the innovation teaching material Science of Acupuncture Prescription in TCM university and colleges. The characteristics of this book were: (1) It establishes the train of thought on acupuncture prescriptions mainly based on the location of the acupoints. (2) It ascertains the relationship between prescriptions and science of prescription. (3) It highlights the scientific property of Science of Acupuncture Prescription by organic combination of inheritance and creativity. The publication of Science of Acupuncture Prescription serves as a bridge between Science of Meridians and Collaterals and Acupoints and Science of Acupuncture Therapy, perfects the course system of acupuncture and moxibustion and complements knowledge structure of acupuncture and tuinaology, and it also symbolizes the development of acupuncture and moxibustion.

  17. Application of nuclear-physics methods in space materials science

    NASA Astrophysics Data System (ADS)

    Novikov, L. S.; Voronina, E. N.; Galanina, L. I.; Chirskaya, N. P.

    2017-07-01

    The brief history of the development of investigations at the Skobeltsyn Institute of Nuclear Physics, Moscow State University (SINP MSU) in the field of space materials science is outlined. A generalized scheme of a numerical simulation of the radiation impact on spacecraft materials and elements of spacecraft equipment is examined. The results obtained by solving some of the most important problems that modern space materials science should address in studying nuclear processes, the interaction of charged particles with matter, particle detection, the protection from ionizing radiation, and the impact of particles on nanostructures and nanomaterials are presented.

  18. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    SciTech Connect

    Samara, G.A.

    1997-05-01

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfaces for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.

  19. Authoring Newspaper Science Articles: A Rewarding Experience

    ERIC Educational Resources Information Center

    Gonzalez-Espada, Wilson J.

    2009-01-01

    In this article, the author summarizes the rationale for using science articles in K-16 education and addresses some of its limitations. The author also encourages scientists and college science faculty to contribute contextually relevant articles that might include selected literary techniques to their local or state newspapers.

  20. Authoring Newspaper Science Articles: A Rewarding Experience

    ERIC Educational Resources Information Center

    Gonzalez-Espada, Wilson J.

    2009-01-01

    In this article, the author summarizes the rationale for using science articles in K-16 education and addresses some of its limitations. The author also encourages scientists and college science faculty to contribute contextually relevant articles that might include selected literary techniques to their local or state newspapers.

  1. Element Material Exposure Experiment by EFFU

    NASA Technical Reports Server (NTRS)

    Hashimoto, Yoshihiro; Ito, Masaaki; Ishii, Masahiro

    1992-01-01

    The National Space Development Agency of Japan (NASDA) is planning to perform an 'Element Material Exposure Experiment' using the Exposed Facility Flyer Unit (EFFU). This paper presents an initial design of experiments proposed for this project by our company. The EFFU is installed on the Space Flyer Unit (SFU) as a partial model of the Space Station JEM exposed facility. The SFU is scheduled to be launched by H-2 rocket in January or February of 1994, then various tests will be performed for three months, on orbit of 500 km altitude, and it will be retrieved by the U.S. Space Shuttle and returned to the ground. The mission sequence is shown.

  2. Life sciences flight experiments program - Overview

    NASA Technical Reports Server (NTRS)

    Berry, W. E.; Dant, C. C.

    1981-01-01

    The considered LSFE program focuses on Spacelab life sciences missions planned for the 1984-1985 time frame. Life Sciences Spacelab payloads, launched at approximately 18-months intervals, will enable scientists to test hypotheses from such disciplines as vestibular physiology, developmental biology, biochemistry, cell biology, plant physiology, and a variety of other life sciences. An overview is presented of the LSFE program that will take advantage of the unique opportunities for biological experimentation possible on Spacelab. Program structure, schedules, and status are considered along with questions of program selection, and the science investigator working groups. A description is presented of the life sciences laboratory equipment program, taking into account the general purpose work station, the research animal holding facility, and the plant growth unit.

  3. Life sciences flight experiments program - Overview

    NASA Technical Reports Server (NTRS)

    Berry, W. E.; Dant, C. C.

    1981-01-01

    The considered LSFE program focuses on Spacelab life sciences missions planned for the 1984-1985 time frame. Life Sciences Spacelab payloads, launched at approximately 18-months intervals, will enable scientists to test hypotheses from such disciplines as vestibular physiology, developmental biology, biochemistry, cell biology, plant physiology, and a variety of other life sciences. An overview is presented of the LSFE program that will take advantage of the unique opportunities for biological experimentation possible on Spacelab. Program structure, schedules, and status are considered along with questions of program selection, and the science investigator working groups. A description is presented of the life sciences laboratory equipment program, taking into account the general purpose work station, the research animal holding facility, and the plant growth unit.

  4. DOE fundamentals handbook: Material science. Volume 1

    SciTech Connect

    Not Available

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the two modules: structure of metals (bonding, common lattic types, grain structure/boundary, polymorphis, alloys, imperfections in metals) and properties of metals (stress, strain, Young modulus, stress-strain relation, physical properties, working of metals, corrosion, hydrogen embrittlement, tritium/material compatibility).

  5. USSR Report: Materials Science and Metallurgy

    DTIC Science & Technology

    1985-10-29

    dispersion-hardening nickel alloys tend to crack during heat treatment. Most research has attributed this to residual welding stress , volume stress and...Defectoscopy and Structure Measurement of Amorphous Alloys (V.S. Boydenko, A.P. Potapov, et al.; DEFEKTOSKOPIYA, No 6, Jun 85) 12 Process of Crack ...T.A. Chernyshova, M.P. Arsentyeva, et al.; FIZIKA I KHIMIYA OBRABOTKI MATERIALOV, No 3, May-Jun 85) 23 - d - COMPOSITE MATERIALS The Stress

  6. Application of EELS in Materials Science

    SciTech Connect

    Keast, V.J.

    2012-11-15

    Electron energy-loss spectroscopy (EELS) in the transmission electron microscope (TEM) has become widely used for the analysis of the composition and electronic structure of materials at the nanoscale. This tutorial review provides an overview of the theory and applications of the technique and a few examples are provided to illustrate the type of information available. Some of the recent developments and future prospects of EELS are discussed.

  7. Laser Window Materials and Optical Coating Science

    DTIC Science & Technology

    1977-08-01

    10 Torr pressure , is presently the favored alternative RAP agent. Comparison studies of optical coatings prepared under conventional high...In principle , the uncoated surface heat also contributes to the first and second slopes but in practice, as discussed in the results in Sec. Ill...jim), CO (5.3 jim), and CO2 (9.27 and 10.6 fi.m). The window materials that are under investigation include selected alkali halides and

  8. The Roles of Aesthetic Experience in Elementary School Science

    ERIC Educational Resources Information Center

    Jakobson, Britt; Wickman, Per-Olof

    2008-01-01

    The role of aesthetic experiences for learning was examined in elementary school science. Numerous authors have argued for a science education also involving aesthetic experiences, but few have examined what this means empirically. Recordings of children's talk with each other and with the teacher during hands-on activities in nine different…

  9. Asian consortium on computational materials science theme meeting on ;first principles analysis & experiment: Role in energy research; 22-24 september 2016, SRM University, Kattankulathur, Chennai, India (ACCMS-TM 2016)

    NASA Astrophysics Data System (ADS)

    Thapa, Ranjit; Kawazoe, Yoshiyuki

    2017-10-01

    The main objective of this meeting was to provide a platform for theoreticians and experimentalists working in the area of materials to come together and carry out cutting edge research in the field of energy by showcasing their ideas and innovations. The theme meeting was successful in attracting young researchers from both fields, sharing common research interests. Participation of more than 250 researchers in ACCMS-TM 2016 has successfully paved the way towards exchange of mutual research insights and establishment of promising research collaborations. To encourage the young participants' research efforts, three best posters, each named as ;KAWAZOE PRIZE; in theoretical category and two best posters named ;ACCMS-TM 2016 POSTER AWARD; for experimental contributions was selected. A new award named ;ACCMS MID-CAREER AWARD; for outstanding scientific contribution in the area of Computational Materials Science was constituted.

  10. Preservice Teachers' Memories of Their Secondary Science Education Experiences

    NASA Astrophysics Data System (ADS)

    Hudson, Peter; Usak, Muhammet; Fančovičová, Jana; Erdoğan, Mehmet; Prokop, Pavol

    2010-12-01

    Understanding preservice teachers' memories of their education may aid towards articulating high-impact teaching practices. This study describes 246 preservice teachers' perceptions of their secondary science education experiences through a questionnaire and 28-item survey. ANOVA was statistically significant about participants' memories of science with 15 of the 28 survey items. Descriptive statistics through SPSS further showed that a teacher's enthusiastic nature (87%) and positive attitude towards science (87%) were regarded as highly memorable. In addition, explaining abstract concepts well (79%), and guiding the students' conceptual development with practical science activities (73%) may be considered as memorable secondary science teaching strategies. Implementing science lessons with one or more of these memorable science teaching practices may "make a difference" towards influencing high school students' positive long-term memories about science and their science education. Further research in other key learning areas may provide a clearer picture of high-impact teaching and a way to enhance pedagogical practices.

  11. Colloid and materials science for the conservation of cultural heritage: cleaning, consolidation, and deacidification.

    PubMed

    Baglioni, Piero; Chelazzi, David; Giorgi, Rodorico; Poggi, Giovanna

    2013-04-30

    Serendipity and experiment have been a frequent approach for the development of materials and methodologies used for a long time for either cleaning or consolidation of works of art. Recently, new perspectives have been opened by the application of materials science, colloid science, and interface science frameworks to conservation, generating a breakthrough in the development of innovative tools for the conservation and preservation of cultural heritage. This Article is an overview of the most recent contributions of colloid and materials science to the art conservation field, mainly focusing on the use of amphiphile-based fluids, gels, and alkaline earth metal hydroxide nanoparticles dispersions for the cleaning of pictorial surfaces, the consolidation of artistic substrates, and the deacidification of paper, canvas, and wood. Future possible directions for solving several conservation issues that still need to be faced are also highlighted.

  12. The Science Fair Experience: Profile of Science Fair Winners.

    ERIC Educational Resources Information Center

    Bellipanni, Lawrence J.

    The purpose of this investigation was to determine if a significant relationship existed between the criterion variable of receiving or not receiving awards at the 1993 International Science and Engineering Fair (ISEF) and the predictor variables of resources and facilities, resource personnel, personal costs, time, and personal characteristics.…

  13. Chemistry and Materials Science 2004 Annual Report, Preview Edition

    SciTech Connect

    Shang, S; Diaz de la Rubia, T; Rennie, G

    2005-05-16

    Thriving from change is a constant element at LLNL. Through our commitment to scientific accomplishments, we have met the challenges posed by our evolving missions in 2004. It is the scientific breakthroughs that substantiate our strategic directions. Investments based on our strategic directions are bearing fruit, as illustrated in this preview of the 2004 Annual Report. We describe how our science is built around a strategic plan with four organizing themes: {sm_bullet} Materials properties and performance under extreme conditions {sm_bullet} Chemistry under extreme conditions and chemical engineering in support of national-security programs {sm_bullet} Science supporting national objectives at the intersection of chemistry, materials science, and biology {sm_bullet} Applied nuclear science for human health and national security We are particularly pleased with achievements within the 'intersection of chemistry, materials science, and biology,' an emerging area of science that may reshape the landscape of our national-security mission. CMS continues to have an unambiguous role both as a technology leader and as a partner for all of the four theme areas. We look forward to expanding the frontiers of science and continuing our partnership with the worldwide scientific community, as we firmly respond to the changing environment with agility and flexibility.

  14. Energy storage improvement through material science approaches

    NASA Astrophysics Data System (ADS)

    Kelly, Brandon Joseph

    A need for improved energy storage is apparent for the improvement of our society. Lithium ion batteries are one of the leading energy storage technologies being researched today. These batteries typically utilize coupled reduction/oxidation reactions with intercalation reactions in crystalline metal oxides with lithium ions as charge carriers to produce efficient and high power energy storage options. The cathode material (positive electrode) has been an emphasis in the recent research as it is currently the weakest link of the battery. Several systems of cathode materials have been studied with different structures and chemical makeup, all having advantages and disadvantages. One focus of the research presented below was creating a low cost and high performance cathode material by creating a composite of the low cost spinel structured LiMn2O4 and the higher capacity layered structure materials. Two compositional diagrams were used to map out the composition space between end members which include two dimensional layer structured LiCoO 2, LiNiO2, LiNi0.8Co0.2O2 and three dimensional spinel structured LiMn2O4. Several compositions in each composition map were electrochemically tested and structurally characterized in an attempt to discover a high performance cathode material with a lower cost precursor. The best performing composition in each system shows the desired mixed phase of the layered and spinel crystal structures, yielding improved performance versus the individual end member components. The surrounding compositions were then tested in order to find the optimum composition and performance. The best performing composition was 0.2LiCoO 2•0.7LiNi0.8Co0.2O2•0.1LiMn 2O4 and yielded a specific capacity of 182mAh/g. Another promising area of chemical energy storage is in the storage of hydrogen gas in chemical hydrides. Hydrogen gas can be used as a fuel in a variety of applications as a viable method for storing and transporting energy. Currently, the

  15. Strategic Research Directions in Microgravity Materials Science

    NASA Technical Reports Server (NTRS)

    Clinton, Raymond G.; Semmes, Ed; Cook, Beth; Wargo, Michael J.; Marzwell, Neville

    2003-01-01

    The next challenge of space exploration is the development of the capabilities for long-term missions beyond low earth orbit. NASA s scientific advisory groups and internal mission studies have identified several fundamental issues which require substantial advancements in new technology if these goals are to be accomplished. Crews must be protected from the severe radiation environment beyond the earth s magnetic field. Chemical propulsion must be replaced by systems that require less mass and are more efficient. The overall launch complement must be reduced by developing repair and fabrication techniques which utilize or recycle available materials.

  16. Analytical Chemistry at the Interface Between Materials Science and Biology

    SciTech Connect

    O'Brien, Janese C.

    2000-09-21

    Likedlessentid sciences, anal~cd chetis~continues toreinvent itself. Moving beyond its traditional roles of identification and quantification, analytical chemistry is now expanding its frontiers into areas previously reserved to other disciplines. This work describes several research efforts that lie at the new interfaces between analytical chemistry and two of these disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detection of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry’s newest forays into these disciplines. The introduction section to this dissertation provides a literature review on several of the key aspects of this work. In advance of the materials science discussion, a brief introduction into electrochemically-modulated liquid chromatography (EMLC) and sol-gel chemistry is provided. In advance of the biological discussions, brief overviews of scanning force microscopy (SFM) and the oxidative chemistry used to construct our biological arrays are provided. This section is followed by four chapters, each of which is presented as a separate manuscript, and focuses on work that describes some of our cross-disciplinary efforts within materials science and biology. This dissertation concludes with a general summary and future prospectus.

  17. Models and Materials: Bridging Art and Science in the Secondary Curriculum

    NASA Astrophysics Data System (ADS)

    Pak, D.; Cavazos, L.

    2006-12-01

    Creating and sustaining student engagement in science is one challenge facing secondary teachers. The visual arts provide an alternative means of communicating scientific concepts to students who may not respond to traditional formats or identify themselves as interested in science. We have initiated a three-year teacher professional development program at U C Santa Barbara focused on bridging art and science in secondary curricula, to engage students underrepresented in science majors, including girls, English language learners and non-traditional learners. The three-year format provides the teams of teachers with the time and resources necessary to create innovative learning experiences for students that will enhance their understanding of both art and science content. Models and Materials brings together ten secondary art and science teachers from six Santa Barbara County schools. Of the five participating science teachers, three teach Earth Science and two teach Life Science. Art and science teachers from each school are teamed and challenged with the task of creating integrated curriculum projects that bring visual art concepts to the science classroom and science concepts to the art classroom. Models and Materials were selected as unifying themes; understanding the concept of models, their development and limitations, is a prominent goal in the California State Science and Art Standards. Similarly, the relationship between composition, structure and properties of materials is important to both art and science learning. The program began with a 2-week institute designed to highlight the natural links between art and science through presentations and activities by both artists and scientists, to inspire teachers to develop new ways to present models in their classrooms, and for the teacher teams to brainstorm ideas for curriculum projects. During the current school year, teachers will begin to integrate science and art and the themes of modeling and materials

  18. Stratospheric experiments on curing of composite materials

    NASA Astrophysics Data System (ADS)

    Chudinov, Viacheslav; Kondyurin, Alexey; Svistkov, Alexander L.; Efremov, Denis; Demin, Anton; Terpugov, Viktor; Rusakov, Sergey

    2016-07-01

    Future space exploration requires a large light-weight structure for habitats, greenhouses, space bases, space factories and other constructions. A new approach enabling large-size constructions in space relies on the use of the technology of polymerization of fiber-filled composites with a curable polymer matrix applied in the free space environment on Erath orbit. In orbit, the material is exposed to high vacuum, dramatic temperature changes, plasma of free space due to cosmic rays, sun irradiation and atomic oxygen (in low Earth orbit), micrometeorite fluence, electric charging and microgravitation. The development of appropriate polymer matrix composites requires an understanding of the chemical processes of polymer matrix curing under the specific free space conditions to be encountered. The goal of the stratospheric flight experiment is an investigation of the effect of the stratospheric conditions on the uncured polymer matrix of the composite material. The unique combination of low residual pressure, high intensity UV radiation including short-wave UV component, cosmic rays and other aspects associated with solar irradiation strongly influences the chemical processes in polymeric materials. We have done the stratospheric flight experiments with uncured composites (prepreg). A balloon with payload equipped with heater, temperature/pressure/irradiation sensors, microprocessor, carrying the samples of uncured prepreg has been launched to stratosphere of 25-30 km altitude. After the flight, the samples have been tested with FTIR, gel-fraction, tensile test and DMA. The effect of cosmic radiation has been observed. The composite was successfully cured during the stratospheric flight. The study was supported by RFBR grants 12-08-00970 and 14-08-96011.

  19. The International Microgravity Laboratory, a Spacelab for materials and life sciences

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.

    1992-01-01

    The material science experiments performed on the International Microgravity Laboratory (IML-1), which is used to perform investigations which require the low gravity environment of space, are discussed. These experiments, the principal investigator, and associated organization are listed. Whether the experiment was a new development or was carried on an earlier space mission, such as the third Spacelab (SL-3) or the Shuttle Middeck, is also noted. The two major disciplines of materials science represented on IML-1 were the growth of crystals from the melt, solution, or vapor and the study of fluids (liquids and gases) in a reduced gravity environment. The various facilities on board IML-1 and their related experiments are described. The facilities include the Fluids Experiment System (FES) Vapor Crystal Growth System (VCGS) Organic Crystal Growth Facility (OCGF), Cryostat (CRY), and the Critical Point Facility (CPF).

  20. SQUID-amplified photon detection: from cosmology to material science

    NASA Astrophysics Data System (ADS)

    Irwin, Kent

    2014-03-01

    Superconducting photon detectors amplified by SQUIDs are playing an increasingly important role in science ranging from cosmology to materials characterization. The most widely used superconducting photon detector uses a superconducting transition-edge sensor (TES), which is a superconducting film biased in the narrow transition region between the normal and superconducting state. The film is voltage biased, and the current flowing through it is measured with a SQUID. An incident photon increases the resistance of the TES, which reduces the current through the SQUID. Large arrays of SQUID-coupled TES detectors are read out by cryogenic multiplexing of the SQUIDs with a time-division, frequency-division, or code-division multiplexing scheme. SQUID-coupled TES detectors are now widely deployed in ground- and balloon-borne observatories to measure the cosmic microwave background (CMB) radiation. By measuring the power and the polarization of the CMB, new constraints have been placed on cosmological parameters, as well as the absolute masses and number of neutrino species. Experiments are now being conducted to search for the signature of gravitational waves in the polarization of the cosmic microwave background, which would provide strong evidence of inflation at GUT energy scales. Remarkably, very similar sensor arrays to those developed for CMB measurements can also be used for spectroscopic measurements at synchrotron and free-electron laser x-ray light sources. SQUID-coupled TES sensors provide spectroscopic resolution previously only achieved with dispersive detectors based on gratings and crystal diffraction, but with the high efficiency of semiconductor x-ray detectors. I will describe experiments using SQUID-coupled TES arrays for x-ray emission and x-ray absorption spectroscopy of materials, and plans to develop much larger arrays for next-generation light sources.

  1. Science identity construction through extraordinary professional development experiences

    NASA Astrophysics Data System (ADS)

    McLain, Bradley David

    Despite great efforts and expenditures to promote science literacy and STEM career choices, the U.S. continues to lag behind other countries in science education, diminishing our capacity for STEM leadership and our ability to make informed decisions in the face of multiple looming global issues. I suggest that positive science identity construction (the integration of science into one's sense of self so that it becomes a source of inspiration and contributes to lifelong learning) is critical for promoting durable science literacy and pro-science choices. Therefore, the focus of this study was extraordinary professional development experiences for science educators that may significantly impact their sense of self. My hypothesis was that such experiences could positively impact educators' science and science educator identities, and potentially enhance their capacities to impact student science identities. The first part of this hypothesis is examined in this study. Further, I suggest that first-person narratives play an important role in science identity construction. Presenting a new conceptual model that connects experiential learning theory to identity theory through the narrative study of lives, I explored the impacts of subjectively regarded extraordinary professional development experiences on the science identity and science educator identity construction processes for a cohort of fifteen K-12 science teachers during a science-learning-journey to explore the volcanoes of Hawaii. I used a case study research approach under the broader umbrella of a hermeneutic phenomenology to consider four individual cases as lived experiences and to consider the journey as a phenomenon unto itself. Findings suggest science and science educator identities are impacted by such an experience but with marked variability in magnitude and nature. Evidence also suggests important impacts on their other identities. In most instances, science-related impacts were secondary to and

  2. Summaries of early materials processing in space experiments

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.; Mason, D.

    1979-01-01

    Objectives, methods, and results of low-gravity materials processing experiments are summarized, and a bibliography of published results for each experiment is provided. Included are drop tower experiments, the Apollo demonstration experiments, the skylab experiments and demonstration experiments, and the Apollo-Soyuz experiments and demonstrations. The findings of these experiments in the fields of crystal growth, metallurgy, and fluid behavior are summarized.

  3. THE EFFECTIVENESS OF FOUR VARIATIONS OF PROGRAMED SCIENCE MATERIALS.

    ERIC Educational Resources Information Center

    GORDON, JOHN M.

    INVESTIGATED WERE CHANGES IN THE PERFORMANCE OF SEVENTH GRADE STUDENTS AS A RESULT OF EXPOSURE TO A SYMBOLIC SCIENCE PROGRAM IN ELECTRICITY MODIFIED BY THE ADDITION OF SEVERAL TYPES OF CONCRETE EXPERIENCES. POSSIBLE RELATIONSHIPS BETWEEN THE DIFFERENT TYPES OF EXPERIENCES AND CHANGES IN HIGHER LEVELS OF COGNITIVE FUNCTIONING AND LINGUISTIC AND…

  4. Changes in Urban Youths' Attitude Towards Science and Perception of a Mobile Science Lab Experience

    NASA Astrophysics Data System (ADS)

    Fox, Jared

    This dissertation examined changes in urban youth's attitude towards science as well as their perception of the informal science education setting and third space opportunity provided by the BioBus, a mobile science lab. Science education researchers have often suggested that informal science education settings provide one possible way to positively influence student attitude towards science and engage marginalized urban youth within the traditional science classroom (Banks et al., 2007; Hofstein & Rosenfeld, 1996; National Research Council, 2009; Schwarz & Stolow, 2006; Stocklmayer, Rennie, & Gilbert, 2010). However, until now, this possibility has not been explored within the setting of a mobile science lab nor examined using a theoretical framework intent on analyzing how affective outcomes may occur. The merits of this analytical stance were evaluated via observation, attitudinal survey, open-response questionnaire, and interview data collected before and after a mobile science lab experience from a combination of 239 students in Grades 6, 8, 9, 11, and 12 from four different schools within a major Northeastern metropolitan area. Findings from this study suggested that urban youth's attitude towards science changed both positively and negatively in statistically significant ways after a BioBus visit and that the experience itself was highly enjoyable. Furthermore, implications for how to construct a third space within the urban science classroom and the merits of utilizing the theoretical framework developed to analyze cultural tensions between urban youth and school science are discussed. Key Words: Attitude towards science, third space, mobile science lab, urban science education.

  5. Pressure-shear experiments on granular materials.

    SciTech Connect

    Reinhart, William Dodd; Thornhill, Tom Finley, III; Vogler, Tracy John; Alexander, C. Scott

    2011-10-01

    Pressure-shear experiments were performed on granular tungsten carbide and sand using a newly-refurbished slotted barrel gun. The sample is a thin layer of the granular material sandwiched between driver and anvil plates that remain elastic. Because of the obliquity, impact generates both a longitudinal wave, which compresses the sample, and a shear wave that probes the strength of the sample. Laser velocity interferometry is employed to measure the velocity history of the free surface of the anvil. Since the driver and anvil remain elastic, analysis of the results is, in principal, straightforward. Experiments were performed at pressures up to nearly 2 GPa using titanium plates and at higher pressure using zirconium plates. Those done with the titanium plates produced values of shear stress of 0.1-0.2 GPa, with the value increasing with pressure. On the other hand, those experiments conducted with zirconia anvils display results that may be related to slipping at an interface and shear stresses mostly at 0.1 GPa or less. Recovered samples display much greater particle fracture than is observed in planar loading, suggesting that shearing is a very effective mechanism for comminution of the grains.

  6. Ultrafast Material Science Probed Using Coherent X-ray Pulses from High-Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Mathias, Stefan; Kapteyn, Henry C.; Murnane, Margaret M.

    X-rays represent one of the most powerful tools for understanding materials at the nanoscale, uncovering important information related to magnetism, photochemistry, materials, biology, nanoscience and many other areas of science and technology. The recent availability of ultrashort x-ray pulses paves the way for a completely new generation of experiments that can capture the coupled dynamics of elementary excitations in materials. Ultrashort x-ray pulses can access the fundamental interactions between charge, lattice, orbital, and spin dynamics in real time, which eventually determine the intrinsic physical limits at which, for example, a phase-transition in a correlated-electron material occurs, the magnetic state of a material can be switched, or a chemical reaction on a surface evolves. The goal of this chapter is to review recent breakthroughs in using ultrashort x-ray pulses from high-harmonic generation for the study of ultrafast material science.

  7. Learning physical descriptors for materials science by compressed sensing

    NASA Astrophysics Data System (ADS)

    Ghiringhelli, Luca M.; Vybiral, Jan; Ahmetcik, Emre; Ouyang, Runhai; Levchenko, Sergey V.; Draxl, Claudia; Scheffler, Matthias

    2017-02-01

    The availability of big data in materials science offers new routes for analyzing materials properties and functions and achieving scientific understanding. Finding structure in these data that is not directly visible by standard tools and exploitation of the scientific information requires new and dedicated methodology based on approaches from statistical learning, compressed sensing, and other recent methods from applied mathematics, computer science, statistics, signal processing, and information science. In this paper, we explain and demonstrate a compressed-sensing based methodology for feature selection, specifically for discovering physical descriptors, i.e., physical parameters that describe the material and its properties of interest, and associated equations that explicitly and quantitatively describe those relevant properties. As showcase application and proof of concept, we describe how to build a physical model for the quantitative prediction of the crystal structure of binary compound semiconductors.

  8. Investigating Omani Science Teachers' Attitudes towards Teaching Science: The Role of Gender and Teaching Experiences

    ERIC Educational Resources Information Center

    Ambusaidi, Abdullah; Al-Farei, Khalid

    2017-01-01

    A 30-item questionnaire was designed to determine Omani science teachers' attitudes toward teaching science and whether or not these attitudes differ according to gender and teaching experiences of teachers. The questionnaire items were divided into 3 domains: classroom preparation, managing hands-on science, and development appropriateness. The…

  9. Family Experiences, the Motivation for Science Learning and Science Achievement of Different Learner Groups

    ERIC Educational Resources Information Center

    Schulze, Salomé; Lemmer, Eleanor

    2017-01-01

    Science education is particularly important for both developed and developing countries to promote technological development, global economic competition and economic growth. This study explored the relationship between family experiences, the motivation for science learning, and the science achievement of a group of Grade Nine learners in South…

  10. Investigating Omani Science Teachers' Attitudes towards Teaching Science: The Role of Gender and Teaching Experiences

    ERIC Educational Resources Information Center

    Ambusaidi, Abdullah; Al-Farei, Khalid

    2017-01-01

    A 30-item questionnaire was designed to determine Omani science teachers' attitudes toward teaching science and whether or not these attitudes differ according to gender and teaching experiences of teachers. The questionnaire items were divided into 3 domains: classroom preparation, managing hands-on science, and development appropriateness. The…

  11. Materials Knowledge Systems in Python - A Data Science Framework for Accelerated Development of Hierarchical Materials.

    PubMed

    Brough, David B; Wheeler, Daniel; Kalidindi, Surya R

    2017-03-01

    There is a critical need for customized analytics that take into account the stochastic nature of the internal structure of materials at multiple length scales in order to extract relevant and transferable knowledge. Data driven Process-Structure-Property (PSP) linkages provide systemic, modular and hierarchical framework for community driven curation of materials knowledge, and its transference to design and manufacturing experts. The Materials Knowledge Systems in Python project (PyMKS) is the first open source materials data science framework that can be used to create high value PSP linkages for hierarchical materials that can be leveraged by experts in materials science and engineering, manufacturing, machine learning and data science communities. This paper describes the main functions available from this repository, along with illustrations of how these can be accessed, utilized, and potentially further refined by the broader community of researchers.

  12. Mesoporous silicates: Materials science and biological applications

    NASA Astrophysics Data System (ADS)

    Roggers, Robert Anthony

    This thesis dissertation presents the collective research into the advancement of mesoporous silicate particles as biointerface devices, the development of new materials and the application of these particles as solid supports for heterogeneous catalysis. Mesoporous silica has been utilized in the aforementioned applications due to several reasons; the first being the ability to achieve high surface areas (500 - 1000 m2 g-1) with controlled pore sizes and particle morphology. Another reason for their popularity is their robustness in applications of heterogeneous catalysis and the ability to functionalize the surface with a wide variety of organic functional groups. In the field of biointerface devices, mesoporous silica nanoparticles represent a class of materials that exhibit high biocompatibility. In addition, the ability to functionalize the surfaces (outer surface and pore interiors) allows the particles to be targeted to specific cell types as well as the ability to release many different therapeutic molecules under specific stimuli. A unique particle coating consisting of a chemically cleavable lipid bilayer that allows for the encapsulation of a fluorescent molecule and increases the biocompatibility of the particle has been developed. The lipid bilayer coated mesoporous silica nanoparticle (LB-MSN) was characterized using X-ray diffraction, transmission electron microscopy and nitrogen `sorption isotherms. The finished LB-MSN was then incubated with mammalian cells in order to prove their biocompatibility. Confocal micrographs demonstrate the endocytosis of the particles into the cells. In addition the micrographs also show that the LB-MSNs are separate from the endosomal compartments, however due to the lipophilic nature of the dye used to label the endosome there is some debate regarding this conclusion. The lipid bilayer coating was then applied to a large pore MSN (l-MSN) which had been previously shown to cause lysis of red blood cells (RBCs) at low

  13. Salt disproportionation: A material science perspective.

    PubMed

    Thakral, Naveen K; Kelly, Ron C

    2017-03-30

    While screening the counter-ions for salt selection for an active pharmaceutical substance, there is often an uncertainty about disproportionation of the salt and hence physical stability of the final product formulation to provide adequate shelf life. Several examples of disproportionation reactions are reviewed to explain the concepts of pHmax, microenvironmental pH, and buffering capacity of excipients and APIs to gain mechanistic understanding of disproportionation reaction. Miscellaneous factors responsible for disproportionation are examined. In addition to the dissolution failure due to the formation of less soluble unionized form, various implications of the disproportionation are evaluated with specific examples. During lead optimization and early stages of development, when only a limited amount of material is available, use of predictive tools like mathematical models and model free kinetics to rank order the various counter-ions are discussed in detail. Finally, analytical methods and mitigation strategies are discussed to prevent the disproportionation by detecting it during early stages of drug development. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Taking our own medicine: on an experiment in science communication.

    PubMed

    Horst, Maja

    2011-12-01

    In 2007 a social scientist and a designer created a spatial installation to communicate social science research about the regulation of emerging science and technology. The rationale behind the experiment was to improve scientific knowledge production by making the researcher sensitive to new forms of reactions and objections. Based on an account of the conceptual background to the installation and the way it was designed, the paper discusses the nature of the engagement enacted through the experiment. It is argued that experimentation is a crucial way of making social science about science communication and engagement more robust.

  15. Analytical chemistry at the interface between materials science and biology

    NASA Astrophysics Data System (ADS)

    O'Brien, Janese Christine

    This work describes several research efforts that lie at the new interfaces between analytical chemistry and other disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detection of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry's newest forays into these disciplines. This dissertation is divided into six chapters. Chapter 1 is an introductory chapter that provides background information pertinent to several key aspects of the work contained in this dissertation. Chapter 2 describes the synthesis and characterization of electrically conductive sol-gels derived from the acid-catalyzed hydrolysis of a vanadium alkoxide. Specifically, this chapter describes our attempts to increase the conductivity of vanadium sol-gels by optimizing the acidic and drying conditions used during synthesis. Chapter 3 reports the construction of novel antigenic immunosensing platforms of increased epitope density using Fab'-SH antibody fragments on gold. Here, X-ray photoelectron spectroscopy (XPS), thin-layer cell (TLC) and confocal fluorescence spectroscopies, and scanning force microscopy (SFM) are employed to characterize the fragment-substrate interaction, to quantify epitope density, and to demonstrate fragment viability and specificity. Chapter 4 presents a novel method for creating and interrogating double-stranded DNA (dsDNA) microarrays suitable for screening protein:dsDNA interactions. Using the restriction enzyme ECoR1, we demonstrate the ability of the atomic force microscope (AFM) to detect changes in topography that result from the enzymatic cleavage of dsDNA microarrays

  16. Graduate Experience in Science Education: The Development of a Science Education Course for Biomedical Science Graduate Students

    ERIC Educational Resources Information Center

    Markowitz, Dina G.; DuPre, Michael J.

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with…

  17. College-Mentored Polymer/Materials Science Modules for Middle and High School Students

    ERIC Educational Resources Information Center

    Lorenzini, Robert G.; Lewis, Maurica S.; Montclare, Jin Kim

    2011-01-01

    Polymers are materials with vast environmental and economic ramifications, yet are generally not discussed in secondary education science curricula. We describe a program in which college mentors develop and implement hands-on, polymer-related experiments to supplement a standard, state regents-prescribed high school chemistry course, as well as a…

  18. College-Mentored Polymer/Materials Science Modules for Middle and High School Students

    ERIC Educational Resources Information Center

    Lorenzini, Robert G.; Lewis, Maurica S.; Montclare, Jin Kim

    2011-01-01

    Polymers are materials with vast environmental and economic ramifications, yet are generally not discussed in secondary education science curricula. We describe a program in which college mentors develop and implement hands-on, polymer-related experiments to supplement a standard, state regents-prescribed high school chemistry course, as well as a…

  19. A Review of Online Physical Sciences and Mathematics Databases. Part 3: Astronomy, Earth Sciences, and Materials Science.

    ERIC Educational Resources Information Center

    Hawkins, Donald T.

    1985-01-01

    Last article in a series reviews online databases in fields of astronomy, earth sciences (geology, oceanography, other geosciences), and materials science (interdisciplinary subject encompassing ceramics, polymers, metals, glasses, etc.), noting coverage and search strategies. A table of 28 databases citing major subjects, producers, and starting…

  20. Materials Science Standard Rack on Interntional Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Line drawing depicts the location of one of three racks that will make up the Materials Science Research Facility in the U.S. Destiny laboratory module to be attached to the International Space Station (ISS). Other positions will be occupied by a variety of racks supporting research in combustion, fluids, biotechnology, and human physiology, and racks to support lab and station opertions. The Materials Science Research Facility is managed by NASA's Marshall Space Flight Center. Photo credit: NASA/Marshall Space Flight Center

  1. Experiments investigating advanced materials under thermomechanical loading

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.

    1988-01-01

    Many high temperature aircraft and rocket engine components experience large mechanical loads as well as severe thermal gradients and transients. These nonisothermal conditions are often large enough to cause inelastic deformations, which are the ultimate cause for failure in those parts. A way to alleviate this problem is through improved engine designs based on better predictions of thermomechanical material behavior. To address this concern, an experimental effort was recently initiated within the Hot Section Technology (HOST) program at Lewis. As part of this effort, two new test systems were added to the Fatigue and Structures Lab., which allowed thermomechanical tests to be conducted under closely controlled conditions. These systems are now being used for thermomechanical testing for the Space Station Receiver program, and will be used to support development of metal matrix composites.

  2. Teacher research experiences, epistemology, and student attitudes toward science

    NASA Astrophysics Data System (ADS)

    Payne, Diana L.

    This concurrent mixed methods research study examined the impact of a Teacher Research Experience (TRE) on science teacher beliefs about science, scientific research, science teaching, and student attitudes toward science. Surveys, interviews, reflective journals, and classroom observations of six teachers involved in a TRE were utilized to examine changes in beliefs as a result of participation in the TRE. Student attitudes were measured with a pre and post survey. An analysis of qualitative data from the teachers' interviews, journals, and pre and post TRE surveys indicated that some change occurred in their beliefs about science and scientists for all six teachers, and that teachers' beliefs about science teaching were affected in a variety of ways after participating in the TRE. The quantitative results of the study using Science Teachers' Beliefs About Science (STBAS) instrument suggest that the change from the beginning to the end of the school year, if any, was minimal. However, interviews with and observations of teachers identified valuable components of the TRE, such as the advanced resources (e.g., DVD, samples), a feeling of rejuvenation in teaching, a new perspective on science and scientific research, and first hand experiences in science. Results from the classroom observations using the Science Classroom Practice Record (SCPR) were mixed. Some differences may be explained, however, as relating to content taught in the pre and post classes observed or simply to inherent differences in student dynamics and behavior from class to class. There were no significant differences from pre to post TRE regarding student attitudes toward science as measured by paired samples t-tests on the modified Attitudes Toward Science (mATSI) instrument. Attitudes and beliefs are not easily changed, and change is more likely to result from direct experience and education rather than an indirect experience. Although the results are generalizable only to the participants in

  3. Team Experiences for Science and Social Studies Preservice Teachers.

    ERIC Educational Resources Information Center

    Burlbaw, Lynn M.; Borowiec, Jonathan B.; James, Robert K.

    2001-01-01

    Describes how senior-level, preservice teacher certification candidates in secondary science and social science methods classes work in teams to prepare instructional materials on a community-based issue (such as the effect of the deposition of arsenic in a creek and small city lake). Argues that such projects provide valuable learning experiences…

  4. Team Experiences for Science and Social Studies Preservice Teachers.

    ERIC Educational Resources Information Center

    Burlbaw, Lynn M.; Borowiec, Jonathan B.; James, Robert K.

    2001-01-01

    Describes how senior-level, preservice teacher certification candidates in secondary science and social science methods classes work in teams to prepare instructional materials on a community-based issue (such as the effect of the deposition of arsenic in a creek and small city lake). Argues that such projects provide valuable learning experiences…

  5. Ground-Based Research within NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Ground-based research in Materials Science for NASA's Microgravity program serves several purposes, and includes approximately four Principal Investigators for every one in the flight program. While exact classification is difficult. the ground program falls roughly into the following categories: (1) Intellectual Underpinning of the Flight Program - Theoretical Studies; (2) Intellectual Underpinning of the Flight Program - Bringing to Maturity New Research; (3) Intellectual Underpinning of the Flight Program - Enabling Characterization; (4) Intellectual Underpinning of the Flight Program - Thermophysical Property Determination; (5) Radiation Shielding; (6) Preliminary In Situ Resource Utilization; (7) Biomaterials; (8) Nanostructured Materials; (9) Materials Science for Advanced Space Propulsion. It must be noted that while the first four categories are aimed at using long duration low gravity conditions, the other categories pertain more to more recent NASA initiatives in materials science. These new initiatives address NASA's future materials science needs in the realms of crew health and safety, and exploration, and have been included in the most recent NASA Research Announcements (NRA). A description of each of these nine categories will be given together with examples of the kinds of research being undertaken.

  6. Ground-Based Research within NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Ground-based research in Materials Science for NASA's Microgravity program serves several purposes, and includes approximately four Principal Investigators for every one in the flight program. While exact classification is difficult. the ground program falls roughly into the following categories: (1) Intellectual Underpinning of the Flight Program - Theoretical Studies; (2) Intellectual Underpinning of the Flight Program - Bringing to Maturity New Research; (3) Intellectual Underpinning of the Flight Program - Enabling Characterization; (4) Intellectual Underpinning of the Flight Program - Thermophysical Property Determination; (5) Radiation Shielding; (6) Preliminary In Situ Resource Utilization; (7) Biomaterials; (8) Nanostructured Materials; (9) Materials Science for Advanced Space Propulsion. It must be noted that while the first four categories are aimed at using long duration low gravity conditions, the other categories pertain more to more recent NASA initiatives in materials science. These new initiatives address NASA's future materials science needs in the realms of crew health and safety, and exploration, and have been included in the most recent NASA Research Announcements (NRA). A description of each of these nine categories will be given together with examples of the kinds of research being undertaken.

  7. Space science experiments aboard ATS-F.

    NASA Technical Reports Server (NTRS)

    Wales, R.; King, W.

    1972-01-01

    The Environmental Measurements Experiment (EME) package is mounted on the ATS-F spacecraft to a structure that is located on top of the 30-foot parabolic reflector hub. The eight experiments of the EME package are designed to study the environment in space at synchronous altitude and to obtain information on electromagnetic-ionospheric interactions. Six of these experiments will obtain data on charged particles of several different types. A seventh experiment is to provide magnetic field data. The eighth experiment is concerned with solar cell degradation studies.

  8. Life sciences flight experiments program mission science requirements document. The first life sciences dedicated Spacelab mission, part 1

    NASA Technical Reports Server (NTRS)

    Rummel, J. A.

    1982-01-01

    The Mission Science Requirements Document (MSRD) for the First Dedicated Life Sciences Mission (LS-1) represents the culmination of thousands of hours of experiment selection, and science requirement definition activities. NASA life sciences has never before attempted to integrate, both scientifically and operationally, a single mission dedicated to life sciences research, and the complexity of the planning required for such an endeavor should be apparent. This set of requirements completes the first phase of a continual process which will attempt to optimize (within available programmatic and mission resources) the science accomplished on this mission.

  9. Science Experiments: Reaching Out to Our Users

    ERIC Educational Resources Information Center

    Nolan, Maureen; Tschirhart, Lori; Wright, Stephanie; Barrett, Laura; Parsons, Matthew; Whang, Linda

    2008-01-01

    As more users access library services remotely, it has become increasingly important for librarians to reach out to their user communities and promote the value of libraries. Convincing the faculty and students in the sciences of the value of libraries and librarians can be a particularly "hard sell" as more and more of their primary…

  10. Science Experiments: Reaching Out to Our Users

    ERIC Educational Resources Information Center

    Nolan, Maureen; Tschirhart, Lori; Wright, Stephanie; Barrett, Laura; Parsons, Matthew; Whang, Linda

    2008-01-01

    As more users access library services remotely, it has become increasingly important for librarians to reach out to their user communities and promote the value of libraries. Convincing the faculty and students in the sciences of the value of libraries and librarians can be a particularly "hard sell" as more and more of their primary…

  11. Science Experience Unit: Plant and Animal Adaptations.

    ERIC Educational Resources Information Center

    Ferguson-Florissant School District, Ferguson, MO.

    GRADES OR AGES: No mention. Appears to be upper elementary. SUBJECT MATTER: Science units--plants and animals. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into 35 activities. It is mimeographed and staple-bound with a paper cover. OBJECTIVES AND ACTIVITIES: No objectives are mentioned. The activities suggested aim to recreate common…

  12. Saturday Science demo with the SPHERES experiment

    NASA Image and Video Library

    2007-03-17

    ISS014-E-17232 (17 March 2007) --- Astronaut Michael E. Lopez-Alegria, Expedition 14 commander and NASA space station science officer, does a check of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) Beacon / Beacon Tester in the Destiny laboratory of the International Space Station.

  13. Connecting science to everyday experiences in preschool settings

    NASA Astrophysics Data System (ADS)

    Roychoudhury, Anita

    2014-06-01

    In this paper I discuss the challenges of teaching science concepts and discourse in preschool in light of the study conducted by Kristina Andersson and Annica Gullberg. I then suggest a complementary approach to teaching science at this level from the perspective of social construction of knowledge based on Vygotsky's theory (1934/1987). In addition, I highlight the importance of the relational aspect of knowing using feminist standpoint theory (Harding 2004). I also draw from feminist research on preservice elementary teachers' learning of science to further underscore the connection between learning content and everyday experiences. Combining these research strands I propose that science needs to be grounded in everyday experiences. In this regard, the idea is similar to the choices made by the teachers in the study conducted by Andersson and Gullberg but I also suggest that the everyday experiences chosen for teaching purposes be framed appropriately. In and of itself, the complexity of everyday experiences can be impediment for learning as these researchers have demonstrated. Such complexities point to the need for framing of everyday experiences (Goffman 1974) so that children can do science and construct meaning from their actions. In the conclusion of my discussion of science and its discourse in preschool settings, I provide examples of everyday experiences and their framings that have the potential for engaging children and their teachers in science.

  14. Applications of the Analytical Electron Microscope to Materials Science

    NASA Technical Reports Server (NTRS)

    Goldstein, J. I.

    1992-01-01

    In the last 20 years, the analytical electron microscope (AEM) as allowed investigators to obtain chemical and structural information from less than 50 nanometer diameter regions in thin samples of materials and to explore problems where reactions occur at boundaries and interfaces or within small particles or phases in bulk samples. Examples of the application of the AEM to materials science problems are presented in this paper and demonstrate the usefulness and the future potential of this instrument.

  15. ISS Material Science Research Rack HWIL Interface Simulation

    NASA Technical Reports Server (NTRS)

    Williams, Philip J.; Ballard, Gary H.; Crumbley, Robert T. (Technical Monitor)

    2002-01-01

    In this paper, the first Material Science Research Rack (MSRR-1) hardware-in-the-loop (HWIL) interface simulation is described. Dynamic Concepts developed this HWIL simulation system with funding and management provided by the Flight Software group (ED14) of NASA-MSFC's Avionics Department. The HWIL system has been used both as a flight software development environment and as a software qualification tool. To fulfill these roles, the HWIL simulator accurately models the system dynamics of many MSRR-1 subsystems and emulates most of the internal interface signals. The modeled subsystems include the Experiment Modules, the Thermal Environment Control System, the Vacuum Access System, the Solid State Power Controller Module, and the Active Rack Isolation Systems. The emulated signals reside on three separate MIL-STD-1553B digital communication buses, the ISS Medium Rate Data Link, and several analog controller and sensor signals. To enhance the range of testing, it was necessary to simulate several off-nominal conditions that may occur in the interfacing subsystems.

  16. Life Science Research Facility materials management requirements and concepts

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine C.

    1986-01-01

    The Advanced Programs Office at NASA Ames Research Center has defined hypothetical experiments for a 90-day mission on Space Station to allow analysis of the materials necessary to conduct the experiments and to assess the impact on waste processing of recyclable materials and storage requirements of samples to be returned to earth for analysis as well as of nonrecyclable materials. The materials include the specimens themselves, the food, water, and gases necessary to maintain them, the expendables necessary to conduct the experiments, and the metabolic products of the specimens. This study defines the volumes, flow rates, and states of these materials. Process concepts for materials handling will include a cage cleaner, trash compactor, biological stabilizer, and various recycling devices.

  17. Life Science Research Facility materials management requirements and concepts

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine C.

    1986-01-01

    The Advanced Programs Office at NASA Ames Research Center has defined hypothetical experiments for a 90-day mission on Space Station to allow analysis of the materials necessary to conduct the experiments and to assess the impact on waste processing of recyclable materials and storage requirements of samples to be returned to earth for analysis as well as of nonrecyclable materials. The materials include the specimens themselves, the food, water, and gases necessary to maintain them, the expendables necessary to conduct the experiments, and the metabolic products of the specimens. This study defines the volumes, flow rates, and states of these materials. Process concepts for materials handling will include a cage cleaner, trash compactor, biological stabilizer, and various recycling devices.

  18. The Roles of Aesthetic Experience in Elementary School Science

    NASA Astrophysics Data System (ADS)

    Jakobson, Britt; Wickman, Per-Olof

    2008-01-01

    The role of aesthetic experiences for learning was examined in elementary school science. Numerous authors have argued for a science education also involving aesthetic experiences, but few have examined what this means empirically. Recordings of children’s talk with each other and with the teacher during hands-on activities in nine different science units were made. How the children and teachers used aesthetic judgements and how these judgements were part of aesthetic experiences of the science assignments were analysed. For the analysis a pragmatist perspective was used, especially drawing on Dewey and the later Wittgenstein. The results showed how aesthetic judgements occurred in moments of anticipation and moments when the science activities were brought to fulfilment. In this way children used aesthetic judgements normatively about what belonged in science class and what to include and exclude. In this way aesthetic judgements were an important part of learning how to proceed in science class. In using aesthetic judgements the children also talked about their own place in science class and whether they belonged there or not. In this way aesthetic experience is tightly related to learning science as participation. Learning science also meant learning a special kind of aesthetics, that is, learning how to distinguish the science context from other contexts. The fact that children liked or disliked something outside school did not necessarily mean that it was experienced aesthetically in the same way in school, but needed to be re-learnt. What these results mean for science education is discussed at length. The connection between aesthetics and learning to observe is also briefly discussed.

  19. Basic Research in Materials Science and Economic Sustainable Growth

    NASA Astrophysics Data System (ADS)

    Habermeier, H.-U.

    2000-09-01

    The necessity of public funding of basic research has been proclaimed by V. Bush 1945 in the `social contract for science' and this concept has been unanimously accepted as a vital prerequisite for the wealth of nations during the past 50 years. Recent developments gave rise to a paradigm shift away from the Bush's concept. In this paper this development is critically explored and the economical impact of research is discussed. Current evolution in knowledge generation and a change of the political boundary conditions require a new concept for an integrated research system. Examples taken from the semiconductor industry serve as an indicator of the enabling importance of materials science and condensed matter physics in the past. Basic research in materials science of functional ceramics generated new developments that are believed to have similar impact in the future. Already appearing and in the years ahead more emphasized nature of materials science as an multidisciplinary activity serves a model for the proposal of the vision of an integrated system of basic research and education. This is a prerequisite to master the challenges we are facind in the next century. A science based winning culture is the model for the future.

  20. High-Pressure Neutron Diffraction Studies for Materials Sciences and Energy Sciences

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Los Alamos High Pressure Materials Research Team

    2013-05-01

    The development of neutron diffraction under extreme pressure (P) and temperature (T) conditions is highly valuable to condensed matter physics, crystal chemistry, materials sciences, as well as earth and planetary sciences. We have incorporated a 500-ton press TAP-98 into the HiPPO diffractometer at LANSCE to conduct in situ high P-T neutron diffraction experiments. We have worked out a large gem-crystal anvil cell, ZAP, to conduct neutron diffraction experiments at high-P and low-T. The ZAP cell can be used to integrate multiple experimental techniques such as neutron diffraction, laser spectroscopy, and ultrasonic interferometery. Recently, we have developed high-P low-T gas/fluid cells in conjunction with neutron diffraction and inelastic neutron scattering instruments. These techniques enable in-situ and real-time examination of gas uptake/release processes and allow high-resolution time-dependent determination of changes in crystal structure and related reaction kinetics. We have successfully used these techniques to study the equation of state, structural phase transition, and thermo-mechanical properties of metals, ceramics, and minerals. We have conducted researches on the formation of methane and hydrogen clathrates, and hydrogen adsorption of the inclusion compounds such as the recently discovered metal-organic frameworks (MOFs). The aim of our research is to accurately map phase diagram, lattice parameters, thermal parameters, bond lengths, bond angles, neighboring atomic environments, and phase stability in P-T-X space. We are currently developing further high P-T technology with a new "true" triaxial loading press, TAP_6x, to compress cubic sample package to achieve pressures up to 20 GPa and temperatures up to 2000 K in routine experiments. The implementation of TAP_6x300 with high-pressure neutron beamlines is underway for simultaneous high P-T neutron diffraction, ultrasonic, calorimetry, radiography, and tomography studies. Studies based on high

  1. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn; Leman, John R.; Frazier, Natalie C.

    2013-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1000 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  2. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn; Frazier, Natalie; Lehman, John; Aicher, Winfried

    2013-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1000 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  3. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, S. E.; Lehman, J. R.; Frazier, N. C.

    2016-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1400 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400degC. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  4. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn; Frazier, Natalie; Lehman, John

    2016-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1400 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400?C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  5. Research in Materials Science: Superconducting Transition Metal Alloys

    DTIC Science & Technology

    1975-07-31

    Myron Hale Frommer , Ph.D. Thesis, MIT (Metallurgy and Materials Science, 1973) unpublished. t-1.■>-’-■ ^mm^m^^^m^^ßm^^^^f*rm**^^1**^^^*mi^^~*^^^^^m...77- 12. J. Bostock, Kofi Agyeman, M.H. Frommer , and M.L.A. MacVicar, J. Appl. Phys. 44 (1973j 5567. 13. W. N. Cheung (unpublished

  6. Developing, Implementing and Evaluating Case Studies in Materials Science

    ERIC Educational Resources Information Center

    Davis, Claire; Wilcock, Elizabeth

    2005-01-01

    The use of case studies to teach materials science undergraduates is an exciting and interesting educational approach. As well as helping learners to connect theory and practice, the case method is also useful for creating an active learning environment, developing key skills and catering for a range of different learning styles. This paper…

  7. Developing, Implementing and Evaluating Case Studies in Materials Science

    ERIC Educational Resources Information Center

    Davis, Claire; Wilcock, Elizabeth

    2005-01-01

    The use of case studies to teach materials science undergraduates is an exciting and interesting educational approach. As well as helping learners to connect theory and practice, the case method is also useful for creating an active learning environment, developing key skills and catering for a range of different learning styles. This paper…

  8. Polymerization Simulator for Introductory Polymer and Material Science Courses

    ERIC Educational Resources Information Center

    Chirdon, William M.

    2010-01-01

    This work describes how molecular simulation of polymerization reactions can be used to enrich introductory polymer or material science courses to give students a deeper understanding of free-radical chain and stepwise growth polymerization reactions. These simulations have proven to be effective media for instruction that do not require material…

  9. Introduction of Materials Science Through Solid State Chemistry.

    ERIC Educational Resources Information Center

    Mueller, William M.

    Presented is a report of a program of the American Society for Metals, designed to introduce materials science principles via solid state chemistry into high school chemistry courses. At the time of the inception of this program in the mid-sixties, it was felt that high school students were not being adequately exposed to career opportunities in…

  10. Microanalytical Efforts in Support of NASA's Materials Science Programs

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    2004-01-01

    Following a brief overview of NASA s Microgravity Materials Science programs, specific examples will be given showing electron beam and optical microscopic applications to two-phase glass structures, dendrite tip radii, solid solution semiconductors, undercooled two-phase stainless steels and meteorites.

  11. Polymerization Simulator for Introductory Polymer and Material Science Courses

    ERIC Educational Resources Information Center

    Chirdon, William M.

    2010-01-01

    This work describes how molecular simulation of polymerization reactions can be used to enrich introductory polymer or material science courses to give students a deeper understanding of free-radical chain and stepwise growth polymerization reactions. These simulations have proven to be effective media for instruction that do not require material…

  12. Prior Experiences Shaping Family Science Conversations at a Nature Center

    ERIC Educational Resources Information Center

    McClain, Lucy R.; Zimmerman, Heather Toomey

    2014-01-01

    Using families as the analytical focus, this study informs the field of informal science education with a focus on the role of prior experiences in family science conversations during nature walks at an outdoor-based nature center. Through video-based research, the team analyzed 16 families during walks at a nature center. Each family's prior…

  13. Summer Science Camp for Middle School Students: A Turkish Experience

    ERIC Educational Resources Information Center

    Sezen Vekli, Gulsah

    2013-01-01

    The present study aims to identify the effectiveness of summer science camp experience on middle school students' content knowledge and interest towards biology. For this purpose, two instruments including reflective journal and pre-post questionnaire were developed by four researchers who are expert in science education. Besides, the instruction…

  14. "It's All Human Error!": When a School Science Experiment Fails

    ERIC Educational Resources Information Center

    Viechnicki, Gail Brendel; Kuipers, Joel

    2006-01-01

    This paper traces the sophisticated negotiations to re-inscribe the authority of Nature when a school science experiment fails during the enactment of a highly rated science curriculum unit. Drawing on transcriptions from classroom videotapes, we identify and describe four primary patterns of interaction that characterize this process, arguing…

  15. All Christians? Experiences of Science Educators in Northern Ireland

    ERIC Educational Resources Information Center

    Murphy, Colette; Hickey, Ivor; Beggs, Jim

    2010-01-01

    In this paper we respond to Staver's article (this issue) on an attempt to resolve the discord between science and religion. Most specifically, we comment on Staver's downplaying of difference between Catholics and Protestants in order to focus on the religion-science question. It is our experience that to be born into one or other of these…

  16. Consumer Science Spiral: A Natural for Exploratory Experiences

    ERIC Educational Resources Information Center

    Doiron, Elizabeth H.

    1978-01-01

    A consumer science course at Rumford (Maine) Junior High School uses resources and facilities of the home economics and science departments to take low-ability students through a variety of practical learning experiences combining chemistry, biology, and home economics. Rotation of classrooms and teachers helps to keep the students interested. (MF)

  17. The Science Laboratory Experiences of Utah's High School Students

    ERIC Educational Resources Information Center

    Campbell, Todd

    2007-01-01

    This research investigated the extent to which science laboratory experiences encountered by Utah high school students aligned with reform efforts outlined in national standards documents. Through both quantitative and qualitative methods the findings revealed that while there were instances of alignment found between science laboratory…

  18. "It's All Human Error!": When a School Science Experiment Fails

    ERIC Educational Resources Information Center

    Viechnicki, Gail Brendel; Kuipers, Joel

    2006-01-01

    This paper traces the sophisticated negotiations to re-inscribe the authority of Nature when a school science experiment fails during the enactment of a highly rated science curriculum unit. Drawing on transcriptions from classroom videotapes, we identify and describe four primary patterns of interaction that characterize this process, arguing…

  19. SMILE--Science and Mathematics Investigative Learning Experiences.

    ERIC Educational Resources Information Center

    Orzech, Miriam W.; Borden, Sue

    Oregon State University (OSU) designed and implemented the Science and Mathematics Investigative Learning Experiences Program (SMILE) to encourage minority students to pursue careers in science and engineering. SMILE offers an after-school enrichment program for middle-school Hispanic and Native American students in eight rural Oregon communities.…

  20. Prior Experiences Shaping Family Science Conversations at a Nature Center

    ERIC Educational Resources Information Center

    McClain, Lucy R.; Zimmerman, Heather Toomey

    2014-01-01

    Using families as the analytical focus, this study informs the field of informal science education with a focus on the role of prior experiences in family science conversations during nature walks at an outdoor-based nature center. Through video-based research, the team analyzed 16 families during walks at a nature center. Each family's prior…